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ABSTRACT
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The Internet has grown rapidly beyond the wildest dreams of its original developers. Back
in the day, when Internet Protocol was being developed, no one could foresee that the
global IP address space would run out. However, this is now becoming a reality and the
whole world is facing a big obstacle.

A new version of IP, version 6, has to be taken into use all overthe world. This version
has a large enough global IP address space and it should last until the end of mankind.
The transition from IPv4 to IPv6 has started many years ago, but is now finally growing in
speed.

The transition phase presents many problems. One of the mostimportant question is, how
IPv4 and IPv6 devices can communicate with each other duringthe important transition
phase that lasts for many years. One of the solutions to this question, DNS64/NAT64,
is explored and tested in this Master’s thesis. Without DNS64/NAT64 system or other
transition phase techniques, the transition to IPv6 could not be done rationally.

The suitability of a DNS64/NAT64 system for the transition phase is researched in this
thesis. This research includes testing the system, detecting possible problems, developing
improvement ideas and carrying out overall analysis. As a byproduct of this thesis, the
quality of the software used for the testing was also improved based on the found bugs and
the implementation of some new features.
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Internet on kasvanut huimasti yli sen alkuperäisten kehittäjien villien unelmien. Aikoinaan,
kun IP-protokollaa oltiin kehittämässä, ei kukaan voinut ennalta nähdä tilannetta, jossa glo-
baali osoiteavaruus loppuisi jonakin päivänä. Kuitenkin tällä hetkellä ollaan saavuttamassa
tilannetta, jossa osoitteet loppuvat ja koko maailma on ison haasteen edessä.

Uusi versio IP:stä, versio 6, täytyy ottaa käyttöön ympäri maailman. Tässä uudessa ver-
siossa on niin suuri globaali osoiteavaruus, että sen pitäisi riittää ihmiskunnan loppuun asti.
Siirtyminen IPv4:stä IPv6:een on alkanut monta vuotta sitten, mutta vasta nyt se alkaa no-
peutua.

Tässä siirtymävaiheessa on monia ongelmia. Yksi suurimmista ongelmista on se, kuinka
IPv4 ja IPv6 -laitteet saadaan muodostamaan yhteyksiä keskenään tämän tärkeän ja mo-
nivuotisen siirtymävaiheen aikana. Eräs ratkaisu tähän kysymykseen on DNS64/NAT64,
joka on tutkimuksen ja testauksen kohteena tässä diplomityössä. Ilman DNS64/NAT64 -
järjestelmää ja muita siirtymävaiheen tekniikoita ei uuteen IPv6:een voitaisi järkevästi siir-
tyä.

Tässä diplomityössä on tutkittu DNS64/NAT64 -järjestelmän soveltuvuutta siirtymävaiheen
teknologiaksi. Työ pitää sisällään kyseisen järjestelmäntestausta, ongelmakohtien kartoi-
tusta sekä parannusehdotuksia ja yleistä analysointia. Sivutuotteena varsinaisen järjestel-
män testauksen lisäksi myös testauksessa käytetyn ohjelmiston laatu parani löydettyjen vir-
heiden ja toteutettujen parannusehdotusten seurauksena.
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1 INTRODUCTION

The exhaustion of the global Internet Protocol version 4 (IPv4) [RFC791] address space is

becoming more and more imminent. On the 3rd of February 2011,the Internet Assigned

Numbers Authority (IANA) allocated the last five available /8 address blocks to Regional

Internet Registries (RIR). [IANA] RIRs will distribute these final five blocks to Local In-

ternet Registries (LIR), who will then put the addresses into use in the global Internet.

The rate at which RIRs will deplete their allocatable addresses varies greatly among the

five different RIRs. Asia-Pacific Network Information Centre (APNIC) will be the first RIR

expected to run out of addresses. It has already stopped allocating addresses the conven-

tional way to prolong the inevitable exhaustion of its address space. Réseaux IP Européens

Network Coordination Centre (RIPE NCC) is expected to be thenext RIR running out of

allocatable addresses. Estimates for the date of this eventvary from 19th of September

2011 to far into next year. [EXHAUST] The other three RIRs areclose behind RIPE NCC

in this matter.

This exhaustion problem was predicted over a decade ago. Hence, an improved version

of IPv4 has been developed by Internet Engineering Task Force (IETF) [IETF], which was

named as Internet Protocol version 6 (IPv6) [RFC2460]. One of the most important changes

compared to IPv4 is that this new version extends the addresslength from 32 bits to 128

bits.

With the increasing scarcity of available IPv4 addresses, Internet Service Providers (ISP)

and other LIRs around the world are enabling IPv6 in their networks. The global switch

from IPv4 to IPv6 is called the transition phase. This transition is happening gradually right

now all around the world. Every LIR is enabling IPv6 in their networks at their own speed.
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It is impossible for this transition to happen at the same time all around the world. Hence

IPv4 and IPv6 will coexist for a long time. Furthermore, soonwe will have a lot of devices

with IPv6 address only, because there will be no more free IPv4 addresses. This situation

is problematic for a number of reasons. Possibly the biggestdrawback is that a lot of the

content in the Internet is attainable with IPv4 only. This iswhere transition technologies

come in to save the day.

This thesis focuses on evaluation and testing of a DNS64/NAT64 (Domain Name System,

Network Address Translation) system. This system is a transition phase technology specif-

ically designed to enable communication between IPv6-onlyand IPv4-only devices. If

DNS64 [RFC6147] or NAT64 [RFC6145] [RFC6146] are deployed separately from each

other, they do not work. Both parts must be present in a network to achieve the desired

communication from IPv6-only device to IPv4-only device. DNS64 and NAT64 are an

unseparable pair.

