-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Trepo - Institutional Repository of Tampere University

TAMPERE UNIVERSITY OF TECHNOLOGY

Mikko Tuominen
ENERGY EFFICIENCY OF DATA STORAGE SYSTEMS IN
CLUSTER COMPUTING

Master of Science Thesis

Examiner: Professor Hannu-Matti
Jarvinen
Examiner and topic approved in the
Faculty of Computing and Electrical
Engineering Council meeting on 4th of
May 2011

https://core.ac.uk/display/250163496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IT

TIHVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

Tuominen, Mikko: Tallennusjarjestelmien energiatehokkuus klusterilasken-
nassa

Diplomityd, 42 sivua, 5 liitesivua

Kesdkuu 2011

P3daine: Hajautetut ohjelmistot

Tarkastaja: professori Hannu-Matti Jarvinen

Avainsanat: Klusterilaskenta, energiatehokkuus, SSD, levypalvelin, GlusterFS, tiedosto-
jarjestelma, levyskedulointi

Energiatehokkuus on térked osa-alue minké tahansa teknologian kehityksessé, eiké
klusterilaskenta tee tdhidn poikkeusta. Energian hinnan noustessa klusterin yl-
lapidon kustannukset ylittavit helposti sen hankkimiseen tarvittavat kustannukset.
Jokainen sddstetty euro on samanarvoinen kuin ansaittu euro.

Tama tyo tarkastelee ja vertailee erilaisia laite- ja ohjelmistotason ratkaisuja, joita
kiytetddn klusterilaskennassa datan tallentamiseen. SSD-levyja ei yleisesti kiyteté
klustereissa ja yksi tdmén tyon padmaiaristd onkin selvittda soveltuuko tdma suh-
teellisen uusi tekniikka kiytettaviksi klustereissa. Tarkein padaméaara on ymmartiaa
mitkd seikat vaikuttavat klusterin energiatehokkuuteen datan tallennuksen nakokul-
masta. Niiden pddmédrien saavuttamiseksi klusterin tehokkuutta ja energian ku-
lutusta mitataan ja arvioidaan eri kokoonpanoilla. Té#std saatuja tuloksia voidaan
kayttadd energiatehokkuuden optimointiin muissa klustereissa.

Ty6 on jaettu kahteen osaan. Taustatietoja tutkivassa kirjallisuusosassa pa-
neudutaan asioihin, jotka liittyvit energiatehokkuuteen, datan tallennusmalleihin,
levyihin, tiedostojérjestelmiin ja levyskedulereihin. Kokeellisessa osassa esitetdén
testiympéristo sekd raportoidaan ja analysoidaan tyon tulokset. Testien suorit-
tamisessa kiytetdan apuna CERNin CMS-ohjelmistoa ja LHC:n tuottamaa dataa
mallintamaan raskasta fysiikkalaskentaa. Testeissd kiytetddn sekd SSD-levyji etté
perinteisié kiintolevyja yhdessi kolmen erilaisen datan tallennusmallin kanssa. Téhén
kuuluvat hajautettuun tiedostojirjestelméin, levypalvelimeen ja paikalliseen levyyn
pohjautuvat ratkaisut.

Tulokset paljastavat, ettd SSD-levyjen kiytolld ei saavuteta merkittdvad etua.
Toinen téarked tulos on, ettd huomattava osa klusterin kapasiteetista voi jaada kéyt-
tamétta, mikili tiedostojirjestelmé ja levyskeduleri eivéit ole huolella valittuja. Tyon
johtopadtos on, ettd vaikka mitdan estettd SSD-levyjen kiytolle ei ole, kun otetaan
huomioon seké levyjen hinta etta kapasiteetti, ei niiden kiytto ole perusteltua. Kun
SSD-levyjen kehitys etenee, on syyta arvioida tilanne uudelleen. Mikili hinnat laske-

vat ja tallennuskapasiteetti kasvaa, voi mekaaninen kiintolevy siirtya historiaan.

I1I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

Tuominen, Mikko: Energy Efficiency of Data Storage Systems in Cluster
Computing

Master of Science Thesis, 42 pages, 5 Appendix pages

June 2011

Major: Distributed software

Examiner: Professor Hannu-Matti Jarvinen

Keywords: Cluster computing, energy efficiency, SSD, file server, GlusterFS, file system,

|/O scheduling

Energy efficiency is an important part of the development of any technology. Cluster
computing is no exception. As the energy prices rise, the costs of running a cluster
can easily overcome the costs of buying one. A euro saved is a euro earned.

This thesis examines and compares different hardware level approaches and soft-
ware level configurations used in clusters to storage data. Solid state drives are not
commonly used in clusters and one of the goals of this thesis is to study whether or
not this relatively new technology is suitable to be used in clusters. The main goal
is to understand what affects to the energy efficiency of a cluster from a data storage
point of view. To reach these goals, the performance and energy consumption of
a cluster, with different system configurations, is measured and analysed. These
results can further be used to optimise existing clusters.

The thesis is divided into two parts. In the literature study part, issues related to
energy efficiency, data storage models, block devices, file systems and I/O schedulers
are studied. In the experimental part, the test environment is introduced in detail
and the results are reported and analysed. The tests are conducted using the CMS
software with real LHC data to simulate heavy physics computing. During these
tests, both hard disk and solid state drives are used with three different data storage
schemes; a distributed approach with GlusterFS (a distributed file system) on com-
pute nodes, a centralised approach with dedicated file server and a local approach
with drives in the compute nodes of the cluster.

The test results reveal that no significant gain is achieved by using solid state
drives. Another key result is that a cluster can suffer from a major performance loss
if the file system and I/O scheduler is not properly selected. The conclusion of this
thesis is, that although there is no fundamental reason why solid state drives should
not be used in clusters, considering the multifold price and low capacity compared
to hard disk drives, it is not justifiable. As the development of solid state drives
progress, a new study is in order. If the prices decline and storage capacity increases,

solid state drives could abolish mechanical drives.

IV

ACKNOWLEDGEMENTS

I was fortunate to have an opportunity to be a member of one of the greatest research
community in Europe while writing this thesis. The eight months I lived in France
was one of the best time of my life. T was able to learn a lot from my colleagues,
both off and on duty.

First of all, I want to thank my instructor at CERN, the GreenlT Project Leader
Tapio Niemi who guided me through this process, offered his expertise and help,

and was always ready for discussions about my work.

My warmest thanks go to Professor Hannu-Matti Jérvinen from the Department of

Information Technology who helped me to finish this thesis.

I want to thank my co-workers Kalle Happonen and Jukka Kommeri for their ex-
pertise and technical support on Linux and cluster administration. I also want to
thank Lauri Wendland who was kind enough to share his time and knowledge on

physics computing at CERN.

A special mention goes to my family and friends for their love and support, and of

course, to my dear Riitta who has been there for me all these years.

Tampere, May 19th 2011

Mikko Tuominen

mikko.r.tuominen@gmail.com
+358 400 121 332

CONTENTS

1. Introduction 1
2. Energy Efficiency Optimization of Cluster Computing 4
3.Data Storaging 7
3.1 Disk types 7
3.1.1 Hard Disk Drive o 7
3.1.2 Solid State Drive 8

3.2 Data Storage Schemeso 10
3.2.1 Network-attached Storage (NAS) 10
3.2.2 Redundant Array of Independent Disks (RAID) 11
3.2.3 Distributed File System 0oL 12

3.3 Hard Disk and Solid State Drives in Linux 12
3.3.1 Linux File systems 13
3.3.2 GlusterFS 14
3.3.3 Linux I/O scheduling 15
3.3.4 Read-ahead L 17

4. Previous work 19
4.1 SSDS ON SEIVErS v v v i i e e e e e e e 19
4.2 Scheduling 20
5. Testing Energy Efficiency L. 22
5.1 Test Cluster. 22
5.1.1 Operating System: Rocks 5.3 22
5.1.2 Hardware 23

5.2 Test Tools. 24
5.2.1 Computing at CERN oo 24
5.2.2 CMSSW . . . o e 25
5.2.3 ROOT framework and ROOT files 26
5.2.4 Measuring Tools 26

5.3 Conducting Tests 27
5.3.1 About the performance and energy efficiency 27
5.3.2 Running testso 27
6.Results 30
6.1 Slot size and performance 31
6.2 Slot size and energy efficiencyo oo 32
6.3 Read-ahead and performance 33
6.4 Read-ahead and energy efficiency L. 33
6.5 Filesystem 35

6.6 I/O Scheduler 36

6.7 Thebest case 38
7.Conclusion 41
Bibliography 43
A.Shell script: Scheduling a set of test runs 47
B.Shell script: One test run 48
C.Shell script: Running and timing a CMS TauAnalysis job 50

D.Power use profile of NAS with both drive types 51

VII

ABBREVIATIONS

AS
CFQ
CMS

CMSSW

DF'S
FIFO
GlusterF'S

HDD
LAN
LHC
NFS

RAID
SSD

SSTF
WAN

Anticipatory Scheduling

Completely Fair Queuing

Compact Myon Solenoid. Large general-purpose particle physics
detector and the name of one of the LHC experiment.

CMS software. A physics software toolkit used to compute data
from the CMS detector of the LHC.

Distributed File System

First In First Out

Distributed File System software. Developed by Gluster inc. Glus-
terF'S is free software, licensed under GNU AGPL v3 license.
Hard Disk Drive

Local Area Network

Large Hadron Collider. A particle accelerator in CERN.

Network File System. Name of a network file system implementa-
tion.

Redundant Array of Independent Disks

Solid State Drive

Shortest Seek Time First

Wide Area Network

1. INTRODUCTION

An energy efficient computing cluster can help you to save two types of green; money
green and the nature type of green. Being energy efficient on any field is good for
the environment, yet alone in the line of business where thousands and thousands
of machines run for 24/7. Also the electricity bill plays a major role in the financial
side of running a computing facility. Environment aware image is to be considered
also good publicity to any company or corporation. Whatever is your take on the
subject, the fact is that one way to look at green IT, is to make more with less. More
data, more bandwidth, more calculations and more utilisation with less energy, less
heat generated, less wasted resources and with less money spent. Several studies,
such as Tsirogiannis et al. [36] and Niemi et al. [27], have concluded that the best
performing system is very likely also the most energy efficient. Energy efficiency
equals savings in operational costs and improved performance equals savings in
hardware costs.

Cluster computing was designed to carry out calculations, which otherwise would
be too time consuming and practically impossible to perform with a single computer.
Typical I/O intensive computing job performs a relatively small set of operations to
a very large set of data. It is also common for such applications to have very large
file sizes, from tens of megabytes of data up to a terabyte scale. I/O easily becomes
the bottleneck of such a system.

Cluster computing is a tool. It is a tool for thousands of scientists around the
world. Like any other tool, it needs to be efficient and reliable. Although any
computing cluster can have have seemingly vast resources, these resources are con-
stantly at use as computing clusters are usually very highly utilised. It is common
for these clusters to always have a computing job in the queue waiting to get some
runtime. It is obvious that any performance gain is definitely considered as a positive
thing. However, the components used in computing clusters needs also be reliable
and new technologies are not adopted in a hurry. Lots of software used in clusters
have already had many updates and newer versions, but cluster admins may tend
to stick with software that is already proven to be working. This calls for careful
understanding of new technologies and thorough testing.

Solid state drives are alleged to be superior to hard disk drives. They consume

less electricity, have greater bandwidth, can serve more requests per second and

1. Introduction 2

do not suffer from any mechanical delays. They are even resistant to vibrations.
Solid state drives are relatively new technology, which has quickly led to giant leaps
forward in some of the areas of block device developement. This quick development
has even raised some problems as some of the software is not keeping up with them.
For example, hard disk drives can only serve a few hundred I/O operations per
second, which is limited by the mechanical nature of the drive. Solid state drives
can serve tens of thousands as they are based on a transistor technology and have
no moving parts to slow them down. Unfortunately, solid state drives are also more
expensive and have notably less storage capacity than existing hard disk drives. On
the other hand, the development of solid state drives in these areas has also been
quite rapid and they are catching up. There have been studies both for and against,
whether solid state drives ever overtake hard disk drives in every aspect.

However, solid state drives are nothing like hard disk drives. The whole tech-
nology behind them is fundamentally different. The problem is that the current
computer systems are designed with hard disk drives in mind. These two drive
types cannot be compared without fully understanding their differencies and how it
might affect to the system as a whole. In fact, some of the currently used software
components can even degrade the performance of the solid state drives. One such
example is I/O scheduling, which is designed and implemented to fix some of the
weaknesses of the hard disk drives. I/O schedulers are important piece of software
and they really improve the performance of hard disk drives, but they can also really
hurt solid state drives.

