
SIAVASH TAVAKOLI

SOFTWARE FRAMEWORK FOR STATE ESTIMATION

Master of Science thesis

Examiners:

Prof. Robert Piché,

MSc Mathias von Essen,

Prof. Pasi Kallio

Examiner and topic approved by the

Faculty Council of the Faculty of

Automation Science and Engineering

on February 2nd, 2015

i

NOMENCLATURE

BP Belief Propagation

BUGS Bayesian inference Using Gibbs Sampling

DSL Domain Speci�c Language

EKF Extended Kalman Filter

GaBP Gaussian Belief Propagation

JAGS Just Another Gibbs Sampler

JSON JavaScript Object Notation

KF Kalman Filter

MBE Model Based Engineering

MCMC Markov Chain Monte Carlo

MDA Model Driven Architecture

MDE Model Driven Engineering

PaBP Particle Belief Propagation

PF Particle Filter

PGM Probabilistic Graphical Model

RLS Robotic Localization Service

RoIS Robotic Interaction Service

RTC Robotic Technology Component

UML Uni�ed Modelling Language

ii

ABSTRACT

SIAVASH TAVAKOLI: Software framework for state estimation
Tampere University of Technology

Master of Science thesis, 70 pages, 15 Appendix pages

January 2017

Master's Degree Programme in Machine Automation

Major: Mechatronics and Micromachines

Examiners: Prof. Robert Piché, MSc Mathias von Essen, Prof. Pasi Kallio

Keywords: Bayesian �ltering, Sensor fusion, Model driven engineering, Probabilistic

graphical models

Over the past decade, robotics has seen tremendous increase in complexity and

variety of applications. The key area in the robots seeing rapid evolution is the

software. However, usually the software developed for robots has been limited to a

speci�c application and/or a speci�c hardware. Unfortunately most of the software

developed for robotic applications are not easily re-usable in another project. Very

little e�ort has been done to tackle this issue and the software is developed on an

ad-hoc basis.

In this work, a framework for developing sensor fusion software is proposed that is

based on practices of model-driven engineering. A small domain-speci�c language

is developed that e�ectively hides the lower level implementation details and makes

the software development more structured and easier to re-use.

It is also discussed how graphical models can be used as computational framework

for performing the statistical inference in �ltering problems. It is shown how a

simple estimation problem can be solved using graphical models.

iii

PREFACE

This thesis work was done partly in robotics lab of University of Leuven. I would

like to express my great gratitude to professor Herman Bruyninckx who was a great

source of advice and support throughout my thesis. I am very grateful to Nico

Hüebel for all of his help and the great discussions we had during my visit to Leuven.

This work wouldn't have been possible without the help of professor Robert Pichè

and faculty of Automation Sciences and Engineering at TUT who supported my

trip to Leuven. I am thankful to professor Pasi Kallio and Mathias Von Essen

for evaluating my thesis work. I deeply appreciate professor Piché's support and

guidance all through my thesis work was performed.

March 2016,

Siavash Tavakoli

iv

TABLE OF CONTENTS

1. Introduction . 1

1.1 Sensor Fusion . 3

1.2 Probabilistic Graphical Models . 4

1.3 Sensor fusion software . 5

1.4 Thesis outline . 6

2. Theoretical Background . 7

2.1 Robot and The Surrounding Environment 7

2.2 Recursive State Estimation . 8

2.2.1 Bayesian Filtering . 8

2.3 Bayes Filters . 10

2.3.1 The Markov Assumption . 11

2.3.2 The Kalman Filter . 12

2.3.3 The Extended Kalman Filter . 14

2.3.4 Nonparametric Filters . 16

2.4 Graphical Models . 18

2.4.1 Factorgraph . 19

2.5 Inference On Graphical models . 20

2.5.1 Marginal Inference . 21

2.5.2 Variable elimination and message passing 21

2.5.3 The sum-product algorithm . 23

2.6 Model Driven Engineering and Domain Speci�c Languages 24

2.6.1 Model Driven Engineering . 24

2.6.2 Domain Speci�c Languages . 25

3. Bayesian Estimation and Probabilistic Modeling Software 27

4. Research methodology and materials . 33

v

4.1 Factor graphs as Bayesian estimator 33

4.1.1 Factor graphs for Kalman �ltering 36

4.1.2 Factor graphs for Particle �ltering 38

4.2 Tools and Frameworks used . 38

4.2.1 Probabilistic programming . 39

4.2.2 Software Models . 40

4.3 Modeling . 43

4.4 Code generation . 45

5. Results and discussion . 47

5.1 An example problem . 47

5.1.1 Filter Model . 48

5.1.2 Model Checking and Code Generation 49

5.1.3 Results . 51

5.2 Future Work . 51

6. Conclusion . 53

Bibliography . 54

A. JSON Schema models . 59

B. Matlab code . 67

vi

LIST OF FIGURES

2.1 Robot Environment Interaction . 7

2.2 Factor graphs representing di�erent factorisations 20

2.3 An example of Markov chain . 21

3.1 Inference algorithms supported by OpenGM 28

3.2 comparison of features supported by libDAI 29

4.1 Batch vs. recursive estimation . 35

4.2 Realisation of a linear system . 37

5.1 Filtering performance comparison for an example problem 52

1

1. INTRODUCTION

A robot can be described as the device for manipulating the physical world based

on perceptions from the outside world and processing the data by a computer.

The perception part is a key part which has great impact on the following actions

performed by the robot. The more precise data is available to the processor of a

robot, the more accurate actions will be. There has been many robotic systems in

use in vast �elds of applications such as mobile platforms for planetary exploration,

robotics arms in assembly lines, autonomous vehicles, actuated arms that assist

surgeons.

The major reason of developing robots have been to have a machine �intelligent�

enough to do some tedious tasks of the humans such as cleaning, labour work,

driving, etc. One of the big challenges in this sense is that our needs and environment

has been evolving rapidly during the past decades. Today's application domains

di�er from yesterday's and so will tomorrows' application domain from today's.

With robotic systems gaining popularity for in-house and outdoor use over the past

years, the most striking characteristic of these new robots is that the environments

that they operate in are unpredictable and unstructured. In comparison to classic

use of robotic systems which was in production assembly lines, predictability of

environment has changed considerably. Environment of of a private house is far

more unpredictable and uncontrollable.

As a result, robots are moving towards a direction where sensory input data has

become increasingly important and the software used on the robot has to be reliable

enough to cope with all of aforementioned problems. In this regard, robotics is

increasingly becoming more of a software science �eld with the goal of developing

a software robust enough to withstand unstructured, unpredictable, and dynamic

environments.

With all being said so far, one of key elements in robotics and the main focus of this

1. Introduction 2

work is Uncertainty. There are many factors that give rise to uncertainty. Some of

sources of uncertainty are:

1. Environments: Physical environments are in nature unpredictable. Though

the level of unpredictability can greatly di�er between environments. A car

driving in a highway and a robot doing indoor cleaning or a robotic arm

performing assembly in a production all face some level of uncertainty but

with a great di�erence in level.

2. Sensors: Sensors are bounded by what they can perceive and how well they

can perceive physical entities. These limitations arise from two facts. First,

sensors are intended to measure physical entities and are subject to physical

limitations in range and resolution. For example, a camera cannot see through

walls. Second, build quality and working principles of sensors greatly a�ect

the resolution of the sensor. For instance, due to the optical properties of

photographic lenses, only objects within a limited range of distances from the

camera will be reproduced clearly. Also, sensors are subject to noise. Sensor

hardware can never be ideal which results in data obtained from the sensor

always associated with some level of uncertainty.

3. Robots: Robots themselves are never accurate. Robot actions are performed

by using mechanical actuators which always have some level of uncertainty

because of internal structure (gear backlash, wear and tear, noise in control

signal, etc.).

4. Models: Models are formalisation of real world phenomena in mathematical

notation. Most often, physical relationships being described in the models are

very complex and are always simpli�ed by making assumptions. Therefore,

the underlying physical interactions of the robot and the environment is only

partially modelled.

5. Computation: Because of uncertainty in the environment where the robot is

performing its operations, most often robots are developed as a real-time sys-

tem where computations are done online and during the operation. Therefore,

the amount of computation that a robot can carry out is limited by hard-

ware and many algorithms have been developed to approximate the results in

exchange of less processor load and faster computations.

1.1. Sensor Fusion 3

All the factors above result in uncertainty. Up until past decade, uncertainty in

robotics had been mostly ignored (and rightfully so due to use cases being in more

predictable environments). However, as robots gain diverse uses in increasingly

unpredictable environments the ability to robustly manage uncertainty becomes

vital.

1.1 Sensor Fusion

To make up for the aforementioned uncertainties, one very common way is to aug-

ment information obtained from various sources that are available on the robot.

Robots are often equipped with multiple types of sensors. Information obtained

from various sensors are combined (�fused �) in order to increase belief of perception

data. Sensor fusion is widely used in many areas in robotic application such as

localization, object recognition, and environmental mapping.

Correct and robust way of integrating the observation data obtained from di�erent

sources with di�erent characteristics is a challenge that calls for precise mathematical

methodology. There are already well established mathematical tools to perform

sensor fusion. The most widely used methods for sensor data fusion have their

root in probability theory. Probabilistic data fusion methods are based on Bayesian

framework of statistics. Other non-probabilistic methods have also been proposed

such as theory of evidence and interval methods but they are not as commonly used

as probabilistic methods.

In Bayesian statistics, an initial belief of a random variable called prior is updated

according to observation data to give posterior belief. This inference is performed

according to a mathematical relationship connecting two sets of probabilistic vari-

ables called the Bayes rule. In its simplest form, the Bayes rule can be described as

a mathematical formulation of relationship between two probabilistic variables x, z

such that:

P (x|z) ∝ P (z|x)P (x) (1.1)

where P (x|z) is conditional probability distribution of x given z.

This rule is in the heart of all of the methods used in probabilistic sensor fusion

used in robotics and many many other �elds of application. As mentioned above,

robot software is most of the time real-time software and computations are carried

out while the robot is navigating through the environment. In practice, the Bayes

1.2. Probabilistic Graphical Models 4

rule is used recursively over time when new measurement data is present. This

process, called recursive Bayesian estimation (or recursive Bayesian �ltering), is a

general approach common in all of the methods of probabilistic estimators that allow

a robot to continuously update its beliefs from the environment. At each step of

operation, new observations are performed and fused with previously acquired data

to obtain the most probable state of the robot. This information is then stored and

used at the next step again as an initial prior belief.

There are various types of Bayesian estimators with distinct characteristics. Some

of these methods make certain assumptions about the system and the nature of

noise present in the system that result in limiting applicability of these estimators

to speci�c systems. There are also methods that pose no restriction and can be used

for any arbitrary system with any type of noise. Former type of Bayesian estimators

are generally simpler, easier to implement, and less computationally demanding

while the latter type require more computation power and time. In this work,

one example from each of these categories has been chosen and worked on. These

estimators, Kalman �lter and the particle �lter, are the most widely used family

of Bayesian estimators. In Kalman �lters it is assumed that there exists a linear

system with Gaussian noise whereas particle �lters use a Monte Carlo sampling

method and can be used for any type of system. A more detailed overview of these

�lters is presented in Chapter 2.

1.2 Probabilistic Graphical Models

Graphical models are a combination of probability theory and graph theory. Al-

though the theory has been established for quite a time already, graphical models

have gain considerable popularity over the past decade with increase of computing

power leading to more widespread use of probabilistic models. Factor graphs o�er

a compact representation of probabilistic models. In graphical models, probabilistic

variables are de�ned as nodes in a graph and relationship between these variables is

de�ned as links (arcs). Inference is performed on graphs to calculate most probable

value of a node.

Di�erent types of graphical models have been proposed and analyzed. A general

categorization divides graphical models into directed graphs (also called Bayesian

networks) and undirected graph (also called Markov networks). Each of these types

has its own characteristics and requires di�erent methods for carrying out inference.

1.3. Sensor fusion software 5

However, a third (and a more general) type of graphical models is often used, called

factor graphs. Factor graphs are bipartite graphs where two types of nodes are

present in the model, probabilistic variables and the function (�factor�) specifying

the relationship between these variables. Variable nodes can only be connected to

factor nodes and vice versa. Due to the generality of factor graphs, inference can be

done in an e�cient and easy way. A more detailed overview graphical models and

some common inference algorithms is presented in Chapter 2.

1.3 Sensor fusion software

There have been vast e�orts in the area of software framework for sensor fusion using

Bayesian framework of inference. Although areas of application for these e�orts

might seem di�erent, the core functionality and theoretical grounds are the same.

However, up until now most of e�orts made in the aspect of Bayesian estimation

software have lead to ad-hoc solutions which are either hard to reuse in a di�erent

scenario or hard to integrate with an external software. In this thesis project the

groundwork for a clean and reusable software framework for Bayesian estimation is

laid. More speci�cally use of Domain-Speci�c Languages (DSLs) is emphasized.

DSLs conform to practice of knowledge representation and model-driven engineer-

ing. Model-driven engineering and domain modeling is an approach in software

development where general aspects of a domain are encapsulated in a well de�ned

language. Model-driven engineering results in a structured and formalized knowl-

edge from a speci�c domain. MDE is particularly important in robotic applications

where knowledge from di�erent domains is integrated and utilized.

A domain-speci�c languages is a special-purpose computer language oriented to-

wards a speci�c application domain. DSLs are developed with the intention of

formalizing knowledge in a particular domain in a way that best captures domain's

semantics. DSLs are widely used in di�erent computer software domains and are

either as an stand-alone language or developed inside a general purpose language.

Using DSLs greatly enhances software reuse as they o�er small building blocks that

can be utilized to build the application logic on top of them.

In robotics DSLs have been developed for various purposes such as overall software

architecture design and deployment or de�ning physical speci�cations of a robot.

Section 2.6.2 gives an overview of some DSLs de�ned for robotic applications.

1.4. Thesis outline 6

In this thesis work, a domain-speci�c language intended to be used in sensor fusion

tasks in robotic applications is proposed. The work is done collaboration with

Robotics research group of university of Leuven.

