
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SHAHED ALAM 

 

HUMAN BODY EFFECTS ON RF ELECTRONICS 

 

Master of Science Thesis 

 

 

 

 

 

 

 

 

 

 

 

Examiners: Adj. Prof. Riku Mäkinen 

                   Hannu Sillanpää  

Examiners and Topic approved in 

Computing and Electrical Engineering 

Faculty Council Meeting   

on 7
th

 November, 2012. 

 



i 

ABSTRACT 
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Wireless sensors require radio frequency (RF) circuits to operate at close proximity to 

the human body. For successful design of body worn applications of electronics the 

study of the effect of human body on RF interconnects and simple RF circuits has been 

undertaken through measurements and simulations in the frequency band of 50 MHz to 

9 GHz. Coplanar waveguide (CPW) transmission lines are adopted to commence the 

investigation. The fact that in CPW structures the ground resides in the same plane as 

the signal trace enables the fabrication of thin structures apt for constructing.  The test 

structures have been fabricated using inkjet technology which being an additive and low 

temperature process enables the printing of transmission lines and circuit structures at 

which in turn enables the fabrication of test structures on thin flexible Polyethylene 

naphthalate (PEN) substrate. In order to discern the effect of muscle on the RF 

interconnections, distributed parameters, effective relative permittivity, effective loss 

tangent, attenuation constant and characteristic impedance are extracted using a 

multiline extraction process. The extraction method was also used to successfully 

separate the dielectric and conductor losses. 

      The simulations have been performed using the AWR Microwave Office 

commercial RF simulator. The validity of the simulations and measurements has been 

assessed with the agreement of the simulations with measurements. It is deduced from 

simulations and measurements that above 1 mm distance the losses become equal to 

that of free space and at 0.5 mm gap losses are close to free space as well. However, 

when the distance is less than 0.5 mm the losses are significant. In order to mitigate the 

effect of body on RF interconnects narrow gap width and centerline width should be 

used above 4 GHz. Bending the RF interconnects did not produce any significant 

change in the scattering parameters of the coplanar wave guide transmission lines, 

illustrating that bends do not detune the circuit performance considerably. 

     The effect of body on the RF circuits is analyzed using simple RF circuits of 

different sizes. Multiline Thru-Reflect-Line calibration has been used to extract 

scattering parameters of the discrete components used in the circuits. The on body 

simulations with AWR library components and extracted discrete component values 

reveal that as the length of the circuit is increased the measured components provided 

better convergence with measured results. The experiments performed illustrate that 

body has significant effect on the RF interconnects and RF circuits and the effects needs 

to be taken in account for proper performance of the RF circuits. The findings from the 

investigations are used to attain guidelines for body worn electronics design. 
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TERMS AND DEFINITIONS 

ABBREVIATIONS 

 

3D Three-dimensional 

α Attenuation constant [dB/cm] 

β Phase constant 

γ                                 Complex propagation constant 

BWE Body Worn Electronics 

C Distributed capacitance of a transmission line [F/m] 

c                                     Speed of Light [m/s] 

CPW Coplanar Waveguide 

DC Direct Current 

EM Electromagnetic 

MoM Method of Moments 

Δ Determinant of scattering parameter matrix 

Δl                                  Length difference of a transmission line [m] 

Δz                                    Length of short piece of a transmission line [m] 

E Electric Field 

ECG Electrocardiography 

εr Relative Permittivity 

εreff Effective Relative Permittivity          

ff                                Correction factor 

f Frequency [Hz] 

G Distributed conductance of a transmission line [m] 

g Gap between the signal trace and ground trace  

GSG Ground-Signal-Ground 

j                                       Imaginary unit 

L                              Distributed inductance of a transmission line [H/m] 

L Length of a transmission line [m]  

ω Angular frequency [rad/s] 

PEN Polyethylene Naphthalate 

PPE Protective Personal Equipment 

R Distributed resistance of a transmission line [Ω/m] 

R0˚ Resistance in sheet resistance measurements [Ω] 

R90˚ Resistance in sheet resistance measurements [Ω] 

Ra Wave cascade matrix of error box 1 
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Rb Wave cascade matrix of error box 2 

RF Radio Frequency 

RFID Radio Frequency Identification 

RS Sheet resistance [Ω] 

σ Conductivity [S/m] 

S Scattering parameters 

tanδ Loss Tangent                                    

tanδeff  Effective loss tangent   

TRL Thru-Reflect-Line   

VNA Vector Network Analyzer  

w Width of signal trace                     

Z Impedance parameters [Ω] 

Zo Characteristic impedance [Ω] 

ZS Series impedance [Ω] 
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1. INTRODUCTION 

The implementation of RF circuits at close proximity to human body has grown over 

the years particularly in the field of wireless biosensors. Wireless biosensors are being 

used in wearable or implanted applications to measure heart beat, blood pressure, and 

other body functions [1]. In order to facilitate the growing implementation of body worn 

electronics a design guideline for body worn application is essential for accurate and 

speedy circuit design. Extensive research on the effect of human body on antenna has 

proven that body with its high dielectric constant and loss has a detrimental effect on 

antenna input impedance and efficiency [2-3]. However, not much study has been 

performed to understand how the body effects the interconnections and the RF circuits 

at varying frequencies. Nevertheless, the changes in antenna characteristics instigate the 

need of investigating the effect of human body on RF interconnects and RF circuits. 

The effect of body should reflect in the change of characteristics of transmission line 

that would result in impedance mismatch, alteration in electrical length, and a 

considerable attenuation of signal strength that would in turn result in deteriorating the 

performance of the RF circuit.  The estimation of the loss or deterioration of circuit 

performance is critical in particular for biosensors placed in direct contact with the 

body. 

 The goal of the research is to attain an accurate method of simulation that would 

be able to estimate losses incurred due to body in RF circuits. Consequently, on the 

basis of the credibility of the simulation model, guidelines for RF circuit design are 

attained in order to facilitate body worn RF circuit design.  The commercial simulation 

software package used for the analysis is AWR Microwave Office [6]. The Axiem 

Simulator integrated in AWR, facilities the construction of simulation model since, it 

allows diverse materials existing on top of one another in measurements to be defined in 

separate layers. The material characteristics of the muscle used in the simulations are 

obtained from [7].  

One of the key features required to discern is the effect of the body on RF 

circuits due to its proximity. To accomplice the desired feature thin light weight flexible 

polyethylene naphthalate (PEN) substrate is used and coplanar waveguide (CPW) 

structure is adopted for the study of radio frequency (RF) interconnections and circuit 

design in proximity to body. The thin and flexible nature of the substrate is apt for body 

worn applications since, the characteristics add to the comfort of the user. The test 

structures are fabricated on the flexible substrate using printable electronics technology 

[4-5]. Inkjet electronics printing method, which is one of the members of printable 

electronics technology, being an additive and low temperature printing method, enables 

the printing of the electronics structures on the PEN substrate feasible. The desired free 

space and on muscle measurements are undertaken using microwave air foam and fresh 
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beef respectively. The measurements are performed using a vector network analyzer 

(VNA) that takes measurements from 50 MHz to 9 GHz connected with a probe station.  

In order to attain further insight in the effect of body on RF interconnections and 

circuits, wide band extraction methods has been used. Hence, an improved multiline 

extraction method [5][-9]  based on the multiline thru-reflect-line (TRL) calibration 

technique [10] is utilized to extract the distributed and effective characteristic 

parameters of the printed interconnect in free space and on muscle. Attenuation constant 

(α) values of the CPW transmission lines are exhibited to illustrate the variation of the 

losses and consequently, have been used to deduce the distance from the body that is 

useful for on body circuit applications. Distributed parameters, resistance per unit 

length (R) and conductance per unit length (G)  are extracted to illustrate how the losses 

are distributed in the conductor and the dielectric. Effective characteristic parameters 

such as the permittivity (εreff), loss tangent (tanδeff) and characteristic impedance (Zo) 

that serve to provide useful data essential for calculating electrical length, characterizing 

muscle and matching impedance are extracted using the extraction method. The 

multiline calibration has been innovatively utilized to attain the scattering parameters 

for discrete components that are incorporated in the fabricated RF circuits. 

The remainder of the thesis is illustrated as follows. In Section 2 few of the 

applications, properties of BWE is discussed and in the light of the discussion the 

required guidelines for BWE circuit design are illustrated.  The required theoretical 

background is provided in Section 3. Namely CPW structure, printable electronics 

technology, DC measurement technique, multiline extraction method and it’s utilization 

to obtain the distributed and effective parameters are explained in the section. Section 4 

depicts of the description of fabricated test structures, measurement instruments and the 

description of the measurement setup. Results from the simulations and measurements 

and its comparisons are illustrated in Section 5. Finally, a description of the 

achievement of the research is realized in the conclusion section. 
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2. BODY WORN ELECTRONICS 

The enormous popularity in mobile communication illustrates the strong liking of 

people on tether less voice communications.   In addition to, the development in 

wireless communication the portability of electronic device is also one of the prominent 

features that attract users. The combined response for mobility and portability coupled 

with development in wireless technology over the past decade instigated a heave in the 

demand for body worn electronics (BWE). Numerous researches have been completed 

and evidently a lot more needs to be pursued in order to successfully provide BWE 

systems that would comfortably fit into people’s daily life. In this section at first few of 

the applications of BWE are exemplified and then, desired properties of BWE 

electronics circuitries are discussed and based on the properties, how the 

characterization of some of the factors could serve to be used as guidelines for the 

design of BWE circuitries are discussed. Hence, this particular section is intended to 

illustrate the motivation of the research. 

2.1. Applications 

BWE have applications in diverse fields. Some of the prominent fields would be data 

networking, telemedicine and fashion. 

One novel use of BWE system in the field of data networking, is its integration 

in fire-fighters clothing in order to provide them an automated personal protective 

equipment (PPE) system [11]. PPE apart from providing hands free communication and 

tracking is also able to sense the environment.  The environment is sensed by means of 

measuring the heat and moisture in the multilayer protective fabrics that has been 

developed. PPE can also monitor the heart rate and is a necessary heart attack causes the 

most fatalities in this profession. The tracking option coupled with voice 

communication can help victims and in some cases fire-fighters trapped in debris to be 

rescued. The hands free communication also simplifies the job of fire fighters compared 

to the past technology where handsets needed to be used. The electronic system consist 

of sensors, processor and communication equipment that are implanted within the 

turnout coat and is transparent to the user. 