The structure of this thesis is as follows. Chapters 2 and 3 describe the operation of

DNS64/NAT64 in detail as well as give other relevant background information required

to understand the rest of this thesis. The research methods and setup used for testing

DNS64/NAT64 system are explained in Chapter 4. Chapter 5 is dedicated for results. Fi-

nally, Chapter 6 gives conclusions and some future references.
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2 DNS64 BACKGROUND

DNS64/NAT64 system enables client to server communicationbetween an IPv6-only client

and an IPv4-only server. Furthermore, this system is designed so that no changes are re-

quired to either the IPv6 or the IPv4 node. All of the changes required to enable this system

are carried out by the network operator. A detailed explanation of the DNS64 system is

presented in this chapter. NAT64 is presented in the next chapter.

DNS64 is a mechanism that can synthesize IPv6-related AAAA resource records (RRs)

from IPv4-related A RRs. [RFC6147] When a normal DNS server is asked to give an

AAAA RR of a particular hostname, it returns the IPv6 addressif found, or gives an empty

response if the hostname does not have an IPv6 address. But with a DNS64 server, if the

hostname does not have an IPv6 address, the DNS64 server synthesizes an IPv6 address

and returns it to the querier. The synthesized IPv6 address is generated based on the IPv4

address stored in the A RR of that hostname. There is a specificalgorithm [RFC6052]

used to do this translation, and it is explained in Section 2.1. Section 2.2 desribes DNS64

specification. Section 2.3 contains some remarks on DNS64 and DNS Security Extensions

(DNSSEC) interoperability. Section 2.4 has discussion about other DNS extensions. Fi-

nally, the deployment of DNS64 is presented in Section 2.5.

2.1 Address Translation Algorithm

The address translation algorithm described in this chapter is used by the DNS64/NAT64

system in order to convert an IPv4 address to a correspondingIPv6 address, and vice versa.

Basically what this translation algorithm does is that it embeds an IPv4 address into an IPv6

address using a predefined prefix and the actual IPv4 address.The IPv4 address can also
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later be translated back from inside the IPv6 address. This translation requires knowledge

about the prefix used and its length.

There are two possible choices to use as the prefix in the translation, a Well-Known Prefix

(WKP) or a Network-Specific Prefix (NSP). WKP is always 64:ff9b::/96. NSP, on the other

hand, can have a variable length prefix and the prefix itself depends on the organization that

deploys this kind of a translator. [RFC6052, Section 2]

PL 0 31 32 40 48 56 64 72 80 88 96 104 127
/32 prefix v4(32) u suffix
/40 prefix v4(24) u (8) suffix
/48 prefix v4(16) u (16) suffix
/56 prefix (8) u v4(24) suffix
/64 prefix u v4(32) suffix
/96 prefix v4(32)

Figure 2.1: Illustration of how and where an IPv4 address is embedded inside an IPv6 address. [RFC6052,
Section 2.2, Figure 1]

Figure 2.1 shows all the possibilities of how to embed an IPv4address into an IPv6 address.

PL stands for prefix length in the figure. As mentioned before,WKP has a specific prefix

with a predefined length (64:ff9b::/96). In this case, the prefix length is always 96, so an

IPv4 address is embedded into bits 96 to 127 of an IPv6 address. A prefix length in the case

of an NSP can vary widely. It can be 32, 40, 48, 56, 64 or 96 bits as shown in Figure 2.1. In

every other NSP case except with prefix length 96, a null octet(all zeroes) is inserted into

bits 64 to 71. This null octet is represented in Figure 2.1 as "u". These cases also require

some suffix to be added, but this suffix is just zeroes in most situations. [RFC6052, Section

4.1] has discussion about what suffix to choose and recommends using a zero suffix.

The algorithm for creating an IPv4-embedded IPv6 addressesis described in [RFC6052,

Section 2.3] and also shown below.

1. Join the prefix, the IPv4 address and the suffix together in order.

2. If the prefix length is less than 96, then also insert the null octet "u" at the correct

position (bits 64 to 71).
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The algorithm for extracting the IPv4 address from inside the IPv6 address is described in

[RFC6052, Section 2.3] and also shown below.

1. If the prefix length is 96 bits, then just extract the last 32bits of the IPv6 address.

2. For all other prefixes, remove the "u" octet by shifting thelast 72-127 bits to positions

64-119, and then extract 32 bits that follow the prefix.

The IPv4 embedded IPv6 addresses will be represented in thisthesis in conformity with

[RFC4291, section 2.2]. WKP and NSP with prefix length of 96 can also be represented

in an alternative dotted decimal notation. Let us consider an example IPv4 address of

192.168.42.17 (c0a8:2a11 in hex). All possible IPv6 representations of this IPv4 address

are shown in Figure 2.2.

Prefix IPv4 IPv4-embedded IPv6 address
2001:aaaa::/32 192.168.42.17 2001:aaaa:c0a8:2a11::
2001:aaaa:bb00::/40 192.168.42.17 2001:aaaa:bbc0:a82a:0011::
2001:aaaa:bbbb::/48 192.168.42.17 2001:aaaa:bbbb:c0a8:002a:1100::
2001:aaaa:bbbb:cc00::/56 192.168.42.17 2001:aaaa:bbbb:ccc0:00a8:2a11::
2001:aaaa:bbbb:cccc::/64 192.168.42.17 2001:aaaa:bbbb:cccc:00c0:a82a:1100::
2001:a:b:c:d:e:/96 192.168.42.17 2001:a:b:c:d:e:c0a8:2a11
2001:a:b:c:d:e:/96 192.168.42.17 2001:a:b:c:d:e:192.168.42.17
64:ff9b::/96 192.168.42.17 64:ff9b::c0a8:2a11
64:ff9b::/96 192.168.42.17 64:ff9b::192.168.42.17

Figure 2.2: Text representation of an IPv4-embedded IPv6 address using NSP and WKP.