1.4 Thesis outline

This thesis report is structured as follows. In Chapter 2 an overview of the the-

oretical concepts used is given and the mathematical framework for this work is

explained. Also, an overview of related works done regarding domain speci�c lan-

guages is presented. In Chapter 3 some of the currently available software developed

for Bayesian estimation are introduced. In Chapter 4 research methodology and the

tools used are explained. It is also explained why these tools are chosen to perform

the work. In Chapter 5 it is shown how a sample Bayesian estimation problem can

be performed using the tools and methodology presented. Finally, in Chapter 6 the

conclusion is given.

7

2. THEORETICAL BACKGROUND

This thesis work makes use of theoretical knowledge from many di�erent �elds.

Therefore, it is necessary to present a brief overview of theoretical concepts used.

In this chapter, some basic ideas and concepts that are utilised in this work are

explained.

2.1 Robot and The Surrounding Environment

Robots interact with the surrounding environment in two distinctive ways. They ob-

serve and acquire information about the environment through the sensors mounted.

They also perform actions and manipulate objects of the environment by using the

on-board actuators. Figure 2.1 illustrates the interaction of a robot with its envi-

ronment.

As already mentioned in the section for introduction, the information acquired by

robot sensors is noisy and not all environmental entities can be captured by the

sensors. In order to compensate for the sensor data shortcomings, the robot keeps

an internal �belief� of its current state and the state of its environment. Throughout

Figure 2.1 Robot Environment Interaction [38]

2.2. Recursive State Estimation 8

the robot's operation this internal belief is updated whenever new information is

obtained by robot sensors, resulting in improved accuracy of beliefs. This is often

referred to as �fusion of sensory data over time�.

2.2 Recursive State Estimation

As any other dynamical system, a robot's current working condition can be repre-

sented by a set of variables describing the current �state� of the robot. The smallest

subset of these variables that is su�cient to fully describe the robot's future and

past state is called state variables. Among these state variables, there are the ones

that are possible to measure directly by sensors and there might be others that are

not directly observable and should be inferred from the sensor data. For example

to be able to navigate a mobile robot through a terrain it is obviously desirable to

know the exact position of the robot and the obstacles around it. However, abso-

lute location of the robot is often not measured (e.g. when relative sensors such as

encoders are used or position of the robot is obtained by integrating acceleration

obtained from accelerometers). Therefore, the robot has to rely on its sensors to

gather the data and extract useful information from them.

As discussed in introduction chapter, sensors are limited by physical and technolog-

ical factors. Sensors often obtain partial information about quantities and the data

obtained by sensors is contaminated by noise. Mobile robot localization is a typical

example where state estimation is used to recover state variables from noisy sensor

data. Probabilistic state estimation is an approach for state estimation where prob-

abilistic methods are used to compute belief distributions for state variables over

possible values in the surrounding world.

2.2.1 Bayesian Filtering

In optimal estimation and Bayesian �ltering, all state variables of the system as

well as sensor measurements and control inputs are all considered to be random

variables. Then, governing equations that describe the model of the system dynamics

as well as relationships between observations of state variable and the state variables

are speci�ed in terms of probabilistic equations and laws. The process of deriving

random variables for each state from the observed sensor data which themselves are

modelled as a random variable is called probabilistic inference.

2.2. Recursive State Estimation 9

If X is a random variable, probability of X assuming a speci�c value x within its

scope is written as

p(X = x) (2.1)

This notation is usually simpli�ed and instead of writing the random variable name

explicitly, the notation is abbreviated as p(x).

Random variables often are correlated to other random variables and some informa-

tion is shared between them. For example, let's assume that a random variable Y is

known to have value y and probability of X having value of x conditioned on value

of Y is desired. This probability is given

p(x|y) = p(X = x|Y = y) =
p(x, y)

p(y)
(2.2)

and is called conditional probability.

The Bayes rule is one of principal rules in probabilistic theory that relates odds of

an event to odds of their �inverse� event. For the probabilistic variables X and Y in

equation 2.2, the Bayes rule is stated as below with one condition that p(y) > 0:

p(x|y) =
p(y|x)p(x)

p(y)
(2.3)

If x is to be inferred from y, then probability of x, p(x), is called prior probability.

y is referred to as the data (e.g. an observation obtained from sensor measurement).

p(x) encapsulates the available knowledge regarding X before taking the data y

into account. Then, the conditional probability of x given y (p(x|y)) is called the

posterior probability distribution over X. In robotics sensor fusion, the conditional

probability p(y|x) is the probability of the sensor data y assuming that state value x.

This distribution is obtained using well known models such as kinematics, dynamics,

sensor physics, etc.

Bayes rule plays an important role in robotics sensor fusion. Using Bayes rule, it

is convenient to compute the posterior distribution p(x|y) by using the conditional

probability p(y|x) and the prior distribution p(x). In probabilistic sensor fusion, the

objective is to infer a state variable x from sensor data y. Using the Bayes rule, it

is possible to do so by taking the inverse probability of the sensor data y assuming

2.3. Bayes Filters 10

that state value x.

2.3 Bayes Filters

In its most general form, the method to recursively calculate beliefs using the Bayes

rule can be expressed by the Bayes �lter algorithm. In this algorithm it is shown

how the belief distribution bel can be calculated from observation and control data.

Pseudo-algorithm of the general Bayes �lter is shown in Algorithm 1. In order to

prevent the problem space to increase which results in drastic increase of demand

for more computation power, the Bayes algorithm is utilised recursively. This means

that at each time step, the belief is updated according to the belief calculated at

previous time step as well as the inputs given to the system and observed data. To

put it more formally, bel(xt) at time t is calculated based on the belief bel(xt−1) at

time t− 1 along with the control input ut and measurement zt.

Algorithm 1 The general algorithm for Bayes �ltering [38]

1: procedure Bayes_filter(bel(xt−1), ut, zt)
2: bel(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dx

3: bel(xt) = ηp(zt|xt)bel(xt)
4: return bel(xt)
5: end procedure

As can be seen in algorithm 1, in Bayes �ltering there is two main operations being

performed at each time step. In line 3, an �intermediatory� belief is calculated with

control input and the belief calculated at the previous step. This belief which is a

transformation of the previous belief solely based on what has been inputted to the

system is called the prediction step. In the prediction step, it is calculated that with

the control input ut given to the robot, what is the probability of transition from

xt−1 to xt. This probability is then integrated (summed) with the prior distribution

assigned to xt−1. Outcome of this step is a �predicted� belief assigned to state xt.

At the second step of Bayes �lters, the �predicted� belief is updated with the ob-

servation data. In this step (line 4), the intermediatory belief bel(xt) is multiplied

by the probability that the measurement zt has been observed. This multiplication

does not necessarily integrate to 1 so in order to get proper probability distribution

it should be normalized. Therefore, it is multiplied by a normalization constant η.

This step of the Bayes �lter is called the measurement update step.

2.3. Bayes Filters 11

This general form of Bayes �lter involves integrating and multiplication of proba-

bility distributions. These calculations can be computed in closed form for either

very simple cases or if we only restrict ourselves to discrete state space where the

integral in line 3 is simpli�ed to summation.

2.3.1 The Markov Assumption

The Markov assumption (also called the complete state assumption) plays a vital

role in probabilistic robotics. In a nutshell, the Markov property is a property of

stochastic systems where the future state depends solely on current state of the

system and not the past. In other words, in order to know the future state of the

system xt+1 it is su�cient to know the current state xt and the past states (xt−1,

xt−2,. . .) can be ignored.

In the context of mobile robot localization, xt is the robot's current pose in relation

to a �xed map. The pose is estimated by utilising Bayesian �lters. However, the

Markov assumption is true for ideal systems where there is no error present in the

system. Many factors a�ect conformity of a system to Markov assumption:

� Dynamics in the environment which are not modelled and included in system

model (e.g. people moving around the robot and the e�ect it has on sensor

measurements),

� inaccuracies in the measurement and system dynamic models (p(zt|xt) and

p(xt|ut, xt−1)),

� errors when representing the belief functions using approximate representa-

tions (e.g., grids or Gaussians), and

Although it is possible to take all of the above factors into account while de�ning

state representations, doing so is not favorable due to signi�cant increase in com-

putational complexity of the �ltering algorithm. Fortunately, Bayesian estimators

have been found to be tolerant towards such deviations from Markov assumption.

The best practice is to de�ne xt so that the state variables that are not modeled

have close-to-random e�ects.

2.3. Bayes Filters 12

2.3.2 The Kalman Filter

Linear Gaussian Systems

The most famous and well studied technique for Bayesian �ltering is the Kalman

�lter (KF). The Kalman �lter [19] was �rst introduced in 1960 by Rudolph Emil

Kalman, as a method for �ltering and estimation in linear systems. The Kalman

�lter is used to compute continuous state beliefs. In Kalman �ltering beliefs are

represented by their moments. At each time step t, the belief is represented by

its �rst moment, the mean µt, and second central moment, the covariance Σt. In

addition to the Markov assumption discussed above, if certain conditions are met,

the posteriors computed will be Gaussian. These conditions are as follows:

1. In Kalman �lters, system dynamics is assumed to be linear. Probability of

next state given current state, p(xt|ut, xt−1) must also be a linear function

with additive Gaussian noise as shown in the following equation.

xt = Atxt−1 +Btut + εt. (2.4)

In this equation, xt and xt−1 are state vectors at times t and t − 1 (they are

assumed to be column matrices), and ut is the control input at time t. The

matrix At is a matrix of size n × n and size of Bt is n × m. Here n is the

number of state variables (i.e. dimension of the state vector xt) and m is the

dimension of the control vector ut. When multiplying the state vector with

matrix At and control vector with matrix Bt, the state transition function is

linear in its arguments.

The variable εt in 2.4 is a vector of scalar random Gaussian variables which

speci�es the randomness in state transitions. Dimension of εt is the same as

the state vector and it has zero Mean and covariance Qt. State transition

model of the form as in equation 2.4 is called linear Gaussian since it is linear

and it has added Gaussian noise.

2. Apart from the state transition probability, the observation probability p(zt|xt)
should be also linear with additive Gaussian noise:

zt = Ctxt + δt (2.5)

2.3. Bayes Filters 13

In this equation Ct is a matrix with size k × n, where k is the dimension of

zt, the observation. δt is a vector of Gaussian variables with zero mean and

covariance Rt which describes the observation noise.

3. Lastly, the belief at time 0 (initial belief), bel(x0) should also be a normal

distribution with µ0 mean and Σ0 covariance.

If the assumptions listed above are met, then it is guaranteed that the posterior

distribution bel(xt) is always Gaussian.

The Kalman Filter Algorithm

As discussed above, in Kalman �ltering Gaussian beliefs are represented by their

mean and covariance. Algorithm 2 illustrates algorithm of Kalman �ltering. At

each time step t, belief of previous time step t− 1 is taken as input of the algorithm

(with mean µt−1 and covariance Σt−1). Then, by incorporating current control input

ut and measurement zt into belief of previous time step, belief at time t represented

by µt and Σt is calculated.

Algorithm 2 The Kalman �lter algorithm for linear Gaussian state transitions and
measurements [38]

1: procedure Kalman_filter(µt−1,Σt−1, ut, zt)
2: µt = Atµt−1 +Btut
3: Σt = AtΣt−1A

T
t +Rt

4: Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1

5: µt = µt +Kt(zt − Ctµt)
6: Σt = (I −KtCt)Σt

7: return µt,Σt

8: end procedure

Similar to what was presented in general algorithm in algorithm 1, in Kalman �l-

tering a predicted belief bel(xt) is computed �rst which is represented by its mean

µ and covariance Σ. This belief represents the predicted belief one time step later,

when only input signal is considered and before incorporating the measurement zt.

This �predicted� belief bel(xt) is then updated with taking the measurement data

into account, resulting in the desired belief bel(xt) (lines 4�6). Kt which is calculated

in Line 4 is called the Kalman gain.

2.3. Bayes Filters 14

2.3.3 The Extended Kalman Filter

In practice, assumption of linear state transition and measurement models with

added Gaussian noise seldom holds. Therefore, plain Kalman �lters are applicable

only in trivial applications. The Extended Kalman �lter tackles one of the assump-

tions made in plain KF and tries to overcome restriction of linear systems at the

price of some computational overhead.

In EKF, it is assumed that the process and measurement models are nonlinear

functions as described by g and h in following equations:

xt = g(ut, xt−1) + µt

zt = h(xt) + δt (2.6)

This model is a generalization of the model used in Kalman �lter (described in equa-

tions 2.4 and 2.5) where matrices are replaced by functions g and h. As discussed

earlier when a linear function performs on Gaussian distribution, the resulting belief

is also Gaussian. However, since here the functions are no longer linear the belief

is also non-Gaussian. In fact, calculating exact values in update step is usually im-

possible for nonlinear functions (in which case there is no closed-form solution for

the Bayes �lter).

In EKF, the true belief is approximated by a Gaussian distribution. At each time

step t the belief bel(xt) is represented by a mean µt and a covariance Σt. Therefore,

EKF and KF share the way beliefs are represented but di�er in the sense that in

KF the belief is exact where in EKF an approximation of the belief is calculated.

The key idea in EKF is linearization of nonlinear state and measurement model

equations by utilising the Taylor expansion. In this linearization a nonlinear function

g is linearized (approximated by a linear function) at the mean of the Gaussian.

Transforming a Gaussian through this linear function yields a Gaussian posterior.

In fact, when this linear version of g is used, the mechanics of belief propagation are

equivalent to Kalman �lter. The same applies for measurement function h.

2.3. Bayes Filters 15

The EKF Algorithm

Algorithm 3 summarizes the steps in EKF algorithm. As can be seen, the algorithm

is very similar to the one in KF with di�erences in state and measurement predictions

(lines 2 and 5 of the algorithm).

