
Heikki Peltola
UTILIZING EXTERNAL SERVICES AND SHARING CONTENT IN
A CONTENT MANAGEMENT SYSTEM
Master of Science Thesis

Examiners: Prof. Tommi Mikkonen,
M.Sc. Niko Mäkitalo
Examiners and topic
approved by Department
Council 08.02.2012

II

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
PELTOLA, HEIKKI : UTILIZING EXTERNAL SERVICES AND SHARING CON-
TENT IN A CONTENT MANAGEMENT SYSTEM
Master of Science Thesis, 61 pages
March 2012
Major: Software Engineering
Examiners: Prof. Tommi Mikkonen, M.Sc. Niko Mäkitalo
Keywords: content management, distributed system, external service, context

People are using more and more online services. Many of the services are used for

storing content. Also the number of users’ personal devices – mobile phones, laptops,

cameras, and so forth – is increasing rapidly. Consequently, the amount of content stored

in the services and devices people are using is constantly growing. Managing all of the

content located in different places is therefore becoming an increasing problem. It is not

easy to search for a certain piece of content, if one cannot remember in what service or

device the content is stored at. Content can also easily become forgotten and lost in a

rarely used device.

This thesis presents new and improved features to an existing content management

system named VisualREST, which is designed for managing content from all of the user’s

devices. We are presenting new ways of importing content from user’s devices, as well as

importing content from external services, in order for the content management system to

be as comprehensive as possible. Searching content is an important and often used feature

of a content management system. Therefore, a new, user-friendlier interface for searching

content is presented. Sharing content with other users should be quick and easy, and for

that end a notion of context is presented. It is designed to help share content between a

predefined group of people. All of these features have been implemented and tested in

VisualREST.

III

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
PELTOLA, HEIKKI: ULKOISTEN PALVELUIDEN HYÖDYNTÄMINEN JA SISÄL-
LÖN JAKAMINEN SISÄLLÖNHALLINTAJÄRJESTELMÄSSÄ
Diplomityö, 61 sivua
Maaliskuu 2012
Pääaine: Ohjelmistotuotanto
Tarkastajat: Prof. Tommi Mikkonen, DI. Niko Mäkitalo
Avainsanat: sisällönhallinta, hajautettu järjestelmä, ulkoinen palvelu, konteksti

Internet-palveluiden määrä kasvaa jatkuvasti tarjoten käyttäjille yhä enemmän valin-

nan varaa. Tärkeä ja suosittu palveluiden käyttötarkoitus on sisällön säilöminen. Myös

henkilökohtaisten laitteiden – matkapuhelimien, kannettattavien tietokoneiden, kameroi-

den, ja niin edelleen – määrä on kasvanut nopeasti. Näin ollen myös palveluissa ja lait-

teissa olevan sisällön määrä jatkaa kasvuaan. Sisällön hallinta eri palveluiden ja laittei-

den välillä on siksi kasvava ongelma. Halutun sisällön hakeminen ei ole helppoa, jos

ei muista missä palvelussa tai laitteessa kyseistä sisältöä säilytetään. Sisältö voi myös

helposti unohtua ja hävitä harvoin käytetyllä laitteella.

Tässä diplomityössä esitetään uusia ja paranneltuja ominaisuuksia olemassaolevaan

sisällönhallintajärjestelmään nimeltään VisualREST, joka on suunniteltu hallitsemaan si-

sältöä kaikilta käyttäjien laitteilta. Työssä esitämme uusia tapoja ladata sisältöä toisista

palveluista VisualRESTiin, jotta sisällönhallintajärjestelmässä olisi mahdollisimman kat-

tavasti saatavilla kaikki käyttäjien tuottama ja omistama sisältö. Sisällön etsiminen on

tärkeä ja usein käytetty sisällönhallintajärjestelmän ominaisuus, ja siksi esitämme uu-

den, käyttäjäystävällisemmän rajapinnan sisällön etsimiseen. Sisällön jakaminen muiden

käyttäjien kanssa tulisi olla helppoa ja nopeaa, ja siksi esittelemme käsitteen context. Se

on suunniteltu helpottamaan sisällön jakamista ennalta määrätyn joukon kesken tietyssä

käyttökontekstissa. Kaikki edellä mainitut ominaisuudet ovat toteutettu ja testattu Visual-

RESTissä.

IV

FOREWORD

I got onboard the VisualREST project in the year 2010, a year after it was started. Work-

ing for the project and studying at the same time has supported each other, in spite of

occasional long working hours.

I would like to thank all of the people that have been part of the project from Aalto

University, Nokia Research Center and Tampere University of Technology. Especially, I

would like to thank Tommi Mikkonen for his encouraging and constructive guidance, and

Niko Mäkitalo for recommending me to work in the project and his help and feedback

for this thesis. I would also like to thank my parents Hannele and Harri for their support.

Finally, I would like to thank my dear companion Marja for her love and encouragement.

Tampere, February 9, 2012

Heikki Peltola

heikki.peltola@tut.fi

+358 50 302 7856

V

TABLE OF CONTENTS

1. Introduction . 1

2. Background . 3

2.1 Content management system . 3

2.1.1 Distributed system . 4

2.1.2 Content, metadata and essence . 5

2.2 Technical background . 5

2.2.1 REST . 6

2.2.2 Message passing . 6

2.2.3 Ruby on Rails . 7

2.2.4 OAuth . 8

3. Content management system – VisualREST . 10

3.1 Overview . 10

3.2 Authentication . 13

3.3 Container . 14

3.4 Metadata . 15

3.5 Searching content . 16

3.5.1 Search parameters . 17

3.5.2 Query interface . 18

3.6 Notifications . 26

4. Getting content to the content management system 28

4.1 Importing content from devices . 28

4.1.1 Container program . 29

4.1.2 Sending content as email attachment 30

4.1.3 Uploading content with web browser 31

4.2 Importing content from other services . 32

4.2.1 Importing from mail account . 33

4.2.2 Importing from Flickr . 35

4.2.3 Importing from Facebook . 38

4.2.4 Importing from Dropbox . 39

VI

5. Sharing content using contexts . 41

5.1 What is context . 41

5.2 Content in Context . 42

5.3 Context access rights . 44

5.4 Context interface . 45

5.4.1 Create context . 45

5.4.2 Modify context . 46

5.4.3 Delete context . 47

5.4.4 Name context . 48

5.4.5 Search contexts . 49

5.4.6 Get context . 51

6. Evaluation . 52

6.1 Content query interface . 52

6.2 Importing content . 53

6.3 Using contexts . 55

7. Conclusion . 56

References . 58

1

1. INTRODUCTION

The Internet is becoming more and more accessible to people all around the world. Ac-

cording to Internet World Statistics, in March 2011, 58.2% of population in Europe is

using the Internet [1]. The amount of internet users has more than tripled since the year

2000. People connected to the Internet are using services that are offering content storing

capabilities for pictures, documents and other types of content. People also have more and

more personal devices in their use. There are desktop computers, laptops, cameras, mo-

bile phones, smart phones, et cetera. The amount of content in those devices is constantly

growing. New and better ways of managing the growing amount of content situated in all

of the different services and devices are needed. All of the content must be made available

from a single entry point.

In this thesis we present ways of extending an existing content management system.

We present how content can be imported from users’ devices and services that store users’

content, into an existing content management system named VisualREST [2]. The search

features of VisualREST are improved by offering a new content search interface. We also

present a way of grouping and sharing content with other users. Our research problem

in this thesis is how to import all users’ content to a content management system? In

order to import users’ content as comprehensively as possible, users must be offered ways

of importing content from different sources. Additionally, this thesis focuses on, how

to improve the search features of the existing content management system and how to

facilitate sharing content with other people?

The rest of this thesis is organized as follows. Chapter 2. gives background information

about content management systems and the technologies used in this thesis. Chapter 3.

describes content management system VisualREST and presents an improved query inter-

face. Adding and importing content to VisualREST is presented in Chapter 4.. Chapter 5.

describes how users can share their content using contexts. In Chapter 6., we evaluate the

features presented in this paper. Chapter 7. finally concludes the paper by summarizing

1. Introduction 2

the main contributions to VisualREST.

3

2. BACKGROUND

This chapter gives background information on the key concepts and the most crucial tech-

nologies used in VisualREST. We start by describing what content management is and

presenting basic principles content management systems should follow. We will also

present technical background on the underlying technologies.

2.1 Content management system

The amount of content that people have in their numerous devices has increased rapidly

in the recent years. Handling the growing amount of content would be an unbearable

task without the help of a system designed to manage the content. Content management

systems have been developed for answering this issue.

Content management system is a centralized service designed for helping users manage

their content. Typically content management system is responsible for storing content,

administrating access rights and offering a way for users to search, browse and access

content. According to Boiko, the key properties of a content management system can be

identified to be accessibility, reliability and security [3, p. 980-991]. Accessibility means

that the users of the service can search, browse and access the content in the content

management system. The service also needs to be reliable, so that it will stay online

under heavy usage and possible hardware failures should not lead to the loss of any data.

Security is a further important aspect, as users should have total control over who are

allowed to access their content. Also the communication of sensitive data should be

encrypted.

Different roles in a content management system are service provider, user, and content

owner. Service provider is responsible for offering the service of managing content. The

service offers an interface for users and it is responsible for ensuring that the key proper-

ties of a content management system are fulfilled. User is anyone using the service. Users

2. Background 4

must be offered proper interfaces for all of the required actions to the system. Content

owner is also a user of the system but with certain privileges, content owners can add new

content and define who are allowed to access their content.

2.1.1 Distributed system

Distributed system is a set of autonomous computers working interconnected to each

other. Coulouris et al. define distributed system to be a system in which hardware or

software components located on networked computers communicate and coordinate their

actions only by passing messages [4, p. 2]. In a distributed system it is customary to hide

unnecessary information from the users of the system. The services that are offered to

users may need to utilize different computers, but to a user it might seem like only one

computer is doing a given task.

The construction of a distributed system has many special challenges that must be

addressed. Distributed systems need to consist of independent computers, and failure in

one computer should be confined so that it will not affect any other computers. The system

should be scalable, as it must be able to handle growing amounts of work by adding more

computers to the system. The system needs to be secure, and communication needs to be

encrypted accordingly. Another dimension of security is authentication and authorization,

users need to be authenticated and authorized to resources with restricted access. The

system must be transparent, so that application developers does not need to be concerned

about the whole system, only the design of their particular applications. These are some

of the important issues that must be taken into account when constructing and developing

a distributed system. [4, p. 25]

Distributed content management is a way of managing content in more than one loca-

tion. In a worldwide distributed content management system it is wise to keep in mind

where the content should be stored at. If the content is only requested by users in Europe,

it would most likely be best to store the content in European servers, because the data

would not have to travel such a long way to the users. This improves response time from

the servers and improves the quality of service.