The purpose of this study is to find out whether or not solid state drives are
suitable to be used in cluster computing. Assuming they are, it is interesting to find
out if solid state drives are better than hard disk drives. One big question is also,
how to measure this. One metric is clearly not sufficient and excessive optimisation
for one type of workload may not be any use for different kind of workload.

The goal of this study is to understand the meaning of solid state drives to cluster
computing. To understand what affects to the energy efficiency of a computing
cluster from a data storage point of view. What is important and what is not.
What is the right target for optimisation. This is evaluated from the perspect of
energy efficiency without degrading performance.

The method of exploring these challenges is quite pragmatic: building and run-
ning a test cluster with different kind of hardware setups and software configurations.
The test cluster exploits the CMSSW, a physics software toolkit used in CERN to
compute the data generated by the LHC. A suitable test job is constructed for the
test cluster. This test job is ran against different set of system configurations and
each test run is measured. These results are analysed in an attempt to find the best

possible configuration.

1. Introduction 3

This study does not elaborate or evaluate the total life span of either drive type.
The ecological impact of manufacturing either a solid state drive or a hard disk drive
is left outside of the scope of this study. Another big issue that is not included, is
the economical aspect. Solid state drives are at the moment a lot more expensive
than hard disk drives. Some basic numbers are provided, such as prices of these
devices, but no comprehensive assessment is provided.

This thesis is constructed as follows. Chapter 2 discusses of the background
of energy efficiency as a concept. Chapter 3 discusses of both drive types (block
devices) and different data storaging schemes. Also software components attached
to data storaging are covered in this chapter. Chapter 4 summarises the conclusions
from previous studies. The information in these Chapters (ch. 2 — ch. 4) is fully
derived from different sources and produced by other people. Our role has been to
gather these together to provide a sound base to evaluate and analyse the following
results.

Chapter 5 discusses of the test methods. The test cluster is described in detail,
for both hardware and software. The actual practical side of conducting the tests
is also represented thoroughly. In the next chapter, Chapter 6, the test results are
illustraded and analysed. The chapter is divided into multiple sections and every
section discusses a distinct configuration in detail. As the drive type is so essential
in this study, both drive types are treated separately within these sections. Finally,

in Chapter 7, the most important results of this study are summarised.

2. ENERGY EFFICIENCY OPTIMIZATION OF
CLUSTER COMPUTING

Grid computing was designed to carry out calculations, which otherwise would be
too time consuming to perform with a single computer. Before further discussing
how to improve the energy efficiency of a cluster, and especially data storage, first
a little introduction of what affects to the power consumption.

First, there is the sheer size of the data storage. Data storage capacity and
usage efficiency have a direct impact on power consumption. Usage efficiency can
be understood as a ratio between the total data storage capacity and the utilised
portion of it. The more data is stored or the more disk space is unefficiently allocated,
the more disks are needed and the more energy is consumed. Second, data transfer
rate (I/O bandwidth) and access time also have an effect. The easiest way to improve
both is to use disks with higher rotational speed. Higher I/O bandwidth or lower
access times requires thus more power than the less time critical counterparts. Third
and last, there is data availability and system reliability. Replicating or backing up
a system requires additional components and appliances, which of course requires
additional power. Improving usage efficiency, minimising the energy consumption
of current components or applying new technologies, such as solid state drives, are
all potential approaches to a more energy efficient data storage solutions. [30]

According to Tsirogiannis et al. [36] the most energy efficient system configura-
tion is also the highest performing one. This is quite intuitive in a cluster environ-
ment, where high utilisation rates are expected and average job throughput is what
matters. Niemi et al. [27] conducted a study, which had complementary results
indicating that optimising system throughput also improves energy efficiency. They
found that it is more efficient to run more than one simultaneous job per processor
core on a compute node.

Measurement of energy efficiency is not a simple task. A single metric is not
enough to create the full picture. For example, just looking at achieved storage
space per unit of energy, i.e. GB/Wh, is not sufficient. Workload characteristics
needs also to be taken into equation. Storage devices differ remarkably by perfor-
mance metrics such as throughput (MB/s), access time or IOPS (I/O operations
per second). Also, all distinct sources of energy consumption may not be easily

quantifiable or measurable. [30]

2. Energy Efficiency Optimization of Cluster Computing D

Anderson and Tucek [10] also acknowledge the difficulty of measuring and com-
paring the energy efficiency. They propose a scheme to calculate energy efficiency
in proportion to alternative implementations. Conveniently, this approach also di-
minish the effect that many components consume constant power regardless of util-
isation, which better helps to evaluate the gains. They also remind that micro opti-
misation is feeble if orders of magnitude increases can be obtained with alternative
solutions.

One common metric to measure the energy efficiency on a data center level in a
spirit of green IT is the Power Usage Effectiveness (PUE). PUE is the ratio between
the power delivered to the data center and the power actually used by IT equipment.
Difference can be explained by noticing that some power is always needed for cooling,
lighting, etc. and also some is lost due power distribution process, e.g. with UPS
appliances. Historically PUE has been as high as 2.25 to 3.0, which translates into
33-44% of utilisation rate. Today, PUE of 1.25 can be achieved by using modern
best practices, where 80% of total facility power is delivered to IT equipment. This
cascade effect of power consumption is illustraded in Figure 2.1. Facebook engineers
have reported PUE as low as 1.07 at full load on their state-of-the-art data center,

where energy efficiency was an important design goal [5]. [38]

Server o
component A one watt reduction in a server
-1.ow

1 Watt component results in a 2.84
saved here cascaded wattage reduction in the
data center ecosystem

DC-DC

and .31

additional
.18 Watt here Watt here

-2.84W

Reduction

Power
distribution

and .04

Watt here
UPS

and .14

Watt here .
Cooling

and 1.07 BUang
Watt here Switchgear/
Transforme

Source: “Energy Logic: Reducing Data Center Energy Consumption by

Creating Savings that Cascade Across Systems”, Emerson Network Power, ©2008 and .10
na.

Building the Green Data Center Watt here
®© 2008 Storage Networking Industry Asscciation. All Rights Reserved

Figure 2.1: The Power Cascade Model. Source: SNIA [13]

Solid state drives (SSD) are known to consume less energy than hard disk drives
(HDD) due their non-mechanical design. What makes SSDs even more appealing is

that they exhibit perfect energy proportionality, which means the energy consump-

2. Energy Efficiency Optimization of Cluster Computing 6

tion is dependent on the load in a linear fashion [36]. Narayanan et al. [26] criticises
recent, studies on SSDs being only interested on performance but not providing any
cost based analysis. They are confident that SSDs will not achieve the capacity per
dollar of HDDs. Totally opposite estimation is presented by Schmidt et al. [32], who
argued that annual growth rates in performance of SSD development and declining
of prices indicate SSDs outperforming HDDs in all aspects in the near future. They
also point out that rising energy prices favor this development in a situation where

operational costs dominate hardware costs.

3. DATA STORAGING

This chapter is divided into three section. The first section, Disk types, introduces
the physical devices, where the bits are stored and the characteristics of these de-
vices. The second section, Data Storage Architectures, discusses several different
concepts and models needed to store data in a cluster environment. The third
and last section, Hard Disk and Solid State Drives in Linux, discusses the software
needed to make all this happen from an operating system point of view. All these

can have an effect on the overall performance and energy efficiency of a cluster.

3.1 Disk types

Both hard disk and solid state drives are used as block devices. A block device is a
storage component that offers an interface for a block level operations. A block is
an abstraction between block number and the physical representation of data on the
device. Operating system uses a Logical Block Address (LBA) as a parameter for
targeting data in I/O operations. The block size of the device needs to be a multiple
of the sector size of the HDD. This is discussed more thoroughly in Sections 3.1.1
and 3.3.

3.1.1 Hard Disk Drive

A Hard Disk Drive (HDD) is composed of multiple magnetic platters, which can be
either be read or written by using a disk head. It is common to refer these magnetic
platters as heads as there is usually only one disk head per platter. The actual disk
head is attached to a disk arm, which is used to move the disk head on top of the
right track. A track is a collection of bits sharing the same radius from the center
of the disk, thus forming a circle on the platter. Tracks that share the same radius
on different platters are referred to form a cylinder. When the disk spins the read
head, while positioned stationary, can access the bits on the track in a sequential
manner. A track is divided into sectors. A sector is the smallest unit of data that
can be written to an HDD. Typically, the size of the sector is set by the manufacturer
and cannot be changed. A very common sector size in the industry is 512 bytes,
which has become the de facto standard. Although recently manufacturers have
also introduced HDDs with 4kb sector sizes, but there are some severe compatibility

issues with the existing operating systems and low level software. [19], [34]

3. Data Storaging 8

When HDD receives an I/0 request, it transforms the logical block address into
a physical address, e.g. to a tuple of cylinder, head and sector numbers. Common
consumer grade HDDs and their capacities are represented in Table 3.1. The Ve-
lociraptor from Western Digital is a high performance HDD and listed as a point of
reference for SSDs.

Table 3.1: HDD capacities. All drives are 3.5" and SATA II. Prices: www.newegg.com
(cited 1-Feb-2011)

Manufacturer Model Size | Price | GB/$
Hitachi Deskstar 1 TB | $54.99 18
Samsung EcoGreen 1 TB | $38.99 26
Seagate Barracuda 2TB | $69.99 29

Western Digital | Caviar Green | 1 TB | $44.99 22
Western Digital | Caviar Green | 2 TB | $99.99 20
Western Digital | Caviar Green | 3 TB | $209.99 14
Western Digital | Velociraptor | 300 GB | $169.99 1.8

Table 3.2: SSD capacities. All drives are 2.5", ML.C and SATA II. Prices: www.newegg.com
(cited 1-Feb-2011)

Manufacturer Model Size Price | GB/$
Corsair Force F40 40 GB | $104.99 | 0.38
Corsair Force F120 240 GB | $439.99 | 0.55
Intel X25-M 120 GB | $229.99 | 0.52
Kingston SSDNow V Series | 128 GB | $224.99 | 0.57
0CZ Agility 2 160 GB | $299.99 | 0.53

3.1.2 Solid State Drive

A Solid State Drive (SSD) is a mass storage based on NAND flash memory tech-
nology. A flash memory consists of readable and reprogrammable transistors, i.e.
memory cells. The memory cells preserve their state during a power outage. Data
is stored in these cells as voltage levels. If the cell has only two voltage levels and
thus represent only one bit, then it is called a Single Level Cell (SLC). If the cell can
distinguish four voltage levels (or more) and thus represent two bits (or more), then
it is called a Multi-Level Cell (MLC). Flash memory is discussed more thoroughly
later, but first a little insight into how an SSD operates.

An SSD is composed of many flash memory chips. Each chip is composed of

blocks and each block is composed of pages. These blocks must not be confused

3. Data Storaging 9

with the block layer blocks discussed earlier. An SSD has three basic operations;
read, reprogram (write) and erase. The smallest unit of data for a read or write
operation is the page, which is typically 512 - 4096 bytes. Only fresh pages can be
reprogrammed, so every dirty page must be properly erased before it is reusable.
The smallest erasable unit of data is the block, which can hold up to 128 pages or
512kb of data. SSDs do not actually have physical sectors, but sometimes a page
can be thought as been divided into logical sectors. The reason is that for historical
reasons applications are assuming that a block device has 512-byte sectors.

Reading a 4kb page generally takes around tens of microseconds and writing
hundreds of microseconds. SLC based devices are generally faster than MLC based.
The real penalty comes from erasing a block, which takes 1.5 - 2ms. Thus reading is
an order of magnitude faster than writing and two orders of magnitude faster if an
erase operation is needed. SSDs (and other flash memories) use a technique called
Flash Translation Layer (FTL) to overcome this problem.

FTL reduces the effect of time consuming write operations by reserving redundant
blocks or pages and hence avoiding the costly erase operation when data is being
updated. Downsides are increased overhead for address translation information and
increased amount of flash memory operations. Of course this does not solve the
problem completely as it only delays the erasing process [22]. This is why a trim
operation was introduced on SSDs. Its purpose is to erase unused pages on the
background. As mentioned earlier, a single page cannot be erased as the smallest
erasable unit is the block. So it has to read the data from a block into a cache, erase
the whole block and then rewrite the data back into the block. [2]

Where SSDs really excel over HDDs is the random access. Intel X25-M SSD
can reach up to 35,000 IOPS (I/O operations per second) for random read and
8,600 IOPS for random write [20]. For comparison, a high-performance HDD "WD
Velociraptor" can only perform less than 250 IOPS for both random read and random
write. The relatively low IOPS count for HDDs derives from mechanical delays and
cannot be significantly improved. SSDs can interleave read and write operations and
hence the overall performance of the device can be better than the one of a single
flash memory chip. [9)].