Algorithm 3 The Extended Kalman �lter algorithm [38]

1: procedure Extended_Kalman_filter(µt−1,Σt−1, ut, zt)
2: µt = g(ut, µt−1)
3: Σt = GtΣt−1G

T
t +Rt

4: Kt = ΣtH
T
t (HtΣtH

T
t +Qt)

−1

5: µt = µt +Kt(zt − h(µt))
6: Σt = (I −KtHt)Σt

7: return µt,Σt

8: end procedure

In contrast to linear predictions in Kalman �lters, in EKF the predictions are re-

placed by their nonlinear generalizations. The EKF estimator uses Jacobians (Gt

and Ht in the algorithm 3) instead of the matrices used in linear systems.

EKF, Pros and Cons

EKF is one of the most popular tools for state estimation in robotics. Simplic-

ity and computational e�ciency are two important factors leading to popularity of

EKF. Computational e�ciency of EKF is due to the fact that beliefs are repre-

sented by multivariate Gaussian distributions. Moreover, in many practical prob-

lems, Gaussians are robust estimators and in many estimation problems that violate

the assumptions EKFs have been applied successfully.

On the other hand, inability of representing multimodal beliefs (as in case of KF)

is an important limitation of EKF. As an example, in many situations a robot

might have two distinct hypotheses of its whereabouts (and a mean middle-ground

hypothesis is not likely). In such cases, in EKF since the distributions are all assumed

to be Gaussian, and hence uni-modal, EKF might produce erroneous posterior. A

common extension of EKF to tackle this represents posteriors using mixtures or

sums of Gaussians [1].

2.3. Bayes Filters 16

Another important limitation of EKF is inherited from Taylor series expansion of

state transition and measurement models. Two factors a�ect how well this lineariza-

tion captures the true belief. First, the degree of nonlinearity of the functions and

second, the degree of certainty. The more nonlinear the state transition and mea-

surement functions are, the more likely it is that the linear approximation has bigger

error. Also, the more a robot is uncertain about its state, the wider its Gaussian

belief. Therefore, it is critical to keep the uncertainty of state estimate as low as

possible when applying EKF.

It is also bene�cial to note that Taylor expansion is one way of linearizing the

system. Other methods have been proposed which often produce better results. As

an example, unscented Kalman �lter approximates the function based on function

values at some �probe� points. Another method is known as moment matching. In

this method the linearization is done in such way that the true mean and covariance

of the posterior distribution is preserved.

2.3.4 Nonparametric Filters

Nonparametric �lters are a widely used alternative to the Gaussian estimators.

These �lters do not make any assumption (or rely on) a �xed form of the dis-

tribution for the posterior (e.g. Gaussian distribution as in Kalman �lters). Instead,

in nonparametric �lters the posterior is approximated by a �nite number of point

values. As a consequence the accuracy of approximation increases as the number of

parameters to represent the distribution is increased (with the ideal case where there

is in�nite number of parameters in which case the approximated posterior converges

to the true posterior). In this work, one of these nonparametric estimators is focused

on and discussed. This technique, known as particle �lter represents the posterior by

�nitely many samples. The particle �lter has gained immense popularity in robotic

applications.

Nonparametric �lters in general (and consequently particle �lters) do not make any

strong parametric assumption on the posterior distribution function. Therefore,

they are well suited to represent multi-modal beliefs and they are often used when

level of uncertainty is high and when the robot needs to deal with data association

problems where separate, distinct hypotheses are produced. However, this bene�t

comes with a price of computational complexity as will be shown in the next section.

2.3. Bayes Filters 17

THE PARTICLE FILTER

The particle �lter is a nonparametric implementation of the Bayes �lter. In particle

�lters, the posterior is approximated by a (�nite) number of parameters. There

are di�erent types of particle �lters. The di�erence between these kinds of particle

�lters is the way the approximation parameters are generated, as well as the way

they are spread out across the state space. The main idea in particle �lters is to

work with an approximation of the posterior bel(xt) which is constructed by a set

of random samples drawn from the posterior. Although this alternative representa-

tion of the distribution (instead of the parametric form) is an approximation, it is

nonparametric, and therefore can be used to represent broader types of distributions.

Each of the samples drawn from the posterior distribution are called particles and

are de�ned as

Xt := x
[1]
t , x

[2]
t , . . . , x

[M]
t (2.7)

Each of the particles x
[M]
t (where 1 ≤ m ≤ M) is a hypothesis of what is value

for the state at each time step t. M is total number of particles (i.e. the size of

the particle set). It is ideal to have a large number of particles as it yields better

approximation to the true posterior distribution.

The logic behind PFs is the same as Monte Carlo method in which instead of using

the full belief distribution, the distribution is approximated by a set of particles Xt.

In ideal case, the likelihood of the state hypothesis xt being in the particle set Xt is

proportional to its posterior bel(xt):

x
[m]
t ∼ p(xt|z1:t, u1:t) (2.8)

Just as other recursive Bayesian �lters, the particle �lter computes the belief bel(xt)

based on belief of the previous time step bel(xt−1) but with the di�erence that the

belief is represented by a set of �particles�. This means that particle �lters constructs

particle set Xt recursively from the set Xt−1. Basic algorithm of the particle �lter is

presented in algorithm 4. The algorithm takes the particle set Xt−1, current control

command ut, and current measurements zt as inputs. Then, each of the particle

x
[m]
t−1 is processed by the algorithm and a temporary particle set X̄ is constructed

which is similar (but not identical) to the belief bel(xt).

2.4. Graphical Models 18

Algorithm 4 The particle �lter algorithm [38]

1: procedure Particle_filter(Xt−1, ut, zt)
2: X̄t = X = ∅
3: for m = 1 to M do

4: sample x
[m]
t ∼ p(xt|ut, x[m]

t−1)

5: w
[m]
t = p(zt|x[m]

t)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: end for

8: for m = 1 to M do

9: draw i with probability ∝ w
[i]
t

10: add x
[i]
t to Xt

11: end for

12: return Xt
13: end procedure

The most important part of the particle �lter is called resampling or importance

resampling (performed in lines 8 through 11 in algorithm 4). In importance resam-

pling, the particle set of M particles drawn from temporary set X̄t is transformed

into another particle set of the same size but with importance weights taken into

account. By this, distribution of the particles change and they are distributed ac-

cording the posterior rather than the initial bel(xt).

The resampling step in particle �lters shares the same nature with the Darwinian

idea of survival of the �ttest. In this step, the focus of particles is shifted to the

regions where posterior probability is high. Doing so, computational resources are

allocated to the regions where they matter the most.

2.4 Graphical Models

One might expect to feed a mass of data and probability distributions into a com-

puter and get good predictions in a timely manner. However, this is a naive as-

sumption and is very likely to fail in complex situations. By increasing size and

complexity of the problem, the time needed to perform the processing increases

considerably. Therefore, it is necessary to structure the problem into a �model� so

that processing a large data set would take less time.

The goal of a probabilistic graphical model is to encode a probability distribution

over a set of random variables X = X1, . . . , XN . PGMs help to organize and de-

2.4. Graphical Models 19

pict dependence/independence assumptions made in a distribution. Advantage of

using PGMs is that they o�er a framework for studying a broad range of proba-

bilistic problems and their corresponding algorithms. Particularly, PGMs explicitly

state modeling assumptions made and o�er a uni�ed framework where inference

algorithms developed in di�erent communities can be related and aggregated.

There are many types of graphical models that are best suited for representing

di�erent assumptions. However, all forms of graphical models have some level of

the ability to express conditional dependence (or independence) statements. For

example, �belief networks� (also called �Bayesian networks�) are useful for modeling

ancestral conditional independence. There are many other types of GM such as

Markov networks, chain graphs, and factor graphs. It is not possible to introduce

all of these types of GMs here since it would be irrelevant for this thesis. However,

since factor graphs are used to implement the Bayesian estimators, a brief overview

of this kind of GM is presented later on in this chapter.

In general, problem solving when probabilistic models are utilised can be divided in

two high level steps.

� Modelling The �rst step in modelling a problem is to identify all of relevant

variables of the problem domain at hand. The purpose is to determine how

these variables interact. This can be achieved by exploiting the structural

assumptions according to how they form the joint probability distribution.

� Inference After structure of the probabilistic model is developed the next

step is to perform inference on the distribution to �nd answer for questions

of interest. This step is a very important step as it can involve high level

of computational complexity. Therefore, successful graphical modelling needs

accurate inference algorithm.

2.4.1 Factorgraph

A factor graph F is an undirected graph containing two types of nodes: variable

nodes (denoted as ovals) and factor nodes (denoted as squares). The graph only

contains edges between variable nodes and factor nodes. A factor graph F is pa-

rameterized by a set of factors, where each factor node Vφ is associated with precisely

one factor φ, whose scope is the set of variables that are neighbors of Vφ in the graph.

2.5. Inference On Graphical models 20

Figure 2.2 Factor graphs represent-
ing di�erent factorisations (a) φ(a, b, c)
(b) φ(a, b)φ(b, c)φ(c, a)

A distribution P factorizes over F if the distribution can be represented as a set of

factors of this form (i.e. can be written as the product of such factors).

For the function f is given as:

f(x1, . . . , xn) =
∏
i

ψi(Xi) (2.9)

In factor graphs, for each of the factors ψi a node (shown by a square) is represented

in the network and for each of the variables xj a variable node (shown by a circle)

is represented. Also, an undirected link between the variable xj and factor ψi is

represented in the graph for each xj ⊂ Xi. Figure 2.2 represents two examples of

factor graphs.

When used to represent a distribution, a normalization constant is assumed.

p(x1, . . . , xn) =
1

Z

∏
i

ψi(Xi) (2.10)

2.5 Inference On Graphical models

Once structure of the model is encapsulated in a graphical mode, we then turn to

the problem of inference. Inference in a graphical model is computing the posterior

distributions of one or more subset of other nodes when some of the nodes are

clamped to their observed values. The structure of the graph can be exploited to

�nd e�cient algorithms and to make the structure of those algorithms transparent.

Speci�cally, many algorithms can be expressed in terms of the propagation of local

messages around the graph. There are two classes of algorithms when performing

inference on graphical models. The �rst class performs exact inference on the model

and the second class performs approximate inference.

2.5. Inference On Graphical models 21

2.5.1 Marginal Inference

Marginal inference can be de�ned as computing probability distribution of a sub-

set of variables, optionally conditioned on another subset. If a joint distribution

p(x1, x2, x3, x4, x5) is given and evidence x1 = tr is de�ned, marginal inference is

calculated as

p(x5|x1 = tr) ∝
∑

x2,x3,x4

p(x1 = tr, x2, x3, x4, x5) (2.11)

2.5.2 Variable elimination and message passing

Message passing is the activity of summarizing information from the graph by infor-

mation of local edges. Message passing is a crucial for e�cient inference. Considering

the four variable Markov chain

p(a, b, c, d) = p(a|b)p(b|c)p(c|d)p(d) (2.12)

as presented in Fig 2.3. Here, we are asked to compute the marginal p(a). To

simplify the problem, we assume that all variables are binary and have the domain

0, 1. Then

p(a = 0) =
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0, b, c, d) (2.13)

=
∑

b∈{0,1},c∈{0,1},d∈{0,1}

p(a = 0|b)p(b|c)p(c|d)p(d)

One way of performing the computation would be to sum each of the probabilities

for all of the 2 × 2 × 2 = 8 states of the variables b, c and d. This would therefore

require 7 addition-of-two-numbers calls.

However, a more e�cient way is to shift the summation over d to the right as much

Figure 2.3 Markov chain of the form
equation 2.12

2.5. Inference On Graphical models 22

as possible:

p(a = 0) =
∑

b∈{0,1},c∈{0,1}

p(a = 0|b)p(b|c)
∑

d∈{0,1}

p(c|d)p(d)︸ ︷︷ ︸
γd(c)

(2.14)

In a similar way, the summation over c can be shifted to the right as much as

possible:

p(a = 0) =
∑

b∈{0,1}

p(a = 0|b)
∑

c∈{0,1}

p(b|c)γd(c)︸ ︷︷ ︸
γc(b)

(2.15)

Then, �nally,

p(a = 0) =
∑

b∈{0,1}

p(a = 0|b)γc(b) (2.16)

By distributing the summations we have made 3×2−1 = 5 addition-of-two-numbers

calls, compared to 23− 1 = 7 from the naive approach. The important point is that

by following this procedure, the number of calculations for a chain with length T +1

would be linear, 2T , as opposed to exponential, 2T − 1 for the �rst approach.

This process is referred to as variable elimination. Every time a sum over the states

of a variable is computed, it is e�ectively eliminated from the distribution. It is

always possible to e�ectively perform variable elimination in a chain due to the fact

that summations can naturally be distributed from edges inwards.

We can see the variable elimination as a message (information) being passed to a

neighbouring node in the graph. It is possible to compute a univariate-marginal of

an arbitrary tree (i.e. a singly connected graph). To do so, we can start at a leaf

(outermost node) of the tree and eliminate the local variable at each node and con-

tinue working inward from the leaf. By performing the elimination inwards (starting

from the leaves), it is guaranteed that we are able to calculate any marginal p(xi)

by using a linearly scaled number of summations (linear to number of variables).

When using continuous (parametric) distributions (x|θx), message passing is done by

passing around parameters of the distribution θ. Doing so, we able to implement the

sum-product algorithm by passing the parameters of the distribution, e.g. mean and

covariance. It should be noted that this requires that multiplication and integration

2.5. Inference On Graphical models 23

should be closed operations with respect to the family of distributions. For Gaussian

distributions for example, this is valid as the product of two Gaussian is again

Gaussian and the marginal (integral) of a Gaussian is also Gaussian.

2.5.3 The sum-product algorithm

The sum-product algorithm, also referred to as belief propagation is algorithm of

computing marginals by distributing the sum of the variable states over the product

of factors. The sum-product algorithm can be performed on all types of graphical

models. However, since the focus of this thesis is on factor graphs this algorithm is

presented in the framework of factor graphs.

In sum-product algorithm, messages are updated according to the incoming mes-

sages from neighbouring nodes (as a function of incoming messages). Computations

proceed according to a schedule that allows to compute the new outgoing message

based on previously calculated messages. This process continues until all of outgoing

messages from factors to variables as well as messages from variables to factors are

computed.

