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ABSTRACT 
 
TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Automation Technology 
NIEMISTÖ, LASSI: Virtual fieldbus –  
Applicability, technologies and evaluation 
Master of Science Thesis, 65 pages 
May 2013 
Major: Automation Software Engineering 
Examiner: Professor Seppo Kuikka 
Keywords: Fieldbus, CAN, bus, virtualization, QEMU, VirtualBox, TCP, embed-
ded, development, testing, communication 
 
In the present-day software and automation development, different methods of virtua-

lization have become popular, as the final hardware is then not required for software 

development. This allows earlier and faster software process, reduced time to market 

and more fluent workflow. As distributed automation systems generally rely on 

fieldbuses of various types, implementing a virtual and fully operational fieldbus is a 

necessity for efficient utilization of the virtualized system. 

 In this thesis, we take a comprehensive approach to virtual fieldbuses, from concept 

definition to experimental performance characteristics. We discuss the common behav-

ior of different fieldbuses, list applications for virtual buses and compare possible im-

plementation technologies such as TCP/IP and shared memory. Virtualization tools 

VirtualBox and QEMU are closely studied, as they bring additional challenges to data 

transfer.  

 From the practical point of view, the study presents our experiences on implement-

ing a virtual CAN bus for embedded development. With an extensive set of features and 

platform support in our design, it demonstrates the utilization of multiple technologies. 

Using the virtual CAN implementation, we then show the measured performance char-

acteristics and evaluate the solution against actual hardware.  

 Potential of virtual bus technology was proven by the performance measurements. 

Shared memory implementation provided extremely good performance, sufficient for 

implementing any virtual fieldbus system. It was also found to be efficient in respect to 

CPU load. Unfortunately, shared memory usually cannot cross virtualization bounda-

ries. TCP was found as the best option for the rest of the use cases. In restricted local 

Ethernet or between VirtualBox and host OS, it is able to provide latencies under 700µs, 

similar to hardware performance. Observed bottlenecks were the use of the QEMU 

emulation tool without optimizations, and slow USB fieldbus adapters.  

 We recommend using virtual fieldbuses in virtualized development and debugging 

of distributed systems and for automatic system level testing, if timing requirements are 

not extremely strict. Remote virtual connection to a hardware fieldbus is also seen as a 

valid application. The technologies and adapters must still be carefully selected for best 

results. 
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TAMPEREEN TEKNILLINEN YLIOPISTO  
Automaatiotekniikan koulutusohjelma 
NIEMISTÖ, LASSI: Virtuaalinen kenttäväylä - 
Sovellettavuus, teknologiat ja arviointi 
Diplomityö, 65 sivua 
Toukokuu 2013 
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Virtualisointimenetelmät ovat suosittuja nykypäivän automaatio- ja 

ohjelmistotuotannossa, sillä niiden avulla ohjelmistoa voidaan kehittää ilman lopullista 

laitteistoa. Tällä tavoin on mahdollista nopeuttaa ja helpottaa ohjelmistoprosessia  sekä 

aikaistaa tuotteen pääsyä markkinoille. Hajautetut automaatiojärjestelmät ovat yleisesti 

riippuvaisia erilaisista kenttäväylistä, joten esikuvaansa riittävästi vastaava virtuaalinen 

kenttäväylä saattaa olla ratkaiseva tekijä virtualisoinnin hyötykäytössä. 

 Tämä opinnäytetyö syventyy virtuaalisiin kenttäväyläratkaisuihin, konseptin 

määrittelystä suorituskykymittauksiin. Määritämme eri kenttäväylien yhteiset 

ominaisuudet, selvitämme virtualisoinnin mahdolliset sovelluskohteet ja teemme laajan 

teknologiakatsauksen kohdistuen muun muassa TCP/IP-yhteyksiin ja jaettuun muistiin. 

Käsittelemme tarkasti myös VirtualBox- ja QEMU-virtualisointityökaluja, joihin liittyy 

kommunikaatiota ajatellen tiettyjä lisähaasteita.  

 Teoreettisen ja teknisen selvityksen tuloksia hyödynnetään käytännössä 

toteuttamalla virtuaalinen CAN-väylä sulautetun ohjelmistokehityksen tarpeisiin. 

Toteutuksen laajat ominaisuudet sekä tuki useille alustoille mahdollistavat useiden 

teknologioiden kokeilun. Väylää käyttäen tehdään lukuisia suorituskykymittauksia, 

joiden avulla suoritetaan vertailu eri tekniikoiden välillä ja suhteessa laitteistopohjaiseen 

väylään.  

 Tulokset todistavat virtuaalisen kenttäväylätekniikan potentiaalin. Jaettua muistia 

käyttäen vaativimmatkin sovellukset ovat mahdollisia, prosessorikuormituksen jäädessä 

samalla vähäiseksi. Jaettu muisti ei kuitenkaan usein sovellu virtualisointirajoja 

läpäiseviin yhteyksiin. TCP-yhteyden katsottiin soveltuvan muihin käyttötapauksiin 

parhaiten, sillä sekin mahdollistaa lähes laitteistotasoa vastaavat alle 700 µs viiveet 

VirtualBox- ja paikallisverkkoympäristössä. Eniten suorituskykyä alentavat QEMU-

emulaattorin käyttö ilman optimointimenetelmiä ja hitaan USB-kenttäväyläadapterin 

liittäminen järjestelmään.  

 Suosittelemme virtuaalista kenttäväylää käytettäväksi hajautettujen järjestelmien 

ohjelmistokehityksessä, ongelmanselvityksessä ja testauksessa, olettaen että 

ajoitusvaatimukset eivät ole äärimmäisen tiukat. Etäyhteyden muodostaminen 

kenttäväylään virtuaalitekniikoiden avulla on myös toimiva sovellus. Toteutustekniikka 

ja laitteet on kuitenkin valittava huolella parhaiden tulosten saavuttamiseksi.  
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LIST OF TERMS AND ABBREVIATIONS 
 

Fieldbus tunneling Connecting two or more hardware fieldbuses or clients to-

gether by routing fieldbus frames over computer network.  

Hub   The central component of our virtual CAN implementation. 

Hub accepts client connections and implements the bus log-

ic.   

IPC   Inter-process communication. Data transfer between the 

processes executed in parallel on the same computer.  

KVM  Kernel-based Virtual Machine. A full virtualization solution 

for Linux on x86 hardware containing virtualization exten-

sions.  

LowLevelCAN A library for abstract connectivity to hardware CAN adapt-

ers or virtual CAN bus. Used in our example solution.  

Nagle  Algorithm for collecting TCP data into larger physical 

frames in order to reduce overhead. 

Virtualize  Emulate behavior of target hardware in order to run embed-

ded software on a PC. 

Paravirtualization Virtual machine is conscious about the virtualization and 

may thus use lightweight virtual devices instead of com-

plete hardware emulation.  

QEMU  Generic and open source machine emulator and virtualizer. 

Supports also other than x86-based platforms.  

RTT  Round trip time. A delay measured between sending a mes-

sage to a communication endpoint and receiving an imme-

diate reply from it.  

SocketCAN A set of open source CAN drivers and a networking stack. 

Supported by the Linux kernel.  

TCP_NODELAY An option for TCP protocol to disable the Nagle algorithm 

and send messages immediately.  

Transport protocol A protocol operating on the transport layer of the OSI mod-

el. Provides end-to-end transmission for applications. For 

example TCP or UDP. 

VirtualBox  General-purpose full virtualizer for x86 hardware, targeted 

at server, desktop and embedded use.  
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1 INTRODUCTION 

Digital fieldbus technology has achieved a strong role in automation and control indus-

try, allowing the computation to be distributed into a network of field devices instead of 

a having a central controller. When considering the amount of needed wiring, data in-

tegrity and diagnostic features, the benefits of digital communications are obvious. 

However, the binary form of data transportation requires a vast amount of logical pro-

cessing both when sending data and receiving it. Fieldbus communication logic related 

engineering demand does not apply on the bus hardware industry only. It has brought 

protocol programming as a part of almost every embedded software project, not to men-

tion the development of all the indirectly communication-based functionality.  

 The above-mentioned transition from centralized control to distributed field device 

networks has also led to greater variety of programmable devices with different hard-

ware involved in equal scale systems. Besides, the hardware itself is often designed ex-

clusively for each project. For logistic and economic reasons, the actual hardware might 

not be available for every developer in the project team. Using the actual device for all 

debugging and testing purposes is also often impractical. As an alternative, it is possible 

to run the embedded software virtualized on a PC computer, allowing many develop-

ment tasks to be carried out without the target hardware.  

 Contrary to executing the software code itself, virtualizing its connections to envi-

ronment is rarely trivial and thus often left out of concept. While lack of actual sensor 

measurements or controllable outputs is seldom critical, the absence of communication 

effectively paralyzes significant amount of the intended features. Implementing a virtu-

al, yet fully operational fieldbus may thus become a necessity for efficient utilization of 

a virtualized system. 

 Some applied research on the subject has already been performed by Jong-Seo, 

Sang-Hun and Hyun-Wook, who implemented a virtual CAN bus for modular avionics 

[1]. Also McLoughlin has used a virtual fieldbus for development and testing purposes 

[2] and Obermaisser and Peti implemented a virtual CAN bus as a subservice of a safety 

critical time triggered protocol [3]. However, no focused study or a general solution was 

found, which created the need for such research to be performed for Wärtsilä. In this 

thesis, we will take a comprehensive approach to the topic, discussing it both theoreti-

cally, practically by presenting an example solution and in the light of measurements. 

Rather than focusing on our implementation in detail, we will keep the discussion on a 

generalizable level to be of interest to larger group of readers. 
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1.1 Thesis outline and objectives 

The potential of virtual fieldbus technology seems promising, but only little practical 

information for adoption has been published. Thus, we state the following research 

questions: In which areas virtual fieldbus technology is successfully applicable? How 

close to hardware performance it is possible to get with a virtual solution? What imple-

mentation technologies will give the best results? The subject will be discussed primari-

ly from the embedded software development viewpoint.    

 The thesis is started with an introduction to virtual fieldbus concept, also examin-

ing performance metrics and existing solutions. In addition to gathering this essential 

information for later chapters, the goal of the theoretical consideration is to find out the 

benefits achieved by using a virtual fieldbus, not forgetting the possible challenges and 

drawbacks. We do not restrict the discussion to any particular fieldbus type or standard, 

although CAN bus is mostly used for examples. As in the entire thesis, we assume the 

reader to have an engineer level understanding of fieldbus technology. Also, basic 

knowledge of embedded programming, electronics and computer networks is required 

to perfectly follow the text. These assumptions are made to stay within reasonable scope 

for a thesis, and to ensure concentration on the actual interests. 

 We will then continue to a technology study, which evaluates different implemen-

tation alternatives for virtual fieldbuses. To produce scientifically valuable information, 

the text aims at widely finding and arguing the benefits and disadvantages of each de-

tected solution.  Its results are then applied to a design and implementation of a virtual 

CAN bus system. Beneficially, the large feature set of this particular project provides a 

prolific basis for prototyping several technologies. The constructed solution is explained 

in adequate precision, excluding the small implementation details to focus on relevant 

discussion. 