Organizations, that are deploying a DNS64/NAT64 system in their network, will have to

choose between WKP and NSP. There are some restrictions associated with the usage of

these prefixes. [RFC6052, Section 3] describes these restrictions as well as gives recom-

mendations on what prefix should be used and in what circumstances. WKP, for example,

must not be used to translate private IPv4 addresses [RFC1918] or other special use IPv4

addresses [RFC5735] into IPv6 addresses, or vice versa. After choosing what prefix to use,

organization can choose to advertise their DNS64/NAT64 service to the rest of the Inter-

net. However in practice, only NSP can be advertised. Similarly, they can choose to keep

the DNS64/NAT64 service accessible only from their own private network. If an organiza-

tion decides to provide the DNS64/NAT64 service for others to use, they have to announce

routes with border gateway protocol (BGP) to the DNS64 device and to the NSP that they

have chosen.
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2.2 DNS64 Specification

DNS64 synthesizes AAAA records from A records. This functionality can be implemented

in a stub resolver, in a recursive resolver or in an authoritative name server. The DNS64

functionality works together with what ever normal functionality a DNS resolver or a DNS

name server has according to [RFC1034] and [RFC1035]. [RFC6147, Section 5] Addition-

ally, DNS64 should support translation to multiple different IPv6 prefixes. This allows for

separate IPv4 address ranges to be mapped to separate IPv6 prefixes. This separate mapping

can be utilized, for example, to achieve load balancing between multiple NAT64 devices as

discussed in [ID-nat64-load].

DNS system is complex with numerous different records, messages and additions. The full

functionality of DNS is out of the scope of this thesis and canbe found in [RFC1034] and

[RFC1035]. However, knowledge of some parts of DNS functionality is needed in order to

understand how DNS64 works, particularly the part regarding answers to queries.

The general format of a DNS message is shown in Figure 2.3 below. A DNS message has

a maximum of five different sections. The header section is always present and informs

about what other sections are present and the type of the message. Answer, authority and

additional sections can contain multiple RRs. The next two paragraphs go over key parts

required to understand the synthesis that happens in DNS64 when it receives a query for

RRs of type AAAA and class IN (Internet).

Header
Question
Answer

Authority
Additional

Figure 2.3: The format of a DNS message. [RFC1035, Section 4.1]

An answer RR contains six data fields. These fields have various lengths with two fields

(NAME and RDATA), that have a variable length field. The full format of a DNS RR is

shown in Figure 2.4 below. Each row in Figure 2.4 is 16 bits in length.
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NAME

TYPE
CLASS

TTL

RDLENGTH
RDATA

Figure 2.4: The format of a resource record. [RFC1035, Section 3.2.1]

The NAME field contains a domain name, for which the RR is for. This field has a variable

length. The TYPE field, on the other hand, has a fixed length of two octets. The TYPE field

contains a code, that specifies the meaning of the data insidethe RDATA field. The CLASS

field also has a length of two octets. The CLASS field specifies the class of data in the

RDATA field. This class can be one of the following four types:IN (the Internet), CS (the

CSNET class), CH (the CHAOS class) or HS (the Hesiod class). The TTL field contains

a 32 bit unsigned integer, which specifies the maximum time inseconds that this RR can

be cached before it has to be discarded. If the value in the field is zero, then this answer

can only be used for the current transaction and should not becached. The RDLENGTH

field contains a 16 bit unsigner integer, that specifies the number of octets in the RDATA

field. The last field in the answer packet is RDATA. This field contains a variable number

of octets, which describe the resource. The format of information in this field is determined

by the TYPE and CLASS fields. For example, if the TYPE is A and the CLASS is IN, then

the RDATA field contains a 4 octet IPv4 address. Furthermore,if the TYPE is AAAA and

the CLASS is IN, then the content of RDATA field is a 16 octet IPv6 address. [RFC1035,

Section 3.2]

When a DNS64 server is queried for RRs of type AAAA and class IN, several things can

happen depending on the type of DNS device the DNS64 is in. At first, the DNS64 sends

a query further for the AAAA RR, or in the case of being the authoritative server itself for

that record, it examines its own database. An answer for the query can also be found in

a local cache, if one is available. It is also worth noting, that if the class is anything else

than IN in the query, the DNS64 operates as according to normal DNS rules. The next

two subsections outline the possible actions required for different outcomes of the AAAA

7



RR query.

2.2.1 Real AAAA Data Available

If a query results in one or more AAAA records in the answer section (RCODE 0), then no

DNS64 functionality is needed. In this case, the response tothe querier is done according

to the normal DNS functionality.

However, in some cases, an IPv6 address received may match a special exclusion set which

requires additional actions from DNS64. [RFC6147, Section5.1.1] These special cases are

discussed further in Section 2.2.3.

2.2.2 Error or Timeout

When a query returns an error (RCODE not 0), there are two possible actions depending on

the returned RCODE. If the RCODE is 3 (name error), then this error is sent to the client.

This is a normal action of DNS. However, if the RCODE is something else than 0 or 3, then

DNS64 regards the query results as if it has RCODE 0 and the answer section is empty.

This rule results in a synthesis of an AAAA RR. [RFC6147, Section 5.1.2]

DNS system has timers in place, for example to prevent infinite waiting for a response.

After sending a query, a timer activates. If the timer runs out before receiving a response, a

timeout event happens. The situation is handled, in this case, as server failure (RCODE 2).

