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ABSTRACT
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Jaaskeldinen, Pekka Olavilnstruction Set Simulator for Transport Triggered Archi-
tectures

Master of Science Thesis: 59 pages, 2 appendix pages

Examiners: Prof. Jarmo Takala and Prof. Tommi Mikkonen

Funding: The National Technology Agency

September 2005
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Due to specific requirements of some of embedded systemcafiphs, general pur-
pose processors are usually not the most optimal ones feasket hand. Thus, there
is a need for application-specific processors, which alerea for the application and
requirements at hand. However, processor design is a dengatadk. Therefore, the
processor design flow needs to be automated as completebssibie.

TTA Codesign Environment (TCE) is a toolset that providesrmisautomated proces-
sor design flow, which includes "design space exploratiomijch is a process
that helps to find an optimal processor architecture for tlkergapplication semi-
automatically. The processor paradigm utilized in TCE giedlow is called trans-
port triggered architecture (TTA). TTA is a relatively sila@nd highly modularized
processor architecture which allows easy customizatiore @f the leading ideas of
TTA is to move complexity from the processor hardware to thagiler. Consequent-
ly, the most complicated tool in TCE is the compiler. Instioic set simulation is
mainly needed in verifying the compiler output and in desigace exploration.

The project completed for this thesis consisted of desigplémentation, and veri-
fication of an instruction set simulator for TCE. The thestsatibes the main requi-
rements and most important software design decisions of @t instruction set si-
mulator. In addition, the verification of simulation corneess is described and perfor-
mance benchmarks are presented. Finally, several impmaveisieas and brief plans
for implementing them are presented.
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Yleiskayttdiset suorittimet soveltuvat huonosti joihimksulautettuihin sovelluksiin
naiden sovellusten asettamien erityisvaatimusten t&oaelluskohtaiset suorittimet
raataldidaan kunkin sovelluksen asettamien erityiswasten mukaan. Koska suorit-
timien suunnittelu on vaativaa ja virhealtista, raatéidmalutaan tehda mahdollisim-
man automatisoidusti, erityisohjelmistoja kayttaen.

TTA Codesign Environment (TCE) on ohjelmistokokonaisioka mahdollistaa puo-

liautomaattisen suunnitteluavaruuden lapikaynnin. Siuteluavaruuden lapikaynnil-
|& tarkoitetaan annettuun sovellukseen parhaiten sargitguoritinmuunnelman et-
simista automatisoidusti. TCE:ssa kaytettyd suoritikiaektuuria kutsutaan nimella
"transport triggered architecture"(TTA). TTA on suhtessth yksinkertainen ja erittain
modulaarinen suoritinarkkitehtuuri, joka mahdollistaasttimien raataldinnin vaivat-

tomasti. Yksi TTA:n perusperiaatteista on siirtdd moniaiguutta laitteistosta suori-
tettavaan ohjelmakoodiin. Tasté johtuen monimutkaisik#yu TCE:ss& on kdantaja.

kustannusarvioiden laskemisessa suunnitteluavarué@gé@lynnissa.

Tata diplomity6ta varten tehty tyd koostui TCE:lle tehdy&éskykantasimulaattorin
suunnittelusta, toteutuksesta ja testauksesta. Dipydnkiivaa simulaattorin pdavaa-
timukset ja tarkeimmaét ohjelmistotekniset ratkaisut.édkis kuvataan tapa, jolla si-
mulaattorin toimivuus varmennettin, ja esitetd&n suskiyltytestien mittaustulokset.
Lopuksi esitetaan muutamia parannusehdotuksia simataatseka alustavat suunni-
telmat niiden toteuttamiseksi.
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1. INTRODUCTION

Processors designed for embedded systems often haverstequirements than the
general purpose-processors used in desktop computers Bavgedded system pro-
cessors may place stronger limits on such aspects as pong&iroption, performance,
or production price. Furthermore, embedded processoes eftecute only a limited
set of programs.

Unlike general-purpose processors in desktop computdrchwun many different
programs, application-specific instruction-set proces$ASIP) are codesigned with
the type of software they are going to execute in the targetiymt. The ASIP in-
struction set can be extended with special instructionsdabiald help the application
in performing its task. Respectively, instructions havimggbenefit to the application
can be discarded from the instruction set, thus simplifyireggprocessor. For example,
during video encoding using certain algorithms, a subgthrwunt of discrete cosine
transforms (DCT) are calculated for each encoded videodrarhese transforms may
take the majority of the processor clock cycles of the enogpdask. When the pro-
cessor and application are codesigned, i.e., are simoltshe tailored” for the given
task, it is possible to design processors which provideiapgtstructions for com-
puting DCT, thus allowing the same functionality be achdewath fewer processor
cycles.

However, designing new processors is a demanding task.ciafigethe verification
of the processor correctness is often time-consuming. eftw, the task of design-
ing new application-specific processors is usually as$isyea software toolset. One
such toolset, called TTA Codesign Environment (TCE), isenitly in development
at Tampere University of Technology. The processor paradiged in the toolset is
transport triggered architecture (TTA). TTA is a modulad ample processor archi-
tecture which allows flexibility through customizable séfpoocessor resources like
function units, register files, and transport buses.

TCE provides semi-automated design space exploratiorghwirelps the designer to
find the optimal processor architecture for the given apgibn. Major part of the de-
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sign space exploration time is spent simulating each eteduarchitecture variation.

Simulation provides the design space explorer with stesigif each evaluated pro-
cessor, thus sets the direction to which the design spaderatipn should proceed

and makes it possible to pick the optimal architecture atingrto the given require-

ments. The Simulator is also an important tool while venifyand debugging the most
complicated tool in the toolset, the instruction schedwdéso known as the compiler
backend.

For this thesis, an instruction set simulator, later reféto as Simulator or TCE Simu-
lator, was developed for TCE. This thesis describes the negimrements, design, and
verification procedure of the simulator. In addition, asttiesis is the first publication

made of TCE, it serves also as a brief introduction to the Tatlset.

The thesis is divided into following chapters. Chapter 2adtices the environment
for which the Simulator was implemented by describing eachih the toolset briefly.
Additionally, the transport triggered architecture pagadis introduced, mainly in the
programmer’s point of view. Chapter 3 describes the maimirements that were
placed for the Simulator. Chapter 4 summarizes the higH @werational principles
of the Simulator, without getting into implementation distaChapter 5 provides more
detailed description of the high-level software design immplementation of the Sim-
ulator by describing the responsibilities of the major wafte modules and the imple-
mentation of the main simulation loop in detail. Chapter Saldbes how the Simulator
was tested and lists the results of performance benchm@Hhepter 7 introduces sev-
eral future improvement ideas for the simulator along wiilbfimplementation plans
for them. Chapter 8 concludes the thesis.



2. CODESIGN ENVIRONMENT SUPPORTING PROCESSOR
CUSTOMIZATION

In order to develop software targeted to any processor/oleees need a development
toolchain supporting the target. Such toolchain usualtyudes at least a high-level
language compiler, a simulator, a debugger and a linker.

Toolchains that support customizable processors cleeglgnare complicated from the
ones that are targeted to only a single processor. In reé#dnigetoolchains, each tool,
like the compiler and the simulator, needs to be generatia¢ke level that they can
be used seamlessly with any processor architecture \aristipported by the system.

Constructing a compiler for customizable processor achires is particularly de-
manding task. Since the resources of the target processdrith the code is gener-
ated are not set, the resource allocation, optimizatiod,Earallelization algorithms
become more complicated.

In order to reduce the problem of supporting customized ggsar architectures in
the toolchain, the processor architecture supported byystem is usually limited
by a well-defined processor architecture template. Thegssmr architecture template
defines limits for the types of processors supported by thiesy. The template is often
provided for users in form of a processor/machine desompkanguage. One such
language is LISA [1]. LISA allows describing processors ilaaguage resembling a
programming language. The description is used by the reti@nte LISA toolchain to
adapt to the described architecture.

Processor design space exploration is a process in whicptanal processor archi-
tecture is searched in a set of processor architecturesarthéecture is varied auto-
matically by a design space exploration algorithm whichoees and adds resources
to the architecture and evaluates the effects of the motidita by simulating each
processor variation. In order to make automatic modificestito the processor archi-
tecture straightforward, it is desirable that the chosexgssor architecture is flexible
in structure.
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2.1 Transport Triggered Architectures

Transport triggered architecture (TTA) is an applicatgpecific instruction-set proces-
sor (ASIP) architecture template that allows easy custatioiz of processor designs.

This chapter describes TTA mainly in the point of view of agnammer, which is re-
quired to understand the operation of the Simulator. Thesgire of TTA is explained
briefly to give definitions for the concepts of TTA without ggideeper in details. The
architecture is described in more detail in [2] and [3].

Structure

TTA processors are built of independdanction unitsand register files which are
connected withransport buseandsockets Figure 1 represents a simple TTA proces-
sor with two function units, one register file, and@ntrol unit

Each function unit implements one or maneerationswhich implement functionality
ranging from a simple addition of integers to complex, a#byt user-defined compu-
tation. Operands for operations are transferred througttion unitports

Each function unit may have an independpipieline In case a function unit igully
pipelined a new operation that takes multiple clock cycles to finish loa started in
every clock cycle. On the other hand, the pipeline can be thatht does not accept
new operation start requests while an old one is still exegut

Data memory access and communication to outside of the ggsoces handled by us-
ing special function units. Function units that implemerimory accessing operations
and connect to a memory module are often called load/statg un

Control unit, in case of TTA, can be seen as a special function unit whiclrots the
execution of programs running in the processor. For thisfrobunit has access to
the instruction memory in order to fetch the instructiond&executed. In order to
allow the executed programs to transfer the execution (Jumpan arbitrary position
in the executed program, control unit provides control flgyemtions. Control unit
usually includes a transport pipeline, which consists afies for fetching, decoding,
and executing program instructions.

Register files contain general-purpose registers, whiehuaed to store variables in
programs. Like function units, also register files have tngmod output ports. The
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Function Unit Register File Control Unit

|
Connection

Figure 1. Simple example TTA processor.

number of read and write ports, that is, the capability ohgeable to read and write
multiple registers in a same clock cycle, can vary in eactstedfile.

Interconnection network consists wansport busesvhich are connected to function
unit ports by means afockets Due to expense of connectivity, it is usual to reduce the
number of connections between units (function units ancstexfiles). A TTA is said

to befully connectedn case there is a path from each unit output port to everysunit
input ports.

Sockets provide means for programming TTA processors byalh to select which
bus-to-port connections of the socket are enabled at aryitistant. Thus, data trans-
ports taking place in a clock cycle can be programmed by aefitihe source and
destination socket/port connection to be enabled for eash b

Conditional execution is implemented with the aidgofards Each data transport can
be conditionalized by a guard, which is connected to a reg{ssually a 1-biboolean
registen and to a bus. In case the value of the guarded register ¢galitefalse (zero),
the data transport programmed for the bus the guard is ctethexissquashedthat

IS, not written to its destinatiorJncoditionaldata transports are not connected to any
guard and are always executed.

Itis evident that TTA is suitable for customization as it @spible to define a new TTA
processor by simply defining function units, operationslengented in each function
unit, register files, count of registers in each registes fitwunt of buses, and connec-
tions between units.



2. Codesign Environment Supporting Processor Custornizati 6

Programming

In more traditional processor architectures, a processarsually programmed by
defining the executed operations and their operands. Fonmga an addition in-
struction in a RISC architecture could look like the folloi

add r3, rl1, r2

This operation adds the values of general-purpose registemnd r2 and stores the re-
sult in register r3. Coarsely, the execution of the instarcin the processor probably
results in translating the instruction to control signalsieh control the interconnec-
tion network connections and function units. The inter@tion network is used to
transfer the current values of registers rl1 and r2 to thetiomainit that is capable of
executing the add operation, often called ALU as in Arithisrebgic Unit. Finally,

a control signal selects and triggers the addition operaticALU, of which result is
transferred back to the register r3.