SSDs have one clear techical weakness compared to HDDs. The write-erase cycle
of a memory cell is limited. An SLC can be reprogrammed around 100,000 times
and more complicated MLC only 10,000 times before it wears out [31]. This is why
modern SSDs comes with something called Wear leveling. Wear leveling allows erase
counts of blocks to be evenly distributed over the storage media in an attempt to
increase the endurance of an SSD. Dynamic wear leveling is an algorithm by which

the controller in the SSD recycles blocks with small erase counts in the flash memory

3].

3. Data Storaging 10

The biggest obstacle SSDs are facing on their way to become widely adopted and
respectable alternative to replace HDDs is their price. If comparing SSDs and HDDs
just by looking how many gigabytes a dollar can buy, an SSD is approximately 50
times as expensive as HDD as seen from Tables 3.1 (25 GB/$ for HDDs) and 3.2
(0.5 GB/$ for SSDs). However fully electronical SSDs are known to consume less
power than partly mechanical HDDs [22].

3.2 Data Storage Schemes

Before discussing more about different options for data storaging schemes, one ter-
minological distinction needs to be pointed out. When using a term distributed in
the context of data storage, it deliberately refers to a data storage scheme, where the
actual data is distributed over multiple machine instances in contrast to client/server
model type of distribution. The difference is vague as in a distributed environment
the backend implementation is not necessarily transparent to the client. For exam-
ple, a simple file server can internally exploit other services, which reside on other
physical machines. Also many schemes providing distributed data model can have a
frontend machine to work as a single entry point and appear to be a single system.
In fact, in some cases it can even be technically possible to run such a system on a
single machine instance. So basically the definition is based on how the system is

meant to be used.

3.2.1 Network-attached Storage (NAS)

A Network-attached Storage (NAS) is by definition a data storage accessible over
the network. NAS is based on client/server model and provides a file level data
access. A NAS appliance is equipped with high-speed network interface and hard-
ware capable of storing vast amounts of data. Terminologically, subtle differencies
between a NAS appliance and a conventional file server can be distinguished. NAS
is designed for high performance and usually offers customized and pre-configured
software and vendor support, which make it easy to deploy and administer. These
terms "NAS appliance" and "file server" are used interchangeably as there is little
pragmatic difference from the end user point of view. NAS exploits network file
system techniques on providing data access for client machines.

A network file system is a file system that is hosted on a remote machine and
is accessible over the network. More precisely, it is a protocol to access the remote
file system. Network file systems are based on client/server model and are usually
stateless, although also stateful network file systems exists. Stateless means that the
server provides the file system as is and keeps no record of the state of individual

files. This introduces a couple of pros and cons. Stateless design simplifies the

3. Data Storaging 11

system architecture, but also brings out some synchronisation problems and degrades
consistence. This can be a serious problem if a high level of reliability and data
integrity is required. Statelessness must be acknowledged and handled at application
level. An approach with a centralised server makes it easier to control and backup
your files as they all resides in a single system. The clients can mount the network
file system like any other conventional file system. The presence of network is hidden
and files are transferred to local machine only when needed. Alas, it also makes the
server a single point of failure, thus eliminating it as an option for applications of
low fault tolerance for accessibility.

The best-known and most common network file system in Linux environment is
the Network File System (NFS). The basic idea of NFS is to, from a clients point of
view, emulate the behaviour of a local, mounted file system even though the disks
are not physically present. NFS is said to be inadequate to scale for systems over
100-1000 nodes, i.e. NFS clients. However, this heavily depends on the use profile of
the system and applications characteristics. Read intensive applications have better
success than write intensive. After all, NFS is not meant to serve applications,
which require high availability. There is also some concerns about the security of
the NFS. In a cluster environment this is rarely an issue as clusters tend to reside in
a private network, excluding the frontend machine. As a whole, NFS is a popular,
widespread, easy to install and widely supported, which makes it the best choice of

a data access implementation technique for the NAS subsystem. [14], [33]

3.2.2 Redundant Array of Independent Disks (RAID)

It is common for NAS appliances to exploit the RAID technology. Redundant Array
of Independent Disks (RAID) is a scheme designed to improve both the reliabil-
ity and performance of disk access. RAID can be implemented by using either a
hardware or software based solution. In a hardware RAID, the server machine is
equipped with a specific RAID controller, which receives the I/O requests from the
OS and redirects the requests to physical disks. For the OS, only one large block
device is visible. With the software-based RAID, the independent disks are visible
to the OS and a virtual disk is created upon them. RAID is perceived to be reliable
when it comes to storing data, but not necessarily in terms of accessibility. This is
especially true when using a NFS protocol, but inaccessibility can also stem from
network or power failures [14].

One important technique used by RAID is striping. Striping means that data
is sliced into fixed-length chunks of data, which are dispersed over multiple disks.
When data is now accessed, the I/O request can be handled parallel by multiple disks
and thus improve performance significantly. There are many levels of RAID, each

with different characteristics and purposes. RAID-0 level provides only striping, but

3. Data Storaging 12

no data redundancy. RAID-1 is similar to RAID-0, but it also provides mirroring.
Mirroring means that all data is sent to several (usually only two) disks as a safety
precaution. This setup provides excellent data reliability and performance at the
cost of disk space. RAID-5 provides data parity, which means that for every block
striped a parity block is calculated and stored on different disk. If one disk fails,
the data in the failed disk can be reconstructed by using the parity information.
RAID-6 is similar, but it doubles the amount of parity and hence can tolerate two
failed disks. [19]

3.2.3 Distributed File System

As mentioned earlier in Section 3.2, the definition used in this study for distributed
data storage refers to truly distributed data. In contrast to network file systems,
where all data is stored on a single machine, a distributed file system (DFS) is running
on multiple machine instances. A DFS can have a centralized or decentralized
architecture. In a centralized architecture, the client connects to a master server.
The master server is responsible for keeping the file system metadata information
and redirects the I/O requests to other servers, i.e. data servers. The data server
then provides the actual data for the client. This architecture of course makes the
master server a single point of failure and easily becomes the bottleneck of such a
system. Hence the decentralized DFSs are available. Decentralized architecture can
be implemented for example in a peer-to-peer manner, where also the file system
metadata is distributed.

The distributed nature of DFSs varies as DFS can reside in a single server rack
connected via high-speed LAN or it can be geographically distributed over WAN.

DF'S is said to be a parallel file system if the data of a single file is distributed to
many different servers. This approach have its pros and cons. The performance of
reading or writing, especially big files, can be improved significantly as more servers
can handle the I/O. On the other hand, as seemingly simple operation as a directory
listing can be extremely slow as each server needs to be consulted. DFSs can also be
configured to provide data replication to improve accessibility and reliability or data

striping (like in RAID systems discussed in Section 3.2.2) to improve performance.

3.3 Hard Disk and Solid State Drives in Linux

To permanently store data, more is needed than just the physical devices. Presence
of an operating system is required. Typical data storage scheme can be divided into
4 layers; device layer, kernel layer, file system layer and application layer. Also a
block layer can be distinguished between the kernel and file system [28|. The goal is

to provide abstraction between the layers, to hide the implementation and technical

3. Data Storaging 13

details from the user and to provide interfaces to better support interoperability of
variety hardware and software components. Optimization of such system can take
place on any of these layers. Hard disk and solid state drives can be seen as part of
the device layer. Between the physical device and kernel are device drivers, which
are part of the kernel. The purpose of the device drivers is to hide the differencies
between the vast variety of devices from the kernel. Kernel can now treat any device
in the same way through a device driver interface. [19]

The kernel and file system layers are the most interesting ones as they provide the
most of easily configurable parameters. In the Linux kernel there is a component
called an I/O Scheduler. An operating system does not really require any I/O
scheduler to operate as I/O requests can be serviced in a FIFO-like queue manner.
This, however, is not the optimal solution in most cases and use of an I/O scheduler
can improve the performance of the I/O dramatically. Linux I/O scheduler adds an
interface between block layer and the device layer. [28§]

When discussing about disk performance, two terms needs to be distinguished;
the response time and the access time of a disk. The response time is the time an
I/O requests needs to wait before it is served after it was submitted. The access time
of an HDD is a sum of seek time and the actual transmission time. The seek time
consists of disk arm transfer and spin delay or rotational latency. Before reading or
writing can happen, the disk head needs to be positioned on the beginning of the
right sector on disk. The seek time derives from moving the disk arm onto the right
track and then waiting the disk to spin so that the correct sector is under the disk
head. Transmission time is usually considerably less than seek time. Seek time can
be minimised by intelligent positioning of the data onto the disk and also by doing
disk read or write request in a best possible order. The former is done by the file
system and the latter is called I/O scheduling. [19]

3.3.1 Linux File systems

A file system is an abstraction to map data blocks on a block device, such a HDD or
SSD, to meaningful files for the operating system. A file system uses data structures
called inodes to save information about the files (metadata). An inode contains
information about the owner of the file, an access control vector, timestamps for file
creation and modification, file size, type of the file (e.g. directory, regular file, link,
etc.) and pointers to the actual data on the device. [14]

Usability of a file system can be measured by two common metrics. The first is
how efficiently a file system stores files, i.e. how much space is wasted. The second
is how efficiently data can be transfered. Using bigger disk blocks can improve the
transfer rate as more data is handled at once, but also more disk space is wasted as
the last block is left only half-full by average. [19]

3. Data Storaging 14

Most file systems today are journaling file systems. A journaling file system means
that the file system keeps a journal over its writes in case of failures in the writing
process. When data is written to a drive, also the metadata information needs to be
updated. If the data on the drive and the metadata is out of sync, the file system is
said to be corrupted. This can occur for example in case of sudden power outage if
only either the data or metadata was updated, but not both. To increase throughput
performance drives usually exploit heavily drive caches, which can delay the writes
and cause the drive to be out of sync. When the drive gets back online, file system
can now go through its journal and replay every step to fix a possible corrupted file
system. Without journaling, the whole file system would need a consistency check,
which would be drastically slower operation. One of the primary concerns with all
filesystems is the speed at which a filesystem can be validated and recovered after
corruption.

The most popular file system in Linux during the first decade of 21st century was
the Ext3 file system, which is still widely used. Ext3 is the default file system for
Rocks cluster software. Ext3 is a journaling file system with maximum volume size
of 16 terabytes.

Ext4 is the successor of Ext3 file system. The main motivation developing new
version was the 16 TB volume size of Ext3, which stems from 32-bit block num-
bers. Ext4 assigns 48-bit block numbers and can have volumes up to 1 exabyte for
4kB block size. Ext4 also incorporates scalability and performance enhancements.
Ext4 developers provided benchmark results, which shows improvement especially
on write I/O requests. The dominating role of Ext3 is acknowledged and upgrade
to Ext4 is easy and can be made without losing the data. Ext3 is however perceived
as reliable and stable and thus still the file system of choice in many systems, which
do not need the support for larger volume sizes. [25]

XFS is a file system created in mid-1990s by Silicon Graphics inc. for their own
IRIX OS, but it is later ported to Linux. XFS is also a journaling file system. XFS
was designed to be scalable and support large file and directory sizes. The maximum
volume size of XFS is 16 exabytes. [35]

3.3.2 GlusterFS

GlusterFS is a distributed file system, developed by Gluster inc. and provided under
GNU AGPL v3 licence. GlusterF'S architecture is based on peer-to-peer model.
Server machines share part of their disk space, called a brick, into a collective data
pool. These bricks are then used to create virtual data volumes. Data mirroring
and data striping are both supported. On the servers, data is stored on local file
systems. Actually, what a server shares is a directory and it becomes the root

directory for GlusterF'S on that server. GlusterF'S can allocate all the space left

3. Data Storaging 15

on that partition. Notice, that any free space can therefore be used either by the
GlusterF'S or the local file system and therefore the size of GlusterF'S volume changes
dynamically. Bricks can be added and removed on the fly without disturbing the
system. In case of resource removal the data hosted by that node is migrated to
another location automatically.

To access these data volumes a client software is needed. The data volume is
mounted as part of a local file system with FUSE, Filesystem in Userspace. FUSE
is an API emulating the behavior of conventional filesystem. FEach client has a
dummy version of the directory tree of the volume (a filesystem). It contains the
metadata (inode) information, but the file size is zero. The actual data is distributed
by using the hash calculated from the name and directory path of the file. Each
file is now mapped with particular virtual subvolume. These virtual subvolumes are
mapped to spesific bricks, i.e. hosts. Using a hash algorithm a file name can now
be connected with the host storing the actual file data. When a file is renamed, a
pointer is created on new host to redirect to the old location while migrating the
data to a new location in the background. When the data transfer is complete, the
pointer can now be removed.

