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ABSTRACT
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tectures

Master of Science Thesis: 59 pages, 2 appendix pages

Examiners: Prof. Jarmo Takala and Prof. Tommi Mikkonen
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September 2005
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Due to specific requirements of some of embedded system applications, general pur-
pose processors are usually not the most optimal ones for thetask at hand. Thus, there
is a need for application-specific processors, which are tailored for the application and
requirements at hand. However, processor design is a demanding task. Therefore, the
processor design flow needs to be automated as completely as possible.

TTA Codesign Environment (TCE) is a toolset that provides a semi-automated proces-
sor design flow, which includes "design space exploration",which is a process
that helps to find an optimal processor architecture for the given application semi-
automatically. The processor paradigm utilized in TCE design flow is called trans-
port triggered architecture (TTA). TTA is a relatively simple and highly modularized
processor architecture which allows easy customization. One of the leading ideas of
TTA is to move complexity from the processor hardware to the compiler. Consequent-
ly, the most complicated tool in TCE is the compiler. Instruction set simulation is
mainly needed in verifying the compiler output and in designspace exploration.

The project completed for this thesis consisted of design, implementation, and veri-
fication of an instruction set simulator for TCE. The thesis describes the main requi-
rements and most important software design decisions of theTCE instruction set si-
mulator. In addition, the verification of simulation correctness is described and perfor-
mance benchmarks are presented. Finally, several improvement ideas and brief plans
for implementing them are presented.
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Yleiskäyttöiset suorittimet soveltuvat huonosti joihinkin sulautettuihin sovelluksiin
näiden sovellusten asettamien erityisvaatimusten takia.Sovelluskohtaiset suorittimet
räätälöidään kunkin sovelluksen asettamien erityisvaatimusten mukaan. Koska suorit-
timien suunnittelu on vaativaa ja virhealtista, räätälöinti halutaan tehdä mahdollisim-
man automatisoidusti, erityisohjelmistoja käyttäen.

TTA Codesign Environment (TCE) on ohjelmistokokonaisuus,joka mahdollistaa puo-
liautomaattisen suunnitteluavaruuden läpikäynnin. Suunnitteluavaruuden läpikäynnil-
lä tarkoitetaan annettuun sovellukseen parhaiten soveltuvan suoritinmuunnelman et-
simistä automatisoidusti. TCE:ssä käytettyä suoritinarkkitehtuuria kutsutaan nimellä
"transport triggered architecture"(TTA). TTA on suhteellisen yksinkertainen ja erittäin
modulaarinen suoritinarkkitehtuuri, joka mahdollistaa suorittimien räätälöinnin vaivat-
tomasti. Yksi TTA:n perusperiaatteista on siirtää monimutkaisuutta laitteistosta suori-
tettavaan ohjelmakoodiin. Tästä johtuen monimutkaisin työkalu TCE:ssä on kääntäjä.
Käskykantasimulaattoria käytetään varmentamaan kääntäjän ulostulo sekä auttamaan
kustannusarvioiden laskemisessa suunnitteluavaruuden läpikäynnissä.

Tätä diplomityötä varten tehty työ koostui TCE:lle tehdyn käskykantasimulaattorin
suunnittelusta, toteutuksesta ja testauksesta. Diplomityö kuvaa simulaattorin päävaa-
timukset ja tärkeimmät ohjelmistotekniset ratkaisut. Lisäksi kuvataan tapa, jolla si-
mulaattorin toimivuus varmennettin, ja esitetään suorituskykytestien mittaustulokset.
Lopuksi esitetään muutamia parannusehdotuksia simulaattoriin sekä alustavat suunni-
telmat niiden toteuttamiseksi.



LIST OF ABBREVIATIONS

ADF Architecture Definition File

ALU Arithmetic-Logic Unit

DSP Digital Signal Processor or Digital Signal Processing

FU Function Unit

GCC GNU Compiler Collection

GCU Global Control Unit

GNU Gnu’s Not Unix

HDL Hardware Description Language

IDF Implementation Definition File

MSM Machine State Model

OSAL Operation Set Abstraction Layer

RF Register File

RISC Reduced Instruction Set Computer

TCE TTA-Based Codesign Environment

TPEF TTA Program Exchange Format

TTA Transport Triggered Architecture

VHDL Very high speed integrated circuit Hardware Description Language

XML Extensible Markup Language



1. INTRODUCTION

Processors designed for embedded systems often have stricter requirements than the

general purpose-processors used in desktop computers have. Embedded system pro-

cessors may place stronger limits on such aspects as power consumption, performance,

or production price. Furthermore, embedded processors often execute only a limited

set of programs.

Unlike general-purpose processors in desktop computers, which run many different

programs, application-specific instruction-set processors (ASIP) are codesigned with

the type of software they are going to execute in the target product. The ASIP in-

struction set can be extended with special instructions that could help the application

in performing its task. Respectively, instructions havingno benefit to the application

can be discarded from the instruction set, thus simplifyingthe processor. For example,

during video encoding using certain algorithms, a substantial count of discrete cosine

transforms (DCT) are calculated for each encoded video frame. These transforms may

take the majority of the processor clock cycles of the encoding task. When the pro-

cessor and application are codesigned, i.e., are simultaneously "tailored" for the given

task, it is possible to design processors which provide special instructions for com-

puting DCT, thus allowing the same functionality be achieved with fewer processor

cycles.

However, designing new processors is a demanding task. Especially, the verification

of the processor correctness is often time-consuming. Therefore, the task of design-

ing new application-specific processors is usually assisted by a software toolset. One

such toolset, called TTA Codesign Environment (TCE), is currently in development

at Tampere University of Technology. The processor paradigm used in the toolset is

transport triggered architecture (TTA). TTA is a modular and simple processor archi-

tecture which allows flexibility through customizable set of processor resources like

function units, register files, and transport buses.

TCE provides semi-automated design space exploration, which helps the designer to

find the optimal processor architecture for the given application. Major part of the de-
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sign space exploration time is spent simulating each evaluated architecture variation.

Simulation provides the design space explorer with statistics of each evaluated pro-

cessor, thus sets the direction to which the design space exploration should proceed

and makes it possible to pick the optimal architecture according to the given require-

ments. The Simulator is also an important tool while verifying and debugging the most

complicated tool in the toolset, the instruction scheduler, also known as the compiler

backend.

For this thesis, an instruction set simulator, later referred to as Simulator or TCE Simu-

lator, was developed for TCE. This thesis describes the mainrequirements, design, and

verification procedure of the simulator. In addition, as thethesis is the first publication

made of TCE, it serves also as a brief introduction to the TCE toolset.

The thesis is divided into following chapters. Chapter 2 introduces the environment

for which the Simulator was implemented by describing each tool in the toolset briefly.

Additionally, the transport triggered architecture paradigm is introduced, mainly in the

programmer’s point of view. Chapter 3 describes the main requirements that were

placed for the Simulator. Chapter 4 summarizes the high level operational principles

of the Simulator, without getting into implementation details. Chapter 5 provides more

detailed description of the high-level software design andimplementation of the Sim-

ulator by describing the responsibilities of the major software modules and the imple-

mentation of the main simulation loop in detail. Chapter 6 describes how the Simulator

was tested and lists the results of performance benchmarks.Chapter 7 introduces sev-

eral future improvement ideas for the simulator along with brief implementation plans

for them. Chapter 8 concludes the thesis.



2. CODESIGN ENVIRONMENT SUPPORTING PROCESSOR

CUSTOMIZATION

In order to develop software targeted to any processor, developers need a development

toolchain supporting the target. Such toolchain usually includes at least a high-level

language compiler, a simulator, a debugger and a linker.

Toolchains that support customizable processors clearly are more complicated from the

ones that are targeted to only a single processor. In retargetable toolchains, each tool,

like the compiler and the simulator, needs to be generalizedto the level that they can

be used seamlessly with any processor architecture variation supported by the system.

Constructing a compiler for customizable processor architectures is particularly de-

manding task. Since the resources of the target processor towhich the code is gener-

ated are not set, the resource allocation, optimization, and parallelization algorithms

become more complicated.

In order to reduce the problem of supporting customized processor architectures in

the toolchain, the processor architecture supported by thesystem is usually limited

by a well-defined processor architecture template. The processor architecture template

defines limits for the types of processors supported by the system. The template is often

provided for users in form of a processor/machine description language. One such

language is LISA [1]. LISA allows describing processors in alanguage resembling a

programming language. The description is used by the retargetable LISA toolchain to

adapt to the described architecture.

Processor design space exploration is a process in which an optimal processor archi-

tecture is searched in a set of processor architectures. Thearchitecture is varied auto-

matically by a design space exploration algorithm which removes and adds resources

to the architecture and evaluates the effects of the modifications by simulating each

processor variation. In order to make automatic modifications to the processor archi-

tecture straightforward, it is desirable that the chosen processor architecture is flexible

in structure.
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2.1 Transport Triggered Architectures

Transport triggered architecture (TTA) is an application-specific instruction-set proces-

sor (ASIP) architecture template that allows easy customization of processor designs.

This chapter describes TTA mainly in the point of view of a programmer, which is re-

quired to understand the operation of the Simulator. The structure of TTA is explained

briefly to give definitions for the concepts of TTA without going deeper in details. The

architecture is described in more detail in [2] and [3].

Structure

TTA processors are built of independentfunction unitsand register files, which are

connected withtransport busesandsockets. Figure 1 represents a simple TTA proces-

sor with two function units, one register file, and acontrol unit.

Each function unit implements one or moreoperations, which implement functionality

ranging from a simple addition of integers to complex, arbitrary user-defined compu-

tation. Operands for operations are transferred through function unitports.

Each function unit may have an independentpipeline. In case a function unit isfully

pipelined, a new operation that takes multiple clock cycles to finish can be started in

every clock cycle. On the other hand, the pipeline can be suchthat it does not accept

new operation start requests while an old one is still executing.

Data memory access and communication to outside of the processor is handled by us-

ing special function units. Function units that implement memory accessing operations

and connect to a memory module are often called load/store units.

Control unit, in case of TTA, can be seen as a special function unit which controls the

execution of programs running in the processor. For this, control unit has access to

the instruction memory in order to fetch the instructions tobe executed. In order to

allow the executed programs to transfer the execution (jump) to an arbitrary position

in the executed program, control unit provides control flow operations. Control unit

usually includes a transport pipeline, which consists of stages for fetching, decoding,

and executing program instructions.

Register files contain general-purpose registers, which are used to store variables in

programs. Like function units, also register files have input and output ports. The
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FU:

FU1

FU:

FU2

RF:

RF

GCU:

GCU

Port

Bus

Socket Connection

Register FileFunction Unit Control Unit

Figure 1. Simple example TTA processor.

number of read and write ports, that is, the capability of being able to read and write

multiple registers in a same clock cycle, can vary in each register file.

Interconnection network consists oftransport buseswhich are connected to function

unit ports by means ofsockets. Due to expense of connectivity, it is usual to reduce the

number of connections between units (function units and register files). A TTA is said

to befully connectedin case there is a path from each unit output port to every unit’s

input ports.

Sockets provide means for programming TTA processors by allowing to select which

bus-to-port connections of the socket are enabled at any time instant. Thus, data trans-

ports taking place in a clock cycle can be programmed by defining the source and

destination socket/port connection to be enabled for each bus.

Conditional execution is implemented with the aid ofguards. Each data transport can

be conditionalized by a guard, which is connected to a register (usually a 1-bitboolean

register) and to a bus. In case the value of the guarded register evaluates to false (zero),

the data transport programmed for the bus the guard is connected to issquashed, that

is, not written to its destination.Uncoditionaldata transports are not connected to any

guard and are always executed.