TTA programs do not define the operations, but only the datasports needed to
write and read the operand values. Operation itself is ¢rigg by writing data to a
triggering operandof an operation. Thus, an operation is executed as a sidet effe
of the triggering data transport. Therefore, executing dditeon operation in TTA
requires three data transport definitions, also catledes

rl -> add.1
r2 -> add. 2
add.3 ->r3

The second move, a write to operand two, triggers the addigperation, which makes
result of addition available to be read for the next move.

Sequentiall TA programs are generic sequences of general purposé¢aegigl opera-
tion operandnoves The moves of the sequential code are not scheduled to batedec
in any target architecture. For this reason, sequentiagrpros are sometimes called
unscheduled programs

A simple sequential code incrementing the value of a gemeenadose register r3, and
decrementing the value of r4 until the values become egsigliven in the following
example:
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1->r3

500 ->r4
r3 -> add.1
1 -> add. 2
add.3 ->r3
rd4 -> sub.1
1 -> sub.2
sub.3 ->r4
r3 ->eq.1
r4 -> eq. 2
eq. 3 -> bool
Ibool 3 -> junp.1

©O N AENRE

.
M RO

In lines 1-2,immediatesthat is, constant numbers, are transferred to generabparp
registersr3 and r4. Lines 3-4 set the inpaperanddor operation add In line 5, the
result of the addition is read from the output operand badlegister r3. After that,
suboperation is executed in similar manner. After addition smldstraction, operation
eqis used to compare the values of r3 and r4 for equality. Thdtrebthe comparison
is transferred to &oolean registerwhich is used in conditional execution in the next
line. The last line, control flow operatignmp is triggered in case the value of the
boolean registeevaluates to false. That is, the program execution is tearesf back
to line 3 in case the values of the r3 and r4 are not equal. $netkample, the operand
2 of add suly andeqoperations, and operand 1 of tjugnp operation areriggering,
that is, when the operand is written to, the operation stantsputing the results, or in
case of thgump operation, executes the functionality needed to trankieptogram
control to the target instruction.

Conditional execution in TTA programs is implemented wgtharded movesin the
previous example, the move in line 12 is guarded by the negafithe value of register
bool.

Parallel TTA programs are defined as sequences of TTA instructionsh E3A in-
struction defines a set ofioves A move defines endpoints for a data transport taking
place in a transport bus. For instance, a move can state thataatransport from
function unit F, port 1, to register file R, port 2, should tgiace in bus B1. In case
there are multiple buses in the target processor, each Ipusecatilized in parallel in
the same clock cycle. Thus, it is possible to exploit ingtarclevel parallelism by
scheduling several data transports in the same instruction

Parallel programs are always targeted to some TTA architectConsequently, they
are also referred to asheduled programdParallel programs are final in the sense that
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it is possible to generate the program bit image represgthia parallel code and run
it in a real processor hardware that implements the targetgdtecture.

In the next example, the code from the previous example isdsdbd to be executed
in an example architecture with two buses and two functiatsuihe used example
architecture is illustrated in Fig. 1. One of the functiontsimplements the operation
addand the another implemergabandeq

1: 1 -> RF. 3, 500 -> RF. 4

2: RF.3 -> FUL. add. 1, RF. 4 -> FU2.sub. 1
3: 1 -> FUL. add. 2, 1 -> FU2.sub. 2

4: FUL. add.3 -> RF. 3, FU2.sub.3 -> RF. 4
5: RF.3 -> FU2.eq.1 RF. 4 -> FU2. eq. 2
6: !'FU2.eq.3 2 -> GCU.junp. 1

In this example, both buses of the target machine are almdbgtutilized. Each in-
struction of the scheduled program except the last one pesféwo parallel moves.
In the first line, two registers are initialized in parall@he registers rl and r2 of the
sequential code are assigned to registers three and foue oégister fileRF. Because
the operationsdd andsubare in two independent function unitsU1 andFU2, re-
spectively, it is possible to compute the results of the logibrations at the same time.
In line 5, both the operands of the operatiEmare transferred in the same clock cy-
cle, as the connections of the target architecture allowirtally, the branching move
of the last line is guarded directly by the result of the efjyaiperation. Note that,
in addition to having guards that are watching a value of &teg it is possible to
have guards that watch the value of a function unit output, @aris the case in this
example’s last instruction. The control unit that implensethe control flow operation
jump, is namedGCU, as in Global Control Unit.

The assembly notation used in the example refers to funamaiports through oper-
ation operands. It could also be possible to refer directlihction unit ports instead,
but this version of notation is chosen for clarity. For exéanpU1l.add.2refers to the
port of function unitFU1, to which the operand two of the operatiatidis bound. The
alternative way to refer to the port could B&2.P2 in case the programmer knows
that the operand is bound to a port nani&tin that function unit. The TTA assembly
syntax of TCE is fully explained in [4].
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Customizable Operation Set

One of the customization points for TTA is the operation dets possible for the

designer to add a new operation to the target processor vilmiglements arbitrary

functionality. This allows, for example, to convert longgrains of operations to a
single custom operation execution.

A short example might clarify this idea. Let us assume thaalgarithm includes lots
of subtractions and additions of same input operands, treiséquential code would
include sequences like this:

ri -> sub.1
r2 -> sub.2
sub.3 ->r3
ri -> add.1
r2 -> add. 2
add.3 ->r4

Now, the designer of the TTA system sees that a piece of cadiedimg a sequence
like this is ranked high in the profiling data, that is, a majart of the execution time
Is spent running the code. Therefore, he decides to creassvacustom operation,
addsub which computes both the sum and the difference of the ogdsranmeceives
and places the difference in the first output operand (opktfaree) and the sum in the
second (operand four). The new custom operation can be asehvert the previous
code to the following:

ri -> addsub. 1
r2 -> addsub. 2
addsub.3 ->r3
addsub.4 ->r4

Getting rid of the two moves might not seem much, but it migbvple bigger savings
in the long run if the sequence is executed in a tight loop witly a few instructions.
Furthermore, the same optimization strategy of convegagyences of operations into
a single custom operation can be applied to chains of opasabf virtually arbitrary
length.
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Programmer Visible Operation Latency

The leading philosophy of TTAs is to move complexity from dhaare to software.
Due to this, several additional hazards are introducedeg@tbgrammer. One of them
is the programmer visible operation latency of the functiaits. Timing is completely
a responsibility of programmer. Programmer has to schetielestructions such that
the result is not read too early or not too late. There is ndware detection to lock
up the processor in case a result is read too early. For exargblus say that the
example architecture of Fig. 1 has an operatod with latency of 1, and operation
subwith latency of 3. When triggering thadd operation, it is possible to read the
result in the next instruction (next clock cycle), but inead sulh one has to wait for
two instructions before the result can be read. The restdtidy for the 3rd instruction
after the triggering instruction.

Reading a result too early results in reading the result ataipusly triggered opera-
tion, or in case no operation was triggered previously, #aelvalue is undefined. On
the other hand result must be read early enough to make surei operation result
does not overwrite the current result in the output portsThiespecially a problem in
case the function unit is pipelined and can start new opmraiivhile old operations are
pending. In the following example, FU2 that implements agien subwith latency
of three is pipelined:

1 1 -> FU2. sub. 1, 2 -> FU2.sub. 2

2 1 -> FU2. sub. 1, 3 -> FU2.sub. 2

3. [waiting for the result]

4 [the result of the first triggered operation is ready]
5 FU2.sub.3 -> RF. 1

In this case the result of the first subtraction is overwmittgth the result of the sec-
ond subtraction before the instruction at line five is exedutThe result of the first
substraction is totally ignored, which indicates most jtaip a program error, as it
usually makes no sense to trigger an operation without ubimgesult. Exceptions to
this areoperations with stateln such operations, it might make sense to trigger an
operation, just for the sake of its side effects.

A common example of an operation with state is operation) a simple accumulator
operation. When triggered, it adds the given value to itsrivdl register and makes
the new value visible in the output operand. An example setiplecode which uses
an accumulator operation is given in the following example.
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1: 1 -> acc.1
2: 1 -> acc.1
3: acc.2 ->r1l

Accumulator’s internal register is incremented twice. $the value written to register
rlin line 3 is two, assuming the initial value of the accumulataternal register is
zero.

Operation latency of zero is not usually supported in caSelafs, because the output
port is usually a register, thus needs a clock edge to uptsatalue. Technically, im-
plementation of zero-latency operations could be posbsplesing only combinatorial
logic [5] in the function unit implementation. In that casesult of an operation can
be read only once, in the same clock cycle the operatiorggered:

1: 1 -> FU2.sub.1, 2 -> FU2.sub.2 FU2.sub.3 -> RF.1

Since the output poU2.sub.3is not a register, its value depends only on operation
inputs. When inputs to the operation are changed, the relsaiitges immediately.

Branching

Another user-visible latency in case of TTAs is the lateniogamtrol unit’s instruction
pipeline. TTAs usually have a three-stage instruction lpipe Programmer sees the
result of pipelined instruction execution in formaxélay slotsafter branch instructions.
Delay slots are due to the fact that at the point the brandhuicison reaches the ex-
ecution stage, new instructions after the branching intitbn are already fetched and
decoded in the pipeline. It would be a waste of effort to did¢hese instructions, that
is, "flush the pipeline”. It is common to have delay slots atsmore traditional pro-
cessor architectures, but the count of programmer vislbts & often limited to one.
Principles of traditional processor pipelines are desgctiim detail in [6]. An example
illustrating the visibility of instruction pipeline in a W program follows.

1. 1 -> GCU.junp.1

2: 1 -> RF.3, 500 -> RF. 4

3: RF.3 ->FUl.add.1, RF. 4 -> FU2.sub.1
4. 1 -> FUL. add. 2, 1 -> FU2.sub.2

In this example, the instruction pipeline produces thrdaydglots after branches. Due
to the delay slots, all the instructions in the example aszeted in the given order in
a neverending loop.
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2.2 TTA-Based Codesign Environment

MOVE framework is the first toolset for codesign of TTA sys&ejm]. It was originally
developed at Delft University of Technology in the Nethedsa. Further development
and maintenance has taken place at Tampere University bhdémgy since 2002.

MOVE is a working toolset but its bad software architecturakes it difficult, almost
impossible, to extend and use it to experiment new ideasarfighd of TTAs. The
development of the MOVE framework started at the beginnirP80’s. At that time,
C++, the programming language used in implementing the M@Bmework, was
still relatively new and the compiler, GCC, used in the pcogid not yet fully imple-
ment even its core features [8]. The result of this can be seRIOVE code: some of
the generic data structures and algorithms are implemersied C macro definitions,
which make maintenance of some parts of the code difficudinevorse, the C++ lan-
guage is practically abused at some parts of the code base farts of the software
are written in a way that the resulting code is not guaranteeglork the same way
when compiled with different compilers and compiler optation switches. Finally,
MOVE was extended and developed by different researchgrsrform the function-
ality they needed in their research topic without payingugtoattention to how those
extensions were done.

Due to the previous problems in the original MOVE source ¢@deroject aiming to
a complete rewrite of a TTA codesign environment, was siart002 at Institute of
Digital and Computer Systems of Tampere University of Tetbgy. The main fo-
cus on the design of the new framework is on expandabilityfenability, allowing
easy experimenting of research ideas on transport triggaahitectures. The project
name of the new framework is TTA-Based Codesign EnvironriEGE). In contrast
to MOVE, TCE has been developed in controlled manner. Fomeka, a set of au-
tomated system and unit tests are provided to catch regrebegs. In addition, the
entire toolset is compiled and tested each night autonigticaseveral different envi-
ronments with varying operating systems and processostiygpensure portability of
the code.