2. Background 5

2.1.2 Content, metadata and essence

As the name implies, content management systems are designed for managing content –

photos, videos, textual and other kind of data presented and stored as files. According to

[5] content consists of essence and metadata.

Essence is the raw programme material itself. Essence is the data that represents the

photo, video, text, and other kind of data that is represented to users by applications.

Metadata is the other part of the content: it is descriptive information about the essence.

Metadata describes the essence of the content. Mauthe and Thomas propose that metadata

can be classified into: content-related metadata; describing the actual content, material-

related metadata; describing how the content can be used, and location-related metadata;

describing location and how the content can be accessed [6, p. 4].

Metadata can be generated either using automated processes or by adding it manually.

The automatically added metadata can be related to the time and place when the content

was created. For example a photo can have metadata describing time the photo was taken

or latitude and longitude of the physical location the photo was taken at. Automated meta-

data can also be created for example by processing the content with algorithms that are

designed for recognizing people from photos [7]. When metadata cannot be added with

automated processes, it must be created and added manually. Manually added metadata

can be arbitrary metadata, it can be a comment or opinion about the content or it can be

for example a tag describing the content.

A system that manages both essence and metadata of content is called a content man-

agement system. In a content management system it is important to have precise and

comprehensive metadata about content. It is required for describing, searching and re-

trieving a content. [6, p. 5]

2.2 Technical background

This section describes the key technologies used in this thesis. We start with REST and

Message passing architectural styles, followed by a general description of Ruby on Rails

framework and OAuth authorization protocol.

2. Background 6

2.2.1 REST

Representational state transfer (REST), as Fielding describes in his thesis [8], is an archi-

tectural style for building network-based software. Most often REST is utilized in web

applications and implemented on HTTP protocol [9]. The key properties of REST are

client-server interaction, statelessness, and uniform interface.

Client-server architectural style is used for communication between the client and the

server. In client-server model the client initiates actions by making a request to the server

and server responds to the requests. Usually, the server is a non-terminating process and

often the server provides service to more than one client. Scalability of the service is

achieved by running multiple server programs sharing their resources. Client programs

do not share their resources with each other.

Statelessnes means that the server does not maintain the state of the client. The client

needs to send all necessary information with every request to the server, including possi-

ble authentication parameters. Since the server does not store any client state information,

subsequent requests sent by a client do not have to be processed by the same server pro-

gram.

RESTful services are based on resources that are utilized through a uniform interface.

Each resource is addressable by a unique URI. The resources are accessed and mani-

pulated using these URIs. For example HTTP PUT request to a URI would create the

resource, while HTTP GET request to the same URI would get a representation of the

resource as a response.

If a service violates any of these constraints, it is not considered to be a RESTful

service. According to Richardson and Ruby, many web services that are claiming to be

RESTful are actually not [10, p. 17-18]. Often these services have elements of RESTful

services, but in addition has features of RPC architectures [11]. These services have

methods that do not follow the uniform interface constraint of REST.

2.2.2 Message passing

Message passing is communication where messages are sent from a sender to one or more

recipients. Message passing can be implemented in different protocols, in this thesis we

focus on Extansible Messaging and Presence Protocol, also known as XMPP [12]. XMPP

2. Background 7

is a near real-time messaging protocol, used in a number of services with millions of

users. Facebook chat, Windows Live Messenger, and Skype are only a few examples of

the services that utilize XMPP.

XMPP is based on delivering XML streams and stanzas. The streams are containers for

exchanging the stanzas between any two entities over a network. Stream can be seen as

a root XML element and the stanzas as first-level child elements. XMPP follows client-

server model, in which a client connects and opens a stream to the server, which then

opens a stream back to the client. After the initialization, both the client and the server

are able to send stanzas over the stream. There are three types of stanzas: message,

presence, and info/query. [13]

The architecture of XMPP is decentralized and similar to email; there is no central

master server and anyone can run their own XMPP server. Connections in XMPP are

encrypted with Transport Layer Security (TLS) [14]. XMPP is an open standard and

there are lots of extensions available for it. One of the extensions is the Publish-Subscribe

extension [15], which allows the creation of nodes. Users can register as listeners to

these nodes and when information is published in those nodes, it is broadcasted to all the

listeners.

2.2.3 Ruby on Rails

Ruby on Rails [16] is an open source web application framework for the Ruby program-

ming language [17]. It was initially released in 2004 and reached version 3.0 in the

year 2010. Ruby on Rails uses the Model-View-Controller architecture pattern (MVC),

in which model, view and controller are isolated as their own components. The model

manages data storing, maintenance and handling. The view renders the model into a user

interface. The controller handles user input and instructs the model and view to perform

actions based on the user input.

The design of Ruby on Rails is driven by two key concepts: DRY and convention

over programming. DRY stands for don’t repeat yourself – it aims at reducing repetition,

every piece of knowledge should be expressed in just one place. This reduces the amount

of code needed and makes it easier to implement changes into an existing program. The

convention over configuration means that Ruby on Rails has reasonable default settings.

2. Background 8

By following the conventions developers can write applications using less code than a

typical Java web application uses in XML configuration. It is also made easy to override

these conventions. [18, p. 2]

Ruby on Rails is typically deployed with a database server such as MySQL or Post-

greSQL, and a web server such as Apache running the Phusion Passenger module. Nev-

ertheless, Ruby on Rails does not tie the developer to certain modules. There are a wide

range of modules that can be choosen depending on the developer’s preferences.

There is a lot of literature about Ruby on Rails, for example [18], [19] and [20] to name

a few. Ruby on Rails has a comprehensive API [21] available online and there are lots of

message boards and blogs dedicated to Ruby on Rails. Ruby on Rails is well documented,

and there is a wide range of people all around the world developing it.

2.2.4 OAuth

OAuth [22] is an open standard for authorization. With OAuth it is possible to share

private resources stored on one service to another service without the need for giving

username and password to a third party. OAuth allows users to hand out tokens. Token

allows a service to access resources in another service with certain permissions. For

example a token can authorize a service to read all of certain user’s resources in another

service, but not to modify any of the resources.

Figure 2.1 presents the basic idea of OAuth, without being an accurate representation

of the protocol. The background story is that Alice wants to access her resources on

Service B using Service A, without giving username/password to service A. The first step

is for Alice to ask Service A to get an access token to service B. Alice is directed to Service

B. Service B asks Alice to authenticate and allow Service A to access the resources on

Service B. Alice authenticates to Service B and allows Service A to access the resources

on Service B. Service B gives Service A an access token that can be used for accessing the

resources on Service B. Service A confirms Alice that the access token has been received.

From that point on Alice can use Service A to access her resources on Service B.

At the time when OAuth was designed many services used protocols that were very

similar to OAuth, such as Flickr API [23], Amazon Web Services API [24], and Google

AuthSub [25]. Each of these protocols provided a proprietary method for exchanging user

2. Background 9

credentials for an access token. OAuth was created by studying each of these protocols,

extracting the best practices and commonality. OAuth was designed so that the exist-

ing protocols could easily switch over to OAuth as well as new implementations to start

immediately using OAuth. After the OAuth 1.0 Protocol was published in 2007, many

service providers have modified their authentication protocols to work according to the

OAuth protocol.

Figure 2.1: OAuth access token message flow.

10

3. CONTENT MANAGEMENT SYSTEM –

VISUALREST

This chapter describes a content management system called VisualREST, more closely

described in [2, 26]. From the VisualREST system, we give an overview, describe what

kinds of containers there are, and how they work. Then we discuss how content can be

searched. We also describe how XMPP is used for sending notifications to clients and

how XMPP nodes can be used.

All of the features described in the subsequent chapters have been implemented in the

VisualREST content management system. The features have been tested and used by a

small group of researchers and developers.

3.1 Overview

VisualREST is a distributed content management system, implemented using Ruby on

Rails. The idea of the system is to keep track on content from all of the users’ devices.

Figure 3.1 provides an overview of the system, showing three users, Alice, Bob, and

Charlie. Each user has different kinds of devices, all of them connected to the VisualREST

system. Each device uploads the metadata of their content to the VisualREST system. The

actual essence of the content is kept and stored on the devices. User’s device is represented

in VisualREST as a container.

VisualREST can be used with web browsers or client programs designed to utilize the

system. For web browsers, VisualREST offers a web interface. A client program can be

designed for importing content to the system, accessing content, or both. Communication

between the server and the client is based on HTTP protocol. However, client programs

can also use an additional XMPP interface. The additional interface is used for requests

from server to the clients and for notifying clients about content they are interested in.

The resource hierarchy of VisualREST is presented in Figure 3.2. The hierarchy is as

3. Content management system – VisualREST 11

Figure 3.1: VisualREST overview.

follows: The VisualREST system has users. Users have containers that hold the content.

Each content has an essence. The essence is described by metadata.

Figure 3.2: Resource hierarchy in VisualREST.

The main components of the VisualREST database model are presented in the class

diagram given in Figure 3.3 using the Unified Modelling Language [27]. The parts of the

database that are irrelevant within the context of this thesis are not shown, because they

would only complicate the more important parts and would not bring any extra value.

3. Content management system – VisualREST 12

Figure 3.3: Simplified database model of VisualREST.

A more thorough description of the database can be found at [2]. The following will

summarize the classes in the database and describe their function.

User: The most central part of the database. All the other classes are related and

dependant in the User class. This class has attributes Username and Password.

Email: Users can add their email information to the system. The information can

have only email Address or all authenticating parameters needed for accessing an email

account, such as Username, Password, Server address and Port number. The Checking

parameter is a boolean, defining whether to actively scan the mail box and Last_uid the

ID of last fetched email.

Service information: When importing content from other systems to VisualREST, this

class can be used for storing the authentication parameters for OAuth type of authentica-

3. Content management system – VisualREST 13

tion. S_type tells the type of service, such as Flickr [28] or Facebook [29]. S_username

is the username in that service. S_id and S_token are authentication parameters stored in

VisualREST.

Container: Name of the container and Type of the container, such as "x86_64-linux",

"Nokia-N900" or "virtual_container".

Devfile: Initial metadata that every content has — Name, Path on the container and

Filetype. Private defines if the file is available for everybody or only a certain limited

group of users. Content cannot be deleted, but it can be marked as Deleted. Every Content

has a Rank value, based on the contents popularity. Content also has timestamps for

Created_at and Modified_at, which is automatically updated when content is modified.