It is evident that TTA is suitable for customization as it is possible to define a new TTA

processor by simply defining function units, operations implemented in each function

unit, register files, count of registers in each register files, count of buses, and connec-

tions between units.
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Programming

In more traditional processor architectures, a processor is usually programmed by

defining the executed operations and their operands. For example, an addition in-

struction in a RISC architecture could look like the following.

add r3, r1, r2

This operation adds the values of general-purpose registers r1 and r2 and stores the re-

sult in register r3. Coarsely, the execution of the instruction in the processor probably

results in translating the instruction to control signals which control the interconnec-

tion network connections and function units. The interconnection network is used to

transfer the current values of registers r1 and r2 to the function unit that is capable of

executing the add operation, often called ALU as in Arithmetic-Logic Unit. Finally,

a control signal selects and triggers the addition operation in ALU, of which result is

transferred back to the register r3.

TTA programs do not define the operations, but only the data transports needed to

write and read the operand values. Operation itself is triggered by writing data to a

triggering operandof an operation. Thus, an operation is executed as a side effect

of the triggering data transport. Therefore, executing an addition operation in TTA

requires three data transport definitions, also calledmoves:

r1 -> add.1

r2 -> add.2

add.3 -> r3

The second move, a write to operand two, triggers the addition operation, which makes

result of addition available to be read for the next move.

SequentialTTA programs are generic sequences of general purpose register and opera-

tion operandmoves. The moves of the sequential code are not scheduled to be executed

in any target architecture. For this reason, sequential programs are sometimes called

unscheduled programs.

A simple sequential code incrementing the value of a generalpurpose register r3, and

decrementing the value of r4 until the values become equal, is given in the following

example:
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1: 1 -> r3

2: 500 -> r4

3: r3 -> add.1

4: 1 -> add.2

5: add.3 -> r3

6: r4 -> sub.1

7: 1 -> sub.2

8: sub.3 -> r4

9: r3 -> eq.1

10: r4 -> eq.2

11: eq.3 -> bool

12: !bool 3 -> jump.1

In lines 1-2,immediates, that is, constant numbers, are transferred to general purpose

registersr3 and r4. Lines 3-4 set the inputoperandsfor operation add. In line 5, the

result of the addition is read from the output operand back toregister r3. After that,

suboperation is executed in similar manner. After addition andsubstraction, operation

eqis used to compare the values of r3 and r4 for equality. The result of the comparison

is transferred to aboolean register, which is used in conditional execution in the next

line. The last line, control flow operationjump is triggered in case the value of the

boolean registerevaluates to false. That is, the program execution is transferred back

to line 3 in case the values of the r3 and r4 are not equal. In this example, the operand

2 of add, sub, andeqoperations, and operand 1 of thejumpoperation aretriggering,

that is, when the operand is written to, the operation startscomputing the results, or in

case of thejumpoperation, executes the functionality needed to transfer the program

control to the target instruction.

Conditional execution in TTA programs is implemented withguarded moves. In the

previous example, the move in line 12 is guarded by the negation of the value of register

bool.

Parallel TTA programs are defined as sequences of TTA instructions. Each TTA in-

struction defines a set ofmoves. A move defines endpoints for a data transport taking

place in a transport bus. For instance, a move can state that adata transport from

function unit F, port 1, to register file R, port 2, should takeplace in bus B1. In case

there are multiple buses in the target processor, each bus can be utilized in parallel in

the same clock cycle. Thus, it is possible to exploit instruction level parallelism by

scheduling several data transports in the same instruction.

Parallel programs are always targeted to some TTA architecture. Consequently, they

are also referred to asscheduled programs. Parallel programs are final in the sense that



2. Codesign Environment Supporting Processor Customization 8

it is possible to generate the program bit image representing the parallel code and run

it in a real processor hardware that implements the targetedarchitecture.

In the next example, the code from the previous example is scheduled to be executed

in an example architecture with two buses and two function units. The used example

architecture is illustrated in Fig. 1. One of the function units implements the operation

addand the another implementssubandeq.

1: 1 -> RF.3, 500 -> RF.4

2: RF.3 -> FU1.add.1, RF.4 -> FU2.sub.1

3: 1 -> FU1.add.2, 1 -> FU2.sub.2

4: FU1.add.3 -> RF.3, FU2.sub.3 -> RF.4

5: RF.3 -> FU2.eq.1 RF.4 -> FU2.eq.2

6: !FU2.eq.3 2 -> GCU.jump.1

In this example, both buses of the target machine are almost fully utilized. Each in-

struction of the scheduled program except the last one performs two parallel moves.

In the first line, two registers are initialized in parallel.The registers r1 and r2 of the

sequential code are assigned to registers three and four of the register fileRF. Because

the operationsadd andsubare in two independent function units,FU1 andFU2, re-

spectively, it is possible to compute the results of the bothoperations at the same time.

In line 5, both the operands of the operationeq are transferred in the same clock cy-

cle, as the connections of the target architecture allow it.Finally, the branching move

of the last line is guarded directly by the result of the equality operation. Note that,

in addition to having guards that are watching a value of a register, it is possible to

have guards that watch the value of a function unit output port, as is the case in this

example’s last instruction. The control unit that implements the control flow operation

jump, is namedGCU, as in Global Control Unit.

The assembly notation used in the example refers to functionunit ports through oper-

ation operands. It could also be possible to refer directly to function unit ports instead,

but this version of notation is chosen for clarity. For example, FU1.add.2refers to the

port of function unitFU1, to which the operand two of the operationaddis bound. The

alternative way to refer to the port could beFU2.P2, in case the programmer knows

that the operand is bound to a port namedP2 in that function unit. The TTA assembly

syntax of TCE is fully explained in [4].
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Customizable Operation Set

One of the customization points for TTA is the operation set.It is possible for the

designer to add a new operation to the target processor whichimplements arbitrary

functionality. This allows, for example, to convert longerchains of operations to a

single custom operation execution.

A short example might clarify this idea. Let us assume than analgorithm includes lots

of subtractions and additions of same input operands, thus the sequential code would

include sequences like this:

r1 -> sub.1

r2 -> sub.2

sub.3 -> r3

r1 -> add.1

r2 -> add.2

add.3 -> r4

Now, the designer of the TTA system sees that a piece of code including a sequence

like this is ranked high in the profiling data, that is, a majorpart of the execution time

is spent running the code. Therefore, he decides to create a new custom operation,

addsub, which computes both the sum and the difference of the operands it receives

and places the difference in the first output operand (operand three) and the sum in the

second (operand four). The new custom operation can be used to convert the previous

code to the following:

r1 -> addsub.1

r2 -> addsub.2

addsub.3 -> r3

addsub.4 -> r4

Getting rid of the two moves might not seem much, but it might provide bigger savings

in the long run if the sequence is executed in a tight loop withonly a few instructions.

Furthermore, the same optimization strategy of convertingsequences of operations into

a single custom operation can be applied to chains of operations of virtually arbitrary

length.
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Programmer Visible Operation Latency

The leading philosophy of TTAs is to move complexity from hardware to software.

Due to this, several additional hazards are introduced to the programmer. One of them

is the programmer visible operation latency of the functionunits. Timing is completely

a responsibility of programmer. Programmer has to schedulethe instructions such that

the result is not read too early or not too late. There is no hardware detection to lock

up the processor in case a result is read too early. For example, let us say that the

example architecture of Fig. 1 has an operationadd with latency of 1, and operation

subwith latency of 3. When triggering theadd operation, it is possible to read the

result in the next instruction (next clock cycle), but in case of sub, one has to wait for

two instructions before the result can be read. The result isready for the 3rd instruction

after the triggering instruction.

Reading a result too early results in reading the result of a previously triggered opera-

tion, or in case no operation was triggered previously, the read value is undefined. On

the other hand result must be read early enough to make sure the next operation result

does not overwrite the current result in the output port. This is especially a problem in

case the function unit is pipelined and can start new operations while old operations are

pending. In the following example, FU2 that implements operation subwith latency

of three is pipelined:

1: 1 -> FU2.sub.1, 2 -> FU2.sub.2

2: 1 -> FU2.sub.1, 3 -> FU2.sub.2

3: [waiting for the result]

4: [the result of the first triggered operation is ready]

5: FU2.sub.3 -> RF.1

In this case the result of the first subtraction is overwritten with the result of the sec-

ond subtraction before the instruction at line five is executed. The result of the first

substraction is totally ignored, which indicates most probably a program error, as it

usually makes no sense to trigger an operation without usingthe result. Exceptions to

this areoperations with state. In such operations, it might make sense to trigger an

operation, just for the sake of its side effects.

A common example of an operation with state is operationacc, a simple accumulator

operation. When triggered, it adds the given value to its internal register and makes

the new value visible in the output operand. An example sequential code which uses

an accumulator operation is given in the following example.
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1: 1 -> acc.1

2: 1 -> acc.1

3: acc.2 -> r1

Accumulator’s internal register is incremented twice. Thus the value written to register

r1 in line 3 is two, assuming the initial value of the accumulator’s internal register is

zero.

Operation latency of zero is not usually supported in case ofTTAs, because the output

port is usually a register, thus needs a clock edge to update its value. Technically, im-

plementation of zero-latency operations could be possibleby using only combinatorial

logic [5] in the function unit implementation. In that case,result of an operation can

be read only once, in the same clock cycle the operation is triggered:

1: 1 -> FU2.sub.1, 2 -> FU2.sub.2 FU2.sub.3 -> RF.1

Since the output portFU2.sub.3is not a register, its value depends only on operation

inputs. When inputs to the operation are changed, the resultchanges immediately.

Branching

Another user-visible latency in case of TTAs is the latency of control unit’s instruction

pipeline. TTAs usually have a three-stage instruction pipeline. Programmer sees the

result of pipelined instruction execution in form ofdelay slotsafter branch instructions.

Delay slots are due to the fact that at the point the branch instruction reaches the ex-

ecution stage, new instructions after the branching instruction are already fetched and

decoded in the pipeline. It would be a waste of effort to discard these instructions, that

is, "flush the pipeline". It is common to have delay slots alsoin more traditional pro-

cessor architectures, but the count of programmer visible slots is often limited to one.

Principles of traditional processor pipelines are described in detail in [6]. An example

illustrating the visibility of instruction pipeline in a TTA program follows.

1: 1 -> GCU.jump.1

2: 1 -> RF.3, 500 -> RF.4

3: RF.3 -> FU1.add.1, RF.4 -> FU2.sub.1

4: 1 -> FU1.add.2, 1 -> FU2.sub.2

In this example, the instruction pipeline produces three delay slots after branches. Due

to the delay slots, all the instructions in the example are executed in the given order in

a neverending loop.
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2.2 TTA-Based Codesign Environment

MOVE framework is the first toolset for codesign of TTA systems [7]. It was originally

developed at Delft University of Technology in the Netherlands. Further development

and maintenance has taken place at Tampere University of Technology since 2002.

MOVE is a working toolset but its bad software architecture makes it difficult, almost

impossible, to extend and use it to experiment new ideas in the field of TTAs. The

development of the MOVE framework started at the beginning of 1990’s. At that time,

C++, the programming language used in implementing the MOVEframework, was

still relatively new and the compiler, GCC, used in the project did not yet fully imple-

ment even its core features [8]. The result of this can be seenin MOVE code: some of

the generic data structures and algorithms are implementedusing C macro definitions,

which make maintenance of some parts of the code difficult; even worse, the C++ lan-

guage is practically abused at some parts of the code base. Some parts of the software

are written in a way that the resulting code is not guaranteedto work the same way

when compiled with different compilers and compiler optimization switches. Finally,

MOVE was extended and developed by different researchers toperform the function-

ality they needed in their research topic without paying enough attention to how those

extensions were done.