Processor Architecture Template

Processors in TCE are defined by using a file format calledifacture Definition File
(ADF) [9]. The file format acts as a template for TTA processsupported by TCE.
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It should be noted that ADF is only for defining architectuoéshe TTA processors.
In this case, architecture means the details of processichvaine visible for the pro-
grammer. Implementation details such as signals not @giprogrammers are not
part of architecture.

There are some differences in TCE’s TTA template comparede@mne of MOVE's.
Some of these complicate the simulated TTA processor maoakh#ect simulation
speed. Most important improvements, which have influencBionulator's complex-
ity, are the following.

Complex function unit model with independent pipeline modés for differ-
ent operations on a single FU.

In MOVE, each FU may have only one pipeline, even though theray imple-
ment multiple operations. In TCE, each operation implemeéity an FU may
use a pipeline model of its own. For example, it is possibleaee an addition
operation with latency of two and a substraction operatidh {atency of four,
both fully pipelined, in the same FU.

General support for multiple address spaces.

MOVE allows maximum of only two address spaces for data pecgssor ar-
chitecture. The properties of the address spaces are fixe. stipports fully
defining arbitrary number of address spaces for the desigruegssor, with de-
tailed descriptions for each of the address space. For deathp width of the
minimum addressable unit of address space is fully custaintezn TCE.

Function unit ports and register file registers can be of any it width.

MOVE limits bit widths to 1 for boolean registers, 32 for igggs, and 32 or 64
for floating point registers. TCE does not have this limdatiinteger width can
be anything between 1 to 32. The upper limit might be lateemotéd to 64 or
128 bits. The overflow caused by writing wider integers to l&ndit widths
has to be simulated by zeroing the extra bits of the integer.

Support for operations with state.

MOVE does not support operations with state. In TCE, it issgias to use state
data in custom operations.
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Restrictions to Sequential Code

Sequential code in TCE is used mainly as an input from thetérahcompiler to the
TCE toolset. The sequential code generated by the frontemgbiter is independent
from the target architecture to make the job of the compidakiend, the instruction

scheduler, easier. In order to make sequential code astertthie independent as
possible, TCE places following restrictions [4] on the meweésequential programs.

1. No operand to operand moves.

Moves that transfer the result of an operation directly torgout of an opera-
tion are not allowed. For exampladd.3 -> sub.1 This kind of moves place
restrictions to the target architecture: to be able to sttmpmove like this, the
target architecture needs to have a connection from thdt rggerand to the
input operand.

. Only absolute instruction addressing.

There are two control flow operations in the base operatiancsdl andjump.
Both take absolute instruction address as an input. Theesaddperand of a
control flow move may be a register or an immediate value (steon). Rela-
tive control flow operations, e.g., jumps to an offset from tlirrent instruction
address, are not supported in sequential code.

. Only jump operation can be guarded.

No other moves than moves to operangushp operation can be guarded. This
restriction simplifies the dataflow and control flow analydithe sequential code
while scheduling the program to be executed in the targéitaature.

Design Flow

The design flow of TCE is similar to the one of MOVE frameworkheTdesign flow
can be divided into four phasehiitialization phase, which provides input sequential
program and initial processor architectubesign Space Exploratigmvhich provides

semi-automatic means for finding an optimal processor cordtgn for the applica-

tion at hand;Code Generation and Analysig/hich is either a step in design space

exploration or a manual process for scheduling and anajythi@ program running in
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the target processor; amtocessor and Program Image Generatiam which the fi-
nal products of the design flow are generated. The desigreplaae discussed in the
following sections.

Initialization

The first phase of the design flow is illustrated in Fig. 2. Timé&al sequential code
input to TCE is generated by a 3rd paftyntend compilerIf the program is provided
in multiple compilation unitsTPEF linker can be used for linking them to a single
TTA Program Exchange Form&tTPEF) binary file. The starting point processor ar-
chitecture for design space exploration, or the final taagehitecture for scheduling
can be defined by using a graphical user interface, cBitedessor Designer

Frontend compiletis regarded to be a 3rd party application because it is nppshli
with the rest of the TCE toolset. Because the supported haes@ton set is well de-
fined, it should be possible for a 3rd party to port any kindrohtend to produce TCE
supported sequential TTA code. Currently, an old GCC coanpilO] version 2.7.0,
ported from MOVE framework is used to produce sequentiabaogut to the toolset.
At the moment, the frontend has only C language capabilivegch should be enough
as it is the most commonly used high-level language for @Enogning embedded sys-
tems.

From this phase, the designer of the TTA system usually gmtesign space explo-
ration phase for semi-automatic optimal processor cordigur discovery. Alterna-
tively, designer may run the instruction scheduler andutsion set simulator manu-
ally for his initial architecture. This way designer canpest the statistics produced by
the Simulator and modify the architecture to suit betterapplication’s needs. Such
procedure is callethanual design space exploration

Design Space Exploration

Design space exploration is a process in which severalti@gof an user-defined
starting point architecture are simulated and cost eséichathe goal is to automati-
cally find an optimal architecture for the application at tha@urrently, the algorithm
for design space exploration is the same that is used in MQgiBEdwork. It is de-

scribed in more detail in [11].

The design space exploration process is illustrated in &Fign a nutshell Explorer
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'
Frontend Compiler ' Processor Designer
'

unscheduled.tpf Exploration

Figure 2. Initial Inputs for TCE Design Flow.

removes resources from a given starting point archite@ncesends the modified ar-
chitecture to code generation and analysis phase. Fronplisse,Cost Estimator
obtains processor utilization data, which by using a predefprocessor cost database
estimates costs of executing the given program in the moddiget architecture. Cost
estimates are calculated for the physical area of the psocesonsumed energy, and
maximum speed. After exploring hundreds of processor neaditins, Explorer finds
an optimal processor architecture in the design space forimg the given program.
Because the starting point architecture is defined manuhis/process is said to be a
semi-automatic process in contrary to fully automatic olhehould be noted that in
this phase the program is simulated with each variationetahget architecture, thus
parallel simulation is invoked hundreds of times. Seq@stmulation is usually exe-
cuted only once per design flow exploration process, to geprofiling information
for the instruction scheduler.

Explorer creates a database of explored architecturedhainddtal costs. In Fig. 3 this
database is referred to BgpResDBas in exploration result database. In additicost
Estimatoroutputs an Implementation Definition File (IDF) for each kexpd architec-
ture. IDF identifies the implementations, that is, the handwdescription language
definitions used for calculating the costs of the architecttADF and IDF together
define aprocessor configuratiomwhich is required for generating the final processor
description.

After Explorer has finished traversing through the design space, a grdapphca-
tion, Design Browserplots characteristics of all explored processor configoma and
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Figure 3. Exploration.
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allows the user to select individual configurations for elomspection (Fig. 4). The
selected processor configuration is usually takgarécessor and program image gen-
erationphase to generate the final products of the design flow.

Code Generation and Analysis

The code generation and analysis illustrated in Fig. 5 isribet demanding and im-
portant part of the TCE design flow. Especially, thetruction Schedulerlso referred

ExpResDB

Design Browser

selected.idf

Processor and Binary Generation

selected.adf

\ 4

Figure 4. Processor Configuration Selection.
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Figure 5. Code Generation and Analysis.

to asscheduleror compiler backendis a complicated and important application. Its
job is to convert sequential programs to parallel progrdms ttilize the given target
architecture as efficiently as possible. Due to manual progning of TTAs being
burdensome, and even impossible if semi-automatic degigoesexporation is used,
the quality of the entire toolset is almost directly propmal to the quality of the
instruction scheduler.

Given the additional optimization possibilities the TTAopides and the retargetability
requirement, it is clear that the algorithms to produce lfgized, optimized parallel
code can become complex. Therefore, it was decided that TGjggb provides a
clean framework for implementing new optimization alganiis for the scheduler. The
purpose is to make research and experimentation of advaigedthms as easy as
possible.

Analysis part in this phase includes simulation of the sakexti program to obtain
processor utilization data to be used in cost estimation.

Operation definitions of processors designed with TCE aneedtin a database called
Operation Set Abstraction Lay@DSAL) [12]. In addition to static operation data, like
the number of input and output operands, OSAL stores simuldtehavior of each
operation. Behavior definitions are written in C++, and cdegpto plugin modules
which can be linked dynamically to Simulator in runtime. QSdéperation definitions
can be edited and debugged by using a graphical user irgectdledOperation Set
Editor.
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Figure 6. Processor and Program Image Generation.
Processor and Program Image Generation

The final phase of TCE design flow shown in Fig. 6 includes gatiwr of hardware
description language (HDL) files of designed TTA processmig processor compati-
ble binary images of scheduled programs. Resulting bimaage can be uploaded to
final processor hardware which is synthesized using thergesteHDL files. Proces-
sor synthesis is a complicated task out of scope of TCE aedefibre, it is performed
with 3rd party applications such as Synopsys tools [13].

Processor Generatatakes architecture and implementation definitions of pssoes
as input. Using an user-defined hardware block library, cgkpithe HDL files that
describe the implementation of each machine part of givehitacture, generates a
"glue” code that connects these blocks, and outputs a ssinfide description of the
processor.

Program Image Generatgprocesses a scheduled program in a TPEF file aBd a
nary Encoding Mapwhich tells how each operation code, move source/desbimati
etc. should be presented in the final binary image. Resulsigrag of bits represent-

ing an executable TTA program. If the binary image is to be p@ssed, user can
provide a compressor plugin that implements the wanted cessjon algorithm. If a

compressor is provided, the only difference to the binarnegation process is that the
given compression algorithm is applied to the binary imagfete outputting it.
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The difference between an instruction set simulator andgs®or hardware simulator
in the case of TTA is not nearly as big as it is with traditiopedcessor architectures.
Since TTA is a simple processor paradigm, the model needsihntalate the instruc-

tion set is close to the behavioral model of the entire premedn fact, it is debatable
what is "instruction set" in case of TTA. Since the instran8 of TTA programs sim-

ply consist of lists of data move descriptions instead ofrapen codes, the simplest
possible TTA instruction set simulator has to actually dateia significant part of the
target processor behavior.

3.1 Retargetability

TCE Simulator must be able to simulate any TTA with any kindpération set defined
by users, without requiring recompilation of the toolset.

Given the simplicity of the architecture, simulating a TTPopessor is not a compli-
cated task as such. Complexity is added by the retargdtatajuirement. Resources
of simulated TTA processors are completely defined by usdhsnathe limits set by
the TTA template of TCE. In addition, the operation set, Wit case of TTA means
the functionality implemented by function units, is contplg customizable by users.
Sequential programs, which are not scheduled to any targeegsor must also be
supported by the simulator.

3.2 Accuracy

Accuracy of a processor simulator can be described in twoackeristics: the detail
level in which the processor functionality is simulatedd dhe timing accuracy. The
simulated processor model in TCE simulator is not a gatd leeelel. The model of
the processor is purely architectural: no control signaksny implementation details
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are visible. However, the simulation is cycle accurate:dineulation model contains
the correct data in each architecturally visible part irsathulated instruction cycles.
The accuracy of number of cycles the simulated processardsga locked state can
be improved by defining more accurate simulation models &a dhemory.

In this thesis, with a TTA instruction cycle is meant the ftiocality that is performed
in a TTA processor during execution of an instruction. lastion cycle, in case of
TTA, is usually of length of the processor’s clock cycle. 98 due to the fact that
data transports of each TTA instruction are usually exetdigring a single clock
cycle.

