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ABSTRACT
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The Internet has grown rapidly beyond the wildest dreamssaidriginal developers. Back
in the day, when Internet Protocol was being developed, reoanuld foresee that the
global IP address space would run out. However, this is navemég a reality and the
whole world is facing a big obstacle.

A new version of IP, version 6, has to be taken into use all dverworld. This version
has a large enough global IP address space and it shouldnigsthe end of mankind.
The transition from IPv4 to IPv6 has started many years agfosimow finally growing in
speed.

The transition phase presents many problems. One of theimpsttant question is, how
IPv4 and IPv6 devices can communicate with each other ddhegmportant transition
phase that lasts for many years. One of the solutions to tnestipn, DNS64/NAT64,
is explored and tested in this Master’s thesis. Without DINBBT64 system or other
transition phase techniques, the transition to IPv6 coatde done rationally.

The suitability of a DNS64/NAT64 system for the transitionage is researched in this
thesis. This research includes testing the system, degeptissible problems, developing
improvement ideas and carrying out overall analysis. As @rduct of this thesis, the
quality of the software used for the testing was also impads&sed on the found bugs and
the implementation of some new features.
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Internet on kasvanut huimasti yli sen alkuperaisten kajett villien unelmien. Aikoinaan,
kun IP-protokollaa oltiin kehittamassa, ei kukaan voinut&ta nahda tilannetta, jossa glo-
baali osoiteavaruus loppuisi jonakin paivana. Kuitenkitéthetkella ollaan saavuttamassa
tilannetta, jossa osoitteet loppuvat ja koko maailma on lsasteen edessa.

Uusi versio IP:sta, versio 6, taytyy ottaa kayttoon ympdaaaitman. Tassa uudessa ver-
siossa on niin suuri globaali osoiteavaruus, etta serspiidtaa ihmiskunnan loppuun asti.
Siirtyminen IPv4:std IPv6:een on alkanut monta vuott@sitmutta vasta nyt se alkaa no-
peutua.

Tassa siirtymavaiheessa on monia ongelmia. Yksi suuritansisgelmista on se, kuinka
IPv4 ja IPVv6 -laitteet saadaan muodostamaan yhteyksigekésk taman tarkeén ja mo-
nivuotisen siirtyméavaiheen aikana. Eras ratkaisu tahayrkykseen on DNS64/NAT64,

joka on tutkimuksen ja testauksen kohteena tassa diplossty [Iman DNS64/NAT64 -

jarjestelmaa ja muita siirtymavaiheen tekniikoita ei @méPv6:een voitaisi jarkevasti siir-
tya.

Tassa diplomitydssa on tutkittu DNS64/NAT64 -jarjestetrsaveltuvuutta siirtymévaiheen

teknologiaksi. Ty6 pitda sisallaan kyseisen jarjesteln@tausta, ongelmakohtien kartoi-
tusta seka parannusehdotuksia ja yleistd analysointratufitteena varsinaisen jarjestel-
man testauksen lisaksi myos testauksessa kaytetyn okjelmiaatu parani I6ydettyjen vir-

heiden ja toteutettujen parannusehdotusten seurauksena.
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1 INTRODUCTION

The exhaustion of the global Internet Protocol version 44)HRFC791] address space is
becoming more and more imminent. On the 3rd of February 2Elinternet Assigned
Numbers Authority (IANA) allocated the last five availab&adddress blocks to Regional
Internet Registries (RIR). [IANA] RIRs will distribute tise final five blocks to Local In-
ternet Registries (LIR), who will then put the addresses uge in the global Internet.

The rate at which RIRs will deplete their allocatable adskessvaries greatly among the
five different RIRs. Asia-Pacific Network Information Cen{APNIC) will be the first RIR
expected to run out of addresses. It has already stoppezhtitlg addresses the conven-
tional way to prolong the inevitable exhaustion of its addrepace. Réseaux IP Européens
Network Coordination Centre (RIPE NCC) is expected to beniwe RIR running out of
allocatable addresses. Estimates for the date of this eeentfrom 19th of September
2011 to far into next year. [EXHAUST] The other three RIRs @iese behind RIPE NCC

in this matter.

This exhaustion problem was predicted over a decade agocetian improved version
of IPv4 has been developed by Internet Engineering TaskeRoET F) [IETF], which was
named as Internet Protocol version 6 (IPv6) [RFC2460]. Giiesomost important changes
compared to IPv4 is that this new version extends the addzagsh from 32 bits to 128
bits.

With the increasing scarcity of available IPv4 addresseterhet Service Providers (ISP)
and other LIRs around the world are enabling IPv6 in theitvoets. The global switch

from IPv4 to IPv6 is called the transition phase. This traosiis happening gradually right
now all around the world. Every LIR is enabling IPv6 in the@tworks at their own speed.



It is impossible for this transition to happen at the sameetath around the world. Hence
IPv4 and IPv6 will coexist for a long time. Furthermore, seaawill have a lot of devices

with IPv6 address only, because there will be no more fred lldresses. This situation
is problematic for a number of reasons. Possibly the biggestback is that a lot of the
content in the Internet is attainable with IPv4 only. Thisvgere transition technologies
come in to save the day.

This thesis focuses on evaluation and testing of a DNS6484ADomain Name System,
Network Address Translation) system. This system is a itiangphase technology specif-
ically designed to enable communication between IPv6-amg IPv4-only devices. If
DNS64 [RFC6147] or NAT64 [RFC6145] [RFC6146] are deployefdagately from each
other, they do not work. Both parts must be present in a nétwwachieve the desired
communication from IPv6-only device to IPv4-only device NB64 and NAT64 are an
unseparable pair.

The structure of this thesis is as follows. Chapters 2 and Xrdee the operation of
DNS64/NAT64 in detail as well as give other relevant backgib information required
to understand the rest of this thesis. The research methutisetup used for testing
DNS64/NAT64 system are explained in Chapter 4. Chapter ®&dscdted for results. Fi-
nally, Chapter 6 gives conclusions and some future refeienc



2 DNS64 BACKGROUND

DNSG64/NAT64 system enables client to server communicdieiween an IPv6-only client
and an IPv4-only server. Furthermore, this system is desligo that no changes are re-
quired to either the IPv6 or the IPv4 node. All of the changegiired to enable this system
are carried out by the network operator. A detailed explanadf the DNS64 system is
presented in this chapter. NAT64 is presented in the nexiteha

DNS64 is a mechanism that can synthesize IPv6-related AAdgdurce records (RRS)
from IPv4-related A RRs. [RFC6147] When a normal DNS sergeasked to give an
AAAA RR of a particular hostname, it returns the IPv6 addié&sund, or gives an empty
response if the hostname does not have an IPv6 address. Bud WINS64 server, if the
hostname does not have an IPv6 address, the DNS64 servaesigats an IPv6 address
and returns it to the querier. The synthesized IPv6 addsegsnerated based on the IPv4
address stored in the A RR of that hosthame. There is a spatgficithm [RFC6052]
used to do this translation, and it is explained in Sectidn 3ection 2.2 desribes DNS64
specification. Section 2.3 contains some remarks on DNS@D&SE Security Extensions
(DNSSEC) interoperability. Section 2.4 has discussiorualbther DNS extensions. Fi-
nally, the deployment of DNS64 is presented in Section 2.5.

2.1 Address Translation Algorithm

The address translation algorithm described in this chaptesed by the DNS64/NAT64
system in order to convert an IPv4 address to a correspoti@utgaddress, and vice versa.
Basically what this translation algorithm does is that ibets an IPv4 address into an IPv6

address using a predefined prefix and the actual IPv4 addresslPv4 address can also



later be translated back from inside the IPv6 address. Tamslation requires knowledge
about the prefix used and its length.

There are two possible choices to use as the prefix in thelatag a Well-Known Prefix
(WKP) or a Network-Specific Prefix (NSP). WKP is always 64bff#96. NSP, on the other
hand, can have a variable length prefix and the prefix its@iédds on the organization that
deploys this kind of a translator. [RFC6052, Section 2]

PL O 31 32 40 48 56 64 72 80 88 96 104 127
/132 | prefix | v4(32) u | suffix

/140 | prefix | v4(24) u | (8) | suffix

/148 | prefix | v4(16) u (16) | suffix

/56 | prefix [ (8) |u v4(24) | suffix

164 | prefix u v4(32) | suffix

/96 | prefix | v4(32)

Figure 2.1: lllustration of how and where an IPv4 addressiisbedded inside an IPv6 address. [RFC6052,
Section 2.2, Figure 1]

Figure 2.1 shows all the possibilities of how to embed an I&ddress into an IPv6 address.
PL stands for prefix length in the figure. As mentioned bef@V&P has a specific prefix
with a predefined length (64:ff9b::/96). In this case, thefigrlength is always 96, so an
IPv4 address is embedded into bits 96 to 127 of an IPv6 addkga®fix length in the case
of an NSP can vary widely. It can be 32, 40, 48, 56, 64 or 96 Bitsh@wn in Figure 2.1. In
every other NSP case except with prefix length 96, a null detezeroes) is inserted into
bits 64 to 71. This null octet is represented in Figure 2.18s These cases also require
some suffix to be added, but this suffix is just zeroes in masasons. [RFC6052, Section
4.1] has discussion about what suffix to choose and recomsnesidg a zero suffix.

The algorithm for creating an IPv4-embedded IPv6 addreissdsscribed in [RFC6052,
Section 2.3] and also shown below.

1. Join the prefix, the IPv4 address and the suffix togetherdaro
2. If the prefix length is less than 96, then also insert thé octiet "u” at the correct
position (bits 64 to 71).



The algorithm for extracting the IPv4 address from insideltPv6 address is described in
[RFC6052, Section 2.3] and also shown below.

1. If the prefix length is 96 bits, then just extract the lasb82 of the IPv6 address.
2. For all other prefixes, remove the "u" octet by shifting s 72-127 bits to positions
64-119, and then extract 32 bits that follow the prefix.

The IPv4 embedded IPv6 addresses will be represented ithésss in conformity with
[RFC4291, section 2.2]. WKP and NSP with prefix length of 96 a#so be represented
in an alternative dotted decimal notation. Let us consideexample IPv4 address of
192.168.42.17 (cOa8:2all in hex). All possible IPv6 regméations of this IPv4 address
are shown in Figure 2.2.

Prefix IPv4 IPv4-embedded IPv6 address
2001:aaaa::/32 192.168.42.17 | 2001:aaaa:cO0a8:2all::
2001:aaaa:bb00::/40 192.168.42.17 | 2001:aaaa:bbc0:a82a:0011::
2001:aaaa:bbbb::/48 192.168.42.17 | 2001:aaaa:bbbb:c0a8:002a:1100::

2001:aaaa:bbbb:cc00::/56 | 192.168.42.17 | 2001:aaaa:bbbb:ccc0:00a8:2a11::

2001:aaaa:bbbb:cccc::/64 | 192.168.42.17 | 2001:aaaa:bbbb:cccc:00c0:a82a:1100::

2001:a:b:c:d:e:/96 192.168.42.17 | 2001:a:b:c:d:e:cO0a8:2all
2001:a:b:c:d:e:/96 192.168.42.17 | 2001:a:b:c:d:e:192.168.42.17
64:ff9b::/96 192.168.42.17 | 64:ff9b::cO0a8:2all
64:ff9b::/96 192.168.42.17 | 64:ff9b::192.168.42.17

Figure 2.2: Text representation of an IPv4-embedded IPuresl using NSP and WKP.

Organizations, that are deploying a DNS64/NAT64 systenh@irtnetwork, will have to
choose between WKP and NSP. There are some restrictionsiatssbwith the usage of
these prefixes. [RFC6052, Section 3] describes theseatests as well as gives recom-
mendations on what prefix should be used and in what circumossa WKP, for example,
must not be used to translate private IPv4 addresses [REBCb®bther special use IPv4
addresses [RFC5735] into IPv6 addresses, or vice versar é&fbosing what prefix to use,
organization can choose to advertise their DNS64/NAT6¢icerto the rest of the Inter-
net. However in practice, only NSP can be advertised. Silpilthey can choose to keep
the DNS64/NAT64 service accessible only from their own gewnetwork. If an organiza-
tion decides to provide the DNS64/NAT64 service for othergge, they have to announce
routes with border gateway protocol (BGP) to the DNS64 dewiad to the NSP that they
have chosen.