Due to the previous problems in the original MOVE source code, a project aiming to

a complete rewrite of a TTA codesign environment, was started in 2002 at Institute of

Digital and Computer Systems of Tampere University of Technology. The main fo-

cus on the design of the new framework is on expandability andflexibility, allowing

easy experimenting of research ideas on transport triggered architectures. The project

name of the new framework is TTA-Based Codesign Environment(TCE). In contrast

to MOVE, TCE has been developed in controlled manner. For example, a set of au-

tomated system and unit tests are provided to catch regression bugs. In addition, the

entire toolset is compiled and tested each night automatically in several different envi-

ronments with varying operating systems and processor types to ensure portability of

the code.

Processor Architecture Template

Processors in TCE are defined by using a file format called Architecture Definition File

(ADF) [9]. The file format acts as a template for TTA processors supported by TCE.
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It should be noted that ADF is only for defining architecturesof the TTA processors.

In this case, architecture means the details of processor which are visible for the pro-

grammer. Implementation details such as signals not visible to programmers are not

part of architecture.

There are some differences in TCE’s TTA template compared tothe one of MOVE’s.

Some of these complicate the simulated TTA processor model and affect simulation

speed. Most important improvements, which have influence onSimulator’s complex-

ity, are the following.

Complex function unit model with independent pipeline models for differ-

ent operations on a single FU.

In MOVE, each FU may have only one pipeline, even though the FUmay imple-

ment multiple operations. In TCE, each operation implemented by an FU may

use a pipeline model of its own. For example, it is possible tohave an addition

operation with latency of two and a substraction operation with latency of four,

both fully pipelined, in the same FU.

General support for multiple address spaces.

MOVE allows maximum of only two address spaces for data per processor ar-

chitecture. The properties of the address spaces are fixed. TCE supports fully

defining arbitrary number of address spaces for the designedprocessor, with de-

tailed descriptions for each of the address space. For example, the width of the

minimum addressable unit of address space is fully customizable in TCE.

Function unit ports and register file registers can be of any bit width.

MOVE limits bit widths to 1 for boolean registers, 32 for integers, and 32 or 64

for floating point registers. TCE does not have this limitation: integer width can

be anything between 1 to 32. The upper limit might be later extended to 64 or

128 bits. The overflow caused by writing wider integers to smaller bit widths

has to be simulated by zeroing the extra bits of the integer.

Support for operations with state.

MOVE does not support operations with state. In TCE, it is possible to use state

data in custom operations.
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Restrictions to Sequential Code

Sequential code in TCE is used mainly as an input from the frontend compiler to the

TCE toolset. The sequential code generated by the frontend compiler is independent

from the target architecture to make the job of the compiler backend, the instruction

scheduler, easier. In order to make sequential code as architecture independent as

possible, TCE places following restrictions [4] on the moves of sequential programs.

1. No operand to operand moves.

Moves that transfer the result of an operation directly to aninput of an opera-

tion are not allowed. For example:add.3 -> sub.1. This kind of moves place

restrictions to the target architecture: to be able to support a move like this, the

target architecture needs to have a connection from the result operand to the

input operand.

2. Only absolute instruction addressing.

There are two control flow operations in the base operation set: call and jump.

Both take absolute instruction address as an input. The address operand of a

control flow move may be a register or an immediate value (a constant). Rela-

tive control flow operations, e.g., jumps to an offset from the current instruction

address, are not supported in sequential code.

3. Only jump operation can be guarded.

No other moves than moves to operand ofjumpoperation can be guarded. This

restriction simplifies the dataflow and control flow analysisof the sequential code

while scheduling the program to be executed in the target architecture.

Design Flow

The design flow of TCE is similar to the one of MOVE framework. The design flow

can be divided into four phases:Initialization phase, which provides input sequential

program and initial processor architecture;Design Space Exploration, which provides

semi-automatic means for finding an optimal processor configuration for the applica-

tion at hand;Code Generation and Analysis, which is either a step in design space

exploration or a manual process for scheduling and analyzing the program running in
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the target processor; andProcessor and Program Image Generation, in which the fi-

nal products of the design flow are generated. The design phases are discussed in the

following sections.

Initialization

The first phase of the design flow is illustrated in Fig. 2. The initial sequential code

input to TCE is generated by a 3rd partyfrontend compiler. If the program is provided

in multiple compilation units,TPEF linker can be used for linking them to a single

TTA Program Exchange Format(TPEF) binary file. The starting point processor ar-

chitecture for design space exploration, or the final targetarchitecture for scheduling

can be defined by using a graphical user interface, calledProcessor Designer.

Frontend compileris regarded to be a 3rd party application because it is not shipped

with the rest of the TCE toolset. Because the supported base operation set is well de-

fined, it should be possible for a 3rd party to port any kind of frontend to produce TCE

supported sequential TTA code. Currently, an old GCC compiler [10] version 2.7.0,

ported from MOVE framework is used to produce sequential code input to the toolset.

At the moment, the frontend has only C language capabilities, which should be enough

as it is the most commonly used high-level language for programming embedded sys-

tems.

From this phase, the designer of the TTA system usually enters design space explo-

ration phase for semi-automatic optimal processor configuration discovery. Alterna-

tively, designer may run the instruction scheduler and instruction set simulator manu-

ally for his initial architecture. This way designer can inspect the statistics produced by

the Simulator and modify the architecture to suit better theapplication’s needs. Such

procedure is calledmanual design space exploration.

Design Space Exploration

Design space exploration is a process in which several variations of an user-defined

starting point architecture are simulated and cost estimated. The goal is to automati-

cally find an optimal architecture for the application at hand. Currently, the algorithm

for design space exploration is the same that is used in MOVE framework. It is de-

scribed in more detail in [11].

The design space exploration process is illustrated in Fig.3. In a nutshell,Explorer
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Figure 2. Initial Inputs for TCE Design Flow.

removes resources from a given starting point architectureand sends the modified ar-

chitecture to code generation and analysis phase. From thisphase,Cost Estimator

obtains processor utilization data, which by using a predefined processor cost database

estimates costs of executing the given program in the modified target architecture. Cost

estimates are calculated for the physical area of the processor, consumed energy, and

maximum speed. After exploring hundreds of processor modifications, Explorer finds

an optimal processor architecture in the design space for running the given program.

Because the starting point architecture is defined manually, this process is said to be a

semi-automatic process in contrary to fully automatic one.It should be noted that in

this phase the program is simulated with each variation of the target architecture, thus

parallel simulation is invoked hundreds of times. Sequential simulation is usually exe-

cuted only once per design flow exploration process, to provide profiling information

for the instruction scheduler.

Explorer creates a database of explored architectures and their total costs. In Fig. 3 this

database is referred to asExpResDB, as in exploration result database. In addition,Cost

Estimatoroutputs an Implementation Definition File (IDF) for each explored architec-

ture. IDF identifies the implementations, that is, the hardware description language

definitions used for calculating the costs of the architecture. ADF and IDF together

define aprocessor configurationwhich is required for generating the final processor

description.

After Explorer has finished traversing through the design space, a graphical applica-

tion,Design Browser, plots characteristics of all explored processor configurations and
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Figure 3. Exploration.

allows the user to select individual configurations for closer inspection (Fig. 4). The

selected processor configuration is usually taken toprocessor and program image gen-

erationphase to generate the final products of the design flow.

Code Generation and Analysis

The code generation and analysis illustrated in Fig. 5 is themost demanding and im-

portant part of the TCE design flow. Especially, theInstruction Scheduler, also referred

Figure 4. Processor Configuration Selection.
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Figure 5. Code Generation and Analysis.

to asscheduleror compiler backend, is a complicated and important application. Its

job is to convert sequential programs to parallel programs that utilize the given target

architecture as efficiently as possible. Due to manual programming of TTAs being

burdensome, and even impossible if semi-automatic design space exporation is used,

the quality of the entire toolset is almost directly proportional to the quality of the

instruction scheduler.

Given the additional optimization possibilities the TTA provides and the retargetability

requirement, it is clear that the algorithms to produce parallelized, optimized parallel

code can become complex. Therefore, it was decided that TCE project provides a

clean framework for implementing new optimization algorithms for the scheduler. The

purpose is to make research and experimentation of advancedalgorithms as easy as

possible.

Analysis part in this phase includes simulation of the scheduled program to obtain

processor utilization data to be used in cost estimation.

Operation definitions of processors designed with TCE are stored in a database called

Operation Set Abstraction Layer(OSAL) [12]. In addition to static operation data, like

the number of input and output operands, OSAL stores simulation behavior of each

operation. Behavior definitions are written in C++, and compiled to plugin modules

which can be linked dynamically to Simulator in runtime. OSAL operation definitions

can be edited and debugged by using a graphical user interface calledOperation Set

Editor.
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Figure 6. Processor and Program Image Generation.

Processor and Program Image Generation

The final phase of TCE design flow shown in Fig. 6 includes generation of hardware

description language (HDL) files of designed TTA processorsand processor compati-

ble binary images of scheduled programs. Resulting binary image can be uploaded to

final processor hardware which is synthesized using the generated HDL files. Proces-

sor synthesis is a complicated task out of scope of TCE and, therefore, it is performed

with 3rd party applications such as Synopsys tools [13].

Processor Generatortakes architecture and implementation definitions of processors

as input. Using an user-defined hardware block library, it picks the HDL files that

describe the implementation of each machine part of given architecture, generates a

"glue" code that connects these blocks, and outputs a synthesizable description of the

processor.

Program Image Generatorprocesses a scheduled program in a TPEF file and aBi-

nary Encoding Mapwhich tells how each operation code, move source/destination,

etc. should be presented in the final binary image. Result is astring of bits represent-

ing an executable TTA program. If the binary image is to be compressed, user can

provide a compressor plugin that implements the wanted compression algorithm. If a

compressor is provided, the only difference to the binary generation process is that the

given compression algorithm is applied to the binary image before outputting it.
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The difference between an instruction set simulator and processor hardware simulator

in the case of TTA is not nearly as big as it is with traditionalprocessor architectures.

Since TTA is a simple processor paradigm, the model needed tosimulate the instruc-

tion set is close to the behavioral model of the entire processor. In fact, it is debatable

what is "instruction set" in case of TTA. Since the instructions of TTA programs sim-

ply consist of lists of data move descriptions instead of operation codes, the simplest

possible TTA instruction set simulator has to actually simulate a significant part of the

target processor behavior.

3.1 Retargetability

TCE Simulator must be able to simulate any TTA with any kind ofoperation set defined

by users, without requiring recompilation of the toolset.

Given the simplicity of the architecture, simulating a TTA processor is not a compli-

cated task as such. Complexity is added by the retargetability requirement. Resources

of simulated TTA processors are completely defined by users within the limits set by

the TTA template of TCE. In addition, the operation set, which in case of TTA means

the functionality implemented by function units, is completely customizable by users.

Sequential programs, which are not scheduled to any target processor must also be

supported by the simulator.

3.2 Accuracy

Accuracy of a processor simulator can be described in two characteristics: the detail

level in which the processor functionality is simulated, and the timing accuracy. The

simulated processor model in TCE simulator is not a gate level model. The model of

the processor is purely architectural: no control signals or any implementation details
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are visible. However, the simulation is cycle accurate: thesimulation model contains

the correct data in each architecturally visible part in allsimulated instruction cycles.