Initialisation: If the leaf node is a factor, messages coming from the leaf node are

initialised to the factor. Otherwise (the leaf node is a variable), messages coming

from the leaf node initialized to unity.

Message from Variable to Factor

µx→f (x) =
∏

g∈{ne(x)\f}

µg→x(x)

Message from Factor to Variable

µf→x(x) =
∑
Xf\x

φf (Xf)
∏

y∈{ne(f)\x}

µy→f (y)

Here
∑

Xf\x denotes summation over all states

in the variables set Xf \ x

2.6. Model Driven Engineering and Domain Speci�c Languages 24

Marginal

p(x) ∝
∏

f∈ne(x)

µf→x(x)

The important information in marginal inference is the relative size of the message

states. This is important since we may want to renormalise the messages. The

marginal of a variable is proportional to the messages sent to that variable from

other nodes. Therefore, we can easily obtain the normalisation constant by utilizing

the fact that the sum of the marginal should be 1.

2.6 Model Driven Engineering and Domain Speci�c Languages

2.6.1 Model Driven Engineering

Model Driven Engineering (MDE) or Model Based Engineering (MBE) is a method-

ology in software development that tries to improve the developed software by de�n-

ing a modeling language (also called a meta-model). The meta-model captures the

basic ideas and aspects in a particular domain. This language is then used to specify

concrete models that can then be analyzed, validated, transformed or even executed.

The latter activities are greatly facilitated by having a formalization of the meta-

model available. The main bene�t of this approach is the clean separation of the

domain knowledge from technical implementation details.

MDE has been speci�ed and standardized by di�erent organizations. One of the

mostly used is the Model Driven Architecture (MDA) initiative [25] by the Object

Management Group (OMG). Several modeling levels have been described by MDA:

� The computation independent model (CIM) is the most high level and informal

description

� The Platform Independent Model (PIM) speci�es the software system inde-

pendently of the platform where the software will later run on;

� Platform Speci�c Model (PSM) is the model can then be transformed to pro-

gramming language code where information about the platform is added to

the PIM model.

2.6. Model Driven Engineering and Domain Speci�c Languages 25

A thorough introduction to MDA can be found in [5].

MDA is developed along other OMG standards: the Meta-Object Facility (MOF) [28]

describes the meta-meta modeling architecture and language that is used to specify

meta-models. The Query View Transformation (QVT) [30] standard speci�es sev-

eral languages to support describing model transformations. The Uni�ed Modeling

Language (UML) [32] speci�es a variety of standard diagrams for modeling di�er-

ent aspects of software (these diagrams themselves are described using MOF). The

Object Constraint Language (OCL) [29] is used to de�ne additional constraints on

models which can't be expressed by UML alone.

A shortcoming of the approach proposed by OMG is the lack of a rigorous semantic

formalization or a reference implementation. This leads to vendors making incom-

patible implementation choices. Executable UML (xUML) [23] tries to address this

issue by formalizing the semantics of a subset of UML. Basic idea of xUML evolved

out of the Shlaer-Mellor method [22] and has been adopted by OMG, giving birth

to foundational UML (fUML) [31]. According to the fUML standard speci�cation,

the intention is �to encourage use of the broadest possible subset of UML constructs

that can be reduced to a small set of elements� and to provide a �precise de�nition

of the execution semantics of that subset.�

In robotics, OMG's robotics domain task force (DTF) promotes and is extending

OMG standards for developing component based robotics systems. Several stan-

dards have been speci�ed, including the Robotic Technology Component (RTC)

which has been used as the basis for the OpenRTM framework [2] as well as the

Robotic Localization Service (RLS) and the Robotic Interaction Service (RoIS).

Burmester et al. [7] have introduced Mechatronic UML as an extension to UML

for modeling hybrid real-time systems.

2.6.2 Domain Speci�c Languages

A Domain Speci�c Language , is a language that, in contrast to a general purpose

language, has been speci�cally tailored to express the concepts of a particular do-

main. DSLs have been in use for decades, especially in Unix operating system and

were initially described as little languages by Bentley [4]. Some well-known exam-

ples of DSL are the �make� language to specify software builds, �sed� and �awk� for

text processing or XML to describe hierarchically structured data. An extensive

2.6. Model Driven Engineering and Domain Speci�c Languages 26

overview of research preformed on DSL can be found in [39]. [36] and [24] discuss

patterns and trade-o�s involved in developing a DSL.

DSLs are central to MDE. Any meta-model can e�ectively be understood as a DSL;

however the term DSL seems to be more associated with textual than graphical

modeling languages. Generally, DSLs are categorized into two major types [9]:

� External DSLs are developed and constructed from scratch, usually with help

of a language constructor tool such as lex or yacc.

� Internal DSLs or embedded DSLs are developed inside an already available

general purpose �host� language. Many general purpose languages have been

used to develop DSLs such as Haskell, Ruby, and Lisp.

Both approaches have their own advantages and disadvantages: external DSLs o�er

more �exibility for the syntax, but are more complex to implement since a parser

for that particular syntax must be developed. On the other side, internal DSL are

bound by limitations and syntax rules of the host language, but in return can reuse

the host language's facilities for parsing, computing, and error reporting.

DSLs have been in use in robotics for a long time ([18]; [17]; [11]). MAESTRO [8]

is a language developed for speci�cation, validation and control of robotic missions.

Frob [33] and AFRP [14] are internal DSLs built on top of the Haskell programming

language for programming robots using the Functional Reactive Paradigm. Bjar-

nason et al. [6] have described a toolchain to interactively develop DSLs. In this

work, a case study is discussed for industrial robot programming language and the

need for a parametrizable and composable DSL is emphasized (such as composing

DSLs for specifying the application level as well as motion control level). Then, two

solutions are proposed based on multi-layered grammars and procedure inheritance.

27

3. BAYESIAN ESTIMATION AND

PROBABILISTIC MODELING SOFTWARE

As will be discussed later in the next chapter, the scope of this thesis is a blend of

Bayesian estimation software and Domain-Speci�c languages. While DSLs play an

important role, in the end it is the graphical models that are used as the framework

to compute the Bayesian estimation. There have been various projects to implement

graphical modeling and inference.

As will be discussed later, in this project, one of already available software engines

to specify the modeling and performing the inference is chosen and used. Therefore,

it is bene�cial to brie�y present some of these projects which and specify the merit

for decision made for the probabilist programming stack of choice.

OpenGM

OpenGM [3] is a library implemented in the C++ programming language for discrete

factor graph models and distributive operations on these models. It allows for saving

of models in a �le in an open (HDF5) format. OpenGM imposes no restriction on

factor graphs and can be used to construct a factor graph with arbitrary structure.

However, it only supports tabular conditional probability distributions (sparse and

dense tables). Many inference algorithms are supported by OpenGM. Figure 3.1

depicts an overview of the these algorithms.

OpenGM architecture is designed so that it can deal with large scale problems

e�ciently. OpenGM imposes no restrictions on the factor graph and what operations

can be performed on the model. User extensions are automatically handled by

the �le format. OpenGM is modular and easily extendible. In OpenGM internal

modules of the software such as inference algorithms, the graphical model data

structure, and di�erent encodings of functions interoperate through well-de�ned

3. Bayesian Estimation and Probabilistic Modeling Software 28

Figure 3.1 Inference algorithms supported by OpenGM

interfaces.

However, the library's limited functionality to discrete factor graphs as well as tab-

ular CPDs render this framework unusable for Bayesian state estimation in robotics

where continuous state variables and probability distributions are present.

MRF-lib

MRF-lib[37] is a software API for performing inference based on energy minimiza-

tion in Markov random �elds (MRF). MRF-lib is restricted to min-sum semi-ring

and second-order grid graphs. Although it is highly e�cient in those, it is not

easily extendible. Optimization algorithms implemented in MRF-lib are Iterated

Conditional Modes (ICM), Graph Cuts, Max-product loopy belief propagation, and

Tree-Reweighted Message Passing (TRW).

libDAI

LibDAI[26] is an open source library for inference in graphical models with discrete

variables. LiDAI provides implementations of various exact and approximate in-

ference methods for these models. libDAI support max-product and sum-product

algorithms which are hard-coded in the library. LibDAI Supports only dense value

tables in order to encode functions. Inference methods supported by libDAI are:

junction-tree method and brute force enumeration for exact inference; mean �eld

(loopy) belief propagation, fractional belief propagation, tree-reweighted belief prop-

agation, generalized belief propagation, tree expectation propagation, double-loop

generalized belief propagation, loop-corrected belief propagation, a Gibbs sampler,

conditioned belief propagation and a decimation method for approximate inference

methods for calculating MAP states, marginals and partition sums. In addition,

3. Bayesian Estimation and Probabilistic Modeling Software 29

Figure 3.2 comparison of features supported by libDAI with some open-source libraries
for approximate inference on graphical models

parameter learning of conditional probability is possible in libDAI by maximum

likelihood or expectation maximization (in case of missing data).

Figure 3.2 depicts a comparison of features supported by LibDAI with various open

source software packages for approximate inference on graphical models:

FastInf

FastInf[16] is a library for memory and time e�cient approximation of inference in

large relational undirected graphical models. FastInf is focused on message pass-

ing and imposes no restriction on the factor graph structure. Contrary to libDAI,

FastInf supports di�erent function types and shared functions in a so-called rela-

tional model which follows the same design principles as OpenGM. However, only

sum-product is supported in FastInf and unlike what is possible in OpenGM, no

generic template abstraction of semi-rings is available in FastInf. Inference meth-

ods implemented in FastInf are Loopy Belief Propagation, Junction-Tree algorithm,

Generalized Belief Propagation, Tree Re-weighted Belief Propagation for exact in-

ference and propagation based on convexi�cation of the Bethe free energy, Mean

�eld, Gibbs sampling.

3. Bayesian Estimation and Probabilistic Modeling Software 30

Libra

The Libra[20] toolkit is a framework for performing inference and structural learn-

ing for in discrete domains. It is developed in OCaml language with some memory-

intensive routines implemented in C. For factors, Libra supports tables, trees, and

arbitrary conjunctive feature functions. Many inference and learning algorithms are

implemented in the Libra toolkit. For exact inference, the most common algorithms

are junction tree, enumeration, and variable elimination. For approximate infer-

ence, Libra provides Gibbs sampling, loopy belief propagation, and mean �eld, all

of which are optimized for structured factors. For learning, Libra supports maxi-

mum likelihood parameter learning and pseudo-likelihood optimization. Structure

learning is one of Libra's greatest strengths.

Grante

Grante [27] is a proprietary library for modelling, inference, and learning using

discrete factor graphs. Grante provides di�erent function types and shared functions.

Moreover, a set of learning methods are implemented in Grante. However, unlike

OpenGM Grante is limited in its inference methods due to the fact that is not

template based.

For factors Grante supports unary, pairwise, and high-order factors; linear data-

dependent factors; non-linear data-dependent factors; and sparse factor data and

for shared data among multiple factors. For inference many algorithms are imple-

mented such as Sum-product and max-product Loopy Belief Propagation; MAP

for exact inference in tree-structured factor graphs; and Approximate MAP-MRF

Linear Programming inference. For learning Maximum (Conditional) Likelihood

Learning for tree-structured factor graphs; Maximum Pseudolikelihood Learning for

general factor graphs; and Expectation Maximization (EM) for partially observed

data are supported.

BUGS, OpenBUGS, JAGS

BUGS [35] (Bayesian inference using Gibbs Sampling) is a language for Bayesian

analysis of probabilistic models using Markov Chain Monte Carlo (MCMC) . The

3. Bayesian Estimation and Probabilistic Modeling Software 31

BUGS project began in Cambridge, England in 1996 and later on the e�orts were

focused on the more modern implementation of the language, WinBUGS[21] and

then later on the OpenBUGS project which is an open source version of package.

JAGS[34] (Just Another Gibbs Sampler) is a clone of the classical BUGS language

used widely in many �elds. One of the main advantages of JAGS is platform inde-

pendence. JAGS is compatible with the original family of the BUGS language and

can be controlled from within another program such as R.

In the family of BUGS languages, it is assumed that the model is speci�ed in the

form of a DAG (directed acyclic graph), and Gibbs sampling is used for inference.

A large number of di�erent conditional distributions (node types) are supported.

Internally, various algorithms are used to sample from the full conditionals.

BFL

The Bayesian Filtering Library (BFL) [10] is a Bayesian estimation library included

in the OROCOS framework for robotic software development. BFL provides an

API for state estimation using the Kalman �ltering family including the standard

KF, EKF, IEKF and Non-minimal State KF; as well as the particle �ltering fam-

ily including standard Particle �lter with arbitrary proposal, the Bootstrap �lter,

Auxiliary Particle �lter, and Extended Kalman Particle Filter.

In implementation of �lters in BFL no graphical model is used and the closed form

solutions to the �lters are implemented. The library provides a set of functions to

�construct� the needed structure for the system dynamics and measurement models.

Dimple

Dimple [13] is another open-source software framework for probabilistic modeling,

inference, and learning. Dimple provides facilities to de�ne models in form of factor

graphs and infer on those models using a variety of algorithms. These algorithms

include sum-product and Gaussian belief propagation, min-sum BP, particle BP,

linear programming, and Gibbs sampling.

For factors, it is possible to de�ne arbitrary factor functions as well as to use a

3. Bayesian Estimation and Probabilistic Modeling Software 32

library of mathematical functions. Many standard distributions are also supported

by Dimple and can be used in de�ning the probabilistic models.

One of great features of Dimple is that it provides tools to easily specify complex

models. In particular, support for nested graphs and rolled-up graphs (repeated

structures inside a graph) will be discussed again later on in the next chapter.

33

4. RESEARCH METHODOLOGY AND

MATERIALS

In this chapter research methods and materials used in this research work is pre-

sented. As stated in the introduction chapter, aim of this research work is to present

a methodological approach to modeling knowledge about software implementations

in sensor fusion applications in form of a domain speci�c language. This approach

leverages software development for robotic applications by introducing a uni�ed

design for implementations. On the other hand, modeling of available knowledge

allows sharing this information between machines more e�ciently. Although this

will be a long term goal, it is hoped that this work contributes towards achieving it.