2.2 DNS64 Specification

DNS64 synthesizes AAAA records from A records. This funadility can be implemented
in a stub resolver, in a recursive resolver or in an authtoréaname server. The DNS64
functionality works together with what ever normal funciadity a DNS resolver or a DNS
name server has according to [RFC1034] and [RFC1035]. [RBTZ6Section 5] Addition-
ally, DNS64 should support translation to multiple diffieréPv6 prefixes. This allows for
separate IPv4 address ranges to be mapped to separate &fix€é9rThis separate mapping
can be utilized, for example, to achieve load balancing betwmultiple NAT64 devices as
discussed in [ID-nat64-load].

DNS system is complex with numerous different records, agss and additions. The full
functionality of DNS is out of the scope of this thesis and barfound in [RFC1034] and
[RFC1035]. However, knowledge of some parts of DNS fundlity is needed in order to
understand how DNS64 works, particularly the part regaydinswers to queries.

The general format of a DNS message is shown in Figure 2.3Wwd[dNS message has
a maximum of five different sections. The header sectionviayd present and informs
about what other sections are present and the type of theagesénswer, authority and
additional sections can contain multiple RRs. The next taagraphs go over key parts
required to understand the synthesis that happens in DN$&# w receives a query for
RRs of type AAAA and class IN (Internet).

Header
Question
Answer
Authority
Additional

Figure 2.3: The format of a DNS message. [RFC1035, Sectign 4.

An answer RR contains six data fields. These fields have \atengths with two fields
(NAME and RDATA), that have a variable length field. The fudkrfat of a DNS RR is
shown in Figure 2.4 below. Each row in Figure 2.4 is 16 bitseimgith.



NAME

TYPE
CLASS
TTL

RDLENGTH
RDATA

Figure 2.4: The format of a resource record. [RFC1035, S»t8.2.1]

The NAME field contains a domain name, for which the RR is fdrisTield has a variable
length. The TYPE field, on the other hand, has a fixed lengtivofictets. The TYPE field
contains a code, that specifies the meaning of the data itted@DATA field. The CLASS
field also has a length of two octets. The CLASS field specifiesctass of data in the
RDATA field. This class can be one of the following four typ&:(the Internet), CS (the
CSNET class), CH (the CHAOS class) or HS (the Hesiod claskg TITL field contains
a 32 bit unsigned integer, which specifies the maximum timgeronds that this RR can
be cached before it has to be discarded. If the value in the iBetero, then this answer
can only be used for the current transaction and should noableed. The RDLENGTH
field contains a 16 bit unsigner integer, that specifies thebar of octets in the RDATA
field. The last field in the answer packet is RDATA. This fielshtzons a variable number
of octets, which describe the resource. The format of in&diom in this field is determined
by the TYPE and CLASS fields. For example, if the TYPE is A arel@LASS is IN, then
the RDATA field contains a 4 octet IPv4 address. Furthermbthe TYPE is AAAA and
the CLASS is IN, then the content of RDATA field is a 16 octet6Rddress. [RFC1035,
Section 3.2]

When a DNS64 server is queried for RRs of type AAAA and classsieral things can
happen depending on the type of DNS device the DNS64 is in.rgtt the DNS64 sends
a query further for the AAAA RR, or in the case of being the awitiative server itself for
that record, it examines its own database. An answer for tieeygcan also be found in
a local cache, if one is available. It is also worth notingattifi the class is anything else
than IN in the query, the DNS64 operates as according to AdDiN& rules. The next
two subsections outline the possible actions required ifterdnt outcomes of the AAAA

7



RR query.

2.2.1 Real AAAA Data Available

If a query results in one or more AAAA records in the answetieaRCODE 0), then no
DNS64 functionality is needed. In this case, the responsiegtguerier is done according
to the normal DNS functionality.

However, in some cases, an IPv6 address received may matelsialsexclusion set which
requires additional actions from DNS64. [RFC6147, Sechdnl] These special cases are
discussed further in Section 2.2.3.

2.2.2 Error or Timeout

When a query returns an error (RCODE not 0), there are twalgeszctions depending on
the returned RCODE. If the RCODE is 3 (name error), then thisrés sent to the client.
This is a normal action of DNS. However, if the RCODE is sornmgjlelse than 0 or 3, then
DNS64 regards the query results as if it has RCODE 0 and theearsection is empty.
This rule results in a synthesis of an AAAA RR. [RFC6147, #ecb.1.2]

DNS system has timers in place, for example to prevent iefiwiiting for a response.
After sending a query, a timer activates. If the timer runsh®iore receiving a response, a
timeout event happens. The situation is handled, in this,@ssserver failure (RCODE 2).
[RFC6147, Section 5.1.3]

2.2.3 Special Exclusion Set

As a response to an AAAA query, DNS64 can receive IPv6 addsetbgat are not usable
by IPv6-only hosts. In this case, a special exclusion setbeansed to detect unusable
IPv6 addresses. This special exclusion set should inclideealPv6 addresses that are
not usable by IPv6-only hosts. Addresses in ::ffff:0:0/@8work are an example of these
unusable addresses.



If DNS64 receives only AAAA records with these special esatin set addresses, it should
consider the response as empty and continue accordingdp, AIDNS64 receives one or
more usable addresses together with addresses in the edataage, it should return only
those AAAA records with usable IPv6 addresses. DNS64 mustetiorn addresses inside
the special exclusion set. [RFC6147, Section 5.1.4]

2.2.4 Parallel Querying

DNS64 can start two queries at the same time, one for an Adexwat one for an AAAA
record. This parallel querying can reduce delays when no AAécord is found. Since in
a normal case, when DNS64 first queries for the AAAA recordiaigdnot found, DNS64
needs to send a second query asking for the A record to be @plerform the required
synthesis.

If queried data is available locally, like it is with authiative name server, then parallel
querying discussion s irrelevant. [RFC6147, Sectiond} Rarallel querying can, in theory,
reduce delay to half when compared to sequential querying.

2.2.5 Generating Synthetic Response

The format for DNS RR was shown in Section 2.2 in Figure 2.4eWBNS64 synthesizes
an AAAA record from an A record, it needs to generate a DNS angacket containing
the synthesized address and other required informatiomg&heration of an answer packet
is explained in this subsection.

The NAME field in the answer packet is set to the NAME field frdme tA record. The
TYPE field is set to 28, which indicates that the answer pacetains an AAAA record.
The CLASS field is set to 1, which states the Internet (IN) asdlass for data in the
RDATA field. DNS64 is specified only for the IN class, othersddypes are handled based
on normal DNS operation rules. The TTL field is set to the TTlth&f original A record,
or to the TTL of the Start of Authority (SOA) record for the gjigel domain. If both values
are available, the smaller of the two is selected. The SOA &Roe remembered from the
negative response to the AAAA query. If this is not the casentTTL is set to 600 seconds



or to the TTL in the original A RR. Again the smaller value i¢ested. In this case, DNS64
could initiate a new query specifically for the SOA RR, bustiould result in extra delay
and load with little or no benefits.

The RDLENGTH field is set to 16 to inform that the RDATA field i6 @ctets in length. 16
octets is exactly the length of an IPv6 address (16 x 8 bits8-i®). Finally, the RDATA
field is set to the synthesized IPv6 address based on the kRiréss from the original
A RR. If DNS64 has multiple prefixes configured to be used inr@sksl translation, then
it must check the IPv4 address in the A RR to determine whieffiypshould be used for
synthesizing the AAAA RR. [RFC6147, Section 5.1.7] Figurg ghows an example ARR,
based on which an example AAAA RR shown in Figure 2.6 is gdadra

example.com

1(A)
1 (IN)
3600 (seconds)

4 (octets)
192.168.42.17

Figure 2.5: An example A RR.

example.com

28 (AAAA)
1 (IN)
600 (seconds)

16 (octets)
64:ff9b::c0a8:2all

Figure 2.6: An example AAAA RR.

The A RR in Figure 2.5 contains an IP address of 192.168.4r1éxample.com. The
record is in the Internet class (IN) with TTL value of 3600 seds (1 hour). Based on
this information, the AAAA RR in Figure 2.6 was created. Thigithesized AAAA RR

contains an IPv6 address of 64:ff9b::cO0a8:2all for exammie. The AAAA RR is in the

Internet class (IN) with a TTL value of 600 seconds.

10



2.3 Coexisting With DNSSEC

DNSSEC if defined in three RFCs: [RFC4033], [RFC4034] and@RE35]. The purpose
of DNSSEC is to add data origin authentication and data rityetp DNS. DNSSEC was

designed to detect tampering in DNS answers coming fronoaitdtive name servers. This
can be very problematic for DNS64 since it does changes tcedly AAAA RRs.

DNSSEC offers some signaling bits that are useful for DNSBMSSEC OK (DO) and
Checking Disabled (CD). These bits inform what the quergiogtor understands about
DNSSEC. If the DO bit is set, then the query originator unterds responses with
DNSSEC data. This does not mean that the querying agenttedidhe response, only
that it understands DNSSEC. Conversely, if the DO bit is ebtthen the querying agent
does not understand DNSSEC. If the CD bit is set, then theycqurgginator wants all the
validation data, so that it can do checking itself.

[RFC6147, Section 3] describes seven possible cases thdtagpen and the appropri-
ate responses to those cases, when running DNS64 in rexueswlver mode as security
oblivious, security aware (non-validating) and validgtsecurity aware.

DNS64 is DNSSEC aware/oblivious, query has DO bit clear

DNS64 is DNSSEC oblivious, query has DO bit set

DNS64 is DNSSEC aware (non-validating), query has DOetitiad CD bit clear
DNS64 is DNSSEC aware (non-validating), query has DOetiaad CD bit set
DNS64 is DNSSEC aware (validating), query has DO bit cheat CD bit clear
DNS64 is DNSSEC aware (validating), query has DO bit sét@@ bit clear
DNS64 is DNSSEC aware (validating), query has DO bit sdt@D bit set

N o o bk w DN RE

The first case is easy to handle. It does not matter what theG@NS8es, since the querier
does not understand DNSSEC. In the second case, the quepporss DNSSEC but
DNS64 does not. This results in the querying agent gettin@NSSEC data, since the
relaying agent (DNS64) does not understand DNSSEC. The BNSé&d in the test setup
for this thesis is DNSSEC oblivious. More information abthe test setup is found in
Chapter 4.

In the third case, no validation happens since DNS64 is radidating and the querying
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agent does not do local validation. The fourth case is amastimg one. If DNS64 per-
forms synthesis, the querying agent will notice this viaaloealidation and discard the
data. DNS64 will not work in this case, unless the local qumgragent can perform DNS64
itself.

The fifth case is ideal for DNS64. It can validate all the res@s it gets and then perform
synthesis if needed. The local querying agent accepts tiwegyand does not know that
there is a DNS64 system present in the network. The sixthisasmilar to the fifth case.
The only difference is that DNS64 should set Authentic D&B)(bit on the response.
The seventh case is the same as the fourth case. In other,wloedscal querying agent
will notice synthesis and discard the data as invalid. DN®&Bnot work unless the local

querying agent can perform DNS64 function locally.

As we can see from the seven cases above, DNSSEC validatobiematic if it is behind
DNS64. The validator will notice data coming from DNS64 amp&red with, and might
even reject all. This is possible even in cases where CD biea in the query. Therefore,
it is recommended not to deploy any validating resolversrzethe DNS64. If, however,
validators are placed behind DNS64, it is recommended biestet validators can perform
DNS64 function themselves. Another option would be to bailttusted connection be-
tween DNS64 and DNSSEC validator, and allow DNS64 to do a#ibth on DNSSEC
validator’s behalf. [RFC6147, Section 6.2]

2.4 Other Extension Mechanisms for DNS

DNS packets have many fixed length fields, that do not allonnfoch growth. Also,
there is no space for clients to advertise their capalslitieservers. These were the main
reasons why Extension mechanisms for DNS (EDNSO) were deedl EDNSO is defined
in [RFC2671]. DNSSEC, for example, is using EDNSO for DNSSBECmessaging (DO
bit).

Later in this thesis we will run into cases, where it would eedficial to locally do DNS64
functionality in a terminal device. In these types of sitoias, the device needs to learn
about the prefix (and suffix) used for address synthesis metigork operator. This prefix
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learning allows for locally synthesized IPv6 addressesateetthe correct form, so that the
following traffic then gets routed to the network operatoAsT84 device.