Blob: Blob is a representation of a version of the content. Blob has version related

metadata: size and version number. Uploaded tells, whether the essence is already up-

loaded on the server. Hash is a SHA1-hash [30] of the content’s essence.

Metadata type: Types of metadata added by users to the system. Name and Value type

are needed.

Metadata: User added arbitrary metadata for content. Metadata is always of some

metadata type and is related to a content.

Context: Context is a tool for grouping and sharing content. Context has Name,

Owner, Private value, individual Context_hash and Rank value. Optional values are Be-

gin_time, End_time and location.

Context name: Every member of a context has a possibility to give a personal name

for the context.

Context metadata: Context can have metadata defining the content that are part of

this context.

Group: Groups are for handling access rights. Every group has an Owner and a Name.

Group can be related to Devfile or Context. Users in a group are allowed to access Devfiles

and Contexts the group is related to.

3.2 Authentication

Authenticating to the VisualREST is done with two methods. In the web user interface,

the authentication is based on sessions. Ruby on Rails offers a way to store session

3. Content management system – VisualREST 14

IDs in user’s web browser for uniquely identifying a client browser. In the web user

interface user gives his/her username and password. The server verifies the authentication

parameters and stores logged in user information. The information is linked with the

web browser’s session ID. The authentication parameters must be sent only once at the

beginning of each session and the authentication will be valid for the duration of the whole

session.

For the RESTful interface, VisualREST offers a different way to authenticate. Client

programs using the REST interface must provide authentication parameters with every

HTTP request. Table 3.1 presents the required authentication parameters. The auth_time-

stamp parameter implies how long the auth_hash is valid and it will also ensure that every

request to VisualREST will get a different auth_hash parameter. This prevents a malicious

user from capturing authentication parameters and using them for fabricating requests to

the server.

Table 3.1: Authentication parameters.

parameter description
auth_username Username
auth_timestamp Unix time. Seconds since January 1st, 1970

auth_hash SHA1-hash calculated from: auth_timestamp + user’s pass-
word + path part of the URI

i_am_client Value "true", defines the request to be from a client program

3.3 Container

VisualREST’s hierarchy, as presented in Figure 3.2, shows how containers are connected

in the system. A container is owned by a user and a container has content. The purpose

of a container is to group and make it easier to handle content. One content can belong to

one container.

Users have content in their devices that needs to be imported to the VisualREST sys-

tem. Users’ devices have a client program for that purpose. Container is representing

content in user’s device that the user has imported into the VisualREST. Client programs

can be implemented for almost any kind of device with an internet connection.

VisualREST’s design philosophy is that content or any version of the content is always

3. Content management system – VisualREST 15

preserved. According to this there is no possibility to delete content. However, a user

might wish to forget about some content, therefore it is possible for the user to mark

content as deleted. When content is marked as deleted, it is not shown in search results,

unless explicitly specified.

As an addition, we also made it possible to remove containers from the system. This

feature is needed since devices with container programs might get lost, broken or other-

wise forgotten. When a container is removed from the system, also all of the containers

content is removed. Including all metadata and possibly uploaded essence.

Users’ devices are not the only places that users nowadays have their content. People

are using lots of services that have content uploaded. This content can usually be exported

from one system and imported into another. To make it possible for users to import content

to VisualREST without the need for an actual device with a running client program, we

added a new kind of container called a virtual container. A virtual container is designed

to look like any other type of container to users, and the only main difference is that the

essence of the content is stored on the server instead of the user’s device. Because the

essence is stored on the VisualREST server, it is always available to the users.

3.4 Metadata

All content added to VisualREST must have certain initial metadata. The required initial

metadatas are: name, filedate, size, filetype, and path. In addition to initial metadata,

users can also add arbitrary metadata to the content. In order for user to add arbitrary

metadata, the metadata type must be added to VisualREST. All of the metadata types that

users have already created can be listed with HTTP GET request to the URL:

http://visualrest.cs.tut.fi/metadatatypes

New metadata type can be created using HTTP PUT request. Parameter value_type

is needed to state the value type, possible value types are: string, number, date and

datetime. The URL for creating new metadata type is:

http://visualrest.cs.tut.fi/metadatatype/{new_metadata_type}

3. Content management system – VisualREST 16

3.5 Searching content

Content can be browsed and searched from the VisualREST system. Searching is done

with queries to the system. The queries can be done by client programs or by using

the web interface. Figure 3.4 provides a screen shot of the search query form, which is

available in the web interface. In this example query, we are searching for content that is

created_at the date 2011-06-30 or later. The query form can be used for experimenting

how the query parameters are formed.

Figure 3.4: File search query form.

The search is commonly done for all content in the system. However, if needed the

search can be narrowed down to include only certain groups, users, or containers. Search

results have only content that the user is authorized to see. Therefore, search results may

vary for different users.

When a user has found an interesting content, the essence of the content can be re-

quested from the server. Figure 3.5 illustrates the messages sent to and from the server

when essence is requested.

1. Alice makes a search query for content on the server.

3. Content management system – VisualREST 17

2. Server returns search results to Alice.

3. Alice finds an interesting content and requests the essence from the server.

4. The essence of the requested content is located at Bob’s device. The server requests

the essence from Bob’s device with XMPP message. XMPP message is used to get

fast reaction from Bob, with HTTP this would be inefficient.

5. Bob’s device pushes the requested essence to the server.

6. The server returns the essence to Alice, who requested it in the beginning.

Figure 3.5: Requesting content from VisualREST.

As we can see in the above example, Alice does not directly send any messages to

Bob’s device. All of the interaction is done through the VisualREST server. This means

that Alice does not need to know where the actual essence of the content is really located

at in order to request it.

3.5.1 Search parameters

Search parameters are the basic building blocks of a search query. Search parameter

consists of a key-value pair. Key tells what type of metadata we are searching for in a

content, and value describes the value of the metadata in a content. Search keys available

3. Content management system – VisualREST 18

in the systems are listed in Table 3.2. Additionally, all user added metadata types can be

used as search parameters.

Table 3.2: Possible search keys.

GET /files
created_at (Optional)

Time when content was created.
modified_at (Optional)

Time when content was last modified.
user (Optional)

Username, multiple users separated by ’+’.
device (Optional)

Container or device name, multiple values separated by ’+’.
filename (Optional)

Filename or part of it.
type (Optional)

Filetype, for example ’video’ or ’image’.
size (Optional)

Size of content’s essence in bytes.
path (Optional)

Path of content or part of it.
rank (Optional)

Rank value of content.
tag (Optional)

User added tag.
context_hash (Optional)

Context is added to search query with context_hash value.

In addition to metadata types, also values have types. Available value types in search

parameters are listed in Table 3.3. When searching for date type, value can be given

as year, year-month or year-month-day. With datetime value can also be of

form year-month-day hour:minute:second. If only year is given, search is

for values within that year. If year and month given, search is for values within that year

and month.

3.5.2 Query interface

Content is searched with queries and a query is sent to the server using HTTP GET

method. Queries can be made as an authenticated user or as a non-authenticated user.

If the query is made as an authenticated user, the user must either log in with the web

3. Content management system – VisualREST 19

Table 3.3: Available value types.

Type description example
string letters or numbers tampere

number for file size integer, for user
added metadatas float

1532 / 24.42

date yyyy-mm-dd / yyyy-mm /
yyyy

2011-12-24 / 2011-12 / 2011

datetime yyyy-mm-dd nn:nn:nn 2011-12-24 18:00:00

user interface, so that the browser keeps the session details, or with client programs by

giving authentication parameters with every HTTP request. If user is querying as a non-

authenticated user, search results will only present public content that is available to ev-

eryone.

Queries can be made with client programs or with the earlier presented query form or

even by writing the query URL to a web browser’s navigation bar by hand. The query

interface was designed to be as readable as possible for humans, and also keeping it easy

for programs to parse. In Ruby on Rails parameters with the same format can be easily

parsed, by default they can be accessed as a list.

VisualREST query interface has eight different parameter formats, presented in Table

3.4. Next we will go through all of the different formats and represent example queries

for content.

Table 3.4: Search parameter format.

Parameter description
q[key]=value Common usage. Used when searching for

matching value.
qmin[key]=value Comparison operator, value bigger than or

equals.
qmax[key]=value Comparison operator, value smaller than or

equals.
qsmaller[key]=value Comparison operator, value smaller than.
qbigger[key]=value Comparison operator, value bigger than.
qsparse[key]=value Setting sparse true for a parameter.

qgroup[username]=groupname Searching content from users within a group.
qcluster[key]=value Clustering search results.
qoption[key]=value Giving addiotional conditions to the query.

3. Content management system – VisualREST 20

q[key]=value

The format is used when searching for matching search parameter value. When search-

ing for matches with string type, a partial match is enough. In other words, search value

tampe would match with metadata tampere. All metadata value types listed in Table

3.3 are allowed with this format. An example URL for searching content is presented

in Figure 3.6. We can divide the URL into smaller pieces and go through it part by

part. First part is the request method: http. The second part is the server address

visualrest.cs.tut.fi. After that is the resource we are requesting: files. Fi-

nally, after the ? is the most interesting part, search parameters separated from each other

by &. The example query is for searching content with metadata tag=cloud and also

tag=system. All content that has both of those metadatas would be returned as search

results.

Figure 3.6: Common example query.

qmin[key]=value

Qmin is a comparison operator for searching values that are at the minimum the value

given in the parameter. In other words, metadata values that are the same or bigger than

the parameter value. Allowed value types are number, date, and datetime. Strings cannot

be searched with this, since there is no other intuitive and practical way for comparing

strings than partial or exact matches.

In Figure 3.7 the query is for searching content that have metadata rank with value 12

or bigger. All content that have rank value lower than 12 is not returned as a search result.

Figure 3.7: Example query – qmin.

qmax[key]=value

Qmax can be used for number, date and datetime types. It is used to search for content

with metadata that is at most the value given or smaller. In Figure 3.8 the example query

3. Content management system – VisualREST 21

is for searching content that has essence size at most 50 000 bytes.

Figure 3.8: Example query – qmax.

qsmaller[key]=value

Qsmaller can be use used for number, date and datetime types. Content that has metadata

with the same key and smaller value would be accepted search results for this parameter.

The example query in Figure 3.9 is for searching content that has been modified before

february 5th, 2011.