 To provide answers to the question about virtual bus performance with different 

technologies, appropriate measurements are conducted using the metrics discovered in 

the theory part. The experiments are documented in two sections, one describing the test 

setup and methods, and the other presenting the results. After going through the above 

described four-part research process, all the findings are summarized and discussed in a 

designated conclusion chapter. The stated thesis questions are to be answered distinctly 

and the successfulness of thesis process is also evaluated. 
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2 VIRTUAL FIELDBUSES 

In this chapter, we will discuss fieldbuses and their virtualization from a theoretical and 

general viewpoint. This will be started by an introduction to the virtual fieldbus concept, 

followed by describing its essential applications and listing the existing products and 

solutions found. Using this initial information, we can then spot the important features 

associated with a multi-purpose fieldbus virtualization, and also find the challenges and 

drawbacks involved. We also look for and discuss metrics to be used in measuring vir-

tual bus quality and performance. As a result, we can then constitute reasonable expec-

tations for a virtual fieldbus solution. The gathered knowledge will be used in the fol-

lowing chapters as reference for design, as baseline for validation and ultimately to 

identify the applicable uses for virtual bus technology.  

2.1 The concept 

To clarify the forthcoming discussion, we need to define what is denoted by virtual 

fieldbus. This, naturally, is based on the concept of a fieldbus itself. Defined by the 

comprehensive fieldbus standard series IEC 61158, a fieldbus is a bidirectional serial 

digital data transmission bus, which allows the communication among industrial infor-

mation devices such as sensors, actuators and controllers [4, see 5 p. 18]. The standard 

set includes specifications all the way from lowest level definitions, elements and dif-

ferent communication layers to a selection of individual protocols [6]. Being unfortu-

nately not available for this research in full-text, their content still gives a good over-

view of the fieldbus concept, spreading over all the OSI model layers.  

 Virtualization, generally, means transforming something to a computer-generated 

simulation of reality [7]. When considering virtualization inside the computer world, 

hardware is practically the only element comparable to physical reality, which focuses 

the definition of virtualization to simulating hardware in software. Fieldbuses make no 

exception to this, as their functionality outside the hardware devices is essentially im-

plemented in software. Therefore, we define virtual fieldbus in general as a fieldbus 

using virtual hardware as its transmission media, with software-based and logical parts 

kept as original as possible to preserve its features.  
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2.1.1 Virtual fieldbus and OSI model  

While virtual fieldbuses are clearly a special case of fieldbuses, we are primarily inter-

ested in the differences involved. As stated above, any higher software layers, such as 

CanOpen protocol stack and Modbus application layer [8, ch. 31.6, 36.4], are not to be 

modified in the virtualization process, and thus left out of our virtual fieldbus concept. 

Referencing to OSI model [8, ch. 1.3-1.5], the highest responsibility of the bus is thus to 

provide end-to-end connections on the transport layer.  

 Starting from the lower end of the OSI model, the technology utilized on the physi-

cal layer varies greatly among the bus standards and brands. Profibus and CAN, for ex-

ample, use twisted-pair cabling [9, p. 32; 10, p. 5], while LonWorks can also communi-

cate using power lines, fiber optics and wireless methods such as radio and infrared [11, 

p. 31]. Our viewpoint to the bus virtualization is still more on the application side, mak-

ing all the details on the physical layer uninteresting, if they do not have effect on the 

higher layers. While seeking general purpose solutions and results rather than specializ-

ing in any single fieldbus type, we also practically have to rule out the physical layer. 

The overall picture can now be seen from Figure 1. 

 

 

Figure 1: Virtual fieldbus scope in OSI model 

2.1.2 Communication characteristics 

The domain of a virtual fieldbus is now limited between the link and transport layers, 

but further qualification is still needed for a generalizable concept. On these layers, dif-

ferences among the fieldbus types mainly associate to performance values and rules of 

the transmission logic. At this point, we can identify the growing set of Ethernet-based 

fieldbuses, such as EtherCAT [12] and PROFINET [13], and exclude them from up-

coming discussion, because Ethernet already has well-developed virtualization methods 

[14; 15]. In the remaining group of bus types, more deterministic and simple serial 
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communication seems to dominate. Characteristics for a group of typical fieldbuses are 

given in Table 1.  

 

Table 1: Characteristics for a selection of fieldbus types 

Fieldbus type Frame size (bytes) Throughput Arbitration  Reference 

CAN 13 10..1000kbps * Collision detec-

tion, priorities 

[16, p. 21, 42-55; 

17] 

FOUNDATION 

Fieldbus H1 

258 31.25 kbps Active scheduler [18, p. 355, 359] 

INTERBUS 512 * 500 kbps   -

2Mbps 

Master/slave, 

summation 

frame 

[8, ch. 33.1-33.9] 

Modbus 256 1..100 kbps * Master/slave [19, p. 5; 20] 

PROFIBUS 249 31.25 kbps    -                

12 Mbps 

Token passing [9, p. 124; 18 p. 

350, 351] 

LonWorks 250 5..1250 kbps 

 

 

CSMA [8, ch. 41.3; 11, p. 

41, 45-46] 

*Not strictly specified 

 

 The comparison clearly shows, that all the bus types share a common data transfer 

method, a message frame with restricted size. The frame size varies between 13 and 512 

bytes, being remarkably small in the gigabyte scale of modern computing and also 

smaller than for example the standard 1500 byte Ethernet frames [21]. The variance in 

throughput is higher, but it occurs equally both within one bus type and among the 

whole group. Arbitration methods depend on the media and topology utilized, and in 

some cases additional signaling or tokens are required. The purpose of arbitration is 

still, independent of the bus type, to determine strict frame transmission order based on 

its characteristic logic. Most fieldbus types as CAN, Profibus and Modbus, provide au-

tomatic data corruption detection and retransmission [16, p. 23; 8, ch. 32.5, 36.11], and 

consequently also the virtual fieldbus, in general, must guarantee data integrity.   

 On the physical layer, real fieldbus timings are deterministic, but this does not nec-

essarily mean application-level timings to have the same accuracy. A fieldbus type may 

support multiple media types with different timing properties. Arbitration may alter 

transmission times by prioritizing certain messages, and in an overload situation some 

messages may even be dropped. In addition, all added hardware and software compo-

nents will cause extra delay before frames reach the application layer. Probably for the-

se reasons, official response time specifications were not found for the examined 

fieldbuses. With many fieldbus types, sub-millisecond class delays are considered ad-

vanced performance [22; 23]. From the reported values found, lowest round-trip laten-

cies of 250-500 μs are associated with CAN bus [1, p. 3-4]. Generally said, fieldbus 

features and applications vary from non-real-time to hard real-time. Based on the dis-

cussion this far, Table 2 defines the communications properties of our virtual fieldbus 

concept.  
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Table 2: Fieldbus communication characteristic features 

Frame size ≤ 1 kb 

Throughput ≤ 15 Mbps 

Frame order Strictly defined by characteristic rules 

Round-trip time 250μs at shortest, 1.0ms sufficient in most cases 

Data integrity Guaranteed in normal conditions 

 

 

2.2 Applications for virtual bus technology 

In embedded software development, the requirement to run the software on the actual 

target device may result in serious inconveniences. Fully working prototype hardware 

may not be available for the development team, and even if it is, the debugging features 

may be limited and workflow may be decelerated by the repetitive demand of repro-

gramming the flash memory devices [2, p. 20-22]. For these reasons, the usage of dif-

ferent virtualization methods for running the software on PC has become popular, as 

they allow earlier development, reduced time to market and more fluent workflow [24, 

p. 6]. However, heavily fieldbus communication dependent projects require virtualizing 

also the bus communications to enable development and testing of the fieldbus related 

parts [25, p. 14]. 

 As stated, virtual fieldbus is a great aid for development-time testing. Its possibili-

ties are still not restricted to manual workflow. Automated testing frameworks already 

exist also for embedded systems, National Instruments TestStand [26] being a good 

example, but they naturally require heavy instrumentation as the tests are run on actual 

hardware. Also a more traditional test automation system, as Jenkins [27, p. 135-136], 

may be used to test embedded systems through their external interfaces. Without a vir-

tualized fieldbus, communication-dependent testing is in both cases possible only with a 

pre-constructed hardware system. It is thus not difficult to picture all the improvements 

that can be achieved with a virtualized bus system. In a completely virtual environment, 

every test script is able to set up its own bus configuration and even alter it during the 

test run. More sophisticated bus implementations could allow simulating different bus 

error situations, controlled by the test script. This surely enables writing better and fast-

er test cases, not to forget decreased hardware and instrumentation costs.  

 Physical properties of hardware buses effectively restrict the acceptable cabling 

lengths, and setting up cables between distant locations is usually tedious or impossible, 

at least for temporary purposes. Wired Ethernet or other IP networks are available prac-

tically everywhere, not to mention the wireless solutions, so utilizing them as a tunnel 

between two fieldbuses is absolutely beneficial. This method might be questioned of not 

being a virtual fieldbus, as hardware network is used as data carrier, but the virtualiza-

tion software layer is still needed for emulating the characteristic features of the bus. In 
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addition to the mentioned hardware bus interconnections, network tunneling technology 

adds flexibility also to partly and fully virtual fieldbuses. The communicating virtual 

devices no longer have to be located on the same computer, but one may for instance 

run them distributed on a set of high-performance virtualization servers and develop-

ment workstations, still retaining seamless communication.   

 Although most of the applications for virtual fieldbus technology exist in the field 

of development, a bus virtualization can of course be part of the final product as well. In 

modular software architectures, it may be useful to create a virtual bus for the software 

units running on a common platform and thus sharing a single fieldbus connection. 

From a single software module point of view, the other modules executed on the same 

platform are invisible and the virtual bus appears as exclusive access to the hardware 

bus connection. [1, p. 1-2] As a drawback, applications of this type certainly have more 

rigorous requirements for the implementation performance and stability, as the virtual 

bus will be in continuous use on the field. 

2.3 Existing solutions 

Before starting a new design and implementation for a virtual fieldbus, the existing al-

ternatives should be investigated, firstly to verify the necessity of a custom solution, and 

secondly to gather ideas and perspective for the design. When considering the above 

listed applications, fieldbus-over-Ethernet gateways seem to be most popular in the 

range of commercial products. These devices are provided by multiple manufacturers, 

especially for CAN bus. Three typical solutions, VScom NET-CAN 110 [28], esd elec-

tronics EtherCAN/2 [29] and SYS TEC CAN-Ethernet Gateway GW-003 [30] are pic-

tured in Figure 2. They provide also drivers and application programming libraries for 

connecting PC computers or custom devices to the bus system [31; 32; 33]. The versa-

tility of the software parts varies, but none of the examined APIs seem to offer pure 

virtual utilization, which is of course natural from the marketing point of view.    