[ID-nat64-disc] describes several possible solutionsefadt hosts to learn about the pres-
ence of DNS64/NAT64 system in the network. One of these solsiis based on EDNSO,
and is analyzed further in [ID-edns0]. That document prep@method of communicating
the usage of DNS64/NAT64 in the network, as well as the prefeduor synthesis, inside
EDNSO option fields in DNS response. More specifically, ttlag bits from that EDNSO
option structure, called SY bits, would be used to convegessary information to an end
host.

This above mentioned method requires a well-known naméehtémonly an IPv4 address
in DNS. When a host sends an AAAA query for this well-known eamesponse message
tells the host if there is DNS64/NAT64 functionality avdile in the network. This process
is explained in [ID-name]. This has some drawbacks howeVhe host can not be sure
of the prefix being used and this is where the EDNSO method some play. The three
SY bits can be used to convey eight different messages. ii3@& Section 3] proposes the
following usage for SY bits.

000reserved

001 prefix length /32
010prefix length /40
011prefix length /48
100prefix length /56

101 prefix length /64
110prefix length /96
111address is not synthetic

Both WKP and NSP can use prefix length /96 and there is only ode €110) assigned for
/96. However, this is not a problem, since WKP is easily reced by end hosts and can
not be confused with NSP.
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2.5 Deployment

The purpose of DNS64 is to aid IPv6 deployment in an envirartmeéth IPv4-only and
IPv6-only networks. There will be some issues with IPv4yanla dual-stack context. One
issue is that because dual-stack clients will prefer IPvlegses when available over IPv4
addresses [RFC3484], they will end up using DNS64/NAT64aveen native IPv4 con-
nectivity could be used. This issue as well as other obsengaare presented in Chapter 5.

[RFC6144] describes eight scenarios, where DNS64/NAT&#esy can be deployed. Per-
haps nowadays the most common situation to use DNS64/NAT@AdWe from an IPv6
network to the IPv4 Internet. This is scenario 1: An IPv6 Nmtwto the IPv4 Internet
[RFC6144, Section 2.1]. Some day in the future, the sitmatdl turn into IPv6 Internet
to an IPv4 network. This is scenario 3: The IPv6 Internet tdRar Network [RFC6144,
Section 2.3]. [RFC6147, Section 7] presents three verymé&bive examples for the above

mentioned scenarios.

One goal for the global transition from IPv4 to IPv6 is thag tmpact and required work
for end users is minimal, preferably zero. The deploymera BINS64/NAT64 system in
the network does not neccessary require work for the end.uske only thing an end user
device requires is the knowledge of the DNS64 server, anc rspecifically, the address
of DNS64. This address can be manually configured by the eaq bst it can also be
automatically set by Dynamic Host Configuration Protocatien 6 (DHCPvV6) or by a
Router Advertisement (RA) extension. These two automagthods are explained in the
following two sections. These methods can be used simuitaste without interference
problems. It is important to know these methods, becauseateeboth used by network
operators. Also, these methods have different benefitsdeavdbacks) in different deploy-

ment scenarios.

2.5.1 Dynamic Host Configuration Protocol Version 6

[RFC3315] includes the full specification of DHCPv6. DNSiops for DHCPvV6 are spec-
ified in a separate RFC, which is [RFC3646]. These two spatifios together offer means
for network operators to automatically deliver a list of DN&vers to end hosts. This is
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done with a DNS Recursive Name Server option. The formatisfdption is shown in
Figure 2.7 below. Option code 23 is reserved for this DHCPsfoo. Option length indi-
cates the length of the list of name servers in octets and st fmeia multiple of 16. Both
the option code field and the option length field have a lengi6dits.

option code | option length

DNS recursive name server (IPv6 address)

DNS recursive name server (IPv6 address)

Figure 2.7: The format of DNS Recursive Name Server opti@HEPV6.

2.5.2 Router Advertisement

Router advertisement is a part of Neighbor Discovery (ND)IRv6. ND is defined in
[RFC4861] and IPv6 RA options for DNS configuration are defime[RFC6106]. Router
advertisements, as the name states, originate from a ro\iir the addition of DNS con-
figuration information in RAs, IPv6-only hosts no longer deeDHCPV6 device informing
them about DNS servers. Now the IPv6 hosts can, in some aases/e DNS information
from a local router directly. [RFC6106, Section 5.1] intuoes a new option to ND called
Recursive DNS Server (RDNSS) option. Figure 2.8 below shtbedormat of this option.

type ] length \ reserved
lifetime

DNS recursive name server (IPv6 address)

DNS recursive name server (IPv6 address)

Figure 2.8: The format of Recursive DNS Server option in ND.

15



Type 25 is assigned by IANA for this option. The length fieltist¢éhe length of the option
from start to end in units of 8 octets, so for example with ddladdress, the length would
be 3 (24 octets). Lifetime informs the time in seconds, forvhang the DNS server can be
used. This information can be renewed periodically.
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3 NAT64 BACKGROUND

A normal NAT, aka NAT44, translates IPv4 addresses to IPW#esbes [RFC2663, Section
4.1.1] [RFC3022, Section 2.1]. Typically, NAT is used tonstate private IPv4 addresses
[RFC1918] to public IPv4 addresses and vice versa. In addiid address translation,
NAT can be expanded to do port translation also. This is ddetwork Address Port
Translation (NAPT) [RFC2663, Section 4.1.2] [RFC3022,tleec2.2], but it has become
so common that the word NAT is used to depict both normal NATG BIAPT. By using
NAPT, one public IPv4 address can represent a huge numbeivate IPv4 addresses.
This combats the depletion of the global IPv4 address spadet adds complexity and
end-to-end connectivity issues.

NAT64 works basically like a NAT44 with one important except It translates IPv6
addresses to IPv4 addresses and vice versa. Because NASBdiler to NAT, it also
suffers from the same problems like end-to-end connegtigsgues. NAT64 is defined in
two RFC'’s. [RFC6145] defines the Stateless IP/ICMP Traiwsialgorithm (SIIT), which
IS, in other words, stateless NAT64. [RFC6146] defines tatekil NAT64. The stateless
NAT64 is discussed in Section 3.1 and the stateful NAT64 ictiBe 3.2. An example of
the DNS64/NAT64 behaviour is presented in Section 3.3.

3.1 Stateless NAT64

Stateless NAT64 provides means for translation betwee# #d IPv6. In addition, state-
less NAT64 provides means for translation between InteCostrol Message Protocol ver-
sion 4 (ICMPv4) [RFC792] and ICMPv6 [RFC4443]. In stateldlsI 64, a specific IPv6

address range, WKP (64:ff9b::/96) for example, is used poesent IPv4 systems. IPv6
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systems, on the other hand, have addresses that can betaitgoaily mapped to a subset
of the network operator’s IPv4 addresses. By using thigmé&tion, IPv4 addresses can be
translated to IPv6 addresses and vice versa, without amopieknowledge of connection
state or translation tables. [RFC6145, Section 1.3]

IPv4 and IPv6 have different header sizes. Thus, when @tinglfrom one to the other,
the packet size also changes. This has a problematic effesh Wwandling maximum or
minimum size packets, or packets close to those limits. 8 heg three ways to handle this
issue: Path Maximum Transmission Unit Discovery (PMTUBggmentation and transport
layer negotiation like the Maximum Segment Size (MSS) apfRFC879] in Transmission
Control Protocol (TCP) [RFC793]. These three things areudised further in appropriate

sections of this chapter.

3.1.1 IPv4to IPv6

When stateless NAT64 receives an IPv4 datagram going tethediPv6 domain, it trans-

lates the IPv4 header of the packet into an IPv6 header. THew# header is then replaced
by the new IPv6 header. Then the transport checksum is updateeded and if the trans-

lator supports this kind of a transport protocol. The dasidie the packet is left untouched.
After all this is done, the packet is forwarded based on tiwé ldRestination address. Fig-
ure 3.1 shows the basic idea behind stateless IPv4 to |Pn§lataon.

IPv4 IPv6
header header
Transport layer ===> Fragmentation header
header (if needed)
Data Transport layer
header
Data

Figure 3.1: Stateless IPv4 to IPv6 translation. [RFC614&c¢t®on 4, Figure 2]

IPv6 routers do not fragment packets, only the sender camhido Therefore path MTU
discovery is neccessary in IPv6, but optional in IPv4. IPwéthperforms PMUTD by
setting the Don’t Fragment (DF) bit in the packet's headeVlUFD works end-to-end,
l.e. accross the translator. In this case, IPv4 routers; lButers or the translator itself
can respond back to the IPv4 node by sending ICMP Packet TgarBssages. If the
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IPv6 routers generate these ICMP messages, then the messagdo be translated by the
NAT64 from IPv6 to IPv4. The translator also has to make shia¢ the packets belonging
to the same flow are sent out in order of arrival. [RFC6145{i&ed|

However, if the IPv4 host does not set the DF bit, the resditgiof not exceeding path
MTU falls to NAT64. In other words, NAT64 has to make sure tpath MTU is not ex-
ceeded in the IPv6 side. This is achieved by automaticalyrfrenting IPv4 packets so that
they fit into 1280-byte IPv6 packets. 1280 bytes is the mimmBv6 MTU and therefore
must be supported by all devices in the IPv6 side. IPv6 fragrheader can cause oper-
ational difficulties in practise due to firewall support,.eto a situation, where the same
entity operates the translator and the IPv6 network, thestka#or can offer a possibility
for administrators to configure a larger IPv6 MTU than thendtad 1280 bytes. Natu-
rally, this new configured value has to be supported by alicgsvin the entity’s network.
This configuration change would reduce the appearancegifiizated IPv6 packets greatly.
[RFC6145, Section 4]

Handling PMUTD, fragmentation etc. can be a complex taskckily the actual IPv4-
to-IPv6 header translation is a relatively simple task. FB3M header and ICMPv4 error
message translation, on the other hand, requires more eglyanspection and actions.
These three translation cases are depicted in their owectep sections below.

3.1.2 IPv4 Header into IPv6 Header

There are a few different translation cases depending ositleeof the IPv4 packet and
value of the DF bit. If the DF bit is not set, and after translat the resulting IPv6 packet
would be larger than 1280 bytes, then the translator mugtrfesot the original IPv4 packet.
The resulting fragmented IPv6 packets should be less thaqual to 1280 bytes in length,
so that they are guaranteed to be accepted by every IPvéedédivibe DF bit is set and the
next-hop MTU is smaller than the translated packet wouldtwe translator must send an
ICMPv4 Fragmentation Needed error message to the sourcessdof the packet. If the
DF bit is set and the packet is not a fragment, then the traoslahould happen according
to the following rules.

\ersion: 6.
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Traffic Class: Copied from the Type Of Service (TOS) field of the IPv4 header

Flow Label: 0.

Payload Length Total length value from the IPv4 header minus the IPv4 headd
IPv4 options length.

Next Header. Copied from the protocol field of the IPv4 header, or chantpe88
(ICMPv6) if itis 1 (ICMPV4).

Hop Limit : Copied from the TTL field of the IPv4 header and subtractedwsy.
Source Address Generated IPv6 address based on the source address ofvihe IP
header and the algorithm described in Section 2.1.

Destination Address Generated IPv6 address based on the destination addries of
IPv4 header and the algorithm described in Section 2.1.

The IPv4 header format is shown in Figure 3.2 and the IPv6 drefimimat is shown in
Figure 3.3 below. Figure 3.4 shows the IPv6 fragment header.

Version | IHL | Type of Service Total Length
Identification Flags \ Fragment Offset
Time to Live \ Protocol Header Checksum

Source Address
Destination Address
Options | Padding
Figure 3.2: The IPv4 header format. [RFC791, Section 3.fjuFeé 4]

Version | Traffic Class | Flow Label
Payload Length | Next Header | Hop Limit

Source Address

Destination Address

Figure 3.3: The IPv6 header format. [RFC2460, Section 3]

Next Header | Reserved | Fragment Offset |Res | M
Identification

Figure 3.4: The IPv6 fragment header format. [RFC2460, i6ect.5]

When the DF bit is not set and the packet is a fragment, thelator has to add a fragment
header. This is done by following the rules above in thisisacbut with a few exceptions.
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The IPv6 header payload length value is calculated as nresdtiabove and increased by
8 to include the fragment header length. Also, the next hefaeld is set to 44 to indicate
that a fragment header is next to follow. The fragment he&dereated according to the

following rules.