Functional Accuracy

Simulator does not use the actual binary image that is uptbéalthe final processor
to simulate the program. Since only the details that ardoMasio the programmer
are needed to be simulated, a higher level abstraction ofithelated program can
be used instead. Such simplification can be safely made dtreetéact that TTAs

commonly use Harvard architecture [6] in which instruci@nd data are stored in
separate memory spaces. Furthermore, the contents ofstinedtion memory are not
usually accessible for the executed program itself. Thegtstruction memory binary
image is not visible for programmer, and need not to be iredud the instruction set
simulation. Finally, since the encoding of the instructican be fully defined by users,
it is possible to produce several different binary repres@ns of the same program.
Additionally, the final program bits are often compressed tluthe enormous size
of TTA instructions, especially in machines with large nwenbf buses [14], which

creates additional variation point to the final binary immgenerated from programs.

Timing Accuracy

Dynamic characteristics, like locked cycles caused by ssing data memories with
dynamic latencies or those produced by fetch unit of contnid, are not fully mod-

eled. In case of a lock, processor is almost completely ipeincstate, waiting for the
lock condition to be resolved. Program execution is not aded until the condition
is resolved. Clock cycles spent in global lock condition@aked "stall cycles”.

Some support for modeling dynamic data memory latenciesasigied in form of
letting users to redefine the behavior of the memory modead ussimulation. It is
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possible to define a memory model that limits the number otilfBneous accesses
and emulates dynamic latencies caused by, e.g., cachingnandc properties of the
memory itself. When such a memory model is used, the functinmodel produces
a global lock condition in case a memory access was not caetpie the expected
number of clock cycles.

Control unit needs to lock the processor in situations wharenough instruction data
can be retrieved from the instruction memory to fill the tggors pipeline (Section 2.1).
In order to model the stall cycles generated by the fetch unitould be necessary to
know the exact sizes of each of the instructions and the emgaiementation of the
parts of the control unit that affect the decision of whendokl the processor. Ad-
ditionally, the instruction memory, like data memory, midglave dynamic properties
itself, which would also be needed to be simulated to get xlaetestall cycle counts.
Such level of details is out of scope of the TCE Simulatoreegly since the stall
cycles are invisible to the program, and visible only asaegttnsumed clock cycles.
Therefore, it was decided that to get exact stall cycle mgtion of the control unit,
it is required to produce a hardware description languadelL{Hlescription of the
processor and the real program bits using the tools in the@haese of the TCE design
flow. The HDL and program bits can be then simulated in a themtypHDL simulator,
such as Modelsim [15].

3.3 Simulation Statistics and Traces

Simulator must be able to produce processilization datato be used in processor
cost estimation part of the design space exploration. 8paity, utilization informa-
tion is used to calculate the energy consumption of a givengssor while executing
a given program with given inputs. Utilization data cors@t number of clock cycles
for each processor part in which they were busy. For exanplease of a transport
bus, a busy clock cycle means that the bus was written dataaininstruction cy-
cle. In case of a function unit, "being busy" means that it exeacuting at least one
operation, in contrast to "being idle", when function unasypassive, producing no
new results. Because the estimation algorithm for functinih energy consumption
is based on calculating the total energy consumed by oparakecutions, Estimator
needs information of how many times each operation was ¢égéan function units.

Utilization data could be used also in the exploration pssadirectly to decide whether
to remove or add resources. It might make sense to duplicathime parts that are
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highly utilized and, on the other hand, get rid of machindgaith utilization percent-
age close to zero. At present, the exploration algorithnsdae use utilization data
directly but only through the results of the cost estimator.

Bus tracélists the data contained in each of the bus of the machinedh sinulated
instruction cycle. Bus trace is useful when verifying thedweare designs of TTA pro-
cessors. Designs can be verified by comparing a bus tracageddy TCE Simulator
to a bus trace produced by a HDL simulator.

Execution timeof simulated programs is one of the most interesting stegigtom
the Simulator. Execution time is the number of clock cyctdaskes to execute given
program with given inputs. Execution time is also one of tmeahsions in the design
space exploration.

Some instruction scheduling algorithms profit from progranofiling data Profiling
data consists of the number of times each instruction it$u the simulated pro-
gram. This data can be used to figure out the "hot spots” ofribgram to be able to
direct optimization efforts to the parts of the program thextefit from the optimization
the most.

3.4 High Parallel Program Simulation Speed

In design space exploration, hundreds of different pramem<hitecture variations are
simulated to figure out how modifications to the starting paichitecture affects the
end result. Especially, in case the simulated program ig,ldnmight be possible
that simulation becomes the bottleneck for the explorasio@ed. Therefore, one of
the main requirements placed to the Simulator is high spésarulation of parallel
code.

Simulation speed of sequential code is not as importangusscsequential simulation
is usually needed only once per exploration. Sequentia¢ ¢g@dimulated in explo-
ration to get profiling data for Instruction Scheduler. ®irtbe sequential program,
and therefore the profiling data, is same for each explorehuitacture, it's enough to
simulate the sequential code only once per design spacerakiph process, and take
advantage of the same profiling data in all the different dales.
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3.5 Program Debugging Capabilities

One major use case for Simulator is to be used as a TTA progeaogger. Therefore,
the Simulator must provide the most important program dgimggcapabilities like
single-stepping the simulated program, stopping sinuast user-defined program
addresses (breakpoints), inspecting data memory cordeatsy point of simulation,
and inspecting data in visible machine parts at each siediastruction cycle. User
visible machine parts that can be inspected in the Simuiattwde registers, function
unit ports and buses.

Simulation and debugging capabilities should be possbtmnhtrol with a Tcl script
interpreter [16]. This feature is especially useful whewndleping automated test
benches for new instruction scheduling algorithms.

3.6 Connection to Hardware Simulation

It should be possible to connect TCE Simulator, simulatiigfA processor running
a TTA program, to a hardware simulation environment. In sechironment, TCE
Simulator is treated as a black box without visible impletagon details. Only input
and output pins of the TTA processor are visible to the resthefcomponents in
hardware simulation.

In this kind of simulation, the simulated hardware is ugpallsystem in which TTA
processors are used as "slave processors", acceleratiogpraanly executed algo-
rithm. Master processors are often general purpose pracessich control the slave
TTAs. Communication channel between master processorlane $TA processors
can be implemented by means of a shared memory or TTA prasessay include
special function units that handle the communication. Eftrmer case, the master
processor usually stores input data to a known position énstimred data memory,
indicates the TTA processor that new data is ready to be pseceand waits for the
TTA processor to complete processing the data. TTA processces the processed
output to another location in the shared memory and sighalsiaster processor that
the task is done and new results are ready to be read. In tatber special function
units are used to connect the TTA processor to a control trsstagister shared with
the master processor.
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Interpretive and compiled simulation [17] are two commarht@ques used in instruc-
tion set simulator designs. The basic operational priedigd an interpretive simulator
is to read in the instructions as they appear in the final progmage, interpret the
bits to figure out which functionality (operations, regidtansfers, etc.) should be per-
formed, and simulate that functionality by calling a simigla function. Interpretation
usually takes a significant part of the simulation time, ¢fh@re, interpretive simulators
are considered inefficient.

In compiled simulation, the simulated instructions ar@stated to native instructions
of the simulation environment’s processor. One implenterigossibility of this tech-
nique is to generate a high level language program code fiersilulated instructions
and add the code needed to produce the required simulatioestin it. The result-
ing source code is compiled with a regular compiler and tloelpced executable is
run as native code in the host environment. This way the pné¢aition of the target
instructions is done offline independently of the simulatiestead of doing it during
the simulation. The overhead of interpretation is greatjuced because each instruc-
tion is processed only once, contrary to once for each iotmu execution as in the
simplest implementation of interpretive simulator. Ferthore, because the translated
instructions are in a sequence, more optimization po#s#silare introduced to the
compiler which further speeds up the translated code. Uscainpiled simulation is
tens, sometimes even hundreds of times faster than intedpsenulation of the same
instruction set.

Sometimes instruction set simulators mix ideas from thé bethniques, using the
compiled simulation idea as an optimization. A popular sjppestrategy used in script
interpreters, simulators and virtual machineps in time compilatiorf18]. The idea
of it is to translate the simulated instructions to host ni@elinstructions on-demand,
at the point they are executed the first time.

TCE Simulator cannot be considered literally to be a traddi interpretive simulator.
On the other hand, no translation of instructions to sinaul&ibst machine code is



4. Operational Principles 26

done, thus, it is not a compiled simulator either.

The format of the program simulated by Simulator is not thalfimnary image that
can be uploaded to the instruction memory of the actual gsmre but a higher level
model which describes the data transports the TTA instastperform on each clock
cycle. The higher abstraction avoids the need to interpesptogram bits to figure out
the functionality of the simulated instructions.

Preprocessing of the simulated program model can be setgana to translation of
instructions in the compiled simulation paradigm. The pang preprocessor, instead
of producing instructions runnable directly in simulataskis processor, produces a
new object model which is fast to simulate, leaving as littbenputation as possible
to simulation runtime. The benefit is the same as in compiledilstion: perform
as much computation as possible only once for each exeausédiction instead of
repeating those computations every time an instructiomislated.

In TCE Simulator, instruction cycle simulation is dividedo two parts. First part is

the simulation of data transports, that is, the copying td lam source machine parts
through the interconnection network to destination maglpiarts. This part of simula-

tion does not yet simulate the "side effects” of data trartspthat is, the execution of
triggered operations. Triggered operations and the aper&dtency are simulated in

the second part of the simulation. The second part of sinmatodels the state of the
processor and ensures that results of triggered operatrenmade visible in function

unit result ports in correct instruction cycles.

4.1 Data Transport Simulation

The simulation of transports described by a TTA instructian be reduced to a loop,
which copies data from source processor parts to buses ahektmation processor
parts as described in each move of the instruction. In omenake transport simu-
lation such simple and efficient, instruction data needstprieprocessed to a format
which contains nothing but references to the variablesessnting sources, buses and
destinations.

The main benefit from preprocessing program data is that ab emaluation as possi-
ble is moved offline from simulation runtime. For examplepgiating data transports
of an instruction which is not preprocessed at all woulddpomerhead of locating the
processor state variables and figuring out the side effectser] by writing to destina-
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Algorithm 1 Executing a Processed Instruction
1: for all processed_moveéd in processed_instructioto

2:  bus_stateNrite(source_statd&kead())
3: if notM.IsGuarded() oM.IsGuarded() anduard_reg.Valuaot Othen

4: destination_stat®Vrite(bus_statdRead())
5 endif
6: end for

tion processor state variables. In case instructions watreneprocessed, the simula-
tion of data transports would follow roughly the algorithmegented and described in
Appendix A.

On the contrary, data transport simulation with preproegssstructions is straightfor-
ward, since all processing of instructions is done befoszetion and the side effects
of the writes are hidden inside the class that models théndeisin processor part (see
Section 5.6 for details).

Algorithm 1 shows the steps a preprocessed instructiorstakeimulate data trans-
ports. The algorithm simply traverses through a list of ppepssed moves which
describe source, bus, and destination variables of eaehtrdaisport. For each trans-
port, data is copied from source to bus and from bus to degimaf the move has a

guard expression and it evaluates to false, the copy fronolaesstination is neglected.

4.2 Processor State Simulation

Processor state is simulated by storing the data of tratsspovariables representing
different parts of processor. For example, each functiah port is a variable and
S0 is each general purpose register. In addition to stotaug slata, processor state
simulation includes simulating the functionality that paps as a side effect of writing
to the state variables. Such functionality is mainly resdizn function units which
execute triggered operations and make their results &laila their output ports after
the operation latency time has passed.

Programmer Visible State

In order to make the simulation as efficient as possible, ¢timéyproperties of the
processor visible to the programmer are modeled. Such prepare the following:
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1. function units,
2. transport buses,
3. registers, and

4. delay slots caused by transport pipeline of control unit.