[RFC6147, Section 5.1.3]

2.2.3 Special Exclusion Set

As a response to an AAAA query, DNS64 can receive IPv6 addresses that are not usable

by IPv6-only hosts. In this case, a special exclusion set canbe used to detect unusable

IPv6 addresses. This special exclusion set should include all the IPv6 addresses that are

not usable by IPv6-only hosts. Addresses in ::ffff:0:0/96 network are an example of these

unusable addresses.
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If DNS64 receives only AAAA records with these special exclusion set addresses, it should

consider the response as empty and continue accordingly. Also, if DNS64 receives one or

more usable addresses together with addresses in the excluded range, it should return only

those AAAA records with usable IPv6 addresses. DNS64 must not return addresses inside

the special exclusion set. [RFC6147, Section 5.1.4]

2.2.4 Parallel Querying

DNS64 can start two queries at the same time, one for an A record and one for an AAAA

record. This parallel querying can reduce delays when no AAAA record is found. Since in

a normal case, when DNS64 first queries for the AAAA record andit is not found, DNS64

needs to send a second query asking for the A record to be able to perform the required

synthesis.

If queried data is available locally, like it is with authoritative name server, then parallel

querying discussion is irrelevant. [RFC6147, Section 5.1.8] Parallel querying can, in theory,

reduce delay to half when compared to sequential querying.

2.2.5 Generating Synthetic Response

The format for DNS RR was shown in Section 2.2 in Figure 2.4. When DNS64 synthesizes

an AAAA record from an A record, it needs to generate a DNS answer packet containing

the synthesized address and other required information. The generation of an answer packet

is explained in this subsection.

The NAME field in the answer packet is set to the NAME field from the A record. The

TYPE field is set to 28, which indicates that the answer packetcontains an AAAA record.

The CLASS field is set to 1, which states the Internet (IN) as the class for data in the

RDATA field. DNS64 is specified only for the IN class, other class types are handled based

on normal DNS operation rules. The TTL field is set to the TTL ofthe original A record,

or to the TTL of the Start of Authority (SOA) record for the queried domain. If both values

are available, the smaller of the two is selected. The SOA RR can be remembered from the

negative response to the AAAA query. If this is not the case, then TTL is set to 600 seconds
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or to the TTL in the original A RR. Again the smaller value is selected. In this case, DNS64

could initiate a new query specifically for the SOA RR, but this would result in extra delay

and load with little or no benefits.

The RDLENGTH field is set to 16 to inform that the RDATA field is 16 octets in length. 16

octets is exactly the length of an IPv6 address (16 x 8 bits = 128 bits). Finally, the RDATA

field is set to the synthesized IPv6 address based on the IPv4 address from the original

A RR. If DNS64 has multiple prefixes configured to be used in address translation, then

it must check the IPv4 address in the A RR to determine which prefix should be used for

synthesizing the AAAA RR. [RFC6147, Section 5.1.7] Figure 2.5 shows an example A RR,

based on which an example AAAA RR shown in Figure 2.6 is generated.

example.com

1 (A)
1 (IN)

3600 (seconds)

4 (octets)
192.168.42.17

Figure 2.5: An example A RR.

example.com

28 (AAAA)
1 (IN)

600 (seconds)

16 (octets)
64:ff9b::c0a8:2a11

Figure 2.6: An example AAAA RR.

The A RR in Figure 2.5 contains an IP address of 192.168.42.17for example.com. The

record is in the Internet class (IN) with TTL value of 3600 seconds (1 hour). Based on

this information, the AAAA RR in Figure 2.6 was created. Thissynthesized AAAA RR

contains an IPv6 address of 64:ff9b::c0a8:2a11 for example.com. The AAAA RR is in the

Internet class (IN) with a TTL value of 600 seconds.
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2.3 Coexisting With DNSSEC

DNSSEC if defined in three RFCs: [RFC4033], [RFC4034] and [RFC4035]. The purpose

of DNSSEC is to add data origin authentication and data integrity to DNS. DNSSEC was

designed to detect tampering in DNS answers coming from authoritative name servers. This

can be very problematic for DNS64 since it does changes to especially AAAA RRs.

DNSSEC offers some signaling bits that are useful for DNS64,DNSSEC OK (DO) and

Checking Disabled (CD). These bits inform what the query originator understands about

DNSSEC. If the DO bit is set, then the query originator understands responses with

DNSSEC data. This does not mean that the querying agent validates the response, only

that it understands DNSSEC. Conversely, if the DO bit is not set, then the querying agent

does not understand DNSSEC. If the CD bit is set, then the query originator wants all the

validation data, so that it can do checking itself.

[RFC6147, Section 3] describes seven possible cases that can happen and the appropri-

ate responses to those cases, when running DNS64 in recursive resolver mode as security

oblivious, security aware (non-validating) and validating security aware.

1. DNS64 is DNSSEC aware/oblivious, query has DO bit clear

2. DNS64 is DNSSEC oblivious, query has DO bit set

3. DNS64 is DNSSEC aware (non-validating), query has DO bit set and CD bit clear

4. DNS64 is DNSSEC aware (non-validating), query has DO bit set and CD bit set

5. DNS64 is DNSSEC aware (validating), query has DO bit clearand CD bit clear

6. DNS64 is DNSSEC aware (validating), query has DO bit set and CD bit clear

7. DNS64 is DNSSEC aware (validating), query has DO bit set and CD bit set

The first case is easy to handle. It does not matter what the DNS64 does, since the querier

does not understand DNSSEC. In the second case, the querier supports DNSSEC but

DNS64 does not. This results in the querying agent getting noDNSSEC data, since the

relaying agent (DNS64) does not understand DNSSEC. The DNS64 used in the test setup

for this thesis is DNSSEC oblivious. More information aboutthe test setup is found in

Chapter 4.