In this chapter, a general overview of tools and frameworks used in this research is

presented and their use is justi�ed. Then, the modeling work conducted is explained,

and lastly it is shown how this modeling is utilized to get a concrete implementation

for a certain problem.

4.1 Factor graphs as Bayesian estimator

A short explanation of graphical models was presented in Chapter 2.4. As it was

discussed, graphical modeling is a mixture of graph theory and probability. It is an

established framework for probabilistic reasoning and provide a powerful and �exi-

ble framework of encapsulating probabilistic models in a concise manner. Inherent

bene�t of using factor graphs as a structural framework of modeling is the possibility

of de�ning multiple layers of abstraction and building the model on top of simpler

and smaller sub-models. This way, complex models are built and represented more

e�ciently. In this work, factor graphs have been chosen as the framework of mod-

eling. This hybrid, bipartite graph o�ers good �exibility in modelling with de�ning

explicit �factors� representing relationships between di�erent probabilistic variables

of the model represented as nodes in the graph.

4.1. Factor graphs as Bayesian estimator 34

In general, graphical models can be used as a general formalism for di�erent �elds

of probabilistic modeling and reasoning. Graphical models enable us to represent

probabilistic problems as common framework. This approach is very bene�cial since

developed methods of reasoning can be used regardless of the model being developed

for a speci�c �eld of research. Methods and knowledge from a di�erent domains can

be shared and transferred easily once a common underlying infrastructure is used.

These reasons, along with the computational bene�ts introduced in Section 2.4 were

the reasons graphical models were chosen as formalism for modeling used in this

thesis research.

Optimal �ltering and estimation is used in various areas and levels of perception and

action in robotics, from visual recognition of objects to low level control of joints.

Therefore, it is bene�cial to have a common ground for all of these problems and

utilize framework of graphical modeling. Another natural gain of using graphical

models is that often in robotics there are multiple layers of abstraction for a given

problem. This work is focused on sensor fusion and in this area it is important

to have multiple levels of abstractions. Problem of sensor fusion is subdivided in

di�erent layers of data association, data fusion and (sometimes) multi-sensor fusion.

Each of these sub-problems can be tackled using graphical models.

Two main aspects of a graphical model (and hence a factor graph) are the structure

of the model and the inference algorithm used which speci�es how the mathematical

calculations lead to an inference on the model. Bayesian estimators are indeed a

form of solution to a statistical problem. This problem can be encapsulated and

formulated in a graphical model like any other statistical inference problem. Various

combinations of model structures and inference algorithms can be used to formulate

Bayesian estimators.

In general, the structure of a factor graph for state estimation problem consist of

three main elements: the prior state (state computed at the previous step), an ob-

servation of current state variables, and estimated (�inferred�) state variables at the

current time step considering the observations and the prior. It should be mentioned

here that when laying out the structural design of the model, one can consider the

whole time series of steps and corresponding state variables and construct a model

with a relatively big skeleton (number of time steps * state + number of time steps

* observation in each time step). This approach, as demonstrated in �gure 4.1 leads

to a very large model and by doing so, all observations of the state variables are

4.1. Factor graphs as Bayesian estimator 35

State_{t-1} State_t

System

Dynamic

Model

Observation

Model

Measurement_t

Observation

Model

Measurement_{t-1}

State_{t+1}

Observation

Model

Measurement_{t+1}

System

Dynamic

Model

State_0

Observation

Model

Measurement_0

....

State_n

Observation

Model

Measurement_n

State_{t-1} State_t

System

Dynamic

Model

Observation

Model

Measurement_t

Figure 4.1 Time series analysis of a �ltering problem.
Top: when the whole data series is taken into account. Bot-
tom: simpli�ed case, one time step at a time is analyzed.

considered when each of the states at time step t are estimated.

However, this is not necessary in most of the cases and as it was introduced in

Section 2.3.1 the Markov assumption can be used most of the times to simplify the

solution. According to the Markov assumption, state of the system at the next

step in time only depends on the current state. What this means in terms of state

estimation is that we can subdivide the problem and take each time step individually

rather than take the whole time series of state evolution. Figure 4.1 demonstrate

the di�erence between modelling the whole time series (i.e. batch solution) vs the

one-step at a time (i.e. recursive solution) approach.

The simpler (and more intuitive) approach of recursive state estimation can be

realized using �rolled-up� graphs. A rolled-up factor graph is a factor graph where

a smaller sub-graph is repeated many times inside the parent graph. This approach

is also in-line with step-wise nature of robotic applications where a processing unit

polls for data input from the surrounding environment, processes the data, and then

perform an action. The rolled-up factor graph is speci�ed only once in the model and

when inference is performed, the result is a factor graph that is implicitly unrolled.

At each step of calculations, a sub-graph with a structure similar to the simpli�ed

structure shown in �gure 4.1 is considered. The process starts with observed values

4.1. Factor graphs as Bayesian estimator 36

of state variables as an evidence of state of the current time step in the graph, as well

as the prior belief of the state set as �xed values which is the posterior computed

at the previous step. At the other side of the graph is the variable node which is

the current state of the system. The inference engine starts with passing messages

between all these nodes. Message passing between the nodes continues until either

the model reaches equilibrium and values for next state are stable or a prede�ned

maximum number of iterations is reached. In the latter case the inference does not

produce the correct result and calculations are terminated.

One of the key areas when building a graphical model for a given problem is how this

model should be reasoned about. Inference scheme of a graphical model speci�es how

message passings are performed and what kind of information each of the messages

contain. Various inference schemes have been developed and used to solve graphical

models of di�erent types. Here, we focus on those specialized to use for factor models.

Filters of interest here fall in two types of inference scheme families introduced in

Chapter 2.5, sum-product and particle belief propagation. More details about this

is given in the next subsections where Bayesian estimators are explored and it is

discussed how factor graphs can be utilized to perform such estimations.

In order to understand better how optimal �ltering can be achieved using graphical

models (and more speci�cally factor graphs), it is essential to analyze the behavior

of such inference algorithms and see how Bayesian �lters can be �reconstructed� in a

factor graph solver. In what follows, it is explained how one can specify a common

behavior between speci�c solvers of factor graphs and Bayesian estimators.

4.1.1 Factor graphs for Kalman �ltering

As stated in Chapter 2.3.2, main characteristics in a Kalman �ltering problem are

presence of a linear system as well as assumption of Gaussian probability distribution

for state variables and additive Gaussian noise for the process and measurement

noise i.e. the Kalman �lter is the closed form solution to the Bayesian �ltering

equations for the �ltering model, where the dynamic and measurement models are

linear Gaussian.

Therefore, two key distinctions that should be taken into account for constructing

the model for KF is the linear model structure and Gaussian distributions. As for

the model structure, the system propagation and measurement models can easily

4.1. Factor graphs as Bayesian estimator 37

State_{t-1} State_t

Multipy by A

Addition

Measurement_t

ProcessNoise_t

MeasurementNoise_t

UnnoisyState_t

Addition

Multipy by C

UnnoisyMeasurement_t

Figure 4.2 Realisation of a linear system

be constructed by de�ning linear factors between the state posterior and the prior

saved from the previous step on one end and the current observation on the other.

On the other hand, additive Gaussian noises can be modeled as separate nodes

with a prede�ned distribution. As we will see later, when inference is performed on

the model these nodes are sampled and a value is assumed which pertains to the

designated distribution.

Figure 4.2 shows a realization of a linear system as de�ned in equations 2.4 and 2.5.

As shown in the �gure, probabilistic model of a linear system is easily constructed

by combining su�cient variables (as nodes in the model, represented by circles) and

functions (�factors�, represented by squares).

On the other hand, for solving the model for KF a variation of belief propaga-

tion algorithm introduced in Chapter 2.5.3 named Gaussian Belief Propagation

(GaBP) [40] can be used. Gaussian BP i.e. is a special case of continuous BP,

where the underlying distribution is Gaussian i.e. messages passed to and from con-

tinuous variables are represented in a Gaussian form. This ensures that the Gaussian

representation of nodes is always kept since the belief of each of node is proportional

4.2. Tools and Frameworks used 38

to sum of messages received and sum of Gaussians is Gaussian.

It is worthy to add here that this procedure can be used for implementing extended

KF as well as the original �lter. By adding n-th order derivative term of the nonlinear

functions to the graphical model as factors it is possible to achieve the family of EKF

�lters (EKF, EKF2, etc).

4.1.2 Factor graphs for Particle �ltering

Contrary to what is available in a Kalman �ltering problem, in particle �lters there

is no assumption on the distribution of variables or the system model. The system

can have arbitrary structure for observation and state evolution models. Therefore,

there can be no �general� form of structure for the system model and consequently

developing structure of a factor graph encapsulating a particle �lter depends on the

dynamic and observation model of a particular system and needs ad-hoc solution.

The model can be highly non-linear with variables distributed with any distribution.

In Chapter 2.3.4 an overview of particle �lters was presented. In order to capture

behavior of particle �lters in graphical models, a solver that uses Particle Belief

Propagation (PaBP) [15] is used. This algorithm introduces a sample-based belief

propagation in graphical models with encapsulate particle values in messages passed

between nodes of graphical model. In principle, PaBP in graphical models and

particle �lters in Bayesian estimators share the same workings such as sampling

of proposal kernels, particle weights, etc thus it is very convenient to implement

particle �lters by using graphical models and particle belief propagation message

passing method.

4.2 Tools and Frameworks used

In this section di�erent tools and software frameworks used to perform the work

are presented. This thesis work deals with di�erent areas ranging from probabilistic

inference and mathematical modeling to software modeling and design. Proper tool

needs to be selected for each of these areas in order for the project to be in harmony.

In interdisciplinary projects such as this work if tools selected are incompatible and

poorly selected it can result in the whole project to be either hard to use or hard to

re-use.

4.2. Tools and Frameworks used 39

The tools used in this work fall into two major categories, probabilistic programming

and software modeling. This work is targeted at software development for sensor

fusion in robotic applications. The sensor fusion part deals with probabilistic models

and optimal �ltering theory and the software development part deals with software

modeling and domain-speci�c languages.

4.2.1 Probabilistic programming

In order to de�ne probabilistic models using computers, various programming frame-

works and languages have been developed. A wide range of possibilities is available

for de�ning a probabilistic problem with various special purpose languages or frame-

works written for general purpose languages. Some of these projects were introduced

in Chapter 3. There have been frameworks developed using an already available

general-purpose programming language and also there have been specialized lan-

guages developed from scratch for this speci�c purpose. These two categories of

software are called probabilistic programming languages.

It is worth mentioning here that although this part of the work is done using a speci�c

software framework, the main point of this e�ort has been towards what we believe

to be a better approach to software development which results in better structured

and more �exible software. The probabilistic modeling tool used here serves as

a demonstration of how DSLs can be used to generate concrete implementation

needed for sensor fusion applications and should be seen as a use-case example. The

framework chosen here has been based on needs and criteria of a speci�c use-case

which will be presented shortly. Others may �nd other frameworks or probabilistic

programming languages more suited to their usage and should be able to choose

freely their tools with as least e�ort as possible for adapting the software.

The criteria that were considered to choose the probabilistic modeling software here

are as follows:

� Ability de�ne models using factor graphs since this type of graphs are used to

implement the Bayesian estimators

� Support as many inference algorithms as possible with reliable computations

� Support for de�ning hierarchical models. This was one of the major factors in

choosing the probabilistic programming framework. This feature enables us

4.2. Tools and Frameworks used 40

to de�ne models on di�erent levels of abstraction. This is bene�cial in robotic

applications which deal with di�erent sub-areas which often have very di�erent

nature. Abstracting these on di�erent levels can result in cleaner and more

structured models.

� Licensed under an open source license to provide possibility of examining and

modifying its source codes.

� Cross-platform.

Considering the above reasons, Dimple 1 was chosen as the framework for de�ning

and reasoning on graphical models. Dimple is developed by Analog Devices Inc 2

and is released under the Apache license 2.03. A brief introduction on Dimple

was presented in Section 3. Dimple is focused on factor graphs with possibility

of choosing various inference schemes including PaBP and GaBP discussed earlier.

To the best of writer's knowledge, this set of features is unique among available

frameworks. Specially, availability of more complex solvers such as those based on

sampling methods such as Gibbs [12] and particle belief propagation for inference

on factor graphs is bene�cial for implementing sophisticated Bayesian estimators.

Dimple's core software is developed in Java programming language. There is also

a Matlab® interface available which can be used to de�ne models and perform

inference on them. The Matlab interface exposes all of Java classes and utilities to

Matlab. In this work the Matlab API is used because of ease of use and cleaner code

output. Another bene�t of using the Matlab API is availability of various functions

and utilities that can be used to pre- or post-process the data easily as well as easy

data visualization using built-in graphs.

4.2.2 Software Models

Another side of this thesis work deals with modeling of software components and

domain speci�c languages. As discussed in Chapter 2.6.2 it is possible to de�ne

models in a plethora of di�erent ways. Well known methodologies have been used

throughout the years to model and design software and modeling languages have

been developed with di�erent characteristics and design goals.

1http://dimple.probprog.org/
2http://www.analog.com
3http://www.apache.org/licenses/LICENSE-2.0

4.2. Tools and Frameworks used 41

One of well known methods is the framework of Uni�ed Modeling Language (UML).

A brief overview of UML methodology is presented in Section 2.6.1. One of the

main problems with UML is that it is primarily intended for humans to deal with

and understand. Using UML diagrams is not very well suited for machine to process

and therefore a machine should be able to perform complex processing on the model

to be able to understand and analyze the models. As stated earlier, one of the main

reasons for this work is to enable robots to share their knowledge about the problem

at hand and it is important to choose a tool best suitable for this need.

On the contrary to UML models which are graphical and based on diagrams, there

are textual models which represent the model in text �les. One of textual mod-

eling formats which was chosen to use in this thesis work is a light-weight and

clean modeling notation named JavaScript Object Notation (JSON) 4. JSON is a

general-purpose open standard that introduces simple textual notations to de�ne

and transmit data models. JSON models are simple text �les containing structure

of data. JSON models are easy for humans to read and write and easy for machines

to parse and generate.