Telemedicine projects requiring the application of BWE could serve to enable 

patients who require 24 hour observation for prolonged period such as for months and 

years to live at the comfort of their home. HealthService24 is one such European 

telemedicine projects that is seeking  to provide continuous viable mobile services for 

health care permitting health professionals to remotely assess, diagnose and treat 

patients while enabling the patient to be mobile [12]. The mobility pursued is primarily 

intended for patients suffering in chronic diseases because of the long period of the 



4 
 

disease [13]. At present the remote services that are offered by HealthServices24 is 

done by means of wired phone and electrical lines thereby, limiting mobility. Most of 

the wireless medical appliances that are present in market can provide ´spot´ 

measurements that are only a few minute measurements that can be transmitted and 

stored and analyzed. Goal of projects like HeathService24 is to provide completely 

mobile and continuous health care service.  The completion of such projects would 

enable reduced hospitalization, lower healthcare costs, improved quality of life and 

most importantly continuous healthcare service from any location of the world. 

Consequently, the success of such projects are essentially depended on successful 

design of wireless BWE devices because that would require wireless communications 

with wearable sensors that measure vital physiological parameters such as blood 

pressure, heart rate, electrocardiography (ECG), blood glucose, blood oxygen 

saturation, temperature etc [14-17]. 

Apart from the medical applications of body worn electronics there are some 

applications motivated not only by necessity but also by want. BWE devices can also 

serve as fashion accessories along with being a source of entertainment and 

information. In Japan for instance, mobile phones are more likely to be worn in lanyard 

around the neck as a colour coordinated fashion accessory [18]. Many business users on 

the other hand may have their Blackberries clipped in their belts in plastic holsters as 

hypothesized by famous futurologist Jonathan Mitchener [18]. Jackets that consist of 

electronic display to control the Mp3 player are already out in the market. Wireless 

headphone is something that is very much in use. Viable applications of BWE that 

futurologist think is very much possible in future are clothing that can understand 

human gestures,  being used as speakers, microphone, camera and security identity 

device, key identity authentication function device integrated in clothing. The beginning 

of radio frequency identification (RFID) could also lead to a ubiquitous sensing 

network. Thus, BWE gives birth to many futuristic ideas and therefore, characterization 

of BWE is something that this technology demands. 

2.2. Properties and Realization of BWE 

In order to assimilate with human body contour and its movement BWE devices need to 

be light weight, flexible and unobtrusive. The flexibility of BWE devices are attained 

by flexible substrate. Few of the used substrates for flexible electronics are polymer 

film, glass, paper, ceramic and textile [19]. The selection of a certain type of substrate is 

application specific. Few factors that are taken into consideration in decision making 

would be smoothness, barrier, optical transparency, dimensional stability, thermal 

stability and mechanical strength/flexibility [19].  

In addition to, substrate properties the other factor that is of significant 

importance is the choice of method by which the conducting structures would be 

integrated with the flexible substrate. The various method that are present are screen 

printing [20-22], fabrication of conducting textiles [23][24], conductive ribbons [25], 
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and copper meshes [26], embroidered  using conductive thread [25][27] and sprayed 

using conductive paint [25]. Copper tapes are also used in BWE but it easily breaks and 

hence, it is not viable to be used for commercial purpose [26-29]. All methods have 

their pros and cons and hence, the choice of fabricating the conducting interconnects 

and conducting structures are application specific as well. 

2.3. Guidelines for BWE Circuit Design 

The fact that BWE circuits require to be close to human body and flexible enough to 

adhere to the contour of the body, the body and the bends may have some effect on the 

characteristics of the circuits and if so the circuits needs to be tuned for such 

circumstances, for the circuit to be functioning efficiently. The situation incidents 

certain questions the answer to which would serve as guidelines for BWE circuit design. 

The questions that need be answered to facilitate successful design are the following. 

How much proximity could be sustained for successful design of BWE circuitries? How 

much do the bends affect the performance? How does the substrate thickness and the 

dimensions of the interconnects affect the design? Hence, the research is motivated by 

these questions and in the pursuit of finding the answer novel method of simulation and 

measurements techniques would be verified and validated with one another. 
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3. THEORETICAL BACKGROUND 

In this chapter the theoretical background of the methods and structures used in the 

research are explained. The transmission line and the circuit adopted for the research are 

coplanar waveguide (CPW) structures. A brief description of the physical properties of 

CPW is described. The test structures are fabricated using inkjet printing technology 

and hence, a short description of the method is provided. Light is shed on multiline 

extraction method that has been utilized to extract the electrical parameters.  

Transmission line parameters that would enable the change in the characteristic of the 

RF interconnects to be assessed are mentioned and how the parameters are obtained 

through multiline extraction method is derived briefly at the end of the section.   

3.1.  Coplanar Waveguide 

 
                              

Figure 3.1. Coplanar Waveguide Transmission Line. 

 

Coplanar waveguide is a transmission line, the ground traces of which lie in the same 

plane as the signal trace itself as shown in Figure 3.1. The fact that the ground plane and 

signal trace are at the same plane, shunt connected components to the ground can be 

made in the same side of the substrate without drilling any vias and the fabrication of 

interconnects becomes simple as well. At millimeter frequencies the vias do introduce 

parasitic inductance. The effective permittivity variation with frequency is also lower 

when compared to microstrip which is one of the most commonly used planar 

transmission lines and this enable broadband impedance matching simpler [30]. Few 

other desirable properties of CPW are decreased radiation losses, reduced dispersion, 

relatively low dependence on substrate thickness and impedance mostly depended on 

the gap between signal and ground trace [30]. CPW in general is cheaper, performs 

better and is easier to fabricate compared to mircostrip and stripline. However, there are 

g 

w 
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certain disadvantages as well such as heating effect is high, requires electromagnetic 

shielding in integrated applications and sometimes mechanical strength becomes an 

issue as well [31]. Nevertheless, the choice of CPW as test structure is dictated by 

necessity, because the ground being in the same plane as the signal trace enables the 

construction of very thin, comfortable and unobtrusive structures. Moreover, one layer 

printing is also easier considering the fabrication of the test structure. 

The dimensions of the CPW are restricted by the ground-signal-ground (GSG) 

probe used for the measurements and also the highest frequency till which the 

measurements can be taken [32]. The parameter that restricts the dimensions of CPW is 

the pitch of the probe. Pitch of the probe is the distance between the signal pin and one 

of the ground pins and the pitch used for measurements is 800 μm. The ground probe 

needs to be placed at least 50 μm from the edge of the ground trace that means 750 μm 

can be used for g and the half of w, where g and w is labeled in Figure 3.1. For instance, 

when g is 200 μm with offset for ground 50 μm, w would be 1100 μm.  The band till 

which measurements are allowed by the 800 μm is from DC to 40 GHz [32]. The 

maximum frequency till which measurements were performed was 9 GHz and the limit 

was imposed by the VNA used that allows measurements to be taken from 300 kHz to 9 

GHz.  

3.2. Printable Electronics 

Printable electronics is a method of printing electronic structure on different substrates. 

Over the years as the manufacturing technologies are reaching the limits in terms of 

material, costs and production flexibility, the demand for printing technologies in 

electronics production has increased drastically [33]. Even though there are open 

questions regarding the durability and longevity of the circuits constructed using 

printing technology yet the technology has the potential to be utilized to make sturdy 

light weight displays, smart sensor systems and flexible and large area biomedical 

sensors [33].  Inkjet printing is one of the methods of printing electronics that has been 

adopted in the research in which the layout of the electronic circuit is handled as digital 

image. Inkjet printing method is completely additive; hence, the material waste is less 

than traditional manufacturing methods such as etching [34]. It is a drop on demand 

direct disposition technique of manufacturing electronics structures. Since the 

manufacturing method is contact less and operates at low temperature, the technology 

makes the fabrication on cheap flexible polymer films possible.  The method of printing 

is very similar to the process in which an image is printed by an ink jet printer. The 

layout is converted to an image file and the ink ejected from the nozzle is controlled 

according to the image of the layout. Primary material of the ink is in form of 

conductor, dielectric and semiconductors and is application specific. The process of 

printing conductor traces is as such, first the substrate is made suitable for the 

deposition of the ink by surface treatment, then the ink is deposited and finally the nano 
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particles are united to form the conductive interconnects, by heating, the process is also 

known as sintering [35].  

The material properties of the printable electronics structure depend on the 

manufacturing conditions of the manufacturing process. The conditions that affect the 

properties are sintering time, sintering temperature and temperature profile. Hence, 

variation of the conditions would vary the electrical properties of the printed conductors 

and dielectrics. The focus of the research being to illustrate the effect of body on printed 

RF interconnects and circuits, the characterization of printable electronics when held in 

proximity to muscle is essential for successful design of BWE. Different test structures 

made at different times have different properties such as different conductivity and 

thickness, therefore, dc conductivity measurement is described in Section 3.3 needs to 

be performed to incident the simulation. 

3.3. Direct Current Conductivity Measurement 

 

 

Figure 3.2. Greek cross structure for DC measurement. 

 

Figure 3.2. shows the Greek cross that is used to measure the sheet resistance of the test 

structure [36]. It is a widely used method in the semiconductor industry [37][38]. The 

sheet resistance is measured by forcing current from rectangular port A to B and 

correspondingly measuring the voltage across D and C. Then similarly the current is 

forced to pass in the reverse direction and the voltage VDC is measured and the 

resistance R0˚ is calculated as shown in equation (1). 

 

0

DC CD

AB BA

V V
R

I I
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
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
                                                          (1) 

 

The current is then required to be forced through the pads B and C and the 

process is repeated and R90˚ is calculated using equation (2). 
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                                                          (2) 

 

Using equation (3) the average R of the two above mentioned resistance is 

calculated. The value of R is applied in equation (4) to obtain the value of sheet 

resistance RS. In equation (4), ff represents the correlation factor that is required to 

compensate geometrical asymmetries of the Greek cross crossing area. ff is set as 1 

because geometrical correction is not considered in the research. 

 

0 90
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                                                               (3) 
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SR t
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Once the sheet resistance Rs is determined, the conductivity of the test structure can be 

determined if the thickness of the traces are known using equation (5). Nevertheless, it 

should be acknowledged that the attained value is an approximate value because the 

conductivity of the conductors especially at high frequency depends on surface 

roughness and porosity as well. Therefore, slight tuning of the conductivity value is 

required for simulations to comply with the measurements. 

3.4.   Multiline Extraction Method 

Transmission line-measurement based characterization methods are suitable for 

characterization of both conductors and dielectrics using VNA measurements. Printable 

electronics can be characterized using single line-pair based characterization [39-41]. 

Nevertheless, the half wave resonance happening due to the difference of length of the 

measured lines and the high manufacturing tolerance which inkjet printed electronics 

structures exhibit decrease the accuracy of the method. By using the multiline extraction 

method the problem of half wave resonance can be avoided [40][41]. The multiline 

extraction methods take advantage of the redundant measurements. Typically, the 

redundant measurements are performed by taking measuring transmission lines of 

different lengths, which also increases the measurement bandwidth. 