The accuracy of number of cycles the simulated processor spends in locked state can

be improved by defining more accurate simulation models for data memory.

In this thesis, with a TTA instruction cycle is meant the functionality that is performed

in a TTA processor during execution of an instruction. Instruction cycle, in case of

TTA, is usually of length of the processor’s clock cycle. This is due to the fact that

data transports of each TTA instruction are usually executed during a single clock

cycle.

Functional Accuracy

Simulator does not use the actual binary image that is uploaded to the final processor

to simulate the program. Since only the details that are visible to the programmer

are needed to be simulated, a higher level abstraction of thesimulated program can

be used instead. Such simplification can be safely made due tothe fact that TTAs

commonly use Harvard architecture [6] in which instructions and data are stored in

separate memory spaces. Furthermore, the contents of the instruction memory are not

usually accessible for the executed program itself. Thus the instruction memory binary

image is not visible for programmer, and need not to be included in the instruction set

simulation. Finally, since the encoding of the instructions can be fully defined by users,

it is possible to produce several different binary representations of the same program.

Additionally, the final program bits are often compressed due to the enormous size

of TTA instructions, especially in machines with large number of buses [14], which

creates additional variation point to the final binary images generated from programs.

Timing Accuracy

Dynamic characteristics, like locked cycles caused by accessing data memories with

dynamic latencies or those produced by fetch unit of controlunit, are not fully mod-

eled. In case of a lock, processor is almost completely in frozen state, waiting for the

lock condition to be resolved. Program execution is not advanced until the condition

is resolved. Clock cycles spent in global lock condition arecalled "stall cycles".

Some support for modeling dynamic data memory latencies is provided in form of

letting users to redefine the behavior of the memory model used in simulation. It is
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possible to define a memory model that limits the number of simultaneous accesses

and emulates dynamic latencies caused by, e.g., caching or dynamic properties of the

memory itself. When such a memory model is used, the functionunit model produces

a global lock condition in case a memory access was not completed in the expected

number of clock cycles.

Control unit needs to lock the processor in situations when not enough instruction data

can be retrieved from the instruction memory to fill the transport pipeline (Section 2.1).

In order to model the stall cycles generated by the fetch unit, it would be necessary to

know the exact sizes of each of the instructions and the exactimplementation of the

parts of the control unit that affect the decision of when to lock the processor. Ad-

ditionally, the instruction memory, like data memory, might have dynamic properties

itself, which would also be needed to be simulated to get the exact stall cycle counts.

Such level of details is out of scope of the TCE Simulator, especially since the stall

cycles are invisible to the program, and visible only as extra consumed clock cycles.

Therefore, it was decided that to get exact stall cycle information of the control unit,

it is required to produce a hardware description language (HDL) description of the

processor and the real program bits using the tools in the last phase of the TCE design

flow. The HDL and program bits can be then simulated in a third party HDL simulator,

such as Modelsim [15].

3.3 Simulation Statistics and Traces

Simulator must be able to produce processorutilization datato be used in processor

cost estimation part of the design space exploration. Specifically, utilization informa-

tion is used to calculate the energy consumption of a given processor while executing

a given program with given inputs. Utilization data consists of number of clock cycles

for each processor part in which they were busy. For example,in case of a transport

bus, a busy clock cycle means that the bus was written data in that instruction cy-

cle. In case of a function unit, "being busy" means that it wasexecuting at least one

operation, in contrast to "being idle", when function unit was passive, producing no

new results. Because the estimation algorithm for functionunit energy consumption

is based on calculating the total energy consumed by operation executions, Estimator

needs information of how many times each operation was executed in function units.

Utilization data could be used also in the exploration process directly to decide whether

to remove or add resources. It might make sense to duplicate machine parts that are
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highly utilized and, on the other hand, get rid of machine parts with utilization percent-

age close to zero. At present, the exploration algorithm does not use utilization data

directly but only through the results of the cost estimator.

Bus tracelists the data contained in each of the bus of the machine in each simulated

instruction cycle. Bus trace is useful when verifying the hardware designs of TTA pro-

cessors. Designs can be verified by comparing a bus trace produced by TCE Simulator

to a bus trace produced by a HDL simulator.

Execution timeof simulated programs is one of the most interesting statistics from

the Simulator. Execution time is the number of clock cycles it takes to execute given

program with given inputs. Execution time is also one of the dimensions in the design

space exploration.

Some instruction scheduling algorithms profit from programprofiling data. Profiling

data consists of the number of times each instruction is issued in the simulated pro-

gram. This data can be used to figure out the "hot spots" of the program to be able to

direct optimization efforts to the parts of the program thatbenefit from the optimization

the most.

3.4 High Parallel Program Simulation Speed

In design space exploration, hundreds of different processor architecture variations are

simulated to figure out how modifications to the starting point architecture affects the

end result. Especially, in case the simulated program is long, it might be possible

that simulation becomes the bottleneck for the explorationspeed. Therefore, one of

the main requirements placed to the Simulator is high speed of simulation of parallel

code.

Simulation speed of sequential code is not as important, because sequential simulation

is usually needed only once per exploration. Sequential code is simulated in explo-

ration to get profiling data for Instruction Scheduler. Since the sequential program,

and therefore the profiling data, is same for each explored architecture, it’s enough to

simulate the sequential code only once per design space exploration process, and take

advantage of the same profiling data in all the different schedules.
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3.5 Program Debugging Capabilities

One major use case for Simulator is to be used as a TTA program debugger. Therefore,

the Simulator must provide the most important program debugging capabilities like

single-stepping the simulated program, stopping simulation at user-defined program

addresses (breakpoints), inspecting data memory contentsat any point of simulation,

and inspecting data in visible machine parts at each simulated instruction cycle. User

visible machine parts that can be inspected in the Simulatorinclude registers, function

unit ports and buses.

Simulation and debugging capabilities should be possible to control with a Tcl script

interpreter [16]. This feature is especially useful when developing automated test

benches for new instruction scheduling algorithms.

3.6 Connection to Hardware Simulation

It should be possible to connect TCE Simulator, simulating aTTA processor running

a TTA program, to a hardware simulation environment. In suchenvironment, TCE

Simulator is treated as a black box without visible implementation details. Only input

and output pins of the TTA processor are visible to the rest ofthe components in

hardware simulation.

In this kind of simulation, the simulated hardware is usually a system in which TTA

processors are used as "slave processors", accelerating a commonly executed algo-

rithm. Master processors are often general purpose processors which control the slave

TTAs. Communication channel between master processor and slave TTA processors

can be implemented by means of a shared memory or TTA processors may include

special function units that handle the communication. In the former case, the master

processor usually stores input data to a known position in the shared data memory,

indicates the TTA processor that new data is ready to be processed and waits for the

TTA processor to complete processing the data. TTA processor stores the processed

output to another location in the shared memory and signals the master processor that

the task is done and new results are ready to be read. In lattercase, special function

units are used to connect the TTA processor to a control or status register shared with

the master processor.
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Interpretive and compiled simulation [17] are two common techniques used in instruc-

tion set simulator designs. The basic operational principle for an interpretive simulator

is to read in the instructions as they appear in the final program image, interpret the

bits to figure out which functionality (operations, register transfers, etc.) should be per-

formed, and simulate that functionality by calling a simulation function. Interpretation

usually takes a significant part of the simulation time, therefore, interpretive simulators

are considered inefficient.

In compiled simulation, the simulated instructions are translated to native instructions

of the simulation environment’s processor. One implementation possibility of this tech-

nique is to generate a high level language program code from the simulated instructions

and add the code needed to produce the required simulation traces in it. The result-

ing source code is compiled with a regular compiler and the produced executable is

run as native code in the host environment. This way the interpretation of the target

instructions is done offline independently of the simulation instead of doing it during

the simulation. The overhead of interpretation is greatly reduced because each instruc-

tion is processed only once, contrary to once for each instruction execution as in the

simplest implementation of interpretive simulator. Furthermore, because the translated

instructions are in a sequence, more optimization possibilities are introduced to the

compiler which further speeds up the translated code. Usually compiled simulation is

tens, sometimes even hundreds of times faster than interpreted simulation of the same

instruction set.

Sometimes instruction set simulators mix ideas from the both techniques, using the

compiled simulation idea as an optimization. A popular speedup strategy used in script

interpreters, simulators and virtual machines isjust in time compilation[18]. The idea

of it is to translate the simulated instructions to host machine instructions on-demand,

at the point they are executed the first time.

TCE Simulator cannot be considered literally to be a traditional interpretive simulator.

On the other hand, no translation of instructions to simulator host machine code is



4. Operational Principles 26

done, thus, it is not a compiled simulator either.

The format of the program simulated by Simulator is not the final binary image that

can be uploaded to the instruction memory of the actual processor, but a higher level

model which describes the data transports the TTA instructions perform on each clock

cycle. The higher abstraction avoids the need to interpret the program bits to figure out

the functionality of the simulated instructions.

Preprocessing of the simulated program model can be seen analogous to translation of

instructions in the compiled simulation paradigm. The program preprocessor, instead

of producing instructions runnable directly in simulator host’s processor, produces a

new object model which is fast to simulate, leaving as littlecomputation as possible

to simulation runtime. The benefit is the same as in compiled simulation: perform

as much computation as possible only once for each executed instruction instead of

repeating those computations every time an instruction is simulated.

In TCE Simulator, instruction cycle simulation is divided into two parts. First part is

the simulation of data transports, that is, the copying of data from source machine parts

through the interconnection network to destination machine parts. This part of simula-

tion does not yet simulate the "side effects" of data transports, that is, the execution of

triggered operations. Triggered operations and the operation latency are simulated in

the second part of the simulation. The second part of simulation models the state of the

processor and ensures that results of triggered operationsare made visible in function

unit result ports in correct instruction cycles.

4.1 Data Transport Simulation

The simulation of transports described by a TTA instructioncan be reduced to a loop,

which copies data from source processor parts to buses and todestination processor

parts as described in each move of the instruction. In order to make transport simu-

lation such simple and efficient, instruction data needs to be preprocessed to a format

which contains nothing but references to the variables representing sources, buses and

destinations.

The main benefit from preprocessing program data is that as much evaluation as possi-

ble is moved offline from simulation runtime. For example, simulating data transports

of an instruction which is not preprocessed at all would bring overhead of locating the

processor state variables and figuring out the side effects caused by writing to destina-
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Algorithm 1 Executing a Processed Instruction
1: for all processed_movesM in processed_instructiondo

2: bus_state.Write(source_state.Read())

3: if notM.IsGuarded() orM.IsGuarded() andguard_reg.Valuenot 0 then

4: destination_state.Write(bus_state.Read())

5: end if

6: end for

tion processor state variables. In case instructions were not preprocessed, the simula-

tion of data transports would follow roughly the algorithm presented and described in

Appendix A.

On the contrary, data transport simulation with preprocessed instructions is straightfor-

ward, since all processing of instructions is done before execution and the side effects

of the writes are hidden inside the class that models the destination processor part (see

Section 5.6 for details).

Algorithm 1 shows the steps a preprocessed instruction takes to simulate data trans-

ports. The algorithm simply traverses through a list of preprocessed moves which

describe source, bus, and destination variables of each data transport. For each trans-

port, data is copied from source to bus and from bus to destination. If the move has a

guard expression and it evaluates to false, the copy from busto destination is neglected.