Any particular machine can act both as a server and as a client at the same time,
i.e. run a server and client software. Other features of Gluster is load balancing,
failover recovery, I/O scheduling, caching and quotas. Gluster supports Infiniband
and Ethernet (TCP/IP) for networking. [4]

3.3.3 Linux I/O scheduling

An T/O scheduler is a kernel component, which controls the 1/O queue and uses a
scheduler-specific algorithm to arrange incoming I/O request. When an I/O request
is received from a file system through the block layer interface, an I/O scheduler
inserts it into the queue and eventually passes it to the disk controller through the
device driver interface. [28]

Linux can be said to be optimised for magnetic disks [21]. This section discusses
primarily on scheduling HDDs in a Linux environment. Scheduling with SSDs is
discussed in Section 4.2.

The current Linux kernel 2.6 has four built-in schedulers. They are called noop,
anticipatory, deadline and cfq. The cfq is the current default scheduler. These
schedulers are discussed later in detail, but first a little insight on how the disk
controller operates.

Disk usage can be optimised by trying to minimise the disk arm transfer, i.e. the
seek time. Common algorithms are called FIFO, SSTF, SCAN and C-SCAN. FIFO
(First In First Out) does no optimization. SSTF (Shortest Seek Time First) always

selects the request which needs the least movement of the disk arm. This can lead in

3. Data Storaging 16

a situation, especially on a device under heavy loads, where disk head keeps servicing
request on a near-by disk blocks and other requests on the outer edges of the disk
are faced with long waiting periods or even a starvation. Starvation is a state where
a process is waiting for an event that never happens. SCAN just scans the disk
from one edge to another, turns back whenever reaches the inner or outer edge of
a disk and starts to scan to disk to another direction. SCAN is sometimes referred
as the elevator algorithm due its similar operation logic to elevators. C-SCAN is
like SCAN, but with a difference that it always scans the disk the same direction.
When the arm reaches the edge of a disk, the arm is moved to the opposite edge by
one long disk arm transfer. SCAN and C-SCAN are not affected by starvation. Of
Linux 2.6 basic schedulers, the noop is based on FIFO and others on SCAN type
disk arm transfer algorithm [21]. [19]

The purpose of an I/O scheduler is to improve the performance either by increas-
ing the total bandwidth of the disk or by reducing the access time of individual I/O
requests. I/O schedulers use operations called sorting and merging of 1/O request as
a tool to minimize the disk seek times. The sorting operation orders requests based
on their sector number and inserts incoming requests on their right place on the
queue. This way, if the disk is used either with SCAN or C-SCAN based scheduler,
no unnecessary disk arm movement has to be made. Merging merely means that
requests from different processes to the same data block are recognised and served
together. Also it has to be noted that usually read operations are synchronous as a
process is waiting them to finish. On the other hand, write operations are usually
asynchronic, which means they do not need to be served immediately and can be
stored temporarily in a cache. [28]

The most simple I/O scheduler in the default Linux kernel 2.6 is the noop 1/O
scheduler. Noop has minimal overhead and it does only basic merging and sorting of
[/O requests. Noop can be a good choice when not using a HDD directly. Either the
scheduling is done somewhere else than inside the Linux kernel or a non-mechanical
drive, such as an SSD, is used. RAID controllers do their own scheduling and Linux
kernel does not have any knowledge of the actual disk states in a RAID array.
Therefore Linux kernel can only interfere by doing additional 1/O request sorting.
Merging of requests is of course desirable. SSDs on the other hand have no moving
parts and therefore do not suffer from seek time delays. [28]

The Deadline scheduler implements sorting of requests, but also implements an
expiry time for each request. The basic idea is aggressive reorder of requests and
at the same time to make sure no request has to wait too long to be served. If
a request is about to expire before it is served, then deadline starts to serve that
request immediately. Read requests are given higher priority than write requests,

but nonetheless the deadline mixes write requests with read requests even though

3. Data Storaging 17

there are more pending read requests. Deadline makes a compromise between high
throughput and low I/O request response time. [12, 28|

The Anticipatory (AS) I/O scheduler behaves like deadline, but also adds a fea-
ture called anticipation. Anticipation derives from a situation called deceptive idle-
ness. Deceptive idleness happens when a read operation finishes and the process,
which requested it, continues execution only to make a consecutive read request.
Normally the disk arm would have already moved into an another position, but now
the disk waits for a small period of time if the process wants to make an another I/O
request. Naturally this behavior has a negative effect on performance if the process
does not make another sequential read request. On some work loads however the
overall performance can be improved. There actually are mechanisms, such as cost-
benefit analysis or statistic analysis of a probability of such request arriving, which
reduces the negative effect of this behavior. AS tries to reduce the read response
time for each thread. [28|

Finally, the currently default Linux I/O scheduler, the Completely Fair Queuing
(CFQ) 1/0O scheduler. The basic idea of CFQ is to provide fair treatment among
different processes and share the I/O bandwidth evenly with the I/O requests. In-
ternally CFQ has many I/O queues, which are operated strict FIFO manner. Each
process is given its own queue derived from the process’ PID with a hash algorithm.
CFQ selects I/O requests from these queues in a round robin manner and moves
them into a dispatch queue, which is then sorted and sent out to the device driver.
28]

It is important to note that both AS and CFQ are implemented as Linux kernel
components as anticipatory and completely fair queuing are mere scheduling algo-
rithms. Anticipation can be built on any scheduling scheme, not just on deadline.
Also compeletely fair queuing does not need to work with a hash algorithm to op-
erate. Any other desired technique can also be used to allocate the I/O queues for
processes.

Changing the scheduler in Linux can be done from a command prompt. For
example, setting the noop scheduler for the drive in /dev/sdb:

echo noop > /sys/block/sdb/queue/scheduler

3.3.4 Read-ahead

The read-ahead is a mechanism to improve the performance of a block device. The
function of the read-ahead is that for every read request served, also an additional
amount of data is read from the block device into a cache. It is likely that this
data is now requested soon after. When such a request is received, the data can
be provided directly from cache and avoid the costly seek operation. The size of

additional data block can be configured and is usually expressed in kilobytes.

3. Data Storaging 18

Changing the read-ahead value in Linux can be done from a command prompt.
For example, setting the read ahead to 4kb for the drive in /dev/sdb:

echo 4 > /sys/block/sdb/queue/read_ahead_kb

19

4. PREVIOUS WORK

This chapter discusses the previous research work done related to the topic of this
thesis. The first section discusses about how SSDs are used in server environment.

The second section discusses about research on I/0O scheduling.

4.1 SSDs on servers

Lee et al. [23] conducted a study which objective was to identify the areas where
SSDs can best be utilized in enterprise database applications. They concluded that
using SSDs for transaction log, rollback and temporary data storage is superior over
HDDs. They argued that the performance of transactional database applications
is more limited by disk latency than disk bandwidth and writing log records is
a significant performance bottleneck. They pointed out that the I/O pattern of a
workload trace collected from a commercial database server is favorable to SSDs. By
implementing these changes on their test server, they managed to transform it from
I/O bound to CPU bound. Their tests showed an order of magnitude improvement
in transaction throughput and response time. Also, time of processing complicated
database operations that required the use of temporary data area dropped to one
third.

Schmidt et al. [32] conducted a study on using SSDs in a database environment
as an attempt to increase efficiency and reduce costs. They concluded that SSDs
outperformed HDDs both in performance and energy efficiency, but the overall cost
analysis still favored HDDs. They argued that only suitable usage for SSDs is in high
IOPS demand applications, where IOPS/$ or capacity/$ are of minor importance.
On their benchmark tests, they used the rate of transactions per second to measure
performance. The tests showed that with small database sizes (10 MB), HDDs and
SSDs were equal for read-only workloads and HDDs having a slight edge for mixed
workload. However, the performace of the HDDs quickly decreased as much as 50%
when the size of the database tenfolded (100 MB), while this had little effect on
SSDs. Growing the size of the database another ten times bigger (1000 MB); the
performance of the HDDs dropped another 25%, while still not affecting the SSDs.
All this applied both read-only and mixed workloads.

Narayanan et al. [26] reported similar results in their study, where they performed

a cost-benefit analysis for a range of workloads. They used 49 different workload

4. Previous work 20

traces collected from 15 different server machine (storage size ranging from 22 GB
to 6.7 TB) to compare SSDs and HDDs. They found out that in all cases, the
dominating factor was either the storage capacity or the random-read IOPS require-
ment. However, due to the low capacity/$ of SSDs, the HDDs always provided the
cheapest solution. They presented calculations, that depending on the workload,
the capacity per dollar of SSDs needs to improve by a factor of 3-3000. They also
argued that energy efficiency is not as important reason to make the transition to
using SSDs as low-speed SATA disks are competitive in terms of performance and
capacity per watt.

According to Leventhal [24], SSDs should be used as complementary to existing
storage system, not as a replacement. He argued that SSDs "falls in a sweet spot"
between HDD and RAM and the characteristics of flash make it ideal for certain
applications, e.g. logging and caching for databases. He pointed out that by replac-
ing part of the RAM with SSDs for caching, where applicable, can turn out to be
economically better alternative. He even implied that having SSDs as an interme-
diate also justify for a system with slower spinning disks. He believed that the right

balance of cost and performance could be found for any workload.

4.2 Scheduling

Pratt and Heger [28] conducted a study on performance evaluation of Linux 2.6
I/O schedulers. On their tests, they simulated I/O patterns on different hardware
setups, including both single-disk and RAID configurations. They used Ext3 and
XFS filesystems and various workload scenarios. They concluded that selecting an
I/O scheduler has to be based on the workload pattern, the hardware setup and the
filesystem used, or as they put it, "there is no silver bullet". Carroll [15] conducted a
similar study on I/O schedulers in a RAID environment. He also found the selection
of the I/O scheduler to be workload dependent and that I/O scheduling improves
performance only on small to medium size RAID arrays (six disks or less).

Kim et al. [21] conducted a study to analyse I/O schedulers on SSDs. They
argued that scheduling itself does not improve the read performance of an SSD, but
preferring read requests over write requests does. They presented and implemented
a scheduling scheme that exploits the characteristics of the SSD. The scheme is
quite simple, it just bundles write requests together to match the logical block size
and schedules read requests independently in a FIFO manner. Their benchmark
tests showed up to 17% improvements over existing Linux schedulers (presented in
Section 3.3.3). Test results also showed that the schedulers did not make a notable
difference under read-oriented workloads on SSDs. On a side note, the anticipatory
scheduler seemed to outperform other existing schedulers. This is quite strange

because, as discussed earlier, the anticipatory scheduler tries to exploit the locality

4. Previous work 21

of data on HDDs and thus the device is kept idle for short periods of time. This
should not improve the performance of an SSD, but on the contrary, degrade it.
This phenomenon can be explained by noting that an individual process can benefit
for getting an exclusive service for bursty I1/O requests and thus improving the
overall performance. However, this is more a matter of process optimisation than

I/O optimisation.

22

5. TESTING ENERGY EFFICIENCY

This chapter discusses of the test environment and the actual tests conducted. The
first section describes the test cluster in detail. The second section represents the
used test tools. The physics software and the software and hardware instruments
used to gather data are discussed in this section. The third and last section discusses

the practical side of running the tests and describes how the tests were conducted.

5.1 Test Cluster

5.1.1 Operating System: Rocks 5.3

The choice for the operating system of the test cluster is Rocks 5.3, an open-source
Linux cluster distribution. Rocks is developed by the Rocks Cluster Group at the
San Diego Supercomputer Center at the University of California, San Diego and
its contributors. Rocks is a fully stand-alone system and cannot be installed on
top of existing system. Rocks is basically a Red Hat Linux bundled together with
a whole set of cluster software. The driving motivation behind Rocks is to make
clusters easy to deploy, manage, upgrade and scale. This does not mean that Rocks
would be inadequate or inefficient to do high performance cluster computing. On
the contrary, Rocks is used in many universities and institutions around the world.

Installing and maintaining Rocks is easy. First you have to install the frontend
machine. This does not differ much from a normal linux installation. Rocks con-
tains many optional packages, called rolls, which you can pick to go with you basic
installation. These rolls contain additional software you may want to install. For
example, the Sun Grid Engine (SGE) roll was included and used as the choice of
the batch-queuing system for the test cluster. After installing the frontend, a cluster
also needs compute nodes. Installation of a compute node is easy. All that is needed,
is to configure the compute node to boot from the network. A compute node reg-
isters itself to the frontend database, downloads a system image from the frontend
(or from other compute nodes) and performs a quick installation. In fact, Rocks
even deals with errors just by re-installing the compute node rather than trying to
fix it. If the default configuration setup and system image is not sufficient enough
for your needs or you want later to modify your compute nodes, all you need to do

is to configure some text files on the frontend, maybe add some additional packages

5. Testing Energy Efficiency 23

to be installed on compute nodes, assemble a new system image and re-install the
nodes.