Figure 3.3. represents a transmission line section L and two error boxes Ra and 

Rb. The error boxes models the transition from the probe-head to the transmission line 

and other possible discontinuities and pad parasitics at the line ends. The 

characterization process begins with the first tier calibration moves the known reference  
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Figure 3.3. Transmission line consisting of two error boxes Ra, Rb and a central length of 

L. 

 

impedance at the tips of the probe. The multiline material characterization is divided in 

two steps: first phase is to solve the propagation constant of the lines and error boxes at 

the ends of the lines through the TRL calibration [43]. The multiline TRL calibration 

weights the measured transmission lines and selects the optimal propagation constant 

and error boxes at each frequency points. The second phase is to fit an equivalent circuit 

to the error box network parameters such that the characteristic impedance of the 

transmission line is solved from it. For printed transmission line multiline extraction 

method has been found to be most apt for characterization [44]. 

 

3.5.  Distributed Parameters 

 

 

 

Figure 3.4. Lumped circuit equivalent circuit of transmission line. 

 

Transmission lines at microwave frequencies are a fraction or several wavelengths long 

hence, the voltage and current along the length of the transmission line may vary in 

phase and magnitude. Therefore, in order to characterize transmission line at high 
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frequencies transmission lines are represented as distributed parameter networks.  

Figure 3.4. represents a Δz section of transmission line that is the length in which the 

distributed parameters R, L, G and C are constant [45].The series inductance L is the 

total self-inductance between the conductors and the shunt capacitance C represents the 

capacitance due to the proximity of the conductors. The series resistance R represents 

the finite conductivity of the conductors and the shunt conductance G is due to the 

dielectric loss between the conductors. Applying Kirchhoff’s law in Figure 3.4. and 

adopting some assumptions, derivatives and substitution the expressions obtain for 

propagation constant and characteristic impedance are provided in equations (6) and (7). 

 

  j R j L G j C                                           (6) 
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Squaring and substituting equations (6) and (7) the deduced expressions for distributed 

parameters are provided in equations (8) to (11). 
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The distributed parameters can then be used to further extract useful parameters which 

are essential to perform electromagnetic simulations (EM) and design radio frequency 

(RF) circuits. Equations (12) is used to calculate the permittivity where c is the speed of 

light in vacuum, β  is the imaginary part of the propagation constant known as phase 

constant as well and ω is the angular frequency. Real part of the permittivity is 

calculated using equation (13) C is capacitance per unit length and ZC is the 

characteristic impedance. Equation (14) enables the loss tangent value to be calculated 

[44]. 

 

r

c




 
  
 

                                                          (12) 

 r oRe cCZ                                                       (13) 
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G

tan
C




                                                         (14) 

To summarize, the distributed parameters of the transmission line are obtained 

from the propagation constant and characteristic impedance values extracted from the 

calibration. The obtained parameter values can then be used to obtain the other effective 

parameters of the CPW transmission line. This method is well suited for wide band 

characterization of electrical material properties in printable electronics. 
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4.  SIMULATION MODEL 

The simulation model requires being such that the varied materials that are included in 

an on body simulation can be modeled. The materials being air, inkjet printed conductor 

traces, substrate and the body. Moreover, the characterization of the materials over the 

entire frequency range is of eminent significance so that the results obtained are 

credible. Therefore, careful analysis requires to be made in selecting the simulator and 

characterizing the material parameters. In this section the process of defining the 

material parameters and the integration of the materials in simulation model would be 

illustrated elaborately. 

4.1. Test Structure 

In order to make the modeled CPW transmission lines similar to the actual test structure 

the sheet resistance and dimensions are required to be known prior to simulations. 

Moreover, as already been stated in Section 3.2. the characteristics of inkjet printed 

structures vary considerably from one another because there are many conditions 

influencing the characteristics. In Figure 4.1. the test structure that consists of varying 

length of coplanar waveguide (CPW) transmission lines is displayed. The single layer 

CPW is selected due to its suitability for the printing process and tot realize the thin 

lightweight required for BWE. The CPW traces are made of silver nano particle 

conductor and the traces are printed on 50 μm PEN substrate. The test structure consist 

of CPW of length 31mm, 25 mm, 19 mm, 11 mm, 9 mm, 5 mm , 1 mm and Open. The 

Greek crosses that are visible in the test set in Figure 4.1. are used  

    

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.1. Inkjet printed coplanar transmission line on PEN substrate 
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Figure 4.2. Microscopic view of inkjet printed coplanar waveguide transmission 

lines 

 

to measure the sheet resistance Rs. The average value of the measured Rs is 105 mΩ. 

Figure 4.2. shows the microscopic top view of CPW with dimensions of the conductor 

gap and centre conductor width at different positions of the CPW. It can be observed 

from the figure that centre line on an average is 535 μm and the gap width between the 

centre line and ground is 190 μm. The average value of the CPW gap and centre 

conductor was found to be 190 μm and 520 μm, respectively, and these values were also 

adopted in simulations. 

4.2. Choice of Solver 

AWR simulation software has been used to model the on body CPW and filter. The 

choice of software has been considered because of the integrated three dimension (3 D) 

method of moment (MoM) electromagnetic (EM) simulator titled as Axiem simulator 

[6]. Axiem simulator allows different material types to be assigned in layers on top of 

each other and this particular feather is apt for defining the different material types 

required for on body simulations. In addition, Axiem consists of direct default internal 

solver that accurately simulates the losses such that the losses per unit length are 

irrespective of length. Direct default solver assumes least approximation compared to 

other offered internal solvers and the direct default solver chooses between low and 

high direct solver that alters and adapts the mesh relative to the frequency of simulation. 

The required accuracy comes at the cost of prolonged period of simulation. 

Nevertheless, to perform meaningful simulations of inkjet printed circuits on body the 

direct default solver of Axiem simulator needs to be used because all the internal 

solvers have been tested only direct default solver was able to produce meaningful 

results. Therefore, the finding that needs to be restated is that, if AWR is adopted for 
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estimating the losses for on body simulations Axiem simulator and its internal direct 

default Solver is the only means to attain desirable results. 

4.3. Modelling and Characterization of CPW on Body 

The simulation models consist of 4 layers. The first layer consists of the three 

conductors of equal length. Two of the conductors that are of equal width (3 mm), 

forms the ground traces and between the grounds the signal trace is placed, thus 

forming the CPW. Figure 4.1. shows the printed CPW lines and Greek crosses. The 

Greek crosses have been used to perform DC measurements in order to measure the 

sheet resistance RS. Using RS and assuming a suitable thickness of the conductor the 

conductivity of the test structure can be calculated. The description of the DC 

measurement process and calculation of conductivity has been illustrated in Section 3.3. 

The value of Rs used in the simulations is 105 mΩ and the assumed value of thickness is 

1 μm and the obtained conductivity is 9.5e6 S/m.  Simulations prove that the results are 

depended on the product of the thickness and conductivity therefore, assuming the 

thickness does not add any inaccuracy as long as the RS is kept constant. The 

dimensions of CPW adopted in the simulations as mentioned in the Section 4.2. are 

centre line width 520 μm, gap of 190 μm and the ground width 3 mm.  

 

Figure 4.3. Electrical material properties for muscle tissue [7]. 

 

After the conductor parameters are defined, in order to emulate the printed 

traces on PEN substrate, the substrate parameters are defined. Three parameters that 

describe the characteristic of the substrate are tanδ, εr and t thickness of the substrate.  

Typical values of PEN substrate parameters are assigned, the value of tan δ is set to 
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0.01, εr is assigned as 3.35 and lastly t is defined as 50 μm [19]. The third layer 

represents the air gap and is the only variable and optional layer in the simulation 

model. By varying the thickness of the air gap the proximity to body is altered. In case 

of on body measurement, the third layer is excluded and consequently, the fourth layer 

that is the body becomes the third. The characterization of fourth layer is similar to that 

of second layer that is by defining tan δ and εr. The values have been adopted from a 

website providing dielectric properties of different body tissues from frequency range 

10 Hz to 100 GHz [7]. The website is certified by national council of applied science of 

Italy. The parameters values are interpolated in graphs in Fig.4.2. In the simulations the 

values of the parameters are placed inform of frequency depended equations. 

To summarize the order of assigning the four layer of the simulation model is as 

follows, conductor traces, substrate, air gap and body. In the first layer for the 

conductors’ conductivity and thickness are assigned and last three dielectric layers loss 

tangent, permittivity and thickness of the corresponding layers are defined accordingly. 

4.4. Demonstration of the Constructed Model 

Low-pass filters were designed to investigate the effect of human body on discrete RF 

circuits. 5
th

 order low pass filters is used. The values of the components are calculated 

using coefficients provided in the table [45]. For attaining the S-parameter at the 

terminals of CPW, EM simulation was enough but in case of filters where discrete 

components are involved the interconnections and the components needs to be modeled 

together and simulated. Unfortunately, the EM simulations do not allow the addition of 

discrete components, so EM structures are required to be added in the schematic of the 

filter structures. Extract is a simulation control block available in AWR that enables to 

associate the discrete components introduced in the schematic with the interconnection 

via a physical simulation of the layout of the individual components.  
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(a)                                                                     (b) 

 

Figure 4.4. (a) EM layout of T – shaped CPW interconnection. (b) EM layout of 

straight CPW interconnection. 
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Figure 4.5. Schematic of 5
th

 order low pass filter, with EXTRACT block to connect 

the schematic with EM interconnections and STACKUP block to define the substrate 

parameters. 

3

21
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Figure 4.6. EM Layout of the low pass filter attained from extraction 

 

In Figure 4.5. the circuit components are defined as general sub circuit elements. 

For the capacitors and inductors the corresponding S-parameter files are assigned to it. 

For the interconnections the EM structure of the interconnection shown in             

Figure 4.4. (a.) and Figure 4.4. (b.) is attached to the sub circuit elements. Symbols are 

fixed to each of the sub circuit components accordingly for identification of the 

structures. Once the circuit components are defined, the EXTRACT and STACKUP 
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box are placed in the schematic. In the Extract block the simulator name, cell size and 

the name of the EM layout that is extracted from the extraction process are defined. In 

the STACK block the substrate parameters which in this case is a multi-layer non-

homogenous structure is defined. Figure 4.6. shows the EM layout of the entire filter 

that is obtained through the extract block. Therefore, the method enables the EM 

simulation to perform in the entire structure and thereby, also enabling the use of Direct 

Default solver to be used for simulating the interconnecting inkjet printed structures.  

