
OLLI HELIN
A Study on Virtualization and Energy Efficiency Using Linux
Master of Science Thesis

Examiners: Prof. Tommi Mikkonen
Ph.D. Tapio Niemi

Examiners and topic approved in the
Faculty of Science and Environmental
Engineering Council meeting on
8 February 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Science and Engineering
HELIN, OLLI: A Study on Virtualization and Energy Efficiency Using Linux
Master’s thesis, 56 pages, 3 appendix pages
March 2012
Major subject: Software Engineering
Examiners: Prof. Tommi Mikkonen and Ph.D. Tapio Niemi
Keywords: virtualization, energy efficiency, Linux, KVM, Xen, green computing

Virtualization has in recent years risen in popularity to the extent of changing the

way information technology infrastructure in enterprise data centers is built. Once

known as a technique to achieve time sharing between processes, virtualization now

offers flexibility in resource usage and software deployment, security, and energy

savings by consolidation of many virtualized servers into a single physical one.

However, in its modern form, virtualization is still a relatively young technology.

There are many studies regarding the performance of different virtualization tech-

nologies, but only a few emphasize energy efficiency. When information technology

service providers invest in more server hardware, their energy expenses also rise.

As optimization for energy efficiency becomes more and more important, possible

power consumption overhead caused by virtualization will be an important factor

when setting up virtualized servers.

In this thesis we studied virtualization using Linux with focus on energy efficiency.

We conducted sets of performance tests while measuring power consumption, and

assessed how virtualization affects energy efficiency. The tests included synthetic

tests and more practical web server tests, with single and multiple virtual machines.

We tested various configurations to find out what one should generally note when

building a virtualized environment with focus on energy efficiency. All of this was

done using various virtualization technologies to find out their differences regarding

energy efficiency. The tested technologies were KVM, Xen, and vSphere Hypervisor.

With respect to energy efficiency or performance, we observed differences in vir-

tualization technologies, and the same technology was not always the best in every

situation. We found KVM to offer good energy efficiency, and Xen to have some

trouble with recent Linux versions. In web server tests, the use of paravirtualization

had almost no effect on power consumption. Processor performance states affected

performance and energy efficiency. Power consumption had a tendency to be gen-

erally high with bare-metal virtual machine monitors Xen and vSphere Hypervisor.

More research with a wider selection of test hardware and software is required to

better define the setups and situations where this power consumption trend and the

possible effect of paravirtualization on energy efficiency are observable.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Teknis-luonnontieteellinen koulutusohjelma
HELIN, OLLI: Tutkimus virtualisoinnista ja energiatehokkuudesta Linuxilla
Diplomityö, 56 sivua, 3 liitesivua
Maaliskuu 2012
Pääaine: ohjelmistotuotanto
Tarkastajat: professori Tommi Mikkonen ja FT Tapio Niemi
Avainsanat: virtualisointi, energiatehokkuus, Linux, KVM, Xen, vihreä laskenta

Virtualisointi on viime vuosina kasvattanut suosiotaan. Tämä on jopa muuttanut

suurten tietokonekeskusten infrastruktuurin toteuttamistapoja. Virtualisointi tun-

nettiin aikanaan tekniikkana jakaa suoritinaikaa prosesseille. Nykyään se tarjoaa

joustavuutta resurssien käytössä ja ohjelmistojen levityksessä, turvallisuutta, sekä

energiansäästöä koontamalla useita virtuaalisia palvelimia yhteen fyysiseen.

Nykymuodossaan virtualisointi on kuitenkin suhteellisen uusi teknologia. Tutki-

muksia eri virtualisointiteknologioiden suorituskyvystä on olemassa runsaasti, mutta

vain harvassa on tutkittu energiatehokkuutta. Tietoteknisten palveluntarjoajien

hankkiessa lisää palvelinlaitteistoa, myös palveluntarjoajien energiakustannukset nou-

sevat. Energiatehokkuusoptimoinnin noustessa yhä tärkeämmäksi, mahdollinen vir-

tualisoinnin aiheuttama tehonkulutuslisä tulee olemaan tärkeä tekijä virtualisoituja

palvelimia pystyttäessä.

Tässä diplomityössä tutkimme virtualisointia Linuxia käyttäen painottaen ener-

giatehokkuutta. Toteutimme suorituskykytestejä tehonkulutusta mitaten ja arvi-

oimme virtualisoinnin vaikutusta energiatehokkuuteen. Testit sisälsivät sekä keino-

tekoisia testejä että käytännönläheisiä verkkopalvelintestejä, yhdellä ja useammalla

virtuaalikoneella. Kokeilimme erilaisia asetuksia selvittääksemme mitä yleisesti pi-

täisi huomioida rakentaessa virtualisoitua, energiatehokasta ympäristöä. Kaikki

tämä tehtiin käyttäen useita virtualisointiteknologioita selvittääksemme niiden e-

nergiatehokkuuserot. Testatut teknologiat olivat KVM, Xen ja vSphere Hypervisor.

Energiatehokkuuden ja suorituskyvyn suhteen havaitsimme, että virtualisoin-

titeknologioiden välillä on eroja ja sama teknologia ei aina ollut paras kaikissa

tilanteissa. KVM tarjosi hyvän energiatehokkuuden, mutta Xenillä oli erinäisiä

ongelmia uusilla Linuxin versioilla. Verkkopalvelintesteissä paravirtualisoinnilla ei

ollut juuri vaikutusta tehonkulutukseen ja Turbo Boost -teknologia heikensi ener-

giatehokkuutta. Tehonkulutus oli yleisesti paljon korkeampi suoraan laitteiston

päällä toimivilla virtualisointiohjelmistoilla Xenillä ja vSphere Hypervisorilla. Jatko-

tutkimusta tulisi tehdä laajemmalla testilaitteisto- ja ohjelmistovalikoimalla, jotta

selvitettäisiin tarkemmin asetukset ja tilanteet, joissa tämän tapainen tehonkulutus

ja paravirtualisoinnin mahdollinen vaikutus energiatehokkuuteen on havaittavissa.

IV

PREFACE

This thesis was written in late 2011–early 2012 while working as a research assistant

in Helsinki Institute of Physics Technology Programme GreenIT in their office at

CERN. The thesis was mainly written in three places: an exciting cattle shed in

Sergy, the modern Finnish office at CERN, and the ancient forests of Kangasala.

I would like to thank Jukka Kommeri, my supervisor at CERN, for his constructive

comments and sharing of his knowledge concerning the local ways of destroying spare

time to maximize the restoration of energy reserves for writing. I would also like to

thank examiners Tapio Niemi and Tommi Mikkonen for their feedback on the way.

Special thanks to Todd Muirhead for VMware approval review. For the support,

empathy, and inspiration, I would also like to thank all the people at the CERN

office, all my friends, Klipsch, and JC Denton.

February 18th 2012

olli.helin@iki.fi

V

CONTENTS

1. Introduction 1

2. Background 3

2.1 Virtualization . 3

2.2 Reasons to Go Virtual . 5

2.3 Server Consolidation . 7

2.4 Virtualization Technologies . 10

2.5 Cloud Computing . 14

2.6 Hardware Features . 15

2.7 The Virtualization Lineup . 17

2.7.1 KVM . 17

2.7.2 Xen . 18

2.7.3 VMware ESXi . 18

2.7.4 Chroot . 19

2.7.5 LXC . 19

3. Measuring the Energy Efficiency 20

3.1 Test Environment Hardware . 20

3.2 Test Methodology . 21

3.3 Operating Systems and Virtual Machine Configurations 23

3.4 Test Applications . 25

4. Results 29

4.1 Synthetic Tests . 29

4.2 Web Server Tests . 33

4.3 Special Test Cases . 38

5. Conclusions 44

References 47

Appendix 1: Output Samples 57

VI

LIST OF FIGURES

2.1 Virtualization decouples the system model from the physical realiza-

tion. In this case the disks have been virtualized: the virtual machine

sees and writes both virtual disks A and B in the same way, but the

physical disk A is actually located elsewhere physically and accessed

over network connection. 6

2.2 CERN computer centre. Some of the server racks are mostly empty

because there is not enough cooling power to accommodate more com-

puters. 8

2.3 Performance to power ratio and average power consumption figures

of IBM System x3200 M2 server. Maximum efficiency is achieved

at a hundred percent system load. Efficiency drops approximately in

a linear fashion as system load gets lighter. Figure data courtesy of

SPEC [33]. 9

2.4 Performance to power ratio and average power consumption figures

of Fujitsu PRIMERGY TX300 S6 server. Maximum efficiency is

achieved at a hundred percent system load, but the performance to

power ratio stays relatively high even with system loads as low as

forty percent. Figure data courtesy of SPEC [34]. 9

2.5 The virtual machine monitor decouples underlying hardware from the

operating systems running on top of it. In an operating system’s point

of view, it has the computer’s hardware resources completely under its

control, while in reality the resources are shared between the operating

systems. 11

2.6 Cloud computing as we know it would not be possible without virtu-

alization. Servers X and Y host multiple virtual machines inside the

cloud. Clients A and B are using the virtual machines without any

knowledge of the underlying hardware infrastructure. 14

3.1 Sequence diagram of testing procedure. The sequence was repeated

many times for each test to narrow down the error. 21

3.2 Parsing the results. For each test application a separate parser object,

inherited from a common base parser object, was created. 23

3.3 The web server test setup. Invenio, Apache and MySQL were run-

ning inside a chroot jail inside a virtual machine on the R410. In

the front-end computer, HTTP workloads were generated with httperf

and Watts up logger was recording the R410’s power consumption.

Routers in the network are not illustrated. 27

VII

4.1 Energy consumed by a single Bonnie++ run in watt hours. Only

small differences in total energy consumption can be seen except with

KVM between different cache modes. 30

4.2 Results for iperf network performance test. Bandwidth is in gigabits

per second. 31

4.3 Mean power consumption in BurnInSSE with one, two and four com-

puting threads stressing the processor. 32

4.4 Energy consumption characteristics and achieved computing speed in

Linpack. Speed is in millions of floating point operations per second. . 33

4.5 Httperf power consumption and performance results for one virtual

machine. 34

4.6 Httperf results for three virtual machines. 34

4.7 A virtual machine’s system load and memory usage during a httperf

run. 35

4.8 Httperf results for KVM using different amount of virtual machines.

Reference is the hardware setup corresponding to one virtual machine. 36

4.9 Httperf results for KVM using different virtual machine resources.

VCPUs denote the amount of virtual processors. 36

4.10 Quality of service curves for the three virtual machine setup. The

curves depict how big a percentage of response times were below a

given value during the httperf test runs. 37

4.11 Quality of service curves for KVM using different amount of virtual

machines. The curves depict how big a percentage of response times

were below a given value during the httperf test runs. 38

4.12 Httperf results for three KVM virtual machines using different power

management settings. 39

4.13 Results for KVM with and without Turbo Boost in iperf test. Band-

width is in gigabits per second. 40

4.14 Httperf results for three ESXi virtual machines with and without par-

avirtualization. 41

4.15 Httperf results for a KVM virtual machine with and without paravir-

tualization. 41

4.16 Httperf results for KVM with the Scientific Linux CERN installation

in an image file and in a separate partition. 42

VIII

LIST OF TABLES

3.1 Virtual machine configurations for the web server test. Memory size

is in gigabytes (GB) and request rate in requests per second. 28

3.2 All the relevant software with their versions and purpose. 28

4.1 Idle power consumptions. The columns are: environment type, num-

ber of hard disk drives (HDDs), number of virtual machines (VMs),

mean power consumption (𝑃), 𝑃 relative to one HDD hardware result

(% of HW), standard deviation (𝜎) and 95 percent confidence interval

(95 %). Xen 2.6 denotes Xen with Linux 2.6.32.46. 29

4.2 Hardware idle power consumption using various power management

settings. In the column labels, 𝑃 denotes the mean power consump-

tion, 𝜎 the standard deviation and 95 % the 95 percent confidence

interval. 38

4.3 Httperf power consumption for three KVM virtual machines with and

without Turbo Boost. In the column labels, 𝑃 denotes the mean power

consumption, 𝜎 the standard deviation and 95 % the 95 percent con-

fidence interval. 40

4.4 Effect of different schedulers on Xen’s performance in OpenMP test.

VCPUs denotes the total amount of virtual processors used by the

virtual machines, 𝑃 the mean power consumption, 𝜎 the standard

deviation and 𝐸̄ the total energy consumption. 42

IX

LIST OF SYMBOLS AND ABBREVIATIONS

4.2BSD Berkeley Software Distribution 4.2, an operating system.

ACPI Advanced Configuration and Power Interface, a specification

for device power management.

AMD Advanced Micro Devices, Inc. A semiconductor company.

BIOS Basic Input/Output System. The software code which initial-

izes system devices when a computer powers on.

CERN European Organization for Nuclear Research, an organization

operating the world’s largest particle physics laboratory.

CPU Central Processing Unit. The CPU carries out the instructions

of computer programs.

DMA Direct Memory Access, a feature that allows system memory

access for hardware devices independently of the CPU.

ext4 Fourth extended filesystem, a journaling file system for Linux.

Gb/s Gigabits per second.

HDD Hard Disk Drive.

HTTP Hypertext Transfer Protocol.

IA-32 Intel Architecture, 32-bit. A complex instruction set computer

architecture.

IDE Integrated Drive Electronics, a standard for connecting disk

drives.

IOMMU Input/Output Memory Management Unit. Connects DMA-

capable devices to the main memory.

KVM Kernel-based Virtual Machine.

LTS Long Term Support, a software release with longer support

length than normally.

LXC Linux Containers.

MFLOPS Millions of floating-point operations per second.

ms Millisecond.

𝑃 Mean power consumption.

POPF Pop Flags, an x86 instruction.

RAM Random Access Memory. In this thesis, refers to the computer’s

main memory.

SCSI Small Computer System Interface. A set of standards for com-

puter device connecting.

SLC Scientific Linux CERN. A Linux distribution in use at CERN.

Continued on next page

X

List of symbols and abbreviations—continued from previous page

𝜎 Standard deviation.

SPEC Standard Performance Evaluation Corporation, an organiza-

tion that produces performance benchmarks for computers.

TCP Transmission Control Protocol.

USB Universal Serial Bus.

VCPU Virtual Central Processing Unit.

VMFS Virtual Machine File System, a file system developed by

VMware, Inc.

VMM Virtual Machine Monitor.

W Watt, a unit of power.

𝑥̄ Arithmetic mean of samples.

1

1. INTRODUCTION

In recent years, virtualization has been changing the way information technology

infrastructure in enterprise data centers is built. The need for large data centers

arose due to demand for computational power [1]. This computational power goes

to running services. Cloud infrastructures like Amazon Elastic Compute Cloud [2]

and Microsoft Online Services [3] provide resources for various computing needs.

Google and many others offer software as a service directly to a user’s web browser

[4]. Shopping has been shifting more and more online [5].

All these services require large amounts of servers and flexibility to satisfy the de-

mands of an ever-growing userbase. This growth has had a side effect. Lately, energy

expenses in the data centers have been rising to the extent of possibly surpassing

the actual hardware costs [6]. All this calls for more energy efficient computing.

In many cases of real life data servers, however, energy efficiency measures are

conducted only when the infrastructure has already reached its maximum capacity

[7]. Even then, the focus of optimization has mostly been in hardware and infrastruc-

ture, not in operational methods, operating systems, or software [8]. Harizopoulos

et al. [6] note that hardware optimization is only part of the solution and software

also must be taken into account when pursuing energy efficiency. Barroso and Hölzle

[9] also argue that servers require new energy efficiency innovations in addition to

the energy efficient hardware. Venkatachalam and Franz [10] surveyed power con-

sumption reduction in circuit techniques and hardware features among others, and

also recognized the importance of software in energy efficiency.

Virtualization is one solution to the problems. Using virtualization enables one

to cut costs and enhance energy efficiency. There have been a lot of synthetic

performance tests using virtualized systems. For example, Padala et al. [11] studied

performance degradation of applications on virtualized systems against a base Linux

system using Xen and OpenVZ. Tafa et al. [12] studied the performance of the same

virtualization technologies during live migration. Soltesz et al. [13] studied the

performance advantages of container based virtualization over hypervisors. There

are also lots of studies on improving performance in specific situations. For example

Wang et al. [14] developed a faster way for inter-virtual machine communication

using Xen. Hu et al. [15] introduced a scheduling model to improve input/output

performance of virtualized systems.

1. Introduction 2

However, as virtualization in its modern form is still a relatively young technol-

ogy, there are not that many studies between different virtualization solutions with

an emphasis on energy efficiency. Bearing in mind the generally recognized need for

software that is optimized for energy efficiency, possible power consumption over-

head caused by virtualization will be an important decision factor when setting up

virtualized servers.

This thesis is a study on virtualization with focus on energy efficiency. Measuring

energy efficiency for a server requires knowledge of performance and power consump-

tion characteristics. We conducted sets of tests while measuring power consumption.

From the test results we assessed how virtualization affects performance and con-

sequently energy efficiency. We tested various configurations to find out what one

should generally keep in mind when building a virtualized environment with focus

on energy efficiency. All of this was done using various virtualization technologies

to find out their differences regarding energy efficiency.