Rocks also comes with many software tools that makes the administration and
management of a cluster easy. Most notably the Ganglia, which is a web-based
cluster monitoring software. [33]

With SGE it is possible to configure the slot size for each compute node. A slot
size defines how many simultaneous jobs can be submitted to a single computer node.
The name actually derives from number of CPU slots a machine has and it suggests
that the number of CPU cores should be equal to the number of simultaneous
compute jobs. However, this study wanted to try what kind of effect this has on
the performance. This study uses a term relative slot size to refer the ratio of the
slot size and the number of actual CPU cores. For example, in the test cluster, with

quadcore machines, a slot size of eight would equal a relative slot size of two.
5.1.2 Hardware

The test environment consists of a computing cluster and a dedicated file server.
Cluster is composed of four machines, frontend and three compute nodes. Detailed
specifications are presented in Table 5.1. Detailed specifications of the drives used

are presented in Table 5.2.

Table 5.1: Test Cluster

Frontend Nodes File Server
Model Dell server Dell R210 Dell R710
Processor | Intel Xeon 2,8 GHz | Intel Xeon 2,4 GHz | Intel Xeon 2 GHz
CPU cores 2 4 4
RAM 2 GB 8 GB 2 GB
Disk (OS) | 160GB SATA (7.2k) | 250GB SATA (7.2k) | 146GB SAS (10k)
Ethernet 2x 1Gb 2x 1Gb 4x 1Gb

SSDs are Corsair CSSD-F40GB-2 with a SATA 1T 3.0Gb/s interface. Corsair F40
utilises MLC NAND flash technology. According to manufacturer’s own specifica-
tions, Corsair F40 can reach read and write speed of 270 MB/s and perform 50k
IOPS. [17]

HDDs are Scorpio Black WD3200BEKT from Western Digital, with a 7200 RPM
spindle speed and a SATA 1T 3.0Gb/s interface. According to a review made by
Tom’s Hardware web site, just to give a rough estimate of the performance of the
HDD, the WD3200BEKT was benchmarked with access time of 15.4 ms (including
spin delay), maximum read speed of 84.3 MB/s and maximum write speed of 83

MB/s. Also energy efficiency was measured, which resulted idle power of 1.12 W

5. Testing Energy Efficiency 24

and peak power of 3.26 W [1]. Western Digital [37] announces the WD3200BEKT
to have an average latency of 4.2 ms and an average seek time of 12 ms, which
converge quite well with numbers from Tom’s Hardware review. However, power
consumption does not converge, as Western Digital announces WD3200BEKT to
have an idle power of 0.85W and an average power consumption of 2.1W. Also the
manufacturer’s numbers for HDD bandwidth differ considerably, as Western Digital
claims the disk can put up to a 108 MB/s for both read and write.

Table 5.2: Manufacturer specification of the drive. Prices: www.newegg.com (cited 1-Feb-
2011)

HDD SSD
Model WD Scorpio Black | Corsair F40
Size 320 GB 40 GB
Price $59.99 $104.99
GB/$ 5.3 0.38
Random access time 16 ms 0.02 ms
Read speed 108 MB/s 280 MB/s
Write speed 108 MB/s 270 MB/s
IOPS - 50 000
Idle power 0.8 W 0.5 W
Active power 1.75 W 2.0W

5.2 Test Tools

5.2.1 Computing at CERN

The Large Hadron Collider (LHC) is a particle accelerator at CERN. The four main
detectors of the LHC can produce 15 petabytes of data a year [6]. The distributed
computing and data storage infrastructure built to process this vast amount of data
is called the Worldwide LHC Computing Grid (WLCG). As of February 2011, the
WLCG had 246,000 processing cores and 142 petabytes of disk space [8].

The CERN computing infrastructure is divided into three level of tier centres.
Tier-0 centre is located at CERN and is responsible for storing the first copy of
RAW experiment data from LHC. It is also responsible for producing the first re-
construction pass and distribution of data to Tier-1 centres. Tier-1 centres together
are responsible for storing the second copies of the data stored in Tier-0. Tier-1
centres also further reprocess the data and distribute it to Tier-2 centres. Tier-2
centres are responsible for serving the analysis requirements of the physicists and

also producing and reprocessing of the simulated data. The simulated data is also

5. Testing Energy Efficiency 25

distributed to Tier-1 centres. As of February 2011, besides the Tier-0 centre, there
are 11 Tier-1 centers and 164 Tier-2 centres in the world [7]. [1§]

5.2.2 CMSSW

The Compact Muon Solenoid (CMS) is one of the four big research projects attached
to LHC. CMS can also refer to the actual particle detector. The Compact Muon
Solenoid Software (CMSSW) is a physics software toolkit for analysing the data
from the CMS detector.

A central concept within the CMSSW is an event. An FEwvent is a C++ object
container. An Event contains many data tiers for all RAW and reconstructed data
related to a particular collision. The RAW data is the full event information and
collected directly from the LHC. The RAW data is unmanipulated and is not used
for analysis. The reconstructed or RECO data is reconstructed to physics objects
and still contains most of the event information. This RECO data can be used for
analysis, but it is not convenient on any substantial data sample. Analysis Object
Data (AOD) is a subset of RECO data. AOD is expected to be used in analysis as
AODs are basically beforehand screened events. All objects in the Event may be
individually or collectively stored in ROOT files. An event data can also be stored
in different files to limit the size of the file and to prevent transferring unnecessary

data. This data tier model of an Event is illustraded in Figure 5.1.

Raw2Digi Reconstructor

/

o S ES .
cmsRun
[Rechiis | '
Event Event Event o

Extract AOD, i Add products

Producer

ource
HLT ar Generato

: ‘back into Event
Output Event to ROOT file and analyze L s
store it in an Event Collection ;' -,:(can RUEInia AGL)
{part of a DataSet) s

DataSet IF."'"""_
:
f ; : :
Event Collection / Hits Patticles

Event | Event | Event E\fen‘t ROQT File of Full Event
: (contains FEVT = RAW + RECQO)

Figure 5.1: Data model used in CMSSW. Source: CMS WorkBook [16]

Before LHC was operational, raw event data was created using Monte Carlo -

5. Testing Energy Efficiency 26

simulation. Data samples generated by Monte Carlo are used to simulate the physics
signal under investigation. It can also be used for creating a sample data for personal
use.

CMSSW consists of many modules, which contains general purpose code for
analysing the events. The goal is to minimise the code a physicist have to write
himself. A configuration file is needed to tell the CMSSW which modules to load

and where the data can be found. The executable is called cmsRun. [16]

5.2.3 ROOT framework and ROOT files

ROOT is a C++ framework designed for large scale data analysis and data mining.
ROOT was first created at CERN, the project starting in 1995, and is still used in
CERN for analysing the particle physics data created by LHC. One of the funda-
mental design principles was that although the programs analysing the data may
change as time passes, the actual data does not. It was also designed to scale to
handle petabytes of data. ROOT relies on a "write once, read many" -model due
the nature of the data and makes it possible to compress the data efficiently.

A ROOT file is a compessed binary file, which can store any instance of a C++
class. Data is stored in a ROOT file with a data description so that it can be read
even if the original program used to store the data is lost. Data can be stored in
a ROOT file both row- and column-wise manner. If the data is stored by columns,
reading the same data member from multiple instances speed up considerable as
unwanted pieces of data can be skipped. For example in one instance, when a 280MB
ROOT file was analysed, only 6.6MB of data was transferred over the network.
ROOT even implements an auto-adaptive pre-fetch mechanism reading the next
entry while previous entry is still being processed.

ROOT supports XML representation of data, but does not actually save data
in XML form due the verbose nature of XML. Also a database abstraction layer is
provided making it possible to store data in a ROOT file in a database-like manner.
[29], [11]

5.2.4 Measuring Tools

During the tests, performance data was collected from the cluster by using both
hardware and software tools. The actual power consumption was measured with
a WattsUp? electricity meter, which was attached to the frontend machine via
USB. A shell script was used to read the meter information once every second
and to write the information into a log file. The electricity meter also provided a
cumulative reading for the watt hours (Wh) consumed. The power consumption was

measured separately for the file server and for all of the compute nodes. The power

5. Testing Energy Efficiency 27

consumption of the frontend machine was not measured. A grid monitoring software
called Ganglia was also used. Ganglia operates by receiving constantly status reports
from other machines in the cluster. Ganglia has a browser user interface to display
cluster performance metrics, such as network traffic, CPU utilisation of individual
machines, job queue, etc. The server logs were collected and stored together with

the other output data.

5.3 Conducting Tests

5.3.1 About the performance and energy efficiency

We distinguish the performance and the energy efficiency as a two different optimi-
sation goals. The performance is measured by the average processing times of the
CMS jobs. The energy efficiency is measured by the energy in watt hours needed
by an individual CMS job on average. These two can be highly dependant of each
other. After all, by definition, energy equals time x power. However, the power
does not need to be constant. It is possible, that increasing the performance it also
has some kind of effect on the power usage. Thus, these two need to be studied

separately.

5.3.2 Running tests

We created some Linux shell scripts both to automatise and standardise the testing
process. Shell scripts were responsible for submitting the jobs, changing configura-
tions where applicable (for example scheduling algorithm), clearing caches, starting
and stopping wattage measurement and writing log entries. The shell scripts are
attached as appendices. Appendix A shows the main script, Appendix B shows the
script used for an individual test run and appendix C shows the script responsible
for initialising and running the actual CMS job. Installing the drives and changing
the file system needed to be done manually. A shell script was also used for creating
the test input data on the target storage for the CMS jobs. To ensure homogeneous
of the test data between different test configurations and between individual jobs,
the test data was copied from the frontend for each time a file system was created.
The drive caches both on compute host and data host was cleared between the test

runs with shell command:
sync; echo 3 > /proc/sys/vm/drop_caches

Every test run was identical. The shell script first cleared caches and then set the
scheduling algorithm. Then the slot size of the SGE was configured. Each compute
node had 4 CPU cores as shown in Table 5.1. Slot sizes of 2, 4, 8 and 12 (relative slot

5. Testing Energy Efficiency 28

sizes of 0.5, 1, 2 and 3) was used to assign loads of 50-300% to each compute node.
After the cluster was configured, the script submitted CMS jobs via SGE to each
compute node equal to the current slot size of the node. Just before the jobs were
submitted, an another script was started to log the wattage as mentioned in Section
5.2.4. When all the jobs were finished, also the logging script was terminated. Using
the log file, starting and finishing time of a CMS job can be determined and also
how much energy (watt hours) was consumed. After the first set of CMS jobs was
finished, the script increased the slot size and ran a new set of jobs. When finished
with a slot size of 12, scheduler was changed and slot size was set back to 2. This
was repeated until all combinations of four different slot sizes and four different
schedulers were used. All in all, one such test run submitted 312 CMS jobs and
took about 8-10 hours to finish.

First, the test was conducted with NAS. A RAID-5 configuration of 6 HDDs (320
GB) and 4 SSDs (40 GB) was set up, creating volumes of 1.6 TB and 120 GB,
respectively. The ROOT file used was 656 MB in size and it was copied to NAS
total of 72 times each time and thus allocating 47 GB of the total volume. The
files were renamed to "data-01-01.root"..."data-06-12.root", where the first number
represented the node number and second number represented the job number. This
ensured that no two CMS jobs was using the same data file. Also, the value of the
read-ahead was altered to test the effect it had on the performance. Read-ahead
values of 4kb, 8kb, 16kb and 32kb were used. After a test run of 312 CMS jobs
finished, a new test run was started after changing the read-ahead value, the file
system or RAID "disks" from HDDs to SSDs. All in all, the test run was conducted
total of 24 times. 3 file systems x 4 read-ahead values x 2 different RAID "disks"
equals 24.

At this point taking a quick look over the results, a pattern was perceived that
indicated that increasing the read-ahead value had a negative impact on the perfor-
mance. The reason most likely was that the ROOT file is a binary file and the AOD
within the file is scattered. It was decided not to use the read-ahead value anymore
as a configuration parameter. Also at this point, one test run was performed by
using only 4 HDDs for easier comparison against the 4 SSDs. Again, based on the
preliminary results, the best performing HDD configuration of 6 HDDs was picked
and one more test run for 4 HDDs was performed with that configuration. Also,
the energy consumption of idle compute nodes and NAS appliance was measured,
both with and without the RAID pack. The idle tests logged an idle machine for
one hour from startup. These results are represented in Appendix D.

Next, the SSDs were installed on the compute nodes and configured as a one big
GlusterF'S volume. With three nodes and without any striping or mirroring, the 40
GB SSDs created a volume of 120 GB. The test run was also conducted with this

5. Testing Energy Efficiency 29

configuration before dismounting the Gluster configuration and running the tests
directly from the local drives. Because the test data was total of 47 GB, all of it
could not be fitted into the 40 GB drives, so only half of it was used. Copying 24
GB of test data to each drive. This way, plenty of free space was left on the devices
as had been the case also on earlier test runs.