4.5. Validation of Simulations 

The target of research is to construct a simulation model that would be able to estimate 

losses incurred when an RF circuit is placed close to the body. For simulation models to 

be accepted as credible the results obtained from the simulations needs to match with 

the measurement results. The first target is to attain agreement between the CPW free 

space simulations and measurements results. Once the simulations and measurement 

results for free space agrees, the parameter values of the substrate and conductors 

obtained from the simulations could be used for body simulations. If the on body 

simulations and measurements agree with one another than it can be concluded that the 

simulations are accurately estimating the losses. That is the simulations and 

measurements needs to agree at both ends namely, in free space and on muscle. After 

the simulation model is validated the research can be extended to investigate the effect 

of varying air gap, effect of varying g and w of CPW, effect of varying substrate 

thickness and finally the effect of muscle on RF circuits. The research is particularly 

meaningful because the success of the simulation model would enable the research to be 

extended to model complicated circuits such as bio sensors that needs to operate at close 

proximity to human body.  
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5. MEASUREMENT SETUP 

In this section the two platforms in which the measurements are performed are 

introduced. The measurement setup includes the instruments involved and the test 

structure that is fabricated would be depicted. In addition, the precautions the 

measurement requires would be elaborated as well. The measurement setup can be 

divided in two parts. The first part consists of the devices used and calibration of 

equipment. The second part includes the materials used in the measurement and the 

process in which the measurements are performed. 

5.1. Measurement Devices and Calibration Process 

The instruments that have been used to undertake the measurements are E8358A PNA 

300 kHz - 9 GHz and microwave probe station. It has been observed that the 

measurement of the interconnections in the thin flexible substrate is very sensitive to 

calibration. The measurements were first attempted with SOLT calibration [48] but the 

goal of separating the dielectric and the conductor loss could not be achieved. Hence, to 

deal with the situation Line-Reflect-Match (LRM) calibration has been adopted [48]. 

The better calibration is because  in LRM match is the only standard which needs to be 

defined, thus error induced due to improper input parameter  characterization  of open 

or short standards are avoided [48]. LRM calibration was used to calibrate the Agilent 

E8358A PNA using the impedance standard substrate via Cascades’s Wincal software. 

The validity of the measurements was justified by the repeatability of the measurements 

and in each measurement it was ensured that the S11 and S22 are identical in order to 

ensure that the port impedance and contact is similar. This particular fact makes the 

measurements in muscle difficult to execute because the platform is soft. 

5.2. Measurement Procedure and Test Structures 

The objective of the measurements is to obtain the S-parameter of the interconnections 

and filters in free space and muscles. Hence, the same CPW lines and filters are 

measured in two different platforms. In order to emulate free space measurements the 

platform used is microwave air foam that has a permittivity close to 1 and to imitate the 

muscle, fresh beef has been used as the base. Figure 5.1. shows the measurement setup 

for the muscle measurements. The muscle is covered with a thin plastic in order to 

protect the microwave probe station and the transmission line printed in the PEN 

substrate. The 800 μm probe pair is placed down in 31 mm CPW transmission line. It 

has been observed in the measurement that the freshness of the beef affected the loss of 

the measurements. Therefore, to attain acquired results the beef should not be dried. For 
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free space measurements the same measurements are performed but the beef is replaced 

with microwave air foam. 

 

 

 

Figure 5.1. CPW transmission line measurements in microwave probe stations on 

muscle. 

 

 
 

Figure 5.2. CPW transmission line on microwave air foam, 1.2 mm diameter bend 

produced by a piece of microwave air foam. 

 

Figure 5.2. shows a bent CPW in order to investigate the effect of bending on 

RF interconnects. It is necessary that the bend is incumbent with air in order to mimic 

the bends that normally originates in BWE circuitries and hence, 1.2 mm diameter bend 

has been made by a piece of microwave air foam. The measurements can only be 

performed with lines with a length in excess of 19 mm if the diameter of the bends is 
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more than 1.2 mm. Since, the probe heads are very fragile it is necessary both the ends 

of the measured CPW is attached with the microwave air foam or else the 0.5 mm 

sliding of the probe in order to attain proper contact could very easily deform or damage 

the probe heads. Bend of diameter 4 mm has also been measured in order to further 

verify the effect. 

 

 

 

Figure 5.3. Measurement of components in PEN substrate. 

 

 

 

Figure 5.4. Filter CPW structure on PEN substrate. 

 

Figure 5.3. shows the measurement setup of the distributed components on 

muscles. Three filter structures are displayed in Figure 5.4. The figure consists of filters 

of two dimensions. Filters located in the centre and in the right of the substrate are of 

the same dimensions and the horizontal length of the filters is 7.2 mm. The longer filter 

located in the left has a horizontal length of is 11.2 mm. The components of the filters 

are placed by blowing hot air in the pasting fluid. The centre line is 520 μm and the gap 

is 190 μm. Figure 5.3. shows the measurement setup of the 0402 inductors and 

capacitors mounted on PEN substrate placed over the muscle. On the right of the figure 

an image of the components placed on the PEN substrate also displayed. 
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6. RESULTS 

In this section the results from simulations and measurements are compared and the 

information attained from them is elaborated. One of the objectives of the research was 

to validate whether the simulations matches with the measurements and also to find 

whether commercial RF simulator can be used to model the body effects. It has already 

been mentioned in the previous section that the dielectric loss and loss tangent of 

muscle is frequency dependent and the hypothesis of the research was also such that in 

measurements the muscle would behave in similar manner. Hence, this being the result 

section the credibility of the hypothesis would be assessed. Building on the validity of 

the simulation and measurement results of the RF interconnects the research would be 

extended to observe the effect of human body for other orientation of RF interconnects 

and then finally to RF circuits. The section is broadly divided in two parts, the first 

illustrate the results of the RF interconnection and the other would elaborate on the 

simulations and measurements of low pass filters. 

 

6.1. Analysis of Air Gap on RF Interconnects 

Multiline extraction method is used to obtain from the S-parameters obtained from 

simulations and measurements to attain the required parameters that define the 

characteristics of CPW transmission lines. Single line-pair based characterization 

methods are used for plotting the characterization parameters for simulated CPW. 

However, because of the relatively large manufacturing tolerances associated with 

inkjet printed transmission lines and the half-wave resonances multiline extraction 

method, is used for the printed lines instead of single line pair method.  

  

6.1.1. Attenuation Constant 

The attenuation constant is the sum of dielectric loss, conductor loss and radiation loss. 

The radiation loss is significantly lower than the dielectric loss and the conductor loss 

hence, the attenuation constant can be considered as the sum of dielectric and conductor 

losses. In other words, attenuation constant depicts the attenuation of a signal, that the 

signal experiences as the signal propagates through transmission medium. In         

Figure 6.1. the simulated and measured attenuation constant curves are exhibited in the 

frequency range of 50 MHz to 9 GHz. It can be observed from the figure that the free 

space simulation and the measurement on low-loss microwave foam curves located in 

the bottom of the overlap with one another. The overlapping depicts that simulation of 

on air measurements agrees with the measurements. A third curve that also overlaps 

with the free space simulation curve is the simulated curve for 1 mm air gap. This 

reveals that if the interconnects are 1 mm away from the body the effect of body is 

negligible. In order to further ensure the credibility of the simulations, on muscle 
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measurement needs be compared to the in contact simulation. The Figure 6.1. reveals 

that the on muscle measurement curve lies 0.7 dB lower than the curve of the in contact 

simulation. However, the difference could be explained with the 10 μm air gap 

simulated curve that lies at close proximity to the on muscle measurement curve. 

 

 

Figure 6.1. Extracted Attenuation Constant values in the frequency band of         

50 MHz - 9 GHz from simulations and measurements. 

 

The fact that there is a thin plastic covering the beef and a possible film of air which 

could be in the order of 5 μm to 10 μm that inevitably cannot be removed is the 

practical reason for the 0.7 dB difference. Nevertheless, the shape of the curves also 

validates the reliability of the simulations as well. The steepness of the curves beyond 4 

GHz is increasing as the proximity to the body is decreased and the steepness complies 

with the two extreme that is the free space and on muscle measurements. As the air gap 

is increased from 10 μm to 50 μm, the value of α (dB/cm) at 9 GHz decreases 

drastically from 3.5 dB/cm to 1.8 dB/cm. The change at 9 GHz is considered because 

the divergence is most prominent at the highest frequency point which is as expected 

since the fluctuation of the electric field is the maximum at the highest frequency 

resulting greater dielectric loss and also the skin depth decreases that in turn adds to 

conductor loss. As the air gap is further increased beyond 50 μm, the α (dB/cm) slope 

and the gap between the curves changes more gradually. When the RF interconnects is 

placed 0.5 mm away from the body the attenuation constant lies very close to that of the 

free space measurements and the curve is located below the 0.5 dB/cm throughout the 

observed frequency band. Hence, the effect of body on RF interconnects when placed at 
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0.5 mm away from the body the effect of body may not be that significant. Table 6.1 

provides the frequencies below which the attenuation constant is less than 0.5 dB/cm, at 

different distance proximity to the muscle. The table also illustrates that for BWE 

applications the gap less than 0.5 mm can also be acceptable if the frequency is less 

than 9 GHz. 

 

Table 6.1.  Frequency below which the attenuation constant is below 0.5 dB/cm. 

 

 

Proximity / μm In contact 10 50 100  200  500  

Frequency / GHz  

( α < 0.5 dB/cm) 

0.3 1  3.2  5  7.2  9 

      

       

6.1.2. Resistance Per Unit Length (Conductor Loss)  

 
Figure 6.2. Extracted Resistance per unit length values in the frequency band of     

50 MHz - 9 GHz from simulations and measurements. 

 

 Figure 6.2. shows how the resistance of the measured CPW transmission lines 

varies as the proximity to body of the interconnects and the frequency are varied. R 

represents the finite conductivity of the transmission line and because of skin depth as 

the frequency increases the resistance should also increase. The curves in Figure 6.2. is 

arranged in similar order as in Figure 6.1. In air and on the muscle curves envelopes the 
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simulation curves for different air gaps. The air gap that were considered useful to 

illustrate the gradually change of characteristics properties are 10 μm, 50 μm, 100 μm, 

200 μm, 500 μm and 1000 μm which is same as in Figure 6.1. It can be seen from 

Figure 6.2. that all the curves have similar R (Ω/m) below 5 GHz illustrating that the 

conductor loss is independent of air gap below 5 GHz.  This phenomenon is expected 

because the dimensions and the thickness of the conductor traces on which the loss 

power depends, remains the same in all simulations and measurements. Nevertheless, a 

drastic increase in the resistance values is observed as the frequency increases, 

indicating that the interconnects becomes sensitive to proximity of muscle when the 

frequency is above 5 GHz. The fact that the phenomenon is present in simulations and 

measurements verifies the occurrence is real. Simulations have been performed in 

which the conductors are made to be perfect conductors (R=0) and the same 

phenomenon is observed over muscle. Hence, a theory can be deduced that the muscle 

beyond 5 GHz the muscle starts to act as a lossy ground plane, which is causing the 

exponential shaped rise in the resistance value. Thereby, the losses that are reflected in 

Figure 6.2. are not totally due to skin depth but primarily due the muscle underneath the 

substrate or multiline extraction methods fails to separate the dielectric and conductor 

losses. 