Next Header. Copied from the protocol field of the IPv4 header, or chantpe88
(ICMPv6) if itis 1 (ICMPv4).

Fragment Offset Copied from the IPv4 header fragment offset field.

M Flag: Copied from the IPv4 header more fragments bit.

Identification: The high-order 16 bits are set to zero and the low-order 16 die
copied from the IPv4 header identification field.

If the IPv4 header has any options set, they will be ignoredpietely by the translator.
However, there is one exception to this rule. If there is aexpired source route option
present, then the packet is discarded and an ICMPv4 errasagegDestination Unreach-
able, Source Route Failed) is sent to the sender. When thxpueé source route option is
present, then the IPv4 packet contains IPv4 router addyresgkthose would be useless for

the IPv6 receiver.

3.1.3 ICMPv4 Header into ICMPVv6 Header

Both ICMP messages have a similar format, but the checksu@NiPv6 is different from
the one in ICMPv4. The ICMPVv6 checksum is a pseudo-headekshen, unlike ICMPv4
checksum. This pseudo-header checksum is calculated loe#dCMPVv6 message plus
some other parts as well, while the ICMPv4 checksum covers@MPv4 message only.
This is why the ICMPV6 checksum has to be calculated as paheofranslation process.
In addition, the type field must be translated, and for ICMBxér messages, the included
IPv4 header must also be translated. All the different tedios scenarios for ICMPV4 to
ICMPV6 translation are explained in detail in [RFC6145, tiec4.2]. Figure 3.5 shows
a Destination Unreachable ICMPv4 message and Figure 3\sstite general ICMPv6
message format. Because there is no general ICMPv4 messagef the basic ICMPv4
messages is shown here (Destination Unreachable).
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Code | Checksum
unused
IPv4 Header + 64 bits of Original Data Datagram

Figure 3.5: An example ICMPv4 message format (Destinatiorebichable). [RFC792, Page 4]

Type |

Code | Checksum

Message Body
Figure 3.6: The general ICMPv6 message format. [RFC4448ti&@e2.1]

Type |

3.1.4 ICMPv4 Error Messages into ICMPV6

Translating ICMPv4 error messages into ICMPv6 is somewhatentomplicated than
translating other ICMPv4 messages. Because ICMPv4 errgsages contain an IPv4
header, the header must then also be translated to IPv6 trdmiislating the whole error
message into ICMPV6. This translation process can chamrgletigth of the datagram. If
this is the case, then the outer IPv6 header’s total lendthriieist be updated accordingly.
If, for some reason, the datagram includes more than onedaeddPv4 header, the packet
must be dropped. The translation is done only to the first elave IPv4 header. Figure 3.7
shows the general idea of ICMPV4 error message translatitoMPv6.

IPv4 IPv6
header header
ICMPVv4 ICMPV6
header header

IPv4 ===> IPv6
header header
partial partial

transport layer transport layer

header header

Figure 3.7: IPv4 to IPv6 ICMP error translation.

3.1.5

IPv4 to IPv6 Translation Notes

The translator can drop IPv4 packets. In these cases, an\&iPor message should be
generated and sent to the original sender. This error mesgagld be of a type 3 (Desti-
nation Unreachable) and with a code of 13 (Communication iddstmatively Prohibited).
Translator implementation should provide means for adstiaiors to decide whether to
send, not send or rate-limit the sending of ICMPv4 error ragss. [RFC6145, Section 4.4]
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Transport layer protocols, like TCP and UDP, have a psewdair checksum. The address
translation algorithm used by the translator can be eithecksum neutral, or not checksum
neutral. The translator must recognize the latter case pddte the affected TCP or UDP
checksum accordingly. [RFC6145, Section 4.5]

If the translator offers forwarding functionality (like auter), it has to check if the destina-
tion of packets is reachable by a more specific route withaustation. If this is possible,
then the packets have to be forwarded without translatighdabdirection. Otherwise, all
the packets have to be translated. [RFC6145, Section 4.6]

3.1.6 IPv6tolIPv4

When stateless NAT64 receives an IPv6 datagram going tethediPv4 domain, it trans-

lates the IPv6 header of the packet into an IPv4 header. TH&wb header is then replaced
by the new IPv4 header. If the translator supports this kiraltoansport protocol, then the
transport checksum is updated if needed. The data insigeattiet is left untouched. After

all this is done, the packet is forwarded based on the IPvdndgi®n address. Figure 3.8
shows the basic idea behind stateless IPv6 to IPv4 tramslati

IPv6 IPv4
header header
Fragmentation header ===> Transport layer
(if present) header
Transport layer Data
header
Data

Figure 3.8: Stateless IPv6 to IPv4 translation. [RFC614&ctHn 5, Figure 5]

IPv6 and IPv4 have some differences with fragmenting andmim path MTU. The min-
imum MTU in IPv6 is 1280 bytes while in IPv4 it is 68 bytes. PMDltan be handled
accross the translator with ICMP Packet Too Big messagean IPv6 host receives an
ICMPvV6 Packet Too Big message, it should send all packetset@ame destination with
IPv6 fragment headers. In this case, the translator shardrgte an IPv4 packet with the
DF bit clear and identification copied from the original IPv&gment header (Figure 3.4).
If the ICMPv4 Packet Too Big message does not reach the IPg6(ka. filtered by a
firewall), then the host should never use IPv6 fragment hsadie this case, the translator
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should set the DF bit. The translator also has to make suréaackets belonging to the
same flow are sent out in order of arrival. [RFC6145, Sectjon 5

It can be a complex task to handle PMUTD, fragmentation edctuiRately, the actual IPv6-

to-IPv4 header translation is a relatively simple task. 3K header and ICMPV6 error
message translation, on the other hand, requires more @etvarspection and actions. The
next three sections describe these three translation cas#soned here.

3.1.7 IPv6 Header into IPv4 Header

Figure 3.2 shows the IPv4 header format. If there are no IPagnfient headers present,
then the IPv4 header fields are set according to the followikes.

Version: 4.

Internet Header Length: 5 (no IPv4 options).

Type of Service Copied from IPv6 Traffic Class.

Total Length: Payload Length from the IPv6 header plus the length of thd leader.
Identification: O.

Flags DF bit is set to one and More Fragments bit is set to zero.

Fragment Offset 0.

Time To Live: Copied from the Hop Limit field of the IPv6 header and sulizddy
one.

Protocol: Copied from the Next Header field of the IPv6 header, or chdnip 1
(ICMPv4) if it is 58 (ICMPV6).

Header Checksum Calculated after the whole IPv4 header has been created.
Source Address Derived from the IPv6 source address of the IPv6 headegubm
algorithm described in Section 2.1.

Destination Address Derived from the IPv6 destination address of the IPv6 heade
using the algorithm in Section 2.1.

If the IPv6 header contains a fragment header, then the albbe® are followed with the
below mentioned exceptions.

Total Length: Set to Payload Length from the IPv6 header, then subtraot &e
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fragment header and plus the length of the IPv4 header.

Identification: Copy the 16 low-order bits from the IPv6 fragment headentidieation
field.

Flags DF bit is set to zero and the More Fragments (MF) flag is cofriech the M
flag in the IPv6 fragment header.

Fragment Offset Copied from the Fragment Offset field in the IPv6 fragmerades.
Protocol: Extension headers are skipped and the Next Header is cbpiadthe last
IPv6 header or changed to 1 (ICMPV4) if it is 58 (ICMPV6).

If atranslated packet does not fit into the next-hop MTU argtha DF bit set, the translator
must drop the packet. Then it must send an ICMPv6 Packet TgaBssage to the original
sender.

3.1.8 ICMPv6 Header into ICMPv4 Header

Both ICMPv6 and ICMPv4 messages have a similar format, hew#we checksum in
ICMPV6 is different from the one in ICMPv4. The ICMPv6 cheghksis a pseudo-header
checksum, while ICMPv4 checksum is not. This pseudo-heeadecksum is calculated
over the ICMPv6 message plus some other parts of the packetlasvhile the ICMPv4
checksum covers the ICMPv4 message only. This is the realspth® ICMPv4 checksum
has to be calculated as part of the translation process d@ndsta@opied from the ICMPV6
header. Additionally, the type field must be translated, fandCMP error messages, also
the included IP header must be translated. All possiblestation scenarios for ICMPV6 to
ICMPV4 translation are explained in detail in [RFC6145,ti8ec5.2].

3.1.9 ICMPv6 Error Messages into ICMPv4

Translating ICMPV6 error messages into ICMPVv4 is slightlyrencomplicated than trans-
lating other ICMPVv6 messages into ICMPv4. All the ICMPv6&emessages that contain a
packet, must have the included packet translated as wéleasctual ICMPv6 header. This
translation process might change the length of the datagtarthis case, then the outer
IPv4 header’s total length field must be updated accorditmiynatch the new length. If

the datagram includes more than one embedded IPv6 headgratket must be dropped
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immediately and must not be processed any further. As atréisaltranslation is done only
to the first embedded IPv6 header. Figure 3.9 shows the deraarsiation idea of ICMPv6
error message into ICMPv4 error message.

IPv6 IPv4
header header
ICMPV6 ICMPVv4
header header

IPv6 ===> IPv4
header header
partial partial

transport layer transport layer

header header

Figure 3.9: IPv6 to IPv4 ICMP error translation.

3.1.10 IPv6 to IPv4 Translation Notes

The translator can drop IPv6 packets in certain situatibribis happens, an ICMPV6 error
message should be generated and sent to the original sHrtderlPv6 source address can
not be translated to an IPv4 address, the error message b®olh type 1 and with a code
of 5 (Source Address Failed Ingress/Egress Policy). TYlgitiae network administrators
want to decide whether to send, not send or rate-limit thdisgrof ICMPV6 error messages
so the translator implementation should provide meandfer [RFC6145, Section 5.4]

Transport layer protocols, like TCP and UDP, have a psewdalér checksum. The address
translation algorithm that is used in the translator caniseksum neutral, or not checksum
neutral. The translator has to recognize the latter casepaake the affected TCP or UDP

checksum accordingly. [RFC6145, Section 5.5]

If the translator offers forwarding functionality and nas} simple bridging (like a router),
it has to check if the destination of packets is reachable imoee specific route without
translation. |If this is possible, then the packets must bedoded without translation.
Otherwise, all the packets must be translated. [RFC6145id9e5.6]
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3.2 Stateful NAT64

In stateful NAT64, a specific IPv6 address range, WKP (68:ff96) for example, is used

to represent IPv4 systems. IPv6 systems, on the other hanchave any legal IPv6 ad-

dresses. This is because stateful NAT64 stores informéikierthe translation table, so

that it remembers all the required information needed famgtating connections between
systems.

Stateful NAT64 is meant for IPv6-only hosts to be able to @wmtrto IPv4-only hosts. But
stateful NAT64 can also support a situation where the caroreds initiated by the IPv4-
only node. This ability requires special statically confegplibindings in the translator.

Stateful NAT64 uses SIIT to translate packet headers betwWeed and IPv6. However,
the actual source and destination addresses are partailyldd differently compared to
stateless NAT64. IPv4 addresses are algorithmically nppé&Pv6 addresses according
to the algorithm in [RFC6052]. IPv6 addresses are transgleaePv4 addresses like in
NAPT. In this case, the translator uses a pool of IPv4 addsg$lsat are specially assigned
for the translator to be used in the translation process.

Currently, NAT64 is defined to work with unicast packets gang TCP, UDP or ICMP
traffic. Multicast and other protocols like Stream Controafsmission Protocol (SCTP)
and IP Security Architecture (IPsec) are not standardif@BC6146, Section 1]

3.2.1 Overview

Stateful NAT64 has two main parts, protocol translation n@eism and address translation
mechanism. The former is basically the same as SIIT. Therlstthe translation algorithm
([RFC6052]) combined with two address pools. The IPv6 asklp®ol is used to translate
IPv4 address to IPv6 addresses (represent IPv4 addresbesiPv6 network). The IPv4
address pool is used to translate IPv6 address to IPv4 addré®present IPv6 addresses
in the IPv4 network).