Function units are most complicated parts that need to belaied. Programmer vis-
ible properties of FUs are: input and output ports, behaviaperations, and latency
of operations. The contents of the function unit pipelingisters in each simulated
clock cycle is not visible to the programmer, but the latentpperation execution
caused by the pipelining is.

Transport buses need to be modeled because of the requirefiieing able to pro-

duce a bus trace. If there was no such a requirement, simlafibuses could be
neglected by simulating the moves to happen directly betweave end points, with-

out writing the transported data to buses at all. In additootihe word width, bus also
has another property visible to the programmer, the extensiode. When simulating
a data transfer from a register or a port to a bus that is wiger the source, the written
value needs to be either sign extended or zero extendedidiegeon the user defined
ADF property.

Values in general-purpose registers need to be maintaiedthe other hand, the
register file ports need not be modeled during simulatiore Jimulation model does
not include ports in the register files at all, but registeresses are modeled to happen
directly to the registers.

The global control unit is modeled as a special function with a special property
of instruction pipeline. The time taken from instructioncle phase to the execution
phase is visible to programmer as delayed jumps. Simulatmtets delayed jumps
by using a simple counter which is initialized to transpaage count at the point a
control flow operation is triggered and decremented at eastinuiction cycle advance
until it reaches zero. When zero is reached, the programteoisupdated to the new
value set by the triggered operation.

Function Unit Model

The core of functionality of TTAs is realized in function t&i Each function unit
implements one or more operations that performs a funatiemgut data and, in most
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cases, produces output data. The behavior of function y@tations is visible to
programmers in two ways. Clearly, the function, i.e., theadwor of an operation is
the most imporant characteristics of the operation vigibfgrogrammer. Additionally,
due to the user-visible operation latency of TTA processthrs timing of making
triggered operation results visible to function unit outparts is as important as the
operation behavior itself.

In TCE Simulator, function unit model is divided to two partise function unit model
proper and operation behavior model. The function unit rhisdesponsible for start-
ing operations and simulating the user visible latency edusy pipelining. The sim-
ulation of the functionality of operation is delegated toeparate operation behavior
model. The operation behavior model is responsible for Etmg the functionality of
"operation ideas". Operation as an idea does not includegbration latency, but only
the function of the operation, and, for example, the numbeperands and results pro-
duced by the operation. This kind of sharing of responsiefimakes it possible to
use same operation models with different operation lagsndror example, the addi-
tion operation ADD is exactly the same regardless of théblesbperation latency of
the function unit that implements the operation. 2 + 2 id 4tieven if it takes several
instruction cycles to compute the result.



5. IMPLEMENTATION

The software architecture of the simulator is divided ifieee subsystemsimulator
engine base library anduser interfacesThe subsystems and their main modules are
illustrated in Fig. 7. The architecture implements thedel-view-controlle(MVC)
user interface paradigm [19], which aims to a strong sejueratf the user interface
code from the model logic code.

Simulator enginas the core of the Simulator. The subsystem is further divitke
four main modulesMachine State Modd[Section 5.1) Simulation ControllerSec-
tion 5.3),Debugging SystepandFrontend Debugging System is used to implement
the debugging features. Different user interfaces corh®Isimulation through the
Frontend, which is a realization &acadedesign pattern [20]. The main purpose of
this class is to hide details of the simulation behind an ¢agyse interface, allowing
the internals of the simulator engine to be changed withorairig the user interface
code to be changed. Another motivation for the Frontend otlect common code
from different user interfaces to a centralized locationrréntly, two user interfaces
are implemented: a graphical user interface and a textdhaser interface. The text-
based user interface is a scriptable interactive consdighais also embedded in the
graphical user interface to provide scripting capabsitie

Base library is a collection of modules that represent thgpmaoncepts of TTAs.
The concepts are represented as easy-to-use object madeisused throughout the
entire TCE toolsetOperation Set Abstraction Lay¢©SAL) provides access to op-
eration data like operand counts and to operation behaeiomitons, which are used
to simulate operationdMemory Model[Section 5.5) consists of a simple interface for
defining data memory behavidProgram Object Mode{POM) is a static representa-
tion of TTA programs. Itis not used directly in simulatiomitla preprocessed program
model is built from it when a simulation is initialize@PEFis a file format for storing
TTA programs. The software module that handles TPEF filealisd TPEF Handling
Module In Simulator it is used as a file parser to load the simulatednam from
an user-defined fileMachine Object Modelepresents the architecture of a TTA pro-
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Figure 7. Overview of the Simulator Architecture.

cessor (Section 5.1) loaded from an ADF file. This static rhegdased to build the
dynamic simulation modeMachine State ModgBection 5.1) for the processor.

5.1 Processor Model

The processor simulation model is callddchine State Mod€¢MSM). The main goal
while designing MSM was to make it as simple and fast as plesgitihout losing
simulation accuracy in the required parts of the processor.

In the point of view of the simulated program, MSM looks likeet of machine parts
that can be read from or written to. What happens as a sidet effewriting to a
port, in case the port is an operation triggering port, is pl@tely hidden inside the
model by using inheritance and dynamic binding. This kindiofple model allows to
preprocess simulated program instructions to completdglved instructions which
contain nothing by references to the machine state vasdb&data transports access.

Figure 8 presents a simplified class diagram of the mainfades and classes of MSM.
The elements of the machine state that allow reading anéthgiitplement an inter-
face calledStateData The most important classes that implem@tateDataand thus
can act as sources and destinations in data transporiegisterStatand PortState
which represent general purpose registers and functidrparts, respectively.

The parts of the simulated machine that need to operate wherased instruction
cycle is advanced implement an interface call@dckedState InterfaceClocked-
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Stateprovides methodadvanceClock(andendClock() MethodendClock()signals
the function unit model that all the transports of the instiken are simulated, that is,
data of the transports are written to its input ports. Fumctinit model executes possi-
ble triggered operations in this method, and places regufisvait queue that models
operation latency.

The simulation of an instruction cycle advance is dividedno methods mainly for
interfacing with memory model implementations that plaestrictions to concurrent
memory accesses. In order to know whether memory accespargtmns triggered
by an instruction are possible concurrently, memory moeéelds to know details of
all the initiated memory accessing operations initiatedhi@yinstruction. After calling
endClock()of each function unit, which results in initiating possiblggered memory
access operations in function units, memory model is ashkettver all initiated mem-
ory accessing operations are possible concurrently witlomking the processor. In
case there is no problemdvanceClock(js called for each function unit that is waiting
for a memory operation result. As a result, the functionsithat initiated data mem-
ory reads receive the requested data from the memory madtelcase the memory
model signals that the initiated concurrent accesses drpassible, a global lock is
simulated.

MSM is built from Machine Object Modelwhich is an object model for accessing
and modifying TTA descriptions stored in ADF files. In casepafallel simulation,

a Machine Object Modeis constructed from a user-defined ADF file. As sequential
code is unscheduled, that is, not targeted to any archieeato input ADF is given by
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the user when initializing a sequential simulation. In erleuse common simulation
code for both types of simulation, a virtual processor maedéedUniversal Machine
is constructed by the Simulator at the point a sequentiajnar is loaded. Because
Universal Machinds inherited from the "regularMachine Object Modelthus im-
plements the same interface, the rest of the simulation cadesimulate unscheduled
code like it was scheduled to an actual TTA processor. Bugjdif the simulation
model is illustrated in Fig. 9.

Universal Maching(lUM), the virtual TTA processor for simulating sequentialAl
code, is built while the sequential program is loaded. Afteygram loading is fin-
ished, theJniversal Function Uni{UFU) of UM contains all the operations the loaded
program needs. Latency of all operations in UFU is one, tkaslt of any operation
is always available for the next instruction cycle after ¢cteck cycle in which the op-
eration was triggered. In addition to UFU, UM provides irntincount of integer and
floating point registers. It also has a global control uni€{@ with transport pipeline
latency of one, because there are no delay slots in sequendie. Register files and
function units are connected with a single bus, thus pdraltees are not possible.
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5.2 Program Model

Before starting the actual simulation, the static objectied@f TTA programspPro-
gram Object Mode{(POM), is converted to a structure that is more suitable ifous
lation. The resulting model is calldekecutable Instruction Memory

A class diagram of the model is illustrated in Fig. 10. Thenfemd class of the model
is a simple container class, callBdecutablelnstructionMemarwhich stores the pre-
processed instructions. The class representing a pregz@dénstruction is callex-
ecutablelnstruction It is a container folExecutableMovethat contain references to
state objects d¥achine State Modehat take part in the data transport.

Data transports of an instruction are simulated by cakingcute(method of the pre-
processedExecutablelnstructiorthat represents the instruction. The function calls
executeRead@nd executeWrite(for each containedxecutableMove Executable-
Move:.executeRead(®ads the current data in the source machine part to the bus pr
grammed by the move arteikecutableMove::executeWriteg@ads the value from the
bus and writes it to the destination machine part.

Fig. 11 illustrates the dependencies in the process of ingildthe simulated program
model. POMBuilderis responsible for building the static object mod@&ipgram Ob-
ject Modelfrom given input files that contain the architecture and paiogdescrip-
tions. Program Object Modebnd the processor simulation mod®lachine State
Modelare used bysimulation Program Preprocesstw build the preprocessed simu-
lation program model.

The process for converting POMstructionsto Executablelnstructionis effectively
the same as in interpretation part (lines 5-27) of algorithmppendix A. The re-
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solved state references are storecExecutableMovebjects as member variables.
The member variables are shown in Fig. 10 with nassgce destinationandbus

5.3 Simulation Controller

The main simulation loop is implemented in a module cal#ehulation Controller
Simulation Controlledelegates simulation of data transports to preprocesséaia
tions (Executable Instruction Memoyyand simulation of processor stateNtachine
State Model

After initializing the object models used in simulatidgimulation Controlleiis ready
to accept simulation commands. There are two main ways teprbwith simulation:
single-stepping the simulated program’s instructions ramehing the simulation until
instructed to stop.

Methodrun() keeps running the simulation until either the final instizrcof the pro-
gram has been simulated or when another condition for stggpe simulation occurs.
Conditions for stopping include user set program breakp@nd explicit simulation
interruption through the user interface. In practice, datian can be interrupted ex-
plicitly in the text-based user interface by pressetg-c and in the graphical user
interface by clicking astopbutton. Single-stepping witetep()simply simulates one
clock cycle and then returns control back to the user interfa
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Simulator implements event-based messaging mechanismrouace simulation
events like the end of instruction cycle to interested ¢ienEvent handling is an
implementation of th®©bserver design pattern [20].

The main benefit of implementing the event handling mecimarmssghe ease of adding
new simulation event dependent functionality to Simulatathout needing to add
more overhead to the clock cycle simulation routine. FomgXa, when bus trac-
ing is disabled, no overhead of bus tracing is visible in thatine at all since the
simulation loop makes always the same event announceméhisuvknowing how

many interested listeners there are for those events.

Clients that are interested in simulation events implentieatistenerinterface and
register themselves to tH@mulationEventHandlewhich implements thénformer
interface. When an simulation event is announ&djulationEventHandlenforms
the observers that are registered to listen to the annowevesd. Informing the listen-
ers is done by invoking thelrandleEvent(Jnethod. For example, when bus tracing is
enabled, @8usTrackerinstance which implements thastenerinterface is registered
to listen to clock cycle end events. When an event is annaltactheBusTrackeyits
handleEvent(jetches the values currently in all the buses of simulatedgssor and
writes them to a log file.

Breakpoints are implemented using the event handling nmésima BreakpointMan-
ager of the Debugging Systemmodule listens to new instruction execution events and
stops simulation before an instruction that has a breaki geiris executed.

Runtime errors of the simulated program, such as a write temany location out of

bounds of the address space, are also announced as simehaiats. The handler of
these events informs the user of the reason of the runtinog, ¢nus giving valuable

information for tracking bugs in the simulated program.