Listing 1 JSON notation of a simple object

1 {

2 "id": 1,

3 "name": "Example_Model",

4 "tags": [

5 "Tag1",

6 "Tag2"

7]

8 }

Figure 1 demonstrate an example of a model written in JSON format. One of

key features of JSON is that it is programming language independent. A model

is written in simple textual format and can be easily parsed and used in various

languages which either support JSON through their standard library or by using

a third-party developed library. JSON models are built on top of two types of

structures. The �rst type is a collection of name-value pairs and the second type is

an ordered list of values. A model can be speci�ed by encapsulation of attributes

4http://www.json.org/

4.2. Tools and Frameworks used 42

Listing 2 JSON schema example

1 {

2 "$schema": "http://json-schema.org/draft-04/schema#",

3 "title": "Model",

4 "type": "object",

5 "required": ["id", "name"],

6 "properties": {

7 "id": {

8 "type": "number",

9 "description": "Model identifier"

10 },

11 "name": {

12 "type": "string",

13 "description": "Name of the example model"

14 },

15 "tags": {

16 "type": "array",

17 "items": {

18 "type": "string"

19 }

20 }

21 }

22 }

of the model in key-value pairs or by specifying ordinal sequence of values. A lot

of advanced features have been added to JSON standard during the past years,

allowing to de�ne complex models with interconnected references to other models

or foreign types. JSON has been standardized since 2013 and is used widely in

diverse application domains.

Using JSON, one is able to start sketching a model for a speci�c need/problem,

populating the �values� in the name-value pair or the ordered list mentioned earlier.

However, this is not a very good approach as the model is not explicitly checked

against a prede�ned structure. One of advanced features of JSON is that it is

possible to de�ne a �template� or a �blueprint� of the model, referred to as schema.

JSON schema are themselves a model de�ned in the JSON notation but instead of

specifying speci�c values, types and rules are �lled in the model. In other words,

JSON schema are meta-models that de�ne models. These schema are speci�ed once

4.3. Modeling 43

for a speci�c application and then for each realizations of the schema (i.e. the actual

instantiation of the model) the model is validate against the rules de�ned in the

schema. A simple JSON schema is presented in listing 2. Note that this schema

describes the model given in listing 1 and can be used to check the validity of the

model.

One the big advantages of JSON models are the fact that due to clean and minimal

syntax they are easily understandable by humans as well as machines. Support

for JSON format has been embodied in many programming languages which makes

it very easy to generate and parse models using already available tools. Although

JSON format was inspired �rst by JavaScript language, it is a language independent

format which is not tied to a speci�c language. This has high importance in this

work since as already mentioned the purpose here is to decouple models from actual

implementations of the software. By using a tool that is not tied to a speci�c

programming language or software framework this can be easily achieved. It should

be possible to choose freely low level underlying software implementations based on

needs of a use case and software models should be easy to specify accordingly.

The fact that JSON is an open standard and well supported in various programming

languages makes it an ideal tool for our use case. It is worth mentioning that here

what is speci�ed in JSON �les are meta-model of the Bayesian estimators (and

sometimes di�erent models for underlying components) which is then processed to

understand about the structure of the estimator and its internals. A more detailed

explanation of the work�ow is give in the next section.

4.3 Modeling

Up until now it was explained how and by what means the modelling and Bayesian

estimator speci�cation is laid out. In this section, the structure and contents of the

models are explained.

In general, recursive Bayesian estimators usually consist of a prediction component

which �blindly� (i.e. without looking at observations of the real word) computes a

belief propagation of the system states according to the system model, and an update

component which takes into account observed values of the state variables in order

to improve the predictions. This is a common behavior that can be seen in all of

families of Bayesian estimators but with di�erences in details of how these steps are

4.3. Modeling 44

taken.

Consequently, one would expect this structure to be applicable in the software de-

veloped for Bayesian estimation as well. Although this is true from an algorithmic

point of view, this is more applicable to implementation of the software. In this

work, emphasis is placed on minimalism and ease of use for the end-user i.e. the en-

gineer dealing with the estimator. From user's point of view, a Bayesian estimator

of any type should be fully de�ned with the fewest parameters possible and in an

intuitive and easy to use manner.

In order to have clear and coherent semantics, modeling is performed in di�erent

levels of software. At the top most level, there is a �master� �lter model which acts as

a placeholder for de�ning each of the Bayesian estimators. This container model then

includes reference to a list of possible sub-models (KF, EKF, etc. �lter speci�cations)

containing actual de�nitions of each of the �lters. The schema used for the Bayesian

�lter estimators and an example of such �lters is given in Appendix A

One important remark that should be noted here is that these high-level meta-

models specify the structure of a �ltering scheme and have enough information to

infer about the parameters of a certain estimator from algorithmic point of view

but they bear no meaningful information regarding actual implementation of the

software. The reason for this is that each of these model encapsulate knowledge

from a speci�c domain. In other words, while Bayesian estimator models express

what are the parameters of a certain �lter, there should be a middle-level mapping

between these de�nitions and the actual pieces of software to be used. In order to

be able to so, there should be a meta-model representation of the low level software

implementations. As stated in 4.2.1 Dimple is used as the software framework for

implementing the Bayesian �lers. Therefore, di�erent components of this framework

relevant to Bayesian �ltering and graphical models were modeled. On top of already

available elements in Dimple, some additional models were added to provide more

layers of abstraction leading to a cleaner design and more intuitive utilization of

the models. These added models include elements such as Matrix data type and

function de�nitions.

All of the models discussed so far are spread across �les each containing a meaningful

piece of sub-models. As stated in 4.2.2 models are de�ned in JSON �le format allow-

ing to validate models against a prede�ned schema. JSON schemas developed are

the actual models of the software and examples are also implemented and validated

4.4. Code generation 45

against the schema de�nitions.

4.4 Code generation

In the previous section it was explained how meta-models are utilized to represent

the knowledge in Bayesian �ltering. In an actual use case, these models should

be then translated to a level that machines can understand and run. Various low-

level implementations of Bayesian estimators exist with di�erent characteristics and

design goals.

As stated in previous chapters, Dimple was chosen as the framework of de�ning

probabilistic networks. The work �ow of de�ning the Bayesian estimator to deploy-

ment and execution is:

� First a Bayesian estimator is de�ned by specifying the meta-models in JSON

�les.

� Then, these models are then processed by scripts and routines de�ned in

Python programming language to validate the �lter de�nition against the pre-

viously de�ned schema.

� Then, the model is parsed to obtain the type and parameters of the estimator.

� Once the type and parameters of the �lter is known, depending on the type

of the estimator it is decided which of the middle-level �ltering model should

be used to determine how high level �lter de�nition should be mapped to

functions and utilities of the computational framework.

� At the end, the lower level implementation of the estimator is written using

the parameters de�ned by the user and the framework models.

It should be noted that this translation from the meta-models to lower level lines

of code is very framework dependent and greatly di�ers if di�erent programming

language/software framework is used. In this thesis work, the low level language of

computations is chosen to be Matlab. Dimple o�ers interfaces for both Matlab and

Java programming language but it is chosen to work with the Matlab interface due

to ease of use and slightly simpler coding needed to de�ne the factor graph network.

4.4. Code generation 46

The output of Python scripts after processing the models is a Matlab m-�le con-

taining necessary lines of code to de�ne, con�gure, and solve the factor graph. This

approach allows the software developer to freely choose which speci�c implementa-

tion to use for a given problem since it is only needed to modify the intermediate

level i.e. the translation layer so that it contain information about how meta-models

should be translated to code.

47

5. RESULTS AND DISCUSSION

In this chapter, a sample problem for Bayesian estimation is discussed and it is

shown how models can be used to implement a Kalman �lter for the recursive

estimation of state variables. It is also shown how graphical models can be used as

the underlying computational framework of the solution. Accuracy of the result is

compared between the factor graph model solution with GaBP and the closed form

solution.

5.1 An example problem

For this section, a simple linear system is considered and used for recursive estima-

tion. The model is a discretized version of the noisy resonator model with a given

angular frequency ω. The system has two state variables and one observed state

with Gaussian white noise for state propagation and measurements. The system

model is stated in equations 5.1 and 5.2.

xt =

(
cos(ω) sin(ω)

w

−ω sin(ω) cos(ω)

)
xt−1 + εt (5.1)

zt =
(

1 0
)
xt + δt

where xt ∈ R2 is the state, zt is the measurement, δk ∼ N(0, 0.1) is a white Gaussian

measurement noise and εt ∼ N(0,Q), where

Q =

(
qcω−qc cos(ω) sin(ω)

2ω3

qc sin2(ω)
2ω2

qc sin2(ω)
2ω2

qcω+qc cos(ω) sin(ω)
2ω

)
(5.2)

The angular frequency is ω = 1
2
and the spectral density is qc = 0.01. The problem

5.1. An example problem 48

was �rst solved by the closed-form Kalman �lter and then the same parameters were

used to construct a factor graph model and solved. The data used for measurement

and real values for state variables where obtained by simulating the system operation

in Matlab.

5.1.1 Filter Model

Estimator models were explained in Section 4.3. For this example problem, system

and measurement models are linear with additive Gaussian noise. Therefore, the

�ltering problem is described as the model shown below:

{

"filter_type": "KF",

"filter_specs": {

"transition_matrix": [

[0.8776, 0.9589],

[-0.2397, 0.8776]

],

"process_noise_covariance": [

[0.0032, 0.0046],

[0.0046, 0.0092]

],

"measurement_matrix": [

[1, 0]

],

"measurement_noise_covariance": [

[0.1]

],

"input_matrix": [

[0]

]

}

}

As can be seen, the above representation of the estimator is more compact and

5.1. An example problem 49

understandable as opposed to the case where the problem characteristics are inter-

leaved with implementation details.

It should be noted here that the above model is the simplest form of a Bayesian

estimator. More complex models can be speci�ed for di�erent types of estimators.

It is possible to refer to another model de�ned in another �le/url to build more

complex �lters. Examples of this external reference in models is used for functions

in non-linear �ltering, models of solvers, distributions, etc.

5.1.2 Model Checking and Code Generation

Model schema were introduced in Section 4.2.2. When the user speci�es the char-

acteristics of the estimator as explained above, the models are fed to the python

scripts for checking and parsing. Validity of the models are checked against the set

of prede�ned schema for di�erent layers of the estimator and if the model is valid,

the equivalent implementation of the �lter is generated. As discussed in Section 4.2.1

the framework used for implementing graphical models is Dimple. For this example

problem, the equivalent implementation of the �lter generated is as below:

1 transition_matrix__ = [0.8776 0.9589 ; -0.2397 0.8776];

2 process_noise_covariance__ = [0.0032 0.0046 ; 0.0046 0.0092];

3 measurement_matrix__ = [1 0];

4 measurement_noise_covariance__ = [0.1];

5

6 n_state = size(transition_matrix__,1);

7 n_measured = size(measurement_matrix__,1);

8

9 % Child graph

10 states_prior = RealJoint(n_state);

11 states_prior.Name = 'StPrior';

12 states_nonoise = RealJoint(n_state);

13 states_nonoise.Name = 'StNN';

14 states_posterior = RealJoint(n_state);

15 states_posterior.Name = 'StPosterior';

16 observation_nonoise = RealJoint(n_measured);

17 observation_nonoise.Name = 'ObsNN';

5.1. An example problem 50

18 observation = RealJoint(n_measured);

19 observation.Name = 'Obs';

20 nested_graph =

FactorGraph(states_prior,states_posterior,observation);↪→

21

22 process_noise = RealJoint(n_state);

23 process_noise.Name = 'PrcsN';

24

25 measurement_noise = RealJoint(n_measured);

26 measurement_noise.Name = 'MsrN';

27

28 % KF specific parts %

29 setSolver('SumProduct');

30 process_noise.Input = FactorFunction('MultivariateNormal',zeros(n_st c

ate,1),process_noise_covariance__);↪→

31 measurement_noise.Input = FactorFunction('MultivariateNormal',zeros(c

n_measured,1),measurement_noise_covariance__);↪→

32 state_transition_factor = nested_graph.addFactor(@constmult,states_n c

onoise,transition_matrix__,states_prior);↪→

33 state_transition_factor.Name = 'StTrF';

34 state_noise_factor = nested_graph.addFactor(@add,states_posterior,st c

ates_nonoise,process_noise);↪→

35 state_noise_factor.Name = 'StNF';

36 measurement_projection_factor = nested_graph.addFactor(@constmult,ob c

servation_nonoise,measurement_matrix__,states_posterior);↪→

37 measurement_projection_factor.Name = 'MsrPrF';

38 measurement_noise_factor = nested_graph.addFactor(@add,observation,o c

bservation_nonoise,measurement_noise);↪→

39 measurement_noise_factor.Name = 'MsrNF';

40 % /KF specific parts%

41

42

43 % Variable streams

44 states_stream = RealJointStream(n_state);

45 measurement_stream = RealJointStream(n_measured);

46

5.2. Future Work 51

47 % Parent Graph

48 parent_graph = FactorGraph();

49 parent_graph.addFactor(nested_graph,states_stream.getSlice(1),states c

_stream.getSlice(2),measurement_stream.getSlice(1));↪→

5.1.3 Results

The network obtained in the above section is the equivalent of the estimator speci�ed

in JSON.However, there is still some manual work needed in order to solve the

problem. First it is assumed that Dimple is initialized and all of the Dimple API

calls are available. Second, the input and output of the network is left for the user

to manually setup since the inputs may come from various sources such as online

stream of sensor data or as in this example, from a series of simulated data residing

in Matlab's workspace. In the network generated, the input/output nodes of the

netowrk (variable streams in Dimple's terminology) are de�ned but connecting these

nodes to streams of data is left for the user.

Figure 5.1 depicts the results obtained from running the GM network generated. For

the sake of comparison, matrix form solution of the KF estimator for this speci�c

problem is included in the graph. The �gure also depicts the time series of true

values for the simulated observed state as well the (simulated) observed value. The

overall script which includes the matrix-form solution and data simulation part can

be found in Appendix B.