The structure of the thesis is as follows. We first take a look at the history

of virtualization in Chapter 2. We also discuss motivation for virtualization and

why energy efficiency is important. We then introduce the specific virtualization

technologies studied in this thesis. In Chapter 3 we describe the test environment

and testing methodology. Results from the tests are presented and discussed in

Chapter 4. Finally in Chapter 5 we summarize the results and discuss further

research on energy efficiency.

3

2. BACKGROUND

In this chapter we will discuss the concept of virtualization. What virtualization is

and what is its history is discussed in Section 2.1. Motivation for virtualization is

discussed in detail in Section 2.2; server consolidation, an energy efficiency related

reason to virtualize, is further discussed in Section 2.3. In Section 2.4 we introduce

virtualization technologies currently in use and relevant for this thesis. In Section

2.5 we will discuss cloud computing, a strongly commercial motivator and area of use

for virtualization. In Section 2.6 the hardware features related to energy efficient

computing and relevant for this thesis are introduced. Finally, in Section 2.7 we

introduce the virtualization solutions which are studied in this thesis.

2.1 Virtualization

As a generic term, virtualization means creating a virtual version of something, a

simulation of the real version [16]. In computing, it is “a technique for hiding the

physical characteristics of computing resources from the way in which other systems,

applications, or end users interact with those resources.” [17]

Virtualization technologies are widely used in a variety of areas such as multiple

operating system support, server consolidation, transferring systems from one com-

puter to another, secure computing platforms and operating system development

[18]. One of the carrying ideas in virtualization is to permit multiple operating sys-

tems to execute operations directly on hardware, yet leave ultimate control to the

virtualization implementation, so that sensitive operations can not affect other guest

operating systems [7]. An example of these sensitive operations are direct memory

access (DMA) requests for input/output. This arbitrating of accesses to the physi-

cal resources is done in a new layer of software between the hardware and operating

systems [19]. Virtualization may thus be characterized also by the addition of this

layer.

Virtualization technology emerged in the late 1960s to improve hardware uti-

lization. Computers back then were very expensive and not so readily available:

computing was done with large mainframe hardware [20]. There existed a problem

with time sharing: as operating systems were not multitasking and software were

written so that they expected to have all the resources of a computer, there was

a need for something to make the single computer appear as many. Virtualization

2. Background 4

was the answer for that: for example on a single IBM System/360 one was able to

run fully isolated environments in parallel so that each environment thought they

actually had the whole mainframe at their disposal [21]. This time sharing was done

by so called Virtual Machine Monitors (VMMs), also known as hypervisors.

As hardware costs fell and multitasking operating systems became commonplace

in the 1980s and 1990s, the need for the type of time sharing used with the IBM

System/360 disappeared—in actuality, computer architectures no longer provided

the appropriate hardware to implement the VMM technology efficiently [20]. History

seems to repeat itself, as even with modern hardware virtualization has been the

answer to better utilize it. Nowadays time sharing is not the main motivation for

virtualization, however. That part is already covered by multitasking operating

systems. Virtualization brought with it other benefits which hold true even today.

Nowadays a hypervisor is commonly a solution for security and reliability [20, 22].

This is a direct consequence of isolation: virtualizing two machines isolates them;

they behave as two. So if one was to have a maintenance break or proper function was

ceased due to faulty software, the other would continue functioning. Indeed, security

in virtualization has become a popular topic in recent years not only because of the

security virtualization can offer, but also because of the security threats a hypervisor

itself must face [23].

Basically every component of a computer can be virtualized and when virtualizing

a computer one actually virtualizes many things—after all, a computer is merely a

word for programmable machine. This machine consists of things such as

• central processing unit (CPU), which carries out the computations

• memory, also known as random-access memory or RAM for short, the working

space for applications and the operating system

• input/output (I/O), or the means by which a computer is able to exchange

information in and out of the computer, for example by storing data on a hard

disk drive

• network adapter, which allows multiple computers to form a network for shar-

ing of resources and information.

Even though one is generally able to virtualize everything, it is not always pur-

poseful to do so. The question is not what one is able to, but what is beneficial to or

harmful to virtualize. Gammage & Dawson argue that virtualization is the primary

cause of I/O performance degradation; also where an application needs confirmation

that hardware operations have indeed been completed in specific time, it might be

impossible to utilize virtualization in such cases [24].

2. Background 5

2.2 Reasons to Go Virtual

As discussed in the previous section, the reasons which led to virtualization are now

mostly outdated and the current reasons to virtualize are far more complex. For

example, virtualizing certain components of a computer one achieves certain effects,

some of which may benefit one situation and others which may benefit another

situation.

A CPU architecture is virtualizable if it is possible to execute a virtual machine

directly on the real machine, while still letting the hypervisor to retain control of the

CPU [20]. Virtualizing the CPU allows multiple operating systems to share processor

resources efficiently. This satisfies the requirements of such infrastructures where for

example a mail server requires Windows Server and a database runs on Solaris [22].

Also, using emulation one is able to run software written for different computer

architectures [25]. This may be beneficial when testing multi-platform software or

when using software for which there no longer exists the required hardware. Virtual

CPUs are also utilized in high performance computing in cases where processing

jobs do not take full advantage of multicore processor architectures: one may deploy

for example a virtual machine per core to better share resources among jobs [26].

Virtualizing memory allows the memory allocated for virtual machines to exceed

the memory size of the actual hardware [20]. This in turn enables for example run-

ning two operating systems each requiring three gigabytes of memory on a hardware

which only has four gigabytes instead of the combined amount of six gigabytes.

Virtualizing the I/O allows the system data storage model to be decoupled from

its physical realization. For example, the virtual machine might look like it has a

normal hard-disk drive with a couple of partitions, but in reality it could be using just

an abstraction of a storage device, behind which exists redundant storage situated in

completely different geographical location. This results in flexibility and robustness

in forms of runtime expansion and transferring and replicating the system to another

computer. An example of I/O virtualization is illustrated in Figure 2.1. [27]

Virtualizing the network allows one to create a network with separate machines

within single hardware. These machines may use inter-virtual machine communi-

cation mechanisms which for the user are completely transparent and seem like a

normal network device, but with huge performance benefits between the virtual

machines compared to using real network adapters. [14]

Basically, when something has been virtualized it is no longer bound to the phys-

ical realization. This in turn enables N:N relationships between applications and

and hardware: one is able to run multiple isolated applications on a single shared

resource, but also a single application on multiple physical resources [22]. One of

these uses of multiple physical resources is live migration, which nowadays is one

2. Background 6

Virtual
disk A

Virtual
disk B

Virtual machine

Physical
disk B

Physical
disk A

Virtual machine
host server

Remote server
over network

Network

Virtualization layer

Figure 2.1: Virtualization decouples the system model from the physical realization. In this
case the disks have been virtualized: the virtual machine sees and writes both virtual disks
A and B in the same way, but the physical disk A is actually located elsewhere physically
and accessed over network connection.

of the most important uses of virtualization techniques [12]. In live migration one

transfers a virtual machine from one physical machine to another without interrupt-

ing application execution, enabling for example the re-purposing of server capacity

to better meet the needs of application workload owners [28].

Another use of virtualization is in application deployment and management. Vir-

tualization offers uniform application deployment environment independent of any

hardware, avoiding problems software engineers might have should they have to

deal with different hardware configurations. This use of virtual machines for uni-

form application deployment can also be utilized in disaster recovery: if something

is broken, one just has to drop in the model virtual machine image and restart the

machine. Similar approach may be utilized in testing phase: when testing differ-

ent software configurations, one starts the corresponding virtual machine and when

required, going back to the starting point is trivial. [22]

Virtualization also offers security. Usually operating systems provide relatively

weak forms of isolation between applications; for example, the file system and pro-

cess identifiers are normally shared. When using virtual machines, one of the goals

of hypervisor is to provide full isolation between the machines. Therefore, by run-

ning one application in one virtual machine and some other application in another

virtual machine, the applications cannot affect each others functionality. The virtual

machines may also have their own networks, which obviously has a positive effect

on security should one virtual machine become compromised: the other’s network

still remains uncompromised. [13]

2. Background 7

Finally and most interestingly as far as this thesis is concerned, virtualization

enables huge energy savings by means of server consolidation, which in the past

years has been one of the biggest uses of virtualization [22]. Server consolidation is

further discussed in the following section.

To sum up, the main reasons for modern use of virtualization are energy efficiency

by server consolidation, elasticity in resource usage, security, and easier deployment

of software, with current trends leaning more towards consolidation and future trends

into other areas.

2.3 Server Consolidation

Server consolidation by virtualization means running multiple applications in sepa-

rate virtual containers hosted on single hardware. These virtual containers can be

full virtual machines and the applications can be operating systems: in essence, one

is able to consolidate multiple virtual machines into one real machine. In enterprise

data centers, this has become an integral part of information technology planning

to more efficiently utilize hardware and to reduce costs [11, 28].

When it comes to server hardware costs, it was noted in a study conducted within

an European Union programme Intelligent Energy Europe that many businesses do

not consider energy costs within total cost of ownership [7]. The same study suggests

that energy saving potentials of sixty percent could be achieved by applying and

optimally managing efficient information technology hardware and infrastructure.

One factor contributing to the huge energy savings is the fact that in data centers,

cooling and other infrastructure actually uses fifty to hundred percent as much

energy as the servers themselves [7, 29]. This is also one of the reasons why for

example in a computer centre at CERN there are half empty computer racks as

seen in Figure 2.2; lack of sufficient cooling power limits the amount of computers.

Consequently and not surprisingly, it has also been suggested that energy expenses

could actually be the dominant factor in the total cost of ownership [30].

When studying server utilization figures, we notice that the lowest energy effi-

ciency region is also a very common one under normal server operation [9]. Padala

et al. suggest a typical average server utilization of below thirty percent [11]. Vogels

from Amazon.com mentions utilization levels as low as five percent, the typical being

just below twenty percent. Barroso and Hölzle from Google note that in a highly

tuned environment such as Google’s, a server might have a typical utilization level

between ten and fifty percent [9]. To link these utilization levels to system energy

efficiency figures, we take a look at two typical results from Standard Performance

Evaluation Corporation’s (SPEC) server side Java benchmark. SPEC is a consor-

tium producing computing performance benchmarks. Their SPECpower ssj2008

benchmark evaluates the power and performance characteristics of server computers

2. Background 8

Figure 2.2: CERN computer centre. Some of the server racks are mostly empty because
there is not enough cooling power to accommodate more computers.

by using server side Java workload [31, 32]. The results are given for various system

load levels as server side Java operations per watt of energy consumed, 𝑆𝑆𝐽 𝑜𝑝𝑠/𝑊 .

In Figure 2.3 we see the performance to power ratio and average power con-

sumption figures of a modern server; the data is from SPECpower ssj2008 results

database [33]. The server in question is IBM System x3200 M2. It is an Intel Xeon

based dual-core server running Microsoft Windows Server 2003. We notice that the

best performance to power ratio is achieved with maximum system load. In the

aforementioned operating region of thirty percent utilization, the performance to

power ratio is already less than half of the maximum: energy efficiency has dropped

dramatically. Even when idle, the server uses two thirds of its maximum power.

From Figure 2.3 it is obvious that with typical utilization levels, the server would

be running very inefficiently.

In Figure 2.4 are another SPECpower ssj2008 test results [34]. The server in

question is Fujitsu PRIMERGY TX300 S6 with two hexa-core Intel Xeon proces-

sors. Compared to the IBM above, the PRIMERGY is a server for more heavy

loads. The performance to power ratio is more logarithmic compared to the linear

shape of IBM, resulting in better energy efficiency in the fifty percent system utiliza-

tion region. When falling down below twenty percent utilization, however, energy

efficiency degrades again.

Now if one was to consolidate for example three servers with an average utilization

2. Background 9

0 10 20 30 40 50 60 70 80 90 100
System load (%)

0

20

40

60

80

100

120

Po
w

er
us

ag
e

(W
)

0

200

400

600

800

1000

Pe
rf

or
m

an
ce

/p
ow

er
(S

SJ
op

s
/W

)

Performance to power ratio
Power usage

Figure 2.3: Performance to power ratio and average power consumption figures of IBM
System x3200 M2 server. Maximum efficiency is achieved at a hundred percent system
load. Efficiency drops approximately in a linear fashion as system load gets lighter. Figure
data courtesy of SPEC [33].

0 10 20 30 40 50 60 70 80 90 100
System load (%)

0

50

100

150

200

Po
w

er
us

ag
e

(W
)

0

500

1000

1500

2000

2500

3000

3500

4000

Pe
rf

or
m

an
ce

/p
ow

er
(S

SJ
op

s
/W

)

Performance to power ratio
Power usage

Figure 2.4: Performance to power ratio and average power consumption figures of Fujitsu
PRIMERGY TX300 S6 server. Maximum efficiency is achieved at a hundred percent
system load, but the performance to power ratio stays relatively high even with system
loads as low as forty percent. Figure data courtesy of SPEC [34].

2. Background 10

of twenty percent into one single hardware, one would get a server with an average

utilization of sixty percent. This is of course a naive calculation not taking into

account the different kind of load levels and virtualization overheads, but the idea

is sound: by server consolidation, one gets to the utilization region where energy

efficiency is better.

Full hundred percent average utilization is never the goal, however. Server work-

loads fluctuate over time and utilization spikes do occur [22]. A web server with

high average utilization might have trouble meeting its service-level agreements in

throughput and latency, for example [9]. The lack of leeway would also make main-

tenance tasks difficult. For environments running various applications, Vogels con-

siders an average utilization between fourty to fifty percent to be excellent results

[22]. Finally, despite all these advantages in energy efficiency offered by server con-

solidation, it is completely normal to run just one virtual machine on a physical

server. The focus is then not in energy efficiency, but scaling potential and speeding

up deployment of applications [22].

2.4 Virtualization Technologies

A virtual machine monitor is a software layer which separates underlying hardware

from the software running on top of it, creating an abstraction of the hardware for

a virtual machine [35]. The abstraction may look similar independent of hardware,

transforming the view of hardware as a set of specific components into a view of

hardware as a pool of resources [20]. The virtual machine monitor may then map

these resources to the virtual machines running on top of it as requested, providing

complete encapsulation of a virtual machine’s state. Thus it is possible to change

the underlying hardware and continue the virtual machine’s operation normally. In

practice, this could mean for example migrating the virtual machine from one server

to another. Virtual machine monitors are sometimes also referred to as hypervisors.

Traditionally, virtual machine monitors have been split into two groups: Type I

and Type II [35]. Those of Type I run directly on the host’s hardware and are known

as bare-metal hypervisors for that. Figure 2.5 shows an example situation where this

type of virtual machine monitor separates two operating systems from hardware.

Examples of these kind of virtual machine monitors include VMware ESXi [36] and

Microsoft Hyper-V [37]. Type II virtual machine monitors on the other hand run

within an operating system. They are known as hosted hypervisors. Examples of

these are the Oracle Corporation’s VirtualBox [38] and VMware Workstation [39].

Two of the central software in this thesis are the Kernel-based Virtual Machine

(KVM) [40] and the Xen hypervisor [41]. They are both quite hard to categorize

either as Type I or Type II. KVM turns a Linux-kernel into a Type I hypervisor, even

though one could argue that KVM runs on a Linux distribution, making it Type

2. Background 11

Virtual Machine Monitor

Hardware

Operating system Operating system

Application Application Application Application

Figure 2.5: The virtual machine monitor decouples underlying hardware from the operating
systems running on top of it. In an operating system’s point of view, it has the computer’s
hardware resources completely under its control, while in reality the resources are shared
between the operating systems.

II. The Xen hypervisor, on the other hand, is of Type I but then again requires a

privileged operating system to handle the virtual machines, making it in a sense a

Type II hypervisor. This is why the labeling whether a hypervisor is of Type I or

II does not really mean anything per se and is mainly used to describe the general

nature of the hypervisor. A bare-metal hypervisor might sound as if it had a smaller

privileged codebase as it does not have the burden of underlying operating system,

so it might be more secure and perform better. A hosted hypervisor on the other

hand might be easier to set up on a computer currently in production use, as it

might not require any modifications to the underlying operating system and device

drivers for the hypervisor would be readily available.

The addition of this software layer is likely to create some problems, however.

The problems arise from the code a central processing unit is executing. This code

is categorized into different privilege levels. For example, the IA-32 instruction set

architecture, which is the most common in the world [42], has four privilege levels,

ranging from most privileged to least privileged [43]. For the sake of simplicity, let

us consider there are only two privilege levels: privileged and unprivileged. Usually

in the privileged level lies the operating system kernel code and device drivers, all

the code which needs direct access to hardware. In the unprivileged level lies normal

user applications, which use the services provided by operating system to access the

hardware: for example, when saving a text document from an editor, the editor is

not directly communicating with the hardware, but uses the system calls provided

by the operating system to do so.

Running a virtual machine requires the guest operating system’s kernel to be run

in unprivileged mode, as the virtual machine monitor is running in privileged mode.