Figure 3.9: Example query – qsmaller.

qbigger[key]=value

Qbigger can be used for number, date and datetime types. This parameter is for searching

content with metadata values bigger than the search parameter value. In Figure 3.10 the

query is for searching content that has been created after the year 2010. Files created in

the year 2010 are not accepted.

Figure 3.10: Example query – qbigger.

Range with multiple parameters

Searching for metadata value ranges can be done by giving the beginning and ending

values in separate parameters. The query in Figure 3.11 would be a search for content

that are created at the minimum in the year 2010 and at the maximum in the year 2010.

Therefore this query would be a search for content created in the year 2010.

In Figure 3.12 the example query is for content that has rank value bigger than 10 and

smaller than 100. In other words, rank values within the range of 11-99.

3. Content management system – VisualREST 22

Figure 3.11: Example query – date value range

Figure 3.12: Example query – number value range.

qsparse[key]=value

Sparse is a parameter option intended for metadata types that are added by users. Nor-

mally if content does not have the metadata type of a search parameter, the content is not

shown in search results. When sparse is set to true, we will see in search results all content

with matching metadata and also content that does not have that specific metadata type at

all. Therefore, the only content not accepted in the search results is content that have the

queried metadata type, but the value does not match.

Making a query with sparse option selected, might be time consuming in some cases.

This is due to additional processing that needs to be done on the server side. However,

this does not present an alarming concern since sparse option has not been very widely

used among the users of VisualREST. When user is searching for content with certain

metadata, usually there is no need to select the sparse option for the search parameter.

Figure 3.13: Sparse example content.

Figure 3.13 has an example query for content that has metadata tag=summer. The

3. Content management system – VisualREST 23

query also defines sparse true for metadata type tag. To demonstrate how the sparse

option affects the search results, the figure also has three content with metadata. The

first content sunshine.jpg is in the search results, because it has matching metadata

tag=summer. Also the second content lake.jpg would be in the search results, be-

cause it does not have any metadata with the metadata type tag. However, the third

content snow.jpg would not be part of the search results, since it has metadata type

tag, but the value does not match.

qgroup[username]=groupname

With qgroup option users can narrow down the search results to be only content owned by

users in the specific groups. The parameter consists of username, the owner of the group,

and group name. Multiple group names can be given separated by +.

This option is made available for users to make it easier to search for content added to

the system by their friends or a desired group of people. In Figure 3.14 we give a search

query for all available content that users in Alice’s groups called friends and family have.

Figure 3.14: Example query – qgroup.

qcluster[key]=value

Clustering is a way to represent search results to users. The idea of clustering is to group

search results according to some similarities in the content. This helps navigate the results

and hopefully makes it easier to find the content that the user is looking for.

Clustering is done to the search results according to clustering parameters given in the

query. Clustering can be done in one or multiple dimensions. Each cluster has similar

content, according to the clustering parameters. For every cluster, a surrogate is chosen

to represent the content in that cluster. Based on the surrogates, the user can easily see

in what cluster seems to be the content that the user is interested in. All content in one

cluster can then be queried in its entirety.

The clustering parameter consists of key and value. Key is for the metadata type that

clustering will be based on. If value type is string, the query parameter does not need a

3. Content management system – VisualREST 24

value. Afterall, for strings there is no easy way to specify ranges, therefore only values

that are exact matches belong in the same cluster.

If value type is a number, the value parameter is a float number. With date and datetime

type, the value is the number of seconds. Metadata of the content are compared with each

other. The distance of metadata from each other is compared. If the metadatas of contents

are closer to each other than the parameter value, the contents belong to the same cluster.

In Figure 3.15 is a clustering example according to creation date and metadata type

city. For created_at we give value 10000, meaning 10 000 seconds. Creation dates

that are less than 10 000 seconds (about 3 hours) apart from each other fall in the same

cluster. Since metadata type city has value type of string, only exact matches belong to

the same cluster and parameter value is not needed.

Figure 3.15: Clustering example with two dimensions.

In the example we get 8 clusters represented by boxes. The amount of content in each

cluster is shown inside the box. Helsinki and Turku have two clusters and Tampere has

four clusters. Each of these clusters represents content created in the same city less than

three hours apart from each other. Helsinki has a cluster with five content created on the

same day, quite near each other. This is already a quite good indication that the content

probably has something in common. When we have found a promising cluster, we can

request a full list of content that belongs into that cluster and examine the content in more

detail.

3. Content management system – VisualREST 25

qoption[key]=value

The following options are available for the query. Possible keys and values are listed in

Table 3.5.

Table 3.5: Possible query option (qoption) keys and values.

key value
sort_by created_at / modified_at / size

/ rank / user / device / path /
filename

order asc / desc
available_files_only true
show_deleted_files true

query_processing_time true
sparse true

Sort_by and order are closely related to each other. Sort_by parameter defines accord-

ing to what metadata the search results are sorted. Order tells wheter to put the search

results in descending or ascending order. By default the order is set to descending.

Available_files_only parameter makes it possible to not include content that is not

available at the moment. This means content that is not accessible at the moment because

the device holding the essence of the content is not online and the essence has not already

been uploaded to the VisualREST server.

Show_deleted_files, as the name suggests, accepts in search results also content that

has been marked as deleted. By default deleted content is hidden from the query search

results. With this parameter only the owner of the content can see the content that is

marked deleted.

Query_processing_time can be returned with the query results. This option is not

necessarily designed for end users, as much as for developers who are making clients for

the system. A client program might be suffering from a slow connection or some other

efficiency problem, this option might help determine what is causing the problem.

Sparse true sets the sparse value true for all search parameters. This option is not

recommended since with complex queries it might slow down the query.

The example query using qoption, presented in Figure 3.16, is a query that has op-

tions for sorting and ordering. The query results are returned sorted by rank value in a

3. Content management system – VisualREST 26

descending order.

Figure 3.16: Example query – qoption

3.6 Notifications

VisualREST uses XMPP for delivering messages initiated by the server. The previously

presented request for uploading content is a direct message from the server to a cer-

tain user’s device. In addition to this one-to-one type of notification, VisualREST has

nodes for delivering notifications from one-to-many. Figure 3.17 presents how XMPP

messages are used in node communication. VisualREST server or any of the users can

push messages into a node. All listeners of the node are notified about the new mes-

sage in near real-time. VisualREST has three types of nodes: /files, /contexts, and /con-

text/<contextname>. The different types of nodes are described in the following.

Figure 3.17: Node communication.

/files node is dedicated to notifying users about new publicly available content added

to VisualREST. Every user is allowed to register as a listener to this node. An entry is

created to the node every time a new public content that is created to the system. Node

listeners can implement their own filters for finding content that most likely is interesting

to the user. Filters can be based on allowing only certain entries or by filtering out entries

that the user is not interested in. For example, the filtering can be used to show content

to the user that is: added by friends, marked to be from a certain city or content that has

3. Content management system – VisualREST 27

been tagged with certain values.

/contexts node is also public, every user can read all of the entries added to it. This

node is for notifying users about new contexts. When new context is created and shared

with other users, an entry will be made to this node. An entry has information about

the new context and members of the context. This means that also users that are not

allowed for a context, will get the notifications. Therefore filtering unwanted entries is

encouraged. Privacy must be taken into consideration when sharing information about

contexts that are not public. A piece of future work will be to limit the notifying about

contexts only to members of the context. This is not possible with only one node and

multiple nodes would mean more complexity. Also sending notifications directly to users

has certain difficulties, because we would not know what device the notification should

be sent to or should it be sent to all of the user’s devices.

/context/<contextname> is a node that every context in VisualREST has. The node

is used for notifying about changes in the context. Members of the context can listen to

the node and get notifications when new content is added to the context. Also if context

parameters are modified, all members using the node will be notified.

28

4. GETTING CONTENT TO THE CONTENT

MANAGEMENT SYSTEM

People have an increasing amount of devices and they are using more and more services

where content can be stored and shared. In order for content management system to be

as comprehensive as possible, content needs to be imported from all of the places users

are keeping their content. This means importing content from different types of users’

devices and services, such as Flickr or Facebook.

In this chapter we will discuss how content can be imported directly from users’ de-

vices. Followed by how content can be harvested and imported from other services into

one content management system.

4.1 Importing content from devices

Users’ devices are usually the places that content is created and stored at. To make the

content easily accessible and shared regardless of place and time, a good solution is to

import the content into a content management system. VisualREST offers many ways of

importing content into the system. We present three possible ways of importing content

from user’s devices:

• Client program running on user’s device.

• Sending content as mail attachment to the content management system.

• Uploading content on web interface.

All of these methods are supported in VisualREST. Different ways of importing content

are needed, because there is no single way of importing content that would be the best in

every possible use case.

4. Getting content to the content management system 29

4.1.1 Container program

For end users the easiest way of importing content to a content management system is to

have a container program running on the user’s device. This way the importing process

can be automated and the user does not need to do anything in order for the content to get

imported. Container program updates metadata of new content to VisualREST and also

monitors and updates changes in content that is already added to VisualREST.

Negative sides in this approach are that the container program must be installed on the

user’s device and some settings must be set in order for the container program to know

what content the user wants to import into the content management system. Another

downside might be that if the user is not carefull with container program settings, some

content might get added to the content management system by accident.

In VisualREST it is up to the client program whether to upload also the essence of the

content, or only the metadata. If the essence is not uploaded, the container program needs

to implement XMPP interface and upload the essence of the content when the server asks

it to do so.

Two different container programs has already been implemented for VisualREST. The

first one is done with Ruby, and the other one is done with Python [31] and Qt [32]. The

Ruby container program is made simple and efficient, it is text-based, and it does not have

graphical user interface. With the text-based interface, it is easy to debug and there are

less parts that can break down. It has proven to be very reliable and fast. The program

listens to changes in certain folder on user’s device and updates them to VisualREST.

The other container program is called MIST [33]. MIST is developed for Maemo

platform and it runs on Nokia N900. It is designed to work with the native camera ap-

plication, observing for new photos taken. As soon as a photo is taken, metadata and the

actual essence of the photo is added to the VisualREST.

Figure 4.1 presents a use case from container program’s point of view. Bob is taking

a picture with his device. The picture is saved on Bob’s device which has a container

program running. The container program notices the newly created photo and starts pro-

cessing it. Metadata is extracted from the photo and uploaded into VisualREST. Also

possible predefined user access rights can be given to Bob’s friends. Essence of the pic-

ture is kept on Bob’s device. Now Bob’s friends can access metadata of the picture on

4. Getting content to the content management system 30

VisualREST server. If they also wish to access the essence of the picture, it is requested

from the server and the server forwards the request to Bob’s device.