4.2 Processor State Simulation

Processor state is simulated by storing the data of transports in variables representing

different parts of processor. For example, each function unit port is a variable and

so is each general purpose register. In addition to storing state data, processor state

simulation includes simulating the functionality that happens as a side effect of writing

to the state variables. Such functionality is mainly realized in function units which

execute triggered operations and make their results available in their output ports after

the operation latency time has passed.

Programmer Visible State

In order to make the simulation as efficient as possible, onlythe properties of the

processor visible to the programmer are modeled. Such properties are the following:
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1. function units,

2. transport buses,

3. registers, and

4. delay slots caused by transport pipeline of control unit.

Function units are most complicated parts that need to be simulated. Programmer vis-

ible properties of FUs are: input and output ports, behaviorof operations, and latency

of operations. The contents of the function unit pipeline registers in each simulated

clock cycle is not visible to the programmer, but the latencyof operation execution

caused by the pipelining is.

Transport buses need to be modeled because of the requirement of being able to pro-

duce a bus trace. If there was no such a requirement, simulation of buses could be

neglected by simulating the moves to happen directly between move end points, with-

out writing the transported data to buses at all. In additionto the word width, bus also

has another property visible to the programmer, the extension mode. When simulating

a data transfer from a register or a port to a bus that is wider than the source, the written

value needs to be either sign extended or zero extended, depending on the user defined

ADF property.

Values in general-purpose registers need to be maintained.On the other hand, the

register file ports need not be modeled during simulation. The simulation model does

not include ports in the register files at all, but register accesses are modeled to happen

directly to the registers.

The global control unit is modeled as a special function unitwith a special property

of instruction pipeline. The time taken from instruction fetch phase to the execution

phase is visible to programmer as delayed jumps. Simulator models delayed jumps

by using a simple counter which is initialized to transport stage count at the point a

control flow operation is triggered and decremented at each instruction cycle advance

until it reaches zero. When zero is reached, the program counter is updated to the new

value set by the triggered operation.

Function Unit Model

The core of functionality of TTAs is realized in function units. Each function unit

implements one or more operations that performs a function to input data and, in most
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cases, produces output data. The behavior of function unit operations is visible to

programmers in two ways. Clearly, the function, i.e., the behavior of an operation is

the most imporant characteristics of the operation visibleto programmer. Additionally,

due to the user-visible operation latency of TTA processors, the timing of making

triggered operation results visible to function unit output ports is as important as the

operation behavior itself.

In TCE Simulator, function unit model is divided to two parts: the function unit model

proper and operation behavior model. The function unit model is responsible for start-

ing operations and simulating the user visible latency caused by pipelining. The sim-

ulation of the functionality of operation is delegated to a separate operation behavior

model. The operation behavior model is responsible for simulating the functionality of

"operation ideas". Operation as an idea does not include theoperation latency, but only

the function of the operation, and, for example, the number of operands and results pro-

duced by the operation. This kind of sharing of responsibilities makes it possible to

use same operation models with different operation latencies. For example, the addi-

tion operation ADD is exactly the same regardless of the visible operation latency of

the function unit that implements the operation. 2 + 2 is still 4, even if it takes several

instruction cycles to compute the result.



5. IMPLEMENTATION

The software architecture of the simulator is divided into three subsystems:simulator

engine, base library, anduser interfaces. The subsystems and their main modules are

illustrated in Fig. 7. The architecture implements themodel-view-controller(MVC)

user interface paradigm [19], which aims to a strong separation of the user interface

code from the model logic code.

Simulator engineis the core of the Simulator. The subsystem is further divided to

four main modules:Machine State Model(Section 5.1),Simulation Controller(Sec-

tion 5.3),Debugging System, andFrontend. Debugging System is used to implement

the debugging features. Different user interfaces controlthe simulation through the

Frontend, which is a realization ofFaçadedesign pattern [20]. The main purpose of

this class is to hide details of the simulation behind an easy-to-use interface, allowing

the internals of the simulator engine to be changed without forcing the user interface

code to be changed. Another motivation for the Frontend is tocollect common code

from different user interfaces to a centralized location. Currently, two user interfaces

are implemented: a graphical user interface and a text-based user interface. The text-

based user interface is a scriptable interactive console, which is also embedded in the

graphical user interface to provide scripting capabilities.

Base library is a collection of modules that represent the major concepts of TTAs.

The concepts are represented as easy-to-use object models and reused throughout the

entire TCE toolset.Operation Set Abstraction Layer(OSAL) provides access to op-

eration data like operand counts and to operation behavior definitions, which are used

to simulate operations.Memory Model(Section 5.5) consists of a simple interface for

defining data memory behavior.Program Object Model(POM) is a static representa-

tion of TTA programs. It is not used directly in simulation, but a preprocessed program

model is built from it when a simulation is initialized.TPEF is a file format for storing

TTA programs. The software module that handles TPEF files is calledTPEF Handling

Module. In Simulator it is used as a file parser to load the simulated program from

an user-defined file.Machine Object Modelrepresents the architecture of a TTA pro-
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Figure 7. Overview of the Simulator Architecture.

cessor (Section 5.1) loaded from an ADF file. This static model is used to build the

dynamic simulation model (Machine State Model, Section 5.1) for the processor.

5.1 Processor Model

The processor simulation model is calledMachine State Model(MSM). The main goal

while designing MSM was to make it as simple and fast as possible without losing

simulation accuracy in the required parts of the processor.

In the point of view of the simulated program, MSM looks like aset of machine parts

that can be read from or written to. What happens as a side effect of writing to a

port, in case the port is an operation triggering port, is completely hidden inside the

model by using inheritance and dynamic binding. This kind ofsimple model allows to

preprocess simulated program instructions to completely resolved instructions which

contain nothing by references to the machine state variables the data transports access.

Figure 8 presents a simplified class diagram of the main interfaces and classes of MSM.

The elements of the machine state that allow reading and writing implement an inter-

face calledStateData. The most important classes that implementStateData, and thus

can act as sources and destinations in data transports areRegisterStateandPortState,

which represent general purpose registers and function unit ports, respectively.

The parts of the simulated machine that need to operate when simulated instruction

cycle is advanced implement an interface calledClockedState. InterfaceClocked-
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Figure 8. Machine State Model.

Stateprovides methodsadvanceClock()andendClock(). MethodendClock()signals

the function unit model that all the transports of the instruction are simulated, that is,

data of the transports are written to its input ports. Function unit model executes possi-

ble triggered operations in this method, and places resultsto a wait queue that models

operation latency.

The simulation of an instruction cycle advance is divided totwo methods mainly for

interfacing with memory model implementations that place restrictions to concurrent

memory accesses. In order to know whether memory accessing operations triggered

by an instruction are possible concurrently, memory model needs to know details of

all the initiated memory accessing operations initiated bythe instruction. After calling

endClock()of each function unit, which results in initiating possibletriggered memory

access operations in function units, memory model is asked whether all initiated mem-

ory accessing operations are possible concurrently without locking the processor. In

case there is no problem,advanceClock()is called for each function unit that is waiting

for a memory operation result. As a result, the function units that initiated data mem-

ory reads receive the requested data from the memory model. In the case the memory

model signals that the initiated concurrent accesses are not possible, a global lock is

simulated.

MSM is built from Machine Object Model, which is an object model for accessing

and modifying TTA descriptions stored in ADF files. In case ofparallel simulation,

a Machine Object Modelis constructed from a user-defined ADF file. As sequential

code is unscheduled, that is, not targeted to any architecture, no input ADF is given by
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Figure 9. Building the Machine State Model.

the user when initializing a sequential simulation. In order to use common simulation

code for both types of simulation, a virtual processor modelcalledUniversal Machine

is constructed by the Simulator at the point a sequential program is loaded. Because

Universal Machineis inherited from the "regular"Machine Object Model, thus im-

plements the same interface, the rest of the simulation codecan simulate unscheduled

code like it was scheduled to an actual TTA processor. Building of the simulation

model is illustrated in Fig. 9.

Universal Machine(UM), the virtual TTA processor for simulating sequential TTA

code, is built while the sequential program is loaded. Afterprogram loading is fin-

ished, theUniversal Function Unit(UFU) of UM contains all the operations the loaded

program needs. Latency of all operations in UFU is one, thus result of any operation

is always available for the next instruction cycle after theclock cycle in which the op-

eration was triggered. In addition to UFU, UM provides infinite count of integer and

floating point registers. It also has a global control unit (GCU) with transport pipeline

latency of one, because there are no delay slots in sequential code. Register files and

function units are connected with a single bus, thus parallel moves are not possible.
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Figure 10. Preprocessed Simulation Program Model.

5.2 Program Model

Before starting the actual simulation, the static object model of TTA programs,Pro-

gram Object Model(POM), is converted to a structure that is more suitable for simu-

lation. The resulting model is calledExecutable Instruction Memory.

A class diagram of the model is illustrated in Fig. 10. The frontend class of the model

is a simple container class, calledExecutableInstructionMemory, which stores the pre-

processed instructions. The class representing a preprocessed instruction is calledEx-

ecutableInstruction. It is a container forExecutableMovesthat contain references to

state objects ofMachine State Modelthat take part in the data transport.

Data transports of an instruction are simulated by callingexecute()method of the pre-

processedExecutableInstructionthat represents the instruction. The function calls

executeRead()andexecuteWrite()for each containedExecutableMove. Executable-

Move::executeRead()reads the current data in the source machine part to the bus pro-

grammed by the move andExecutableMove::executeWrite()reads the value from the

bus and writes it to the destination machine part.

Fig. 11 illustrates the dependencies in the process of building the simulated program

model.POMBuilderis responsible for building the static object model,Program Ob-

ject Modelfrom given input files that contain the architecture and program descrip-

tions. Program Object Modeland the processor simulation model,Machine State

Modelare used bySimulation Program Preprocessorto build the preprocessed simu-

lation program model.

The process for converting POMInstructionsto ExecutableInstructionsis effectively

the same as in interpretation part (lines 5-27) of algorithmin Appendix A. The re-
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Figure 11. Building the Executable Instruction Memory.

solved state references are stored inExecutableMoveobjects as member variables.

The member variables are shown in Fig. 10 with namessource, destination, andbus.

5.3 Simulation Controller

The main simulation loop is implemented in a module calledSimulation Controller.

Simulation Controllerdelegates simulation of data transports to preprocessed instruc-

tions (Executable Instruction Memory) and simulation of processor state toMachine

State Model.

After initializing the object models used in simulation,Simulation Controlleris ready

to accept simulation commands. There are two main ways to proceed with simulation:

single-stepping the simulated program’s instructions andrunning the simulation until

instructed to stop.

Methodrun() keeps running the simulation until either the final instruction of the pro-

gram has been simulated or when another condition for stopping the simulation occurs.

Conditions for stopping include user set program breakpoints and explicit simulation

interruption through the user interface. In practice, simulation can be interrupted ex-

plicitly in the text-based user interface by pressingctrl-c and in the graphical user

interface by clicking astopbutton. Single-stepping withstep()simply simulates one

clock cycle and then returns control back to the user interface.
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Simulator implements event-based messaging mechanism to announce simulation

events like the end of instruction cycle to interested clients. Event handling is an

implementation of theObserverdesign pattern [20].

The main benefit of implementing the event handling mechanism is the ease of adding

new simulation event dependent functionality to Simulatorwithout needing to add

more overhead to the clock cycle simulation routine. For example, when bus trac-

ing is disabled, no overhead of bus tracing is visible in the routine at all since the

simulation loop makes always the same event announcements without knowing how

many interested listeners there are for those events.