Finally, the SSDs were changed to HDDs inside the compute nodes. As with
SSDs, a GlusterF'S volume was created first. With 320 GB in each node, a volume
of 960 GB could be hosted by the nodes. After running the tests on Gluster, the
same tests were conducted again with local drives. This time though, the whole 47
GB of test data was copied to each HDD.

30

6. RESULTS

The results chapter discusses the findings of the study individually. The performance
and the energy efficiency are distinguished as a two different optimization goals as
discussed in Section 5.3.1. However, this study also tries to evaluate the result as a
whole. The performance gain is measured by comparing the average processing times
of the CMS jobs. The energy efficiency gain is measured by comparing the energy in
watt hours needed to run an individual CMS job. The results are presented as such
or in relation to some default value. In the latter case, the performance or energy
efficiency gain/loss is represented by percents. The results chapter is organized as
follows.

Section 6.1 discusses what kind of an effect changing the slot size on performance.
This study revealed that increasing the relative slot size had a positive effect and
because of this, a two set of result data with relative slot sizes of one and three is
represented later. Section 6.2 discusses the effects of changing the slot size on the
energy efficiency.

Sections 6.3 and 6.4 discusses the effects of changing the read-ahead value on
the performance and energy efficiency. This study found that increasing the read-
ahead can have a positive effect on the power usage of the NAS appliance, but this
effect is negated and out-weighted by the loss of performance. Thus increasing the
read-ahead value had a negative impact to the energy efficiency as a whole.

Sections 6.5 and 6.6 discusses the importance of selecting the right file system
and I/0 scheduler. These sections reveal what kind of performance loss can happen
if improper file system is selected and the same is done for schedulers. Finally, some
estimation is represented for the combined effect for the system if both file system
and I/O scheduler are not adequate for the workload at hand. Neglecting this aspect
can lead to a performance loss of 6% on SSDs and more than a whopping 20% on
HDDs.

Finally, in the Section 6.7, the best case results are represented for each of the
three data storage scheme and for both drive types. This section is the most impor-
tant in this chapter, because these configurations are screened thoroughly and most
of the differencies perceived comes from the nature of the drive or scheme itself, not
from the sub-optimal configurations. In this section, the differencies between a SSD

and a HDD are most clearly visible. Also, the different fundamental approaches for

6. Results 31

selecting the layout for the data storage scheme are as comparable between each

other as it is possible in this study.

6.1 Slot size and performance

The test results showed that increasing the slot size had a positive effect on perfor-
mance. Increasing the relative slot size from one to three had a performance gain
of 5.4 - 9.6% with SSDs and 13 — 21% with HDDs. The results were filtered so that
only the best performing configuration, i.e. file system, scheduler and read-ahead
combination from each data storage scheme was selected. The energy consumption
of an individual CMS job was used as a criteria. The results are illustraded in Fig-
ure 6.1, grouped by data storage scheme. In a group of four for each scheme, the
left-most represents the relative slot size of 0.5 and right-most represents the relative
slot size of 3. Remember, that the relative slot size of 0.5 equals only half of the
potential CPU cores utilized.

20.00
— 19.00
w
=
E 1800
[14]
E
= 17.00
i=l
3
S 16.00
=
[
15.00 I I I
14.00
B 12 3 w1 2 1 3 2 3 B 1 2 3 B 1 2 3
Gluster HDD GIusterSSD Gcal DD ocaISSD NAS HDD NAS SSD

Figure 6.1: Comparing different slot sizes. Results are grouped by data storage scheme
and drive used. Relative slot sizes of 0.5 — 3 was used.

This study propose that the positive correlation of increased slot size and perfor-
mance stem from abolishing the effect of I/O wait. As one process (CMS job) waits
data to arrive, the CPU can be given to another process and thus the CPU cycles
can be utilized more efficiently while waiting for I/0O.

The performance gain seemed to be relatively smaller for SSDs than HDDs. This
can be explained by SSDs having a better read performance and SSDs can thus
service data requests sooner than HDDs, even when using the relative slot size of one.
This could also explain why both HDDs and SSDs perform almost identically with
the same data storage scheme and with the relative slot size of two. The compute
node is now more likely to have a process being ready for execution, regardless of

used data storage scheme as over-provisioning of the node is introduced.

6. Results 39

Increasing the relative slot size from two to three is shown to improve the perfor-
mance of the HDDs even more, but to have no effect on SSDs. It is not clear to us

why this is happening.
6.2 Slot size and energy efficiency

If studying the power usage of the compute node alone, the results show that the
compute nodes consume less power on average with relative slot size of one than
with two or three as illustraded in Figure 6.2. When including also the time factor
and now studying the over-all energy consumption of the test cluster (scaled to
represent energy per job), it is discovered that changing the slot size has very little
effect on the energy efficiency with SSDs and with local HDD. This is illustraded
in Figure 6.3, which also includes the test case where the compute nodes are only
half-utilized. This clearly shows, that a very large portion of the energy used by a
compute node is consumed by the processors and that the energy consumption is

proportional to the load of the machine.
310+
301

290
28
27
260 .] .
o
u w
n w
= wu
<
g Z

relative relative
slot size =2 slot size =3

Figure 6.2: Total power consumption of the three compute nodes on average. Relative slot

sizes of one, two and three were used. Data schemes are in the same order in each set.

Power (W)
o o o

o

D
[m)
P &
92}
<
=

Gluster SSD [
Local HDD [
Gluster HDD [

Although the average job processing time decreases when increasing the slot size,
the power usage of the node is increased. This is quite natural, because what really
is improved is the utilization of the processor of the node. The increased perfor-
mance and decreased power usage counter each other and lead to almost similar
energy efficiency in terms of Wh/job (see Figure 6.3). In other words, the energy
consumption increases linearly in relation to performance.

When using HDDs with NAS or with Gluster, the linearly proportional energy
consumption is no longer valid. This is because relatively better performance in-

crease gain discussed earlier in Section 6.1.

6. Results 33

50+
45+
40
g 35
- 30 .
[15]
g 25
=
2 20
2
w 151
10
5.
% 1 2 3 % 1 2 3 % 1 2 3 %1 2 3 % 1 2 3 % 1 2 3
Gluster HDD Gluster SSD Local HDD Local SSD NAS HDD NAS SSD

Figure 6.3: Total energy consumption of the cluster per CMS job. Results are grouped by
data storage scheme and drive used. Relative slot sizes of 0.5 — 3 was used.

6.3 Read-ahead and performance

The test results showed that increasing the read-ahead value had no effect on per-
formance with SSDs. With HDDs it had a negative effect on almost all cases. The
only exception was the XFS file system with the relative slot size of three. In this
case, increasing the read-ahead value had performance gain of 2% on average job
processing time. Interestingly, the worst performance loss of 6% was also measured
when using XFS and HDDs, but with the relative slot size of one. The results were
filtered to include only the best performing set of configuration. The absolute re-
sults are illustraded in Figure 6.4. Figure 6.5 illustrades the results in relation to
default read-ahead value of 4kb. A positive number represents the performance gain
in relation to 4kb read-ahead value of the same data storage scheme and drive used.
The results were all measured with the noop scheduler. As NAS exploited RAID
technology, using noop for scheduling should be best choice as discussed in Section
3.3.3.

6.4 Read-ahead and energy efficiency

The test results showed that increasing the read-ahead value had a small positive
effect (one percent or less) on the energy efficiency with SSDs, excluding the XFS file
system, which was not affected by the change in read-ahead. With HDDs, the effect
was mostly negative, excluding the Ext4 file system, which performed slighty better.
The results are illustraded in Figure 6.6. The numbers represent the change in energy
consumption of the whole cluster (including NAS) as a function of the read-ahead
value. Read-ahead value of 4 kilobytes is used as a point of reference and the rest

of the configuration is left untouched. A positive number equals less energy. There

6. Results 34

21.00
20.00 -

19.00

18.00 O Slot size =1

. IEIRE .

4 81632 4 81632 4 81632 4 81632 4 81632 4 81632
Ext3 Ext4 XFS Ext3 Ext4 XFS
(HDD) (SSD)

Execution time (mins)

Figure 6.4: Comparing different read-ahead values in NAS configuration. Numbers 4 — 32
represents read-ahead in kilobytes.

4.00%
2.00% I
0.00% :'[I I:I-I:I-EF I:r - Er[r-l =g
2 00% Oslotsize =1
e B siotsize =3
-4.00%
-6.00%
-8.00%

4 8 1632 4 81632 4 8 16 32 4 8 1632 4 8 1632 4 8 1632

Ext3 Ext4 XFS Ext3 Ext4 XFS
(HDD) (SSD)

Figure 6.5: The change in performance as a function of the read-ahead value. A positive
number equals faster processing time. Numbers 4 — 32 represents read-ahead in kilobytes.

6. Results 35

seems to be no clear pattern between performance and energy efficiency, although

some similarities can be recognised.

2.00%
0.00% d-[l. wolb o aad ad .
-2.00% |]- |I
4.00% Oslotsize = 1
I @ slot size = 3
-6.00%
-8.00%
-10.00%
4 8 1632 4 8 1632 4 8 1632 4 81632 4 8 1632 4 81632
Ext3 Ext4 XFS Ext3 Ext4 XFS
(HDD) (SSD)

Figure 6.6: The change in energy consumption as a function of the read-ahead value. A
positive number equals less energy used. Numbers 4 — 32 represents read-ahead in kilobytes.

6.5 File system

The test results showed that the choice of the file system had a much greater effect
on HDDs than on SSDs. The performance variation between the best and the worst
performing file system, on otherwise similar configuration, was 1 — 6 % on HDDs,
but only 0.1 — 0.7 % on SSDs. The difference in energy efficiency was upto 6 percent
on HDDs and less than 1.5 percent on SSDs. These results are represented more
closely in Table 6.2. The absolute results of the benchmark tests are represented in
Table 6.1.

In general, the differencies among the file systems with SSDs were small and it
did not matter if the relative slot size was one or three. With HDDs, increasing
the relative slot size from one to three led to more variation among the file systems.
Most likely this is happening because increased number of parallel CMS jobs created
more I/O requests and the I/O pattern became more complex. This was necessary to
differentiate the file systems and under heavier utilisation some differencies between
these file systems started to emerge.

We believe there are two reasons why there was so little differencies among the file
systems with SSDs. First, these file systems are built with mostly HDDs in mind.
Second, SSDs are also more effective by default than HDDs, hence the significance
of the file system is much smaller for SSDs. In other words, the SSDs are effective,

regardless of the file system.

6. Results 36

Of the three file systems tested here, the best choice for SSDs seemed to be the
XFS file system and the Ext4 file system for HDDs.

Table 6.1: Comparing file systems on different drives and data storage schemes.

slot size = 1 slot size = 3
scheme drive File System

Local HDD Ext3 23.8 19.00 21.2 15.55
Ext4 22.4 18.08 20.8 15.56

XFS 22.5 18.23 20.8 15.48

SSD Ext3 21.0 16.52 20.6 15.56

Ext4 21.0 16.54 20.6 15.57

XFS 20.8 16.52 20.4 15.57

NAS HDD Ext3 32.0 18.44 29.2 15.21
Ext4 31.0 18.02 29.0 15.52

XFS 32.6 19.09 28.9 15.46

SSD Ext3 29.4 17.05 28.5 16.03

Ext4 29.2 17.01 28.4 16.02

XFS 29.0 16.58 28.1 15.56

Table 6.2: The variation of energy efficiency and performance with different file systems
on otherwise similar configurations.

slot size = 1 slot size = 3
scheme drive energy performance energy performance
Local HDD 6.2% 4.6% 1.8% 0.9%
SSD 1.0% 0.1% 1.0% 0.1%
NAS HDD 4.8% 5.8% 1.1% 3.2%
SSD 1.4% 0.7% 1.5% 0.7%

6.6 1/0 Scheduler

The test results showed that changing the I/O scheduler on SSDs is almost insignifi-
cant. Excluding the lone case of using the cfq scheduler on local data storage scheme
and the relative slot size of one, the variation between different schedulers was only
one percent or less. In terms of time and energy this equals to only one tenth of
a watt hour per job or about 10 seconds on average job processing time. These
results are represented in Table 6.3 for local data storage scheme and in Table 6.4
for NAS. The variation is represented in Table 6.5. We believe that the explanation
is quite simple. I/O scheduling was designed to improve the shortcomings caused
by the mechanical nature of the HDDs. In theory, SSDs should not benefit from

6. Results 37

[/O scheduling at all, as discussed in Section 4.2. This being said, the best choice
for the I/O scheduler on SSDs is the noop scheduler, as predicted and as the tests

here confirmed.