Figure 4.1: Use case – New picture in container program.

4.1.2 Sending content as email attachment

If user does not have a container program already installed and wants to quickly add some

content to VisualREST, sending the content as an email attachment is one possibility.

Sending content as email attachment is an easy and controllable way of adding content to

the content management system.

VisualREST server has a dedicated email account for receiving content as mail attach-

ments. The mail address of the server is attachments@visualrest.cs.tut.fi.

In order for user to be able to send content as email attachment to the server, the user

needs to register his/her email address on the server. The only required information is

user’s email address, additional information can be used for accessing content in the user’s

mail account, presented in the following section. The server keeps lists of users’ email

addresses, this is an early development version for security with emails. Mails sent to the

server from unknown addresses are ignored and not processed.

RFC 5322 [34] describes the Internet Message Format, a syntax used in emails. The

syntax allows the use of tag inside the email address. User sending attachments to

VisualREST must use this tag and provide his/her username with it. When Bob is

sending attachments from his mail account to VisualREST, Bob would send the email

to attachments+bob@visualrest.cs.tut.fi

When the server has received the email, first the provided tag with the username is

4. Getting content to the content management system 31

checked. After the user has been found, the sender mail address is compared with the mail

addresses added by the user. If the mail address is found, the attachments of the email

are fetched and saved to the user’s virtual container dedicated to all mail attachments of

the user. All user’s content added from mail attachments are found in a virtual container

dedicated for that purpose.

A major downside in sending content as email attachment compared with the container

program is the amount of manual work that needs to be done every time content is im-

ported into VisualREST. Nevertheless, if a user is only once importing content from a

certain device, using this functionality might be worth the trouble.

Security is an issue with emails. Future work is needed for making sure that the user

is really the one that the email is from. Mail headers can be easily manipulated and

sender information fabricated. Some kind of authentication parameter is needed while

still preserving the easy usage, but for now it is left for future work in VisualREST.

4.1.3 Uploading content with web browser

Content can also be uploaded to the server by using a web browser. The web interface

offers an easy way for selecting what content to upload from user’s device, and to what

virtual container the content will be stored at on the server.

In order for user to be able to upload content with the web interface, the user needs to

be signed in. If the user does not yet have a virtual container, it needs to be created. On

the web interface user can see all his/her own containers, including all virtual containers.

The user can go to the settings of a virtual container the content will be added to. The top

of the settings view is presented in Figure 4.2.

Figure 4.2: Content upload view.

4. Getting content to the content management system 32

From the browse button a window opens in which the user can select the file that will

be uploaded to VisualREST. When the file is selected, the uploading begins after pushing

the "Upload content" button. Virtual containers store the essence of their content on the

VisualREST server, and therefore the metadata and essence of the uploaded content are

both stored in VisualREST.

As with the previous functionality, sending content as email attachment, also uploading

content using the web interface has its constraints. Content needs to be uploaded one file

at a time. With large amount of files this would not be a very user friendly solution.

4.2 Importing content from other services

If content is already on some other service or content management system, it can be

imported into a virtual container on VisualREST. Nevertheless, the basics of importing

from external services might be similar, there is always some work that needs to be done

and some parameters adjusted.

In this section, we discuss how content can be imported from different services into

VisualREST. We focus on user’s point of view, as well as VisualREST’s point of view.

The example services we import content from are:

• Mail account,

• Flickr,

• Facebook and

• Dropbox [35].

Each of these services are designed for different kind of uses. They all still have

something in common: Each of them has a lot of content. Searching through all of them

separately to find the content one is looking for would be time consuming and difficult.

By importing all of the content into one content management system, we are offering one

interface from where users can access all of their content.

4. Getting content to the content management system 33

4.2.1 Importing from mail account

Nowadays almost everybody is reachable by email. People are used to sending pictures

and other files via email to their friends and family. It is very common to receive the

first photos of your sister’s new born baby or photos taken at your best friends wedding

as an email attachment. Usually, people have many mail accounts with different service

providers. New mail accounts are created and old ones are forgotten. Not only the amount

of mail accounts, but the amount of emails in those accounts can be very large. Those

emails can have a lot of content that could easily get lost. One way of making sure that

content received by email is not lost, is to import the content into a content management

system.

We have implemented in VisualREST a method that goes through all emails in user’s

mail account and saves all attachment files into VisualREST. It is possible to let a worker

actively check for new emails or do a one-time sweep of user’s mail account. Figure

4.3 presents the form in the web interface that is used for adding new email address

information to VisualREST. When importing mail directly from user’s mail account, all

of the fields in Figure 4.3 are mandatory. Table 4.1 describes all of the fields and describes

the purpose of each of these parameters.

Figure 4.3: Adding email information.

When the user email account details are added to VisualREST, the email account is

scanned and attachments are fetched. The background processes are not shown to the

4. Getting content to the content management system 34

Table 4.1: Email parameters.

Parameter Description
Email address User’s email address.
Mail username Username to identify the user’s mail account. Used for au-

thenticating to the mail server.
Mail password Password to user’s mail account. Used for authenticating to

the mail server.
Mail server Address of the mail server.
Mail port Mail server port number.

Encryption The method of encryption used for traffic between Visual-
REST and the mail server. Possible values are TLS/SSL and
None, if no encryption is used.

Container Name of the virtual container the content will be saved to.
Container can be choosen from a drop-down list.

Persistent checking States whether to have persistent checking or not. If not
selected the mail account will be checked only once. If se-
lected the mail account will also be checked for new emails
at a regular interval.

user. The process from VisualREST’s point-of-view proceeds as follows:

1. Connect to the server with the information provided by the user (server address,

port, encryption, username and password).

2. When connected, select INBOX and get a list of all emails.

3. Get each email and check each of them for attachments.

4. If there are attachments, fetch them and save to the virtual container user has se-

lected.

5. Add metadata to the content, such as mail topic, mail sender and mail date.

6. When all of the emails has been processed, save uid of the last email. It defines

the last mail that has been processed. This will be used when the mail account is

checked for new emails.

User’s username and password to the mail account are stored in VisualREST database.

If a user is not comfortable with having own email account information stored, the user

can at any time remove the email information from the VisualREST system.

4. Getting content to the content management system 35

Spam messages are a well-known problem for everyone these days. Some kind of

filtering of spam emails is needed to avoid unwanted pictures ending up in the system.

This functionality is left for future work.

4.2.2 Importing from Flickr

Flickr is an image hosting service that is widely used for storing and sharing personal

photos. In August 2011, Flickr announced that they were hosting six billion images on

Flickr, and the number of uploads has grown 20 percent per year for the last five years

[36]. Flickr has a comprehensive and user-friendly API. The API can be used for im-

porting user’s photos from Flickr to VisualREST. Figure 4.4 illustrates the interface in

VisualREST for importing content from Flickr.

Figure 4.4: Get photos from Flickr.

The implementation of importing user’s photos from Flickr has been designed to be as

straightforward and user-friendly as possible. The following four steps are required from

the user:

1. OAuth authorization for user’s photos in Flickr: User is directed to Flickr login

page. After the user has signed in, he/she is asked to grant VisualREST access

to his/her photos. When the access has been granted, the user is directed back to

VisualREST.

2. Select what content to import into VisualREST: At the moment it is possible to

select all user’s private or public photos from Flickr. By default the imported photos

are only accessible to the user.

4. Getting content to the content management system 36

3. Select where to import the content: Content can be imported to any one of the

user’s virtual containers.

4. Ask VisualREST to get the selected content: After the previous steps has been

taken user needs to press the "Get photos from Flickr" button. VisualREST will

start the importing process and notify the user the amount of photos that will be

imported.

VisualREST database has a class for storing information about external services and

their authentication parameters. Table 4.2 describes the available attributes. The attributes

are for storing all of the information needed for making authenticated requests with cer-

tain permissions to the external services. The extra_1 and extra_2 fields can be used

in different services for different purposes. These fields are needed since the authoriza-

tion processes and information that needs to be stored on VisualREST server may vary

between different systems.

Table 4.2: Flickr information in VisualREST database.

Parameter Description
service_type Type of service, such as Flickr or Facebook.

service_username Username to Flickr.
service_id Distinctive id representing the user.

service_token Needed for making authenticated API calls. It ties Visual-
REST to the Flickr user account with reading permission.

extra_1 Last time public photos were imported.
extra_2 Last time private photos were imported.

From the server’s viewpoint, importing content consists of two individual processes.

The two processes must be done in the corresponding order:

1. Getting authorization to user’s Flickr content: The authorization process begins

with redirecting user to Flickr website. The user authenticates to Flickr and is asked

if he/she grants permissions for VisualREST. In this case, we are only requesting

read permission. After that the user is forwarded back to VisualREST with a frob

parameter. The server needs to convert the frob parameter to an access token with

an HTTP request to Flickr. Flickr returns the access token, which will be saved

to VisualREST. Access token is needed for making authenticated and authorized

requests to Flickr.

4. Getting content to the content management system 37

2. Importing the content from Flickr to VisualREST: When we have the Flickr

access token, we can begin importing content. It is possible to import user’s own

public or private photos into VisualREST. The user selects what content to import

and where to save it. Next VisualREST gets a list of content metadata from Flickr.

The list items are processed one-by-one, the metadata of the content is saved on

the VisualREST server and the essence on the virtual container. We get metadata

such as description, time when picture was taken, time when picture was uploaded

to Flickr, tags and URL to the photo on Flickr.

The authenticated requests to Flickr are build according to the Flickr API. The structure

is similar in every request but the parameter part varies. The following is an example

request to Flickr:

http://api.flickr.com/services/rest/?api_sig=<api_signature>

&api_key=<flickr_api_key>&auth_token=<service_token>

&method=<method>&privacy_filter=<privacy_setting>

&user_id=<service_id>

Api_signature is a hash value calculated from all the other parameters. It is used for

security purposes, so that the request cannot be altered. Api_key is an application key,

used by Flickr to see which application is making the requests. Auth_token is an access

token that was earlier requested from Flickr and accepted by the user. Method is the

action we are executing. The full list of all available methods are described in Flickr API.

Privacy_filter is related to the method, in this request we are asking for user’s private or

public photos depending on the value of the privacy filter. User_id is an identification

value for the user’s account.

Security issues need to be taken seriously, especially when we are dealing with con-

necting services so tightly. Authorization parameters are stored on VisualREST database.

It is made possible for users to delete all information related to authorization, such as

service_token and service_id.