As can be seen from �gure 5.1, the factor graph estimator is able to �lter the signal

with satisfactory accuracy. The RMS error of the FG estimator was computed to

be 0.4 which is higher when compared to the RME of the KF �lter, 0.2 but the

di�erence is small. In fact, this slightly higher error is expected since the KF �lter

is the optimal solution while the factor graph solution is approximated. The Matlab

�le used to generate the simulated data and performing the KF �ltering is included

in Appendix B.

5.2 Future Work

The models and framework presented here is a �rst step towards a better and more

structured software for a speci�c problem, sensor fusion. Although this practice

5.2. Future Work 52

0 10 20 30 40 50 60 70 80 90 100

Time step

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

True signal

KF estimation

Measurements

Dimple estimation

Figure 5.1 Comparison of KF performance when closed form matrix solution used vs
when implemented using factor graph in Dimple

has been in use for many other application areas in computer science and software

engineering domain, in robotics mostly the software developed does not adhere to

MDE methodology. This work was performed in the hope that one day all layers of

software involved in a Robotic application are developed in a way that is easier to

maintain for humans and easier to process and con�gure for machines.

However, this work can be extended in many ways. The underlying computational

framework for factor graph models is one example of such these frameworks. Every

framework (and programming language) has its own set of strengths and limita-

tions. It would be better to have as many alternatives as possible so that it can

be easily chosen based on the need for a project to choose which framework. The

scripts developed to parse and validate models have also limited functionality and

are developed for a simple use-case. Also, another one distant goal can be to leave

this choice to the machines themselves. When software is intelligent enough to have

enough knowledge about estimation algorithms and its own environment, it is not

impossible to imagine that one day it can choose the best �tting algorithm for a

speci�c task autonomously.

53

6. CONCLUSION

In this thesis research, a software stack was developed for Bayesian sensor fusion in

robotics applications (though not limited to only robotics). The framework relies

heavily on the practices of model-driven engineering and architecture. The software

is used as a small domain-speci�c language where parameters and structure of the

Bayesian estimator are written in form of models in JSON schema format.

These models are then processed and a mapping between the high level �lter prop-

erties and lower level computational stack (which is itself modeled and is processed

by the scripts) is constructed. At the end, the �nal code is written in the syntax of

the target framework and programming language which can be used to deploy on

the target hardware and perform the �ltering.

Graphical models (more speci�cally, a type of graphical models known as factor

graphs) were chosen as the underlying computational framework to implement the

estimators. Graphical models o�er a concise and structured framework to model

and solve a probabilist problem. Using factor graphs, Bayesian estimators can be

formulated in form of a network. Structure of the network and the solver used in

the model are then chosen according to the speci�c type of the estimator. At the

end, as an example a problem was considered as proof of concept for performing the

Bayesian estimation using factor graphs.

54

BIBLIOGRAPHY

[1] S. Ali-Löytty, Gaussian mixture �lters in hybrid positioning. Tampere Univer-

sity of Technology, 2009.

[2] N. Ando, T. Suehiro, and T. Kotoku, �A software platform for component

based rt-system development: Openrtm-aist,� in International Conference on

Simulation, Modeling, and Programming for Autonomous Robots. Springer,

2008, pp. 87�98.

[3] B. Andres, T. Beier, and J. H. Kappes, �Opengm: A c++ library for discrete

graphical models,� arXiv preprint arXiv:1206.0111, 2012.

[4] J. Bentley, �Programming pearls: little languages,� Communications of the

ACM, vol. 29, no. 8, pp. 711�721, 1986.

[5] J. Bézivin, �On the uni�cation power of models,� Software & Systems Modeling,

vol. 4, no. 2, pp. 171�188, 2005.

[6] E. Bjarnason, G. Hedin, and K. Nilsson, �Interactive language development for

embedded systems,� Nord. J. Comput., vol. 6, no. 1, pp. 36�54, 1999.

[7] S. Burmester, H. Giese, and M. Tichy, �Model-driven development of recon�g-

urable mechatronic systems with mechatronic uml,� in Model Driven Architec-

ture. Springer, 2005, pp. 47�61.

[8] E. Coste-Maniere and N. Turro, �The maestro language and its environment:

Speci�cation, validation and control of robotic missions,� in Intelligent Robots

and Systems, 1997. IROS'97., Proceedings of the 1997 IEEE/RSJ International

Conference on, vol. 2. IEEE, 1997, pp. 836�841.

[9] M. Fowler, �Language workbenches: The killer-app for domain speci�c lan-

guages,� 2005.

[10] K. Gadeyne, �BFL: Bayesian Filtering Library,� http://www.orocos.org/b�,

2001.

[11] E. Gat, �Alfa: A language for programming reactive robotic control systems,�

in Robotics and Automation, 1991. Proceedings., 1991 IEEE International Con-

ference on. IEEE, 1991, pp. 1116�1121.

http://www.orocos.org/bfl

BIBLIOGRAPHY 55

[12] S. Geman and D. Geman, �Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images,� IEEE Transactions on pattern analysis and

machine intelligence, no. 6, pp. 721�741, 1984.

[13] S. Hershey, J. Bernstein, B. Bradley, A. Schweitzer, N. Stein, T. Weber, and

B. Vigoda, �Accelerating inference: towards a full language, compiler and hard-

ware stack,� CoRR, vol. abs/1212.2991, 2012.

[14] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, �Arrows, robots, and func-

tional reactive programming,� in Advanced Functional Programming. Springer,

2003, pp. 159�187.

[15] A. T. Ihler and D. A. McAllester, �Particle belief propagation.� in AISTATS,

2009, pp. 256�263.

[16] A. Jaimovich, O. Meshi, I. McGraw, and G. Elidan, �Fastinf: An e�cient

approximate inference library,� J. Mach. Learn. Res., vol. 11, pp. 1733�1736,

Aug. 2010. [Online]. Available: http://dl.acm.org/citation.cfm?id=1756006.

1859908

[17] L. P. Kaelbling, �Goals as parallel program speci�cations.� in AAAI, 1988, pp.

60�64.

[18] L. KAELBLING, �Rex- a symbolic language for the design and parallel imple-

mentation of embedded systems,� in AIAA Computers in Aerospace Conference,

6 th, Wake�eld, MA, 1987, pp. 255�260.

[19] R. E. Kalman, �A new approach to linear �ltering and prediction problems,�

Transactions of the ASME�Journal of Basic Engineering, vol. 82, no. Series D,

pp. 35�45, 1960.

[20] D. Lowd and A. Rooshenas, �The libra toolkit for probabilistic models,�

CoRR, vol. abs/1504.00110, 2015. [Online]. Available: http://arxiv.org/abs/

1504.00110

[21] D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, �Winbugs-a bayesian

modelling framework: concepts, structure, and extensibility,� Statistics and

computing, vol. 10, no. 4, pp. 325�337, 2000.

[22] S. S. S. J. Mellor and S. Shlaer, Object-oriented systems analysis: modeling the

world in data. Yourdon, 1989.

http://dl.acm.org/citation.cfm?id=1756006.1859908
http://dl.acm.org/citation.cfm?id=1756006.1859908
http://arxiv.org/abs/1504.00110
http://arxiv.org/abs/1504.00110

BIBLIOGRAPHY 56

[23] S. J. Mellor, M. Balcer, and I. Foreword By-Jacoboson, Executable UML: A

foundation for model-driven architectures. Addison-Wesley Longman Publish-

ing Co., Inc., 2002.

[24] M. Mernik, J. Heering, and A. M. Sloane, �When and how to develop domain-

speci�c languages,� ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316�

344, 2005.

[25] J. Miller and J. Mukerji, MDA Guide version 1.0.1. Technical report, Object

Management Group (OMG), 2003.

[26] J. M. Mooij, �libdai: A free and open source c++ library for

discrete approximate inference in graphical models,� J. Mach. Learn.

Res., vol. 11, pp. 2169�2173, Aug. 2010. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1756006.1859925

[27] S. Nowozin, �Grante library,�

http://www.nowozin.net/sebastian/grante.

[28] Object Management Group, �Meta object facility (mof) core speci�cation,�

http://www.omg.org/technology/documents/formal/data_distribution.htm.

[29] ��, �Object Constraint Language,� http://www.omg.org/spec/OCL/.

[30] ��, �Query View Transformation,� http://www.omg.org/spec/QVT/.

[31] ��, �Semantics of a Foundational Subset for Executable UML Models

(fUML),� http://www.omg.org/spec/FUML/1.0/.

[32] ��, �Uni�ed Modeling Language (UML) superstructure speci�cation,�

http://www.uml.org/.

[33] J. Peterson, P. Hudak, and C. Elliott, �Lambda in motion: Controlling robots

with haskell,� in International Symposium on Practical Aspects of Declarative

Languages. Springer, 1999, pp. 91�105.

[34] M. Plummer et al., �Jags: A program for analysis of bayesian graphical models

using gibbs sampling,� in Proceedings of the 3rd international workshop on

distributed statistical computing, vol. 124. Vienna, 2003, p. 125.

[35] D. J. Spiegelhalter, A. Thomas, N. G. Best, W. Gilks, and D. Lunn, �Bugs:

Bayesian inference using gibbs sampling,� Version 0.5,(version ii) http://www.

mrc-bsu. cam. ac. uk/bugs, vol. 19, 1996.

http://dl.acm.org/citation.cfm?id=1756006.1859925
http://dl.acm.org/citation.cfm?id=1756006.1859925
http://www.nowozin.net/sebastian/grante
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/FUML/1.0/.
http://www.uml.org/

Bibliography 57

[36] D. Spinellis, �Notable design patterns for domain-speci�c languages,� Journal

of systems and software, vol. 56, no. 1, pp. 91�99, 2001.

[37] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,

M. Tappen, and C. Rother, �A comparative study of energy minimization meth-

ods for markov random �elds with smoothness-based priors,� IEEE transactions

on pattern analysis and machine intelligence, vol. 30, no. 6, pp. 1068�1080, 2008.

[38] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[39] A. Van Deursen, P. Klint, and J. Visser, �Domain-speci�c languages: An anno-

tated bibliography.� Sigplan Notices, vol. 35, no. 6, pp. 26�36, 2000.

[40] Y. Weiss and W. T. Freeman, �Correctness of belief propagation in gaussian

graphical models of arbitrary topology,� Neural computation, vol. 13, no. 10,

pp. 2173�2200, 2001.

58

Appendices

59

A. JSON SCHEMA MODELS

Schema of the top level Bayesian �lter

1 {

2 "id": "https://gitlab.mech.kuleuven.be/u0097847/bayesianmodelling/

raw/master/models/bayesian_filter_schema.json",↪→

3 "$schema": "http://json-schema.org/draft-04/schema#",

4 "description": "Top level schema for a Bayesian filter",

5 "type": "object",

6 "properties": {

7 "filter_type": {

8 "description": "Enum specifying type of filtering; one of

Kalman filtering, Extended Kalman filtering first order,

Extended Kalman filtering second order",

↪→

↪→

9 "type": "object",

10 "oneOf": [

11 {

12 "description": "KF filter model",

13 "filter_type": "KF",

14 "filter_specs": {

15 "$ref": "https://gitlab.mech.kuleuven.be/u0097847/

bayesianmodelling/raw/master/models/kf_schema.json",↪→

16 }

17 },

18 {

19 "description": "EKF filter model",

20 "filter_type": "EKF",

21 "filter_specs": {

22 "$ref": "https://gitlab.mech.kuleuven.be/u0097847/

bayesianmodelling/raw/master/models/ekf_schema.json",↪→

Appendix A. JSON Schema models 60

23 }

24 },

25 {

26 "description": "PF filter model",

27 "filter_type": "PF",

28 "filter_specs": {

29 "$ref": "https://gitlab.mech.kuleuven.be/u0097847/

bayesianmodelling/raw/master/models/pf_schema.json",↪→

30 }

31 },

32]

33 },

34 "required": [

35 "filter_type", "filter_specs"

36]

37 }

38 }

An example of the top level Bayesian �lter

{

"filter_type": "KF",

"filter_specs": {

"transition_matrix": [

[0.8776, 0.9589],

[-0.2397, 0.8776]

],

"process_noise_covariance": [

[0.0032, 0.0046],

[0.0046, 0.0092]

],

"measurement_matrix": [

[1, 0]

],

"measurement_noise_covariance": [

Appendix A. JSON Schema models 61

[0.1]

],

"input_matrix": [

[0]

]

}

}

Schema of the Kalman �lter

1 {

2 "id": "https://gitlab.mech.kuleuven.be/u0097847/bayesianmodelling/

raw/master/models/kf_schema.json",↪→

3 "$schema": "http://json-schema.org/draft-04/schema#",

4 "description": "Model of the Kalman filter",

5 "type": "object",

6 "properties": {

7 "uuid": {

8 "description": "Unique ID of of the Factor Graph (for now:

UUID)",↪→

9 "type": "string",

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-

[a-fA-F0-9]{4}-[a-fA-F0-9]{12}$"↪→

11 },

12 "transition_matrix": {

13 "description": "State transition matrix",

14 "$ref": "matrix_schema.json#/matrix_definition"

15 },

16 "measurement_matrix": {

17 "description": "name of the state measurement matrix",

18 "$ref": "matrix_schema.json#/matrix_definition"

19 },

20 "process_noise_covariance": {

21 "description": "State transition noise covariance matrix (noise

is assumed to be zero mean)",↪→

Appendix A. JSON Schema models 62

22 "$ref": "matrix_schema.json#/matrix_definition"

23 },

24 "measurement_noise_covariance": {

25 "description": "Measurement noise covariance matrix (noise is

assumed to be zero mean)",↪→

26 "$ref": "matrix_schema.json#/matrix_definition"

27 },

28 "input_matrix": {

29 "description": "Input matrix of the linear system",

30 "$ref": "matrix_schema.json#/matrix_definition"

31 },

32 },

33 "required": [

34 "uuid",

35 "transition_matrix",

36 "measurement_matrix",

37 "process_noise_covariance",

38 "measurement_noise_covariance",

39 "input_matrix"