 

Figure 2: Three commercial Ethernet-CAN gateway solutions [28; 29; 30] 

 

 One existing way to create a simple virtual bus is to use a virtual device driver with 

multi-access support, simply shared among the virtual fieldbus clients. Kvaser, for in-

stance, offers this option in their USB CAN adapter library [34]. This technique is still 

possibly not designed for continuous and extensive use. Using a device driver as a vir-
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tualization base may provide connectivity to the corresponding hardware device, but 

this is likely to be limited to a single device at a time. 

 The last existing solution to introduce is much less device-oriented. Multi-purpose 

modeling and simulation environments are a growing trend also in the embedded devel-

opment [35, p. 1-3]. In addition to aided design and testing, these tools can even pro-

duce application code for the end product [36]. Among all the interesting features, the 

environments can be used for bus virtualization and connections to fieldbus hardware 

[37; 38, p. 9]. A Simulink-based example of virtual CAN bus is presented in Figure 3. 

This type of bus virtualization has the major benefit of modifying and routing the bus 

traffic on-the-fly, enabled by the advanced simulation features. Also, extension capabili-

ties are usually provided through programming interfaces. Despite of the advantages, 

this solution is practical only when developing is model-based, because using a full 

simulation environment only for the fieldbus might be inordinate.    

 

 

Figure 3:A Simulink-based CAN bus virtualization example [39] 

2.4 Important features 

The theoretical concept of a virtual fieldbus together with its discovered applications, 

both existing and prospective, still does not form an articulate enough base for imple-

mentation discussion. This chapter intends to distinguish and categorize the general and 

characteristic requirements involved in a virtual fieldbus design.   
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 As stated above, the PC-fieldbus adapter manufacturers often provide fairly versa-

tile drivers, programming interfaces and fieldbus related tools, but unluckily they seem 

to be often limited to be used only with the manufacturers’ own hardware [40, p. 8; 41]. 

Some successful development has been carried out to create more unified and open in-

terfaces, mostly in the Linux world. For example the universal CAN driver LinCAN 

[42] has a wide support for different bus controller chips, the socket based CAN library 

SocketCAN has achieved the role of official Linux CAN driver interface [43], and the 

VCA library acts as a common interface for the two alternatives [44]. As the existing 

libraries also provide some virtualization possibilities, an adequate virtual fieldbus must 

provide decent hardware support to compete them. The mentioned widely adopted inter-

faces may also be beneficial if supported by the virtual bus, as they may allow instant 

connectivity to a set of existing applications and devices. 

 The virtual fieldbus concept sets requirements for the communication methods to 

utilize. First, the virtual bus must guarantee data integrity, as hardware bus controllers 

do in most cases. Second, the virtual bus must keep the frame order strictly as defined 

for the emulated bus type. Both cases also naturally require lossless transmission. If 

such a reliable technology is not available, these features must be provided by the soft-

ware wrapping the unreliable connection. Multiple separate channels are commonplace 

in real world applications for redundancy or segmentation, and thus should be supported 

in the virtual implementation also. Beside these logical properties, the communication 

performance has a crucial role. As the needed throughput varies among the bus types 

(Table 1) and the real-time requirements depend on the application, we can only point 

out that low latency and high throughput increase the universality of the solution. In 

many cases, the throughput is to be artificially limited to the emulated bus speed. Inside 

a local system the communication methods can be selected quite freely, but support for 

network tunneling may be required directly as a feature. 

 Another category of features is formed by the bus control. A virtual bus setup al-

ways needs to be configured, analogous to wiring hardware buses between device ports. 

As the wiring is highly application dependent, the virtual implementation should not 

place restrictions on this. For testing purposes, it is ordinary to modify the bus configu-

ration and disconnect, cut or short circuit cables when devices are running. This should 

be possible also in the virtualization to enable full-scale virtual testing. In addition to 

these hardware derived features, the virtual bus enables creating also another valuable 

testing aid, not entirely available by other means: it should be possible to discard, modi-

fy or corrupt fieldbus frames on-the-fly randomly or based on filter conditions. While 

all the above pictured events are outside of the bus client’s control, a mechanism and 

interfaces for configuration and control must be built in the virtual bus system itself. 

Interfaces may be required both towards user and for other programs, and in a distribut-

ed bus system it is conventional to have control access from any of the interconnected 

locations.  

 While the above described features already guarantee a multi-functional solution, 

its utilization may still be limited by the platform. Several platform types may be con-
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nected using Ethernet tunneling, and virtualization or emulation is often used to create 

independent sub-environments, both parallel and nested. Because of this, different plat-

forms often exist also inside a single bus setup, which makes portability even more im-

portant for virtual fieldbuses compared to many other types of software. In addition to 

regular Linux or Windows based workstation systems, also more plain embedded envi-

ronments should be supported. This is primarily needed to allow connecting virtualized 

embedded devices on the bus, but also enables implementing for example gateway de-

vices on real hardware. 

2.5 Challenges and drawbacks 

By now we have discussed the virtual fieldbus from a conceptual viewpoint and formed 

a picture of an optimal solution. Every software project aims at filling its requirements 

as well as being feasible, but some demands are more challenging than others and some 

even impossible to implement. In this section, we will discuss the characteristic chal-

lenges in virtual fieldbus design and implementation and look for probable disad-

vantages remaining even in a most successful design. 

 Network tunneling has been listed above as an important feature for distributed bus 

setups. It is also one of the most obvious threats to the bus communication quality, be-

cause the widely used Ethernet standard IEEE 802.3 does not support any real-time 

guarantees [45, p. 1]. If the network is not dedicated for the fieldbus, other users may 

also cause occasional overload. Such variance in quality is more harmful from the laten-

cy point of view, compared to average throughput. While even Internet connections 

these days usually achieve enough bandwidth for most of the fieldbus types, their multi-

millisecond delays are far from typical fieldbus timing properties. The delays drop sig-

nificantly when restricting the communication to wired high speed local area networks, 

and even more when operating in a virtual network, supported by all major operating 

systems. Timing issues can be thus reduced by selecting the network components and 

topology carefully, but major part of flexibility is lost simultaneously. As a result, even 

perfect support for network tunneling itself clearly does not guarantee applicability in 

all combinations of fieldbus requirements and network types. 

 In the embedded software development, the target device architecture is seldom the 

same as in development workstations. To enable more realistic virtual testing of the 

software, the actual processor of the device must be emulated [2, p. 20]. For this, there 

are several tool alternatives, including SkyEye and ARMware, but the open source ma-

chine emulator QEMU has become a popular option [24, p. 3; 2, p. 22]. Emulation may 

naturally result in poor performance, and even multiple decades slower execution com-

pared to native code has been reported in an extreme use case [46, p. 5]. Though the 

reduced performance is mainly the problem of virtualization in general, it needs to be 

taken into account in the virtual fieldbus design as well, especially because the fieldbus 

setup often consists of multiple virtualized devices. In some cases, this might require a 

dedicated high performance server for running the virtualized system. As in networking, 
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latency is still more important than throughput, here referring to computing power. 

While embedded devices tend to use a real-time operating system or no OS at all to ful-

fill the timing requirements [47, p. 10], workstation computers normally use asynchro-

nous operating systems instead. Therefore, emulating or virtualizing the former system 

type on top of the latter may add unpredictability also to fieldbus communication. 

 While setting up the system emulation using the above-mentioned tools is rather 

simple, methods for setting up fieldbus communication to and from the emulated virtual 

machine may be found challenging. In fact, the similar problem turns up in any system, 

where data transfer must cross virtualization borders. [48, p. 1-2] One such use case is 

when virtual machines are used to build a development environment. When parallel 

virtualized guests exist, their inter-communication may even need to always pass 

through the host, doubling the problem [48, p. 2]. In many other cases file share [49, p. 

66], virtual networking [15] and other well-supported techniques can be used to provide 

sufficient data transfer, but the timing requirements of virtual fieldbus may rule most of 

them out.  In addition, high performance communication technologies seem to be main-

ly developed for the needs of server oriented virtual machine hypervisors, such as Xen 

and VMware [48, p. 27], and may thus not be supported when emulating more obsolete 

platforms used for embedded devices.  

 The virtual bus cannot always retain the natural topology of a hardware bus. To 

implement the characteristic fieldbus logic with strictly defined frame order, a shared 

central element is often needed, analogous to a common bus cable. For example linear 

bus type topology thus becomes actually a star. Such topology conversion does not need 

to be disadvantageous, but it might be challenging to design. In extreme cases, connec-

tions to hardware buses or network tunneling can lead to multiple star centers and thus 

make the desired bus model even impossible to implement. A complicated topology or 

logic might also force the frames to pass through multiple message buffers, causing ex-

tra delays to communication. 

2.6 Metrics 

To be able to compare and evaluate virtual bus implementation technology selections 

and complete implementations, suitable metrics must be defined. When it comes to the 

physical layer of a hardware fieldbus, the measurable quantities as voltage, resistance 

and edge quality [50] are numerous, and naturally dependent on the media type used. 

Luckily, the virtualization concept generalizes the media to simplified frame transfer, 

where the characteristic values are much fewer. Due to the technical and similarity, the 

well-studied measurement theory and methods from the Ethernet field [51; 52] may be 

applied to virtual fieldbuses as well. When Ethernet or IP networks are explicitly or 

implicitly used for virtual fieldbus data transfer, a wide set of existing benchmark tools 

is available, including netperf [53], iperf [54] and ping. In the following subsections, the 

different performance and quality attributes are identified and discussed.  
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2.6.1 Data rate 

The most obvious subject to measurements is probably the bus data rate, because in 

hardware solutions it is often a timing-based constant, but varies in the virtual environ-

ment. When discussing data rate, the terms throughput and bandwidth are often consid-

ered synonymous [55, p. 1]. However, they have slightly different meaning: while 

bandwidth represents the maximum data transfer capability of the media regardless of 

the content, throughput instead is defined as the successful message delivery over the 

communication channel within a certain communication concept [56]. Because the pur-

pose of fieldbus is to provide transport for any application data, bandwidth is a more 

relevant term, when measuring its data rate in general. Virtualization brings another 

aspect to this, as other communication technologies are used as data carrier and the vir-

tual fieldbus thus acting as an application with relevant concept of throughput. Depend-

ing on the delays involved and protocols used, the virtual bus throughput may not fully 

utilize the carrier channel bandwidth [56]. When measuring the fieldbus performance it 

makes no difference which term we use, but the conceptual differences and the related 

problems must be taken into account in evaluating different data transfer technologies 

for the virtual implementation.  

 Regardless of the data rate meaning, measuring it is technically similar. As a unit, 

any data packet in unit of time may be used, but bytes per second would be the most 

comparable when the frame size varies. By definition, data rate is measured as an aver-

age from a selected time period [57, p.1]. When measuring throughput or bandwidth, 

the data rate is to be measured under maximum bus load. For this, a suitable test setup 

producing artificial traffic must be constructed. Because virtual fieldbus should guaran-

tee a constant bandwidth, we are mainly interested in two values: the long-time average 

and the variance of short time average. Throughput may also depend on the packet size 

if overhead processing becomes the limiting factor [57, p.5]. Thus, the throughput 

should be measured also with multiple frame sizes.   