4. Getting content to the content management system 38

4.2.3 Importing from Facebook

Facebook is a social networking service with over 500 million users [37]. It allows users

to create user profiles, connect with friends, exchange messages and share content, such

as photos. In Facebook user’s photos are grouped into albums. The photos have optional

metadata such as caption, comments from other users, and list of people tagged in the

photo. Facebook has a comprehensive API [38] for developing applications using the

Facebook interface.

Importing content from Facebook is very similar to importing content from Flickr.

The first step is to redirect user to Facebook login page and ask if the user wishes to grant

access to his/her content in Facebook. When the authentication is completed, the user is

redirected back to VisualREST. After that VisualREST can request the access token from

Facebook and store it in the database.

Figure 4.5 presents a screen shot of the importing interface in VisualREST. In this

Figure, the user has already authorized VisualREST to get photos from the Facebook

account and VisualREST has requested and received the access token from Facebook.

We can see a list of albums the user has in Facebook. User checks the content that will

be imported to VisualREST. Also the virtual container where the content will be stored at

must be selected. After the user presses the "import" button, VisualREST starts importing

the selected albums.

Figure 4.5: Get photos Facebook.

VisualREST requests album details separately for each of the selected albums. The

4. Getting content to the content management system 39

album information includes captions and URLs referring to the photos of the albums. The

essence of each photo is requested from Facebook and saved with its metadata to the

selected virtual container.

The Facebook access token can be deleted from VisualREST, as well as all other user

authentication parameters related to Facebook. This can be done with a single press of

a button. If the access token has been deleted, a new one must be requested in order to

allow VisualREST to have any access to the user’s content in Facebook.

4.2.4 Importing from Dropbox

Dropbox is a file hosting service that utilizes cloud storage. It enables users to store

and share files and folders with other users across the internet using file synchronization.

Dropbox synchronizes complete folders between the service provider servers and users’

computers. Files in Dropbox can also be accessed through a REST interface [39].

The importing process from Dropbox is somewhat different from the previously pre-

sented ones. The username and password must be given to VisualREST and with those

VisualREST will request the access token to Dropbox. VisualREST does not save the

username or password related to Dropbox. Instead only the access token that is requested

from Dropbox is stored.

Figure 4.6 presents an example view of the Dropbox importing interface. After the

access token has been received, all user’s first level Dropbox folders are shown. One

of the folders can be selected and a virtual container the content in that folder will be

synchronized to. When the "Synchronize" button is pressed, VisualREST will start a

poller worker that will retrieve all content in the selected folder into the chosen virtual

container. The poller worker will also keep polling at regular intervals for changes in

Dropbox. When new content is created in Dropbox, it is also imported to VisualREST.

When the essence of a content is modified on Dropbox, it is also updated to VisualREST.

If content is removed from Dropbox, it is marked as deleted in VisualREST. By starting

multiple poller workers, we can keep multiple folders from Dropbox synchronized with

the selected virtual containers. It is possible to stop and delete these poller workers that

are synchronizing content from Dropbox to VisualREST. Also Dropbox access token can

be deleted from VisualREST, as well as all user’s authentication parameters related to

4. Getting content to the content management system 40

Figure 4.6: Get photos from Dropbox.

Dropbox. Even if the poller workers are deleted or the authentication parameters are

deleted from VisualREST, all of the synchronized content will still be preserved on the

virtual container.

41

5. SHARING CONTENT USING CONTEXTS

Now that we have presented how content can be easily imported to a content management

system, it would be useful if the content could also be easily shared with other people.

Access rights to content can be set by hand one file at a time, but this is not very user

friendly or efficient way.

We present a notion of context for sharing content in a more automated way among

a predefined set of people. This chapter defines what we mean by context in the Visual-

REST system. We also describe how content relates to context and how the provided

interface can be used.

5.1 What is context

Context is a tool used for grouping content that are somehow related with one another.

Contexts can be used for grouping content and also for sharing the grouped content be-

tween a defined set of users. Users can jointly produce the content and bring all of the

outputs together and share them.

People have a natural tendency of grouping things related to one another [40]. Context

makes use of this tendency by making it as natural as possible to use contexts. Context can

be related to a certain place, time, people, happening or anything else. Also a combination

of the previous is possible. As a matter of fact, there are no restrictions to what kind of

parameters or combinations a context is formed of. New types of parameters can be

created to meet different kind of needs.

Context can be created for example for a meeting. All of the people attending the

meeting would be granted access to that context. All users would be able to add content

related to the meeting into the created context. Before the meeting the context could have

information such as agenda of the meeting, time schedule and instructions on how to get

to the meeting location. During the meeting users could add their notes about the meeting

5. Sharing content using contexts 42

or photos of the whiteboard. After the meeting everyone involved would be able to access

all of the collectively created content by the people in the meeting.

Context is defined by its metadata parameters. Context parameters define what content

belongs into a context. Every context has a unique context_hash. It is used for identifying

a context as well as for referencing a certain context. Another important property in

a context is query_uri. It is used for requesting all of the content that belong into a

context. Query_uri consists of context_hash and all other context parameters. Query_uri

for context is a normal query for files, with the speciality of context_hash as one of the

search parameters.

Figure 5.1 presents an example context. The context is owned by Alice and she has

named the context london. Below the icon are the parameters that every context has,

such as query_uri, context_hash and rank. The next parameters are describing the con-

text, but are not mandatory. The parameters describing this particular example context

are geographical metadata. Followed by a list of users that are authorized to access this

context, also called members of a context. This context is shared with Bob and Char-

lie. Finally we have metadata describing the content that belongs in this context, in this

example we have only one piece of metadata tag=vacation.

5.2 Content in Context

Content is the reason we have contexts. Therefore it is important to fully understand how

content gets to be part of a context. In fact, there is no reason why content could not be

part of multiple contexts at the same time.

VisualREST does not keep lists that keep track of all content that belongs to a certain

context. Everytime context’s content is requested using the query_uri, VisualREST finds

all content in that context and returns a list of the content. Content that belongs to a

context, is found with two methods:

1. Matching metadata.

2. Content explicitly marked to be part of a context.

When all content belonging to a context is requested, VisualREST will first find all

5. Sharing content using contexts 43

Figure 5.1: Example context.

content that have matching metadata with the context. All content that the user is au-

thorized to access will be shown to the user. Content whose metadata matches with the

context are considered being part of the context.

Another way that content can belong to a context is if a content has been explicitly

marked to be part of a context. In this case metadata of the content and context are not

compared. All of the content found with these two methods are part of a context and

returned to a user that made the request with the query_uri of the context.

The reason why content can belong to a context with both of these ways is to make

the process of connecting content to a context more automated. If content fulfills certain

descriptions of a context, it will not need to be explicitly marked to be part of a context

because the metadata can be used for that connection. As long as content has enough

metadata, this process can be automated. Content that the automated process does not

work for, can still be explicitly marked to be part of a context.

Figure 5.2 presents an example of how content can belong to a context. In the figure

5. Sharing content using contexts 44

there are two pieces of content that are part of the context. The context has metadata

tag=work and city=tampere. The above content has the same metadata and there-

fore belongs to the context. The below content does not have the same matching metadata,

but instead it has been explicitly marked to be part of the context. The content has meta-

data context_hash with the same value as the context.

Figure 5.2: VisualREST – content in context.

5.3 Context access rights

The owner of the context can decide whether the context is public or private. Public

context is available for every user in VisualREST. Private context is available to the owner

of the context and users or groups the owner has decided to share the context with.

When content is explicitly added to be part of a context, the access rights of the content

are automatically changed to be the same as the context has. This is why all explicitly

added content is available to all users who are authorized to access the context that the

5. Sharing content using contexts 45

content belongs to. On contrary, access rights to content that belongs to a context based

on matching metadata will not be automatically changed.

Content that belongs to a context may vary for different users. It is possible that Alice

has content and she is the only user that has access to it. If the content has the same

metadata as a context, Bob would not see the content as part of the context but Alice

would.

5.4 Context interface

This section describes all available HTTP-requests concerning contexts. The context in-

terface is designed to be used by container programs, client programs and web browsers.

We present how to create, modify and delete contexts. We also describe how context

naming behaves and how contexts can be searched and viewed.

All of the following requests require authentication parameters, except for the search

and get functions. The search and get functions can also be used without the authenti-

cation parameters, but it will significantly reduce the amount of results since then only

public contexts will be available.

5.4.1 Create context

Contexts are created by the users of VisualREST. The creator of a context automatically

becomes the owner of the context. The owner of a context cannot be changed. Context

can be shared by naming all the members of a context individually or by adding groups

of users to become members.

Table 5.1 presents the parameters that are required and available for creating new con-

text. The first line defines the HTTP request method and address for this action. On the

following lines are all available parameters and descriptions of the parameters.

The metadata parameter includes arbitrary metadata describing the content in this con-

text. The same metadata types that are used for describing content, are here used for de-

scribing content that belongs in this context. The location parameter is used for describing

geographical constraints to content in a certain context. Use of the location parameter is

not restricted to certain rules. The location can be for example a continent, a country,

a city or a building. The location parameter allows a loose way of defining locations.

5. Sharing content using contexts 46

VisualREST uses OpenStreetMap [41] for connecting locations to cities, countries, and

coordinates. At the moment the location parameter is not used for determining whether a

content belongs to a context, but it is for users to see what kind of content the context is

designed to have.

Table 5.1: Interface for creating context.

POST /contexts
contextname (Required)

Name of the context. User that creates the context cannot have contexts with
the same name.

metadata (Optional)
Metadata defining the context. Context uses the same metadata types as con-
tent.

begin_time (Optional)
Describes the context to have a beginning time. For example in a context
created for a vacation, this could be a date when the vacation begins.

end_time (Optional)
Describes the context to have an ending time.

description (Optional)
Description of the context. This is used for describing what kind of content
the context is supposed to have.

icon_data (Optional)
An icon for the context, given in binary data. Icons are used to make contexts
more identifiable for users.

location (Optional)
Location that the content in this context are related to.

private (Optional)
True if it is a public context and false if a private context. Private context is
default.

user (Optional)
List of users that are granted access to this context and will become members
of the context.

group (Optional)
List of groups that are granted access to this context and will become members
of the context.

5.4.2 Modify context

With the context modifying interface it is possible to change or add context parameters.

When context metadata is changed, the query_uri is modified accordingly. This means

that content belonging to a context might change after the context is modified.