Clients that are interested in simulation events implementthe Listener interface and

register themselves to theSimulationEventHandlerwhich implements theInformer

interface. When an simulation event is announced,SimulationEventHandlerinforms

the observers that are registered to listen to the announcedevent. Informing the listen-

ers is done by invoking theirhandleEvent()method. For example, when bus tracing is

enabled, aBusTrackerinstance which implements theListenerinterface is registered

to listen to clock cycle end events. When an event is announced to theBusTracker, its

handleEvent()fetches the values currently in all the buses of simulated processor and

writes them to a log file.

Breakpoints are implemented using the event handling mechanism. BreakpointMan-

agerof theDebugging Systemmodule listens to new instruction execution events and

stops simulation before an instruction that has a break point set is executed.

Runtime errors of the simulated program, such as a write to a memory location out of

bounds of the address space, are also announced as simulation events. The handler of

these events informs the user of the reason of the runtime error, thus giving valuable

information for tracking bugs in the simulated program.

Finally, the user interfaces of the Simulator may use the event handling mechanism

to update their views when there’s a change in simulation state, as instructed by the

model-view-controllerarchitecture [19].

5.4 Operation Set Abstraction Layer

Function units implement one or more operations. Each operation has behavior that

needs to be simulated when the operation is triggered.
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The module that handles the database of operation definitions is calledOperation Set

Abstraction Layer(OSAL). OSAL provides access to all operation definitions found

in the system. Operation data handled by OSAL is divided intostatic data stored in

XML-format files and behavior descriptions that are compiled into dynamic libraries.

Usage of dynamic libraries allows loading of behavior simulation functions in Simula-

tor without recompiling the simulator code itself.

One maybe not so apparent detail is that the user-visible operation latency is not a

property stored in OSAL descriptions. Latency is defined by the function unit that

implements the operation, more specifically, the latency isset by the function unit’s

pipeline properties. Due to not including the latency property in OSAL, but in ADF

function unit properties, it is possible to simulate one operation with different latencies

without storing a definition of the operation for each latency.

Static data in OSAL includes vital information of each operation such as the number of

operands and results. Additionally, specific properties ofeach operand of the operation

can be given. Such information include details like optionality of operands, whether an

operand is for setting a memory address, whether an operand can be swapped with an

another operand, and so on. The static properties, expect for the number of operands

and the operation name, are mostly used only by theInstruction Schedulerto perform

different types of program analysis.

An example of a XML-format static data definition of base operationADD is shown

in Fig. 12. In the addition operation, the order of input operands does not affect the

result, thus the input operands can be swapped, if needed. Such property is marked in

OSAL with acan-swapdefinition.

Behavior descriptions are used to simulate the operation. The behavior of an operation

is defined as a C++ class of which details are hidden with C preprocessor macros.

This set of macros is often called "operation behavior description language", even

though it is only camouflage of which purpose is to hide the implementation of the

behavior definition plugin interface from TCE users. By hiding details such as the class

hierarchy and the factory function that creates an instanceof the user defined behavior

class, the interface can be later modified by TCE developers without breaking existing

operation behavior definitions. Additionally, the macros make behavior descriptions

look cleaner to users. The set of macros is defined in fileOSAL.hh, which is the only

TCE header file the operation description files need to directly include.

Code excerpt in Fig. 13 is fromOSAL.hh. It introduces four important macros,OPER-

ATION, END_OPERATION, TRIGGERandEND_TRIGGER. The code differs some-
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Figure 12. Example Operation Definition.

<operation>

<name>ADD</name>

<inputs>2</inputs>

<outputs>1</outputs>

<in id="1">

<can-swap>

<in id="2"/>

</can-swap>

</in>

<in id="2">

<can-swap>

<in id="1"/>

</can-swap>

</in>

<out id="3"/>

</operation>

what from the original, as some irrelevant details are left out. The set of macros might

get clearer when it is put next to an example operation description which uses them.

Code in Fig. 14 used the macros to describe the behavior of operationADD of the base

operation set.

OPERATIONmacro is expanded to code that defines a new C++ class which imple-

ments an interface calledOperationBehavior. END_OPERATION, in addition to end-

ing the class definition, generates a factory function with Clinkage (extern "C") to

make it possible to instantiate the defined class using the dynamic linking loader which

is used to load the behavior definition in the Simulator. In addition to the factory func-

tion, a function for destructing the behavior definition class instance is provided. This

is to make sure that a correct version of C++deleteoperator is used to free the created

instances [21].

The actual behavior definition code is written betweenTRIGGERandEND_TRIGGER

macros. These macros expand to asimulateTrigger()method definition, which defines

how the operation behaves when it is triggered. In the example description ofADD op-

eration, the first and the second operand are treated as integers, summed, and the result

of the summation is written to the third integer operand, which is an output operand.

INT macro is for casting operands into unsigned integers. Thereare similar macros
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Figure 13. OSAL.hh: Behavior Definition Macros.

#define OPERATION(OPNAME) \

class OPNAME##_Behavior : public OperationBehavior { \

public: \

OPNAME##_Behavior(const Operation& parent) : \

parent_(parent) {}; \

private: \

const Operation& parent_; \

public:

#define END_OPERATION(OPNAME) \

};\

extern "C" { \

OperationBehavior* createOpBehavior_##OPNAME(\

const Operation& parent) {\

return new OPNAME##_Behavior(parent);\

}\

void deleteOpBehavior_##OPNAME(\

OperationBehavior* target) {\

delete target;\

}\

}

#define TRIGGER \

bool simulateTrigger( \

SimValue** io, \

OperationContext& context) const {

#define END_TRIGGER }

for C floats (FLT), and doubles (DBL), which are used in floating point operation de-

scriptions. TheRETURN_READYstatement simply signals the Simulator that all the

outputs of the operation were computed.
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Figure 14. Operation Behavior Definition of Operation ADD.

#include "OSAL.hh"

OPERATION(ADD)

TRIGGER

INT(3) = INT(1) + INT(2);

RETURN_READY;

END_TRIGGER;

END_OPERATION(ADD);

Code example in Fig. 15 shows how the description ofADD looks like after the macros

are expanded.

In addition to the described macros, there are additional macros in OSAL behavior

language for defining operations with state, for simulatingdynamic latency operations,

and for simulating data memory accessing operations, but itserves no purpose to ex-

plain them in detail in this thesis. Comments in fileOSAL.hhand [12] are good sources

for thorough explanation on the behavior description language.

5.5 Modeling Data Memory

Data memories accessed by load and store operations are modeled using a simple mem-

ory interface. Even though the interface is simple, it giveswide possibilities for mod-

eling different types of memory systems.Memory Modelinterface includes methods

for initiating read accesses, querying whether previouslyrequested data is ready to

be read, reading data, writing data, and notifying the memory of an instruction cycle

advance.

Memory Modelimplementations might need to model memory systems that limit ac-

cesses by some criteria. For example, a memory system may allow maximum of two

read accesses to be initiated in the same cycle. In order to allow modeling such limi-

tations, theMemory Modelinterface provides a method for signaling unavailability of

the memory to the Simulator. Memory models can implement this method to reflect

the properties of the memory they are simulating. For instance, to model a memory

system that allows two concurrent read accesses, developermay write an implementa-

tion for the method which counts the memory read requests initiated in an instruction

cycle and returns false in case the number of requests is morethan two.
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Figure 15. Expanded ADD Operation Behavior Definition.

class ADD_Behavior : public OperationBehavior {

public:

ADD_Behavior(const Operation& parent) :

parent_(parent) {};

private:

const Operation& parent_;

public:

bool simulateTrigger(

SimValue** io,

OperationContext& context) const {

io[3 - 1]->value_.intWord =

io[1 - 1]->value_.intWord +

io[2 - 1]->value_.intWord;

return true;

}

};

extern "C" {

OperationBehavior* createOpBehavior_ADD(

const Operation& parent) {

return new ADD_Behavior(parent);

}

void deleteOpBehavior_ADD(

OperationBehavior* target) {

delete target;

}

}

The Simulator uses a defaultMemory Modelimplementation calledIdealSRAMfor

simulating data memory access in parallel simulation and anoptimized implementation

called SequentialMemoryfor sequential simulation.IdealSRAMmodels a memory

system that allows an infinite number of concurrent accessesand is always able to

serve all the accesses in one clock cycle. Clearly, no practical memory is able to serve

unlimited concurrent accesses, thus such a memory model is overly optimistic. It is still

safe to use an ideal memory model for simulating the program as the stall cycles caused

by conflicting memory accesses are invisible to the simulated program. The drawback

of using a less-accurate memory model is that as the stall cycles are not counted in
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the total clock cycles spent for running the simulated program, the run time is too

optimistic and may lead theDesign Space Explorerto a wrong direction in the design

space. Therefore, if exact results are wanted, writing a more detailedMemory Model

implementation is strongly encouraged.SequentialMemoryis optimized with certain

special properties of the sequential simulation in mind. For example, all operations in

sequential code are simulated with latency of one, thus there can be only one pending

request at a time, which avoids the need for request queues.

MemoryContentsis a data structure for storing data of the simulated memories. It al-

lows simulating large memories while consuming minimal amounts of simulator host’s

memory. For example, the width of the address space of the data memory used in se-

quential simulation is 32 bits, which means four gigabytes of memory space. Naturally,

it makes no sense and is often impossible to allocate such an amount of memory for

the simulator at once. In order to address this problem, the memory space is divided

into chunks at equal distances. Memory for a chunk is allocated only when an address

residing in the chunk is written the first time. Reading an address at an unallocated

chunk results in returning zero. Because each chunk is the same size, it is possible

to find in constant time the chunk and the location in the chunkthe requested address

refers to.

5.6 Simulation of Instruction Cycle

Previous sections introduced the main modules and their responsibilities in implement-

ing the Simulator functionality. This section aims to describe in detailed manner how

those modules interact and work together to actually simulate an instruction cycle.

Thanks to using the preprocessed TTA instruction classes and encapsulation of side ef-

fects produced by moves writing to their targets, the top level procedure for simulating

a TTA program clock cycle is rather simple. The simulation code resides in method

simulateCycle()of Simulation Controller. The code is shown in Fig. 16 and can be

explained line-by-line thanks to its simplicity.

In lines 2 to 4, a preprocessed instruction representing theinstruction at current pro-

gram counter address is fetched from anExecutableInstructionMemoryinstance. Data

transports are simulated by callingexecute()of the fetchedExecutableInstruction.

The side effects of data transports are initiated by specialized function unit port state

objects which notify the function unit state object that they were written to, thus an
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Figure 16. Simulation of Instruction Cycle.

1 try {

2 ExecutableInstruction& instruction =

3 instructionMemory_->instructionAt(PC);

4 instruction.execute();

5

6 machineState_->endClockOfAllFUStates();

7 gcu_->endClock();

8

9 memorySystem_->advanceClockOfAllMemories();

10 machineState_->advanceClockOfAllFUStates();

11

12 ++gcu_->programCounter();

13 gcu_->advanceClock();

14

15 SimulatorToolbox::eventHandler().handleEvent(

16 SimulationEventHandler::SE_CYCLE_END);

17

18 if (programEnded()) {

19 state_ = STA_FINISHED;

20 stopRequested_ = true;

21 return;

22 }

23

24 } catch (const Exception& e) {

25 SimulatorToolbox::reportSimulatedProgramError(

26 SimulatorToolbox::RES_FATAL, e.errorMessage());

27 prepareToStop(SRE_RUNTIME_ERROR);

28 return;

29 }

operation should be triggered. The chain of calls in data transport simulation is shown

in the sequence diagram of Fig. 17. For each operation implemented by each function

unit, there is an instance of a special port state class called OpcodeSettingVirtualIn-

putPort. When simulating a data transport withsetValue()to an object of this class,

setOperation()of the function unit that owns the port gets called with the operation the

virtual input port represents as an argument. Triggering isnotified to the function unit
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Figure 17. Data Transport Simulation.

by delegating thesetValue()call to an object that represent a real port in the function

unit. The port state object, in case the port is supposed to betriggered when written,

sets the triggered status to the parent function unit state by calling its setTriggered()

method. As a result, the function unit has become aware that it should execute the

given operation at the point instruction cycle end is announced.