2.6.2 Delay 

In addition to the bandwidth, transmission delay is an import attribute, when consider-

ing systems with timing requirements. By delay, we mean the time elapsed while a mes-

sage is sent and received between two points in the communication system. Unlike 

throughput, delay is not essentially an average value, but associates with an individual 

frame. When asynchronous communication methods are used, the delay does not stay 

constant, but instead fluctuation, often called jitter [58], is experienced. In a hard real 

time system, data frame loses its value completely if certain reception deadline is not 

met. When the system is soft real time, the value of data is not completely lost but still 

decreases in time. [59, p. 1] For these reasons, we find average delay not very interest-

ing. Instead, the distribution of the delay, or more specifically the probability of the de-

lay being lower than a selected deadline can tell us more about the communication suit-

ability for an application.  
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 If the application and its tolerable latencies are known, scalar probability values are 

informative, but for an overall picture it is best to present the delay distribution graph-

ically. Measuring one-way transmission delay directly would require the sender and 

receiver to have precisely synchronized clocks, which is not always possible. Instead, a 

more popular method seems to be measuring a round-trip time (RTT), by requesting an 

immediate answer from another communication client and using only the sender clock 

for calculating the time elapsed in these two transmissions. However, one-way delay 

can be reliably calculated from RTT only in perfectly symmetric systems. Total delay is 

the sum of delays originating from different components of the communication system, 

including both hardware and software. [60, p. 2] To approximate the influence of each 

component, it may not be enough to perform the measurements on the application layer 

clients only, and thus adding measurement points to the lower layers may be needed.   

2.6.3 Other measures 

Transmitting messages over a communication channel needs to comply with a protocol, 

because data is generally only a stream of bits on the physical layer. It usually requires 

extra information to be transmitted with the actual message, defining for example type, 

length and error correction values. This so-called overhead is increased on every layer 

of encapsulation. [61, p. 1] Depending on the protocols used, the overhead may con-

sume a significant amount of the total required bandwidth, even more than the actual 

payload data itself if small packets are used [62]. Opposed to most characteristic quanti-

ties, overhead magnitude may be calculated theoretically by analyzing the protocols. 

Most informative representation is obviously the percentage of overhead included in the 

total traffic. This value is, however, not a constant, but clearly a function of payload size 

and message type. When designing a virtual fieldbus, we are not interested in the over-

head in the fieldbus internal traffic, but instead the one of encapsulating that traffic for 

virtual transportation. 

 A hardware communication media often suffers from noise and disturbance, and 

data may thus get corrupted or even lost during transmission [63]. The severity of the 

phenomenon can be reported by calculating the error and frame loss probabilities using 

generated traffic. As stated previously, a fieldbus usually provides error detection, cor-

rection and/or retransmission to cope with these issues, and a virtual alternative should 

thus also provide essentially error free transmission. Using the right technology, this 

should not become a problem in virtual environment, where data integrity is a require-

ment anyway. Consequently, as both of the probabilities should not exceed zero in a 

normal situation, evaluating them should belong to basic functional testing of the virtual 

bus rather than being part of the performance or quality measures. On the other hand, 

the values may become meaningful, if controlled artificial corruption or loss is part of 

the bus functionality. 

 In addition to all the metrics related to the communication performance and quality, 

it is also possible to measure its impact to the surrounding environment. This is realized 

through the resource consumption of the virtual bus system, mainly including the CPU 
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time, memory utilization and hardware communication device usage. From the three, 

memory consumption can be neglected, as buffering thousands of fieldbus frames only 

would require megabytes, a very low demand in a today’s computer system. Communi-

cation devices lose certain bandwidth for the virtual fieldbus, which obviously restricts 

other uses of the shared media. Measuring and approximating this brings us back to the 

concepts of data rate and overhead, and thus no special methods are needed. CPU utili-

zation requires attention, as we already found it a possible bottleneck in the virtual envi-

ronment. Luckily, CPU usage statistics are usually provided by the operating system 

[64, ch. 6.4; 65] and it is relatively simple to compare the values with and without the 

virtual fieldbus running. Like data rate, it is an average value by definition, and practi-

cally always reported as a percentage. 

2.7 Reasonable expectations 

Before moving on to more practical parts of the thesis, it is time to form a conclusion on 

the findings of this chapter. Despite the various fieldbus types involved, it was possible 

and rather straightforward to form a generalized concept of virtual fieldbus. This justi-

fies the rest of the research, which is thus applicable not only on a special case, but gen-

erally on its domain. Many applications and arguments for a virtual fieldbus were dis-

covered, but directly related scientific publications were found significantly rare. The 

examined commercial or other existing solutions also seem not to suit all virtual bus 

applications, as their main target group was slightly different. It is thus firmly expected, 

that implementing a better solution with support for larger set of important features 

would be well possible.    

 In addition to prospects, we found also challenges. All communication methods 

will not likely provide low enough latency in fieldbus use. A deeper study on different 

alternatives is needed and will be conducted in the next chapter, but the existing publi-

cations give us a clue what to expect. As defined above, 250-1000 μs round-trip delays 

are enough for virtual fieldbus. Multiple inter-process communication methods have 

been reported to provide one-way latencies smaller than 50 μs [66, p. 6-10]. Also, a 

published virtual CAN solution only induced 8-60% of additional latency when extend-

ing a hardware bus [1]. Based on this, we assume that satisfactory timing properties can 

be achieved at least in restricted virtual environments.  
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3 IMPLEMENTATION TECHNOLOGIES 

During the theoretical discussion, we have simultaneously formed an informal require-

ments specification and a brief risk analysis, a valid starting point for a generalized vir-

tual fieldbus project. We will now continue on the same path of a software process, pro-

ceeding to the architecture and technology design consideration. Finding and selecting 

the right implementation technologies plays very strong role in filling the requirements. 

As our interest is also scientific, we target at evaluating different technologies widely 

and thoroughly, not only for the needs of the example solution presented later in this 

thesis. In the following chapters, technologies for the main functionalities are discussed, 

highlighting the areas where biggest challenges were seen. 

3.1 Network communication 

To support distributed virtual fieldbus access from different PCs and devices involved, 

communication over network is required. Computer networks are built on various wired 

and wireless medias, Ethernet being the most common in local area networks. However, 

in some virtual fieldbus applications, also wireless 802.11, broadband Internet or even 

mobile communications are useful. Different physical layers obviously have different 

timing properties, and it is thus important to distinguish between use cases. Only fast 

networks can be used for extending virtual fieldbus at hardware-like performance, while 

almost any network will connect remote clients with justifiably higher latencies. On the 

link layer, the network technologies have different protocols and frame formats, but the 

widely supported Internet Protocol family (IP) provides a common facade to all of them. 

 The real-time properties of computer networks were already found problematic in 

the previous section. In the field of Ethernet, lots of effort has been put in developing 

methods for better applicability in real-time applications. Some of them provide even 

hard real-time guarantees in switched Ethernet, but special real-time layers in each 

component of the network or even custom devices are needed [67]. Due to these re-

strictions, such technologies cannot be used in any networks not explicitly built for this 

purpose. Luckily, also the real-time extensions are often built under IP layer, and the 

common interface towards virtual fieldbus is thus retained regardless of the underlying 

technology. We can thus safely select the upper layers based on IP. 

3.1.1 Transport protocol selection 

Building fieldbus communication over IP still has multiple options for transport layer 

protocol. For continuous data transfer, the most common alternatives are the connec-
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tion-oriented TCP (transmission control protocol) and the connectionless UDP (user 

datagram protocol). At first glance, we notice that TCP provides exactly the desired 

main features for communication: data integrity, lossless transfer and strict frame order. 

TCP is, however, sometimes considered to have lower performance due to high pro-

cessing overhead and requirement to retransmit any lost packets. UDP does not have 

these issues, but it would require building the reliability features on the application lay-

er. It would also be possible to implement a custom protocol from scratch using raw IP 

frames, but no advantage is seen in that approach, as the existing protocol stacks must 

already be highly optimized.  

 Before reviewing other protocols, we need to take a deeper look into TCP technol-

ogy. In TCP the sender must store all sent packets until receiver has acknowledged suc-

cessful reception. The size of this storage buffer, also known as transmission window, 

controls the amount of data travelling between the endpoints at any moment of time. 

Large window is mainly required to provide decent data rate in high latency networks, 

but it also allows higher traffic bursts in low latency environment. For optimal perfor-

mance in different networks, window size is thus auto-tuned during communication. 

When packet loss is detected, TCP also drops its data rate, as loss is usually effect of 

reaching media bandwidth limit. The transmission speed is then again increased gradu-

ally based on an algorithm. If the loss is instead caused by a random error, data rate may 

remain low in vain. As these issues are most harmful when trying to achieve maximum 

data rate in high bandwidth, high latency networks, effect on fieldbus communication in 

good quality network is small. We also do not see TCP stack performance as a big issue, 

as virtual fieldbus would usually run on devices already utilizing TCP for other purpos-

es. A worse problem in our point of view is that TCP was not essentially designed for 

real time applications and does not guarantee timeliness of transmission [68]. In a 

fieldbus application, dropping a frame might be better than delaying other traffic too 

much. One of the real-time issues in TCP is that IP frame transmission may be delayed 

for collecting more data in order to avoid unnecessarily large number of small frames. 

 Alternatives for TCP exist, but they are not very frequently adopted. To compete 

TCP in our use case, a protocol should achieve better real-time features while keeping 

the frame order and as much reliability as possible. Portability is a possible issue in us-

ing third party special protocols, if the virtual fieldbus should support also limited sys-

tems. RTP (Real-Time Transfer Protocol) resembles UDP, as it lacks the frame loss 

recovery mechanism of TCP [68]. Its features seem to be specific to multicast multime-

dia streaming [68], and thus not useful in fieldbus applications. RUDP (Reliable UDP) 

has taken a lightweight approach, adding only the reliable in-order delivery to tradition-

al UDP [69, p. 3] in order to avoid many TCP issues. This variation also supports set-

ting retransmission deadlines, but unfortunately only values greater than 100ms are ac-

cepted [69, p. 7]. SCTP (Stream Control Transmission Protocol) covers and extends the 

main TCP features. It is not essentially real-time targeted protocol but it has multiple 

useful features as retransmission deadline, framing on application layer and multi-

streaming. Many studies compare its performance with TCP, often finding SCTP 
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throughput lower [70; 71] and latency equal or higher than TCP [72]. Advantages are 

seen mainly in high loss networks [73; 74], which are not the primary target environ-

ment for a virtual fieldbus. Some interesting protocols are unfortunately still at draft 

stage, low latency oriented UDP-RT [75] being an example. As none of the above re-

viewed protocols provided superior properties compared to TCP, we see no realistic 

alternative to using TCP for fieldbus networking transport protocol. 