The IPv6 pool is either the WKP (64:ff9b::/96) or a NSP. Mare the translator can have
multiple pools and prefixes. The organization, that deptbgdranslator, must route all the
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assigned prefixes to the NAT64 device. The IPv6 pools mushéesame pools that are
configured on to a DNS64 device (or devices) located in theaort

The IPv4 pool is a set of IPv4 addresses that are assigned tmtislator to be used in the
translation process. Typically this pool is some small IPrefix assigned by the deploying
organization. Due to the scarcity of IPv4 addresses, oneéonaapping is not possible.
Hence, NAPT is the typical translation type in NAT64. Orgaation, that deployes the
translator, must route the assigned IPv4 pool to the NAT &4cde

Typically, a connection can be established only from théSIRetwork side of the translator.
However, some exceptions exist. If the translator has & stapping configured for the
IPv6 node, a connection can be established from the IPv4 Aide, the translator can have
a dynamic mapping in memory from a previous connection aacktbre a new connection
can be established from the IPv4 side if it matches the puswoapping. Moreover, some
NAT traversal techniques, like Interactive Connectivitstéblishment (ICE) [RFC5245],
can be used. [RFC6146, Section 1]

NAT64 needs at least two logical interfaces, one that is eotad to the IPv4 network and
one that is connected to the IPv6 network. Packets from tlié ifetwork are routed to
the IPv6 interface of NAT64. NAT64 translates the IPv6 paskend then forwards the
translated IPv4 packets to the IPv4 network. The revergetin is similar. Packets from
the IPv4 network get routed to the IPv4 interface of NAT64.eiilthe IPv4 packets get
translated and are forwarded to the IPv6 network. StateAll6d is not symmetric, so
it requires a state for each connection. A state contain$f¥¢ and IPv6 addresses and
their TCP or UDP ports. IPv4 or IPv6 address and TCP or UDP gairtis called IPv4 or
IPv6 transport address from this point forward. A state feaoanection can be statically
configured or created when the first packet arrives to theskator from the IPv6 side.
[RFC6146, Section 1]

3.2.2 State Detalls

Stateful NAT64 has to keep track of all the current connetito be able to perform its
duty. The session and binding information are stored in nrginalynamic data structures.
NAT64 uses the following conceptual separation of data.GBRE46, Section 3]
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UDP Binding Information Base

UDP Session Table

TCP Binding Information Base

TCP Session Table

ICMP Query Binding Information Base
ICMP Query Session Table

In TCP and UDP Binding Information Bases (BIBs), one entrgcfies the mapping be-
tween IPv4 transport address and IPv6 transport addreg§+p@rt <—> IPv4+port). The
IPv4 address belongs to the NAT64 device and the IPv6 adtiedesgs to some host in
the IPv6 network. One IPv4 or IPv6 transport address canaappay once in a BIB.
More specifically, one transport address can appear in b6thand UDP BIB at the same
time, just not more than once in the same BIB. The ICMP QueB &bres mappings of
IPv4 address plus ICMPv4 identifier and IPv6 address plusP@blidentifier (IPv6+id6
<—> |Pv4+id4). This address and identifier pair can appedr ance in the ICMP query
BIB. The identifier is the value of the identifier field in ICM&wr ICMPV6 echo message
[RFC792, Page 14] [RFC4443, Section 4.1] for example.

NAT64 also has three session tables: UDP, TCP and ICMP. Bhatdhkeeps information on
the states of sessions belonging to that table category. &HJPT CP session table entries
specify a mapping between a pair of IPv6 transport addressga pair of IPv4 transport
addresses (IPv6a+port & IPv6b+port <—> IPv4a+port & IPyddrt). IPv6a is the address
of a client in the IPv6 network and IPv6b is the IPv6 represeon of IPv4b. IPv4ais some
address assigned to NAT64 and IPv4b is the address of a hthet IRPv4 network (where
IPv6a wants to connect to). In addition to these four IP and jpairs, the Session Table
Entry (STE) has one more bit of information regarding theyeoélled the STE Lifetime.
The ICMP session table is different from UDP and TCP sessibles. The ICMP session
table entries specify a mapping between IPv6 source addrRegsdestination address and
ICMPV6 identifier and IPv4 source address, IPv4 destinatdidress and ICMPv4 identifier
(IPv6a+IPv6b+id6 <—> IPv4a+IPv4b+id4). IPv6a, IPv6b, 48vand IPv4b have the same
meaning as in UDP or TCP session table. The ICMP query setditmalso has the STE
Lifetime information.
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One single entry in a BIB can have multiple sessions assmtiaith the entry. When the
last session is deleted, then the BIB entry can also be dgletdess statically configured).
[RFC6146, Section 3]

3.2.3 Packet Processing

NAT64 receives packets from its interfaces. The packetbeamther IPv4 or IPv6 packets.
The following functions are performed for each incominghkedc

1. Determine the incoming tuple

2. Filtering and updating binding and session information
3. Determine the outgoing tuple

4. Translate the packet

For every incoming IP packet, a tuple is associated withntthe case of UDP, TCP or
ICMP error messages, the tuple has five parts: source IP sgjdreurce port, destination
IP address, destination port and transport protocol. Irc#se of ICMP queries, the tuple
has three parts: source IP address, destination IP addréd€KIP identifier. For ICMP
error messages, the tuple is formed based on the embeddeatketpnside the ICMP
error message. Furthermore, the destination and soureg aoké swapped around in this
case. Other tuples are formed straightforward from the@ppate fields of their respective
packets. Tuples are easily formed, when the arriving packet not fragmented, but the
situation immediately becomes more complex, when fragetepickets are taken into
consideration. Since NAT64 allows and handles fragmeoriatit can be vulnerable to
well-known malicious attacks as described in [RFC1858] mndRFC3128]. [RFC4963]
describes problems with high rate assembly of fragmenteligts, which also has to be
taken into consideration in NAT64. [RFC6146, Section 3.4]

NAT64 has to filter incoming packets. The only acceptableéipackets are the ones that
have a destination address in the assigned NSP or WKP raigéar§, the only accept-
able IPv4 packets are the ones that have a destination addvesthe pool that has been
assigned to NAT64. Furthermore, if an IPv6 packet has a scadidress from the NSP or
WKP range, it must be discarded in order to prevent hairpigtoops. Hairpinning loop
is a situation where a packet comes inside and goes outsiolggth the same side of the
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NATG64 device. [RFC6146, Section 3.5]

For an incoming UDP IPv6 packet, the UDP BIB is checked for =isting entry that
matches the source transport address of the packet. If strgxentry is found, a new one
is created. Then NAT64 searches for an STE entry with thenreg tuple. Again, if no
entry is found, a new one is created. STE lifetime value issssbme default value, or in
the case of an existing entry, the lifetime value is reset.

For an incoming UDP IPv4 packet, the UDP BIB is checked for =isteg entry that
matches the source transport address of the packet. If srexentry is found, the packet
is dropped. If an entry was found, the UDP STE is searched rierb entry is found, a
new one is created. STE lifetime value is set to some defalliey or in the case of an

existing entry, the lifetime value is reset.

TCP session handling is similar in principle to UDP sessiandting, but much more com-
plicated. It involves a state machine for each TCP connedtioexample. A full descrip-
tion of TCP session handling is found in [RFC6146, Secti@n2}. ICMP session handling
is similar in principle to UDP session handling. [RFC614éctn 3.5.3]

The outgoing tuple is created based on the address tramskitjorithm ([RFC6052]) or
it can already exist in the BIB, in which case no computat®meeded. The packet is
translated according to stateless NAT64, or SIIT, as ayjreldcribed in Section 3.1 and
also in [RFC6145].

3.3 Example

This section provides a simple TCP connection example of ®N&hd NAT64 combined
functionality. The scenario consists of an IPv6-only dipresent in an IPv6 network and
an IPv4-only server in the IPv4 Internet. The IPv6 networkHg6-only and the IPv4

Internet is IPv4-only. Figure 3.10 shows the example sdéenar

The first step in creating a connection between client (C)ander (S) is for C to perform a
DNS query for S’s FQDN (www.tut.fi). The second step is cregathe synthesized AAAA
RR and sending it to C. In this case, DNS64 uses WKP (64:f®&).:for synthesizing
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IPv6 Network IPv4 Internet

1. AAAA Query for www.tut.fi

|=
(7
Client C DNS\G“ Server S
2001:aaaa::1l /o www.tut.fi
2. AAAA RR for www.tut.fi N 130.230.137.61
_Am—
64:ff9b::130.230.137.61 >
—
NAT64
o / o \ /

Figure 3.10: A DNS AAAA Query and a synthesized responsg WsikP.
AAAA RR'’s. These two steps are illustrated in Figure 3.10.

After receiving the IPv6 address of S, C sends a TCP SYN patkeS. The
source transport address is 2001:aaaa::1,1500 and thieatiest transport address is
64:1f9b::130.230.137.61,80. The packet gets routed to &AS IPv6 interface. This is
step 1 in Figure 3.11.

IPv6 Network IPv4 Internet

/ S /

1. h 2.
Source: 2001:aaaa::1 port 1500 Source: 195.140.195.20:2000
Destination: 130.230.137.61:80

]

Destination: 64:ff9b::130.230.137.61 port 80

Server S
www.tut.fi
130.230.137.61

Client C
2001:aaaa::1l

3.
Source: 130.230.137.61:80
Destination: 195.140.195.20:2000

4.
Source: 64:ff9b::130.230.137.61 port 80 NAT64
— " Destination: 2001:aaaa:1 port 1500 y —

Figure 3.11: A connection between an IPv6-only client andRard-only server.

NAT64 selects a free port (2000) on one of its IPv4 addresS.(#®.195.20) and creates
a mapping entry 2001:aaaa::1,1500 <—> 195.140.195.20,Z0¢en NAT64 translates the

packet from IPv6 to IPv4, changes the source transport agdinel 95.140.195.20,2000 and
the destination transport address to 130.230.137.61,8064sends the translated packet
out from its IPv4 interface (step 2 in Figure 3.11).

Step 3 in Figure 3.11 is the response from S. The response @GPaSIYN+ACK packet
with source transport address of 130.230.137.61,80 antindtsn transport address
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195.140.195.20,2000. This packet gets routed to the IRedfate of NAT64.

When NAT64 receives the SYN+ACK packet, it checks the magpiand finds out that
it has one for this connection (2001:aaaa::1,1500 <—> #@51D5.20,2000). NAT64
translates the packet from IPv4 to IPv6, changes the soummesgort address to
64:ff9b::130.230.137.61,80 and the destination trartspddress to 2001:aaaa::1,1500.
Then NAT64 sends the packet out from its IPv6 interface (dt@pFigure 3.11). A con-
nection between IPv6-only C and IPv4-only S has now beebksitad.
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4 TEST SETUP AND METHODS

LM Ericsson has developed their own software that implesiéhe DNS64/NAT64
functionality. The software was used in this thesis foritgstand evaluation of the
DNS64/NAT64 system. At the time of testing, the newest wersif LM Ericsson’s soft-
ware was always used. LM Ericsson’s implementation contbbeth DNS64 and NAT64
functionality to a single piece of software. The softwareswdasigned to be run on a 64-bit
Debian Linux. This chapter describes the server setup foring the DNS64/NAT64 soft-
ware and the configuration parameters used during testunghdrmore, the location of the
server and the testing computers are also introduced. If;itfa¢ testing process and test
cases are explained in the last section of this chapter.

4.1 Server Hardware Description

DNS64/NAT64 software was run on a 64-bit Debian Linux. Thisux server was a virtual
machine named nat64, which was physically located at onkeofdur Internet Exhange
Points (IXP) in Finland, Tampere Region Exchange (TREX)EMR The virtual machine
was assigned a central processing unit (CPU) core, a cemaaunt of memory and hard
disk space. The amount of resources allocated to nat6aviriachine was excessive on
purpose. The desired condition was that nat64 would neveoutiof resources during the
time of testing. In this way, the capabilities of the virtumachine would never limit the
functionality (throughput etc.) of DNS64/NAT64. Later ainyas observed that the desired
situation was indeed achieved. The amount of resourcessédid can be seen in Figure 4.1.
The figure shows the output that nat64 gives when given a fasgtriative commands.
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root@nat64# uname -a
Linux nat64 2.6.32-5-amd64 #1 SMP Fri Aug 6 00:38:23 UTC 2010 x86_64 GNU/Linux

root@nat64# free -m

total used free shared buffers cache
Mem: 496 331 164 0 54 233
-/+ buffers/cache: 44 452
Swap: 517 0 517
root@nat64+# cat /proc/cpuinfo
processor : 0
vendor_id . Genuinelntel
cpu family 6
model : 30
model name : Inter(R) Xeon(R) CPU X3430 @ 2.40GHz
stepping 5
cpu MHz : 2393.984
cache size : 8192 KB

root@nat64# df -h

Filesystem Size Used Avail Use% Mounted on
/dev/xvdal 1020M 168M 801M  18% /

tmpfs 249M 0 249M 0% /lib/init/rw
udev 235M 48K 235M 1% /dev

tmpfs 249M  4.0K 249M 1% /dev/shm
/dev/xvda6 20G 190M 1.7G  10% lusr
/devixvda7 510M 18M 467M 4% [/home
/dev/xvda8 59G 362M 5.3G 7% [Ivar

Figure 4.1: Nat64 virtual machine details.