 

Table 6.2.  Resistance per unit values at different frequency points on three 

different platforms on Air, in 0.5 mm Air Gap and on Muscle. 

 

Table 6.2. illustrate that the change in resistance value when on air is 63 Ω/m as 

the frequency increases from 5 GHz to 9 GHz. The change in the frequency band is 

about 371 Ω/m when the air gap is 0.5 mm. In case of in contact measurements, the 

change in resistance increases to approximately 1202 Ω/m. Considering, on air 

measurement the rise is solely due to skin effect attenuation or in order words conductor 

loss. Hence, the increase of (1202 Ω/m-63 Ω/m) 1139 Ω/m in the muscle measurements 

as the frequency is increased from 5 GHz to 9 GHz is due to the muscle acting as a 

lossy ground plane. Thus, what appears to be rise in conductor loss is in reality loss 

added by the muscle acting as lossy ground plane. As the air gap is increased from 0.5 

mm to 1 mm the resistance value converges with the on air simulation and measurement 

results. 

 

Frequency (GHz) Resistance per unit length (Ω/m) 

On Air 

Measurement 

Simulation with   

0.5 mm Air Gap 

On Muscle 

Measurement 

5 573 564 599 

6 603 631 641 

7 658 719 875 

8 641 821 1278 

9 636 935 1801 
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6.1.3. Effective Loss Tangent (Dielectric Loss) 

In EM simulations one of the essential parameters to characterize the substrate material 

is loss tangent. Hence, to characterize muscle in BWE application simulations the 

effective loss tangent value at the frequency of design is critical for RF circuit 

designers.  Figure 6.3. shows the variation of the loss tangent in the frequency band of 5 

GHz to 9 GHz.  The results are provided in similar order as Figure 6.1. and Figure 6.2. 

The in air simulation and measurement curves do converge fittingly with each other 

throughout the frequency band. The muscle measurement curve complies with the 10 

μm air gap curve till 2 GHz. The curve diverges beyond 2 GHz and the slope of the 

measurement curve increases. At 5 GHz the on muscle measurement curve crosses over 

the in contact simulation curve. When measurements are taken on muscle it is 

practically impossible to ensure that the probes have exactly identical contacts at both 

ends of the transmission lines and since more than one transmission lines needs to  

measured some 

 
 

Figure 6.3. Extracted Effective Loss Tangent values in the frequency band of        

50 MHz - 9 GHz from simulations and measurements. 

 

aberration is inevitable. Nevertheless, the fact that the curve is wavering near the in 

contact simulation curve signifies the credibility of the measurements and simulations. 

The dielectric loss incidents from two sources, the first would be because of dielectric 

damping and the second being the conductivity. The imaginary part of permittivity and 

the conductivity contained in the loss tangent expression takes account of both of the 
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phenomenon resulting dielectric loss. However, at microwave frequencies considering 

the permittivity of PEN substrate the dielectric damping does not significantly 

contribute to the dielectric loss, it is the conductivity present in the dielectric medium 

that adds to loss significantly.  

 

Table 6.3.  Tabulated values of Effective Loss Tangent for Interconnects in contact 

with body and in air. 

Frequency/GHz Effective Loss Tangent (tan δeff) 

 On Muscle 

Measurements 

On Muscle 

Simulation 

On Air 

Simulation 

1 0.0621 0.0915 0.0148 

2 0.0561 0.0735 0.0126 

3 0.0658 0.0715 0.0125 

4 0.0781 0.0808 0.0137 

5 0.0948 0.0921 0.0159 

6 0.1174 0.1007 0.0171 

7 0.1335 0.1106 0.0182 

8 0.1406 0.1229 0.0201 

9 0.1469 0.1368 0.0234 
 

 

    

Table 6.3. shows that there are some differences in the effective loss tangent 

values between simulations and measurements at low frequencies but values are at the 

same order and at higher frequencies the values are considerably closer. The values on 

an average vary from 0.09 to 0.13 as the frequency is increased from 1 GHz to 9 GHz. 

The in air measurements are provided to illustrate the amount of change that incurs 

when the muscle is brought in contact with the CPW. The effective loss tangent value in 

air varies 0.014 to 0.023 as the frequency is increased from 1 GHz to 9 GHz. 

 

6.1.4. Characteristic impedance 

The characteristic impedance of a transmission line is the ratio of the voltage and 

current independent of position for an infinitely long transmission line. The concept of 

infinitely long transmission is achieved practically by matching the load with the input 

impedance of the transmission line. In matched conditions there are no reflections 

hence, the impedance becomes independent of position. Figure 6.4. shows the real part 

of  characteristics impedance of the transmission line obtained from simulations placed 

at different distances from the muscle. The data in Figure 6.4. is particularly important 

for impedance matching. The figure shows that in air measurements and simulations 

lies in close proximity to one another and the on muscle measurement curve and for 10 

μm air gap curve converges with one another as well. At 9 GHz the in contact 

impedance value is 53 Ω in measurements and 41 Ω in simulations. As the body           

is brought closer to the muscle, the impedance value due to dielectric loading changes                                          
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Figure 6.4. Extracted Real part of Characteristic Impedance values in the 

frequency band of 50 MHz - 9 GHz from simulations and measurements. 

 

from 95 Ω in air to 50 Ω on muscle. Table 6.4. lists few of the values that would  be 

valuable for consideration for attaining adequate matching for BWE circuit design. The 

tabulated value of impedance is an average value and is obtained from three different 

frequency points of the same curve. The table values illuminate that with 0.5 mm air 

gap the impedance becomes very close to that of free space. 

 

Table 6.4. Real part of Characteristic Impedance value for RF interconnects 

placed at different proximity to the muscle and in free space. 

 Position  Position  Average value of  real part of 

characteristic impedance/Ω 

On Muscle (Measurement) 50  

Air Gap 100 μm 84 

Air Gap 500 μm 90 

In Air (Measurement) 95 

 

6.1.5. Effective Permittivity 

 

Figure 6.5. display the effective permittivity values on the frequency band of 50MHz -   

9 GHz. The coplanar transmission line being an open structure the electric field lines 

extends both in air and substrate. The field extends below in air foam and muscle as 

well. Therefore, effective permittivity needs to be known in order to determine the 

phase shift or electrical length of the interconnects. Figure 6.5. serves to provide the
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Figure 6.5. Extracted Effective Permittivity values in the frequency band of           

50 MHz - 9 GHz from simulations and measurements. 

 

effective permittivity values a different distance to body and also in free space. On 

curve muscle measurement curve converges with the 10 μm air gap curve revealing the 

existence of thin film of air in the measurements. In the figure it can be observed the 

value of the effective permittivity varies from 1.3 in air to 6 on body measurements. 

Hence, the variance of proximity could affect the performance of the circuit 

significantly. Nevertheless, the air gap of 500 μm causes the effective permittivity curve 

to merge with the free space simulation and measurement curves. Therefore, if a 

distance of 0.5 mm is maintained from the body, the phase would not vacillate 

problematically.   

 

6.1.6. Distributed Parameters 

 

Figure 6.6. consists of rest of the distributed parameters. The parameters being (a) 

conductance per unit length (b) inductance per unit length and (c) capacitance per unit 

length. Conductance illustrates same information as the effective loss tangent that is      

the dielectric loss. The picture nevertheless enables to differentiate the transitions more  
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(a)                                                                                                             (b)                                                    

 

 

(c) 

 

Figure 6.6. Extracted (a.) Conductance (b.) Inductance (c.) Capacitance per unit 

length values in the frequency band of 50 MHz - 9 GHz from simulations and 

measurements. 

 

vividly. At 9 GHz the conductance increases from approximately 0 S/m to 1.73 S/m as 

the proximity of muscle is increased from free space measurement to on contact 

measurement.  Conductance curve when the air gap is 0.5 mm approaches zero that is 

the dielectric starts to behave like an ideal dielectric. Figure 6.6. (b) and (c) shows how 

the magnetic and electric energy are stored in the RF interconnects, substrate and the 

muscle. The inductance and capacitance both increase as the muscle is brought closer to 

the CPW. The inductance increases in average from 0.26 μH/m to 0.37 μH/m that is 

approximately 42%. The capacitance increases from 44 pF/m to 175 pF/m that is around 

300%. The phenomenon explains the decrease in the value of characteristic impedance. 

The expression of characteristic impedance is given in Section 3.5. Eq.(7). 
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6.2 Analysis of Substrate Thickness on RF Interconnects 

 

 

 

Figure 6.7. Extracted Attenuation Constant per unit length values in the frequency 

band of 50 MHz - 9 GHz from simulations of varying substrate thickness in presence 

and absence of air gap keeping distance from the body 60 µm. 

  

In previous section it has already been shown, how the distance from muscle effects the 

parameters representing the characteristics of the RF interconnections. Building on the 

concept the objective of this section is to investigate how the  distance  from  body 

occupied with air and PEN substrate differs in affecting the characteristics of the RF 

interconnects. Figure 6.7. shows the variation of attenuation constant value when the 

distance is 60 μm from the muscle. The figure  consist of two simulations in one of the 

simulations the distance from the body is filled by 60 μm of PEN substrate and in the 

other the distance is filled with a 50 μm layer of PEN substrate followed by 10 μm layer 

of air. The curve with 60 μm of substrate incurs more loss than the 50 μm of substrate 

and 10 μm of air. The layered substrate incurs lower loss than homogenous substrate. 

Since, air is a better dielectric medium than the PEN substrate the fact that the 

simulation shows that the air film produces lower loss than substrate layer is justified. 

At 9 GHz the attenuation constant for 60 μm substrate is 1.44 dB/cm and the attenuation 

constant for 50 μm substrate and 10 μm air gap is 0.95 dB/cm. The attenuation constant 

decreases by 34% because of replacing the 10 μm of substrate with 10 μm of air. How 

the losses are distributed in conductor and in dielectric can be discerned from         

Figure 6.8. 
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       (a)                      (b) 

 

Figure 6.8. Extracted (a) Resistance per unit length and (b) Conductance per unit 

length values in the frequency band of 50 MHz - 9 GHz from simulations of varying 

substrate thickness in presence and absence of air gap keeping distance from the body 

60 µm. 