3.1.2 Obtaining maximum TCP performance 

TCP being selected as the transport protocol, we should concentrate on reducing the 

effect of its disadvantages. It was already noted, that TCP is stream oriented protocol 

and internally makes the decision on how much data (from 0 to 64 kb) it collects before 

sending it in an IP layer frame. The default method for this is called the Nagle algo-

rithm, which transmits only full TCP frames if the receiver has not acknowledged all the 

previous ones. It is clear that this kind of algorithm does not work well in all cases, and 

thus modifications have been proposed [76]. Whereas it would be difficult to change the 

algorithm, completely disabling it is easy using the socket option TCP_NODELAY, 

causing all data to be sent immediately. This has been proven to drop the communica-

tion latency over 60%, but obviously at the expense of throughput [66, p. 6-7]. For the 

increased traffic, this method has been generally criticized, but accepted in real-time 

oriented applications such as virtual fieldbus, where the initial goal of Nagle is too con-

tradictory. With the algorithm disabled, controlled packing of multiple fieldbus frames 

together is still possible on the application layer. We thus see this method worth exper-

imenting in the virtual fieldbus implementation. 

 It is sometimes stated, that higher performance could be achieved using multiple 

TCP connections instead of one. This would be a possible implementation in the 

fieldbus case where multiple channels are often required. The actual benefits would still 

be small, as showed by deeper studies [77; 78], and obviously even smaller when work-

ing in rather low latency and almost lossless network. 

 A TCP phenomenon called slow start occurs when the initial size selection for 

transmission window in the beginning of the connection is too small compared to the 

connection bandwidth. Good results have been achieved in latency of bursty (web) traf-

fic by increasing this value [79]. This could apply to fieldbuses with similar traffic, but 

only in higher latency networks.    

3.1.3 Application protocol  

Regardless of the protocol used, transport layer offers a plain data carrier frame with 

undefined content. In fact, some protocols as TCP are of stream type and framing must 

be done on application layer. Essentially, the carrier frames are not identical to the 

frames of emulated fieldbus. An encapsulation protocol is required for common under-

standing of how fieldbus frame components are located in the carrier frame. Pure 

fieldbus traffic encapsulation is alone not enough, but the application protocol must also 
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support control and configuration messages for setting up and operating the virtual 

fieldbus. 

 Standardized encapsulation protocols exist, for example, in the case of IP routing 

[80; 81], but they are obviously not suitable for fieldbus use. Some existing fieldbus 

tunneling solutions as AnaGate reveal their protocol for custom applications [82]. How-

ever, no protocol seems to be widely adopted and thus no compatibility benefits are 

currently seen in using an existing one.  For a custom protocol, there are no significant 

limitations to obey. As TCP does provide a checksum and error detection mechanism, 

those are not needed in the application protocol. Frame size information must of course 

be included in the protocol, as TCP is stream oriented. It is also good policy to embed 

protocol version to at least those messages sent when establishing the connection to 

avoid problems later if modifications to the protocol are introduced. 

3.2 Inter-process communication 

When the communication endpoints are two processes in the same computer system, a 

greater selection of data exchange options exists compared to the above discussed net-

work tunneling. These techniques must be evaluated in order to achieve maximum per-

formance. Generally speaking, concurrency and multi-threading are essential require-

ments of numerous software applications. The needed synchronization mechanisms 

such as semaphores and mutexes are basic services of any modern operating system and 

this makes programming rather straightforward. Working inside a single process, how-

ever, has the significant advantage of free access to common memory. If multiple pro-

cesses are involved, this is no more possible due to isolated memory regions (user spac-

es), assigned by the operating system. Technically the most obvious option is to bypass 

this limitation creating a separate shared memory area, but also other methods exist. 

 The suitability of an inter-process communication (IPC) method in the fieldbus 

case relies primarily on the type of data it exchanges. Fieldbus communication is essen-

tially a stream of rather small-sized message frames. This rules out methods for transfer-

ring or saving big data blocks with low frequency (regular files), and in the other ex-

treme the signaling methods with no data payload, for example the UNIX signals. The 

realistic technologies found are listed in table 3. 
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Table 3: Inter-process communication methods in Windows and Linux platforms [83; 

84] 

Technology Availab-

le in 

Full-

duplex 

Transfer 

element 

Notes 

Pipes Both No Stream Parent-child processes only 

FIFOs / Named pipes Both No Stream Multiple writers supported 

UNIX message queues Linux Yes Datagram Message types supported 

UNIX domain sockets Linux Yes Stream  

Custom shared memory Both User 

defined 

User  

defined 

 

Localhost network sock-

ets 

Both User 

defined 

Stream or 

datagram 

Network supported 

(D)COM / RPC Windows User 

defined 

User  

defined 

Network supported 

Mailslots Windows No Datagram Network supported 

  

 In these technologies, differences exist in usage logic and portability. Our primary 

interest is still the performance they provide, in the means of data rate and latency. Fig-

ure 4 presents some published measurement results for different Unix IPC methods. 

Unluckily, similar results for Windows were not available, but on the other hand there is 

no reason to assume very different behavior when considering those methods available 

on both platforms. 

 

 Two main conclusions can be drawn from the results in figure 4: First, building a 

custom shared memory based communication mechanism grants without a doubt the 

best performance for both latency and throughput. It should be the primary implementa-

tion option if most communication participants are located in the same system. Second, 

localhost network communication (TCP) seems to compete well with the other second-

ary alternatives, as pipes, FIFOs and domain sockets. Thus, no advantage is seen in im-

Figure 4: A performance comparison of UNIX inter-process communication methods 

by Nambiar et al. [66]. "CBQ" represents a custom shared memory communication 

queue. 
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plementing inter-process communication with those methods, if IP networking will be 

supported anyway. Using network-oriented methods also locally could still possibly cut 

down the already limited performance in remote networking, which may further justify 

using another IPC method in parallel for local connections.  

3.3 Cross-virtualization communication 

In addition to the Ethernet- and inter-process communications, there exists a third com-

munication type for crossing virtualization borders. As tools used for virtualization and 

emulation are various, we cannot discuss all of them. In the next subchapters, a deeper 

analysis is conducted on two alternatives, Oracle VirtualBox and QEMU. 

3.3.1 QEMU 

To fully understand QEMU guest to host communication, a brief introduction to QEMU 

technology itself is needed. Directly citing the official web page [85], “QEMU is a ge-

neric and open source machine emulator and virtualizer”. It has been developed for 

years, the most recent version being 1.2.0, released in the year 2012. At this point we 

need to distinguish its two usage modes: emulation and virtualization. Emulation uses 

dynamic translation when running non-native binaries, and in this mode QEMU can be 

run in user mode without any special requirements for the host platform [86]. QEMU 

virtualization mode, instead, makes use of host kernel KVM (Kernel-based Virtual Ma-

chine) module or a Xen hypervisor [85] to achieve near native performance. As our use 

case in the upcoming implementation is to emulate PowerPC, the emulation mode will 

be emphasized in the following text. 

 Shared memory would naturally be the fastest option, probably even if it involves 

some mirroring or copying across between the guest and host memory pages. Also 

guest-guest communication might be possible directly. QEMU has an integrated shared 

memory device called ivshmem (also recognized with the name Nahanni), simply ena-

bled by a command line option. It is measured to achieve throughputs as high as 2GB/s 

and latencies around 0.5µs, but this technology is only available in the KVM mode [48].  

 There exists also another early PCI-based implementation for QEMU 0.13.0, a 

patch called VMShm [87], but we were unfortunately not able to compile it into the 

later versions due to major changes in QEMU memory management. It was also tried to 

run our PowerPC virtualization setup on a patched 0.13.0, but the device initialization 

fails due to defect PCI bus of the emulated PReP machine. These experiments and gath-

ered information show that shared memory for QEMU PowerPC emulation without 

KVM is not possible with unmodified QEMU. VFIO, a fully KVM independent high 

performance custom virtual device mechanism, could solve this problem but it is cur-

rently still under development [88]. 

 Logically, the next communication method to examine is IP networking. QEMU 

offers basic virtual networking for practically all emulated machines. While any virtual 

or real networking solution can probably never exceed best shared memory perfor-
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mance, the basic QEMU guest-host link can be significantly slow even compared to 

regular 100Mbps LAN (figure 6). To improve the QEMU networking performance, 

several possibilities exist. A paravirtualized network adapter called virtio-net [89] has 

been implemented to cut down the overhead caused by full virtualization. This option is 

possible to configure also on a PowerPC machine, and might provide a significant boost 

in throughput while being less effective on latency as seen in figures 5 and 6. Develop-

ers have gone even further by moving the virtio-net descriptor conversion from QEMU 

user space to a host kernel driver called vhost-net [90]. Using this method drops the 

latency to the same category with host network (figure 5), which should be enough for 

most network-based virtual fieldbus solutions. However, vhost-net cannot be enabled on 

a non-KVM guest. 

Figure 5: QEMU network optimizations - effect on latency [88] 

 

 

Figure 6: QEMU network optimizations - effect on throughput [88] 
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3.3.2 VirtualBox 

VirtualBox is a “general-purpose full virtualizer for x86 hardware, targeted at server, 

desktop and embedded use” [91]. Its key differences to QEMU are higher level of 

productization, official support for Windows host and support for x86 platforms only. 

Again, we primarily seek a technique of sharing memory between host and guest to ob-

tain maximum performance. VirtualBox supports a mechanism called Guest Additions 

for machine interaction. The addition drivers are installed on top of guest OS and they 

are used for features like shared folders and clipboard or mouse pointer integration. Re-

garding memory, the provided features called Memory Ballooning and Page Fusion aim 

at efficient physical RAM utilization. Page Fusion is actually based on shared memory, 

but it cannot be used as a communication method, as only static identical memory re-

gions are shared. [49, p. 57-74]  

 As official method for memory sharing is not provided, it still could be custom-

built, as VirtualBox is open source software [92]. Such implementation should be based 

on fixed interfaces to be compatible with future versions. One possibility might be the 

Host-Guest Communication Manager interface (HGCM), referenced in many discus-

sions on internet forums, but no official documentation for it was found. A thorough 

article by Kurakin goes even deeper, sketching a technique of sharing memory based 

only on the assumption that guest memory is physically part of host memory [93]. To 

outline, using shared memory between VirtualBox guest and host is without a doubt 

laborious, even more difficult than with QEMU. 

 Data types supported by other official sharing mechanisms like clipboard and file 

sharing are not suitable for fieldbus traffic. Again, the well-supported virtual network 

between machines seems to be the easiest option, if performance is found feasible.  

3.3.3 Preliminary cross-virtualization measurements 

Regarding both virtualization tool alternatives, network was detected the best supported 

option for host-guest communication. Implementing any other communication method 

seems very troublesome and cannot thus be included to the upcoming implementation 

just for measurement purposes. For this, basic measurements on network performance 

were conducted before final design decisions. Unfortunately we could not get virtio-net 

and time counters working in the same QEMU setup, so the effect of optimization could 

not be measured. 

 Throughput was measured using the popular free test suite iperf [54], which has 

support for both Linux and Windows. The Linux version was cross-compiled for a 

PowerPC target to be usable in the QEMU environment. For latency measurement, an 

implementation of traditional ping tool is provided on most platforms. On Linux, its 

resolution is in microsecond level, but the Windows default tool only has millisecond 

accuracy. For this reason the free utility hrPING [94] with better accuracy was instead 

used on the Windows host. The machine used for the measurements is specified further 
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in section 5.1. Results are presented in figures 7 and 8, where the horizontal axis 

positive extremes are scaled up to fit the low and high results in the same figure. 