In IA-32 there are instructions which execute differently depending on whether they

2. Background 12

are run in privileged or unprivileged mode: for example, when run in unprivileged

mode, the pop flags (POPF) instruction does not clear a certain bit in the pro-

cessor’s status register as it normally should when run in privileged mode. If one

was executing this instruction in a virtual machine, the result would be erroneus as

the processor’s status would not be what it should. There are also other challenges

related to privileges certain instructions have access to. [20]

To overcome these challenges, different techniques have been developed. One pos-

sibility is binary translation: the virtual machine monitor translates all instructions

from the guest operating system so that the end result is correct. These kind of

software methods are usually slow, however. A widely used solution offering much

better performance is paravirtualization. In paravirtualization, the guest operating

system kernel is modified to be aware of the fact it is running on a virtual machine

[12]. With that knowledge and co-operation with the hypervisor, it is possible for the

guest operating system to execute with near native speed without the instructions

which are hard to virtualize [44]. This technique suffers from the fact that the guest

operating system can not be run without modifications, however. To fully virtualize

IA-32 or other architectures from the x86 instruction set architecture family and to

maintain compatibility with unmodified operating systems, processor vendors de-

veloped x86 hardware virtualization extensions. To name two, AMD’s solution is

known as AMD-V and Intel’s VT-x, respectively. The main thing they add is two

operating modes for the central processing unit, each mode with their own privilege

levels, so that both the virtual machine monitor and the guest operating system are

able to run with their usual privilege levels but with different operating modes [19].

This enables normal unmodified guest operating system functionality while letting

the virtual machine monitor retain ultimate control.

Albeit using the hardware virtualization extensions is the preferred way to run

unmodified guest operating systems, paravirtualization still has a lot of uses as the

operating system kernel is not the only thing that can be paravirtualized. One must

bear in mind that also the device drivers are part of the privileged code. By using

paravirtualized device drivers for network and disk access for example, one is able to

gain the performance benefits compared to full virtualization where the instructions

by device drivers must go through an extra software layer. Using paravirtualized de-

vice drivers is separate of paravirtualizing the whole operating system: for example,

even if running Windows XP guests on the Xen hypervisor requires full virtualiza-

tion, there exists paravirtualized Xen network and I/O drivers for Windows XP to

bridge the performance gap [45]. As with processor virtualization, hardware tech-

niques to speed up the operation of fully virtualized devices have been developed,

for example AMD-Vi and Intel VT-d [46].

Sometimes it might be beneficial not to virtualize the hardware but the operating

2. Background 13

system running on it. This is called operating system level virtualization or operating

system virtualization. The idea is not to waste resources by creating multiple virtual

machines with the same operating system in them, but to create isolated virtual

environments within one common operating system, thus saving the resources needed

to run multiple operating system kernels. This is especially true when it comes to

memory usage, as it might be hard for the virtual machine host to know how the

guests are using their memory and redundand copies of identical code and data

between the guests might be stored in the host’s memory [20]. In general, when

comparing hypervisor based virtualization and operating system virtualization, the

former brings along it a higher performance overhead, but might provide better

isolation between the virtualized environments [11].

The virtualized environments which are created using operating system-level vir-

tualization are usually called containers or jails. Examples of implementations in-

clude chroot, LXC, Linux-VServer and OpenVZ. Although most container based

virtualization technologies are relatively new, chroot is an exception dating all the

way to the early 1980s when it was introduced in 4.2BSD operating system [47].

In some cases, it is possible to achieve near hypervisor level isolation with oper-

ating system virtualization but with performance benefits. Also, whether one wants

to give weight on performance or isolation depends on the case. For example, if a

server is running applications on behalf of two independent organizations, it is criti-

cal that the applications minimize information sharing, making hypervisor a suitable

choice. On the other hand, if strict isolation is not needed or if the applications do

need to share data, it is possible to achieve noticiable performance advantages with

container-based operating system virtualization. [13]

Another technique which is usually done using just one operating system is sand-

boxing. In sandboxing, the idea is not so much to virtualize something as to provide

means of isolation for security purposes. As the name suggests, the goal is to provide

a sandbox, a place where an application can be executed while isolated from the rest

of the system, just like a child can safely play in a sandbox.

As the term sandboxing basically means just isolating an application and does not

specify any technique per se, virtualizing a full computer system just for running

one application could be called sandboxing. This is rarely the case, however, as

that would mean wasting resources. Usually sandboxing is achieved with very little

overhead [48].

For some security critical situations, even a fully virtualized computer system

might not be enough. For example, a malicious application running on a virtual

machine might still have free access to the network just as if run directly on hard-

ware. The obvious solution is to combine both virtualization and software sandbox-

ing to reach maximal isolation [49]. This kind of combination is used for example

2. Background 14

in cloud computing in isolating development environments for different users [50].

Sandboxing in general is widely used in software development for testing purposes.

For example, PayPal provides a sandbox in which developers may test their appli-

cations related to money transfers, which on a live website would be problematic to

test [51].

2.5 Cloud Computing

Cloud computing or simply a cloud is the realization of the paradigm of shifting

the location of computing infrastructure to the network, with the aim of reducing

both software and hardware resource management costs [52]. Usage of clouds can be

split into three scenarios: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) or Software as a Service (SaaS) [53]. In IaaS scenario, virtualization is used

to split, resize and assign hardware resources dynamically into virtualized systems

as the customer wishes. A simplified example of this scenario is illustrated in Figure

2.6. At this point it is important to note that the foundation of cloud computing

is formed by virtualization, as it is the technology which provides the capability to

handle the resources as stated above [54]. Virtualization is also the primary security

mechanism in today’s clouds [55].

VMVM

VM

VM
VM

VM

VM
VM

User A User B

Server X Server Y

Figure 2.6: Cloud computing as we know it would not be possible without virtualization.
Servers X and Y host multiple virtual machines inside the cloud. Clients A and B are using
the virtual machines without any knowledge of the underlying hardware infrastructure.

In PaaS scenario, instead of offering virtual hardware, service providers offer a

2. Background 15

software platform while the managing of required hardware resources is abstracted

behind the platform. An example of PaaS is the Google App Engine which devel-

opers may use for building public or in-house web applications with high scalability

and availability [56]. In this sense, cloud computing leverages virtualization at mul-

tiple levels as not only the hardware is virtualized but also the application platform

[54].

In SaaS scenario an application, for example a word processor, is run in the cloud

and rendered to the end user’s screen. This usually happens inside a web browser

window [52]. SaaS is an alternative to locally running an application, but possibly

with added abilities: for example using Google Docs, it is possible for multiple users

to edit a document simultaneously over the web and see the changes in real time

[57].

For end users, the cloud details are usually well abstracted behind easy-to-use

user interfaces. For example the Amazon Elastic Compute Cloud has a web service

interface which allows the user to set up and configure computing resources as re-

quired [58]. Clouds are a big driver behind the spread of virtualization techniques,

as cloud computing is getting more and more advanced and popular [52, 54, 59].

2.6 Hardware Features

Threads are one approach to concurrent programming: they are sequential processes

that share memory [60]. If an application is programmed using threads, it obviously

executes faster if there are more than one processor running the threads. But more

processors means that more electric power and hardware is required. If an applica-

tion is single-threaded, all the other processors would be just a burden for energy

efficiency. Even though modern simultaneous multithreading processors are able to

execute both multi-threaded applications and parallel single-threaded applications

efficiently [61], there comes times when on one hand it would be beneficial to be

able to shut down or otherwise set to an energy saving state the idle parts of a

processor, and on the other hand somehow improve the performance of the already

fully utilized parts. Special hardware features have been developed to do just that.

In this section presented are the features relevant to this thesis.

The faster clockrate a processing core runs at, the more power it consumes and

thus the more it heats up. Generally, the power consumption per operation is con-

sidered to be directly proportional to the product of core voltage to the second power

and core frequency. Obviously, the performance depends on the clock frequency. If

voltage is the more defining factor, then why do not we just lower it? The way

processors work, generally the higher the clock frequency, the more voltage they

need. One can not have high clocks without high voltage, and one can not lower the

voltage to save energy without also lowering the clock frequency and thus perfor-

2. Background 16

mance. This is why voltage and frequency is scaled more or less at the same time,

as lowering just the frequency would still leave high power consumption because of

high voltage. [62]

While a processor has just a little load on its cores, it is thus energy efficient

to scale down the frequency and voltage of the cores. Intel calls their implemen-

tation of this technique Intel SpeedStep [63]. AMD’s implementation with desktop

processors is called Cool’n’Quiet; AMD claims over 55 percent power savings are

achievable with all their power saving technologies enabled [64]. In this thesis, some

of the tests were conducted using the Intel SpeedStep technique for comparison to

without using it. Another technique to save energy with lightly utilized processors is

processor power state switching. The Advanced Configuration and Power Interface

(ACPI) specification defines power states for processors supporting the specification,

so that operating systems can set processors to more energy saving states when the

processors are not needed [65]. Effectively, parts of a processor are turned off com-

pletely.

When running applications which utilize only one or just a few cores of a multi-

core processor, it would be beneficial to improve the performance of those cores.

As processor core frequencies can be scaled down for power saving purposes, they

can also be scaled up for performance boost. Intel’s implementation of this is called

Intel Turbo Boost [66]. It works so that in a multi-core processor, if there are cores

with low load, some cores can be turbo boosted. If all cores are under heavy load

already, none of the cores can be turbo boosted as it would mean the processor’s

thermal limits would be exceeded.

Turbo boost was extensively used during the energy efficiency tests in this the-

sis. The energy efficiency potential behind using turbo techniques lies in the fact

that even though the power consumption of a processor is higher with higher clock

frequencies, performing the operations takes less time. Energy consumption is de-

pendant on power consumption and used time, so higher energy efficiency is possible

even with higher power consumption if significantly less time is used for the task.

Core frequency is not the only thing which can be optimized. What happens

during a clock cycle is another important factor. One approach in optimizing a

core’s functionality is hyper-threading.

The Hyper-Threading Technology by Intel was first introduced in their Xeon

processors in 2002. In hyper-threading the idea is for two logical processors to

simultaneously share the execution resources of one physical. To software, these

two logical processors appear just as any two processors would. The idea is to

better utilize the computing resources of a processor with low complexity physical

additions to the processor die, keeping power usage and material requirements low.

For example, if two threads were being executed, a slow thread might get an unfair

2. Background 17

share of resources, preventing the faster thread from making rapid progress. [67]

Hyper-Threading Technology is also used in modern Intel server processors [68].

Although using hyper-threading is in some cases known to have performance near

traditional symmetric multiprocessing using multiple processors but with only lit-

tle impact on power consumption [69], there are also reports where using hyper-

threading has had little effect on performance and thus energy efficiency [70]. In the

tests conducted for this thesis, hyper-threading was disabled to eliminate one factor

of unpredictability.

2.7 The Virtualization Lineup

The virtualization software and technologies which will be studied closer and tested

are introduced in this section.

2.7.1 KVM

Kernel-based Virtual Machine (KVM) is a virtualization solution for Linux on x86

hardware with hardware virtualization extensions. KVM consists of a loadable Linux

kernel module and another processor specific hardware virtualization extension mod-

ule. There currently exists two of the latter: one for AMD processors using AMD-V

and one for Intel processors using Intel VT-x. KVM uses the regular Linux scheduler

and memory management: each virtual machine created is seen as a process in the

host operating system, which acts as the hypervisor. Even though KVM is intended

only for Linux as host, it is able to run most modern operating systems as guests.

[40]

To actually create virtual machines using KVM, one also needs a user space ap-

plication for this: QEMU. QEMU is a generic, open source machine emulator and

virtualizer [25]. As a machine emulator, QEMU emulates a whole computer includ-

ing various processors and devices, allowing it to run unmodified guest operating

systems. As KVM allows a user space program to access the hardware virtual-

ization capabilities of the processor, KVM enables QEMU to skip emulating the

processor and use hardware directly instead.

To further improve speed it is also possible to use paravirtualized disk and network

drivers in the guest operating system. QEMU with KVM uses VirtIO to achieve

this. VirtIO is a Linux standard for network and disk device drivers capable of

cooperating with the hypervisor [71]. As is the case with KVM, VirtIO drivers are

readily available in the Linux kernel.

2. Background 18

2.7.2 Xen

Xen is an external hypervisor, a layer of software running on computer hardware

replacing the operating system. The Xen hypervisor is one of three components

required when using Xen for virtualization: the other two are Domain 0 (Dom0,

or the privileged domain), and one or more DomainUs (DomU, or an unprivileged

domain). Dom0 runs on the hypervisor with direct hardware access. It is responsible

for managing the unprivileged DomUs, which run the guest operating systems and

have no direct access to the hardware. A system administrator manages the whole

computer system by logging into Dom0. [41]

Even though Xen exists in the vanilla Linux starting from kernel version 3.0, it

does not require DomUs or even Dom0 to be running Linux. DomUs’ operating

systems can be run unmodified when using the system’s hardware virtualization

extensions, or they can be run paravirtualized, in which case the guest operating

system is modified to be aware of it is running on Xen hypervisor instead of base

hardware. Paravirtualized Xen drivers for example for disk are included in the Linux

kernel and available for Windows guests.

One of Xen’s strengths is said to be its small trusted computing base. The Xen

hypervisor itself is relatively small, so it is thought to be trustworthy of correct and

secure operation. However, Xen requires the privileged Domain 0, which contains a

full operating system with all its possible security and reliability problems. In this

sense, Xen is equal in complexity to for example KVM. [72]

2.7.3 VMware ESXi

Much like Xen, the commercial VMware ESXi is a hypervisor running directly on

hardware. Forming the architectural backbone of the current VMware vSphere

product line, it was formerly known as ESX (without the i) and used the Linux

kernel as part of its loading process. In ESXi the Linux part has been removed,

and the ESXi is reliant on no specific operating system. Formerly the management

was done via service console in a similar way as in Dom0 with Xen, but now all

management is done with remote tools. The goal has been to reduce codebase to

improve security. [36]

As ESXi uses its own kernel, it needs to have its own specific hardware drivers,

too. Compared to Xen and KVM which are able to use the huge driver base of Linux,

ESXi has to use its own supply of drivers. VMware claims this is on the other hand

one of its strong points, not relying on generic drivers but using optimized drivers

for supported hardware. ESXi enables for example quality of service based priorities

for storage and network I/O. [36]

In this thesis, the freely available ESXi based VMware vSphere Hypervisor was

2. Background 19

used along with VMware vSphere Client to manage it. The vSphere Hypervisor is

henceforth referred to as ESXi in this thesis.

2.7.4 Chroot

Chroot is the name for both the Linux system call and its wrapper program. Chroot

is a form of operating system level virtualization, where one creates so-called chroot

jails to isolate environments. The only thing chroot does is it changes the root

directory of the calling process and consequently all children of the calling process.

This seemingly trivial effect actually has a big impact on how one is able to run

applications. Security can be enhanced by the isolation offered by chroot, and for

example many network daemons can run in chrooted environment [73].

In our tests chroot is used to take advantage of an isolated Scientific Linux CERN

5.6 environment to run Apache web server with Invenio database already set up.

Therefore there was no need to install web server software or to set up the database

to the chroot environment’s host operating system, Ubuntu. This eliminated for

example the possible software library conflicts the Invenio database might have had

with a different operating system than the one it is intended to be run on.

2.7.5 LXC

Linux Containers (LXC) is another operating system level virtualization mechanism.

Compared to chroot, LXC extends the isolation capabilities by adding for example

network namespace isolation. Network namespaces are private sets of network re-

sources associated with certain processes: processes in one network namespace are

unable to access network resources in another network namespace. This has imme-

diate security benefits: if a server is compromised, the rest of network system will

remain unaffected. Also traffic control and resource management is more flexible

and more easily controllable. [74]

LXC is still an emerging virtualization technology and testing it was limited to

experimenting with its setup. Unfortunately, with LXC version 0.7.5 we were un-

able to start the containers with the test operating system. Virtually any reports

of LXC in production use are also yet to be found. The reason why LXC is consid-

ered the future of container based virtualization with Linux is that older solutions

such as OpenVZ and Linux-Vserver depend on kernel patches to work. LXC uses

the Control Groups mechanism found in the relatively new mainline Linux kernels,

eliminating the need for separate patches [75]. Control Groups provide a mecha-

nism for partitioning sets of tasks into groups with specialized behavior [76]. These

groups could for example have limited resources or specific associated CPUs.

20

3. MEASURING THE ENERGY EFFICIENCY

In this chapter the test environment and methodology will be introduced. The hard-

ware used for conducting the measurements is introduced in Section 3.1. In Section

3.2 we describe how the testing procedure and analysis of results was conducted.

The operating system choices are described in detail in Section 3.3. In the same sec-

tion we also describe the configurations of the virtual machines. Finally in Section

3.4 we introduce the test applications and material. Regarding all the used software,

if a configuration option is not mentioned, it was left at its default setting.

3.1 Test Environment Hardware

Testing was conducted on a Dell PowerEdge R410 server with two quad-core Intel

Xeon E5520 processors and sixteen gigabytes of memory. Another server with two

single-core Intel Xeon processors running at 2.80 gigahertz was used as a front-end

computer.

Hyper-threading was disabled in the processors. This was done so that the phys-

ical cores could be reliably assigned to virtual machines as fully functional cores

and not just logical ones. Intel Turbo Boost was enabled. Power management in

motherboard BIOS was set to operating system managed. In practice, this means

that the CPU clock frequency was fixed to 2.26 gigahertz for all cores except when

Turbo Boost raised the operating frequency to 2.53 gigahertz. Some special tests

were conducted with different BIOS power management, Turbo Boost and CPU

clock frequency settings to see their impact on the results.