In the third case, no validation happens since DNS64 is non-validating and the querying
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agent does not do local validation. The fourth case is an interesting one. If DNS64 per-

forms synthesis, the querying agent will notice this via local validation and discard the

data. DNS64 will not work in this case, unless the local querying agent can perform DNS64

itself.

The fifth case is ideal for DNS64. It can validate all the responses it gets and then perform

synthesis if needed. The local querying agent accepts everything and does not know that

there is a DNS64 system present in the network. The sixth caseis similar to the fifth case.

The only difference is that DNS64 should set Authentic Data (AD) bit on the response.

The seventh case is the same as the fourth case. In other words, the local querying agent

will notice synthesis and discard the data as invalid. DNS64will not work unless the local

querying agent can perform DNS64 function locally.

As we can see from the seven cases above, DNSSEC validator is problematic if it is behind

DNS64. The validator will notice data coming from DNS64 as tampered with, and might

even reject all. This is possible even in cases where CD bit isclear in the query. Therefore,

it is recommended not to deploy any validating resolvers behind the DNS64. If, however,

validators are placed behind DNS64, it is recommended that these validators can perform

DNS64 function themselves. Another option would be to builda trusted connection be-

tween DNS64 and DNSSEC validator, and allow DNS64 to do validation on DNSSEC

validator’s behalf. [RFC6147, Section 6.2]

2.4 Other Extension Mechanisms for DNS

DNS packets have many fixed length fields, that do not allow formuch growth. Also,

there is no space for clients to advertise their capabilities to servers. These were the main

reasons why Extension mechanisms for DNS (EDNS0) were developed. EDNS0 is defined

in [RFC2671]. DNSSEC, for example, is using EDNS0 for DNSSECOK messaging (DO

bit).

Later in this thesis we will run into cases, where it would be beneficial to locally do DNS64

functionality in a terminal device. In these types of situations, the device needs to learn

about the prefix (and suffix) used for address synthesis by itsnetwork operator. This prefix
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learning allows for locally synthesized IPv6 addresses to have the correct form, so that the

following traffic then gets routed to the network operators NAT64 device.

[ID-nat64-disc] describes several possible solutions forend hosts to learn about the pres-

ence of DNS64/NAT64 system in the network. One of these solutions is based on EDNS0,

and is analyzed further in [ID-edns0]. That document proposes a method of communicating

the usage of DNS64/NAT64 in the network, as well as the prefix used for synthesis, inside

EDNS0 option fields in DNS response. More specifically, threeflag bits from that EDNS0

option structure, called SY bits, would be used to convey neccessary information to an end

host.

This above mentioned method requires a well-known name, that has only an IPv4 address

in DNS. When a host sends an AAAA query for this well-known name, response message

tells the host if there is DNS64/NAT64 functionality available in the network. This process

is explained in [ID-name]. This has some drawbacks however.The host can not be sure

of the prefix being used and this is where the EDNS0 method comes into play. The three

SY bits can be used to convey eight different messages. [ID-edns0, Section 3] proposes the

following usage for SY bits.

000reserved

001prefix length /32

010prefix length /40

011prefix length /48

100prefix length /56

101prefix length /64

110prefix length /96

111address is not synthetic

Both WKP and NSP can use prefix length /96 and there is only one code (110) assigned for

/96. However, this is not a problem, since WKP is easily recognized by end hosts and can

not be confused with NSP.
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2.5 Deployment

The purpose of DNS64 is to aid IPv6 deployment in an environment with IPv4-only and

IPv6-only networks. There will be some issues with IPv4-only in a dual-stack context. One

issue is that because dual-stack clients will prefer IPv6 addresses when available over IPv4

addresses [RFC3484], they will end up using DNS64/NAT64 even when native IPv4 con-

nectivity could be used. This issue as well as other observations are presented in Chapter 5.

[RFC6144] describes eight scenarios, where DNS64/NAT64 system can be deployed. Per-

haps nowadays the most common situation to use DNS64/NAT64 would be from an IPv6

network to the IPv4 Internet. This is scenario 1: An IPv6 Network to the IPv4 Internet

[RFC6144, Section 2.1]. Some day in the future, the situation will turn into IPv6 Internet

to an IPv4 network. This is scenario 3: The IPv6 Internet to anIPv4 Network [RFC6144,

Section 2.3]. [RFC6147, Section 7] presents three very informative examples for the above

mentioned scenarios.

One goal for the global transition from IPv4 to IPv6 is that the impact and required work

for end users is minimal, preferably zero. The deployment ofa DNS64/NAT64 system in

the network does not neccessary require work for the end users. The only thing an end user

device requires is the knowledge of the DNS64 server, and more specifically, the address

of DNS64. This address can be manually configured by the end user, but it can also be

automatically set by Dynamic Host Configuration Protocol version 6 (DHCPv6) or by a

Router Advertisement (RA) extension. These two automatic methods are explained in the

following two sections. These methods can be used simultaneously without interference

problems. It is important to know these methods, because they are both used by network

operators. Also, these methods have different benefits (anddrawbacks) in different deploy-

ment scenarios.

2.5.1 Dynamic Host Configuration Protocol Version 6

[RFC3315] includes the full specification of DHCPv6. DNS options for DHCPv6 are spec-

ified in a separate RFC, which is [RFC3646]. These two specifications together offer means

for network operators to automatically deliver a list of DNSservers to end hosts. This is

14



done with a DNS Recursive Name Server option. The format of this option is shown in

Figure 2.7 below. Option code 23 is reserved for this DHCPv6 option. Option length indi-

cates the length of the list of name servers in octets and it must be a multiple of 16. Both

the option code field and the option length field have a length of 16 bits.

option code option length

DNS recursive name server (IPv6 address)

DNS recursive name server (IPv6 address)

Figure 2.7: The format of DNS Recursive Name Server option inDHCPv6.