  

 The attenuation constant is the sum of dielectric loss and conductor loss. 

Therefore, Figure 6.8. (a.) and 6.8. (b.) would be able to illustrate how the losses are 

distributed in the conductors and the dielectric.  Figure 6.8. (a.) shows that the curves of 

resistance per unit values for in contact and air gap simulations merges with one 

another. The resistance per unit basically as have already mentioned represents the 

conductor loss. The power loss in a conductor is a function of skin effect surface 

resistance and the current density. The skin effect surface resistance depends on 

conductivity and frequency. The current density depends on width of the conductor and 

the conductor thickness. Since, the conductor conductivity and the dimensions of the 

CPW are the same the conductor loss should be the same as well. The steep rise in the 

conductor loss after 5 GHz is a loss that is reflected due to the muscle. The muscle can 

acts as a lossy ground plane that is absorbing the energy that is reflected in the 

conductor loss. In this particular situation depicted in Figure 6.8. (a.) the materials 

under the traces are same, thus, the conductor losses for both of the simulations are 

almost same. Nevertheless, above 5 GHz the resistance value for 10 μm air gap curve 

starts to increase marginally more than in contact simulation but the increase is not that 

significant. The resistance per unit length values for both of the simulations varies 

approximately from about 250 Ω/m to 1600 Ω/m. 

  In Figure 6.8. (b.) shows the variation of the conductance of the dielectric 

medium which in one of the simulations is composed of the PEN substrate and the 

muscle and in the other case is the PEN substrate, air and muscle. The conductance 

curve of the 60 μm substrate in contact to muscle simulation resides above the 50 μm 

substrate and 10 μm air filled simulation curve, depicting that the dielectric loss is more 

for the 60 μm substrate simulation. The increase in the dielectric loss can be seen in the 

attenuation constant. Thus, since the conductor losses for both the simulations are the 
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same the difference in attenuation constant per unit length in Figure 6.7. is due to the 

dielectric loss. 

 

 

Figure 6.9. Extracted Effective Loss Tangent values in the frequency band of          

50 MHz - 9 GHz from simulations of varying substrate thickness in presence and 

absence of air gap keeping distance from the body 60 µm. 

 

Figure 6.9. shows the variation of effective loss tangent and the figure  

illustrates the same characteristics as the Figure  5.8.b. that is the dielectric loss. The 

effective loss tangent for the 60 µm substrate is greater than the 50 µm substrate. The 

values of effective loss tangent vary from 0.05 to 0.1 for the 50 µm and the values of 

effective loss tangent vary from 0.07 to 1.4. Thereby, the variation of effective loss 

tangent for the two simulations varies significantly. Figure 6.10. reflects the effect of 

muscle on the effective permittivity of the dielectric medium. Above 2 GHz the 

effective permittivity for the 50 µm substrate is 6.7 and for the 60 µm substrate is 7. 

The change is evident because the permittivity of the substrate is about three times the 

permittivity of the air and thereby the combination of PEN substrate and muscle should 

have a higher the effective permittivity compared the effective permittivity of substrate, 

air and muscle.  
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Figure 6.10. Extracted Effective Permittivity values in the frequency band of        

50 MHz - 9 GHz from simulations of varying substrate thickness in presence and 

absence of air gap keeping distance from the body 60 µm. 

 

 

 

Figure 6.11. Extracted Real part of Characteristic Impedance values in the 

frequency band 50 MHz - 9 GHz  from simulations of varying substrate thickness in 

presence and absence of  air gap keeping distance from the body 60 µm. 

 

The variation of real part of characteristic impedance provided in Figure 6.11. 

for varying substrate thickness. The value of the real part of characteristic impedance 

for 60 μm substrate in contact to muscle at 1 GHz is 44.11 Ω, at 5 GHz is 43.75 Ω and 

at 9 GHz is 44.58 Ω. Therefore, on average the real part of the characteristic impedance 

is 44 Ω. Similarly, the R(Zo)  for the 50 μm substrate and 10 μm air gap is 48 Ω.  The 

impedance value for air gap is higher compared to on muscle simulation. 
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6.2.  Analysis of Dimension of RF Interconnects 

The characteristics of a CPW changes because of varying the dimensions of the CPW 

and in this section the simulations results are utilized to attain certain guidelines for 

dimensions that would mitigate the effect of muscle on RF interconnects. The effect of 

altering dimensions on the losses and also the other characteristics of the interconnects 

are investigated. The section is divided in two parts. Section 6.2.1. illustrate the effect 

of varying  gap width while keeping the trace width constant and Section 6.2.2. 

illustrates the effect of  varying the trace width while keeping the gap width constant. 

The term gap is used to imply the gap between the signal and the ground conductor 

traces and the term trace is used to mean the centre line or in other word the signal trace 

that is used to transmit the signal through the CPW. 

 

6.3.1. Variation of Gap 

 

 
 

Figure 6.12. Extracted Attenuation Constant values in the frequency band of        

50 MHz - 9 GHz for varying gap width from simulations. 

 

Figure 6.12. displays the attenuation constant values for five different gap width 

of CPW in the frequency band of 50 MHz to 9 GHz.  All the curves are simulation 

results. The gaps widths that are considered to be analyzed are 50 μm, 100 μm, 150 μm, 

190 μm and 300 μm. 190 μm width is considered in simulation instead of 200 μm, 

which would have made the step uniform is because of the fabricated dimensions of the 

CPW on average are 190 μm. This gives the opportunity to compare the simulations 
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with measurements. The centre line width is also kept to 520 μm for the same reason. In 

all the simulations the 10 μm air gap is kept in order to emulate the measurements, 

which has already been deduced from the results in Section 6.1. From the curves a trend 

that can be observed is that with decreasing the width of the gaps the losses at lower 

frequencies (till 4.2 GHz) increases and at higher frequencies an opposite trend is 

observed that is as the gap is increased the losses increases as well. The reasoning for 

the phenomenon would be, when the gap width is narrower the conductor losses 

increases because the current density in the 520 μm centre line trace increases but as the 

gap width is wider the electric field (E) lines penetrates deeper in the muscle and the 

energy of the propagated signal is attenuated by the dielectric polarization and the 

conductivity in the muscle. All the curves intersect at approximately at a single point 

and the value of the frequency and the corresponding value of the attenuation constant 

is 4.2 GHz and 1.087 dB/cm respectively. The variations can be clarified further with 

the help of a table. 

 

Table 6.5.  Attenuation Constant values at three different frequency points for gap 

width of 50 μm and 300 μm. 

Frequency / GHz α (dB/cm) for 50 μm α (dB/cm) for 300 μm 

1 0.565 0.457 

5 1.241 1.372 

9 2.456 3.885 

 

Table 6.5. shows the values of attenuation constant for two CPW of with gap 

width of 50 μm and 300 μm at three different frequency points. The two extreme gap 

width attenuation curves envelopes the other simulation curves. Hence, these two 

situations are utilized to illustrate the variations in the attenuation constant values. At    

1 GHz the loss incurred for the 50 μm gap is 0.108 dB/cm more than the loss incurred 

for the 300 μm gap. The attenuation constant values for the 300 μm gap CPW starts to 

become more than 50-μm gap CPW as the frequency increases. Hence, at 2 GHz α 

(dB/cm) is 0.131 dB/cm greater than α (dB/cm) for the 300 μm gap width. α (dB/cm) 

becomes 1.427 dB/cm greater than α (dB/cm) of the 50 μm gap at 9 GHz.  The 

difference at low frequency is only in the order of 0.1 dB/cm but as the frequency is 

increased the magnitude of the difference increases to 1.5 dB/cm. Therefore, judging 

from gap analysis it can be stated that for BWE applications narrower gap width should 

be used to mitigate the effect of muscle for frequencies above 4 GHz. The distribution 

losses can be further understood in observing R (Ω/m) and G (S/m). 

       In Figure 6.13. the resistance per unit length curve for the 50 μm gap is above rest 

of the curve till 5.4 GHz. The curve for the 50 μm reaches its maximum value at around 

4 GHz and value at 4.2 GHz is 725 Ω/m and it remains constant for the rest of the 

frequency range. Hence, when the gap is made narrower the effect of the muscle acting 

as a lossy ground plane increasing the conductor loss above 5 GHz can be neglected. 

However, decreasing the gap increases the current density in the edges of the centre line 
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and thus, increases the conductor loss below 5 GHz. Increasing the gap on the other 

hand has an opposite effect as depicted by the 300 μm gap curve. At 9 GHz the value 

for R (Ω/m) for the 50 μm gap is 765 Ω/m and for 300 μm gap is 2074 Ω/m. The 

resistance value increases 1.7 times consequently multiplying the conductor loss by the 

same factor. 

 

 

 

Figure 6.13. Extracted Resistance per unit length values in the frequency band of 

50 MHz - 9 GHz for varying gap of CPW from simulations. 

 

 

 

Figure 6.14. Extracted Conductance per unit length values in the frequency band 

of 50 MHz - 9 GHz for varying gap of CPW from simulations. 

 

The variation of conductance for varying gap width of CPW is illustrated in 

Figure 6.14. The conductance also represents dielectric loss and from the Figure 6.14. it 
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can be observed that dielectric loss is the lowest for the narrowest gap (50 μm) width 

considered in the simulations. The curve for 300 μm lies above all the curves, thereby, 

revealing that the largest gap incurs the highest dielectric loss. The curve for the 50 μm 

gap coincides with the 300 μm at 9 GHz and judging from the trend of the curves there 

could be a possibility that at higher frequency the dielectric loss for 50 μm could be 

more than 300 μm gap.  The conductance value at 5 GHz for 50 μm gap is 0.25 S/m and 

the value for 300 μm gap is 0.35 S/m and this is approximately the maximum deviation 

of conductance that occurs. Therefore, rise in the attenuation constant value in Figure  

6.12. is mostly because of the increase in the conductor  loss that occurs due to the 

muscle acting as a lossy ground place. The effect even though is because of the 

dielectric but is reflected in the resistance per unit length curves as shown in Figure  

6.14.  

 

 

Figure 6.15. Extracted Effective Loss Tangent values in the frequency band of          

50 MHz - 9 GHz for varying gap of CPW from simulations. 

 

  Another method of understanding the dielectric loss is by observing the effective 

loss tangent. The variation of the dielectric loss due to the variation of gap width of the 

CPW can be further illustrated using Figure 6.15. The tanδeff values at frequencies         

1 GHz, 5 GHz and 9 GHz for 50 μm gap width are 0.041, 0.049 and 0.096 respectively. 

Apart from the 50 μm curve the other four curves for the wider gaps lies very close to 

one another. The highest tanδeff  value at each frequency points, as already inferred from 

the conductance curves, are provided by the 300 μm gap. As the gap is increased from 

50 μm to 100 μm the tanδeff increases to 0.055 at 1 GHz. However, the slope of the 

tanδeff due to 50 μm gap is much greater than rest of the curves as a consequence of 

which the tanδeff of the 50 μm gap intersects the curve of the 100 μm gap at 8.8 GHz. 