The R410 had a single 250 gigabyte hard disk drive. For VMware ESXi tests,

a second hard disk drive of one terabyte was also installed. Input/output memory

management unit (IOMMU) implementation Intel VT-d was not supported by the

test system. Only the x86 hardware virtualization Intel VT-x was enabled. For

network related tests, one part of the client-server pair was the front-end computer

and the counterpart the R410. Network was routed through two D-Link DGS-1224T

gigabit routers.

Power and energy usage data was collected with a Watts up? PRO meter with

an accuracy of ±1.5 percent plus three counts of the displayed value [77]. The

meter was connected to the front-end computer via USB cable. The power meter

was measuring the power consumption of the R410 server only. No display or other

3. Measuring the Energy Efficiency 21

peripherals were connected to the R410. The small temperature changes in the

server room might have caused the cooling fans of R410 to run at varying speeds,

resulting in a nominal increase or decrease in power consumption. This, however,

could not be measured or directly observed during the tests.

3.2 Test Methodology

The testing plan was the following: set up the R410 server with one virtualization

technology and run various test applications multiple times measuring power and

energy consumption. Then switch to another kind of virtualization technology and

repeat the process. Finally, compare the results to those achieved with pure hard-

ware without any virtualization. These tests run on non-virtualized environment

are henceforth referred to as the hardware tests.

The process was automated with Bash shell scripts, whose functionality is illus-

trated in Figure 3.1. A script was started from the front-end computer. It com-

manded the R410 test server to start a virtual machine. When the virtual machine

had booted, the front-end commanded the virtual machine to start the test applica-

tion in question, again using shell scripts in the virtual machine. At the same time

logging for the power meter was started. After the test run was finished, logging

was stopped and the virtual machine was rebooted and the process was repeated.

In the case of hardware tests, all of the above which concerns virtual machines was

done directly on the R410.

Front-end computer Dell PowerEdge R410

Virtual machine

Shutdown

Start virtual machine

Acknowledge

Run test

Return test results

Stop virtual machine

Acknowledge

Repeat

Watts up logger

Start logging

Stop logging
Logging Testing

Figure 3.1: Sequence diagram of testing procedure. The sequence was repeated many times
for each test to narrow down the error.

A number of test applications were used to simulate different kinds of tasks a

computer might have to test the computer’s resources inclusively. The tests can

be roughly divided into three different categories: one focusing on processor per-

formance, another focusing on network performance and the third focusing on disk

3. Measuring the Energy Efficiency 22

input/output performance. All tests specific to only one category were synthetic:

they do not represent a real life situation per se. A practical test type which tested

all three types of stresses at the same time in a more realistic situation was also

used.

The practical test type was a combined web server and database test. These tests

were conducted using various virtual machine configurations to study on different

virtualization technologies how the quality of service and energy efficiency behave

when available resources are changed. Reliable quality of service is especially impor-

tant for cloud service providers as service level agreements made with some parties

may not have an impact on agreements made with other parties—too aggressive

server consolidation can lead to performance loss [1]. The key statistic to assess the

quality of service was chosen to be web server response time, as it is the one people

first notice when browsing a website.

For all tests the output of the test application was recorded, giving performance

characteristics for comparison. All along the instantaneous power usage and total

energy consumption was measured every second. The results were then analyzed

with custom Python scripts. An object-oriented parser collection was created for

each test application, making it easier to add new test applications to the automated

process in the future. Mean values and standard deviation (or the square root of the

bias-corrected variance) were calculated from the results. A normal distribution was

assumed between test runs and a 95 percent confidence interval (CI) was calculated

as follows:

95 % CI = 𝑥̄ ± 1.96 * 𝜎√
𝑛

,

where 𝑥̄ is the arithmetic sample mean, 𝜎 is the standard deviation, and 𝑛 is the

number of samples [78]. The results were automatically compared against hardware

results, which mark the hundred percent reference points in all the resulting bar

graphs. The 95 percent confidence intervals were also automatically plotted to the

bar graphs. The automated result analysis sequence is illustrated in Figure 3.2. A

sample Watts up power log is found in Appendix 1.

As one of the points was to study how hardware and power management features

affect energy efficiency, some of the tests were conducted multiple times with different

settings. The idea was to first run the tests and compare the results to get an

overview of how different virtualization technologies compare to each other. After

this comparison, we would pick one or two virtualization technologies, change the

hardware settings and run some tests again to see the impact of different settings

on the results.

3. Measuring the Energy Efficiency 23

Parsing script Parser object

Parse data

Return parsed data

Repeat for
each parser

File system

Find all parsers

Parsers

Get data

Data

Parse Watts up log

Parse test output

Draw and compare data

Figure 3.2: Parsing the results. For each test application a separate parser object, inherited
from a common base parser object, was created.

3.3 Operating Systems and Virtual Machine Configurations

The operating system used in all the machines, be they virtual or real, was a default

installation of 64-bit Ubuntu Server 10.04.3 LTS with the newest packages available

as of August 26th 2011. The operating system was installed once. Copies of this

installation were made to disk images and different hard disk partitions which were

used by the virtualized environments. The same operating system used for hardware

tests also served as the KVM host and was located in one partition. Xen domain

zero was located in another separate partition. The virtual machine images which

were used as guests were located in a third partition. All of the partitions and images

had an ext4 file system. For VMware ESXi guests the same virtual machine images

were used but run from a Virtual Machine File System (VMFS) partition located

in a second hard disk drive. The ESXi itself was also installed in this second hard

disk drive.

The virtual machine images were stored in raw format: an exact bit-for-bit copy

of a real hard disk partition. Virtual machines were stored in image files instead

of real partitions as it is frequent in the industry: for example in cloud computing,

it is common to use a separate repository to store the virtual machine images for

deployment [79].

The operating system kernel was Linux 3.0.0 compiled from mainline sources. The

kernel was compiled with VirtIO drivers for the KVM guest. The VirtIO framework

provides paravirtualized device drivers for network and disk devices [71]. Linux’s

3. Measuring the Energy Efficiency 24

paravirt ops options were also enabled during compile time. They allow the kernel

itself to be run paravirtualized on the Xen hypervisor.

Linux 3.0.0 was chosen mainly for two reasons. Firstly and more importantly,

Linux 3.0.0 is the first kernel version to have a full Xen hypervisor support in it,

allowing one to use the same kernel for both the Xen host operating system and

the guest operating systems without kernel patches. As Linux 3.0.0 also has KVM

support, it was possible to use the same kernel in all cases: in the non-virtualized

environment, in the host operating system for KVM and Xen and in the virtual

machines themselves. This eliminated the problem of different kernels having differ-

ent performance, possibly affecting test results. In some cases, tests concerning Xen

were also conducted using Linux 3.2.0 and 2.6.32.46 patched for Xen. The second

reason for choosing Linux 3.0.0 is that it is relatively new and stable enough to be

considered realistic for production use. In our tests we studied modern virtualiza-

tion techniques; therefore a modern kernel with powerful virtualization capabilities

readily available was a reasonable choice.

For web server tests, an installation of Scientific Linux CERN 5.6 was used inside

a chroot jail. This was done to take advantage of an existing Invenio document

repository installation, which is in production use at CERN. A test was conducted

to assure the extra chroot in between the operating system and Invenio did not have

any negative effects on test results. This test was a comparison between the base

system and another chroot environment using a copy of the base system as the new

root. No negative impact in using the chroot was measured.

The KVM version used was QEMU-KVM 0.15.0. Virtual machine configurations

were given straight to the executable qemu-system-x86 64 as command line param-

eters. CPU type was set to match the host machine’s CPU. For network interface

controller, the paravirtualized VirtIO driver was used and the virtual controller was

added to a network bridge configured on the host. Disk images were also used with

the VirtIO driver. Cache mode was set to writethrough, which is the default. Some

comparative tests were also conducted with cache mode set to writeback. A special

comparative test using non-paravirtualized E1000 network device and virtual IDE

hard disk drives was also conducted.

The Xen version used was 4.1.1. A separate core and 512 MB of memory was

reserved for domain zero and the default Credit scheduler was used. Disk images

were used as loop devices: a loop device in Linux is a nonphysical device node

that makes a file accessible as a standard hard disk device would be. A special

comparative test between the default Credit scheduler and newer Credit 2 scheduler

was also conducted.

The ESXi version used was 5.0.0. Hypervisor power management settings were

left at their default, balanced. Paravirtualized VMXNET3 network devices were

3. Measuring the Energy Efficiency 25

used. Virtual machine image files were used as independent, persistent SCSI de-

vices. The SCSI controller was paravirtualized and the SCSI bus was not shared

between the virtual machines. As with KVM, a special comparative test using non-

paravirtualized E1000 network device and virtual IDE hard disk drives was also

conducted.

For hardware tests, the applications related to the test in question were executed

with the taskset utility to set CPU affinity for the process. This was done in order to

use the same amount of processing cores in hardware tests as in the virtual machine

tests. Available system memory was limited with kernel boot parameter to be of the

same size as in the virtual machine tests. When many virtual machines were run

at the same time, comparison against hardware was made either against hardware

matching one virtual machine’s resources, or against hardware matching resources

of the multiple virtual machines combined.

There were three virtual machine configurations. A configuration with four cores

and eight gigabytes of system memory was the default. It was used in all of the

synthetic benchmarks with the exception of I/O test, where the memory was lowered

to two gigabytes to inhibit caching. Another configuration with only two cores and

five gigabytes of system memory is referred to in the tests as a clone. Three copies of

the same virtual machine image was made so that three identical virtual machines

could be run at the same time. For a specific web server test, a configuration of one

machine with six cores and fifteen gigabytes of memory was also used.

In most of the tests, power management setting in BIOS was set to operating

system managed. This enabled the use of cpufreq governors, the dynamic CPU

frequency and voltage scaling algorithms of Linux [80]. By default, the performance

governor was used. It runs the CPU at maximum frequency all the time. In some

power saving feature comparison tests, the conservative governor was used. It sets

the CPU frequency depending on current usage.

3.4 Test Applications

Processor performance was measured with three benchmarks: Linpack, OpenMP

and BurnInSSE, all three from Roy Longbottom’s 64-bit benchmark collection [81].

The optimized version of Linpack was used. It is based on the popular LINPACK

benchmark from the 1980s. LINPACK is a test which gives an estimate on raw

computing speed in millions of floating point operations per second (MFLOPS);

it is also used for ranking the 500 most powerful computer systems in the world

[82]. Running Linpack is a simple way to find out if a virtualization technique

poses any processor performance overhead. As the benchmark is quick to finish,

it was run multiple times in sets of thirty consecutive runs to get reliable power

consumption measurements. The Linpack test is single-threaded, however. A similar

3. Measuring the Energy Efficiency 26

test but multithreaded, the OpenMP test was used to study a case where there are

more computation threads then there are available processors. Processor power

consumption behavior was studied by conducting ten minute burn-in runs with the

BurnInSSE application. BurnInSSE stresses the processor to the maximum with

a user-defined amount of threads. Tests were conducted using one, two and four

threads.

Disk input and output performance was measured using Bonnie++ 1.96. Bon-

nie++ tests various I/O performance characteristics such as data read and write

speed, seeking speed and various file metadata operation speeds [83]. These meta-

data operations include file creation and deletion and getting the file size or owner.

The amount of files for Bonnie++’s small file creation test was 400. For large file

test the file size was set to four gigabytes. For Bonnie++ tests, the amount of host

operating system memory was limited to 2.5 gigabytes with kernel boot parameter,

and the amount of guest operating system memory was limited to two gigabytes.

For bare hardware test, a kernel boot parameter memory limit of two gigabytes was

used. This memory limiting was necessary in order to prevent the large file test from

caching any data. The tests were run five times.

Network performance was measured using iperf 2.0.5. It is a tool capable of

measuring TCP bandwidth [84]. Three kinds of tests were run: one where the R410

test computer acted as a server, another where it was a client and a third where the

R410 did a loopback test with itself. For client–server tests the front-end computer

acted as the counterpart. Testing was done using four threads and a ten minute

timespan to get reliable power consumption figures. TCP window size was sixteen

kilobytes, the default. All three types of tests were carried out five times.

The practical test was a web server test based on Invenio document repository

software suite v0.99.2. The document repository was run on Apache 2.2.3 web server

and MySQL 5.0.77 database management system. The Apache web server was using

its prefork module for multithreading. All these software were run on Scientific Linux

CERN 5.6 inside a chroot jail. This is illustrated in Figure 3.3.

The front-end computer was used to send HTTP GET requests at a fixed rate of

requests per second. The requests were similar to data which one would acquire from

real log files of document repositories in use at CERN: for example the search terms

included publications and persons. The total amount of requests sent corresponds

to the average amount of requests the real production use repository gets in a day.

The rate at which the requests were sent in the tests is much higher, however.

This test generated all kinds of stresses to the test computer: network traffic, disk

input/output and processor usage. The HTTP requesting and performance statistics

recording was done using httperf 0.9.0, which is a tool to generate various HTTP

workloads and measure service speed and latency [85]. The httperf application was

3. Measuring the Energy Efficiency 27

Front-end computer R410 test server
Network

Virtual machine

chroot

Invenio
Apache
MySQL

httperf
Watts up logger

Figure 3.3: The web server test setup. Invenio, Apache and MySQL were running inside
a chroot jail inside a virtual machine on the R410. In the front-end computer, HTTP
workloads were generated with httperf and Watts up logger was recording the R410’s power
consumption. Routers in the network are not illustrated.

a slightly modified version which prints also the individual response times and not

just the combined statistics. These response times were used to assess the quality

of service. Response times of over ten seconds were discarded from the results and

counted as errors. These abnormally high response times were mostly encountered

at the beginning of the test, when the server was starting to fill its caches and start

new threads.

The web server test was conducted using various virtual machine configurations.

The default case used the same configuration as most of the other application tests.

In Apache settings, maximum clients (MaxClients) were set to fifteen and the httperf

request rate was ten requests per second. Another configuration, the clone, had less

resources and consequently the MaxClients was set to eight while request rate was

set to five requests per second. The clone configuration is the one which was used in

case of multiple virtual machines. Tests were conducted with one, two and three vir-

tual machines with the clone configuration. There were two reasons for choosing one

to three virtual machines. First, the R410 server could not have handled any more

without overlapping resources between the virtual machines—each virtual machine

had a dedicated pair of cores. Second, in a report by the United States Environ-

mental Protection Agency it was noted in an energy saving scenario overview that a

physical server reduction ratio of approximately one to five was usually possible [86].

A ratio of three fits right in the range. A few tests were run with a special configu-

ration with three times the resources of the clone configuration and consequently 24

MaxClients and a request rate of fifteen requests per second. When comparing the

performance with three virtual machines against hardware, this special configura-

tion was the one used for hardware. These configurations are summarized in Table

3.1. All the tests were carried out ten times for each configuration.

3. Measuring the Energy Efficiency 28

Table 3.1: Virtual machine configurations for the web server test. Memory size is in
gigabytes (GB) and request rate in requests per second.

Setup type Cores Memory (GB) MaxClients Request rate

Default 4 8 15 10

Clone 2 5 8 5

Special 6 15 24 15

To summarize the used test applications and relevant software, they are listed with

their version numbers in Table 3.2. A sample output from all the test applications

is found in Appendix 1.

Table 3.2: All the relevant software with their versions and purpose.

Software Version(s) Purpose

Apache 2.2.3 Web server

Bonnie++ 1.96 I/O performance

BurnInSSE 64-bit Multithreaded CPU

stress testing

ESXi 5.0.0 Hypervisor

httperf 0.9.0 Web server performance

Invenio v0.99.2 Document repository

iperf 2.0.5 Network performance

Linpack 64-bit optimized Single-threaded CPU

speed testing

Linux 3.0.0, 2.6.32.46, 3.2.0 Kernel

MySQL 5.0.77 Database

OpenMP 64-bit Multithreaded CPU

speed testing

QEMU-KVM 0.15.0 Hypervisor

Scientific Linux CERN 5.6 Operating system

inside chroot jail

Ubuntu 10.04.3 LTS 64-bit Operating system

Xen 4.1.1 Hypervisor

In addition to the application tests above, also the idle power consumption was

measured for each test environment. Idle power consumption was recorded with

multiple fifteen minute measurement periods. Measurements were made for setups

of one and three virtual machines and with a variety of hardware settings.

29

4. RESULTS

Test results are presented and discussed in this chapter. In Section 4.1 we introduce

the results from synthetic tests. They include for example disk input/output, net-

work and processor performance tests. Idle power consumption measurements are

also discussed in the section. In Section 4.2 we present the results from the more

practical web server tests and assess the quality of service. In Section 4.3 we present

the results from various special test cases. These include for example the effect of

Turbo Boost and different kinds of power management settings.

In the bar graph style figures in this chapter, the black lines over bars depict the

95 % certainty intervals. The hardware environment type in legends refers to the

non-virtualized test environment. In all of the tests concerning ESXi, a second hard

disk drive was installed in the system. The measured impact of the second hard disk

drive on power consumption is presented in the idle test results in Section 4.1.

4.1 Synthetic Tests

The first results in Table 4.1 are from idle power consumption measurements. The

test is synthetic in the sense that usually servers have at least some load [9].

Table 4.1: Idle power consumptions. The columns are: environment type, number of hard
disk drives (HDDs), number of virtual machines (VMs), mean power consumption (𝑃), 𝑃
relative to one HDD hardware result (% of HW), standard deviation (𝜎) and 95 percent
confidence interval (95 %). Xen 2.6 denotes Xen with Linux 2.6.32.46.