In lines 6 to 13, all function unit state objects, global control unit state object, and

all the memory models simulating the data memories, are notified of the advancing of

the instruction cycle. Notification of instruction cycle advance to the function units

happens in two phases. First, theendClock()method is called for each function unit

state object. Before calling theadvanceClock()of the function units, instruction cy-

cle advance is signaled to the memory models. What happens insideendClock()and

advanceClock()and the main reason for the two-phase function unit instruction cycle

end signaling is explained in Section 5.1.

At the point a simulation cycle end is announced withendClock(), function units that

were triggered by data transports simulate the requested operations. The chain of

calls for simulating an operation triggering is represented in the sequence diagram

of Fig. 18. The simulation of behavior of the triggered operation is delegated to

OSAL. This is done by requesting a behavior simulation modelfor the triggered op-

eration. In sequence diagram the returned model is for ADD, thus the name of the

class isADD_Behavior. Operation is executed by calling itssimulateTrigger()with

the operand values currently in function unit state’s port objects. simulateTrigger()

returns results for the simulated operation with the given inputs after which the results

are stored in a wait queue.FUState::endClock()implements the simulation of opera-
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Figure 18. FUState::endClock(): Simulating Operation Execution.

tion latency with a helper classOperationExecutorwhich effectively is a wait queue

for operation results. Operation results are stored in the queue, and the queue is ad-

vanced in eachendClock()call. At the point a result has stayed long enough, for the

time of operation latency, in the queue, result is made visible in the function unit state’s

output ports.

In order to simulate the delay slots of control flow operations, the effects of triggering

a control flow operation such asjumpare made visible inadvanceClockof theGCUS-

tate, called in line 13. The simulation loop increments the program counter value

in line 12, which theGCUState::advanceClock()overwrites in case the instruction

pipeline latency of a previously triggered control flow operation has passed.

The ending of a simulation clock cycle is announced to interested parties in lines 15 to

16 by using theSimulationEventHandler.

In lines 18 to 22, the predicate for program end is evaluated by callingprogramEnded().

The function returns true in case the last instruction of thefirst executed procedure

was executed. In such a case, simulation is considered to be executed to the end and

simulation is finished succesfully.

Exceptions from simulation loop method calls are caught in lines 24 to 29. Such ex-

ceptions are considered run time errors of simulated program, which are announced

to interested parties using the simulation event handler. Usually listeners to runtime

error events are user interfaces, which print the runtime error messages for the user.

Runtime errors always cause the simulation to be aborted.



6. VERIFICATION AND BENCHMARKING

Functional accuracy of simulation was verified by simulating sequential and parallel

test programs and comparing output of the programs to known correct output.

Simulation speed was measured by timing the simulation of the test programs. Two

figures were calculated from the results: clock cycles simulated in a second, and host

clock cycles per simulated cycle, which gives a rough estimate of the number of host

clock cycles needed to simulate one target clock cycle. The test programs were also

executed with MOVE simulator and results were compared to TCE’s results.

All of the benchmarks were executed in a computer equipped with a HyperThreaded(R)

Intel(R) Pentium(R) 4 processor running in 2.80 GHz clock frequency and with 1 GB

of RAM. Operating system kernel was LinuxTM version 2.4.27 with multiprocessor

support switched on. Each benchmark was executed ten times in a row. From the

results, an average of consumed real time was calculated. Real time was used instead of

CPU time because it gives more realistic picture of the speed, as it’s the time perceived

by users of Simulator. The difference between the measured real time and CPU time

was negligible.

MOVE and TCE code base were compiled with GNU GCC compiler version 3.3.5.

One of the major drawbacks for MOVE simulation speed is the fact that it’s not possi-

ble to use aggressive optimization flags when compiling the code of MOVE because of

bad coding practices used at some parts of the code base. The best found set of com-

piler switches using which MOVE could be compiled without producing broken code

was ’-O1 -march=pentium4 -finline-limit=5000’. However, MOVE simulator’s code

was managed to be compiled separately from the rest of the MOVE code base with

more aggressive optimization switches which brought MOVE simulator to roughly

the same starting line with the TCE simulator. MOVE simulator’s source code and

the whole code base of the TCE was compiled with switches’-O3 -march=pentium4

-finline-limit=5000’. Switch ’-O3’ turns on the most aggressive optimizations,’-

march=pentium4’allows Pentium 4 specific optimizations, and’-finline-limit=5000’

allows large functions inlined to call sites.
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6.1 Sequential Simulation

Sequential simulation was tested with an integer-only Ogg Vorbis audio decoder library

"Tremor" [22]. The total number of sequential instructionsin the program is 98 804.

The version of the program used in the test was modified to be suitable for platforms

without a 64-bit integer type. It emulates the 64-bit operations Tremor needs by using

C functions. According to the CHANGELOG file included in the modified Tremor

distribution, the modifications were done by J.A. Bezemer tomake Tremor work on

MOVE framework. In addition to the modifications by J.A. Bezemer, a version of

the dynamic memory allocation functionmalloc(), which does not require operating

system support was implemented and used in the test program.Such version was

needed because TCE, in contrast to MOVE, does not support emulation of a non-

existing operating system.

Verification

The known correct output was generated by compiling the decoder natively in the test

environment workstation and by processing an input Ogg Vorbis audio file with the

natively compiled version. The used input file was a song of three minutes and nine

seconds in length. The resulting output file was verified roughly by listening it using

an audio player.

A sequential TTA program was generated from the Tremor source code by using TCE’s

C frontend. The input file was converted to a C char array whichwas linked in the test

program. Output was produced by using a special operation ofwhich trigger simula-

tion function writes the contents of its only input operand to a file.

The operation behavior definition of the special operation used to output data to a file in

simulator host serves as a good example of an operation with state. Its OSAL behavior

definition, as illustrated in Fig. 19, consists of a type definition of the state data the

operation uses and of an operation behavior definition itself. The state definition is a

C++ class definition hidden behind the OSAL macros. After defining the name of the

state follows the declaration of the state data, which in this case is the output file stream.

Initialization function definition INIT_STATE is used to define the code executed when

the state is instantiated. In this case, initialization includes initializing the output file

stream to write to a file "ttasim.output". Finally, the destructor which closes the output

file stream is defined using FINALIZE_STATE.
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Figure 19. OSAL Behavior Definition of OUTPUT_DATA.

DEFINE_STATE(OUTPUT_STREAM)

std::ofstream outputFile;

INIT_STATE(OUTPUT_STREAM)

outputFile.open(

"ttasim.output",

std::ios_base::out | std::ios_base::trunc |

std::ios_base::binary);

END_INIT_STATE;

FINALIZE_STATE(OUTPUT_STREAM)

outputFile.close();

END_FINALIZE_STATE;

END_DEFINE_STATE;

OPERATION_WITH_STATE(OUTPUT_DATA, OUTPUT_STREAM)

TRIGGER

STATE.outputFile << static_cast<char>(INT(1));

RETURN_READY;

END_TRIGGER;

END_OPERATION_WITH_STATE(OUTPUT_DATA);

The operation behavior definition is straightforward. The only input is casted to a

char and written to the output stream stored in the state instance (referenced to with

STATE).

In order to use the defined operation to output the decoded data, a code illustrated in

Fig. 20 was inserted in the end of the Tremor’s main procedure. The code consists of a

simple loop which iterates the array that contains the output data and writes its contents

to the output file by using the custom operation. The special operation is accessed with

macro WRITETO which generates sequential TTA assembly instructions that write

data as input to the operation. The code looks more complicated than it is because the

data needs to be swapped before writing it to the output file due to word byte order

difference between TCE’s TTA and the simulator host processor.
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Figure 20. Code Used to Output Decoded Data in Tremor.

int i = 0;

char first, second;

for (; i < OUTPUT_BUFFER_SIZE; ++i) {

first = output_data[i];

++i;

second = output_data[i];

WRITETO(output_data.1, second);

WRITETO(output_data.1, first);

}

Benchmarks

After verifying that the output produced by the simulated TTA program matched the

known correct output, the data output code was removed and the test program was

benchmarked. Minimal program analysis options were selected for both MOVE and

TCE simulator, to achieve the maximum simulation speed. Theresults are shown in

Table 1.

MOVE and TCE have different base operation sets, thus different C frontend com-

pilers, which results in different sequential programs generated by the frontends from

the same source code. Additionally, the sequential simulator of MOVE does not use

a one-bus "sequential machine" as its internal simulation processor model, but allows

some parallelism also with sequential code. Sequential code in MOVE is not simulated

as sequences of moves, but as sequences of operation invocations allowing all operand

input operands written and results to be read in a single clock cycle. Mainly due to

these reasons, the total count of simulated instructions differs dramatically between

MOVE and TCE test runs. In order to make comparison between TCE and MOVE

sensible, figures are based on executed moves instead of executed instructions.

Table 1. Benchmark Results: Tremor.
moves / second host cycles / move total moves

TCE 4,011,700 700 49,321,900,000

MOVE 23,668,000 120 40,905,367,000

The results show that sequential simulation in MOVE is almost six times faster than in

TCE. The main reason for this is that TCE uses the same simulation code for parallel

simulation by using an artificial Universal Machine that is able to run the sequential
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code. Thus, there is no separately optimized simulation code for sequential programs

like there is in MOVE. Another major reason is the definition of sequential code in

MOVE, which allows move-level parallelism. Because it is possible to perform all

operation operand moves in the same instruction, instruction cycle ends need to be

simulated less frequently. This might have huge impact to the simulation speed, as

the majority of simulation time of TCE Simulator is spent while simulating the clock

cycle advances, not while simulating the data transports. Finally, the differences and

the added flexibility in TCE’s TTA template (see Section 2.2)makes the simulation

in TCE less efficient. For example, the simulation of arbitrary width addressable data

memory units is completely unnecessary in case of sequential simulation because the

used unit widths (minimum addressable unit a 8-bit byte, natural word a 32-bit integer)

are the same as in most of the current desktop processors.

As a result of sequential simulation speed being less critical than parallel simulation

speed (see Section 3.4), the optimization effort was directed to parallel simulation. In

the future, if more speed for sequential simulation is needed, it can be achieved by

making more special cases in the simulation code for sequential programs.

6.2 Parallel Simulation

The test program chosen for verification and benchmarking ofparallel simulation is

an implementation of Viterbi algorithm [23]. The target processor architecture for the

program is a fully connected 20-bus TTA with operations distributed in 25 function

units. General-purpose registers of the processor are distributed in 7 register files. The

algorithm was implemented in C and the resulting sequentialTTA code was sched-

uled and simulated with MOVE. Finally, the output of MOVE instruction scheduler,

a parallel TTA assembly file, was converted to TCE’s parallelassembler format and

simulated in TCE Simulator.