Figure 7: Preliminary latency results in virtualized networks 

Figure 8: Preliminary throughput results in virtualized networks 

 

 From the results we see that VirtualBox has very good network performance, and 

implementing a custom build with cross-virtualization shared memory support would 

thus be an extreme solution. Regarding QEMU, the performance is much lower but still 

found adequate for fieldbuses with lower requirements. The measurements were carried 

out in a worst case scenario with nested virtualization and no QEMU network optimiza-

tions, so we also see plenty of room for improvement. 

3.4 Portability 

Full featured virtual fieldbus can naturally be built with only single operating system 

supported. It is also possible to implement separate versions of the bus components for 

different platforms, sharing a common protocol for intercommunication. However, im-

plementing the abstract part and maintaining the project becomes a lot easier if common 

code can be used on all platforms. Multiple third-party libraries are provided for easy 

portability, for example Boost and GLib [95], but some of them are not free for com-

mercial use, excessively wide or too heavy for embedded devices. As we are building a 
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library too, the dependencies to secondary libraries might result in linking difficulties in 

the user application. Use of dynamic memory allocation in the libraries is disallowed 

according to MISRA-C, often used in embedded programming [96]. Thus, implement-

ing custom lightweight portability wrapper for the platform-specific required concepts 

seems to be the most flexible solution.  

 In the practical portability discussion in the next chapters, we will use C/C++ ex-

amples, as those languages clearly dominate in the embedded programming [97].We 

will also restrict the discussed platforms to Linux and Microsoft Windows, as they are 

seen the main options across virtual fieldbus target devices.  

3.4.1 Concurrency and IPC 

As found when evaluating possible IPC mechanisms, such services provided by operat-

ing system vary a lot on different platforms. For communication, shared memory was 

detected to give the best performance, but portability was not yet evaluated. To support 

the IPC communication and to allow multiple ongoing transmissions on different medi-

as, also synchronization and multi-tasking is required. For concurrency programming 

both Windows and Linux introduce a wide set of mechanisms, as mutexes, semaphores, 

events and threads. In Linux, we have the additional option of choosing between System 

V and POSIX technologies, both providing roughly the same mechanisms. As POSIX is 

fully multi-thread safe [98] and has simpler interfaces, we will not consider System V in 

the following text. 

 The interfaces on Windows and POSIX are of course different, but more challeng-

ing diversity is found in the concepts themselves. This prevents creating a portability 

wrapper for some of the mechanisms, as common concept does not exist. Table 4 lists 

the reviewed mechanisms and the key differences [95; 100]. 

 

Table 4: Comparison of system service concepts on Wnindows and Linux 

Mechanism  Linux/POSIX  implementation Windows implementation 

Named shared 

memory 

 

Functions: shm_open, mmap, 

shm_unlink 

 

Notes: Integer descriptor, errors 

reported via errno 

Functions: CreateFileMapping,  

MapViewOfFile, UnmapViewOfFile 

 

Notes: Handle descriptor, errors report-

ed via GetLastError() 

Local unnamed 

mutex 

Functions: pthread_mutex_init, 

pthread_mutex_lock, 

pthread_mutex_unlock, 

pthread_mutex_destroy 

Notes: Initialization can be sub-

stituted with assignment. Special 

attribute needed for deadlock 

prevention. 

Functions:  

InitializeCriticalSection,  

EnterCriticalSection,  

LeaveCriticalSection, 

DeleteCriticalSection 

Notes: Deadlock caused by consecutive 

lock calls prevented by default. 
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Shared unnamed 

mutex/ 

semaphore 

Notes: Any unnamed object can 

be shared in memory.  

Notes: Sharing unnamed object between 

processes seems not to be possible. 

Shared named 

mutex 

 

Functions: - 

 

 

Notes: Not available as such. 

Use shared named semaphore 

instead. 

Functions: CreateMutex, 

WaitForSingleObject, 

ReleaseMutex, CloseHandle 

Notes: The Windows mutex resembles 

Linux named shared semaphore with 

maximum count restricted to 1. 

Shared named 

semaphore 

Functions: sem_open, 

sem_wait, sem_post, 

sem_close 

Notes: Post function increases 

semaphore count always by one. 

Functions: CreateSemaphore,  

WaitForSingleObject, 

ReleaseSemaphore, 

 CloseHandle 

Notes: Release function increases sema-

phore count by given amount. 

Thread Functions: pthread_create, 

pthread_cancel 

Notes: Task function prototype 

returns void pointer. Waiting task 

termination requires a special 

condition variable. 

Functions: CreateThread, 

TerminateThread 

Notes: Task function prototype returns 

DWORD. Waiting task termination sup-

ported by default. 

Sleep Functions: usleep 

Notes: Microsecond resolution 

Functions: Sleep 

Notes: Millisecond resolution 

 

 The summary clearly shows the main difficulties involved in shared memory com-

munication and concurrency portability. Regarding process synchronization objects, 

using a named concept is the only option, as Windows does not support sharing un-

named objects. Creating a portability wrapper for other concepts is possible, but some 

tradeoffs must be made, for example, in sleep resolution and semaphore features. 

3.4.2 Networking 

For networking, the portability of programming mechanisms is way better. This origi-

nates from the strong concept of sockets, originally designed in 1983 in Berkeley. Inde-

pendently written implementations of the Berkeley socket API services are provided for 

Linux with full compatibility [101] and for Windows with some modifications. The 

frequency of the portability issue on Winsock API has led to multiple excellent articles 

and tutorials about the subject [102; 103; 104; 105]. In table 5 we summarize the differ-

ences that are seen most significant among the publications. 
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Table 5: Comparison of socket interfaces on Windows and Linux 

Subject of difference Linux implementation Windows implementation 

Error passing Variable named errno Function named 

WSAGetLastError() 

Initialization and cleaning None WSAStartup(), 

WSACleanup() 

Functions with non-BSD-

compatible name 

None, names for reference: 

fcntl/ioctl 

poll 

close 

Multiple: 

ioctlsocket,WSAIoctl 

WSAPoll 

closesocket 

Include differences Typical: 

sys/types.h, sys/socket.h, 

netinet/in.h, arpa/inet.h, 

netdb.h 

Selectable: 

winsock.h 

(winsock2.h) 

(Ws2tcpip.h) 

Socket datatype Integer, invalid when -1 Void pointer, invalid when 

equals INVALID_SOCKET 

Behavior when connection 

is terminated while receiv-

ing or sending 

recv() returns 0 

send() returns -1 

recv() returns 0 or -1 

send() returns 0 or -1 

  

 The summary shows, that implementing a BSD compatibility wrapper for Winsock 

is not possible, mostly due to startup, cleanup and error functions. However, a compati-

bility wrapper to be used on both Linux and windows is very trivial to create. 

3.4.3 Interfaces and libraries 

Use of libraries is a method of portability in itself as it separates the compilation of the 

virtual bus code from the compilation of the user application. Dynamic linking of the 

library has many additional benefits, being shared between applications and loaded only 

when required. On the other hand, using many shared libraries with different versions 

can decrease installation compatibility. For this reason it is good to support both dynam-

ic and static linking. From the virtual bus interfaces, widest portability is required for 

the client interface, which is used also on the embedded virtual or hardware devices 

with restricted Linux environment. This is luckily not hard to achieve, as Linux is heavi-

ly library-oriented system and the same mechanisms are available also in the most lim-

ited versions.   

 A disadvantage of using dynamically loadable libraries is the lack of proper sup-

port for C++ objects. Class methods cannot be brought directly accessible for the library 

user application, which prevents regular object construction even when class declaration 

is in the public library header. A rather simple workaround for this is to provide a plain 

factory function for class instantiation [106]. 

 Program code and compilation is only slightly different on Windows and Linux 

platforms, at least when using C/C++ language. Windows platform requires an addi-
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tional directive dllexport/dllimport to all interface functions of the library [107]. The 

GCC compiler family can be used on both platforms with minor differences in used 

directives [108; 109]. Related to that, biggest differences between the two platforms are 

seen in the naming convention and versioning. A good way to avoid complicated build 

is to use CMake, “the cross-platform, open-source build system” [110].  
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4 A VIRTUAL CAN BUS SOLUTION 

Besides the scientific purposes, the goal of the preceding theory and technology study 

has been to enable a real-world implementation of a virtual fieldbus. This section de-

scribes the design with its background and introduces the software components in-

volved.    

4.1 Background 

Wärtsilä, the orderer of this thesis, is well-known for large diesel and gas operated in-

ternal combustion engines (figure 9). Their solutions are targeted both to marine indus-

try and power plants, sharing the requirement for high efficiency and environmental 

sustainability. Some of the recent milestones have been the world’s first LNG (liquefied 

natural gas) powered passenger vessel Viking Grace [111] and world’s largest engine-

driven power plant in Jordan [112], both running on Wärtsilä multi-fuel engines. In ad-

dition to the physical products, Wärtsilä also provides full support services for the com-

plete lifecycle of their engines. 

 

 

Figure 9: Different models of Wärtsilä 64 medium speed engine produce power of 

12900..17200kW and weigh 233..295 tonnes [113] 
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 For the engines and their installation environments, a lot of automation technology 

is required. During the last decade, the mechanical and hydraulic control components 

used in traditional engines have been substituted with electronics and software. This has 

allowed better performance by smart control and monitoring. UNIC (Unified Controls) 

is Wärtsilä’s solution for robust and reliable embedded control. The UNIC control mo-

dules form a distributed platform, which provides a powerful set of services to be used 

by control applications. Modularity and scalability have been its design principles to 

allow versatile applications concerning both engines and other automation systems. The 

system is illustrated in figure 10 [114, p. 40-41]. 

   

 

Figure 10: The principal structure of Wärtsilä UNIC automation system [115, p.13] 

  

 These systems are heavily dependent on fieldbuses of multiple types. CAN is one 

of the widest used communication method, and possibilities of virtualization have thus 

been of interest for long. The virtual bus implemented and studied during this thesis will 

be used in multiple development projects, both in manual and automatic testing. 

 Wapice Oy is a fast-growing technology company, providing services both in soft-

ware engineering, electronics design and consultation for its industrial customers [116]. 

As the primary employer for this thesis, Wapice offers its facilities and long-term exper-

tise in fieldbus technology and research [117] to support the process. The published 

results of the study are interesting also for them considering related future projects. 
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4.2 Overall design 

Requirements for our implementation widely cover the features discussed during the 

theoretical and technical parts. The target environment is however restricted to small-

scale fast networks, which rules out some technologies only applicable with slower or 

uncertain connections.  

 System topology is of course restricted by the need of a central element, typical to 

CAN. In our design, it is called a hub. Although this means compromising the best per-

formance between two clients, it is also seen as a good thing for practical connectivity. 

First, the clients only have to know the location of the hub in order to connect, and se-

cond, the hub can be freely set up in the network location with best accessibility consid-

ering firewalls. 