Type HDDs VMs 𝑃 (W) % of HW 𝜎 (W) 95 % (W)

Hardware
1 - 75.4 100.0 0.05 ±0.05

2 - 82.1 108.9 0.04 ±0.05

KVM 1
1 77.7 103.1 0.31 ±0.35

3 80.1 106.2 0.47 ±0.51

ESXi 2
1 139.6 185.1 0.11 ±0.12

3 139.7 185.2 0.08 ±0.09

Xen 1
1 134.3 178.1 0.24 ±0.19

3 134.0 177.7 0.61 ±0.38

Xen 2.6 1 3 103.1 136.7 0.39 ±0.45

Special 1 - 103.7 137.4 1.20 ±0.96

4. Results 30

As can be seen in Table 4.1, the idle, non-virtualized system consumes less than

eighty watts of power. Adding a second hard disk drive raises the consumption by

almost seven watts. This should be noted in all measurements concerning ESXi, as

its test setup had the second hard disk drive installed.

There is very little difference in idle power consumption between running one and

three virtual machines. KVM consumed only little more power than hardware, but

Xen consumed almost eighty percent more. Subtracting the second hard disk drive

consumption from the ESXi idle results, we see that ESXi consumed similar amount

of power as Xen. We also tested Xen with kernel version 2.6.32.46 and 3.2.0 in

addition to the 3.0.0, which was our default. Using the older kernel yielded a power

consumption level of approximately hundred watts, while the newer kernel had a

power consumption similar to the 3.0.0. Therefore with newer kernels, which have

the Xen hypervisor functionality without any patches, there seems to be something

different in the way Xen behaves.

The special environment at the bottom of the table is the single hard disk drive

hardware environment but with a USB keyboard plugged in. In the hardware there

exist some subsystems, which are not active or consuming power without any periph-

erals. The USB root hub is one of these devices. On hardware and KVM, plugging

in a USB device results in vastly increased idle power consumption. With ESXi and

newer Xen the power consumption added by the USB device is on the level of few

watts as expected. This is also the case in the other environments if there already

is system load. This indicates a big difference between the power management be-

havior of bare-metal hypervisors Xen and ESXi versus KVM, which is a standard

operating system kernel turned into a hypervisor.

0

50

100

150

200

250

300

350

400

450

%
of

ha
rd

w
ar

e
re

su
lt

29
.6

34
.2

33
.6

31
.4

13
9.

0

Hardware
Xen
ESXi
KVM (Writeback)
KVM (Writethrough)

Figure 4.1: Energy consumed by a single Bonnie++ run in watt hours. Only small differ-
ences in total energy consumption can be seen except with KVM between different cache
modes.

We measured disk input/output energy efficiency by running a set of disk op-

erations with Bonnie++. The results are shown in Figure 4.1. Xen uses slightly

4. Results 31

more energy compared to hardware to finish these operations. ESXi uses a bit less

energy than Xen even with its second hard disk drive, although it was also using a

different file system. With KVM the situation is different. When using the default

writethrough cache mode, KVM uses over 450 % as much energy as hardware to

complete the operations. The energy consumption is high because the test takes

much more time to finish. In the writethrough case, ninety percent of the time was

spent doing the small file test section of Bonnie++. Switching to writeback cache

mode, KVM’s results are very close to hardware level. Writeback cache mode writes

to a cache, which is written to permanent storage only just before the cache is re-

placed. This cache mode is not safe for production use and is recommended mainly

for testing purposes.

0

20

40

60

80

100

120

%
of

ha
rd

w
ar

e
re

su
lt

14
0.

0

15
0.

1

14
7.

2

14
7.

7

13
9.

2

14
8.

9

15
1.

7

15
1.

0

19
2.

0

19
3.

8

17
3.

9

19
3.

6

53
.3

43
.8

29
.0

36
.0

Mean power
consumption
as client (W)

Mean power
consumption
as server (W)

Mean power
consumption,
loopback (W)

Bandwidth,
loopback (Gb/s)

Hardware
KVM
Xen
ESXi

Figure 4.2: Results for iperf network performance test. Bandwidth is in gigabits per second.

In Figure 4.2 we have network performance results from iperf test. Bandwidth in

both client and server cases was approximately 940 megabits per second for all types

of virtualization technologies. As the routers in the network were gigabit routers,

taking into account the small TCP header overheads one can say the test equipment

was working at its theoretical speed limits.

ESXi with a fully virtualized network device achieved the gigabit ethernet speed,

but for some reason, with our Ubuntu installation the paravirtual device functioned

only at a hundred megabits per second. In our tests, however, bandwidth was never

the issue. That is why in the iperf results we only present the mean power consump-

tion for client and server cases. The results in Figure 4.2 are for the paravirtualized

network devices. Both as the client and as the server, all of the virtualized environ-

ments had a bit bigger power consumption compared to the hardware, but similar to

each other. Adjusting for the second hard disk drive, ESXi has a little lower power

consumption than KVM or Xen.

In the loopback test the situation is different. The bandwidth is less with each

4. Results 32

hypervisor than with pure hardware. Important to note is how Xen consumes less

power than the others but also suffers from limited loopback bandwidth. This impli-

cates that Xen is not working as fast as would be possible if the computer’s hardware

was the only limiting factor. Loopback bandwidth with ESXi was between Xen and

KVM. The absolute values are however several gigabytes per second, a bandwidth

covering almost all real life situations.

Assessing qualitatively, KVM had troubles in the iperf tests. The KVM virtual

machine’s network seemed to cease functioning quite often during the tests, prevent-

ing any remote connections to the virtual machine. KVM worked reliably only in

the loopback test. Bare hardware, Xen, and ESXi had no problems with reliability.

70

80

90

100

110

120

%
of

ha
rd

w
ar

e
re

su
lt

14
3.

4

14
3.

6

15
1.

9

16
2.

1

16
4.

4

16
5.

9

16
2.

5

17
5.

7

20
4.

8

20
4.

3

18
4.

2

20
5.

0

1 thread (W) 2 threads (W) 4 threads (W)

Hardware
KVM
Xen
ESXi

Figure 4.3: Mean power consumption in BurnInSSE with one, two and four computing
threads stressing the processor.

In Figure 4.3 are the measured power consumptions under full CPU load for one,

two and four computing threads of BurnInSSE application. With one thread, KVM

and hardware consume the same amount of power, while Xen consumes six percent

more than hardware. Adjusting for the second hard disk drive, ESXi consumes

marginally more power than Xen. With two threads all contestants consume ap-

proximately similar amount of power with the exception of ESXi’s slightly higher

consumption. With four threads Xen uses less power than KVM and hardware.

The BurnInSSE benchmark only adds load to the CPU; it does not produce any

results per se. To explain the phenomenon in Xen’s power consumption, we must

also consider the Linpack results in Figure 4.4.

From the Linpack results in Figure 4.4 we notice that Xen consumes more power

than hardware, just as in BurnInSSE with only one thread. We also note that the

computing speed is below ninety percent of hardware speed and the test takes more

time to finish. Hence the energy consumption difference is relatively bigger than

the power consumption difference compared to hardware. Using Xen, the CPU is

not running at its full speed—Xen has a systematic overhead in power consumption.

This is why in Figure 4.3 Xen consumes less power with four threads: the processor

4. Results 33

80

90

100

110

120

%
of

ha
rd

w
ar

e
re

su
lt

14
1.

7

14
1.

7

15
9.

3

14
8.

6

14
1.

5

26
.2

26
.2

30
.3

29
.3

26
.4

18
82

.1

18
75

.8

17
79

.5

16
84

.0

18
79

.4

Mean power
consumption (W)

Energy
consumption (Wh)

Speed (MFLOPS)

Hardware
KVM
ESXi
Xen, Linux 3.0.0
Xen, Linux 2.6.32.46

Figure 4.4: Energy consumption characteristics and achieved computing speed in Linpack.
Speed is in millions of floating point operations per second.

is not working at its full potential and the systematic power consumption overhead

is overshadowed by the power required by the four computing threads. With the

older kernel, Xen’s performance in Linpack is on par with hardware.

By further studying the Linpack results, we notice that the ratio between the

hardware and Xen computing speed results is the same as the ratio between the

turbo clock frequency and nominal clock frequency of the Intel E5520 processor in

our test computer. It can thus be concluded that the bad performance of Xen in

Linpack test is due to lack of Turbo Boost, which has not turned on because Xen is

keeping the whole processor busy to some extent.

KVM’s Linpack performance is on par with the hardware, but ESXi’s speed is

between Xen and hardware. This means that with ESXi, Turbo Boost is active but

not working at full speed. Thus ESXi also has some overhead in processor usage.

The higher power consumption of ESXi compared to Xen in Figure 4.3 and in Figure

4.4 is also explained by the presence of Turbo Boost, after adjusting for the second

hard disk drive of ESXi. These findings about Xen and ESXi are in line with those

observable in the idle test results in Table 4.1.

4.2 Web Server Tests

Httperf was used for testing the performance of virtualized web servers. First, test

runs were done using the same single virtual machine as with the synthetic tests.

The results of the tests for this quad-core virtual machine are presented in Figure

4.5.

For the single virtual machine setup, ESXi offers native level performance with

the cost of increased power consumption compared to hardware. KVM consumes

only little more energy than hardware, but transfer times are worse. Xen has both

4. Results 34

60

80

100

120

140

%
of

ha
rd

w
ar

e
re

su
lt

10
4.

8

11
2.

0

13
8.

7

14
4.

8

27
.3

27
.5

31
.1

27
.4

29
.1

34
.2

38
.2

30
.2

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

Hardware
KVM
Xen
ESXi

Figure 4.5: Httperf power consumption and performance results for one virtual machine.

increased response and transfer times in addition to a power consumption of ESXi

level, after taking into account the second hard disk drive of ESXi. Even though the

relative changes in response and transfer times are clear in the figure, the differences

in absolute values are small. Depending on the type of web service, a human user

would not notice if the service was a few milliseconds slower.

0
25
50
75

100
125
150
175
200
225
250
275
300

%
of

ha
rd

w
ar

e
re

su
lt

11
2.

7

12
5.

6

14
2.

0

14
8.

0

32
.7

41
.1

93
.1

74
.4

34
.9

72
.3

91
.0

72
.0

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

Hardware
KVM
Xen
ESXi

Figure 4.6: Httperf results for three virtual machines.

In Figure 4.6 are the results when using three dual-core virtual machines. The

reference hardware setup had six cores. Power consumption figures are similar to

the one virtual machine case in Figure 4.5, to the extent that for Xen and ESXi

the power consumptions have not risen that much. They are still clearly higher

than with hardware or KVM, however. ESXi and Xen are again on par with power

consumption after adjusting for the second hard disk drive of ESXi. Still comparing

to the one virtual machine case, response times have risen a little for KVM and a

lot for Xen. ESXi’s response times have radically increased from native performance

4. Results 35

level to nearly Xen’s level. The response times have also not been as stable as with

other technologies. Transfer times have increased a lot for each hypervisor.

0 15 30 45 60 75 90 105
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

Sy
st

em
lo

ad

0

25

50

75

100

M
em

or
y

us
ag

e
(%

)

KVM, load
Xen, load

KVM, memory
Xen, memory

Figure 4.7: A virtual machine’s system load and memory usage during a httperf run.

In Figure 4.7 we have plots of a virtual machine’s system load and memory usage

during a httperf run. Data in Figure 4.6 consists of runs like the one in Figure 4.7.

As can be seen, system memory usage never reaches hundred percent. System loads,

acquired with the uptime command from the last one minute period, are also most

of the time well below two, which is the number of cores the virtual machine had.

In the figure we have plotted only KVM’s and Xen’s results. They are very similar

to each other. The hardware and ESXi results were similar as well and thus not

displayed. As the results in all four cases were very similar, differences in Figure

4.6 originated from the hypervisors, not from what was happening inside the virtual

machines.

There is a relatively high load level in the beginning of the test, because for

example Apache and Invenio are starting their processing threads. This is why, on

average, the first responses take more time than the rest. We excluded up to the

first three percent of responses and noticed that the effect on mean response times

was similar with and without virtualization. The effect was relatively smaller with

greater amounts of virtual machines. In practice, however, this effect was a small

one and therefore the results shown are calculated from all responses, including the

first ones.

In Figure 4.8 is a comparison of httperf performance for KVM using one, two

and three virtual machines. Power consumption increases linearly with each virtual

machine consuming approximately thirteen watts more. Response times take a big

hit when adding a second virtual machine, but the addition of a third virtual machine

has only a small effect. With transfer times the situation is the opposite, with the

4. Results 36

0
20
40
60
80

100
120
140
160
180
200
220
240
260

%
of

ha
rd

w
ar

e
re

su
lt

99
.7

11
2.

3

12
5.

6

19
.1

35
.0

41
.1

27
.9

44
.1

72
.3

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

KVM, 1 VM
KVM, 2 VMs
KVM, 3 VMs

Figure 4.8: Httperf results for KVM using different amount of virtual machines. Reference
is the hardware setup corresponding to one virtual machine.

addition of the second virtual machine having a smaller effect than the addition of

the third.

Figure 4.8 illustrates the benefits of server consolidation very clearly. With only

a little higher power consumption, one gets double or triple the work done without

too much of an impact on performance. If the response and transfer times fit in

the customers’ service level agreements, one could consolidate the servers and save

energy. In our test case, the savings would be almost sixty percent compared to the

option of running each server in their own dedicated hardware.

0

25

50

75

100

125

150

175

200

225

250

%
of

ha
rd

w
ar

e
re

su
lt

99
.7

11
2.

0

12
7.

8

19
.1

27
.5

39
.8

27
.9

34
.2

39
.2

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

KVM, 2 VCPUs
KVM, 4 VCPUs
KVM, 6 VCPUs

Figure 4.9: Httperf results for KVM using different virtual machine resources. VCPUs
denote the amount of virtual processors.

We also tested a similar situation with one virtual machine using three different

amounts of resources. As resources were expanded, the load was increased accord-

ingly. The results are shown in Figure 4.9. Power consumption grows linearly again

4. Results 37

and is very close to that in Figure 4.8. Using just one virtual machine, also the

response and transfer time growths follow a somewhat linear fashion. The overhead

of using multiple virtual machines instead of just one with great resources is thus

observable, but not that big. KVM copes well in both cases.

0 10 20 50 100
Response time (ms)

90

95

99
100

%
of

re
sp

on
se

s

Hardware
KVM
ESXi
Xen

Figure 4.10: Quality of service curves for the three virtual machine setup. The curves
depict how big a percentage of response times were below a given value during the httperf
test runs.

Moving on to the quality of service assessment, in Figure 4.10 we see how big a

percentage of response times were below a given value. Illustrated are the results

for the three virtual machine case. For all virtualized environments, at least ninety

percent of response times were under twenty milliseconds. Using bare hardware the

response times are better and in twenty milliseconds the 95 percent coverage level

is reached. Depending on service type and service level agreements, this kind of

statistic could be used to evaluate whether a virtualization technology is suitable

for the situation. For example in our case, if 95 percent of response times should

be under fifty milliseconds, KVM and ESXi would be suitable technologies. The

corresponding power consumption figures for these statistics are in Figure 4.6.

In Figure 4.11 we have the quality of service statistics for KVM using different

amounts of virtual machines. From how the number of virtual machines affects the

shape of response time curves, one is able to predict how the quality of service would

be affected should more virtual machines be added. Hence, this type of figure could

be used as a rough estimate whether adding an extra virtual machine would still

result in satisfied service level agreements. The corresponding power consumption

figures are in Figure 4.8.

4. Results 38

0 10 20 50 100
Response time (ms)

90

95

99
100

%
of

re
sp

on
se

s

KVM, 1 VM
KVM, 2 VMs
KVM, 3 VMs

Figure 4.11: Quality of service curves for KVM using different amount of virtual machines.
The curves depict how big a percentage of response times were below a given value during
the httperf test runs.

4.3 Special Test Cases

In this section we analyze special test cases where the basic test environment setup

was adjusted in some manner. One of the adjustments is changing the power man-

agement settings. In system BIOS, one can choose between system managed and

operating system managed. The former is the default and leaves everything for the

hardware, while the latter enables using CPU governors to adjust processor operat-

ing frequency and voltage. In Table 4.2 we have the server’s idle power consumption

using both of these power management settings.

Table 4.2: Hardware idle power consumption using various power management settings.
In the column labels, 𝑃 denotes the mean power consumption, 𝜎 the standard deviation
and 95 % the 95 percent confidence interval.

Power management setting Governor 𝑃 (W) 𝜎 (W) 95 % (W)

Operating system managed
Performance 75.4 0.05 ±0.05

Conservative 75.1 0.19 ±0.22

System managed - 75.8 0.11 ±0.12

As can be seen, there is virtually no difference in power consumption level with

any of the used power management settings. The explanation is that modern pro-

cessors, for example Intel Xeons as in our test server, take advantage of processor

power states—the processors rely not only on frequency and voltage control to save

energy. When the system is idle, no load is on the processor and the processor is

set to a more energy saving power state. Hence, even if the operating frequency and

4. Results 39

voltage is lower with the conservative governor, the power consumption while idle is

the same with performance governor because the processor is sleeping.