Finally, the user interfaces of the Simulator may use therekandling mechanism
to update their views when there’s a change in simulatiote sés instructed by the
model-view-controllearchitecture [19].

5.4 Operation Set Abstraction Layer

Function units implement one or more operations. Each tiperadas behavior that
needs to be simulated when the operation is triggered.
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The module that handles the database of operation defisitsocalledOperation Set
Abstraction Laye{OSAL). OSAL provides access to all operation definitionsnio
in the system. Operation data handled by OSAL is divided stabic data stored in
XML-format files and behavior descriptions that are congilgo dynamic libraries.
Usage of dynamic libraries allows loading of behavior siatioin functions in Simula-
tor without recompiling the simulator code itself.

One maybe not so apparent detail is that the user-visibleatipe latency is not a
property stored in OSAL descriptions. Latency is defined ey function unit that
implements the operation, more specifically, the latenceisby the function unit’'s
pipeline properties. Due to not including the latency propen OSAL, but in ADF
function unit properties, it is possible to simulate onerafien with different latencies
without storing a definition of the operation for each latenc

Static data in OSAL includes vital information of each opierasuch as the number of
operands and results. Additionally, specific propertiesaah operand of the operation
can be given. Such information include details like optldpaf operands, whether an
operand is for setting a memory address, whether an opeeanldecswapped with an
another operand, and so on. The static properties, expetttdaumber of operands
and the operation name, are mostly used only byrieguction Scheduleto perform
different types of program analysis.

An example of a XML-format static data definition of base @ien ADD is shown
in Fig. 12. In the addition operation, the order of input @uefs does not affect the
result, thus the input operands can be swapped, if needetl. @Baperty is marked in
OSAL with acan-swapdefinition.

Behavior descriptions are used to simulate the operatiba.bEhavior of an operation
is defined as a C++ class of which details are hidden with Crpoggsor macros.
This set of macros is often called "operation behavior dpson language”, even
though it is only camouflage of which purpose is to hide thelem@ntation of the
behavior definition plugin interface from TCE users. By hgldetails such as the class
hierarchy and the factory function that creates an instahtiee user defined behavior
class, the interface can be later modified by TCE developitheut breaking existing
operation behavior definitions. Additionally, the macroake behavior descriptions
look cleaner to users. The set of macros is defined irCf8AL.hh which is the only
TCE header file the operation description files need to dyréatlude.

Code excerpt in Fig. 13 is fro@SAL.hh It introduces four important macroOPER-
ATION, END_OPERATIONTRIGGERandEND_TRIGGERThe code differs some-
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Figure 12. Example Operation Definition.

<oper ati on>
<nane>ADD</ nane>
<i nput s>2</i nput s>
<out put s>1</ out put s>
<inid="1">
<can- swap>
<inid="2"/>
</ can- swap>
</in>
<in id="2">
<can- swap>
<inid="1"/>
</ can- swap>
</in>
<out id="3"/>

</ operati on>

what from the original, as some irrelevant details are laft @he set of macros might
get clearer when it is put next to an example operation dasani which uses them.
Code in Fig. 14 used the macros to describe the behavior catbpeADD of the base
operation set.

OPERATIONmacro is expanded to code that defines a new C++ class whidbe-imp
ments an interface callédperationBehaviarEND_OPERATIONin addition to end-
ing the class definition, generates a factory function withn€age extern "C") to
make it possible to instantiate the defined class using thardic linking loader which

is used to load the behavior definition in the Simulator. Idiadn to the factory func-
tion, a function for destructing the behavior definitionsdanstance is provided. This
is to make sure that a correct version of Cdeleteoperator is used to free the created
instances [21].

The actual behavior definition code is written betw@@&IGGERandEND_TRIGGER
macros. These macros expand wiraulateTrigger(method definition, which defines
how the operation behaves when it is triggered. In the exauhgdcription oADD op-
eration, the first and the second operand are treated agistsgmmed, and the result
of the summation is written to the third integer operand,chihis an output operand.
INT macro is for casting operands into unsigned integers. Taereimilar macros
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Figure 13. OSAL.hh: Behavior Definition Macros.
#defi ne OPERATI ON( OPNAME) \
cl ass OPNAME## Behavi or : public OperationBehavior { \
public: \
OPNAVE##_Behavi or (const Qperati on& parent) : \
parent (parent) {}; \

private: \
const QOperation& parent ; \
public:

#defi ne END_OPERATI ON( OPNAMVE) \
3\
extern "C" { \
Oper at i onBehavi or* creat eCpBehavi or _##OPNAME(\
const Operation& parent) {\
return new OPNAVE##_ Behavi or (parent);\
I\
voi d del et eOpBehavi or _##0OPNAME(\
Oper ati onBehavi or* target) {\
del ete target;\

1\

#define TRI GGER \
bool simul ateTrigger( \
Si nval ue** io, \
Oper ati onCont ext & cont ext) const {

#defi ne END_TRI GGER }

for C floats FLT), and doubles@BL), which are used in floating point operation de-
scriptions. ThLeRETURN_READStatement simply signals the Simulator that all the
outputs of the operation were computed.
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Figure 14. Operation Behavior Definition of Operation ADD.
#i ncl ude " GCSAL. hh"

OPERATI ON( ADD)

TRI GGER
INT(3) = INT(1) + INT(2);
RETURN_READY;

END_TRI GGER;

END_OPERATI ON( ADD) ;

Code example in Fig. 15 shows how the descriptioADD looks like after the macros
are expanded.

In addition to the described macros, there are additionarosain OSAL behavior
language for defining operations with state, for simulatipgamic latency operations,
and for simulating data memory accessing operations, lsgrites no purpose to ex-
plain them in detail in this thesis. Comments in DSAL.hhand [12] are good sources
for thorough explanation on the behavior description lagu

5.5 Modeling Data Memory

Data memories accessed by load and store operations aréashadang a simple mem-
ory interface. Even though the interface is simple, it gwede possibilities for mod-
eling different types of memory systemislemory Modeinterface includes methods
for initiating read accesses, querying whether previoustuested data is ready to
be read, reading data, writing data, and notifying the mgmeban instruction cycle
advance.

Memory Modeimplementations might need to model memory systems thatt #ica
cesses by some criteria. For example, a memory system nmay @éaximum of two
read accesses to be initiated in the same cycle. In ordelow alodeling such limi-
tations, theMemory Modelnterface provides a method for signaling unavailability o
the memory to the Simulator. Memory models can implemerst tiiethod to reflect
the properties of the memory they are simulating. For ingato model a memory
system that allows two concurrent read accesses, devetapewrite an implementa-
tion for the method which counts the memory read requediated in an instruction
cycle and returns false in case the number of requests is timamewo.
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Figure 15. Expanded ADD Operation Behavior Definition.

cl ass ADD Behavi or : public OperationBehavior {

public:
ADD Behavi or (const Operati on& parent)
parent (parent) {};
private:
const Operation& parent_;
public:
bool simulateTrigger(
Si mval ue** i o,
Oper ati onCont ext & context) const {
io[3 - 1]->value_.intWrd =
io[l - 1]->value_.intWrd +
io[2 - 1]->value_.intWrd;
return true;
}
b

extern "C' {

Oper ati onBehavi or* creat eOpBehavi or _ADD(
const Operation& parent) {
return new ADD Behavi or (parent);

}

voi d del et eOpBehavi or _ADD
Oper ati onBehavi or* target) {
del ete target;

The Simulator uses a defalMtemory Modelimplementation calleddealSRAMfor
simulating data memory access in parallel simulation anmpéimized implementation
called SequentialMemoryor sequential simulationldealSRAMmodels a memory
system that allows an infinite number of concurrent acceandsis always able to
serve all the accesses in one clock cycle. Clearly, no gadatiemory is able to serve
unlimited concurrent accesses, thus such a memory modadily@ptimistic. Itis still
safe to use an ideal memory model for simulating the progmathestall cycles caused
by conflicting memory accesses are invisible to the simdlptegram. The drawback
of using a less-accurate memory model is that as the stdkksyre not counted in
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the total clock cycles spent for running the simulated paogrthe run time is too
optimistic and may lead thBesign Space Explordgo a wrong direction in the design
space. Therefore, if exact results are wanted, writing aendetailedVlemory Model
implementation is strongly encourageSequentialMemoris optimized with certain
special properties of the sequential simulation in mind. é&@ample, all operations in
sequential code are simulated with latency of one, thugtba&n be only one pending
request at a time, which avoids the need for request queues.

MemoryContentss a data structure for storing data of the simulated meraotieal-
lows simulating large memories while consuming minimal ants of simulator host’s
memory. For example, the width of the address space of tlzerdamory used in se-
quential simulation is 32 bits, which means four gigabyfes@emory space. Naturally,
it makes no sense and is often impossible to allocate sucimanrg of memory for
the simulator at once. In order to address this problem, themony space is divided
into chunks at equal distances. Memory for a chunk is alextanly when an address
residing in the chunk is written the first time. Reading anradd at an unallocated
chunk results in returning zero. Because each chunk is tine s&e, it is possible
to find in constant time the chunk and the location in the chiekrequested address
refers to.

5.6 Simulation of Instruction Cycle

Previous sections introduced the main modules and thgioresbilities in implement-
ing the Simulator functionality. This section aims to déserin detailed manner how
those modules interact and work together to actually sitewa instruction cycle.

Thanks to using the preprocessed TTA instruction classgem@rapsulation of side ef-
fects produced by moves writing to their targets, the topllpvocedure for simulating
a TTA program clock cycle is rather simple. The simulatiodeoesides in method
simulateCycle(pf Simulation Controller The code is shown in Fig. 16 and can be
explained line-by-line thanks to its simplicity.

In lines 2 to 4, a preprocessed instruction representingniteuction at current pro-
gram counter address is fetched fromEatecutablelnstructionMemoigstance. Data
transports are simulated by calliegecute(pf the fetchedExecutablelnstruction

The side effects of data transports are initiated by spgeetfunction unit port state
objects which notify the function unit state object thatytheere written to, thus an
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Figure 16. Simulation of Instruction Cycle.

try {
Execut abl el nstruction& i nstructi on =

i nstructi onMenory_->i nstructi onAt (PO ;
i nstruction. execute();

machi neSt at e_- >endCl ockOf Al | FUSt at es() ;
gcu_->endd ock();

menor ySyst em - >advanceC ockOf Al | Menori es();
nmachi neSt at e_- >advanceCl ockCOf Al | FUSt at es() ;

++gcu_->pr ogr anCount er () ;
gcu_->advanced ock();

Si rmul at or Tool box: : event Handl er (). handl eEvent (
Si nul ati onEvent Handl er: : SE_CYCLE_END) ;

i f (prograntnded()) {
state_ = STA FI NIl SHED,
st opRequested_ = true;
return;

} catch (const Exception& e) {
Si rmul at or Tool box: : report Si mul at edPr ogr ankr r or (
Si mul at or Tool box: : RES_FATAL, e.errorMessage());
prepar eToSt op( SRE_RUNTI ME_ERROR) ;
return;

operation should be triggered. The chain of calls in datasspart simulation is shown
in the sequence diagram of Fig. 17. For each operation ingriéed by each function
unit, there is an instance of a special port state classdc@lfcodeSettingVirtualln-
putPort When simulating a data transport wsletValue()to an object of this class,
setOperation(pf the function unit that owns the port gets called with thergpion the

virtual input port represents as an argument. Triggerimgttied to the function unit
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Figure 17. Data Transport Simulation.

by delegating theetValue()all to an object that represent a real port in the function
unit. The port state object, in case the port is supposed tadeered when written,
sets the triggered status to the parent function unit stateabing its setTriggered()
method. As a result, the function unit has become aware tisdtould execute the
given operation at the point instruction cycle end is anmedn

In lines 6 to 13, all function unit state objects, global cohunit state object, and
all the memory models simulating the data memories, ardiedf the advancing of
the instruction cycle. Notification of instruction cyclevahce to the function units
happens in two phases. First, taedClock()method is called for each function unit
state object. Before calling thedvanceClock(pf the function units, instruction cy-
cle advance is signaled to the memory models. What happsite endClock()and
advanceClock(and the main reason for the two-phase function unit indonatycle
end signaling is explained in Section 5.1.