4.2 Software Setup and Network Configuration

DNS64 was in a proxy resolver mode and it utilized other namess found from nat64’s
resolv.conf file (/etc/resolv.conf). Two other namesesweere utilized by nat64, both of
which were provided by TREX. The first one was resolverlidmsfi (2001:67c:2b0::1
and 195.140.195.21) and the second one was resolver2etis.(2001:67¢:2b0::2 and
195.140.195.22).

root @at 64# cat /etc/resolv. conf
2001: 67c: 2b0: : 1
2001: 67c: 2b0: : 2
195. 140. 195. 21
195. 140. 195. 22

naneserver
naneserver
naneserver
naneserver
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The IPv6 address space used for the synthetic AAAA RR’'s wa@d A7 c:2b0:1::/96. Nat-
urally, the same address space was configured for both DNIS6MNAT64 to be used in
the address translation. This is a mandatory action, sif¢8d2 and NAT64 only work
together, not separately. Routing was configured in a way,ttie address space used for
synthetic RRs, got routed to nat64. Nat64 used an IPv4 asldpesce of 195.140.194.0/26
as the source address pool for outgoing translated coonsctiThis address space was
routed to nat64. Nat64 had two main interfaces, ethO and atldlalso a third interface
(loopback). Interface ethl was used by DNS64 and ethO by MAT6Gterface ethO was
both the inside and outside for NAT64.

In this particular case, anyone anywhere in the world coatdgcess to the DNS64/NAT64
service offered by TREX by using one of the addresses assigaeDNS64 as
their DNS nameserver. The DNS64’s addresses were 19593105, 195.140.195.26,
2001:67c:2b0::4 and 2001:67c:2b0::6. The original idea twaset up a second DNS64
device later on and use addresses .26 and ::6 for it. Unfatelynthis idea was never re-
alized. The service was made available in the hopes of getibme real world usage and
feedback. The general network setup with nat64 is shownguargi4.2. TREX is an Inter-
net exchange point provider, that peers with all of the apesaconnected to the exchange
point. TREX has its Internet connection provided by Elisar(sit connection).

) CSC/FUNET, FNE Finland,
TREX nameservers ( Academica, Cybercom Plenware )
and other operators )

TREX peering

@ Internet

||

TREX transit (Elisa)

TREX switch TREX router S
Nat64

Figure 4.2: Network topology of the test setup for DNS64/68AT

4.3 General Test Setup

The general idea for testing was to find out how different grots and applications be-
have with the presence of DNS64/NAT64 functionality in tleéwork. DNS64/NAT64 was
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designed to enable IPv6-only devices to connect to IPvg-eatvers, but IPv4-only or
dual-stack devices can use DNS64/NAT64 too. The deployPNS864/NAT64 system can
not always be sure what type of devices the end users are goimagyve connected to the
network. The end users just want to connect to all kinds afises online and do not really
care about how this connectivity is achieved in the netw®tks is why it is very important

that DNS64/NAT64 is designed so that it works with IPv6-omBv4-only and dual-stack
devices. This logic is behind the decision that DNS64/NAW&S also tested with IPv4-
only and dual-stack connectivity in this thesis. The presesf DNS64/NAT64 should go
unnoticed by the end user. It should not break anything fieeneihd user’s point of view.
Instead, it should offer extra value by making otherwisevailable content available.

Theoretically, IPv4-only end users should not notice arffedince when operating in a
network with DNS64/NAT64 functionality. This statemenbsitd also apply to dual-stack
end users, although most of their connections would be mittidRw6 via DNS64/NAT64
device instead of with native IPv4. This is becacuse IPvGegkes are preferred over IPv4
addresses in the case when both are available according=©3#84]. An organization
deploying DNS64/NAT64 functionality has to make sure toville enough capacity to
accommodate the amount of traffic flowing through the DNS@&#/¢ device. The largest
added value from the presence of DNS64/NAT64 would appd®&ve-only end users with
the availability of previously unaccessable IPv4-onlyteor.

Almost all of the testing was done with a laptop Personal Qatera(PC) running Windows
7 with all the newest updates. The test PC had both IPv4 aréid®pabilities. Some tests
were executed also with a linux PC that had the newest verdi@2-bit stable Debian
Linux installed. The Linux PC also had IPv4 and IPv6 captedi Both of the test PCs
were located in the Department of Communications EnginggiiDCE) in Tampere Uni-
versity of Technology (TUT). Figure 4.3 shows the locatidnhe test PCs. The PCs were
logically located in one of the subnets in DCE that had IPvenextivity available. The
actual IPv6 addresses of the PCs were not important and daffect testing.

In order to access and test the DNS64/NAT64 functionalitywhe test PCs, manual con-
figuration of the DNS64 address as the nameserver addressesdsd for both PCs. No
other changes were required for the PCs. All tests were rigaat three times. First the
test PC had dual-stack enabled. Second time the PC had IRy@&uad finally the PC had
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IPv4-only.

| CSC/FUNET, FNE Finland, ) TUT transit (CSCIFUNET) ! )
} - Tampere University
TREX nameservers ( Academica, Cybercom Plenware ) Y of Technology
~ and other operators

— ‘ ~— ,,,,

Test PCs
TREX peering

Y )
« Internet )

TREX transit (Blisa) . )
TREX switch TREX router e

=

A —
—
—

Nat64

Figure 4.3: The location of the test PCs.

To test the DNS64/NAT64 system, the addresses of DNS64rsamere added as name-
servers in both Windows 7 and Linux test PCs. In Linux, thiguisees manually changing
the contents of resolv.conf file (/etc/resolv.conf). Thevmentents after this change to the
configuration file are shown below.

root @estpc# cat /etc/resolv. conf
nameserver 2001:67c: 2b0:: 4
nameserver 2001: 67c: 2b0: : 6
nameserver 195.140.195. 25
nanmeserver 195.140.195. 26

Lines in the configuration file can be commented out by addihgsh in the beginning of

the line. During IPv6-only tests, the IPv4 addresses of #meeserver were commented out.
Similarly during IPv4-only tests, the IPv6 addresses ofriameserver were commented
out. For dual-stack tests, the nameserver configuratiorawabove in the example paste.

In Windows 7, the nameserver addresses were added in tHateeaconnection properties.
The IPv4 nameserver addresses were added to the IPv4 catifigueind IPv6 nameserver
addresses to the IPv6 configuration. For IPv6-only tests |Rv4 protocol was disabled
from the local area connection properties window. For lIBw tests, the IPv6 protocol
was disabled from the local area connection properties evindror dual-stack tests, both
IPv4 and IPv6 protocols were enabled.

After configuring the test PCs with the correct addressesN&4, both PCs could test the
operation of DNS64/NAT64 system. In the Figure 4.4 below, phths for DNS messages
are shown. The test PCs send all their DNS queries to the DN8GaNS64 does not
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have the answer stored in cache for example, then it askssaveafrom TREX recursive

nameservers. If the answer is not found from there eithergtlery is made to some other
nameserver in the Internet. This process continues unaihawer for the query is found.
The answer is then sent back to the test PCs, but in the opmbsgtction (reverse path) of

what the queries took.

CSCIFUNET, FNE Finland, ) 1T transit (CSC/FUNET) [ Tampere Universiy )
TREX nameservers \/ Academica, Cybercom Plenware of Technology )
~~ and other operators ) N )
(= = S~ ~ e ~_ = =l S
Test PCs
TREX peering
|
4 ) . DNS Query
pu——— = Internet )
— = I 1 R ive S h
- TREX transit (Elisa) Q . ecursive seare
— — <
TREX switch TREX router I -

Nat64 ==
Nameserver

Figure 4.4: The paths that DNS Queries and recursive seakbs.

Tests were analyzed with Wireshark packet analyzer [WS] thi¢ support of netstat com-
mand in both PCs. Netstat command shows all the current ctions that the PC has and
the addresses (or hostnames) used for those connectiotisth&/ihelp of these tools and
the author’s previous knowledge on networking, everythirag was happening during the
tests was figured out. Figure 4.5 shows the location of theP€% and the two possible
routes that connections take to reach servers in the Intdfraeserver has an IPv6 address
bound to its hostname in the DNS, then the connections toséraer do not go through
NAT64. Instead, the connections take a shorter and fastiée foom the test PCs to the di-
rect server. For IPv4-only servers, a connection from IBaB-test PC’s has to go through
the NAT64 translator.

(" CSCIFUNET,FNEFinland, ) TUT transit (CSCIFUNET) ( _ )
' ' o — Tampere UanerSl(y

TREX nameservers ( Academica, Cybercom Plenware ‘— of Tochnology )
- and other operators ) -

99

IPv6-only Test PCs

TREX peering IPv6-only or dual-stack
= Server
_ El ) Il Native 1Pve
é Internet D
B e ] [l Translated IPv6/iPv4
TREX transit (Elisa) - )
TREX switch TREX router = El o

Nat64 —
IPv4-only
Server

Figure 4.5: The two possible routes to the Internet from dst PC'’s.
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4.4 Test Cases

A large variety of protocols and applications were pickete&t DNS64/NAT64 with. How-
ever, the focus was mostly on the most common protocols aplicapons, and too rare
or specific cases were avoided. This was because of the shourd of time available to
complete the testing phase of this project. The generakcasealso the most important
ones to work properly without problems, since most real dode cases are exactly these

general cases.

First, some basic testing that involved the use of ping amcktoute was completed. Both
IPv4 and IPv6 were tested right away. This first basic stagedeae in order to confirm the
operation of DNS64/NAT64. Testing was a success and thefibrDNS64/NAT64 was
strengthened to a level, where more testing could be dores&tond stage in testing was
web surfing. There was no predetermined list of web sitesstootder than YouTube. On
the contrary, the nature of web surfing was general and ramopurpose. Second phase
of testing was also a success and no major problems werevdigebyet in this stage.

The third and final phase of testing involved bringing out &hrark packet analyzer and
netstat command. These tools were not previously usedubedhe information desired
during the first two test phases was more general in natunes.tfind phase was aimed to
spot problems and complications that DNS64/NAT64 may cabisgurally, this required
detailed analysis of protocols and applications in questibhe testing in the third phase
was done with applications and protocols such as ICMP, T@HR,HHTTP, SSH, IMAP,
RTMP, FTP, games and peer-to-peer applications.

During all of the three testing phases, the test PC’s weréstaak, IPv6-only and IPv4-
only for every test to achieve good coverage and to spot soreepected situations. All
the tests were primarily run on the Windows 7 test PC, but adeecifically selected test
cases were also run with the Linux test PC. However, the tipgraystem of the test PC
had no effect in the results in any test case described above.

Karri Huhtanen, founder and chairman of the board at Arch Rgdarchred], set up a
wireless IPv6-only access point. The access point actedasgex, but it was only bridging
traffic between test devices and a router in DCE. The acceass$ was then tested with
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various wireless devices such as mobile phones and lapt&p F@ese devices included
a Nokia N900 mobile phone, an Android mobile phone, a Wind@waptop and a Mac
laptop. The access point was sending out router advertigsyso that the devices in range
could only get an IPv6 address. This setup caused someshtgy®bservations, which are
mentioned in the next chapter.
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5 RESULTS

Several cases, where IPv6-only test PC was unable to cormoatarproperly with 1Pv4-
only devices, were discovered during testing. When thingsewot working, the problems
were usually quite similar in nature. The main problem watsthe underlying protocols
used nor the DNS64/NAT64 software, but the actual desigh@irmplementation of the
applications in question. A rough categorization of thebjpems found was assembled
based on the data gathered from tests. The categories @®tad addresses, addresses
inside packet’s payload and trackers. For each categagyptbblems and their impact
are discussed below in their own respective sections ofctépter. Furthermore, some
solutions for the problems are also presented. Other stiegenotes and discoveries are
also explained later in this chapter.