Verification

In this test case, no extra code was inserted to the test program to produce output for

verification purposes, but the correctness of the simulation was verified by using TCE

Simulator’s program debugging capabilities. TCE Simulator implements a feature that

allows inspecting simulated data memory and dumping a rangeof it to the Simulator

console. After running the program in TCE Simulator to the end, the memory area
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used by the algorithm for storing output data was dumped and compared to the known

correct output of the algorithm. The known correct output was provided in the C source

code of the algorithm.

Additional verification of parallel simulation was done by simulating different parallel

programs and comparing bus traces produced by TCE simulatorto bus traces produced

by running the program in MOVE simulator and in a VHDL simulator. VHDL imple-

mentations of processors used in verification were generated with MOVE processor

generator [3] because TCE processor generator was not fullyimplemented at the time

the verification took place.

Benchmarks

The scheduled program contained only 254 instructions, andthe total runtime of the

algorithm was less than two million cycles. In order to produce longer simulation time

to obtain more accurate simulation time measurements, the algorithm was executed

thousand times in a row. Results of the benchmarking are displayed in Table 2, which

presents the instruction simulation speed, and in Table 3, which presents the move

simulation speed.

Table 2. Benchmark Results: Viterbi, Instruction Execution Speed.

instructions / second host cycles / instruction total instructions

TCE 668,900 4190 1,799,953,000

MOVE 422,400 6630 1,799,953,000

Table 3. Benchmark Results: Viterbi, Move Execution Speed.

moves / second host cycles / move total moves

TCE 2,215,300 1260 5,961,272,000

MOVE 1,399,000 2000 5,961,272,000

It is apparent from the total move and instruction counts that the schedule produced by

MOVE’s instruction scheduler is not very efficient: even though the processor has 20

buses, only on average of about 3.3 moves were simulated per instruction.

This benchmark shows that TCE is clearly faster than MOVE in parallel simulation.

The speedup compared to MOVE is around 58%. The speed difference is most proba-

bly due to it being impossible to completely disable runtimestatistics computation in

MOVE simulator. Utilization counts of processor components are accumulated even



6. Verification and Benchmarking 52

though verbose statistics output is disabled. Additional speedup for TCE is achieved

by the preprocessing of instructions and by implementing a mechanism that avoids

needless simulation of idle function units.

The effect of specialized code for sequential code in MOVE can be realized by com-

paring the move execution speed in parallel simulation to move execution speed in

sequential simulation represented in Table 1. The parallelsimulation speed in this

benchmark is almost 17 times slower with MOVE simulator, in contrast to only 1.8

times slower in case of TCE Simulator.



7. FUTURE EXTENSIONS

There are several areas in the Simulator that could be improved to achieve better sim-

ulation accuracy and speed. Thanks to the modular structureof Simulator, most im-

provements should be relatively painless to implement. This chapter introduces several

ideas for improvements that could considered in the future.Each improvement idea is

accompanied with a short sketch of an implementation plan toserve as a starting point

for the possible developers chosen to implement them.

7.1 Parallel Computation

A current trend in computer systems is to try to achieve better performance through par-

allelism by using multiple processor cores. This is due to the fact that the higher limit

for clock frequency achievable with current processor manufacturing technologies is

almost reached and duplication of computation resources seems to be a straightforward

way to improve the performance of the system.

Benefits from multiprocessor systems are not gained automatically by existing pro-

grams. In order to utilize multiple processors, existing programs might be needed to

be modified to perform computation in parallel, in multiple threads of execution. All

programs are not suitable for parallelization. In case program’s execution flow is se-

quential in a way that all computations depend on the resultsof the previous computa-

tions, it might not be possible to parallelize the program. TCE Simulator is simulating

a highly parallel processor architecture, therefore the simulation code is suitable for

parallelization. Due to the independent function units of TTA, it is possible to sepa-

rate the simulation of different function units to multiplethreads of execution. Another

point for parallelization is the simulation of data transports. Simulation of moves could

be distributed evenly among the threads of execution.

In larger scale, design space exploration speed could be improved by distributing com-

putation to a cluster of computers. In such a setting, TCE Simulator would be a net-

work server application serving simulation requests through network. This is imple-
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mented easily by writing a new user interface for Simulator.Network User Interface

would communicate with clients using a network communication protocol. Simula-

tion would be controlled by the interface the same way other Simulator user interfaces

do, by usingFrontendmodule. The protocol for communicating with the simulation

server could include commands for starting a new simulationand receiving simulation

results.

7.2 Computing Lock Cycles Generated by Control Unit

Currently, TCE Simulator expects that there are no stalls when retrieving the next ex-

ecuted instruction. This results in the total clock cycle count of simulations being

sometimes too optimistic. If the effect of dynamic properties of control unit and in-

struction memory are wanted to be included in the simulationresults, there has to be

a a way for users of the Simulator to provide a model for simulating lock conditions

caused by the control unit.

One way to implement a mechanism for allowing customized control unit lock condi-

tion model is to implement a new class that is used to calculate the lock cycles caused

by instruction memory accesses. Users would be allowed to implement this module

by using a plugin interface. The interface would consist of asimple function which

takes an instruction address as an argument and return the locked processor cycles

caused by the request. This kind of mechanism would allow defining models of ar-

bitrary complexity and delivering more exact lock cycle counts caused by the control

unit’s instruction memory data transfers. For example, an implementation of the model

could simulate cache by storing a history of accesses in a data structure similar to the

one in the real hardware cache. This data structure would be used to figure out whether

requested data would be found in the cache and in case of a cache miss, return a com-

puted count of lock cycles. The default implementation of the interface would always

return zero.

7.3 Connection to Hardware Simulation

Some HDL simulators such as "Modelsim" [15] provide an interface for connecting

models defined in common programming languages to the simulated environment. For

example, the interface of Modelsim calledForeign Language Interface[24] imple-
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ments a bridge between C language and VHDL, allowing C programs to modify and

inspect system’s signals which are defined in VHDL.

Communication between the rest of the simulated system and the simulated TTA pro-

cessor could be implemented by implementing a new memory model for TCE Simula-

tor. The model would not implement the memory storage, but would act as an adapter

to the HDL memory block implemented in the hardware model. Incase communica-

tion through a special operation is wanted, the OSAL operation behavior model that

is used to simulate the special operation would include codethat uses the C to VHDL

interface to communicate with the simulated system.

The only mandatory input to TCE Simulator from the system simulator would be the

clock signal. When the TCE Simulator detects that the clock signal is changed, it

would simply execute the code that simulates a clock cycle.

7.4 Compiled Simulation

The simulation technique of TCE Simulator resembles the interpretive simulation tech-

nique in which each instruction is simulated with function calls that simulate the data

transfers and their side effects. The overhead of the function calls itself can be re-

markable. Compiled simulation technique avoids the overhead of function calls by

translating the simulated program to a program runnable in the host processor.

TCE Simulator could be converted to use compiled simulationtechnique by replacing

theSimulation Controllerimplementation with one that delegates the implementation

of the simulation loop to the translated program. It could bepossible to implement

this by using runtime libraries (plugins) in such way that the TCE code base would

not be needed to be recompiled for each simulation. When initializing a compiled

simulation, the user-defined program and the processor description would be used to

generate a high-level language program, which would be compiled using a regular

compiler to a dynamic library. The code from the dynamic library would be used in

place of the current simulation loop code.



8. CONCLUSIONS

This thesis described an instruction set simulator for a TTAcodesign environment. The

main requirements placed for Simulator were the efficiency of parallel TTA program

simulation and implementation of program debugging capabilities. The accuracy of

Simulator is instruction cycle level and only the architecture of the TTA processor is

simulated, that is, Simulator models only the details visible to the programmer. This

level of detail allows efficient enough simulation for design space exploration and en-

ables the implementation of program debugging capabilities.

The thesis described the main applications in the codesign environment the Simulator

is targeted to. In addition, the TTA concept was described mainly in programmer’s

point of view, which is enough for understanding the design of the Simulator.

The architecture and design of the Simulator is very modularand follows object ori-

ented design principles. The simulation of data transports(moves) is encapsulated in-

side a preprocessed instruction model which reduces computation needed during sim-

ulation. The state of the processor is maintained in an optimized object model which

avoids needless simulation of idle processor parts. The design and implementation of

the most important parts of the Simulator were described in more detail, leaving less

important details to a separate design document.

Correctness of simulation was verified by simulating sequential and parallel programs

and comparing the known correct output of the programs to Simulator’s output. The

efficiency of the simulation was benchmarked by timing the simulation times of the

test programs. The simulation speed was compared to the one of simulator of another

codesign environment, the MOVE framework.

Compared to the MOVE simulator, TCE simulator is much slowerin sequential sim-

ulation, due to the differences in definition of sequential code in MOVE and TCE. In

addition, MOVE implements a specially optimized sequential simulation code, which

is wanted to be avoided in TCE due to added complexity in providing the debugging

features for both types of simulation. Optimization effortwas directed to parallel sim-

ulation, due to its higher utilization in design space exploration. Contrary to sequential
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simulation, parallel simulation is significantly faster inTCE. The parallel benchmark

showed speedup of about 60%.

Finally, the thesis introduced several future extensions for improving simulation accu-

racy and speed. For example, utilization of parallel computation by adding multiple

threads of execution or by distributing the simulation to multiple hosts is a self-evident

way to improve parallel simulation speed. In addition, applying the compiled simula-

tion technique would probably improve the overall simulation speed tremendously.
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Appendix A

SIMULATION OF UNPROCESSED INSTRUCTION

The algorithm can be divided into following phases:

1. Lines 2-4: Validation of the executed move. Move is valid in case the simulated

architecture provides the needed connections from the source to the destination,

and no other move is occupying the same resources in the same clock cycle.

2. Lines 5-27: Interpretation. Source, destination, and bus of the move are re-

solved, that is, corresponding state objects are found fromthe object model that

maintains the processor’s simulation state.

3. Lines 28-31: Simulation of the data transfer. Data is firstread from the source

to bus, from which it is read to the destination.

4. Lines 32-39: Simulation of possible side effects of the data transfer. As a side

effect, a data transfer may set the operation to be triggerednext in the target

function unit and trigger an operation.
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Algorithm 2 Simulating an Unprocessed Instruction
1: for all movesM in instructiondo

2: if not Valid(M) then

3: abort simulation

4: end if

5: if M.SourceIsRegister()then

6: source_state←FindRegisterState(M.source)

7: else ifM.SourceIsFUPort()then

8: source_state←FindPortState(M.source)

9: else ifM.SourceIsImmediate()then

10: source_state←CreateImmediateObject(M.sourceImmediateValue)

11: end if

12: bus_state= FindBusState(M.bus)

13: if M.IsGuarded()then

14: if M.IsPortGuard()then

15: guard_target←FindPortState(M.guardedPort)

16: else ifM.IsRegisterGuard()then

17: guard_target←FindRegisterState(M.guardedRegister)

18: end if

19: end if

20: if M.DestinationIsRegister()then

21: destination_state←FindRegisterState(M.destination)

22: else ifM.DestinationIsFUPort()then

23: destination_state←FindPortState(M.destination)

24: end if

25: if M.IsOpcodeSetting()then

26: operation←FindOperationBehaviorModel(M.opcode)

27: end if

28: bus_state.Write(source_state.Read())

29: if notM.IsGuarded() orM.IsGuarded() andguard_reg.Value not 0then

30: destination_state.Write(bus_state.Read())

31: end if

32: if M.HasSideEffects()then

33: function_unit_state←FindFUState(M.functionUnit)

34: if M.IsOpcodeSetting()then

35: function_unit_state.SetNextOperation(operation_behavior)

36: else ifM.IsTriggering()then

37: function_unit_state.SetTriggered()

38: end if

39: end if

40: end for