For the 300 μm at 1 GHz the tanδeff value is 0.066, at 5 GHz the value is 0.069 and at    
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9 GHz the value increases to 0.107. Nevertheless, the statement needs to be recalled that 

even though the 50 μm provides the lowest dielectric in the frequency band of 50 MHz 

to 9 GHz but judging by the slope of tanδeff of 50 μm gap the dielectric losses a higher 

frequencies could be greater.  

 

 

Figure 6.16. Extracted Effective Permittivity values in the frequency band of        

50 MHz - 9 GHz for varying gap of CPW from simulations.                                                                                                                                                                                                                                                     

  

 Increasing the gap of the CPW increases the effective permittivity of the 

transmission line as illustrated by Figure 6.16. At 5GHz the εreff value for different gap 

width is as follows: at 50 μm is 4.04, at 100 μm the value of εreff  is 4.96, at 150 μm the 

value of εreff  is 5.36, at 190 μm the value of εreff  is 5.64 and at 300 μm the value of εreff  

is 6.27.  The values could be useful for obtaining the electrical length (βl) of the RF 

interconnects.  

 The real part of the characteristic impedance increases with increasing gap as 

displayed in Figure 6.17. The real part of the characteristic impedance of the 50 μm gap 

curve tends to decrease with increasing frequency which in fact is an anomaly 

compared to the other four simulation results for the wider gap widths. Since, the slope 

of Re[Zo]  for gaps greater than 50 μm is constant, selecting a value of Re[Zo]  at any 

frequency should be enough to provide value of Re[Zo]  at the larger gap widths. At 5 

GHz the values of Re[Zo] at varying air gap are 43.74 Ω [100 μm], 46.59 Ω [150 μm],  

48.39 Ω [190 μm] and 52.24 Ω [300 μm]. When the gap width is 50 μm the Re[Zo] 

value at 1 GHz is 43.81 Ω, at 3.4 GHz is 41.34 Ω, at 5 GHz is 40.64 Ω, and at 9 GHz is 

38.83 Ω. The decrease in the characteristic impedance could be understood from the 

variation of the distributed parameter that is the capacitance that starts to increase as the 

frequency increases.  
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Figure 6.17. Extracted Real part of Characteristic Impedance values in the 

frequency band of 50 MHz - 9 GHz for varying gap of CPW from simulations. 

  

          At frequencies lower than 4.2 GHz the conductor losses dominates and the 

narrow gap causes the conductor loss to increase. However, the effect of muscle 

becomes predominant at frequencies greater than 4.2 GHz. The dielectric losses start to 

contribute more to the total loss which significantly increases the total loss for the CPW 

of gap width greater than 50 μm. To summarize, for frequency less than 4.2 GHz, using 

wider gap width is beneficial because the conductor losses are less and the attenuation 

constant values are less as well. But in order to nullify the effect of muscle in the 

conductor loss at higher frequencies narrow gap in the order of 50 μm should be used.  

Therefore, the gap width that should be adopted is frequency dependent.  

 

6.3.2. Variation of Centre Line 

 

In Figure  6.18. all the curves are values of α (dB/cm) obtained from simulations. 

In the simulations the gaps are all 190 μm but the width of the centre line is varied.       

α (dB/cm) for the 100 μm width centre line trace is the highest among the five width 

analysis at lower frequencies lower than 4 GHz. At 1GHz the value of α (dB/cm) for 

100-μm is 0.67 dB/cm while for the other four curves values all converge to value about 

0.49 dB/cm. α (dB/cm)  for 300 μm, 400 μm, 520 μm and 600 μm centre line width lies 

very close to one another till 3 GHz. Thus, the CPWs except for center lines narrower 

than 100 µm, have similar losses at lower frequencies but with increasing frequency the  
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Figure 6.18. Extracted Attenuation Constant values in the frequency band of        

50 MHz - 9 GHz for varying centre line width from simulations. 

 

losses starts to diverge. The curves start to diverge significantly after 4 GHz. Therefore, 

at frequencies lower than 3 GHz if the CPW interconnects width are not made as 

narrow as 100 μm then the choice of value of width to be used depends on the desired 

impedance. Narrowing the width increases the current density on the edges of the centre 

line, thus, increasing the conductor losses. The difference of the attenuation constant α 

could be better expressed with a table. 

 

Table 6.6. Attenuation Constant per unit length value (α dB/cm) value at 9 GHz for 

varying width of centre line of CPW. 

Width of 

Centre line 

(μm) 

100 300 400 520 600 

α (dB/cm) 2.09 2.36 2.82 3.34 3.70 

 

Table 6.6. shows the gradual change of attenuation constant  per unit length 

value at 9 GHz. Therefore, at 9 GHz the narrowest trace width has the lowest loss and 

the widest trace has the largest loss. Thus, at higher frequency it is a better choice to use 

narrow width for centre line of CPW for BWE applications. The rise in the loss is 

because of the dielectric loss that is superseding the increase in conductor loss due to 

the narrow gap. The situation could be better deduced with the resistance per unit length 

and conductance per unit length figures. 



42 
 

Table 6.7. Resistance per unit length value (Ω/m) value at 1 GHz and 9 GHz for 

varying width of centre line of CPW.   

Width of 

Centre line 

(μm) 

100 300 400 520 600 

R (Ω/m) at  

1 GHz 

1260 557.7 466.1 393.3 362.7 

R (Ω/m) at  

9 GHz 

1890 1377 1414 1491 1593 

 

Values in Table 6.7. have been taken from Figure  6.19.  For 100 μm trace width 

the current distribution starts to concentrate at the edges of the conductor increasing     

R (Ω/m) significantly, when compared to the other four simulation results. The closest 

to the curves to the 100 μm curve at 1 GHz is the curve for 300 μm. Even though      

300 µm is the second narrowest line yet the difference in the values is above 50 %. The       

600 μm line produces the lowest.   From Figure 6.19. 100 μm line starts from the a very 

high value but the variation  

      

 

 

Figure 6.19. Extracted Attenuation Constant values in the frequency band of        

50 MHz - 9 GHz for varying centre line width from simulations. 

 

in the value of  R (Ω/m)  in  the frequency band of 1 GHz to 9 GHz is lower (630 Ω/m) 

compared to the other for four curves, for instance, for the 600 μm the variation in the 

same frequency band is 1231.3 Ω/m. The effect of the muscle acting as a lossy ground 

plane is more significant in the wider centre line CPW compared to the narrower line. 
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Figure 6.20. Extracted Conductance values in the frequency band of 50 MHz - 9 

GHz for varying centre line width from simulations. 

 

Figure 6.20. shows the variation of the conductance value for varying centre line 

width. The dielectric loss that can be deduced from the variation of the conductance 

curves illustrates that the dielectric loss for the widest centerline is largest (at                 

9 GHz is 1.2 [S/m]) and is the lowest for the narrowest centre line is the lowest (at         

9 GHz  is 0.32 [S/m]). Figure 6.21. illustrates the variation of tanδeff  for the varying 

width of the centre line. With increasing trace width tanδeff  values increases and in 

other words, the dielectric losses increases as well. The curves of the narrowest and the 

widest trace width envelopes the other simulation curves. For 100 μm trace width the 

tanδeff   value varies from 0.043 (1 GHz) to 0.067 (9 GHz) and for 600 μm the tanδeff   

varies from 0.065 (1 GHz) to 0.0117 (9 GHz).   

 

 
 

Figure 6.21.Extracted Effective Loss Tangent values in the frequency band of       

50 MHz - 9 GHz for varying centre line width from simulations. 
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Figure 6.22. and Figure 6.23. shows the effective permittivity and real part of 

characteristic impedance  respectively. The value of effective permittivity and real part 

of characteristic is important for RF design because it enables to determine the electrical 

length of the transmission line and attain matching of impedance in RF circuitries. For 

both the figures the values are very constant in the frequency band of 1 GHz to 9 GHz. 

Table 6.6. provides the average value of effective permittivity and real part of 

characteristic impedance. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                                                        

Figure 6.22. Extracted Effective Permittivity values in the frequency band of        

50 MHz - 9 GHz for varying centre line width from simulations. 

 

 

Figure 6.23. Extracted Real part of Characteristic Impedance values in the 

frequency band of 50MHz - 9GHz for varying centre line width from simulations. 
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Table 6.8. Effective Permittivity and Real part of Characteristic Impedance values 

for varying width of the centre line of CPW. 

Width of 

Centre line 

(μm) 

100 300 400 520 600 

εreff 4.462 4.678 5.161 5.642 5.944 

Re[Zo] (Ω) 87.40 62.09 54.53 48.39 45.39 

 

  For BWE the width of the centre line should be made wider at frequencies lower 

than 4 GHz in order to decrease the conductor losses which contribute more to the total 

loss before 4 GHz. For frequencies greater than 4 GHz the design should adopt 

narrower centre line because the dielectric loss surpass the conductor loss with 

increasing frequency. 

 

6.3. Bend Analysis 

 

In BWE if the RF circuitries are made flexible the probability of bend occurring due the 

movements or due the contour of the body is very high. Therefore, to analysis the effect 

of bending is necessary. The following section pursues to illustrate the investigation. 

The investigation stands on the hypothesis that if bends does not affect the operation of 

CPW in air it should not affect the CPW performance when held close to the human 

body. 

 

 

                                                        

Figure 6.24. S21 values from measurement of CPW of length 19 mm with 1.2 mm 

bend, 4 mm bend and without bend in the frequency band 50 MHz - 9 GHz. 

 

Figure 6.24. shows three measurement results that have been obtained from 

measuring a 19 mm CPW transmission line on microwave air foam. The measurements 
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have been performed to understand the effect of bending on interconnects. Hence, to 

undertake the investigation a transmission without bend is measured on low loss 

microwave air foam. After that being done two other measurements with 1.2 mm and 4 

mm bend diameter have been performed with the same transmission line. The bends are 

produced with same microwave foam in which the measurements are taken to emulate 

free space measurement.  In the Figure 6.24. it is observed that the curves lie at close 

proximity to one another, however, there is some divergence at varying frequencies. 