2.5.2 Router Advertisement

Router advertisement is a part of Neighbor Discovery (ND) for IPv6. ND is defined in

[RFC4861] and IPv6 RA options for DNS configuration are defined in [RFC6106]. Router

advertisements, as the name states, originate from a router. With the addition of DNS con-

figuration information in RAs, IPv6-only hosts no longer need a DHCPv6 device informing

them about DNS servers. Now the IPv6 hosts can, in some cases,receive DNS information

from a local router directly. [RFC6106, Section 5.1] introduces a new option to ND called

Recursive DNS Server (RDNSS) option. Figure 2.8 below showsthe format of this option.

type length reserved
lifetime

DNS recursive name server (IPv6 address)

DNS recursive name server (IPv6 address)

Figure 2.8: The format of Recursive DNS Server option in ND.
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Type 25 is assigned by IANA for this option. The length field tells the length of the option

from start to end in units of 8 octets, so for example with one IPv6 address, the length would

be 3 (24 octets). Lifetime informs the time in seconds, for how long the DNS server can be

used. This information can be renewed periodically.
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3 NAT64 BACKGROUND

A normal NAT, aka NAT44, translates IPv4 addresses to IPv4 addresses [RFC2663, Section

4.1.1] [RFC3022, Section 2.1]. Typically, NAT is used to translate private IPv4 addresses

[RFC1918] to public IPv4 addresses and vice versa. In addition to address translation,

NAT can be expanded to do port translation also. This is called Network Address Port

Translation (NAPT) [RFC2663, Section 4.1.2] [RFC3022, Section 2.2], but it has become

so common that the word NAT is used to depict both normal NAT and NAPT. By using

NAPT, one public IPv4 address can represent a huge number of private IPv4 addresses.

This combats the depletion of the global IPv4 address space,but it adds complexity and

end-to-end connectivity issues.

NAT64 works basically like a NAT44 with one important exception. It translates IPv6

addresses to IPv4 addresses and vice versa. Because NAT64 issimilar to NAT, it also

suffers from the same problems like end-to-end connectivity issues. NAT64 is defined in

two RFC’s. [RFC6145] defines the Stateless IP/ICMP Translation algorithm (SIIT), which

is, in other words, stateless NAT64. [RFC6146] defines the stateful NAT64. The stateless

NAT64 is discussed in Section 3.1 and the stateful NAT64 in Section 3.2. An example of

the DNS64/NAT64 behaviour is presented in Section 3.3.

3.1 Stateless NAT64

Stateless NAT64 provides means for translation between IPv4 and IPv6. In addition, state-

less NAT64 provides means for translation between InternetControl Message Protocol ver-

sion 4 (ICMPv4) [RFC792] and ICMPv6 [RFC4443]. In statelessNAT64, a specific IPv6

address range, WKP (64:ff9b::/96) for example, is used to represent IPv4 systems. IPv6
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systems, on the other hand, have addresses that can be algorithmically mapped to a subset

of the network operator’s IPv4 addresses. By using this information, IPv4 addresses can be

translated to IPv6 addresses and vice versa, without any previous knowledge of connection

state or translation tables. [RFC6145, Section 1.3]

IPv4 and IPv6 have different header sizes. Thus, when translating from one to the other,

the packet size also changes. This has a problematic effect when handling maximum or

minimum size packets, or packets close to those limits. There are three ways to handle this

issue: Path Maximum Transmission Unit Discovery (PMTUD), fragmentation and transport

layer negotiation like the Maximum Segment Size (MSS) option [RFC879] in Transmission

Control Protocol (TCP) [RFC793]. These three things are discussed further in appropriate

sections of this chapter.

3.1.1 IPv4 to IPv6

When stateless NAT64 receives an IPv4 datagram going towards the IPv6 domain, it trans-

lates the IPv4 header of the packet into an IPv6 header. The old IPv4 header is then replaced

by the new IPv6 header. Then the transport checksum is updated if needed and if the trans-

lator supports this kind of a transport protocol. The data inside the packet is left untouched.

After all this is done, the packet is forwarded based on the IPv6 destination address. Fig-

ure 3.1 shows the basic idea behind stateless IPv4 to IPv6 translation.

IPv4 IPv6
header header

Transport layer ===> Fragmentation header
header (if needed)
Data Transport layer

header
Data

Figure 3.1: Stateless IPv4 to IPv6 translation. [RFC6145, Section 4, Figure 2]

IPv6 routers do not fragment packets, only the sender can do this. Therefore path MTU

discovery is neccessary in IPv6, but optional in IPv4. IPv4 host performs PMUTD by

setting the Don’t Fragment (DF) bit in the packet’s header. PMUTD works end-to-end,

i.e. accross the translator. In this case, IPv4 routers, IPv6 routers or the translator itself

can respond back to the IPv4 node by sending ICMP Packet Too Big messages. If the
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IPv6 routers generate these ICMP messages, then the messages have to be translated by the

NAT64 from IPv6 to IPv4. The translator also has to make sure that the packets belonging

to the same flow are sent out in order of arrival. [RFC6145, Section 4]

However, if the IPv4 host does not set the DF bit, the responsibility of not exceeding path

MTU falls to NAT64. In other words, NAT64 has to make sure thatpath MTU is not ex-

ceeded in the IPv6 side. This is achieved by automatically fragmenting IPv4 packets so that

they fit into 1280-byte IPv6 packets. 1280 bytes is the minimum IPv6 MTU and therefore

must be supported by all devices in the IPv6 side. IPv6 fragment header can cause oper-

ational difficulties in practise due to firewall support, etc. In a situation, where the same

entity operates the translator and the IPv6 network, the translator can offer a possibility

for administrators to configure a larger IPv6 MTU than the standard 1280 bytes. Natu-

rally, this new configured value has to be supported by all devices in the entity’s network.