At the point a simulation cycle end is announced vétidClock() function units that
were triggered by data transports simulate the requestechtbpns. The chain of
calls for simulating an operation triggering is represdrnte the sequence diagram
of Fig. 18. The simulation of behavior of the triggered opierais delegated to
OSAL. This is done by requesting a behavior simulation mdéalethe triggered op-
eration. In sequence diagram the returned model is for ADDs the name of the
class isSADD_Behavior Operation is executed by calling issmulateTrigger(with
the operand values currently in function unit state’s pdjeots. simulateTrigger()
returns results for the simulated operation with the givgruts after which the results
are stored in a wait queu€&UState::endClock()Jmplements the simulation of opera-
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Simulation aTriggeredFU : aWaitQueue : triggeredOp : behavior :
Controller FUState OperationExecutor Operation ADD_Behavior

| |
| 1:endClock() | D\ u H
| Behavior model loaded
. son(tri |
H 2: startOperation(triggeredOp) } from a dynamic library.
] 3: simulateTrigger(operands)

4: simulateTrigger(operands)
6: results

5: results |

After operation
latency has passed.

7: set result to output ports
|

w ]

Figure 18. FUState::endClock(): Simulating Operation Execution.

tion latency with a helper clas3perationExecutowhich effectively is a wait queue
for operation results. Operation results are stored in theug, and the queue is ad-
vanced in eaclendClock()call. At the point a result has stayed long enough, for the
time of operation latency, in the queue, result is made Masibthe function unit state’s
output ports.

In order to simulate the delay slots of control flow operadidhe effects of triggering
a control flow operation such asmpare made visible iadvanceCloclof the GCUS-
tate called in line 13. The simulation loop increments the paogrcounter value
in line 12, which theGCUState::advanceClock@Qverwrites in case the instruction
pipeline latency of a previously triggered control flow ogtéyn has passed.

The ending of a simulation clock cycle is announced to irstese parties in lines 15 to
16 by using the&SimulationEventHandler

Inlines 18 to 22, the predicate for program end is evaluayaxhbing programEnded()
The function returns true in case the last instruction offtre# executed procedure
was executed. In such a case, simulation is considered tgdoeited to the end and
simulation is finished succesfully.

Exceptions from simulation loop method calls are caughined 24 to 29. Such ex-
ceptions are considered run time errors of simulated pmgrehich are announced
to interested parties using the simulation event handlaually listeners to runtime
error events are user interfaces, which print the runtimer enessages for the user.
Runtime errors always cause the simulation to be aborted.



6. VERIFICATION AND BENCHMARKING

Functional accuracy of simulation was verified by simulgtsequential and parallel
test programs and comparing output of the programs to knomwect output.

Simulation speed was measured by timing the simulation etelst programs. Two

figures were calculated from the results: clock cycles sated in a second, and host
clock cycles per simulated cycle, which gives a rough eseméthe number of host

clock cycles needed to simulate one target clock cycle. €begrograms were also
executed with MOVE simulator and results were compared t&'S @sults.

All of the benchmarks were executed in a computer equippédanilyperThreaddd
Intel® Pentiun®) 4 processor running in 2.80 GHz clock frequency and with 1 GB
of RAM. Operating system kernel was Linl% version 2.4.27 with multiprocessor
support switched on. Each benchmark was executed ten timagow. From the
results, an average of consumed real time was calculatedtiRe was used instead of
CPU time because it gives more realistic picture of the speed's the time perceived
by users of Simulator. The difference between the mease@ddime and CPU time
was negligible.

MOVE and TCE code base were compiled with GNU GCC compilesiear3.3.5.
One of the major drawbacks for MOVE simulation speed is tleetfzat it's not possi-
ble to use aggressive optimization flags when compiling ttle©f MOVE because of
bad coding practices used at some parts of the code base.e$hbnd set of com-
piler switches using which MOVE could be compiled withoubgucing broken code
was’-O1 -march=pentium4 -finline-limit=5000’ However, MOVE simulator’s code
was managed to be compiled separately from the rest of the MEde base with
more aggressive optimization switches which brought MOWRugator to roughly
the same starting line with the TCE simulator. MOVE simulastsource code and
the whole code base of the TCE was compiled with swit¢h@3 -march=pentium4
-finline-limit=5000". Switch '-O3’ turns on the most aggressive optimizations,
march=pentium4allows Pentium 4 specific optimizations, arfinline-limit=5000’
allows large functions inlined to call sites.
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6.1 Sequential Simulation

Sequential simulation was tested with an integer-only Ogidplé audio decoder library
"Tremor” [22]. The total number of sequential instructionghe program is 98 804.
The version of the program used in the test was modified to ibabdel for platforms
without a 64-bit integer type. It emulates the 64-bit operat Tremor needs by using
C functions. According to the CHANGELOG file included in theodified Tremor
distribution, the modifications were done by J.A. Bezememtike Tremor work on
MOVE framework. In addition to the modifications by J.A. Berr, a version of
the dynamic memory allocation functionalloc(), which does not require operating
system support was implemented and used in the test prog&umh version was
needed because TCE, in contrast to MOVE, does not supporagarmuof a non-
existing operating system.

Verification

The known correct output was generated by compiling the dimrcoatively in the test
environment workstation and by processing an input Ogg isaaidio file with the
natively compiled version. The used input file was a song m#ehminutes and nine
seconds in length. The resulting output file was verified hiyidy listening it using
an audio player.

A sequential TTA program was generated from the Tremor soeode by using TCE'’s
C frontend. The input file was converted to a C char array winak linked in the test
program. Output was produced by using a special operatiovhah trigger simula-
tion function writes the contents of its only input operaaaffile.

The operation behavior definition of the special operat®edito output data to afile in
simulator host serves as a good example of an operation taiih $ts OSAL behavior
definition, as illustrated in Fig. 19, consists of a type d#&én of the state data the
operation uses and of an operation behavior definitionfit3¢le state definition is a
C++ class definition hidden behind the OSAL macros. Afterrdefj the name of the
state follows the declaration of the state data, which md¢hse is the output file stream.
Initialization function definition INIT_STATE is used to fiee the code executed when
the state is instantiated. In this case, initializatiodudes initializing the output file
stream to write to a file "ttasim.output". Finally, the destor which closes the output
file stream is defined using FINALIZE_STATE.
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Figure 19. OSAL Behavior Definition of OUTPUT _DATA.

DEFI NE_STATE( OUTPUT_STREAM
std::of streamoutputFil e;
| NI T_STATE( QUTPUT_STREAM
out put Fi | e. open(
"ttasi moutput",
std::ios_base::out | std::ios_base::trunc |
std::ios_base:: binary);
END | NI T_STATE;
FI NALI ZE_STATE( QUTPUT _STREAM
outputFile.close();
END_FI NALI ZE_STATE;
END_DEFI NE_STATE;

OPERATI ON_W TH_STATE( OQUTPUT_DATA, OUTPUT_STREAM

TRI GGER
STATE. out put Fi l e << static_cast<char>(INT(1));
RETURN_READY;

END TRI GGER;

END_OPERATI ON_W TH_STATE( QUTPUT_DATA) ;

The operation behavior definition is straightforward. Thayanput is casted to a
char and written to the output stream stored in the statarnest (referenced to with

STATE).

In order to use the defined operation to output the decoded datode illustrated in
Fig. 20 was inserted in the end of the Tremor’s main procedtine code consists of a
simple loop which iterates the array that contains the dutata and writes its contents
to the output file by using the custom operation. The spepatation is accessed with
macro WRITETO which generates sequential TTA assemblyuosbns that write
data as input to the operation. The code looks more cometidhtan it is because the
data needs to be swapped before writing it to the output fiketduvord byte order

difference between TCE's TTA and the simulator host promess
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Figure 20. Code Used to Output Decoded Data in Tremor.

int i =0;
char first, second;
for (; i < OUTPUT_BUFFER S| ZE; ++i) {
first = output_data[i];
++i ;
second = output_datali];
VWRI TETQ( out put _data. 1, second);
WRI TETQ( out put _data. 1, first);

Benchmarks

After verifying that the output produced by the simulatedATarogram matched the
known correct output, the data output code was removed andkest program was
benchmarked. Minimal program analysis options were seteftr both MOVE and
TCE simulator, to achieve the maximum simulation speed. rékalts are shown in
Table 1.

MOVE and TCE have different base operation sets, thus difte€C frontend com-
pilers, which results in different sequential programsegated by the frontends from
the same source code. Additionally, the sequential simuttMOVE does not use
a one-bus "sequential machine" as its internal simulatrongssor model, but allows
some parallelism also with sequential code. Sequentia oM OVE is not simulated
as sequences of moves, but as sequences of operation inmgatowing all operand
input operands written and results to be read in a singlekatgcle. Mainly due to
these reasons, the total count of simulated instructioffisrgidramatically between
MOVE and TCE test runs. In order to make comparison betwees aii MOVE
sensible, figures are based on executed moves instead ofectéastructions.

Table 1. Benchmark Results: Tremor.
moves / second host cycles / move total moves

TCE 4,011,700 700 49,321,900,000
MOVE 23,668,000 120 40,905,367,000

The results show that sequential simulation in MOVE is alinsostimes faster than in
TCE. The main reason for this is that TCE uses the same siimiledde for parallel
simulation by using an artificial Universal Machine that Heato run the sequential
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code. Thus, there is no separately optimized simulatioe ¢odsequential programs
like there is in MOVE. Another major reason is the definitidnsequential code in
MOVE, which allows move-level parallelism. Because it isspible to perform all
operation operand moves in the same instruction, instmatycle ends need to be
simulated less frequently. This might have huge impact ésiimulation speed, as
the majority of simulation time of TCE Simulator is spent fehsimulating the clock
cycle advances, not while simulating the data transpoiitsllly, the differences and
the added flexibility in TCE’s TTA template (see Section Z12kes the simulation
in TCE less efficient. For example, the simulation of arbytnaidth addressable data
memory units is completely unnecessary in case of sequisitialation because the
used unit widths (minimum addressable unit a 8-bit byteyraivord a 32-bit integer)
are the same as in most of the current desktop processors.

As a result of sequential simulation speed being less atitltan parallel simulation
speed (see Section 3.4), the optimization effort was dicktd parallel simulation. In
the future, if more speed for sequential simulation is ndedtecan be achieved by
making more special cases in the simulation code for se@li@nbgrams.

6.2 Parallel Simulation

The test program chosen for verification and benchmarkingaodllel simulation is
an implementation of Viterbi algorithm [23]. The target pessor architecture for the
program is a fully connected 20-bus TTA with operationsribsted in 25 function
units. General-purpose registers of the processor ambditd in 7 register files. The
algorithm was implemented in C and the resulting sequeiliff&l code was sched-
uled and simulated with MOVE. Finally, the output of MOVE ingtion scheduler,
a parallel TTA assembly file, was converted to TCE’s parakdembler format and
simulated in TCE Simulator.

Verification

In this test case, no extra code was inserted to the testgroty produce output for
verification purposes, but the correctness of the simulatias verified by using TCE
Simulator’s program debugging capabilities. TCE Simulatplements a feature that
allows inspecting simulated data memory and dumping a rahgdo the Simulator

console. After running the program in TCE Simulator to the,ethe memory area
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used by the algorithm for storing output data was dumped antpared to the known
correct output of the algorithm. The known correct outpus weovided in the C source
code of the algorithm.