Pronounced divergence is observed at 5.25 GHz between bend transmission line curves 

and without bend transmission curve. The order of divergence is about 0.04 dB. The 

average maximum divergence between the bend lines is 0.03 dB. The variations are not 

large enough to affect the performances of a circuit significantly. The bend lines were 

measured with the same calibrations and the without bend 19 mm line was measured 

with a different calibration and this could very well cause the variations in the results. 

The variations in bend line measurements are similar to one another while the variations 

in the straight line are different this could be caused because of the different 

calibrations. Hence, it cannot be concluded with certainty whether the variations are 

because of the bends. However, the difference of bend diameter did not cause much of a 

change in S21 curves. 

Figure 6.25. (a.) and Figure 6.25. (b.) displays the results for CPW transmission 

lines of length 25 mm and 31 mm respectively. The results are provided to verify and 

validate the conclusions derived from Figure 5.24. The average maximum deviations 

obtained 

 
(a.)                                                                   (b.) 

 

Figure 6.25. (a.) S21 values from measurement of CPW of length 25 mm (b.) S21 

values from measurement of CPW of length 31 m, with 1.2 mm bend, 4 mm bend and 

without bend in the frequency band 50 MHz – 9 GHz. 

 

between the bend and without bend transmission lines of length 25mm and 31 mm are 

around 0.08 dB and 0.14 dB respectively. The bend transmission line curves in both 

Figure 6.25. (a.) and Figure 6.25. (b.) do not vary more than 0.02 dB. Hence, in 

conclusion from the analysis of the measurements, variations are observed between the 

bend and without bend measurements. The variation could possibly be due to 
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calibration but the variation is in the order of 0.1 dB. Therefore, since the difference in 

transmission parameter of the bend and straight lines are not significant, the bends does 

not affect on the performance of RF interconnects significantly in the observed 

frequency band. 

 

6.5.  Filter Analysis  

 

Since transmission line simulations and measurements complied with one another, the 

findings create the foundation for the investigations to be proceeded to analysis the 

effect of muscle on RF circuits.  In this section body effects on discrete RF circuits is 

investigated.  The filter used as test structures and simulation model are described in 

Section 5.2. In the Section the simulations and measurements for the filter structures 

would be compared. The components used to construct the low pass filters are inductors 

of HK1005 multilayer structures from Taiyo Yuden and capacitors are C1005COG 

series multilayer capacitors from TDK. Due to the disagreement between the 

measurements and simulation results particularly in the stop band, possible reasons for 

the disagreements were pondered. Consequently, experiments where performed and the 

experiments revealed that filters constructed on FR4 substrate provided a better match 

with simulations. The findings pointed towards the possibility that the disagreement 

could be due to scattering parameters of the components that are used in the simulations 

which are obtained from measuring components on FR4 substrate. The measurements in 

the research are being performed on 50-μm PEN substrate which is quite different from 

the FR4 substrate both in regard of its thickness and material composition. Hence, a 

new method is adopted in which scattering parameters of each of components on 

microwave air foam and on muscle is calculated by de-embedding the error boxes from 

both ends.  The multiline TRL error boxes are used [11]. And the investigation of filter 

analysis involves the comparison of filter simulations using the AWR components and 

also the measured components. 

 
(a)                                                     (b)                        

Figure 6.26. (a.) Small filter free space simulation and measurement results (b.) 

Larger filter free space simulation and measurement results. 
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Figure 6.26. shows the simulation and measurement results of filters on low loss 

microwave foam. Figure 6.26. (a.) is the simulation and measurement curves of the 

small filter of length 6 mm and Figure 6.26. (b.)  are the results of the larger filter of 

length 14 mm. For the small filter in the pass band the filter consisting of the AWR 

components follows the measured curve till 1.8 GHz and difference between the 

measurement curve and measured component curve is about 0.25 dB.  One of the 

important parameter is the 3 dB bandwidth of the low pass filter. The 3 dB value is 

reached at 2.86 GHz, 2.80 GHz and 2.62 GHz for the measured, measured component 

and AWR component simulation curves respectively. Even though the AWR 

components provides a decent match at low frequency but there is about 0.26 GHz 

difference between estimated 3 dB bandwidth of AWR component simulation and 

measured filter. However, the difference in the estimation between the measurement 

and measured component simulation is only 0.06 GHz. The opposite trend is observed 

in the larger filter free space emulated measurement and simulation curves shown in 

Figure 6.26. (b.). The measured component curve converges well in the pass band with 

the measurement curve till 1.3 GHz but at the cut off frequency that is when S21 values 

decreases by 3 dB the curve of simulation performed with AWR components converges 

with the measurement curve at 2.33 GHz. The measured components curve over 

estimates the cut off frequency to be 2.4 GHz. The measured components proved to be 

more useful for small filter compared to the larger filter but the divergence from the 

actual value is about 70 MHz. 

 

 
(a)                                                     (b)                        

Figure 6.27. (a.) Small filter on muscle simulation and measurement results (b.) 

Larger filter on muscle simulation and measurement results. 

 

Figure 6.27. shows the results of on muscle simulations and measurements. The 

figures consist of four curves that are composed of three simulation results and one 

measurement result. The three simulation results consist of AWR component 

simulations, components measured in microwave air foam and components measured 

on muscle. The small filter results shown in Figure 6.27. (a.) illustrate that the 

simulation performed with the on AWR components shows good agreement with the 
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measured curve until 1.3 GHz but as the frequency increases all the simulation curves 

except for the on muscle measured component curves underestimates the losses. The cut 

off frequency of the AWR component simulation curve and the measured curve 

coincides at 2.56 GHz.  The on air foam measured component simulation curve 

estimates the cut off frequency to be at 2.66 GHz and the worst estimation of cut off 

frequency is provided by the on muscle component simulation curve; the value being 

2.37 GHz. The point that needs to be highlighted is that the introduction of muscle 

caused the cut off frequency to decrease from 2.86 GHz to 2.56 GHz, that is, about 

300MHz decrease. Therefore, for BWE applications the shift of platform on which an 

RF circuit is placed, could change the operating frequency of the circuit significantly.  

Figure 6.27. (b.) shows the larger filter on muscle simulations and measurement 

results. In Figure 6.27. (b.) the simulation with the muscle measured components 

provides the best match with the measurement curve both in the pass band and stop 

band. On the contrary simulations with the AWR components and the air foam 

measured components underestimates the losses both in the pass band and the stop 

band. From the Figure 6.27. a conclusion can be deduced that the library components in 

FR4 substrate have different characteristics than the components in the thin substrate 

especially when brought very close to body. From the transmission line simulations and 

measurement results it has been deduced that significant loss is incurred because of the 

proximity of muscle but the decrease in cut off frequency is not entirely due to losses in 

the interconnections but also due the change in the value of the inductance and 

capacitance. Therefore, care needs to taken when designing on body RF circuits. 

 

 
(a)                                                     (b)                        

Figure 6.28. (a.) Small filter simulation and measured in air and on muscle. Inset:  

Wideband results (b.) Larger filter simulation and measured in air and on muscle. 

Inset:  Wideband results. 

 

Figure 6.28. (a.) and Figure 6.28. (b.) shows the on muscle simulations and 

measurement results of the small and the large filter respectively. The simulations for 

air are performed with air components and the simulations for muscle are with muscle 

components. The cut off frequency in the measurements decreases by 307 MHz and  
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430 MHz due the effect of muscle for the small and large filters respectively. 8 mm 

change of length in the filter affected the cut off frequency to change by 127 MHz. 

Hence, to mitigate the effect of muscle in RF circuits the design needs to be compact. 

Both the figures consist of the sub figures of same simulation and measurement results 

with frequency axis extended to 6 GHz. The variation in the initial stage of pass band 

for both filter structures the variations in the values of measurements and simulations 

are less than 0.5 dB. The sub figures are provided to compare the agreement of the 

simulation and measurement results at higher frequencies. From the inset figures it can 

be observed all the simulation results overestimates the losses at frequency above        

3.5 GHz. Anomaly being the simulations results with the muscle components but that 

could be because of inaccuracy in the on muscle measurements at higher frequencies.   
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7. CONCLUSION  

 

Prior to judge the achievement of the research the basic aims of the study require to be 

restated. The research aimed to attain a method of simulation that would be able 

accurately estimate losses incurred, when RF circuits are placed at close proximity to 

the body. Fresh beef was intended to emulate human muscle in measurements. The 

research also intended to discern how the losses were distributed between the dielectric 

and the conductor of the RF interconnects. Multiline TRL error box was solved to attain 

scattering parameters for discrete components in order to investigate whether the 

muscle and substrate affected the value of discrete components. 

 The simulations and measurements performed in the frequency band of 50 MHz 

to 9 GHz, agreed with one another for the RF interconnections hence, validating that 

AWR Microwave Office commercial software can be used for performing on muscle 

simulations. The mutiline extraction technique was able provide better insight to the 

obtained results and the dielectric loss was separated from the conductor loss. Essential 

parameters such as the effective loss tangent, effective permittivity, real part of 

characteristic impedance and the distributed parameters where successfully extracted 

using the multiline extraction method as well. The success of simulation because of its 

agreements with the measurements also opens the window for investigating the effect of 

human body on numerous RF circuits that requires to be placed close to human body.  

The simulations reveal that a distance of 0.5 mm from the body, there is 

virtually no effect of the body on the RF interconnections and loss incurred becomes 

very close to that of free space. Nevertheless, the effect of muscle when in contact with 

RF interconnects significantly alters the characteristics of the RF interconnects. The 

increased loss, changes in the characteristic impedance and phase shift significantly 

distorts the performance of the RF interconnects. From the simulations it was deduced 

that wide signal trace and wide gap between the signal trace and ground traces should 

be used at frequencies below 4 GHz. While at higher frequency of operation narrow 

centre line width and gap should be used in RF circuits because it was found narrowing 

the gap mitigates the effect of muscle at higher frequencies. Measurements revealed that 

the bend does not have a significant effect on the performance of RF interconnects 

within the frequency band of investigation. 

The validity of the RF interconnects measurement and simulation technique 

provided the foundation for the research to be extended to observe the effect of body on 

discrete components and simple RF circuits. The effect of the body was observed 

through measurements and simulations. The body has significant effect on the values of 

discrete components. The change of the component values together with the attenuation 

in the pass band caused the cut off frequencies for the low pass filters considered to 

decrease. The effect becomes more pronounced with increasing size of the filter. 

Multiline calibration has also been used to attain the scattering parameters of the 

components. The commercial RF simulator was successfully able to estimate the losses. 
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The results are valuable for body worn RF design were the additional loss and alteration 

of the operating frequency such as in antenna feeding network needs to taken into 

account accurately. Hence, for body worn circuits it is essential to take account of the 

losses due to the effect the body since, it has considerable effect in the performance of 

the circuit.  
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