 In the bus configuration and control, it was decided to follow the roles different 

components have in a physical hardware implementation. A real-world fieldbus device 

does not have any control over the physical connections. Thus, also a virtual fieldbus 

client can only reveal one or multiple fieldbus ports and only control their traffic by 

accepting or discarding frame transmission and reception. The transportation of frames 

between the ports of the clients according to bus layout is then responsibility of the hub, 

analogous to physical cabling. When the bus layout needs to be altered or defects simu-

lated, it is logically done using interfaces provided by the hub.        

4.3 System components 

A closer look to system structure will be taken in the next chapters. In addition to actual 

software components, we discuss some of the main interaction processes. 

4.3.1 Client library 

A client library is the component that primarily allows a client application or a virtual-

ized device to join the virtual bus. For some of the applications it is still only one option 

to use virtual bus, and thus direct connectivity to CAN bus adapters without a virtual 

bus installation is required. This was the main reason to create the virtual CAN support 

as a part of existing Wapice library, LowLevelCAN API. The library was originally 

implemented as an earlier thesis work to build a CAN diagnostics tool application [117], 

and has support for multiple hardware devices including Kvaser, IXXAT and 

SocketCAN. The position of the library in the virtual CAN concept is pictured in figure 

11. 
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Figure 11: Utilization of the client library in our virtual CAN solution 

 

 In addition to the software clients, also hardware buses need to be connectable on 

the virtual bus. Logically, we use the above mentioned library also for this purpose. It 

would have been possible to create a special software client to bridge the two drivers 

together, but for better performance it was decided to integrate LowLevelCAN also di-

rectly to the virtual CAN hub. 

4.3.2 Hub 

As stated above, the virtual CAN hub acts as the central element to which every client 

connect when starting to use the virtual bus. It has three responsibilities: to accept, listen 

and serve clients of various types, to implement the multi-channel traffic logic and to 

provide an interface for bus configuration and control. From the hub point of view, there 

are three different types of clients: shared memory, TCP and hardware. In spite of the 

very different technologies, they all share the common interface of sending and receiv-

ing data. Thus, they are implemented using inherited C++ objects, hiding the communi-

cation mode completely from the other parts of the hub. The principle of the hub is pre-

sented in figure 12. 

 

 

Figure 12: Virtual CAN system components 
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4.3.3 Traffic control 

As defined above, traffic control is an important responsibility of the hub. The hub was 

designed to handle multiple channels, multiple ports on each client and even multiple 

fieldbus types inside the same virtual bus for future applications. To provide control 

over specific client’s traffic, an optional client identifier is passed to hub when client 

registers itself on the bus. This data in total enables setting up any bus configuration by 

using routing rules. No complexity is added even by the requirement of runtime bus 

control, as it practically only needs an interface to add or remove routing rules on the 

fly. These interfaces and a graphical UI to operate them are however not implemented 

in the scope of this work. Figure 13 presents the principle of routing in our virtual CAN 

system. 

 

Figure 13: Traffic routing in the virtual CAN system 

 

4.3.4 Data flow 

One of the main design problems in our virtual CAN system was to enable fluent data 

flow from client to another with as low latency as possible, still without excessive con-

sumption of computing power. As the essential communication methods are decided 

based on the pre-study, this design concerns mostly the threading and synchronization. 

Proper understanding of these mechanisms is also essential in order to assess the per-

formance results reliably later.   

 From the client point of view, TCP communication is straightforward. Shared 

memory is more interesting, as this method is fully tailored to this solution. We used 

two lockless shared ring buffers between client and hub to allow bidirectional traffic. 

Informing the hub about new frames from any of the clients was implemented using a 

single shared semaphore.  For informing the clients, a semaphore is required for each 

client.  

 An example flow for a shared memory client is presented in figure 14. As each 

client type requires waiting of a different object type (socket, semaphore and callback), 

a dedicated listener thread is established in the hub for all of them. Both the TCP and 

shared memory clients are however designed so that a single thread can wait for multi-

ple clients. When frames are received by the listener tasks, they pass the data to a multi-

producer ring buffer and increase the bus semaphore to inform about update. Eventual-

ly, the main bus task is processing each received frame and passing it to the send meth-

ods of selected clients according to routing rules.  
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Figure 14: Data flow in virtual CAN system with a shared memory client 

4.4 Experiences 

The use of an existing CAN library was proven to greatly accelerate the virtual bus de-

velopment. The only new features required there in addition to the virtual driver itself, 

were for querying available channels from virtual CAN hub. As no complicated data 

structures were involved, implementing them was mainly straightforward. Only lockless 

ring buffers in the hub and shared memory needed some special attention. The effort 

required for creating the portability wrappers for platform-specific operations was un-

expectedly high, although many compatibility issues were detected already in design 

phase. From the different client communication forms, TCP was the most laborious due 

to the protocol parsing and generation involved. Also correct network connection termi-

nation and error handling required significant amount of code to work properly. 

 Shared memory client Shared 
memory

Client slot

Virtual CAN hub

Client library

To
hub

From
hub

Shared
memory
listener

Main
bus

thread

Bus
main

buffer

Client notifier

Hub notifier

Client 
receiver
thread

Read

Read

Read

Callback

Send
Write

Write

Write

Wait

Wait

Wait Release

Release

Release

LEGEND

Semaphore

Ring buffer

Thread



34 

 

5 TEST SETUP AND MEASUREMENTS 

This section explains the plan for testing and evaluating the virtual CAN implementa-

tion. The experiments of course also validate part of the functionality, but we will focus 

on the performance measurements. 

5.1 Test environment 

In order to get realistic and useful results, the software and hardware environment for 

measurements must closely resemble the environment where the solution is to be used 

in. Thus, we select an ordinary developer laptop workstation as the platform for the 

tests. Although some parts of the solution are rather targeted to high performance server 

environment, they are also measured on the same platform to allow better comparison. 

Detailed machine and software specifications are found in table 5. 

 

Table 5: Test environment specifications 

Machine specification 

Model HP EliteBook 8540w 

CPU Intel Core i5 560M @ 2.67 GHz 

Memory 8GB DDR3 @ 533MHz 

Chipset Mobile Intel QM57 Express Chipset 

Graphics  NVIDIA Quadro FX 880M, 1GB 

Software specification 

Windows version Windows 7 Professional 64bit SP1 

Linux distribution Ubuntu Linux (12.04) 

QEMU version 0.14.0 

 

 Different virtualization levels are the most important subject for measurements due 

to the possibly decreased performance involved. Thus, a nested virtualization platform 

consisting of QEMU on top of VirtualBox was built. The hubs and clients were then set 

up in all possible locations with all communication methods to achieve maximum cov-

erage of measurement combinations. The complete variety of the locations is presented 

in figure 15, where an identifier tag (in quotes) is also assigned for each location for 

later reference. 
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Figure 15: Communication participants in the measurements 

 To measure the performance in a local area network, a simple point to point 

100Mbit/s Ethernet link was set up between two PCs. This was seen as a good method 

to stabilize the environment, as only few components and no other traffic were in-

volved. For hardware bus interconnection measurements, a PowerPC device was con-

nected on a 500kbps CAN bus, which was then connected to the PC workstation using a 

Kvaser Leaf Light USB CAN adapter.  

 As no very clear results on practical CAN bus hardware latency were found in the 

theory study, we also measured the latency between two hardware clients with no virtu-

al bus involved. This allows better comparison with other results. Also another compar-

ative measurement target was added based on the initial results: a native Linux installa-

tion was created for improved shared memory result coverage.  

5.2 Measurement methods and variations 

As our implementation uses custom protocol and interfaces, third party benchmark tools 

cannot be utilized. For this reason, simple measurement programs were constructed for 

each purpose. The following chapters specify the custom methods and values used in 

the measurements.  

5.2.1 Latency 

As discussed earlier, latency measurement is most useful if conducted in a statistical 

manner and presenting a distribution instead of plain average value. To achieve these 

kinds of results, great number of accurately measured latency samples is needed. Clocks 

are not necessarily synchronized in the virtual environment when using separate devices 

and we thus will measure round-trip times instead of one-way delays. Any other bus 

traffic was removed during the tests.  

 A small test application was programmed for this purpose. It integrates with the 

client library, searches for available channels and connects on the bus. The latency 

measurement procedure is presented in figure 16. For the sample count we selected 

100 000 to guarantee comprehensive statistics in reasonable time. During the test, re-

sults are stored in memory and written to a text file when process is completed. 
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Figure 16: Latency measurement process 

  

 Time measurement with microsecond resolution was detected as a portability issue. 

Time source must also be a linear counter to rule out any external time changes. On 

Linux platform, these requirements are relatively simple to meet using the function 

clock_gettime [MAN]. Windows does not provide a straightforward method, but we 

were able to create a port of clock_gettime using QueryPerformanceCounter and related 

functions [MSDN]. 

 The virtual CAN hub is initially suitable for this measurement technique. Instead, 

the comparative measurement using hardware devices required another implementation 

for the communication partner which echoes the measurement frames back to the bus. 

The similar test application was attached directly to the CAN driver of the devices to 

reach minimum latencies. Naturally, the client library or any other virtual bus compo-

nents were not used in these measurements.  

5.2.2 Data rate 

Considering data rate, only the maximum capacity is measured as traffic limitation 

mechanisms were not yet implemented. The measurement setup is similar to the latency 

measurement with only one hub and client involved. The client side test program is 

again illustrated graphically in figure 17.   

  

 
Figure 17: Throughput measurement process 

 

 In this case time measurement accuracy is not as big issue as with latency, but we 

however use the above described methods. Although the results are in the end combined 
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into an average value from the complete timeframe, the test program saves the result 

separately for each second. This way it is possible to validate the process stability af-

terwards. 60 seconds was selected as the duration of the entire test. 

5.2.3 CPU load 

Due to high effort required for the important latency and throughput tests, less attention 

was left for the CPU load measurements. The scope was thus restricted to two plat-

forms, the host Windows and Ubuntu Linux in VirtualBox. The purpose of the meas-

urements is to find out the load difference between shared memory and TCP communi-

cation, and to evaluate the effect of virtualization. 

 This time, the test program was required to simulate certain level of bus traffic in 

order to get comparable results. The simulation was implemented by adding an adjusta-

ble delay in the message sending loop. A delay value was experimentally selected to 

create 500 kbps traffic. The test was conducted in all cases using both one and three 

clients. Also in the latter case, traffic was created by one client only. The process is il-

lustrated in figure 18. 

 

 
Figure 18: CPU load measurement process 

 

 The CPU load itself was observed using the default tools of both platforms: Pro-

cess Manager on Windows and top on Linux. The results were scaled so that 100% 

equals full load on all cores. 
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6 RESULTS ON BUS PERFORMANCE  

The experiments carried out according to the previous section resulted in high amount 

of useful data. In this section these results are presented and explained using illustrative 

graphics. The important findings are pointed out, but further discussion will be per-

formed later in the next section. 

6.1 Latency 

The 100 000 samples recorded in each measurement were sorted in Microsoft Excel to 

observe the probability of the latency to fall below certain value. In the sorted list, this 

probability can be read directly from the row number for the latency value of each row. 