40]

41 }

Schema of the extended Kalman �lter

1 {

2 "id": "https://gitlab.mech.kuleuven.be/u0097847/bayesianmodelling/ c

raw/master/models/ekf_schema.json",↪→

3 "$schema": "http://json-schema.org/draft-04/schema#",

4 "description": "Model of the Extended Kalman filter",

5 "type": "object",

6 "properties": {

7 "uuid": {

8 "description": "Unique ID of of the graph (for now: UUID)",

9 "type": "string",

Appendix A. JSON Schema models 63

10 "pattern": "^[a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-f c

A-F0-9]{4}-[a-fA-F0-9]{12}$"↪→

11 },

12 "transition_model": {

13 "description": "State transition model specified in form of a

function signature",↪→

14 "$ref": "function_schema.json#/function_definition"

15 },

16 "measurement_model": {

17 "description": "Measurement model specified in form of a

function signature",↪→

18 "$ref": "function_schema.json#/function_definition"

19 },

20 "linearized_transition_model": {

21 "description": "Linearized transition model specified in form

of a function signature, output of this function is

equivalent to first derivative of transition model with

respect to state variables",

↪→

↪→

↪→

22 "$ref": "function_schema.json#/function_definition"

23 },

24 "linearized_measurement_model": {

25 "description": "Linearized measurement model specified in form

of a function signature, output of this function is

equivalent to first derivative of measurement model with

respect to state variables",

↪→

↪→

↪→

26 "$ref": "function_schema.json#/function_definition"

27 },

28 "input_model": {

29 "description": "Input model specified in form of a function

signature",↪→

30 "$ref": "function_schema.json#/function_definition"

31 },

32 "process_noise_covariance": {

33 "description": "State transition noise covariance matrix

(noise is assumed to be zero mean)",↪→

34 "$ref": "matrix_schema.json#/matrix_definition"

Appendix A. JSON Schema models 64

35 },

36 "measurement_noise_covariance": {

37 "description": "Measurement noise covariance matrix (noise is

assumed to be zero mean)",↪→

38 "$ref": "matrix_schema.json#/matrix_definition"

39 },

40 },

41 "required": [

42 "uuid",

43 "transition_model",

44 "measurement_model",

45 "linearized_transition_model",

46 "linearized_measurement_model",

47 "input_model",

48 "process_noise_covariance",

49 "measurement_noise_covariance",

50]

51 }

Helper models

1 {

2 "id": "https://gitlab.mech.kuleuven.be/u0097847/bayesianmodelling/ c

raw/master/models/matrix_schema.json",↪→

3 "$schema": "http://json-schema.org/draft-04/schema#",

4 "description": "Model of a matrix in json",

5 "type": "object",

6 "properties": {

7 "matrix_definition": {

8 "type": "array",

9 "items": {

10 "type": "array",

11 "items": {

12 "type": "number"

13 }

Appendix A. JSON Schema models 65

14 }

15 }

16 }

17 }

1 {

2 "id": "https://gitlab.mech.kuleuven.be/u0097847/bayesianmodelling/ c

raw/master/models/function_schema.json",↪→

3 "$schema": "http://json-schema.org/draft-04/schema#",

4 "description": "Model of a function signature",

5 "type": "object",

6 "properties": {

7 "function_definition": {

8 "function_name": {

9 "description": "Function name string",

10 "type": "string"

11 },

12 "interface_description": {

13 "description": "An array of variables this function accepts

as arguments, each element in the array is an array in

itself with fist element name of the argument and second

element type of the argument",

↪→

↪→

↪→

14 "type": "array",

15 "items": {

16 "type": "array",

17 "items": [

18 {

19 "description": "argument name",

20 "type": "string",

21 },

22 {

23 "description": "argument type",

24 "type" : "string",

25 "enum": [

26 "https://gitlab.mech.kuleuven.be/u0097847/bayesianmo c

delling/raw/master/models/variable_schema.json"↪→

Appendix A. JSON Schema models 66

27]

28 }

29],

30 "additionalItems": false

31 }

32 },

33 "function_parameters": {

34 "description": "An array of variables this function accepts

as parameters",↪→

35 "type": "array",

36 "items": {

37 "oneof": [

38 {"type": "number"},

39 {"type": "string"},

40 {"$ref": "matrix_schema.json#/matrix_definition"}

41]

42 }

43 },

44 "required": [

45 "interface_description",

46 "function_arguments"

47]

48 }

49 },

50 }

67

B. MATLAB CODE

Matlab program used in Chapter 5 to generate results in the sample

problem

1 %% Generate data

2

3 clear; clc; close all;

4 % Lock random seed

5 rng(12);

6

7 % Gaussian ranom draw, m is the mean and S the covariance

8 gauss_rnd = @(m,S) m + chol(S)'*randn(size(m));

9

10 % Calculate root mean squared error

11 rmse = @(x,y) sqrt(mean((x(:)-y(:)).^2));

12

13 % Define parameters

14 steps = 100; % Number of time steps

15 w = 0.5; % Angular velocity

16 q = 0.01; % Process noise spectral density

17

18 % This is the transition matrix

19 transition_matrix = [cos(w) sin(w)/w;

20 -w*sin(w) cos(w)];

21

22 % This is the process noise covariance

23 process_noise_covariance = [0.5*q*(w-cos(w)*sin(w))/w^3

0.5*q*sin(w)^2/w^2;↪→

24 0.5*q*sin(w)^2/w^2

0.5*q*(w+cos(w)*sin(w))/w];↪→

Appendix B. Matlab code 68

25

26 % This is measurement model Matrix

27 measurement_matrix = [1 0];

28

29 % This is measurement noise variance

30 measurement_noise_covariance = 0.1;

31

32 % This is the true initial value

33 initial_state = [0;0.1];

34

35 % Simulate data

36 true_signal = zeros(2,steps); % The true signal

37 measurement = zeros(1,steps); % Measurements

38 T = 1:steps; % Time

39 state = initial_state;

40 for k=1:steps

41 state = gauss_rnd(transition_matrix*state,process_noise_covariance);

42 y = gauss_rnd(measurement_matrix*state,measurement_noise_covariance);

43 true_signal(:,k) = state;

44 measurement(:,k) = y;

45 end

46

47

48 process_noise_mean = zeros(2,1);

49 measurement_noise_mean = zeros(1,1);

50

51

52 %% Kalman filter

53

54 % Kalman filter solution. The estimates

55 % of x_k are stored as columns of

56 % the matrix EST2.

57

58 m2 = [0;1]; % Initialize first step

59 P2 = eye(2); % Some uncertanty in covariance

60 EST2 = zeros(2,steps); % Allocate space for results

Appendix B. Matlab code 69

61

62 tic;

63 % Run Kalman filter

64 for k=1:steps

65 % Prediction step

66 m2 = transition_matrix*m2;

67 P2 = transition_matrix*P2*transition_matrix'+process_noise_covar c

iance;↪→

68

69 % Update step

70 v = measurement(k)-measurement_matrix*m2;

71 S = measurement_matrix*P2*measurement_matrix'+measurement_noise_ c

covariance;↪→

72 K = P2*measurement_matrix'/S;

73 m2 = m2+K*v;

74 P2 = P2-K*S*K';

75

76 % Store the results

77 EST2(:,k) = m2;

78 end

79 t_kf = toc;

80 fprintf('Time elapsed for Kalman filtering algorithm:

%0.4f\n',t_kf);↪→

81

82 %% KF in Dimple

83

84 n_state = size(transition_matrix,1);

85 n_measured = size(measurement_matrix,1);

86

87 % Child graph

88 states_prior = RealJoint(n_state);

89 % states.Name = 'State';

90 states_prior.Name = 'StPrior';

91 states_nonoise = RealJoint(n_state);

92 % states_next_nonoise.Name = 'StateNextNoNoise';

93 states_nonoise.Name = 'StNN';

Appendix B. Matlab code 70

94 states_posterior = RealJoint(n_state);

95 % states_next.Name = 'StatesNext';

96 states_posterior.Name = 'StPosterior';

97 observation_nonoise = RealJoint(n_measured);

98 % measurement_nonoise.Name = 'MeasurementNoNoise';

99 observation_nonoise.Name = 'ObsNN';

100 observation = RealJoint(n_measured);

101 % measurement.Name = 'Measurement';

102 observation.Name = 'Obs';

103

104 nested_graph =

FactorGraph(states_prior,states_posterior,observation);↪→

105

106 process_noise = RealJoint(n_state);

107 % process_noise.Name = 'ProcessNoise';

108 process_noise.Name = 'PrcsN';

109

110 measurement_noise = RealJoint(n_measured);

111 % measurement_noise.Name = 'MeasurementNoise';

112 measurement_noise.Name = 'MsrN';

113

114 % KF specific parts %

115 setSolver('SumProduct');

116 process_noise.Input = FactorFunction('MultivariateNormal',zeros(n_st c

ate,1),process_noise_covariance);↪→

117 measurement_noise.Input = FactorFunction('MultivariateNormal',zeros(c

n_measured,1),measurement_noise_covariance);↪→

118 state_transition_factor = nested_graph.addFactor(@constmult,states_n c

onoise,transition_matrix,states_prior);↪→

119 % state_transition_factor.Name = 'StateTransitionFactor';

120 state_transition_factor.Name = 'StTrF';

121 state_noise_factor = nested_graph.addFactor(@add,states_posterior,st c

ates_nonoise,process_noise);↪→

122 % state_noise_factor = nested_graph.addFactor(@AdditiveNoise,states_ c

next,states_next_nonoise,process_noise_covariance);↪→

123 % state_noise_factor.Name = 'StateNoiseFactor';

Appendix B. Matlab code 71

124 state_noise_factor.Name = 'StNF';

125 measurement_projection_factor = nested_graph.addFactor(@constmult,ob c

servation_nonoise,measurement_matrix,states_posterior);↪→

126 % measurement_projection_factor.Name = 'MeasurementProjectionFactor';

127 measurement_projection_factor.Name = 'MsrPrF';

128 measurement_noise_factor = nested_graph.addFactor(@add,observation,o c

bservation_nonoise,measurement_noise);↪→

129 % measurement_noise_factor.Name = 'MeasurementNoiseFactor';

130 measurement_noise_factor.Name = 'MsrNF';

131 figure;

132 nested_graph.plot('labels',true);

133 title('Factor Graph Model Of The Kalman Filtering Problem');

134 % /KF specific parts%

135

136

137

138 % Variable streams

139 states_stream = RealJointStream(n_state);

140 measurement_stream = RealJointStream(n_measured);

141

142 % Parent Graph

143 parent_graph = FactorGraph();

144 parent_graph.addFactor(nested_graph,states_stream.getSlice(1),states c

_stream.getSlice(2),measurement_stream.getSlice(1));↪→

145

146 % Measurement Data Source

147 measurement_datasource = MultivariateDataSource();

148 for i = 1:steps

149 measurement_datasource.add(measurement(:,i),1e-100*eye(n_measure c

d));↪→

150 end

151 measurement_stream.DataSource = measurement_datasource;

152

153 % States Data Sink

154 states_datasink = MultivariateDataSink();

155 states_stream.DataSink = states_datasink;

Appendix B. Matlab code 72

156

157 % Solve graph

158 parent_graph.setOption('DimpleOptions.randomSeed',10); %No effect?

159 tic;

160 parent_graph.solve();

161 t_dmpl = toc;

162 fprintf('Time elapsed for factor graph solution: %0.4f\n',t_dmpl);

163

164 % Get results

165 dimple_guesses = zeros(1,steps);

166 i = 0;

167 while states_datasink.hasNext()

168 i = i + 1;

169 m = states_datasink.getNext();

170 dimple_guesses(i) = m.Means(1);

171 end

172 % Last iteration results

173 for j = 1:length((states_stream.Variables)-1)

174 i = i + 1;

175 dimple_guesses(i) = states_stream.Variables(j).Belief.Means(1);

176 end

177

178 %% Compare Results

179

180 % Plot the true signal and its estimates

181 figure;

182 plot(T,true_signal(1,:),'--',T,EST2(1,:),'-',T,measurement,'o',T,dim c

ple_guesses,'*');↪→

183 legend('True signal','KF estimation','Measurements','Dimple

estimation');↪→

184 xlabel('Time step'); title('\bf Filtering Performance');

185

186 % Compute error

187 fprintf('RMS error for KF estimate:

%0.4f\n',rmse(true_signal(1,:),EST2(1,:)));↪→

Appendix B. Matlab code 73

188 fprintf('RMS error for Dimple estimate:

%0.4f\n',rmse(true_signal(1,:),dimple_guesses));↪→

	Introduction
	Sensor Fusion
	Probabilistic Graphical Models
	Sensor fusion software
	Thesis outline

	Theoretical Background
	Robot and The Surrounding Environment
	Recursive State Estimation
	Bayesian Filtering

	Bayes Filters
	The Markov Assumption
	The Kalman Filter
	Linear Gaussian Systems
	The Kalman Filter Algorithm

	The Extended Kalman Filter
	The EKF Algorithm
	EKF, Pros and Cons

	Nonparametric Filters
	THE PARTICLE FILTER

	Graphical Models
	Factorgraph

	Inference On Graphical models
	Marginal Inference
	Variable elimination and message passing
	The sum-product algorithm

	Model Driven Engineering and Domain Specific Languages
	Model Driven Engineering
	Domain Specific Languages

	Bayesian Estimation and Probabilistic Modeling Software
	OpenGM
	MRF-lib
	libDAI
	FastInf
	Libra
	Grante
	BUGS, OpenBUGS, JAGS
	BFL
	Dimple

	Research methodology and materials
	Factor graphs as Bayesian estimator
	Factor graphs for Kalman filtering
	Factor graphs for Particle filtering

	Tools and Frameworks used
	Probabilistic programming
	Software Models

	Modeling
	Code generation

	Results and discussion
	An example problem
	Filter Model
	Model Checking and Code Generation
	Results

	Future Work

	Conclusion
	Bibliography
	JSON Schema models
	Matlab code