This chapter includes a few terms that require some explginThese terms are service
provider, network operator and end user. Service providfars to an organization that
provides some application to public use via the Internets irtludes the original applica-

tion developer and hosting organizations. Network opetiatan organization that provides
Internet access to its customers. End user is a person thsitsosne network operator to
connect to the Internet and then uses applications thatsguwoviders offer.

5.1 Hardcoded Addresses

Some applications and games, for example, have hardcogéatfiresses. A good exam-
ple of this would be an online game, that has the address fogia kerver stored inside
the game’s code as a static IPv4 address. This design feaakes it impossible to play
the game with an IPv6-only device. An IPv6-only device doeslrave means to start a
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connection to an IPv4 address by itself. When an IPv6-ontiueser device does not have a
hostname that it can resolve into an IPv6 address, a failuréttate the connection occurs.

This problem concerns mostly service providers and endsudédre network operator can
not really do anything more in this case, than to keep the DIN$&T 64 available to use.
There is however one thing the network operator could do.olticc deploy IPv4 to its
network. But IPv4 is the thing we want to get rid of, so thereeally no point in doing this.
Furthermore, the problem in this case is not even the netepekator’s. So a temporary
fix of this magnitude would be a huge overreaction. And theightmot even be any more
free IPv4 addresses left in the world, let alone in the hahtE®specific network operator.

The service providers could fix this problem by altering tbdesof the application in ques-
tion. They could change the static IPv4 address into a dfai6 address, or even better,
into a static hostname. If deploying IPv6 is too early forseevice provider, they could use
the hostname modification. But at some point in the near éutiney will have to switch
to at least a dual-stack environment like everyone elseamibrid. If they have deployed
IPv6 or are deploying it right now, the static IPv6 addresslifncation would work also.

Another solution to this problem would be to create a locaitgrthat operates inside the
IPv6-only end users devices. This entity would turn IPv4radses into usable synthetic
IPv6 addresses with the same algorithm that DNS64 and NAB&4 In order to work,
the entity would first have to discover, if the network has aIBM/NAT64 functionality
available. This discovery can be done in many ways as proposgD-nat64-disc]. One
example is to send an AAAA DNS query for a commonly known IR¥y hostname. If
the answer contains an IPv6 address, the local entity canldbecertain of the presence
of DNS64/NAT64 in the network. The entity can also figure dwg tPv6 prefix that the
DNS64/NAT64 device is using from the response. After ab isidone, synthesizing IPv6
addresses could be done locally for IPv4 addresses. Howleeswitch from IPv4 usage
to IPv6 usage (transition phase) should go unnoticed by aloenmd users. This local entity
solution does not fulfil that criterion. At minimum, this stibn would require a Windows
update procedure or some other operating system updaddiatisn. [ID-name]

43



5.2 Addresses Inside Packet’s Payload

IPv4 addresses that are transferred inside packet’s phgieaproblematic. For example
some applications and games have this kind of behaviour. g% gxample of this case
would be an online game, that has a login server, to which @@-tly device can connect
to via DNS64/NAT64. However in this case, the login serverdsethe address of the actual
game server inside a packet as an IPv4 address. This deatgnefenakes it impossible to
play the game with an IPv6-only device. This problem is alintbe same as the problem
with hardcoded IPv4 addresses.

This problem concerns mostly service providers and endsu3ére network operator that
deployes DNS64/NAT64 has very limited possibilities to ehything about this problem.
One solution, that the network operator could do, is to mpottiE NAT64 functionality so
that it searches inside every packet for an IPv4 addresshandranslates that to an IPv6
address using the same algorithm as in normal translatiasweler, searching through
every packet’s contents would take a huge amount of timejire@ lot of resources and
slow down all the connections that do not require this fuorality to work. On top of that,
there are no quarantees that the application or game inignesould even work when
receiving an IPv6 address, when it expects an IPv4 addrs&keia packet.

This problem could be fixed by the service providers by aitgthe code of the application
in question. The IPv4 address transferred could be chamgean IPv6 address, or even
better, into a hostname. If deploying IPVv6 is too early far fervice provider, they could
use the hostname modification. However at some point in tae fogure, they will have
to switch to at least a dual-stack environment like everyelse in the world. The IPv6
address modification would also work, if they have deploy&eblor are deploying it right

NOow.

Another solution to this problem would be a local entity ttbperates inside the IPv6-only
end users’ device. The last paragraph in Section 5.1 descitilis case.
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5.3 Trackers

A problem with trackers is very common in online multiplaygames and peer-to-peer
applications. For example in games, when a new server becawadiable for clients, it
informs the game developer’s server tracker about its aviditly and statistics. This often
means that the new server only gives its IPv4 address to dloker. Now when a client
wants to browse a server list in order to select and join aesgivfirst connects to the
game developer’s server tracker. The tracker would thed geninformation regarding the
selected server to the client. But now, when the tracker baya server’s IPv4 address, it
can only send that address to the client. From this pointdoaywthe problem is exactly the
same as in Section 5.2, where an IPv6-only device gets andBdress inside a packet’s
payload. The solutions, however, are not exactly the santaifotracker problem. For one,
the modifications to the game code need to be more extenshas) shanging the game to
work with IPv6.

Peer-to-peer applications also suffer from the same pmobl8ut the problem is more

severe in this case, since the end user clients, that infooatahemselves to the tracker,
do not usually even have a hostname in DNS. They only have\ed@dress. So a solution,
where the IPv4 address would be replaced by a hostname, db@e®rk in this case.

The impact of this problem is most severe for end users awitsguroviders, but they also
have the best tools and best locations to correct this prablEhe network operator has
only limited tools to handle this problem. The solution isd@bed in the second paragraph
in Section 5.2. In short, it involves searching through gveacket's payload for IPv4
addresses and then translating those to IPv6 addresses.

None of the games that used this tracker system worked witlPa@+only client. Also
in peer-to-peer, the IPv6-only client was unable to contedlients with IPv4 address.
However, peer-to-peer still worked partially, since catimns to 6to4 [RFC4213] clients
were able to be made. This could be application dependentatbeast with uTorrent
[UTOR] the situation was as mentioned here.
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5.4 Wireless Test

In the wireless IPv6-only access point test, some intergshiings were discovered. In this
test, a wireless access point was connected to TUT’s netaratkt was sending out router
advertisements that included the address for DNS64. Thystiva clients that connect to
the access point, would automatically use DNS64/NAT64esyst-urthermore, the access
point was only providing IPv6 access. This setup was testddanfew different operating
systems. The devices that were used to test this setup weskia N900 mobile phone, an
Android mobile phone, a Windows 7 laptop and a Mac laptop.

Windows 7 was the only operating system that started workgig away with IPv6-only
and was able to access IPv4-only content via DNS64/NAT6HAetevices did receive the
router advertisements, but without an IPv4 address, théyadl recognize the availability
of an Internet connection. The situation might have beedierdint, if DHCPv6 was used
instead of RAs to provide addresses to test devices. Thidgarocan only be solved inside
the end users device itself. The operating systems thessaked some modifications in
order to function without the presence of IPv4. This is sdnmgf to be taken into con-
sideration when deploying IPv6-only networks before thegerating systems have been
updated.

5.5 Other Notes

An interesting observation was made while testing DNS64/6#Awith a dual-stack test
PC. All the connections were made with IPv6, unless encoedteith one of the prob-
lems described earlier in this chapter. Even though thatctievice has IPv4 available, it
will still prefer to use the synthetic IPv6 addresses remgifrom DNS64. This situation
occurs because IPv6 addresses are preferred over IPv4adsinghen possible as defined
in [RFC3484]. This means that pretty much all traffic will flalwough DNS64/NAT64.
Only in the cases where IPv6 does not work, the connectioraigenmatively with 1Pv4.
This situation should be avoided since it creates unnegeksad for DNS64/NAT64 de-
vice. Also, the operation of the applications that do notkweith DNS64/NAT64 for some
reason or another, might get slowed down due to initialljngyto use IPv6.
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This situation affects end users, network operators andceeproviders. The end users
will notice their activities online being slowed down andvimy some weird wait times.
The network operator will notice traffic being concentratedNS64/NAT64 device. The
service providers will notice an increasing amount of tcagbbncentrated on the same links,
those around the NAT64 device.

This situation also creates another problem. If a duakstdient wants to connect to an
IPv4-only server located in the same domain as the cliefitsitresolves the hostname into
a synthetic IPv6 address. Then it tries to connect to thatesddwhich results in the traffic
going to NAT64. Then the NAT64 tries to connect to the serBeit this connection can be
refused, for example, because of some firewall rules thahakace to protect the domain
from outsiders. With IPv4, the client could have connectiedight to the server, which
is located in the same domain as the client. This situati@hasvn in Figure 5.1. In this
example, a firewall blocks an outside connection trying toeas a printer that is located
inside TUT’s network. IPv4 could be used to access the priitectly, but when available,
IPVv6 is preferred and a connection to the printer can not b#ema

printer.tut.fi

— xg — OF

CSCIFUNET, FNE Finland, 7 UT transit (CSC/FUNET)

TREX nameservers ( Academica, Cybercom P) are of Technology

and other opgrefors ) - -l ~—__

)
/ o frovall ' o
—— — =

Test PCs

)
Tampere University

=y

TREX peering

D Native IPv4
Internet D .

TREX transit (Elisa) ,'\ [l Trenslated IPv6/IPv4

i TREX router T~ <
Nat64 TREX switch

Figure 5.1: A translated connection is blocked by a firewall.

In some cases, NAT64 can have so much traffic flowing throughat it would be wise
to deploy multiple NAT64 devices in the network to share thadl of translated traffic.
[ID-nat64-load] describes load balancing solutions for3#4/NAT64 and their advantages
and disadvantages. One example load balancing soluti®@N&64/NAT64 is a case where
IPv6-only clients are directed to specific NAT64 devices By3B4. In this case, every
NAT64 device has a different NSP and DNS64 directs clientdifferent NAT64 devices
based on the IPv6 address of clients. [ID-nat64-load, Sedi2.1]
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5.6 Traceroute and DNS reverse mapping

Traceroute is an important tool for understanding how wdlftiws in the Internet. Tracer-
outing through NAT64 device and understanding what is shcambe difficult. Luckily,
traceroute translates IPv4 and IPv6 addresses into hostlayrdefault in order to ease the
decyphering of traffic paths in the network. However, whaerouting through a NAT64
device, the addresses on the IPv4 side are not being tratigtahostnames. This is be-
cause the IPv4 side addresses are in the WKP and NSP rangdsaadio not have any
mappings in the DNS. But it would be a very useful featureh& DNS64 could do reverse
mapping for the synthesized IPv6 addresses. This would lkegemsimple process. First
retrieve the original IPv4 address from inside the synttezsiPv6 address and then do a
DNS query to find out the hostname mapped to the IPv4 addréssfirst traceroute below
is the current situation. The second traceroute below isdbelt of the reverse mapping
functionality proposed here for DNS64. It is easily seern tha second traceroute output
is far more informative and clear than the first one.

C\> tracert -6 ww.tut.fi

Tracing route to ww. tut.fi [2001:67c: 2b0: 1:: 82e6: 893d]
over a maxi mum of 30 hops:

defaul t-gw vl an52. atmtut.fi [2001:708: 310: 52::127]
surf-gw 1-2-0-518.cc.tut.fi [2001: 708: 310: 518:: 1]
funet-tut6-rtr-xe-0-0-0.cc.tut.fi [2001: 708: 310: 2: : 1]
trexl.unicast.trex.fi [2001: 7f8:1d: 4::72f8: 1]
nat64.trex.fi [2001: 67c: 2b0: 384: c03: 84ff: fe00: 72f 8]
2001: 67c: 2b0: 1:: c38c: c342

2001: 67c: 2b0: 1::c38c: c011

2001: 67c: 2b0: 1: : 82e6: 1lee

2001: 67c: 2b0: 1:: 82e6: 1b3

10 www. tut.fi [2001: 67c: 2b0: 1: : 82e6: 893d]

Trace conpl ete.