This configuration change would reduce the appearance of fragmented IPv6 packets greatly.

[RFC6145, Section 4]

Handling PMUTD, fragmentation etc. can be a complex task. Luckily, the actual IPv4-

to-IPv6 header translation is a relatively simple task. ICMPv4 header and ICMPv4 error

message translation, on the other hand, requires more advanced inspection and actions.

These three translation cases are depicted in their own respective sections below.

3.1.2 IPv4 Header into IPv6 Header

There are a few different translation cases depending on thesize of the IPv4 packet and

value of the DF bit. If the DF bit is not set, and after translation, the resulting IPv6 packet

would be larger than 1280 bytes, then the translator must fragment the original IPv4 packet.

The resulting fragmented IPv6 packets should be less than orequal to 1280 bytes in length,

so that they are guaranteed to be accepted by every IPv6 device. If the DF bit is set and the

next-hop MTU is smaller than the translated packet would be,the translator must send an

ICMPv4 Fragmentation Needed error message to the source address of the packet. If the

DF bit is set and the packet is not a fragment, then the translation should happen according

to the following rules.

Version: 6.
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Traffic Class: Copied from the Type Of Service (TOS) field of the IPv4 header.

Flow Label: 0.

Payload Length: Total length value from the IPv4 header minus the IPv4 header and

IPv4 options length.

Next Header: Copied from the protocol field of the IPv4 header, or changedto 58

(ICMPv6) if it is 1 (ICMPv4).

Hop Limit : Copied from the TTL field of the IPv4 header and subtracted byone.

Source Address: Generated IPv6 address based on the source address of the IPv4

header and the algorithm described in Section 2.1.

Destination Address: Generated IPv6 address based on the destination address ofthe

IPv4 header and the algorithm described in Section 2.1.

The IPv4 header format is shown in Figure 3.2 and the IPv6 header format is shown in

Figure 3.3 below. Figure 3.4 shows the IPv6 fragment header.

Version IHL Type of Service Total Length
Identification Flags Fragment Offset

Time to Live Protocol Header Checksum
Source Address

Destination Address
Options Padding

Figure 3.2: The IPv4 header format. [RFC791, Section 3.1, Figure 4]

Version Traffic Class Flow Label
Payload Length Next Header Hop Limit

Source Address

Destination Address

Figure 3.3: The IPv6 header format. [RFC2460, Section 3]

Next Header Reserved Fragment Offset Res M
Identification

Figure 3.4: The IPv6 fragment header format. [RFC2460, Section 4.5]

When the DF bit is not set and the packet is a fragment, the translator has to add a fragment

header. This is done by following the rules above in this section, but with a few exceptions.
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The IPv6 header payload length value is calculated as mentioned above and increased by

8 to include the fragment header length. Also, the next header field is set to 44 to indicate

that a fragment header is next to follow. The fragment headeris created according to the

following rules.

Next Header: Copied from the protocol field of the IPv4 header, or changedto 58

(ICMPv6) if it is 1 (ICMPv4).

Fragment Offset: Copied from the IPv4 header fragment offset field.

M Flag: Copied from the IPv4 header more fragments bit.

Identification : The high-order 16 bits are set to zero and the low-order 16 bits are

copied from the IPv4 header identification field.

If the IPv4 header has any options set, they will be ignored completely by the translator.

However, there is one exception to this rule. If there is an unexpired source route option

present, then the packet is discarded and an ICMPv4 error message (Destination Unreach-

able, Source Route Failed) is sent to the sender. When the unexpired source route option is

present, then the IPv4 packet contains IPv4 router addresses and those would be useless for

the IPv6 receiver.

3.1.3 ICMPv4 Header into ICMPv6 Header

Both ICMP messages have a similar format, but the checksum inICMPv6 is different from

the one in ICMPv4. The ICMPv6 checksum is a pseudo-header checksum, unlike ICMPv4

checksum. This pseudo-header checksum is calculated over the ICMPv6 message plus

some other parts as well, while the ICMPv4 checksum covers the ICMPv4 message only.

This is why the ICMPv6 checksum has to be calculated as part ofthe translation process.

In addition, the type field must be translated, and for ICMPv4error messages, the included

IPv4 header must also be translated. All the different translation scenarios for ICMPv4 to

ICMPv6 translation are explained in detail in [RFC6145, Section 4.2]. Figure 3.5 shows

a Destination Unreachable ICMPv4 message and Figure 3.6 shows the general ICMPv6

message format. Because there is no general ICMPv4 message,one of the basic ICMPv4

messages is shown here (Destination Unreachable).
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Type Code Checksum
unused

IPv4 Header + 64 bits of Original Data Datagram

Figure 3.5: An example ICMPv4 message format (Destination Unreachable). [RFC792, Page 4]

Type Code Checksum
Message Body

Figure 3.6: The general ICMPv6 message format. [RFC4443, Section 2.1]

3.1.4 ICMPv4 Error Messages into ICMPv6

Translating ICMPv4 error messages into ICMPv6 is somewhat more complicated than

translating other ICMPv4 messages. Because ICMPv4 error messages contain an IPv4

header, the header must then also be translated to IPv6 whiletranslating the whole error

message into ICMPv6. This translation process can change the length of the datagram. If

this is the case, then the outer IPv6 header’s total length field must be updated accordingly.

If, for some reason, the datagram includes more than one embedded IPv4 header, the packet

must be dropped. The translation is done only to the first embedded IPv4 header. Figure 3.7

shows the general idea of ICMPv4 error message translation to ICMPv6.