5. Sharing content using contexts 47

Context parameters can only be modified by the owner of the context. However with

this same function it is also possible to explicitly add content to a context. Adding content

to a context is only made possible to user with access right to the context and ownership

of the content, because it will change access rights to the content and it is not desirable to

give users the power of defining the visibility of other user’s content.

Table 5.2 presents the interface for modifying context. Context can be referenced in

two ways: with the context_hash or username-contextname pair. Content is added to

a context with the file_uri parameter. The content that will be added to the context is

identified by giving the content’s URL in the file_uri parameter. Content can be added

to a context one at a time, multiple content needs to be added with multiple requests.

Parameter referring Bob’s photo cloud.jpg in Bob’s device laptop would be:

file_uri=http://visualrest.cs.tut.fi/user/bob/

device/laptop/files/cloud.jpg

Table 5.2: Interface for modifying context.

POST /contexts/<context_hash>
POST /user/<username>/context/<contextname>
file_uri (Optional)

Adds a content to the context.
Other parameters are the same as the optional parameters in table 5.1.

5.4.3 Delete context

The number of contexts can increase significantly when users start testing the use of

contexts. To get rid of unwanted and redundant contexts, Table 5.3 presents the interface

for deleting contexts.

Table 5.3: Interface for deleting context.

DELETE /user/<username>/context/<contextname>
No parameters.

The only user allowed to remove a context is the owner of the context. When context

is deleted all context information and references to the context will also be removed.

5. Sharing content using contexts 48

Nonetheless, content added to the context will not be removed. Content will still remain

in their own containers.

5.4.4 Name context

Contexts can be named individually for every user that has been authorized for that con-

text. This means that two users can have a different name for the same shared context.

The reason why it is important to allow individual naming of a context is that a context

does not necessarily mean the same thing for different people. Alice could name a context

my-wedding when Bob would name the same context alices-wedding. Another

problem without individual naming would appear if Bob and Charlie gave the same name

for their own contexts and shared them with Alice. Without individual naming Alice

could get confused with two different contexts having the same name.

Figure 5.3 presents a high-level illustration of context naming. The Figure has a con-

text with metadata country=finland and tag=holiday. Context’s context_hash

value is 6e57f2ed24d57a713. Alice is the creator of the context and she has decided

to share the context with a group that consists of Bob and Charlie. Alice has named the

context holiday, Bob has named it holiday-in-finland and Charlie has named it finland.

Figure 5.3: High-level example of context naming.

A context can have multiple names given by different people. Therefore, referencing a

context by name can also be done with multiple names. In addition to referencing context

by name, context can also be referenced using the unique context_hash. When using user

5. Sharing content using contexts 49

given context names, the format must be "username.contextname". Different possible

ways of referencing the example context presented above are:

• Alice’s given name: alice.holiday

• Bob’s given name: bob.holiday-in-finland

• Charlie’s given name: charlie.finland

• Unique context_hash: 6e57f2ed24d57a713

Table 5.4 presents the interface for changing contextname to a user. The request uses

HTTP PUT method. The address consists of user’s <username> and the new name given

to the context in <contextname>. In order to identify the context that will be named,

parameter context_hash or old_name is required.

Table 5.4: Change contextname for a user.

PUT /user/<username>/context/<contextname>
context_hash (Required context_hash or old_name)

Unique context_hash.
old_name (Required context_hash or old_name)

Old name of the context in the form "<username>.<contextname>",
for example "alice.holiday".

5.4.5 Search contexts

Contexts can be searched from VisualREST with HTTP GET method. Table 5.5 presents

the interface for searching contexts. Contexts can be searched from the whole system or

only contexts that a certain user has created or named. All parameters are optional. With-

out search parameters all available contexts are returned. Search results can be narrowed

down by context_name or username. Results can be sorted in ascending or descending

order.

Contexts can be searched as a signed in user or as a guest. A guest user does not

provide any authentication parameters. Guest user will only find contexts that are public

and accessible by anyone. As a signed in user public and private contexts the user is a

member of are searched according to the search parameters. Figure 5.4 presents the web

5. Sharing content using contexts 50

Table 5.5: Search for contexts.

GET /contexts
GET /user/<username>/contexts
context_name (Optional)

Name of the context or part of the name.
username (Optional)

Returns only contexts that this user is a member of.
sort_by (Optional)

Parameter the results will be sorted by. Possible values are: date_added,
date_updated, name or rank.

order (Optional)
Value can be DESC or ASC, meaning descending or ascending order. Default
is descending.

format (Optional)
The format in which the information is returned. Possible values are html and
atom. Html is default.

interface VisualREST offers to users. The Figure has an example for searching all Alice’s

contexts sorted by rank value in descending order. The presented example context search

query would be to URL:

http://visualrest.cs.tut.fi/contexts?username=alice

&sort_by=rank&order=desc

Figure 5.4: Context search web interface.

Search results are returned in HTML or Atom-feed. The search results have a list of

found contexts and provide information and links to the contexts. Context search can be

used for finding content in an interesting context or for finding a context that the user can

add his/her content to.

5. Sharing content using contexts 51

5.4.6 Get context

Getting context is not the same thing as getting content that belongs to a context. When

requesting a context, the response has all available information about the context, such as

name, query_uri, context_hash, owner, list of users allowed to access the context, rank

value and metadata of the context. With the query_uri all content that belongs to that

context can be requested.

Table 5.6 presents the interface for requesting information about a certain context.

Context can be requested either with <username>-<contextname> pair or by using the

context_hash.

Table 5.6: Get context information.

GET /user/<username>/contexts/<contextname>
GET /contexts/<context_hash>
format (Optional)

The format in which the information is returned. Possible values are html and
atom. Html is default.

A context that has been named by several different users, can be referenced by several

different URLs. Figure 5.5 presents an example of how Alice, Bob and Charlie each have

their own URL which points out to the same context. The URL consists of a username

and a personal context name. VisualREST keeps track of context names and connects

them using the unique context_hash values.

Figure 5.5: Contextname and URL affiliation.

52

6. EVALUATION

This chapter focuses on evaluating the presented and implemented features of Visual-

REST. The three main features of the VisualREST content management system this thesis

has presented are content query interface, importing content, and contexts. Next we will

discuss these features in detail and evaluate how they meet their purpose.

6.1 Content query interface

VisualREST already had a content query interface, but it was considered too complicated

and deficient. Query parameters were not as descriptive and unambiguous as they should

have been. Also new features needed to be added and it was not possible with the old

query interface.

The biggest issues with the old query interface were with comparison operators and

date values. The comparison operators were given to number parameters by appending

the parameter name with min or max, and for date types with before or after. The

parsing of the parameters was not always uniform and the parameters got confusing with

the added appendixes. Another issue that was noticed was with date values. It was pos-

sible to give a date in multiple formats. This was designed to be user friendly so that the

value can be given in the format the user wishes to. But it turned out to be more of a bur-

den than a benefit, both users and developers found this to add unnecessary complexity

and not to bring any added value to the system. Therefore, we allowed the date value to

be given in a unified format that was the most intuitive.

The main idea of the enhanced query interface was to add prefixes to all query pa-

rameters. The prefixes are another dimension to the regular type-value pair. The

prefixes allow us to use the combination prefix-type-value for specifying each

query parameter and their purpose in more detail. Furthermore, the prefixes allow us to

add descriptive parameters to the query, such as the previously presented qoption and

6. Evaluation 53

qcluster parameters. Additionally, the prefixes allow us to describe more precisely

comparison among numerical and time related parameters.

The new query interface has proven to be more readable and easy to use than the pre-

vious one. The query URI that is used for making queries is longer than it used to be for

the same query. Nevertheless, the readability of the queries has increased significantly.

Queries are more readable to users and more easily parsed and processed by client pro-

grams and the server. Not only the usability of the interface has improved, but also we

were able to add more features to the interface that would not have been easily imple-

mented into the old interface.

6.2 Importing content

Users have large amounts of content in different devices and services. In order to make

all of the content in different places as valuable as possible to the user, all of the content

should be accessible through one access point. For this end, we have implemented several

ways of importing content to the VisualREST content management system.

Users create a lot of content on their devices, therefore it is natural to implement ways

of importing content directly from their devices that are connected to the internet. Content

can be imported from users’ devices using container programs, sending the content as

email attachment or by uploading the content on the web interface. All of these methods

have their advantages and disadvantages. The container programs are good for automatic

importing, when new created content gets automatically added to the content management

system. The other two methods are good for more infrequent importing when content is

manually added to the content management system.

Importing users’ existing content from other systems to VisualREST has been im-

plemented for mail accounts, Flickr, Facebook and Dropbox. Importing content from a

mail account differs from the others, since users do not have so much control over what

content are sent to their mail account. Of course users can delete unwanted emails and

attachments. Users can even send attachments to their own mail accounts. The content in

mail accounts is static, as new content can be sent but existing content cannot be modi-

fied. Our implementation of importing email attachments offers the possibility of actively

checking for new emails. With this function it is possible to make sure all new email

6. Evaluation 54

attachments get added to the content management system.

For accessing user’s mail account, the user must provide his/her username and pass-

word to VisualREST. Safety aware users might not be comfortable giving their usernames

and passwords to a third party. This issue should be taken into consideration in future

work, but for the time being there is no alternative way of getting access to users’ mail

accounts without the users giving their usernames and passwords to their mail accounts.

Also importing content from Dropbox requires the user to give his/her username and pass-

word to VisualREST. The Dropbox API was launched in July 2010 [42] and is still under

development. The possibility of OAuth type of authentication is expected to become

available in the near future.

Content that is imported from external systems to VisualREST might get modified. If

we want to keep the content in VisualREST synchronized with the modified content in its

original place, we must have a way of knowing about the changes in the content. With

Dropbox it is possible to add listeners that automatically update all changes in the content

to VisualREST. Neither Flickr nor Facebook provides a good way of getting notifications

about changes in the content. The only way is to manually poll each content for changes.

This is obviously not a very good solution, since when the amount of content increases

significantly, the amount of polling would take too much resources from the server. For

this reason VisualREST does not offer automatic synchronization of content in Flickr or

Facebook, instead content can be manually updated by importing the same content again

to VisualREST.

Previously, it was only possible to have containers that hold the essence on users de-

vices. In order to import content to VisualREST from other services, there needed to be a

way of storing content only on the server. For this purpose we created virtual containers.

A virtual container is designed to work like any other container, except that the essence

and the metadata both are stored on the server. Virtual container is a natural addition to

the existing containers. Virtual containers require more storing capacity from the server,

but on the other hand requesting essence from a virtual container is much faster than from

a container on user’s device.