0

20

40

60

80

100

120

140

160

180

200

220

%
of

ha
rd

w
ar

e
re

su
lt

12
5.

6

11
3.

3

11
3.

1

41
.1

45
.4

44
.6

72
.3

78
.6

78
.6

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

Performance governor
Conservative governor
System power management

Figure 4.12: Httperf results for three KVM virtual machines using different power man-
agement settings.

In Figure 4.12 we have httperf results for three KVM virtual machines with

various power management settings. Using the conservative governor saves approxi-

mately ten percent of energy, while performance is in turn almost ten percent worse.

The absolute differences are, however, again very small. Using the default system

power management option the power consumption and performance is on the con-

servative governor level.

By changing the power management settings, one may either enhance perfor-

mance or energy efficiency. With our test server using Intel Xeon processors, the

energy savings are readily achievable by the default power management settings;

with another server without good system power management, switching to the con-

servative CPU governor would result in better energy efficiency. This is especially

the case if the processor’s energy saving features were not based on processor power

states but on processor operating frequencies.

These improvements could only be achieved with KVM, however. A similar test

as in Figure 4.12 with Xen resulted in no energy savings at all using the system

power management. Xen’s virtual machines are also unable to take advantage of

CPU governors. Forcing the Xen privileged domain to use the conservative gover-

nor results in power savings but very bad performance: the operating frequencies

are never raised as the frequency control logic in the privileged domain’s Linux is

unaware of the system loads in the unprivileged domain guests. Similarly, on our

system no power management settings resulted in better energy efficiency with ESXi

guests.

In Table 4.3 we have power consumption statistics with and without Turbo Boost

4. Results 40

for the httperf test with three virtual machines on KVM hypervisor. With Turbo

Boost disabled, over seven percent of energy is saved. What is important is that

no observable degradation in performance was measured when Turbo Boost was

disabled. Consequently, the response and transfer times are omitted from the table.

Table 4.3: Httperf power consumption for three KVM virtual machines with and without
Turbo Boost. In the column labels, 𝑃 denotes the mean power consumption, 𝜎 the standard
deviation and 95 % the 95 percent confidence interval.

Turbo Boost 𝑃 (W) 𝜎 (W) 95 % (W)

Enabled 125.6 0.90 ±0.56

Disabled 116.3 0.79 ±0.49

In Figure 4.13 are the results of an iperf test for KVM with and without Turbo

Boost. Disabling Turbo Boost results in energy savings of five to six percent when

running the server as iperf client or iperf server. In loopback mode the impact on

power consumption is over eight percent. Some performance loss is observable, but

statistically insignificant. These results indicate that the mediocre performance of

Xen in the iperf test, whose results are in Figure 4.2, are not due to the lack of

Turbo Boost when using Xen.

70

80

90

100

110

%
of

ha
rd

w
ar

e
re

su
lt

15
0.

1

14
2.

7

14
8.

9

14
0.

2

19
3.

8

17
7.

5

43
.8

43
.0

Mean power
consumption
as client (W)

Mean power
consumption
as server (W)

Mean power
consumption,
loopback (W)

Bandwidth,
loopback (Gb/s)

Turbo enabled
Turbo disabled

Figure 4.13: Results for KVM with and without Turbo Boost in iperf test. Bandwidth is
in gigabits per second.

From Table 4.3 and Figure 4.13 we see that albeit Turbo Boost can improve

performance in processing power critical computing tasks, using it in a web server

only impairs energy efficiency.

In Figure 4.14 are the results for the three virtual machine httperf test with

ESXi. The two cases shown are the paravirtualized case, which was the default,

and the non-paravirtualized case with fully virtualized network adapter and hard

4. Results 41

0
25
50
75

100
125
150
175
200
225
250
275
300
325

%
of

ha
rd

w
ar

e
re

su
lt

14
8.

0

14
8.

8

74
.4

91
.7

72
.0

73
.6

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

ESXi, PV
ESXi, non-PV

Figure 4.14: Httperf results for three ESXi virtual machines with and without paravirtual-
ization.

disk drives. As can be seen, in this case the paravirtualization only affects response

time. The results also confirm that our tests did not require much bandwidth: on

our installation, the paravirtualized device was working at a hundred megabits per

second as opposed to the one gigabit per second speed of the fully virtualized device,

but there were no differences in transfer speeds.

0

25

50

75

100

125

150

175

200

%
of

ha
rd

w
ar

e
re

su
lt

11
2.

0

10
8.

9

27
.5

49
.2

34
.2

34
.6

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

KVM, PV
KVM, non-PV

Figure 4.15: Httperf results for a KVM virtual machine with and without paravirtualiza-
tion.

Figure 4.15 shows the effect of paravirtualization in the httperf test using KVM.

In the non-paravirtualized case, the network adapter and hard disk drives were

fully virtualized. As with ESXi in Figure 4.14, paravirtualization mainly affects the

response times. Interestingly, power consumption is marginally smaller when using

full virtualization.

In Figure 4.16 is illustrated the effect of moving the Scientific Linux CERN (SLC)

4. Results 42

60

80

100

120

%
of

ha
rd

w
ar

e
re

su
lt

11
2.

0

10
8.

9

27
.5

23
.3

34
.2

29
.3

Mean power
consumption (W)

Mean response
time (ms)

Mean transfer
time (ms)

SLC in an image file
SLC in a separate partition

Figure 4.16: Httperf results for KVM with the Scientific Linux CERN installation in an
image file and in a separate partition.

installation from an image file to a separate partition in the httperf test with one

KVM virtual machine. In the httperf tests, SLC was inside a chroot jail and hosted

the web services. Using a separate partition for the SLC results in marginally better

energy efficiency, but clearly improved response and transfer times. For quality of

service critical situations, using a dedicated partition might thus give better results.

In Table 4.4 we have power and energy consumption results from four sets of

OpenMP tests with Xen. OpenMP measures CPU speed by using as many threads

as there are processors in the system. We ran the OpenMP test with three virtual

machines each using either two or four virtual processors. In case of two processors,

the hardware has enough cores to dedicate one for each virtual processor. No dif-

ference between the performance of default Credit scheduler and the newer Credit

2 scheduler is observed.

Table 4.4: Effect of different schedulers on Xen’s performance in OpenMP test. VCPUs
denotes the total amount of virtual processors used by the virtual machines, 𝑃 the mean
power consumption, 𝜎 the standard deviation and 𝐸̄ the total energy consumption.

VCPUs Scheduler 𝑃 (W) 𝜎𝑝𝑜𝑤𝑒𝑟 (W) 𝐸̄ (Wh) 𝜎𝑒𝑛𝑒𝑟𝑔𝑦 (Wh)

3 × 2
Credit 181.5 0.33 19.5 0.1

Credit 2 181.2 0.31 19.6 0.0

3 × 4
Credit 161.3 0.39 245.0 50.9

Credit 2 190.1 0.71 18.7 1.2

With four virtual processors per virtual machine the situation is different. As

there are a total of twelve virtual processors and the hardware only has eight cores,

Xen’s scheduler has to share processor resources between the virtual machines. As

4. Results 43

can be seen from the table, using the default Credit scheduler the energy consump-

tion is thirteen-fold compared to the results achieved with Credit 2 scheduler. The

mean power consumption is even lower than in the case of dual-core virtual ma-

chines. These results originate from the long time it takes to finish the test with

the hindered performance of Credit scheduler. The energy consumption also varies

a lot between test runs. With Credit 2 scheduler the performance is rational. Albeit

a synthetic test, this comparison shows that one should be cautious with allocating

resources for Xen virtual machines when using the default Credit scheduler. Run-

ning the OpenMP tests with KVM and ESXi resulted in expected behavior with no

scheduling problems.

44

5. CONCLUSIONS

Measuring energy efficiency for a server requires knowledge of performance and

power consumption characteristics. We conducted sets of tests while measuring

power consumption. From the test results we assessed how virtualization affects

performance and consequently energy efficiency. In addition to bare hardware, these

tests were run using three hypervisors: KVM, Xen, and ESXi. We also tested vari-

ous configurations to find out what should one generally keep in mind when building

a virtualized environment with focus on energy efficiency.

KVM offers very good energy efficiency. In most tests, KVM had only little virtu-

alization power consumption overhead, and performance was among the best. Raw

computing speed was on bare hardware level and in web server tests the performance

overhead was predictable when the number of virtual machines or virtual machine

resources were modified. Hardware energy saving features were fully functional using

KVM. For example we were able to use CPU governors to set CPU clock frequency

from the operating system.

KVM had trouble only in Bonnie++ disk input/output and iperf network band-

width tests. The slow disk operations did not seem to affect practical performance,

however. The problems in iperf tests were not quantitative, but qualitative. If these

problems were fixed, KVM would be an excellent choice, and in most situations

already is. For example Linux distribution vendor Red Hat has already adopted to

use KVM as its main virtualization solution [87].

LXC is not yet mature enough for production use, and we were unable to conduct

tests using it. LXC has a good premise, however. As LXC uses features found in

the mainline Linux kernel, LXC will be a noteworthy option in the future as older

container-based virtualization technologies become obsolete.

Xen was a troublesome contender with respect to both performance and power

consumption. In most of the tests, its performance was the worst among tested

technologies. With the newer version 3.0.0 and 3.2.0 Linux kernels, there existed

a base overhead in power consumption and obviously in processor usage as Turbo

Boost refused to activate, impairing performance in computing power test. An

older kernel from version 2.6 series did not have such problems. Power consumption

with the older kernel was still greater than with KVM. Energy saving features like

dynamic CPU clock frequencies could not be used with Xen.

5. Conclusions 45

Xen seems to be living a transitional phase in general. For example, in our tests

it was noted how the default Credit scheduler of Xen had much trouble with cases

where the number of virtual processors was greater than the amount of physical

cores. This scheduler has received bad test results also in the past [15, 28]. The Xen

developers have also stated that the current default scheduler has problems in some

cases, and the next version, Credit 2, should address these issues [88].

ESXi, or the VMware vSphere Hypervisor, had power consumption levels similar

to Xen. Hardware energy saving features did not work on our test system with

ESXi. This would require further studying on different hardware, as ESXi should

have host power management capabilities [89]. Unlike with Xen, Turbo Boost could

activate. It could not work at its full potential, however, indicating some sort of

processor usage overhead. With respect to performance, in most tests ESXi had good

performance just behind KVM. In a single virtual machine web server test, ESXi

achieved bare hardware level performance. This shows that native level performance

is achievable with virtual computer even in complex situations where all kinds of

system resources are utilized at the same time, as opposed to for example a simple,

synthetic CPU benchmark.

In our web server tests, using Turbo Boost resulted in increased power consump-

tion with no observable performance benefits. When setting up an energy efficient

system, one should therefore assess the benefits of Turbo Boost to its downsides.

Using paravirtualization yielded no improvement on power consumption. Perfor-

mance using paravirtualization was marginally better with both KVM and ESXi,

the two hypervisors which were chosen for the web server paravirtualization tests.

The effects of paravirtualization on energy efficiency should be studied with wider

sets of tests to find out if it really does not have that much meaning, as using full

virtualization might have its benefits, for example greater flexibility. These other

benefits could then lead to better overall energy efficiency.

Another point worth closer studying is how the bare-metal hypervisors ESXi and

Xen consumed much more power than KVM, and similar amount of power to each

other. This was especially true on lighter system loads. The difference obviously lies

in the way the operating system handles some hardware subsystems as could be seen

in system power consumption figures when plugging in a USB keyboard to activate a

USB root hub. What should be studied is what these hardware subsystems exactly

are, why are they not in energy saving mode with bare-metal hypervisors, and is

this phenomenon observable when using different server hardware.

From the test results it is clear that by using virtualization for server consolidation

one achieves great energy savings independent of the virtualization technology used.

As we were able to use the same virtual machine images with different hypervisors

with practically no modifications to the images, changing the hypervisor according

5. Conclusions 46

to situation is also a realistic possibility. Using different technologies might offer

other benefits, such as wider operating system support, better migration capabili-

ties, better isolation possibilities, or simply support for the virtualization solution

currently in use. There are differences between technologies in both performance and

power consumption, but the resulting energy efficiency is a combination of choosing

the correct virtualization technology for the situation and tuning the environment

to best suit the technology. To ease maintenance challenges in such situations, there

exists tools like libvirt [90] for managing multiple virtualization technologies.

Virtualization has proven to be a succesful technique to achieve the flexibility and

cost-effectiveness required to build modern information technology infrastructures.

Commercially, virtualization has been a success, but also the open source world

offers interesting and capable virtualization solutions. KVM shows that Linux, the

same kernel that is used in computers ranging from servers to personal computers

and mobile devices, can be turned into an energy efficient hypervisor ready for

production use. Computing is greener on the virtualized side of the fence, but

nowadays passing the fence is truly possible for everyone.

47

BIBLIOGRAPHY

[1] A. Beloglazov and R. Buyya, “Energy Efficient Allocation of Virtual Machines

in Cloud Data Centers,” in Cluster, Cloud and Grid Computing (CCGrid), 2010

10th IEEE/ACM International Conference on, may 2010, pp. 577 –578.

[2] Amazon Web Services LLC, “Amazon Elastic Compute Cloud (Amazon

EC2),” February 2012. [Online]. Accessed: 30 January 2012. Available:

http://aws.amazon.com/ec2/

[3] Microsoft Corporation, “Microsoft Business Productivity Online Services and

Software - BPOS,” February 2012. [Online]. Accessed: 30 January 2012.

Available: http://www.microsoft.com/online/

[4] M. Cusumano, “Cloud computing and SaaS as new computing platforms,”

Communications of the ACM, vol. 53, no. 4, p. 27, 2010. [Online]. Accessed: 30

January 2012. Available: http://portal.acm.org/citation.cfm?doid=1721654.

1721667

[5] A. Meier and H. Stormer, eBusiness & eCommerce, E. Gosselin, Ed. Springer

Publishing Company, Incorporated, 2005. [Online]. Accessed: 30 January 2012.

Available: http://portal.acm.org/citation.cfm?id=1610392

[6] S. Harizopoulos, M. Shah, J. Meza, and P. Ranganathan, “Energy Efficiency:

The New Holy Grail of Data Management Systems Research,” Data

Management, vol. 80, no. 6, p. 4–7, 2009. [Online]. Accessed: 30 January 2012.

Available: http://arxiv.org/abs/0909.1784

[7] Austrian Energy Agency, “Energy efficient servers in Europe,” Tech.

Rep., October 2007. [Online]. Accessed: 30 January 2012. Avail-

able: http://www.efficient-datacenter.eu/fileadmin/docs/dam/downloads/

public/Summary-Report.pdf

[8] T. Niemi and A.-P. Hameri, “Memory-based scheduling of scientific computing

clusters,” The Journal of Supercomputing, pp. 1–25, 10.1007/s11227-

011-0612-6. [Online]. Accessed: 30 January 2012. Available: http:

//dx.doi.org/10.1007/s11227-011-0612-6

[9] L. Barroso and U. Holzle, “The Case for Energy-Proportional Computing,”

Computer, vol. 40, no. 12, pp. 33 –37, dec. 2007.

[10] V. Venkatachalam and M. Franz, “Power reduction techniques for

http://aws.amazon.com/ec2/
http://www.microsoft.com/online/
http://portal.acm.org/citation.cfm?doid=1721654.1721667
http://portal.acm.org/citation.cfm?doid=1721654.1721667
http://portal.acm.org/citation.cfm?id=1610392
http://arxiv.org/abs/0909.1784
http://www.efficient-datacenter.eu/fileadmin/docs/dam/downloads/public/Summary-Report.pdf
http://www.efficient-datacenter.eu/fileadmin/docs/dam/downloads/public/Summary-Report.pdf
http://dx.doi.org/10.1007/s11227-011-0612-6
http://dx.doi.org/10.1007/s11227-011-0612-6

BIBLIOGRAPHY 48

microprocessor systems,” ACM Comput. Surv., vol. 37, pp. 195–

237, September 2005. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1108956.1108957

[11] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, P. Padala, X. Zhu, Z. Wang,

S. Singhal, and K. G. Shin, “Performance evaluation of virtualization technolo-

gies for server consolidation,” Tech. Rep., 2007.

[12] I. Tafa, E. Kajo, A. Bejleri, O. Shurdi, and A. Xhuvani, “The Performance

between XEN-HVM , XEN-PV and Open-VZ during live-migration,” IJACSA

International Journal of Advanced Computer Science and Applications, vol. 2,

no. 9, pp. 126–132, 2011. [Online]. Accessed: 30 January 2012. Available:

www.ijacsa.thesai.org

[13] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-

based operating system virtualization: a scalable, high-performance

alternative to hypervisors,” SIGOPS Oper. Syst. Rev., vol. 41, pp.

275–287, March 2007. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1272998.1273025

[14] J. Wang, K.-L. Wright, and K. Gopalan, “XenLoop: a transparent

high performance inter-vm network loopback,” in Proceedings of the 17th

international symposium on High performance distributed computing, ser.

HPDC ’08. New York, NY, USA: ACM, 2008, pp. 109–118. [Online]. Accessed:

30 January 2012. Available: http://doi.acm.org/10.1145/1383422.1383437

[15] Y. Hu, X. Long, J. Zhang, J. He, and L. Xia, “I/O scheduling

model of virtual machine based on multi-core dynamic partitioning,” in

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing, ser. HPDC ’10. New York, NY, USA: ACM,

2010, pp. 142–154. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1851476.1851494

[16] Oxford University Press, “Definition for virtualize - Oxford Dictionaries Online

(World English),” December 2011. [Online]. Accessed: 30 January 2012.