For visualizing the results, we selected the values associated with probabilities of 80%, 

95% and 99% rather than presenting the complete distribution. The results are presented 

in figure 19. 

 Results are grouped according to the location of the hub, and sorted from low to 

high latency inside the groups. Comparative results on pure hardware and native Ubuntu 

installation are presented last. The horizontal axis is divided into two sections to allow 

better visibility for lower results, still fitting the high USB adapter result into the same 

figure. 
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Figure 19: Measured latency results on our virtual CAN solution 

 

 Observing the latency results, first thing to notice is the vastly higher result on USB 

adapter based connection. This is something unexpected, as no virtualization was in-

volved in the experiment. The over ten millisecond round trip time is a potential prob-

lem when interconnecting virtual and hardware fieldbuses. 

 In the search of optimal TCP connection latency, the use of TCP_NODELAY op-

tion was experimented. However, the results prove only minimal improvement when the 

client is located in QEMU whereas it caused slightly decreased performance on Win-

dows client and significantly poorer results on the virtualized Linux client.  

 When comparing other results to the hardware performance presented, it needs to 

be noted that hardware delay was measured directly between clients and it thus repre-

sents twice better performance than the same value in virtual CAN latency. In any case, 

we find all single-PC results on VirtualBox and native systems in the same class with 

the hardware latency. Even local area network between native hosts is well usable for 
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bus virtualization. Shared memory is found substantially faster than a hardware bus and 

will thus suit even to extreme applications.  

 Virtualization still has a clear increasing effect on the latency despite of the com-

munication method used. VirtualBox decreases the shared memory performance dra-

matically while the comparative result on native Linux proves that our implementation 

makes no significant difference in the two operating systems. Using QEMU, at least 

using it inside VirtualBox, causes over two millisecond latencies, which may limit the 

successful use cases. 

6.2 Data rate 

Throughput results are slightly simpler than above presented latency values, as only one 

average is associated with each result. Throughput of the hardware bus is known by 

definition and thus not measured or presented. The results are presented in figure 20, 

again grouped according to hub location and with divided horizontal axis to fit the small 

and large results into same figure.  
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Figure 20: Measured throughput results on our virtual CAN solution 

 

 Generally said, the data rate results agree well with the ones of latency. All the sin-

gle-PC methods excluding QEMU provide enough bandwidth for multi channel opera-

tion, even when 1000kbps CAN speed is used. Also here, virtualization cuts the shared 

memory performance radically, but has smaller effect on TCP communication.  Surpris-

ingly, shared memory throughput was almost doubled on native Ubuntu platform com-

pared to Windows. 

 TCP_NODELAY option was questioned already based on the latency results, and 

this finding seems yet clearer when observing the dramatic drop it causes to data rate. 

Using TCP_NODELAY makes QEMU completely unusable for the fieldbus purposes, 

as the bandwidth does not suffice even for single 500kbps CAN line.  

 The results measured in local area network show that our implementation over TCP 

is far from perfect, when the network itself easily provides speeds in the class of ten 

megabits per second. This is quite obvious, as we did not use any packing of frames in 

the measurements but each frame was sent alone. The same requirement for any possi-



6. Results on bus performance 42 

ble optimization is valid also for QEMU, which currently does not suit for multi channel 

CAN operation on full load. 

6.3 CPU load 

The CPU utilization results have slightly increased possibility for error, as there was 

some inconsistency between the values reported by Linux in VirtualBox and the host 

Windows running the virtualization. Results are presented in figure 21, categorized by 

the platform and whether shared memory (SHM) or TCP is used. The alternative results 

with different count of listening clients are represented by overlaid bars. 

 

Figure 21: Measured CPU load results on our virtual CAN solution 

 

 CPU results verify the virtualization influence to shared memory the third time. 

Whereas the shared memory communication on native Windows causes only negligible 

load, the resource requirement for same traffic multiplies in VirtualBox. Similar effect 

is visible but not as dramatic with TCP. On both platforms, the results strongly rational-

ize the use of shared memory, even in parallel with TCP communication required for 

remote connections. 
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7 CONCLUSION 

We have now gone through a complete research process on virtual fieldbuses, from the-

ory to application and evaluation. Every chapter has brought valuable information for 

achieving our goals and now it is time to form the end conclusions. This chapter will 

provide clear answers to the research questions stated in the beginning and also evaluate 

the thesis process.  

7.1 Technology selections 

Technologies were reviewed and evaluated from the performance, portability and ap-

plicability aspects without forgetting the effort required for utilization. Regarding data 

transfer, methods were searched for communication in single OS between processes, in 

local area network and between virtualized machines. Based on existing publications, 

shared memory was assumed to provide highest speeds and the assumption was proved 

correct with our measurements. Shared memory should thus be the primary option for 

local communication technology, since it is also easily portable and causes less CPU 

load compared to TCP. 

 Network communication will obviously be based on IP to utilize existing physical 

and virtual networks. Different transport protocols were reviewed, but in the end it was 

seen that TCP will suit best in virtual fieldbus use due to its reliability, performance and 

availability, despite of the non-optimal real time behavior involved. Based on existing 

results, we assumed that the TCP_NODELAY option would optimize TCP latency. This 

was proved wrong in the measurements, as no significant latency improvement was 

gained while the option caused throughput to plummet.  

 For crossing virtualization borders, using virtual network and TCP was found the 

most compatible method. In fact, VirtualBox does not provide any good alternatives to 

using it, since implementing for example a shared memory region between guest and 

host would require a custom build of VirtualBox. QEMU instead provides a built-in 

shared memory device called ivshmem, which would probably be the best option. Also 

for network QEMU has powerful optimizations called virtio-net and vhost-net. Some of 

them unluckily require QEMU to be used in the KVM mode which is unavailable in 

nested virtualization and measuring their performance was thus not possible in this 

study. However, using any of these optimizations seems to be the key for proper QEMU 

fieldbus performance. 

 Significant performance bottlenecks were found in two areas of technology. Nested 

and non-optimized virtualization, particularly using QEMU in emulation mode inside 

VirtualBox in our case, quadrupled the latency and caused even greater drop on 
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throughput. The root cause for the issue was the inability to utilize any of the above 

mentioned QEMU communication optimizations. To avoid these problems, virtualiza-

tion layout should be kept as simple as possible and the compatibility of QEMU optimi-

zations should be verified before including it in design. 

 Unexpected and critical performance decrement was found in the use of a USB 

CAN adapter, which caused high latencies. This finding is presumably not true for all 

device models, but places a serious concern and requirement device performance verifi-

cation before building a virtual bus dependent on fieldbus adapters.  

7.2 Achievable performance 

An important research question was to find out how close to hardware performance it is 

possible to get with a virtual fieldbus solution. The performance evaluation was carried 

out by measuring both latency distribution and maximum throughput. Virtual CAN bus 

was seen as a good selection for evaluation, because its hardware implementations were 

found to provide lower latencies compared to several other fieldbuses. However, the 

results and drawn conclusions apply well to any fieldbus as long as the differing timing 

and bandwidth requirements are taken into account. 

 As expected, the performance was found highly dependent on the technologies and 

environment used. This is summarized in table 6, where different conditions are linked 

to the achieved performance. 

 

Table 6: Achieved performance in different conditions 

Environment characteristics Achieved round-trip 

latency  

Achieved throughput 

Native OS installation < 100 μs  > 100 Mbps 

Linux in VirtualBox ~ 300 μs ~ 20 Mbps 

Crossing VirtualBox border ~ 500 μs ~ 10 Mbps 

Native OS machines in LAN ~ 500 μs ~ 1 Mbps 

Nested virtualization in QEMU 

(without optimizations) 

~ 2 ms ~ 900kbps 

Slow USB fieldbus adapter > 10 ms (fieldbus dependent) 

 

 The measurements were conducted on our solution, where frame packing or similar 

optimizations were not yet implemented. Because of this, we also see room for potential 

improvements in the throughput results at least on network communications. 

7.3 Suitable application areas 

In the early discussion, potential applications for a virtual fieldbus system were seen on 

multiple fields. A successful implementation would allow virtualized developing and 

debugging distributed systems and also automatized system level testing without any 
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real hardware or complex physical test instrumentation. Virtual bus technology was also 

seen as a possible method to interconnect isolated locations via a fieldbus tunnel, and 

this kind of flexible connectivity could be used also in actual products. Any accurate 

simulations of specific fieldbused were ruled out of concept as we looked for a general 

solution.  

 We did not find any significant obstacles in implementing the functional features 

required by any of the mentioned applications. It is again a matter of performance to 

evaluate the final applicability. In the development and testing phase virtualization, tim-

ing requirements are often not as strict as in the final product. If the mentioned bottle-

necks are avoided, it is possible to build almost any setup consisting of virtualized and 

native platforms, fast local area network and hardware bus connections. If the number 

of virtualized bus clients is high, we recommend using a separate virtualization server to 

provide enough processing power. Overall, virtual bus applicability on development and 

testing is very good. 

 Due to high performance results on native platforms using shared memory, we can 

safely recommend virtual fieldbus also for virtualizing systems with harder timing re-

quirements on those platforms. Completely deterministic timings cannot however be 

achieved without a real time operating system. The general lack of real time guarantees 

is the main limiting factor in using the discussed methods for virtualization in actual 

products, not the virtual bus itself. 

 As TCP was selected one of the main technologies, extending the virtual bus sys-

tem over network is possible without significant changes and enables variety of remote 

applications. Fieldbus based remote access, control and diagnostics without special tim-

ing requirements are thus valid applications even when connecting from outside the 

local network. Instead, direct applicability of a solution similar to ours is not as good for 

plain tunneling between physical fieldbuses, where dedicated gateway devices will pre-

sumably give better performance. 

7.4 Thesis process 

The full research and implementation process took almost precisely one year, from May 

2012 to May 2013. This was some months longer than originally planned, but under-

standable in the corporate environment where priorities frequently change inside and 

between projects. Otherwise research proceeded as planned without exceeding its scope 

or requiring significant changes to the original content plan. Constructive comments 

were received from both the university and corporate mentors.    

 Theoretical and technical study was without a doubt laborious, since the rarity of 

existing research material on the subject forced a start from very basics. The theory dis-

cussion did find both prospects and issues, which motivated the rest of the research. In 

the search of best technologies, cross-virtualization communication and portability as-

pects were found more problematic than expected. To be able to state the final selec-

tions, multiple trials and errors were required. 
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 A functional implementation and measurements performed on it played an essential 

role in verifying the assumptions and answering the questions placed in the early parts 

of the text. No overwhelming difficulties were found in the implementation and test 

phases, due to proper preparation. Based on the first results, some comparative meas-

urements were added to the original plan to be able to fully argue the findings.  

 In the end, we see the thesis questions clearly and comprehensively answered, 

which alone proves the successfulness of the process. The conclusions were found ap-

plicable not to a single but almost any fieldbus type, which makes the information even 

more valuable. The supposed potential of virtual fieldbuses was proven by the positive 

results, which is of course a subjective success.  
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