Additional verification of parallel simulation was done bgnslating different parallel
programs and comparing bus traces produced by TCE simutabois traces produced
by running the program in MOVE simulator and in a VHDL simolatvVHDL imple-
mentations of processors used in verification were geréraih MOVE processor
generator [3] because TCE processor generator was noirfydgmented at the time
the verification took place.

Benchmarks

The scheduled program contained only 254 instructions tla@dotal runtime of the

algorithm was less than two million cycles. In order to proellonger simulation time

to obtain more accurate simulation time measurements, Ijogihhm was executed
thousand times in a row. Results of the benchmarking ardagisg in Table 2, which

presents the instruction simulation speed, and in TableM¢hwpresents the move
simulation speed.

Table 2. Benchmark Results: Viterbi, Instruction Execution Speed.
instructions / second host cycles / instruction total instructions

TCE 668,900 4190 1,799,953,000
MOVE 422,400 6630 1,799,953,000

Table 3. Benchmark Results: Viterbi, Move Execution Speed.
moves / second host cycles / move total moves

TCE 2,215,300 1260 5,961,272,00¢
MOVE 1,399,000 2000 5,961,272,00¢

It is apparent from the total move and instruction countsttiaschedule produced by
MOVE's instruction scheduler is not very efficient: evenulgh the processor has 20
buses, only on average of about 3.3 moves were simulatedgtengtion.

This benchmark shows that TCE is clearly faster than MOVEarajtel simulation.
The speedup compared to MOVE is around 58%. The speed diffeise most proba-
bly due to it being impossible to completely disable runtistetistics computation in
MOVE simulator. Utilization counts of processor comporsegite accumulated even
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though verbose statistics output is disabled. Additiopaksiup for TCE is achieved
by the preprocessing of instructions and by implementingeahanism that avoids
needless simulation of idle function units.

The effect of specialized code for sequential code in MOVE loa realized by com-
paring the move execution speed in parallel simulation toerexecution speed in
sequential simulation represented in Table 1. The parsifeulation speed in this
benchmark is almost 17 times slower with MOVE simulator, amttast to only 1.8
times slower in case of TCE Simulator.



7. FUTURE EXTENSIONS

There are several areas in the Simulator that could be iredrtavachieve better sim-
ulation accuracy and speed. Thanks to the modular struofusemulator, most im-
provements should be relatively painless to implements €hapter introduces several
ideas for improvements that could considered in the futdeeh improvement idea is
accompanied with a short sketch of an implementation plaetee as a starting point
for the possible developers chosen to implement them.

7.1 Parallel Computation

A current trend in computer systems is to try to achieve bpggormance through par-
allelism by using multiple processor cores. This is due &f#itt that the higher limit
for clock frequency achievable with current processor necturing technologies is
almost reached and duplication of computation resouraas#o be a straightforward
way to improve the performance of the system.

Benefits from multiprocessor systems are not gained autoafigtby existing pro-
grams. In order to utilize multiple processors, existinggrams might be needed to
be modified to perform computation in parallel, in multiphegads of execution. All
programs are not suitable for parallelization. In case s execution flow is se-
quential in a way that all computations depend on the restitfse previous computa-
tions, it might not be possible to parallelize the prograf@ETSimulator is simulating
a highly parallel processor architecture, therefore theutation code is suitable for
parallelization. Due to the independent function units ®ATit is possible to sepa-
rate the simulation of different function units to multipheeads of execution. Another
point for parallelization is the simulation of data trangpoSimulation of moves could
be distributed evenly among the threads of execution.

In larger scale, design space exploration speed could b@wag by distributing com-
putation to a cluster of computers. In such a setting, TCEU&tar would be a net-
work server application serving simulation requests tgronetwork. This is imple-
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mented easily by writing a new user interface for Simulatéetwork User Interface
would communicate with clients using a network communaragprotocol. Simula-
tion would be controlled by the interface the same way otlvaugtor user interfaces
do, by usingFrontendmodule. The protocol for communicating with the simulation
server could include commands for starting a new simulamhreceiving simulation
results.

7.2 Computing Lock Cycles Generated by Control Unit

Currently, TCE Simulator expects that there are no stallsnwietrieving the next ex-
ecuted instruction. This results in the total clock cycleiroof simulations being
sometimes too optimistic. If the effect of dynamic propestof control unit and in-
struction memory are wanted to be included in the simulatesults, there has to be
a a way for users of the Simulator to provide a model for sitimdgglock conditions
caused by the control unit.

One way to implement a mechanism for allowing customizedrobanit lock condi-
tion model is to implement a new class that is used to caleula lock cycles caused
by instruction memory accesses. Users would be allowed pbeiment this module
by using a plugin interface. The interface would consist sfraple function which
takes an instruction address as an argument and return ¢kedlgrocessor cycles
caused by the request. This kind of mechanism would allownishgfimodels of ar-
bitrary complexity and delivering more exact lock cycle otmucaused by the control
unit’s instruction memory data transfers. For examplengoiémentation of the model
could simulate cache by storing a history of accesses inagiaicture similar to the
one in the real hardware cache. This data structure woulgdée to figure out whether
requested data would be found in the cache and in case of a oash, return a com-
puted count of lock cycles. The default implementation efititerface would always
return zero.

7.3 Connection to Hardware Simulation

Some HDL simulators such as "Modelsim" [15] provide an ifstee for connecting
models defined in common programming languages to the sietgavironment. For
example, the interface of Modelsim call€dreign Language Interfacf24] imple-
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ments a bridge between C language and VHDL, allowing C pragreo modify and
inspect system’s signals which are defined in VHDL.

Communication between the rest of the simulated systemtansgimulated TTA pro-
cessor could be implemented by implementing a new memonehiodTCE Simula-
tor. The model would not implement the memory storage, butldvact as an adapter
to the HDL memory block implemented in the hardware modekdse communica-
tion through a special operation is wanted, the OSAL opemndbdehavior model that
is used to simulate the special operation would include tbaeuses the C to VHDL
interface to communicate with the simulated system.

The only mandatory input to TCE Simulator from the systemusator would be the
clock signal. When the TCE Simulator detects that the clogka is changed, it
would simply execute the code that simulates a clock cycle.

7.4 Compiled Simulation

The simulation technique of TCE Simulator resembles therpretive simulation tech-
nique in which each instruction is simulated with functialls that simulate the data
transfers and their side effects. The overhead of the fonatalls itself can be re-
markable. Compiled simulation technique avoids the owthaf function calls by

translating the simulated program to a program runnabliea@rnbst processor.

TCE Simulator could be converted to use compiled simulagchnique by replacing
the Simulation Controlleimplementation with one that delegates the implementation
of the simulation loop to the translated program. It couldpbssible to implement
this by using runtime libraries (plugins) in such way that thCE code base would
not be needed to be recompiled for each simulation. Wheraliging a compiled
simulation, the user-defined program and the processorigésn would be used to
generate a high-level language program, which would be dechpsing a regular
compiler to a dynamic library. The code from the dynamicdiyrwould be used in
place of the current simulation loop code.



8. CONCLUSIONS

This thesis described an instruction set simulator for a tddesign environment. The
main requirements placed for Simulator were the efficierfqyavallel TTA program
simulation and implementation of program debugging cdpeds. The accuracy of
Simulator is instruction cycle level and only the architeetof the TTA processor is
simulated, that is, Simulator models only the details Véstb the programmer. This
level of detail allows efficient enough simulation for desgpace exploration and en-
ables the implementation of program debugging capalslitie

The thesis described the main applications in the codesiginomment the Simulator
is targeted to. In addition, the TTA concept was describethiyan programmer’s
point of view, which is enough for understanding the desifjthe Simulator.

The architecture and design of the Simulator is very modareal follows object ori-
ented design principles. The simulation of data transgarts/es) is encapsulated in-
side a preprocessed instruction model which reduces catipuineeded during sim-
ulation. The state of the processor is maintained in an opéidhobject model which
avoids needless simulation of idle processor parts. Thigesnd implementation of
the most important parts of the Simulator were describedonendetail, leaving less
important details to a separate design document.

Correctness of simulation was verified by simulating setjakand parallel programs
and comparing the known correct output of the programs taufitor’s output. The
efficiency of the simulation was benchmarked by timing threwation times of the
test programs. The simulation speed was compared to thefamawator of another
codesign environment, the MOVE framework.

Compared to the MOVE simulator, TCE simulator is much sloimesequential sim-
ulation, due to the differences in definition of sequent@ein MOVE and TCE. In
addition, MOVE implements a specially optimized sequémii@ulation code, which
is wanted to be avoided in TCE due to added complexity in pliogi the debugging
features for both types of simulation. Optimization effoets directed to parallel sim-
ulation, due to its higher utilization in design space ergion. Contrary to sequential
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simulation, parallel simulation is significantly fasterfi€E. The parallel benchmark
showed speedup of about 60%.

Finally, the thesis introduced several future extensiongiproving simulation accu-
racy and speed. For example, utilization of parallel cormapom by adding multiple
threads of execution or by distributing the simulation tdtmple hosts is a self-evident
way to improve parallel simulation speed. In addition, gpy the compiled simula-
tion technique would probably improve the overall simudatspeed tremendously.
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Appendix A

SIMULATION OF UNPROCESSED INSTRUCTION

The algorithm can be divided into following phases:

1. Lines 2-4: Validation of the executed move. Move is vahic¢dase the simulated
architecture provides the needed connections from thesdarthe destination,
and no other move is occupying the same resources in the dackecgcle.

2. Lines 5-27: Interpretation. Source, destination, ansgl ®uthe move are re-
solved, that is, corresponding state objects are found fhenobject model that
maintains the processor’s simulation state.

3. Lines 28-31: Simulation of the data transfer. Data is fiestd from the source
to bus, from which it is read to the destination.

4. Lines 32-39: Simulation of possible side effects of theadeansfer. As a side
effect, a data transfer may set the operation to be triggeesd in the target
function unit and trigger an operation.
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Algorithm 2 Simulating an Unprocessed Instruction
1: for all movesM in instructiondo

if not Valid(M) then
abort simulation
end if

N

if M.SourcelsRegisterfhen

3
4
5
6: source_state—FindRegisterState(M.source)
7.  else ifM.SourcelsFUPort(hen

8 source_state—FindPortState(M.source)

9: else ifM.Sourcelsimmediate{hen

10: source_state—CreatelmmediateObject(M.sourcelmmediateValue)
11:  endif

12:  bus_state= FindBusState(M.bus)

13: if M.IsGuarded(Jhen

14: if M.IsPortGuard(}hen

15: guard_target—FindPortStateé{l.guardedPor}

16: else ifM.IsRegisterGuardghen

17: guard_target—FindRegisterStat®{.guardedRegistér
18: end if

19:  endif

20: if M.DestinationlsRegister{hen

21: destination_state-FindRegisterStat®{.destination
22: else ifM.DestinationilsFUPortfhen

23: destination_state-FindPortStateyl.destination

24: endif

25 if M.IsOpcodeSettingthen

26: operation<—FindOperationBehaviorModeé{.opcod¢
27:  endif

28: bus_stateNrite(source_stat®Read())
29: if notM.IsGuarded() oM.IsGuarded() anduard_regValue not Othen

30: destination_stat&Vrite(bus_statedRead())

31:  endif

32: if M.HasSideEffects@hen

33: function_unit_state—FindFUStatel.functionUni)

34: if M.IsOpcodeSettingthen

35: function_unit_stat&etNextOperatioperation_behavigr
36: else ifM.IsTriggering()then

37: function_unit_stat&etTriggered()

38: end if

39: endif

40: end for