Table 6.3: Comparing different I/O schedulers on local drive.

Local slot size = 1 slot size = 3
drive scheduler

HDD as 22.9 18.54 20.9 16.04
cfq 23.5 19.43 21.0 16.14
dl 22.4 18.08 20.8 15.55
noop 22.5 18.16 20.8 15.48
SSD as 20.9 17.06 20.5 15.57
cfq 21.4 17.52 20.5 15.56
dl 20.8 16.52 20.5 15.58
noop 20.8 16.52 20.4 15.57

In general, the variation was much greater when the relative slot size of one was
used. This was the case for both HDDs and SSDs. This is a bit counterintuitive
as higher relative slot size should generate more I/O requests and more variation
to the I/O pattern. Thus the significance of the scheduling should become more
important. However, it could be argued that the reason for this is something else
than the scheduling itself. The fact that SSDs should not benefit from the scheduling,
as mentioned earlier, and that this phenomenon was also perceived with SSDs, back

up this assumption.

Table 6.4: Comparing different I/O schedulers on NAS appliance.

NAS slot size = 1 slot size = 3
drive scheduler

HDD as 32.2 19.10 29.2 15.52
cfq 31.1 18.07 28.9 15.33
dl 31.0 18.07 28.9 15.21
noop 31.1 18.02 28.9 15.33
SSD as 29.2 17.10 28.1 15.58
cfq 29.0 16.58 28.1 15.59
dl 29.0 16.59 28.1 15.58
noop 29.0 17.01 28.1 15.56

If excluding the anticipatory scheduler (as), the other schedulers did not had any
remarkable differencies with HDDs on NAS as shown in Table 6.4. As already stated
in Section 6.3, this is because NAS exploits RAID technology and do not benefit

6. Results 38

from I/O scheduling. On the contrary, excessive I/O scheduling can degrade the
performance of the RAID considerably. As discussed in Section 3.3.3, the anticipa-
tory scheduler waits for consecutive I/O requests and keeps the drive idle for a short
period of time. This behaviour is most likely the reason for the poor performance

of the anticipatory scheduler.

Table 6.5: The variation of energy efficiency and performance with different schedulers on
otherwise similar configurations.

slot size = 1 slot size = 3
scheme drive energy performance energy performance
Local HDD 5.0% 8.1% 0.7% 2.7%
SSD 2.7% 5.5% 0.2% 0.1%
NAS HDD 3.6% 5.9% 1.0% 3.2%
SSD 0.8% 1.2% 0.2% 0.3%

The combined effect of choosing the right file system and the most suitable I/O
scheduler can be seen in Table 6.6. The results show, that in the worst case a HDD-
based configuration could suffer a performance loss of 7 — 23%. With SSD-based
configuration, the changes are that the system is within two percent from the best
possible configuration, but a performance degrade of 6% is possible. The trend for
the energy efficiency is similar, but this was expected as the energy efficiency stems

from the performance, as already mentioned in Chapter 2.

Table 6.6: Comparing different file systems and I/O schedulers together. Numbers repre-
sent the variation of best and worst case for otherwise similar setups.

drive scheme slot size energy time

HDD Local 1 21.9% 23.4%
3 5.6% 7.0%

NAS 1 10.1% 16.1%

3 3.0% 7.8%

SSD Local 1 3.7% 6.1%
3 1.3% 0.5%

NAS 1 2.3% 1.8%

3 1.6% 1.0%

6.7 The best case

This section represents the best-case results for each data storage scheme: the RAID

on NAS, the local drives directly on compute nodes, and the distributed file system

6. Results 39

created with shared drives on compute nodes and GlusterFS software. Results are
shown for both solid state and hard disk drives. Also, the results are distinguished
for using both relative slot sizes of one or three. Table 6.7 shows the actual energy
consumed and the processing time needed to complete an individual CMS job for

each setup.

Table 6.7: The best result measured for each drive type and data storage scheme.

slot size — 1 slot size — 3

scheme drive

GlusterFS HDD 23.0 19.12 21.3 15.08
GlusterF'S SSD 21.9 18.03 20.8 16.19
Local HDD 22.4 18.08 20.8 15.48
Local SSD 20.8 16.52 20.4 15.57
NAS HDD 31.0 18.07 28.9 15.46
NAS SSD 29.0 16.59 28.1 15.56

The most energy efficient setup was, quite predictably, the local drive approach
using SSDs and relative slot size of three. This setup consumed only 20.4 watt hour
per job on average. The best performing, e.g. the fastest setup, was the distributed
file system model using HDDs and relative slot size of three. The most surprising
thing was that this setup outperformed others clearly with a marginal of almost 40
seconds. First we suspected an error, but after reviewing the data, we discovered
that as good runtime was also recorded when using a different 1/O scheduler on an
another test run. Also, HDDs outperformed SSDs in all three data storage schemes
if the relative slot size was three. Although, the marginals were a lot less, only
about 10 seconds. We are not certain why the results differ so much when using
GlusterF'S, but our educated guess is that it derives from the GlusterF'S software
and the way it is implemented. Either the cache of the GlusterF'S (and the cache of
the HDD) is working very well or the GlusterF'S could not adapt to work with SSDs
and the SSDs were just clogged with the excessive I/0 traffic.

When studying the energy efficiency (with a relative slot size of three), it can be
observed that HDDs consume 0.4 — 0.8 watt hour more than SSDs. As the average
processing time is about one-fourth of an hour, the difference in power usage is
approximately quadruple and thus 1.6 — 3.2 watts. In this study four or three drives
were used depending if the drives were in the NAS or in the compute nodes (only
having three compute nodes). This means that one HDD consumed around 0.5 — 1
watt more energy than one SSD.

When comparing different data storage schemes, it is not fair to just compare

the energy consumption. NAS is consuming much more energy per CMS job than

6. Results 40

other schemes. This is obviously because there is one more server machine running.
This leads to about 7 — 8 watt hour of overhead per job with NAS compared to
others. The NAS appliance had 32 drive bays, but only 4 was used. Leaving seven-
eights of potential resources unused, so it could be argued that the overhead is more
likely close to 1 watt hour per drive. Again, the average processing time being
approximately one-fourth of an hour, this equals to around four watts per drive of
power overhead. The NAS needed roughly 115 watts of power when running idle
without any drives installed, so the "about four watts per drive" for fully loaded
32-drive NAS appliance is a pretty good estimate.

Of course, there is no guarantee that the results would apply if increasing the
number of drives and I/O load of the NAS. These results are only suggestive at
best. However, they do reveal that relocating the data away from the compute
nodes do not improve the performance of the compute nodes notably. In other
words, storaging data and providing data access to other nodes is not a burden for

the compute node.

41

7. CONCLUSION

The goal of this study was to find out wheter or not solid state drives are suitable
to be used in cluster computing and if they really are superior to hard disk drives
in a spirit of green IT. No problems were encountered while introducing solid state
drives into the cluster environment. In the process of doing this research, an ex-
tensive background study was made on the differencies of these two drive types.
Understanding these differencies did not raise any significant concerns, which would
prevent using solid state drives in cluster computing.

The tests results revealed that selecting the solid state drives over hard disk drives
do not provide any performance gain. Hard disk drives proved to outperform the
solid state drives in all three data storage schemes used in these tests. When solid
state drives suffer from high retail prices and low storage capacities at the moment
compared to hard disk drives there is no reason to choose solid state drives over
conventional hard disk drives from performance point of view.

It is true, that solid state drives consume less energy. This was measured to be
around one watt per drive. Even if taking into account the effect of power usage
efficiency (PUE) (discussed in Chapter 2), which multiplies this by a factor of 1.2 —
2 depending on the data center, it is not justifiable to declare solid state drives to
be more energy efficient. The reason is, that the storage capacity of the hard disk
drives multifold to solid state drives. One gets more storage space per kWh with
hard disk drives.

The results speak for themselves. This study found that overprovisioning the
compute nodes increases job throughput. Scheduling more than one job per core
have a positive correlation with the average processing time. This indicates there are
unused resources in clusters, which use the number of cores as a basis of submitting
jobs. It was also discovered, that a performance loss of over 20% can exist if the
used file system and scheduler is not properly selected. Results indicate that the
differencies between solid state and hard disk drives are quite small and the right
configuration matters more than the drive type used. These results can provide
a sound basis for optimisation of other cluster environments. What is good to
understand is to optimise things that matter most and this research can give some
hints of what those things might be.

If taking a closer look at the results from strictly energy efficiency point of view,

7. Conclusion 42

one may be fooled into thinking, that it is the watts that matter. If optimisation can
lower the power usage by one watt as done here, but at the same time improve the
performance by two percent, it is the performance increase that really saves energy.
At least in a fully utilised environment as in cluster computing.

The purpose of this study is to be a review about solid state drives and their
energy efficiency. Providing the theoretical background of using solid state drives
in cluster computing. This study could be used as a starting point to anyone who
is interested of solid state drives and cluster computing. This study also reported
the experiencies of implementing these theories into practice. This pragmatic use
case can be used as a frame of reference, which helps to understand the concepts
attached to the topic. Also many assumptions predicted by the theory was confirmed
in practice.

This study propose, that a further study is not needed immediately, but if the
prices of solid state drives decline and their storage capacities increase to match those
of hard disk drives a new study should be conducted. Also, the feeble performance of
solid state drives with GlusterF'S software was most likely because the software could
not operate with the drives. Although the reason can also be in poor configuration,
this could require more investigation.

This study had some interesting findings. In general, the hard disk drives were

performing better than expected.

43

BIBLIOGRAPHY

[1]

2]
3]
4]
[5]

(6]

7]

8]

19]

[10]

[11]

[12]

[13]

Tom’s Hardware: Review notebook hard drive (Western Digital Scorpio
WD3200BEKT). Website, 2008. http://www.tomshardware.com/reviews/
notebook-hard-drive,2006-7.html (cited 30-Nov-2010).

Intel Solid-State Drive Optimizer. Intel White Paper, 2009.
Wear Leveling Technology. Apacer White Paper, 20009.
An Introduction to Gluster Architecture. Gluster White Paper, 2011.

Designing a Very Efficient Data Center. Facebook Engineering’s Facebook
Notes (blog), 2011.

LHC Computing. Website, 2011. http://public.web.cern.ch/public/en/lhc/
Computing-en.html (cited 17-Feb-2011).

Worldwide LHC Computing Grid - Grid Topology. Website, 2011. http://
gstat-wlcg.cern.ch/apps/topology/ (cited 17-Feb-2011).

Worldwide LHC Computing Grid - Site Capacities. Website, 2011. http:
//gstat-wlcg.cern.ch/apps/capacities/sites/ (cited 17-Feb-2011).

Lal Shimpi Anand. The SSD Anthology: Understanding SSDs and New Drives
from OCZ. Website, 2009. http://www.anandtech.com/print/2738 (cited 1-Feb-
2011).

Eric Anderson and Joseph Tucek. Efficiency matters! ACM SIGOPS Operating
Systems Review, 44, 2010.

I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph.
Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata,
D. Gonzalez Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura,
R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S. Panacek,
F. Rademakers, P. Russo, and M. Tadel. ROOT - A C++ framework for
petabyte data storage, statistical analysis and visualization. Computer Physics
Communications, 180(12):2499-2512, 2009. 40th Anniversary Issue.

Jens Axboe. Linux Block IO - present and future. In Proceedings of the Linux

Symposium, pages 51-62, 2004.

Rick Bauer and Sol Squire. Building the Green Data Center. SNIA tu-
torials, 2008. http://www.snia.org/education/tutorials/2008/spring/green/
Bauer-Squire_Building_the_Green_Data_Center.pdf (cited 17-Feb-2011).

BIBLIOGRAPHY 44

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

Kenneth P. Birman. Reliable Distributed Systems - Technologies, Web Services
and Applications. Springer, 2005.

Aaron Carroll. I/O Scheduling on RAID. Bachelor’s Thesis. The University of
New South Wales. School of Electrical Engineering and Telecommunications,
2008.

CERN. The CMS WorkBook, 2009. https://twiki.cern.ch/twiki/bin/view/
CMSPublic/WorkBook (cited 17-Feb-2011).

Corsair. CSSD-F/0GB2 - Product Specification Sheet, 2011. http://wuw.
corsair.com/cssd-f40gb2.html (cited 16-Feb-2011).

Claudio Grandi, David Stickland, and Lucas Taylor. The CMS Computing
Model. CERN, December 2004.

Ilkka Haikala and Hannu-Matti Jarvinen. Kdyttojarjestelmat. Talentum, 2004.

Intel. Intel X18-M/X25-M SATA Solid State Drive - Product Manual, January
2010.