Available: http://oxforddictionaries.com/definition/virtualize

[17] D. King, E. Turban, J. K. Lee, J. McKay, and P. Marshall, Electronic

Commerce 2008. Prentice Hall, 2007. [Online]. Accessed: 30 January 2012.

Available: http://www.amazon.com/dp/0132243318

http://doi.acm.org/10.1145/1108956.1108957
www.ijacsa.thesai.org
http://doi.acm.org/10.1145/1272998.1273025
http://doi.acm.org/10.1145/1383422.1383437
http://doi.acm.org/10.1145/1851476.1851494
http://oxforddictionaries.com/definition/virtualize
http://www.amazon.com/dp/0132243318

BIBLIOGRAPHY 49

[18] S. Nanda and T. Chiueh, “A Survey on Virtualization Technologies,” Science,

vol. 179, no. Vm, pp. 1–42, 2005. [Online]. Accessed: 30 January 2012.

Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.371

[19] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins,

A. V. Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith,

“Intel virtualization technology,” Computer, vol. 38, no. 5, pp. 48–

56, 2005. [Online]. Accessed: 30 January 2012. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1430631

[20] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology

and future trends,” Computer, vol. 38, no. 5, pp. 39 – 47, may 2005.

[21] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, “Architecture of the IBM

System/360,” IBM Journal of Research and Development, vol. 8, no. 2, pp. 87

–101, April 1964.

[22] W. Vogels, “Beyond Server Consolidation,” Queue, vol. 6, pp. 20–

26, January 2008. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1348583.1348590

[23] U. Steinberg and B. Kauer, “NOVA: a microhypervisor-based secure

virtualization architecture,” in Proceedings of the 5th European conference

on Computer systems, ser. EuroSys ’10. New York, NY, USA: ACM,

2010, pp. 209–222. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1755913.1755935

[24] B. Gammage and P. Dawson, “Server Workloads : What Not to Virtualize

Types of Virtualization,” System, no. March 2008, 2010.

[25] F. Bellard, “QEMU, a fast and portable dynamic translator,” 2005.

[Online]. Accessed: 30 January 2012. Available: http://www.usenix.org/event/

usenix05/tech/freenix/full papers/bellard/bellard html/

[26] L. Nussbaum, F. Anhalt, O. Mornard, and J.-P. Gelas, “Linux-based

virtualization for HPC clusters,” Network, no. Vm, pp. 221–234, 2009. [Online].

Accessed: 30 January 2012. Available: http://hal.inria.fr/inria-00425608/

[27] M. Casado and T. Koponen, “Virtualizing the Network Forwarding Plane,”

Design, pp. 8:1—8:6, 2010. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1921151.1921162

[28] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three

CPU schedulers in Xen,” SIGMETRICS Perform. Eval. Rev., vol. 35, pp.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.371
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1430631
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1430631
http://doi.acm.org/10.1145/1348583.1348590
http://doi.acm.org/10.1145/1755913.1755935
http://www.usenix.org/event/usenix05/tech/freenix/full_papers/bellard/bellard_html/
http://www.usenix.org/event/usenix05/tech/freenix/full_papers/bellard/bellard_html/
http://hal.inria.fr/inria-00425608/
http://doi.acm.org/10.1145/1921151.1921162

BIBLIOGRAPHY 50

42–51, September 2007. [Online]. Accessed: 30 January 2012. Available:

http://doi.acm.org/10.1145/1330555.1330556

[29] C. D. Patel, C. E. Bash, R. Sharma, M. Beitelmam, and R. J. Friedrich, Smart

cooling of data centers. Google Patents, 2003.

[30] L. A. Barroso, “The price of performance,” Queue, vol. 3, no. 7,

p. 48, 2005. [Online]. Accessed: 30 January 2012. Available: http:

//portal.acm.org/citation.cfm?id=1095420

[31] Standard Performance Evaluation Corporation, “SPECpower ssj2008 - ssj

Design Document,” February 2011. [Online]. Accessed: 30 January 2012.

Available: www.spec.org/power/docs/SPECpower ssj2008-Design ssj.pdf

[32] L. Gray, A. Kumar, and H. Li, Workload Characterization of the

SPECpower ssj2008 Benchmark. Springer Berlin Heidelberg, 2008, vol.

5119, pp. 262–282. [Online]. Accessed: 30 January 2012. Available:

http://www.springerlink.com/content/q5h13712v0512l55

[33] Standard Performance Evaluation Corporation, “IBM Corporation IBM

System x3200 M2 SPECpower ssj2008,” February 2011. [Online]. Accessed:

30 January 2012. Available: http://www.spec.org/power ssj2008/results/

res2011q1/power ssj2008-20110124-00340.html

[34] ——,“Fujitsu PRIMERGY TX300 S6 (Intel Xeon X5675) SPECpower ssj2008,”

March 2011. [Online]. Accessed: 30 January 2012. Available: http://www.spec.

org/power ssj2008/results/res2011q1/power ssj2008-20110222-00360.html

[35] R. P. Goldberg,“Architectural Principles for Virtual Computer Systems,”Ph.D.

dissertation, Harvard University, Cambridge, MA, 1972. [Online]. Accessed:

30 January 2012. Available: http://www.dtic.mil/cgi-bin/GetTRDoc?AD=

AD772809&Location=U2&doc=GetTRDoc.pdf

[36] VMware, Inc., “Free VMware vSphere Hypervisor: Bare Metal Hypervisor

(Based on VMware ESXi),” December 2011. [Online]. Accessed: 30 January

2012. Available: http://www.vmware.com/products/vsphere-hypervisor/

[37] Microsoft Corporation, “Microsoft Windows Server | Hyper-V | Virtualization

| Virtual Server | HyperV Workload Performance,” 2012. [Online]. Accessed:

30 January 2012. Available: http://www.microsoft.com/en-us/server-cloud/

windows-server/hyper-v.aspx

http://doi.acm.org/10.1145/1330555.1330556
http://portal.acm.org/citation.cfm?id=1095420
http://portal.acm.org/citation.cfm?id=1095420
www.spec.org/power/docs/SPECpower_ssj2008-Design_ssj.pdf
http://www.springerlink.com/content/q5h13712v0512l55
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00340.html
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110124-00340.html
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110222-00360.html
http://www.spec.org/power_ssj2008/results/res2011q1/power_ssj2008-20110222-00360.html
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=AD772809&Location=U2&doc=GetTRDoc.pdf
http://www.vmware.com/products/vsphere-hypervisor/
http://www.microsoft.com/en-us/server-cloud/windows-server/hyper-v.aspx
http://www.microsoft.com/en-us/server-cloud/windows-server/hyper-v.aspx

BIBLIOGRAPHY 51

[38] Oracle Corporation, Oracle VM VirtualBox® User Manual, December 2011.

[Online]. Accessed: 30 January 2012. Available: http://download.virtualbox.

org/virtualbox/4.1.8/UserManual.pdf

[39] J. Sugerman, G. Venkitachalam, and B.-H. Lim, Virtualizing I/O Devices

on VMware Workstation’s Hosted Virtual Machine Monitor. USENIX

Association, 2001, vol. 7, no. 2, pp. 1–14. [Online]. Accessed: 30 January 2012.

Available: http://portal.acm.org/citation.cfm?id=715774

[40] A. Kivity, U. Lublin, and A. Liguori, “KVM: the Linux Virtual Machine

Monitor,” Reading and Writing, vol. 1, pp. 225–230, 2007. [Online].

Accessed: 30 January 2012. Available: http://www.kernel.org/doc/ols/2007/

ols2007v1-pages-225-230.pdf

[41] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” Memory, vol. 37,

no. 5, pp. 164–177, 2003. [Online]. Accessed: 30 January 2012. Available:

http://portal.acm.org/citation.cfm?id=945462

[42] N. FitzRoy-Dale, “The IA-32 processor architecture,” Tech. Rep., May 2006.

[Online]. Accessed: 30 January 2012. Available: http://www.eng.ucy.ac.cy/

theocharides/courses/ece656/ia-32.pdf

[43] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 1: Basic Architecture, December 2011. [Online]. Accessed: 30

January 2012. Available: http://www.intel.com/assets/pdf/manual/253665.

pdf

[44] C. Pelletingeas, “Performance Evaluation of Virtualization with Cloud

Computing,” Ph.D. dissertation, IEEE. [Online]. Accessed: 30 January 2012.

Available: http://researchrepository.napier.ac.uk/4010/

[45] XenSource, Inc., “3.2. Windows paravirtualized drivers,” October 2007.

[Online]. Accessed: 30 January 2012. Available: http://docs.vmd.citrix.com/

XenServer/4.0.1/guest/ch03s02.html

[46] VMware, Inc., Performance Best Practices for VMware vSphere 4.1,

October 2010. [Online]. Accessed: 30 January 2012. Available: http:

//www.vmware.com/pdf/Perf Best Practices vSphere4.1.pdf

[47] The FreeBSD Project, FreeBSD Manpages, June 1993. [Online]. Accessed:

30 January 2012. Available: http://www.freebsd.org/cgi/man.cgi?query=

chroot&sektion=2

http://download.virtualbox.org/virtualbox/4.1.8/UserManual.pdf
http://download.virtualbox.org/virtualbox/4.1.8/UserManual.pdf
http://portal.acm.org/citation.cfm?id=715774
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://portal.acm.org/citation.cfm?id=945462
http://www.eng.ucy.ac.cy/theocharides/courses/ece656/ia-32.pdf
http://www.eng.ucy.ac.cy/theocharides/courses/ece656/ia-32.pdf
http://www.intel.com/assets/pdf/manual/253665.pdf
http://www.intel.com/assets/pdf/manual/253665.pdf
http://researchrepository.napier.ac.uk/4010/
http://docs.vmd.citrix.com/XenServer/4.0.1/guest/ch03s02.html
http://docs.vmd.citrix.com/XenServer/4.0.1/guest/ch03s02.html
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.1.pdf
http://www.vmware.com/pdf/Perf_Best_Practices_vSphere4.1.pdf
http://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2

BIBLIOGRAPHY 52

[48] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure

environment for untrusted helper applications confining the Wily Hacker,” in

Proceedings of the 6th conference on USENIX Security Symposium, Focusing

on Applications of Cryptography - Volume 6. Berkeley, CA, USA: USENIX

Association, 1996, pp. 1–1. [Online]. Accessed: 30 January 2012. Available:

http://dl.acm.org/citation.cfm?id=1267569.1267570

[49] C. Greamo and A. Ghosh, “Sandboxing and Virtualization: Modern Tools

for Combating Malware,” IEEE Security Privacy Magazine, vol. 9, no. 2,

pp. 2011–2011, 2011. [Online]. Accessed: 30 January 2012. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5739643

[50] J. Ahola, A. Ashraf, B. Gupta, U. Hassan, M. Hartikainen,

M. Helenius, K. Heljanko, J. Järvenpää, A. Kallio, J. Kannisto,

and et al., “Best Practices for Cloud Computing,” Tech. Rep.,

2010. [Online]. Accessed: 30 January 2012. Available: http://www.

cloudsoftwareprogram.org/rs/2234/9ed65124-0873-400e-bc8a-9c85c1f1afa8/

63b/filename/d1-1-2-techreportbestpracticesforcloudcomputing.pdf

[51] PayPal, Inc., PayPal Sandbox User Guide, October 2007. [Online]. Accessed:

30 January 2012. Available: https://www.paypalobjects.com/de DE/pdf/PP

Sandbox UserGuideDE.pdf

[52] B. Hayes, “Cloud Computing: As Software Migrates from Local PCs to Distant

Internet Servers, Users and Developers Alike Go Along for the Ride,” Commu-

nications of the ACM, vol. 51, no. 2, pp. 9–11, 2008.

[53] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in

the clouds: towards a cloud definition,” SIGCOMM Comput. Commun. Rev.,

vol. 39, pp. 50–55, December 2008. [Online]. Accessed: 30 January 2012.

Available: http://doi.acm.org/10.1145/1496091.1496100

[54] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and

research challenges,” Journal of Internet Services and Applications, vol. 1,

no. 1, pp. 7–18, 2010. [Online]. Accessed: 30 January 2012. Available:

http://www.springerlink.com/index/10.1007/s13174-010-0007-6

[55] B. Armbrust, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, and A. Rabkin, “A view of cloud computing,” Communications

of the ACM, vol. 53, no. 4, pp. 50–58, 2010. [Online]. Accessed: 30 January

2012. Available: http://portal.acm.org/citation.cfm?id=1721672

http://dl.acm.org/citation.cfm?id=1267569.1267570
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5739643
http://www.cloudsoftwareprogram.org/rs/2234/9ed65124-0873-400e-bc8a-9c85c1f1afa8/63b/filename/d1-1-2-techreportbestpracticesforcloudcomputing.pdf
http://www.cloudsoftwareprogram.org/rs/2234/9ed65124-0873-400e-bc8a-9c85c1f1afa8/63b/filename/d1-1-2-techreportbestpracticesforcloudcomputing.pdf
http://www.cloudsoftwareprogram.org/rs/2234/9ed65124-0873-400e-bc8a-9c85c1f1afa8/63b/filename/d1-1-2-techreportbestpracticesforcloudcomputing.pdf
https://www.paypalobjects.com/de_DE/pdf/PP_Sandbox_UserGuideDE.pdf
https://www.paypalobjects.com/de_DE/pdf/PP_Sandbox_UserGuideDE.pdf
http://doi.acm.org/10.1145/1496091.1496100
http://www.springerlink.com/index/10.1007/s13174-010-0007-6
http://portal.acm.org/citation.cfm?id=1721672

BIBLIOGRAPHY 53

[56] E. Ciurana, Developing with Google App Engine. Springer, 2009. [Online].

Accessed: 30 January 2012. Available: http://books.google.com/books?hl=

en&lr=&id= ks9HQLVxaAC&pgis=1

[57] R. Attebury, J. George, C. Judd, B. Marcum, and N. Montgomery, “Google

docs: a review,” Against the Grain, vol. 20, no. 2, pp. 38,40,42, 2008.

[58] Amazon.com, Inc., “Amazon Elastic Compute Cloud (Amazon EC2),” 2008.

[Online]. Accessed: 30 January 2012. Available: http://aws.amazon.com/ec2/

[59] Zenoss, Inc., “2010 Virtualization and Cloud Computing Survey,” 2010.

[Online]. Accessed: 30 January 2012. Available: http://www.zenoss.com/in/

virtualization survey.html

[60] E. A. Lee, “The Problem with Threads,” Computer, vol. 39, no. 5,

pp. 33–42, 2006. [Online]. Accessed: 30 January 2012. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631937

[61] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,

and D. M. Tullsen, “Simultaneous Multithreading: A Platform for

Next-Generation Processors,” IEEE Micro, vol. 17, no. 5, pp. 12–

18, 1997. [Online]. Accessed: 30 January 2012. Available: http:

//ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=621209

[62] T. L. Martin and D. P. Siewiorek, “Nonideal battery and main memory effects

on CPU speed-setting for low power,” IEEE Trans Very Large Scale Integr

Syst, vol. 9, no. 1, pp. 29–34, 2001. [Online]. Accessed: 30 January 2012.

Available: http://portal.acm.org/citation.cfm?id=375817.375831

[63] Intel Corporation, “Enhanced Intel SpeedStep® Technology and

Demand-Based Switching on Linux,” 2009. [Online]. Accessed:

30 January 2012. Available: http://software.intel.com/en-us/articles/

enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/

[64] Advanced Micro Devices, Inc., “Energy-efficient AMD Desktop Processors,”

January 2008. [Online]. Accessed: 30 January 2012. Available: http:

//www.amd.com/us/Documents/43029A Brochure PFD.pdf

[65] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,

Phoenix Technologies Ltd., and Toshiba Corporation, Advanced Configuration

and Power Interface Specification, December 2011. [Online]. Accessed: 30

January 2012. Available: http://www.acpi.info/spec.htm

http://books.google.com/books?hl=en&lr=&id=_ks9HQLVxaAC&pgis=1
http://books.google.com/books?hl=en&lr=&id=_ks9HQLVxaAC&pgis=1
http://aws.amazon.com/ec2/
http://www.zenoss.com/in/virtualization_survey.html
http://www.zenoss.com/in/virtualization_survey.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1631937
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=621209
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=621209
http://portal.acm.org/citation.cfm?id=375817.375831
http://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/
http://software.intel.com/en-us/articles/enhanced-intel-speedstepr-technology-and-demand-based-switching-on-linux/
http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf
http://www.amd.com/us/Documents/43029A_Brochure_PFD.pdf
http://www.acpi.info/spec.htm

BIBLIOGRAPHY 54

[66] Intel Corporation, “Intel® Turbo Boost Technology in Intel® Core™
Microarchitecture (Nehalem) Based Processors,” Tech. Rep., November 2008.

[Online]. Accessed: 30 January 2012. Available: http://download.intel.com/

design/processor/applnots/320354.pdf

[67] D. Koufaty and D. T. Marr, “Hyperthreading technology in the netburst

microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56–65, 2003. [Online].