© 00 N o 0o A W DN P
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C\> tracert -6 ww.tut.fi

Tracing route to ww. tut.fi [2001:67c: 2b0: 1:: 82e6: 893d]
over a maxi mum of 30 hops:

defaul t-gwvlan52.atmtut.fi [2001: 708: 310: 52:: 127]
surf-gw 1-2-0-518.cc.tut.fi [2001: 708: 310: 518:: 1]
funet-tut6-rtr-xe-0-0-0.cc.tut.fi [2001: 708: 310: 2: : 1]
trexl.unicast.trex.fi [2001: 7f8:1d: 4::72f8: 1]

nat 64.trex.fi [2001: 67c: 2b0: 384: c03: 84ff: fe00: 72f 8]
betty.nat64.trex.fi [2001: 67c: 2b0: 1:: c38c: c342]

funet 1. unicast.trex.fi [2001: 67c: 2b0: 1::¢c38c: c011]
surf-gw xe-0-0-0.cc.tut.fi [2001:67c: 2b0: 1:: 82e6: lee]
ono- gw vl an52. cc.tut.fi [2001: 67c: 2b0: 1:: 82e6: 1b3]

10 www. tut.fi [2001: 67c: 2b0: 1:: 82e6: 893d]

Trace conpl ete.

© 00 N o 0o A W DN P
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6 CONCLUSIONS

A DNS64/NAT64 system was tested extensively in this thesise testing revealed some
problems and other noteworthy matters. Most of the problesuad were categorized
under three separate topics. The topics were hardcodedssady, addresses inside packet’s
payload and trackers. The first topic, hardcoded addresses)s a problem where an IPv4
address was hardcoded inside an application, thus breBIN8H4/NAT64 from working.
The second topic is quite similar, but the IPv4 address issteared to an end user device
inside a packet’s payload. The third topic, trackers, meapoblem where servers, when
announcing themselves, only send their IPv4 address taleireor the tracker only sends
an IPv4 address to a connecting end user device.

A common solution for many of the problems that were foundate a local entity inside
an end users’ IPv6-only device. This entity would first hawaliscover, if the network
has a DNS64/NAT64 functionality available. Based on thewdedge of translator pres-
ence and the used prefix, the local entity can then trangiatproblematic IPv4 addresses
to synthetic IPv6 addresses inside the end user’s devias,tfpassing the DNS64 com-
pletely. After this, a connection can be initiated by usihg synthesized IPv6 address as
the destination address for the connection.

This local entity solution is not exactly desirable becatrse switch from IPv4 to IPv6
should not cause any visible change for the actual end udédrs.installation of a local
entity would cause some work for the end users, thus makiisgstiiution undesirable.
On the other hand, this solution would require no changew filee network operators,
application designers or server operators. From theirtpdiview, this solution would be
a good one. However, this would only be a temporary solusarge all the problematic
applications will eventually have to be fixed to work with BPaddresses anyway. It is the
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opinion of the author, that a better solution would be to gjeatte affected applications to
work with IPv6 addresses straight away and to deploy IPv@imegal as soon as possible.

Using DNS64/NAT64 with a dual-stack end user device causag/nssues. All the traffic
from the end user will flow through NAT64 device, because |Rdfresses are preferred
over IPv4 when available. Furthermore, this traffic flow canse situations, where end
users’ traffic can not reach its destination due to firewallsekample. It is the recommen-
dation of the author, that DNS64/NAT64 should only be usetPws-only devices.

In some cases, it can be beneficial to deploy multiple NAT64cgs in the network to share
the load of translated traffic. The author personally peefefoad balancing solution for
DNS64/NAT64, where IPv6-only clients are directed to spe®tAT64 devices by DNS64.

In this case, every NAT64 device has a different NSP and DNfg@4ts clients to different

NAT64 devices based on the IPv6 address of clients.

A reverse DNS mapping solution is needed for DNS64/NAT64esyis The author firmly
believes that this functionality would improve the qualdfthe DNS64/NAT64 system
greatly. This functionality is mainly targeted to assistwak operators in deployment and
troubleshooting of a DNS64/NAT64 system. However, thiscfionality would offer value
to not just network operators, but to others as well.

LM Ericsson’s DNS64/NAT64 software was in a developmentsghduring the testing
phase of this thesis. A few bugs were discovered in the sodtwdile testing. These
bugs were reported to LM Ericsson and a new version of thevaodt was then quickly
built and taken into use for new tests. Some new ideas weoegalen to help develop
the DNS64/NAT64 software even further. These ideas wereregtived and have already
been taken into use in new versions of the software. As onleeofesults of this thesis, the
DNS64/NAT64 software has been improved. This was one of i@ goals of this thesis.

The problems found were mostly related to the way applioatire designed and imple-
mented. The application developers have considered tea oftly IPv4 when developing
applications for online use. Luckily designing systems tokwvith dual-stack has become
more and more common. The earlier lack of IPv6 mentality berealear when testing with
IPv6-only device through DNS64/NAT64. The reason for tkislear. IPv4 has been used
for so long that people are so used to it and used to workingityithat IPv6 was really not
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considered with the gravity that it deserves. Also, the ené®v4 address space has been
a discussed topic for such a long time, that some might hauegtiit it will never come so
why would they even prepare for it. It takes time, money aridrefo learn new things.
Fortunately, the IPv6 mentality and know-how are rapidlgvgng now that the world is
really facing the end of the IPv4 address space.

52



REFERENCES

[ARCHRED]
[EXHAUST]

[IANA]

[ID-edns0]

[ID-nat64-disc]

[ID-name]

[ID-nat64-load]

[IETF]

[RFC791]
[RFC792]

[RFC793]

[RFC879]

Arch Red Oy\WWW], http://www.archred.com/, cited May 2011.

The IPv4 Depletition SitgWWWW], http://www.ipv4depletion.com/,
cited April 2011.

The Internet Assigned Numbers AuthofdyWW], http://www.iana.
org/, cited April 2011.

J. KKRHONEN AND T. SAVOLAINEN. EDNSO Option for Indicating
AAAA Record Synthesis and Formatraft-korhonen-edns0-synthesis-
flag-02, Internet-draft, IETF, Work in Progress, Februady P

J. KORHONEN AND T. SAVOLAINEN. Analysis of solution propos-
als for hosts to learn NAT64 prefidraft-korhonen-behave-nat64-learn-
analysis-02, Internet-draft, IETF, Work in Progress, kely 2011.

T. SAVOLAINEN AND J. KORHONEN. Discovery of a Network-Specific
NAT64 Prefix using a Well-Known Namelraft-savolainen-heuristic-
nat64-discovery-01, Internet-draft, IETF, Work in Pragge February
2011.

D. HANG, X. XU AND M. BOUCADAIR. Considerations on
NAT64 Load-Balancing draft-zhang-behave-nat64-load-balancing-02,
Internet-draft, IETF, Work in Progress, April 2011.

The Internet Engineering Task For¢&/WW], http://www.ietf.org/,
cited April 2011.

J. ®STEL. Internet Protocal STD 5, RFC 791, IETF, September 1981.

J. BSTEL. Internet Control Message Protocol RFC 792, IETF,
September 1981.

J. BsSTEL. Transmission Control ProtocplSTD 7, RFC 793, IETF,
September 1981.

J. BSTEL. The TCP Maximum Segment Size and Related ToRiEE
879, IETF, November 1983.

53



[RFC1034]

[RFC1035]

[RFC1858]

[RFC1918]

[RFC2460]

[RFC2663]

[RFC2671]

[RFC3022]

[RFC3128]

[RFC3315]

[RFC3484]

[RFC3646]

[RFC4033]

[RFC4034]

[RFC4035]

P. MockAPETRIS Domain Names - Concepts and FacilitieSTD 13,
RFC 1034, IETF, November 1987.

P. MocKAPETRIS Domain Names - Implementation and Specification
STD 13, RFC 1035, IETF, November 1987.

G. ZeEmBA, D. REED, AND P. TRAINA. Security Considerations for
IP Fragment Filtering RFC 1858, IETF, October 1995.

Y. REKHTER, B. MoskowITz, D. KARRENBERG, G. J.DE GROOT
AND E. LEAR. Address Allocation for Private InternetdRFC 1918,
IETF, February 1996.

S. [EERING AND R. HINDEN. Internet Protocol, Version 6 (IPv6)
Specification RFC 2460, IETF, December 1998.

P. 8ISURESH ANDM. HOLDREGE. IP Network Address Translator
(NAT) Terminology and ConsideratigrRFC 2663, IETF, August 1999.

P. IXIE. Extension Mechanisms for DNS (EDNSRBFC 2671, IETF,
August 1999.

P. RISURESH ANDK. EGEVANG. Traditional IP Network Address
Translator (Traditional NAT) RFC 3022, IETF, January 2001.

I. MLLER. Protection Against a Variant of the Tiny Fragment Attack
RFC 3128, IETF, June 2001.

R. DroMs, J. BOUND, B. VoLz, T. LEMON, C. PERKINS AND M.
CARNEY. Dynamic Host Configuration Protocol for IPv6 (DHCPy6)
RFC 3315, IETF, July 2003.

R. DraVES. Default Address Selection for Internet Protocol version 6
(IPv6), RFC 3484, IETF, February 2003.

R. DRomMs. DNS Configuration options for Dynamic Host Configura-
tion Protocol for IPv6 (DHCPVG)RFC 3646, IETF, December 2003.

R. ARENDS, R. AUSTEIN, M. LARSON, D. MASSEY AND S. ROSE.
DNS Security Introduction and Requiremen®~C4033, IETF, March
2005.

R. RENDS, R. AUSTEIN, M. LARSON, D. MASSEY AND S. ROSE
Resource Records for the DNS Security ExtensidREC4034, IETF,
March 2005.

R. RENDS, R. AUSTEIN, M. LARSON, D. MASSEY AND S. ROSE
Protocol Modifications for the DNS Security ExtensionRFC4035,
IETF, March 2005.

54



[RFC4213]

[RFC4291]

[RFC4443]

[RFC4861]

[RFC4963]

[RFC5245]

[RFC5735]

[RFC6052]

[RFC6106]

[RFC6144]

[RFC6145]

[RFC6146]

[RFC6147]

[TREX]

[UTOR]

E. MRDMARK AND R. GILLIGAN . Basic Transition Mechanisms for
IPv6 Hosts and RouteyfRFC4213, IETF, October 2005.

R. HNDEN AND S. DEERING. IP Version 6 Addressing Architectyre
RFC4291, IETF, February 2006.

A. @NTA, S. DEERING AND M. GUPTA. Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv&pecifica-
tion, RFC4443, IETF, March 2006.

T. MRTEN, E. NORDMARK, W. SIMPSON AND H. SOLIMAN . Neigh-
bor Discovery for IP version 6 (IPv6) RFC4861, IETF, September
2007.

J. HHFFNER M. MATHIS, AND B. CHANDLER. |IPv4 Reassembly
Errors at High Data RatesRFC4963, IETF, July 2007.

J. RSENBERG Interactive Connectivity Establishment (ICE): A Pro-
tocol for Network Address Translator (NAT) Traversal fofédfAnswer
Protocols RFC5245, IETF, April 2010.

M. GTTON AND L. VEGODA. Special Use IPv4 AddresseRFC
5735, IETF, January 2010.

C. Bo, C. HUITEMA, M. BAGNULO, M. BOUDACAIR AND X. LI.
IPv6 Addressing of IPv4/IPv6 TranslatorlRFC6052, IETF, October
2010.

J. 80ONG, S. RARK, L. BELOEIL AND S. MADANAPALLI. IPv6
Router Advertisement Options for DNS ConfiguratiBfrC6106, IETF,
November 2010.

F. BKER, X. LI, C. BAO AND K. YIN. Framework for IPv4/IPv6
Translation RFC6144, IETF, April 2011.

X. b, C. BAO AND F. BAKER.
RFC6145, IETF, April 2011.

IP/ICMP Translation Algorithm

M. BAGNULO, P. MATTHEWS AND |. VAN BEIJNUM. Stateful NAT64:
Network Address and Protocol Translation from IPv6 ClietttdPv4
Servers RFC6146, IETF, April 2011.

M. BAGNULO, A. SULLIVAN, P. MATTHEWS AND |. VAN BEIINUM.
DNS64: DNS Extensions for Network Address Translation fileu®
Clients to IPv4 ServersRFC6147, IETF, April 2011.

TREX - DNS64 Name ServgW®@WWW], http://www.trex.fi/2011/dns64.
html/, cited May 2011.

uTorrent - A (very) Tiny BitTorrent CliedWWW], http://www.utorrent.

55



com/, cited May 2011.

[WS] G. ComMBS AND H. VATIAINEN ET AL . Wireshark - Go DeedwWwWw],
http://www.wireshark.org/, cited May 2011.

56