Jaeho Kim, Yongseok Oh, Eunsam Kim, Jongmoo Choi, Donghee Lee, and
Sam H. Noh. Disk Schedulers for Solid State Drives. In Proceedings of the
seventh ACM international conference on Embedded software, pages 295-304,
New York, NY, USA, 2009. ACM.

Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho.
A Space-efficient Flash Translation Layer for CompactFlash Systems. IEEFE

Transactions on Consumer Electronics, 48, 2002.

Sang-Won Lee, Bongki Moon, Chanik Park, Jae-Myung Kim, and Sang-Woo
Kim. A Case for Flash Memory SSD in Enterprise Database Applications. In
Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 1075-1086. ACM, 2008.

Adam Leventhal. Flash Storage Memory. Communications of the ACM,
51(7):47-51, 2008.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, and Laurent Vivier. The new ext4 filesystem: current status and future

plans. In Proceedings of the Linux Symposium, volume 2, pages 21-34, 2007.

Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and
Antony Rowstron. Migrating Server Storage to SSDs: Analysis of Tradeoffs. In

BIBLIOGRAPHY 45

27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

Proceedings of the Jth ACM European conference on Computer systems, pages
145-158, New York, NY, USA, 2009. ACM.

Tapio Niemi, Jukka Kommeri, Kalle Happonen, Jukka Klem, and Ari-Pekka
Hameri. Improving Energy-Efficiency of Grid Computing Clusters. Lecture
Notes in Computer Science, 5529:110-118, 2009.

Steven L. Pratt and Dominique A. Heger. Workload Dependent Performance
Evaluation of the Linux 2.6 /O Schedulers. In Proceedings of the Linuz Sym-
posium, pages 425-448, 2004.

Fons Rademakers and René Brun. ROOT: An Object-Oriented Data Analysis
Framework. Linuz Journal, (51), 1998.

Erik Riedel and Patrick Stanko. Green Storage Products: Effi-
ciency with ENERGY STAR & Beyond. SNITA tutorials, 2010.
http://www.snia.org/education/tutorials/2010/fall/green/RiedelStanko_
Greenstorage_II_101011.pdf (cited 17-Feb-2011).

Tony Roug. Using MLC NAND in datacenters. SNTA tutori-
als, 2010. http://www.snia.org/education/tutorials/2010/spring/solid/
TonyRoug_Using_SSD_MLC_NAND.pdf (cited 17-Feb-2011).

Karsten Schmidt, Yi Ou, and Theo Harder. The Promise of Solid State Disks:
Increasing efficiency and reducing cost of DBMS processing. In Proceedings of

the 2nd Canadian Conference on Computer Science and Software Engineering,
pages 35—41, New York, NY, USA, 2009. ACM.

Joseph D. Sloan. High Performance Linux Clusters with OSCAR, Rocks, open-
Mosix and MPI. O’Reilly media, Inc., 2005.

Roderick W. Smith. Linux on 4KB-sector disks: Practical advice. IBM White
Paper, 2010.

Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto,
and Geoff Peck. Scalability in the XFS file system. In Proceedings of the
1996 annual conference on USENIX Annual Technical Conference, pages 1-14,
Berkeley, CA, USA, 1996. USENIX Association.

Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the
Energy Efficiency of a Database Server. In Proceedings of the 2010 international
conference on Management of data, pages 231-242, New York, NY, USA, 2010.
ACM.

BIBLIOGRAPHY 46

[37] Western Digital. Western Digital Scorpio Black - Product Specification Sheet,
2010. http://www.wdc.com/wdproducts/library/SpecSheet/ENG/2879-701275.
pdf (cited 30-Nov-2010).

[38] Alan G. Yoder. Green Storage Technologies and Your Bottom Line. SNIA tu-
torials, 2010. http://www.snia.org/education/tutorials/2010/spring/green/
Alan20Yoder_Green_Storage_Technologies.pdf (cited 17-Feb-2011).

A. SHELL SCRIPT: SCHEDULING A SET OF
TEST RUNS

#!/bin/bash

#

File name: run_tests.sh
Run from the frontend.

#

if ["$USER" != "root"]; then
echo " Warning: You should log in as root"
exit

fi

read_ahead = 0 kb
rocks run host compute "hdparm -a 0 /dev/sdbl" > /dev/null
rocks run host compute "echo 0 > /sys/block/sdb/queue/read_ahead_kb" > /dev/null

NOOP SCHEDULER
rocks run host compute "echo noop > /sys/block/sdb/queue/scheduler" > /dev/null

process/node: 2, 4, 8 & 12 #i##

rocks run host "sync; echo 3 > /proc/sys/vm/drop_caches" > /dev/null

sync > /dev/null; echo 3 > /proc/sys/vm/drop_caches;

/opt/gridengine/bin/1x26-amd64/qconf -mattr queue slots 2 dell.q
/home/mtuomine/I0_tests/jobs/CMS_TaulAnalysis/frontend.sh 3 12 cms_02-procs_local-SSD-Ext4-noop
rocks run host "sync; echo 3 > /proc/sys/vm/drop_caches" > /dev/null

sync > /dev/null; echo 3 > /proc/sys/vm/drop_caches;

/opt/gridengine/bin/1x26-amd64/qconf -mattr queue slots 4 dell.q
/home/mtuomine/I0_tests/jobs/CMS_Taulnalysis/frontend.sh 3 12 cms_04-procs_local-SSD-Ext4-noop
rocks run host "sync; echo 3 > /proc/sys/vm/drop_caches" > /dev/null

sync > /dev/null; echo 3 > /proc/sys/vm/drop_caches;

/opt/gridengine/bin/1x26-amd64/qconf -mattr queue slots 8 dell.q
/home/mtuomine/I0_tests/jobs/CMS_Taulnalysis/frontend.sh 3 12 cms_08-procs_local-SSD-Ext4-noop
rocks run host "sync; echo 3 > /proc/sys/vm/drop_caches" > /dev/null

sync > /dev/null; echo 3 > /proc/sys/vm/drop_caches;

/opt/gridengine/bin/1x26-amd64/qconf -mattr queue slots 12 dell.q
/home/mtuomine/I0_tests/jobs/CMS_TaulAnalysis/frontend.sh 3 12 cms_12-procs_local-SSD-Ext4-noop

ANTICIPATORY SCHEDULER

[Anticipatory, deadline and cfq are handled in a similar manner to noop.|

B. SHELL SCRIPT: ONE TEST RUN

#!/bin/bash

#

File name: frontend.sh
Run from the frontend.

#

if ["$USER" != "root" 1; then
echo " Warning: You should log in as root"
exit

fi

if [' -n"$1" T |1 L! -n"$2" 1 [| [! -n "$3"]; then
echo " Usage: run <number of nodes> <number of runs> <logmessage/folder name>"
exit

fi

shell parameters
nodes=$1
runs=$2

logmessage=$3

Files and directories

jobid=$$
workDir=/state/data/TauAnalysisOutputRoots/$jobid
rootDir=/home/mtuomine/I0_tests
jobDir=$rootDir/results/$logmessage
rrdDir=$jobDir/rrds

logfile=$rootDir/myjoblog.txt
jobinfo=$jobDir/job_info.txt

mkdir --parents $workDir
mkdir $jobDir
mkdir $rrdDir

WattsUp logging

$rootDir/watts/wattslog.py --device=/dev/ttyUSBO > $jobDir/wattslog_nodes.log &
wattslogid_1=$!

$rootDir/watts/wattslog.py --device=/dev/ttyUSB1 > $jobDir/wattslog_nas.log &
wattslogid_2=$!

Clear the job queue on before exiting (on termination)

48

trap ’{ gdel -u root; kill $wattslogid_1; kill $wattslogid_2; kill $iopid; exit O0; }’> SIGINT

Write log updates

echo "

echo "CMS_TauAnalysis ### ‘date‘ ### Job ID: $jobid" >> $logfile
echo " - Run for $runs cycles on $nodes nodes" >> $logfile

echo " - $logmessage" >> $logfile

echo "CMS_TauAnalysis ### ‘date‘ ### Job ID: $jobid" >> $jobinfo

echo " - Run for $runs cycles on $nodes nodes" >> $jobinfo

" >> $logfile

B. Shell script: One test run 49

echo " - $logmessage" >> $jobinfo
echo " - NAS scheduler: ‘rocks run host nas-0-0 ’cat /sys/block/sdb/queue/scheduler’‘" >> $jobinfo
echo " - NAS read_ahead_kb: ‘rocks run host nas-0-0 ’cat /sys/block/sdb/queue/read_ahead_kb’‘" >> $jobinfo

Echo screen

echo

echo " ### Jobs started: ‘date‘ ###"

echo " - Run for $runs cycles on $nodes nodes"
echo " - $logmessage"

echo

Submit jobs on compute nodes

for run in $(seq 1 $runs);

do
for node in $(seq 1 $nodes);
do
gsub -q dell.q -b yes $rootDir/jobs/CMS_TauAnalysis/node_cmsRun.sh
$node $run $logmessage
done
done
echo " Jobs running..."
active=1

iterations=0
while [$active -eq 1]
do
tmp=‘gstat | wc -1°¢
if [$tmp -eq 0]

then

active=0
fi
sleep 1

let iterations=$iterations+1
if [$iterations -eq 3600]
then
echo "Saving RRDs - ‘date‘"
timestamp=‘echo \‘date +}1%MS\‘ | sed */~$/d’¢
mkdir $rrdDir/$timestamp
cp -r /var/lib/ganglia/rrds/testCluster $rrdDir/$timestamp/

iterations=0

done

kill $wattslogid_1
kill $wattslogid_2

Write log updates
echo " - All jobs finished: ‘date‘" >> $logfile
echo " - All jobs finished: ‘date‘" >> $jobinfo

Copy the final RRDs
mkdir $rrdDir/final
cp -r /var/lib/ganglia/rrds/testCluster/ $rrdDir/final/

echo " ### All jobs finished: ‘date‘ ###"

Wait 1 minute for compute nodes loads to settle
sleep 60

50

C. SHELL SCRIPT: RUNNING AND TIMING A

CMS TAUANALYSIS JOB

#!/bin/sh

#

File name: node_cmsRun.sh

Script running on the compute nodes
#

My variables
JOB_ID=$$

NODE=$1

RUN=$2

CALLER_ID=$3
HOST=‘uname -n°¢

let "TENS = $RUN / 10"
let "ONES = $RUN % 10"

WORK_DIR=/state/data/TaulnalysisOutputRoots/$CALLER_ID/$HOST-run$TENS$ONES
ROOT_DIR=/home/mtuomine/I0_tests

JOB_DIR=$RO0T_DIR/results/$CALLER_ID

configuration files are named [nodel-[root-filel.py, e.g. 01-01.py
LOG_FILE=$J0B_DIR/$HOST-$JOB_ID.out

CMS_ROOT=/state/partitioni/cms
SRC=workspace/CMSSW_3_6_1/src

CONF_DIR=$RO0T_DIR/jobs/CMS_TauAnalysis/conf_files
CONF_FILE=0$NODE-$TENS$ONES . py

Create work directory for output root file
mkdir --parents $WORK_DIR

Set environment
cd $CMS_ROOT
source environment
cd $CMS_ROOT/$SRC
cmsenv

Run Taulnalysis

exec > $LOG_FILE 2>&1

cd $WORK_DIR

echo "### cmsRun started: ‘date‘ ###"
time cmsRun $CONF_DIR/$CONF_FILE

echo "### cmsRun finished: ‘date‘ ###"

51

D. POWER USE PROFILE OF NAS WITH
BOTH DRIVE TYPES

The Figure D.1 illustrates the power usage of NAS under different configuration and
loads. The idle graphs represent the power use of freshly booted machine, starting
after 10 minutes from boot up and running approximately 50 minutes. The loaded
graphs represents running a set, of twelve CMS jobs on three nodes, totalling a test
run of 36 CMS jobs, lasting also around 50 minutes. With the idle graphs, a drop
of 2 watts can be seen for both drives in the middle of the figure. This is most
likely due some stand by mode, which is activated after fixed wait period. The
overall power need of an NAS appliance is increased by 2 watts after adding four
SSDs to the setup and 7 watts after adding four HDDs. The power need does not
increase notably under load with SSDs, but HDDs consume an additional 6 watts.
Because the small overhead of loaded versus idle case with SSDs, the increased power
need of other components, excluding the drives, can be thought as minimal. Rough
estimation would be that SSDs consume only half a watt of power, both idle and
operational. Similar numbers for HDDs would be 2 watts when idle and 4 watts

when in an operational state.

130
128
126
124

—loaded (4xHDD)
122

Watts

idle (4xHDD)

120

118

—loaded (4xSSD)
idle (4xSSD)
116
s o P -

no disks
114

Figure D.1: The power Use profile of NAS with SSDs and HDDs.