Accessed: 30 January 2012. Available: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1196115

[68] Intel Corporation, “First the Tick, Now the Tock: Intel® Microarchitecture

(Nehalem),” Tech. Rep., 2009. [Online]. Accessed: 30 January 2012. Available:

http://www.intel.com/technology/architecture-silicon/next-gen/319724.pdf

[69] J. R. Bulpin and I. A. Pratt, “Hyper-threading aware process scheduling

heuristics,” in Proceedings of the annual conference on USENIX Annual

Technical Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX

Association, 2005, pp. 27–27. [Online]. Accessed: 30 January 2012. Available:

http://dl.acm.org/citation.cfm?id=1247360.1247387

[70] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey, “Evaluating the

Impact of Simultaneous Multithreading on Network Servers Using Real

Hardware,” SIGMETRICS 05 Proceedings of the 2005 ACM SIGMET-

RICS international conference on Measurement and modeling of computer

systems, vol. 33, no. 1, p. 315, 2005. [Online]. Accessed: 30 Jan-

uary 2012. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=

pubmed&cmd=Retrieve&dopt=AbstractPlus&list uids=1064212.1064254

[71] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,”

SIGOPS Oper. Syst. Rev., vol. 42, pp. 95–103, July 2008. [Online]. Accessed:

30 January 2012. Available: http://doi.acm.org/10.1145/1400097.1400108

[72] D. G. Murray, G. Milos, and S. Hand, “Improving Xen security

through disaggregation,” Proceedings of the fourth ACM SIGPLANSIGOPS

international conference on Virtual execution environments VEE 08,

pp. 151–160, 2008. [Online]. Accessed: 30 January 2012. Available:

http://portal.acm.org/citation.cfm?id=1346256.1346278

[73] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security. O’Reilly

& Associates, 1996, no. April. [Online]. Accessed: 30 January 2012. Avail-

able: http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=

ASIN/0596003234

http://download.intel.com/design/processor/applnots/320354.pdf
http://download.intel.com/design/processor/applnots/320354.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1196115
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1196115
http://www.intel.com/technology/architecture-silicon/next-gen/319724.pdf
http://dl.acm.org/citation.cfm?id=1247360.1247387
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1064212.1064254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1064212.1064254
http://doi.acm.org/10.1145/1400097.1400108
http://portal.acm.org/citation.cfm?id=1346256.1346278
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0596003234
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0596003234

BIBLIOGRAPHY 55

[74] “lxc Linux Containers,” December 2011. [Online]. Accessed: 30 January 2012.

Available: http://lxc.sourceforge.net/

[75] M. Bardac, R. Deaconescu, and A. M. Florea, “Scaling Peer-to-Peer testing

using Linux Containers,” in Roedunet International Conference (RoEduNet),

2010 9th, june 2010, pp. 287 –292.

[76] P. Menage, CGROUPS, August 2011. [Online]. Accessed: 30 January 2012.

Available: http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[77] Electronic Educational Devices, Watts up? Manual 7.0 b (Page 2 - 3),

February 2008. [Online]. Accessed: 30 January 2012. Available: https:

//www.wattsupmeters.com/secure/downloads/manual rev 9 corded0812.pdf

[78] D. L. Streiner, “Maintaining standards: differences between the standard devi-

ation and standard error, and when to use each,” Canadian Journal of Psychi-

atry, vol. 41, no. 0706-7437 (Print) LA - eng PT - Journal Article SB - IM, pp.

498–502, 1996.

[79] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security

of virtual machine images in a cloud environment,” Proceedings of the

2009 ACM workshop on Cloud computing security CCSW 09, vol. 28,

no. Vm, p. 91, 2009. [Online]. Accessed: 30 January 2012. Available:

http://portal.acm.org/citation.cfm?doid=1655008.1655021

[80] D. Brodowski, CPU frequency and voltage scaling code in the Linux(TM)

kernel, July 2011. [Online]. Accessed: 30 January 2012. Available:

http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

[81] R. Longbottom, “Roy Longbottom’s PC Benchmark Collection,” November

2011. [Online]. Accessed: 30 January 2012. Available: http://www.

roylongbottom.org.uk

[82] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark: past,

present and future,” Concurrency and Computation Practice and Experience,

vol. 15, no. 9, pp. 803–820, 2003. [Online]. Accessed: 30 January 2012.

Available: http://doi.wiley.com/10.1002/cpe.728

[83] B. Martin, “Using Bonnie++ for filesystem performance benchmarking,” 2008.

[Online]. Accessed: 30 January 2012. Available: http://archive09.linux.com/

feature/139742

[84] M. Egli and D. Gugelmann, Iperf - network stress tool, 2007. [Online].

Accessed: 30 January 2012. Available: http://wo-ist.net/files/iperf.pdf

http://lxc.sourceforge.net/
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.wattsupmeters.com/secure/downloads/manual_rev_9_corded0812.pdf
https://www.wattsupmeters.com/secure/downloads/manual_rev_9_corded0812.pdf
http://portal.acm.org/citation.cfm?doid=1655008.1655021
http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.roylongbottom.org.uk
http://www.roylongbottom.org.uk
http://doi.wiley.com/10.1002/cpe.728
http://archive09.linux.com/feature/139742
http://archive09.linux.com/feature/139742
http://wo-ist.net/files/iperf.pdf

BIBLIOGRAPHY 56

[85] D. Mosberger and T. Jin, “Httperf, a tool for measuring web server perfor-

mance,” First Workshop on Internet Server Performance, vol. 26, pp. 31–37,

1998.

[86] United States Environmental Protection Agency, “Report to Congress on

Server and Data Center Energy Efficiency Public Law 109-431,” Environmental

Protection, vol. 109, p. 431, 2007. [Online]. Accessed: 30 January

2012. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

136.3058&rep=rep1&type=pdf

[87] Red Hat, Inc., “KVM – Kernel-based Virtual Machine,” Tech. Rep.,

September 2008. [Online]. Accessed: 30 January 2012. Available: http:

//www.redhat.com/resourcelibrary/whitepapers/doc-kvm

[88] Xen.org, Xen 4.1 Data Sheet, March 2011. [Online]. Accessed: 30 January

2012. Available: http://xen.org/files/Xen 4 1 Datasheet.pdf

[89] VMware, Inc., “Host Power Management in VMware vSphere 5,” Tech.

Rep., August 2011. [Online]. Accessed: 30 January 2012. Available:

http://www.vmware.com/files/pdf/hpm-perf-vsphere5.pdf

[90] M. Bolte, M. Sievers, G. Birkenheuer, O. Niehörster, and A. Brinkmann,

Non-intrusive Virtualization Management using libvirt, 2010, p. 574–579.

[Online]. Accessed: 30 January 2012. Available: http://portal.acm.org/

citation.cfm?id=1871061

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.3058&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.3058&rep=rep1&type=pdf
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm
http://www.redhat.com/resourcelibrary/whitepapers/doc-kvm
http://xen.org/files/Xen_4_1_Datasheet.pdf
http://www.vmware.com/files/pdf/hpm-perf-vsphere5.pdf
http://portal.acm.org/citation.cfm?id=1871061
http://portal.acm.org/citation.cfm?id=1871061

57

APPENDIX 1: OUTPUT SAMPLES

Watts up? PRO log

2011−10−18 18 : 2 5 : 0 5 ; 1 3 1 8955105 ; 1 1 8 . 9 ; 0 . 0

2011−10−18 18 : 2 5 : 0 6 ; 1 3 1 8955106 ; 1 4 4 . 6 ; 0 . 0

2011−10−18 18 : 2 5 : 0 7 ; 1 3 1 8955107 ; 1 3 4 . 9 ; 0 . 1

2011−10−18 18 : 2 5 : 0 8 ; 1 3 1 8955108 ; 1 8 7 . 2 ; 0 . 1

2011−10−18 18 : 2 5 : 0 9 ; 1 3 1 8955109 ; 1 9 4 . 3 ; 0 . 2

2011−10−18 18 : 2 5 : 1 0 ; 1 3 1 8955110 ; 1 9 4 . 1 ; 0 . 2

2011−10−18 18 : 2 5 : 1 1 ; 1 3 1 8955111 ; 1 9 3 . 9 ; 0 . 3

2011−10−18 18 : 2 5 : 1 2 ; 1 3 1 8955112 ; 1 9 3 . 2 ; 0 . 3

2011−10−18 18 : 2 5 : 1 3 ; 1 3 1 8955113 ; 1 4 5 . 1 ; 0 . 4

2011−10−18 18 : 2 5 : 1 4 ; 1 3 1 8955114 ; 1 3 6 . 6 ; 0 . 4

2011−10−18 18 : 2 5 : 1 5 ; 1 3 1 8955115 ; 1 2 3 . 2 ; 0 . 4

2011−10−18 18 : 2 5 : 1 6 ; 1 3 1 8955116 ; 1 2 3 . 2 ; 0 . 5

2011−10−18 18 : 2 5 : 1 7 ; 1 3 1 8955117 ; 1 1 6 . 1 ; 0 . 5

2011−10−18 18 : 2 5 : 1 8 ; 1 3 1 8955118 ; 1 3 4 . 4 ; 0 . 5

2011−10−18 18 : 2 5 : 1 9 ; 1 3 1 8955119 ; 1 2 1 . 2 ; 0 . 6

2011−10−18 18 : 2 5 : 2 0 ; 1 3 1 8955120 ; 1 2 1 . 1 ; 0 . 6

2011−10−18 18 : 2 5 : 2 1 ; 1 3 1 8 9 55 121 ; 9 8 . 4 ; 0 . 6

2011−10−18 18 : 2 5 : 2 2 ; 1 3 1 8 9 55 122 ; 9 0 . 1 ; 0 . 7

2011−10−18 18 : 2 5 : 2 3 ; 1 3 1 8 9 55 123 ; 8 5 . 0 ; 0 . 7

Linpack

##

Assembler CPUID and RDTSC

CPU GenuineInte l , Features Code BFEBFBFF, Model Code 000106A5

I n t e l (R) Xeon(R) CPU E5520 @ 2.27GHz

Measured − Minimum 2261 MHz, Maximum 2261 MHz

Linux Functions

ge t nproc s () − CPUs 8 , Conf igured CPUs 8

get phys pages () and s i z e − RAM Size 7 .07 GB, Page S i z e 4096 Bytes

uname () − Linux , milka , 3 . 0 . 0

#3 SMP Tue Aug 23 15 : 13 : 06 CEST 2011 , x86 64

##

Linpack Double P r e c i s i on Unro l l ed Benchmark n @ 100

Optimisat ion Opt 3 64 Bit , Thu Sep 29 11 : 27 : 50 2011

Speed 1879.49 MFLOPS

Numeric r e s u l t s were as expected

1. Output Samples 58

iperf

−−
Cl i en t connect ing to 192 . 1 68 . 2 . 2 35 , TCP port 5001

TCP window s i z e : 16 .0 KByte (d e f au l t)

−−
[4] l o c a l 192 . 168 . 2 . 232 port 43710 connected with 192 . 168 . 2 . 2 35 port 5001

[3] l o c a l 192 . 168 . 2 . 232 port 43709 connected with 192 . 168 . 2 . 2 35 port 5001

[5] l o c a l 192 . 168 . 2 . 232 port 43711 connected with 192 . 168 . 2 . 2 35 port 5001

[6] l o c a l 192 . 168 . 2 . 232 port 43712 connected with 192 . 168 . 2 . 2 35 port 5001

[ID] I n t e r v a l Trans fe r Bandwidth

[4] 0.0 −600.0 sec 16 .7 GBytes 239 Mbits/ sec

[3] 0.0 −600.0 sec 16 .1 GBytes 231 Mbits/ sec

[6] 0.0 −600.1 sec 16 .1 GBytes 231 Mbits/ sec

[5] 0.0 −600.1 sec 16 .8 GBytes 240 Mbits/ sec

[SUM] 0.0 −600.1 sec 65 .8 GBytes 942 Mbits/ sec

httperf

1318955105.014323 0.737685

1318955105.112467 0.735838

. . .

1318958446.873909 0.000559

1318958446.977073 0.003730

Maximum connect burst l ength : 1

Total : connect i ons 33434 r eque s t s 33434 r e p l i e s 33424 te s t−durat ion 3343.301 s

Connection ra t e : 10 .0 conn/ s (100 . 0 ms/conn , <=83 concurrent connect i ons)

Connection time [ms] : min 0 .3 avg 59 .6 max 13380.1 median 0 .5 stddev 399 .5

Connection time [ms] : connect 0 . 2

Connection l ength [r e p l i e s /conn] : 1 .000

Request r a t e : 10 .0 req / s (100 . 0 ms/ req)

Request s i z e [B] : 96 .0

Reply ra t e [r e p l i e s / s] : min 1 .0 avg 10 .0 max 17 .0 stddev 0 .6 (668 samples)

Reply time [ms] : r e sponse 30 .1 t r a n s f e r 29 .3

Reply s i z e [B] : header 217 .0 content 5057 .0 f o o t e r 0 . 0 (t o t a l 5274 .0)

Reply s t a tu s : 1xx=0 2xx=31781 3xx=2 4xx=1641 5xx=0

CPU time [s] : user 799 .43 system 2542.73 (user 23.9% system 76.1% t o t a l 100.0%)

Net I /O: 52 .4 KB/ s (0 .4∗10ˆ6 bps)

Errors : t o t a l 10 c l i e n t −timo 10 socket−timo 0 connre fused 0 connre se t 0

Errors : fd−unava i l 0 addrunavai l 0 ftab− f u l l 0 other 0

1. Output Samples 59

OpenMP

##

Assembler CPUID and RDTSC

CPU GenuineInte l , Features Code BFEBFBFF, Model Code 000106A5

I n t e l (R) Xeon(R) CPU E5520 @ 2.27GHz

Measured − Minimum 2261 MHz, Maximum 2261 MHz

Linux Functions

ge t nproc s () − CPUs 8 , Conf igured CPUs 8

get phys pages () and s i z e − RAM Size 7 .82 GB, Page S i z e 4096 Bytes

uname () − Linux , milka , 3 . 0 . 0

#3 SMP Tue Aug 23 15 : 13 : 06 CEST 2011 , x86 64

##

64 Bit OpenMP MFLOPS Benchmark 1 Mon Oct 24 16 : 19 : 45 2011

Via Ubuntu 64 Bit Compiler

Test 4 Byte Ops/ Repeat Seconds MFLOPS F i r s t Al l

Words Word Passes Resu l t s Same

Data in & out 100000 2 2500 0.084233 5936 0.929538 Yes

Data in & out 1000000 2 250 0.078038 6407 0.992550 Yes

Data in & out 10000000 2 25 0.172303 2902 0.999250 Yes

Data in & out 100000 8 2500 0.183409 10905 0.957117 Yes

Data in & out 1000000 8 250 0.178034 11234 0.995517 Yes

Data in & out 10000000 8 25 0.192494 10390 0.999549 Yes

Data in & out 100000 32 2500 0.584376 13690 0.890211 Yes

Data in & out 1000000 32 250 0.578125 13838 0.988082 Yes

Data in & out 10000000 32 25 0.582955 13723 0.998796 Yes

Bonnie++

Started : Tue Jan 24 15 : 49 : 59 CET 2012

Vers ion 1 .96 −−−−−−Sequent i a l Output−−−−−− −−Sequent i a l Input− −−Random−
Concurrency 1 −Per Chr− −−Block−− −Rewrite− −Per Chr− −−Block−− −−Seeks−−
Machine S i z e K/ sec %CP K/ sec %CP K/ sec %CP K/ sec %CP K/ sec %CP / sec %CP

milka 4G 881 97 104951 7 37805 5 3823 94 124686 10 233 .5 5

Latency 9274 us 603ms 1908ms 9699 us 25248 us 2139ms

Vers ion 1 .96 −−−−−−Sequent i a l Create−−−−−− −−−−−−−−Random Create−−−−−−−−
milka −Create−− −−Read−−− −Delete−− −Create−− −−Read−−− −Delete−−

f i l e s / sec %CP / sec %CP / sec %CP / sec %CP / sec %CP / sec %CP

400 49167 61 725102 99 1095 1 51502 61 +++++ +++ 1135 1

Latency 653ms 442us 17804ms 641ms 12us 16109ms

1 . 9 6 , 1 . 9 6 , milka ,1 ,1327415729 ,4G, ,881 ,97 ,104951 ,7 ,37805 ,5 ,3823 ,94 ,124686 ,10 ,233 .5 ,

5 ,400 , , , , ,49167 ,61 ,725102 ,99 ,1095 ,1 ,51502 ,61 ,+++++ ,+++ ,1135 ,1 ,9274 us ,603ms,1908ms ,

9699us ,25248 us ,2139ms,653ms,442 us ,17804ms,641ms,12 us ,16109ms

Fin i shed : Tue Jan 24 16 : 06 : 19 CET 2012

	Introduction
	Background
	Virtualization
	Reasons to Go Virtual
	Server Consolidation
	Virtualization Technologies
	Cloud Computing
	Hardware Features
	The Virtualization Lineup
	KVM
	Xen
	VMware ESXi
	Chroot
	LXC

	Measuring the Energy Efficiency
	Test Environment Hardware
	Test Methodology
	Operating Systems and Virtual Machine Configurations
	Test Applications

	Results
	Synthetic Tests
	Web Server Tests
	Special Test Cases

	Conclusions
	References
	Output Samples