6. Evaluation 55

6.3 Using contexts

Content management systems are designed for managing content. It is important to store

the users’ content as well as to offer appropriate ways of accessing and sharing the content.

In VisualREST contexts were developed for making it easier to share content with other

users. Contexts are used for grouping similar content together. Content belongs to a

context if the owner of the content explicitly defines the content to be in a context or if the

content has matching metadata with the context. Contexts are very useful for meetings,

parties and other events as they can be used for distributing content related to the event

and for sharing content that has been produced for the event or at the event.

In our tests, contexts have proven to be a valuable tool for sharing content easily with

a predefined group of people. The content in a context can be collectively created and

shared with the people allowed for the context. Even though contexts have proven to be

very useful, some concerns have emerged related to context naming and content belonging

to a context. As described in the previous chapter, contexts can be individually named for

different users. This feature was implemented to give users more power over how they

want to name contexts they are using. This can be confusing if two users have different

names for the same context and are talking to each other about the context. Users need

to be aware of this kind of functionality. When requesting context information from the

server, the response includes a name the user has given to the context and the name the

owner of the context has given to the context. Context can also always be referenced with

a unique context_hash, but that is not very user friendly. Using the context_hash is more

suitable for being used by application programs.

Test users have also had some issues related to content belonging to a context. Without

knowing how contexts are designed to work, it might not be clear how content is deter-

mined to belong to a context. If content is explicitly marked by the content owner to be

part of a context, the content access rights are modified so that all users allowed to the

context are also allowed to access the content. On the other hand if a private content

belongs to a context because the content has matching metadata, the content belongs to

the context only from the content owner’s point of view. Since the content owner is the

only user allowed to access the content, it will not be shown to other users as part of the

context.

56

7. CONCLUSION

This thesis has presented development made for an existing content management system

named VisualREST. The presented developments are improved query interface for con-

tent, new ways of importing content to the content management system and contexts for

making it easier to share content with other users.

Content is searched from the VisualREST with search queries. The search queries are

formed by adding search parameters next to each other. The new and improved content

query interface has made the queries more transparent and expressive. It can be more

easily parsed with application programs and it is also more readable to users. The intro-

duction of prefixes in search parameters has made it possible to target parameters more

precisely. For example a search parameter can be targeted to describe the whole query or

only one search parameter.

Users have content stored in many of their devices and they are using different ser-

vices that are storing their content. In order for users to be able to easily access all of their

content from the different locations, VisualREST is offering ways to import all of their

content into one content management system. The thesis presents several ways of im-

porting content into VisualREST from users’ devices and services that are storing users’

content. Users are provided different ways of importing content from their devices for

different kinds of needs. Content can be imported one at a time or by having a container

program running on user’s device automatically importing all new content. Functionality

for importing content from external services is implemented for mail accounts, Flickr,

Facebook and Dropbox. Importing content from external systems follows the same prin-

ciples, importing from new services can be implemented relatively easily.

Sharing content with other users is made easier with the introduction of contexts. Con-

texts are designed for grouping and managing access rights to content. Contexts are a

good way of sharing content between a group of people in such situations as meetings or

parties. The creator of a context defines users that are members of the context. All mem-

7. Conclusion 57

bers of the context are allowed to add content to the context and access content added by

the other members.

58

REFERENCES

[1] Internet usage statistics. http://www.internetworldstats.com/

stats.htm. [Referenced 17.10.2011].

[2] Niko Mäkitalo. RESTful Content Management System for Distributed Environment.

Master of Science thesis, Tampere University of Technology, 2011.

[3] Bob Boiko. Content Management Bible. Wiley Publishing, Inc, Indianapolis, USA,

2005.

[4] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and

Designs. Pearson Education Ltd, Essex, England, 2001.

[5] Philip Laven and Mike Meyer. EBU / SMPTE Task Force for Harmonized Standards

for the Exchange of Programme Material as Bitstreams, August 1998.

[6] Andreas Mauthe and Peter Thomas. Professional Content Management Systems:

Handling Digital Media Assets. John Wiley & Sons, Ltd, West Sussex, England,

2004.

[7] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld. Face recognition: A litera-

ture survey. ACM Computing Surveys, 35:399–458, December 2003.

[8] Roy Thomas Fielding. REST: Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[9] Network Working Group. RFC 2616 – Hypertext Transfer Protocol – HTTP/1.1,

June 1999.

[10] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, Inc.,

Sebastopol, CA, May 2007.

[11] Network Working Group. RFC 5531 – RPC: Remote Procedure Call Protocol Spec-

ification Version 2, May 2009.

[12] Jabber Software Foundation. RFC 3920 – Extensible Messaging and Presence Pro-

tocol (XMPP), October 2004.

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

REFERENCES 59

[13] Peter Saint-Andre. Streaming xml with jabber/xmpp. Internet Computing, IEEE,

9(5):82 – 89, september 2005.

[14] Network Working Group. RFC 5246 – The Transport Layer Security (TLS) Protocol,

August 2008.

[15] Peter Millard, Peter Saint-Andre, and Ralph Meijer. XMPP Standards Foundation.

XEP-0060: Publish-Subscribe. XMPP Standards Foundation.

[16] Ruby on Rails web application framework homepage. http://rubyonrails.

org/. [Referenced 08.09.2011].

[17] Ruby programming language homepage. http://www.ruby-lang.org/.

[Referenced 11.09.2011].

[18] Sam Ruby, Dave Thomas, and David Hansson. Agile Web Development with Rails.

Pragmatic Bookshelf, Raleigh, North Carolina, 2009.

[19] Michael Hartl. Ruby on Rails 3 Tutorial: Learn Rails by Example. Addison-Wesley

Publishing Co., Boston, Massachusetts, 2010.

[20] Obie Fernandez. Rails 3 Way. Addison-Wesley Publishing Co., Boston, Mas-

sachusetts, 2010.

[21] Ruby on Rails API documentation. http://api.rubyonrails.org/. [Ref-

erenced 08.09.2011].

[22] Internet Engineering Task Force. RFC 5849 – The OAuth 1.0 Protocol, April 2010.

[23] Flickr API documentation. http://www.flickr.com/services/api/.

[Referenced 20.09.2011].

[24] Amazon Web Services API documentation. http://aws.amazon.com/. [Ref-

erenced 20.09.2011].

[25] Google AuthSub API documentation. http://code.google.com/apis/

accounts/AuthForWebApps.html. [Referenced 20.09.2011].

http://rubyonrails.org/
http://rubyonrails.org/
http://www.ruby-lang.org/
http://api.rubyonrails.org/
http://www.flickr.com/services/api/
http://aws.amazon.com/
http://code.google.com/apis/accounts/AuthForWebApps.html
http://code.google.com/apis/accounts/AuthForWebApps.html

REFERENCES 60

[26] Niko Mäkitalo, Heikki Peltola, Joonas Salo, and Tuomas Turto. VisualREST: A

Content Management System for Cloud Computing Environment. In Proceedings

of the SEAA 2011 – 37th EUROMICRO Conference on Software Engineering and

Advanced Applications, pages 183–187, 2011.

[27] Object Management Group. Unified Modeling Language: Infrastructure 2.0, March

2006. http://www.omg.org/spec/UML/2.0/.

[28] Flickr homepage. http://www.flickr.com/. [Referenced 14.09.2011].

[29] Facebook homepage. http://www.facebook.com/. [Referenced

14.09.2011].

[30] Network Working Group. RFC 3174 – US Secure Hash Algorithm 1 (SHA1),

September 2001.

[31] Python programming language homepage. http://www.python.org/. [Ref-

erenced 23.09.2011].

[32] Qt framework homepage. http://qt.nokia.com/. [Referenced 23.09.2011].

[33] Subhamoy Ghosh, Juha Savolainen, Mikko Raatikainen, and Tomi Männistö.

Cloudifying user-created content for existing applications in mobile devices. In

Proceedings of the COMPSAC 2011 – 35th Annual IEEE Computer Software And

Applications Conference, pages 4–11, 2011.

[34] Network Working Group. RFC 5322 – Internet Message Format, October 2008.

[35] Dropbox homepage. http://www.dropbox.com/. [Referenced 14.09.2011].

[36] Flickr Boasts 6 Billion Photo Uploads. http://news.softpedia.

com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.

shtml. [Referenced 19.10.2011].

[37] Facebook Statistics, Stats and Facts for 2011. http://www.

digitalbuzzblog.com/facebook-statistics-stats-facts-2011/.

[Referenced 08.10.2011].

http://www.omg.org/spec/UML/2.0/
http://www.flickr.com/
http://www.facebook.com/
http://www.python.org/
http://qt.nokia.com/
http://www.dropbox.com/
http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.shtml
http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.shtml
http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-Uploads-215380.shtml
http://www.digitalbuzzblog.com/facebook-statistics-stats-facts-2011/
http://www.digitalbuzzblog.com/facebook-statistics-stats-facts-2011/

REFERENCES 61

[38] Facebook API documentation. https://developers.facebook.com/

docs/reference/api/. [Referenced 16.09.2011].

[39] Dropbox API documentation. https://www.dropbox.com/developers/

docs. [Referenced 16.09.2011].

[40] Matti Rintala and Jyke Jokinen. Olioiden Ohjelmointi C++:lla. Talentum Media

Oy, Helsinki, Finland, 2005.

[41] OpenStreetMap homepage. http://www.openstreetmap.org/. [Refer-

enced 19.09.2011].

[42] Dropbox API Updates. https://www.dropbox.com/developers/

announcements/6. [Referenced 27.01.2012].

https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/
https://www.dropbox.com/developers/docs
https://www.dropbox.com/developers/docs
http://www.openstreetmap.org/
https://www.dropbox.com/developers/announcements/6
https://www.dropbox.com/developers/announcements/6

	Introduction
	Background
	Content management system
	Distributed system
	Content, metadata and essence

	Technical background
	REST
	Message passing
	Ruby on Rails
	OAuth

	Content management system – VisualREST
	Overview
	Authentication
	Container
	Metadata
	Searching content
	Search parameters
	Query interface

	Notifications

	Getting content to the content management system
	Importing content from devices
	Container program
	Sending content as email attachment
	Uploading content with web browser

	Importing content from other services
	Importing from mail account
	Importing from Flickr
	Importing from Facebook
	Importing from Dropbox

	Sharing content using contexts
	What is context
	Content in Context
	Context access rights
	Context interface
	Create context
	Modify context
	Delete context
	Name context
	Search contexts
	Get context

	Evaluation
	Content query interface
	Importing content
	Using contexts

	Conclusion
	References