IPv4 IPv6
header header
ICMPv4 ICMPv6
header header

IPv4 ===> IPv6
header header
partial partial

transport layer transport layer
header header

Figure 3.7: IPv4 to IPv6 ICMP error translation.

3.1.5 IPv4 to IPv6 Translation Notes

The translator can drop IPv4 packets. In these cases, an ICMPv4 error message should be

generated and sent to the original sender. This error message would be of a type 3 (Desti-

nation Unreachable) and with a code of 13 (Communication Administratively Prohibited).

Translator implementation should provide means for administrators to decide whether to

send, not send or rate-limit the sending of ICMPv4 error messages. [RFC6145, Section 4.4]
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Transport layer protocols, like TCP and UDP, have a pseudo-header checksum. The address

translation algorithm used by the translator can be either checksum neutral, or not checksum

neutral. The translator must recognize the latter case and update the affected TCP or UDP

checksum accordingly. [RFC6145, Section 4.5]

If the translator offers forwarding functionality (like a router), it has to check if the destina-

tion of packets is reachable by a more specific route without translation. If this is possible,

then the packets have to be forwarded without translation tothat direction. Otherwise, all

the packets have to be translated. [RFC6145, Section 4.6]

3.1.6 IPv6 to IPv4

When stateless NAT64 receives an IPv6 datagram going towards the IPv4 domain, it trans-

lates the IPv6 header of the packet into an IPv4 header. The old IPv6 header is then replaced

by the new IPv4 header. If the translator supports this kind of a transport protocol, then the

transport checksum is updated if needed. The data inside thepacket is left untouched. After

all this is done, the packet is forwarded based on the IPv4 destination address. Figure 3.8

shows the basic idea behind stateless IPv6 to IPv4 translation.

IPv6 IPv4
header header

Fragmentation header ===> Transport layer
(if present) header

Transport layer Data
header
Data

Figure 3.8: Stateless IPv6 to IPv4 translation. [RFC6145, Section 5, Figure 5]

IPv6 and IPv4 have some differences with fragmenting and minimum path MTU. The min-

imum MTU in IPv6 is 1280 bytes while in IPv4 it is 68 bytes. PMTUD can be handled

accross the translator with ICMP Packet Too Big messages. Ifan IPv6 host receives an

ICMPv6 Packet Too Big message, it should send all packets to the same destination with

IPv6 fragment headers. In this case, the translator should generate an IPv4 packet with the

DF bit clear and identification copied from the original IPv6fragment header (Figure 3.4).

If the ICMPv4 Packet Too Big message does not reach the IPv6 host (e.g. filtered by a

firewall), then the host should never use IPv6 fragment headers. In this case, the translator
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should set the DF bit. The translator also has to make sure that the packets belonging to the

same flow are sent out in order of arrival. [RFC6145, Section 5]

It can be a complex task to handle PMUTD, fragmentation etc. Fortunately, the actual IPv6-

to-IPv4 header translation is a relatively simple task. ICMPv6 header and ICMPv6 error

message translation, on the other hand, requires more advanced inspection and actions. The

next three sections describe these three translation casesmentioned here.

3.1.7 IPv6 Header into IPv4 Header

Figure 3.2 shows the IPv4 header format. If there are no IPv6 fragment headers present,

then the IPv4 header fields are set according to the followingrules.

Version: 4.

Internet Header Length: 5 (no IPv4 options).

Type of Service: Copied from IPv6 Traffic Class.

Total Length: Payload Length from the IPv6 header plus the length of the IPv4 header.

Identification : 0.

Flags: DF bit is set to one and More Fragments bit is set to zero.

Fragment Offset: 0.

Time To Live: Copied from the Hop Limit field of the IPv6 header and subtracted by

one.

Protocol: Copied from the Next Header field of the IPv6 header, or changed to 1

(ICMPv4) if it is 58 (ICMPv6).

Header Checksum: Calculated after the whole IPv4 header has been created.

Source Address: Derived from the IPv6 source address of the IPv6 header using the

algorithm described in Section 2.1.

Destination Address: Derived from the IPv6 destination address of the IPv6 header

using the algorithm in Section 2.1.

If the IPv6 header contains a fragment header, then the aboverules are followed with the

below mentioned exceptions.

Total Length: Set to Payload Length from the IPv6 header, then subtract 8 for the
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fragment header and plus the length of the IPv4 header.

Identification : Copy the 16 low-order bits from the IPv6 fragment header Identification

field.

Flags: DF bit is set to zero and the More Fragments (MF) flag is copiedfrom the M

flag in the IPv6 fragment header.

Fragment Offset: Copied from the Fragment Offset field in the IPv6 fragment header.

Protocol: Extension headers are skipped and the Next Header is copiedfrom the last

IPv6 header or changed to 1 (ICMPv4) if it is 58 (ICMPv6).

If a translated packet does not fit into the next-hop MTU and has the DF bit set, the translator

must drop the packet. Then it must send an ICMPv6 Packet Too Big message to the original

sender.

3.1.8 ICMPv6 Header into ICMPv4 Header

Both ICMPv6 and ICMPv4 messages have a similar format, however the checksum in

ICMPv6 is different from the one in ICMPv4. The ICMPv6 checksum is a pseudo-header

checksum, while ICMPv4 checksum is not. This pseudo-headerchecksum is calculated

over the ICMPv6 message plus some other parts of the packet aswell, while the ICMPv4

checksum covers the ICMPv4 message only. This is the reason why the ICMPv4 checksum

has to be calculated as part of the translation process and not just copied from the ICMPv6

header. Additionally, the type field must be translated, andfor ICMP error messages, also

the included IP header must be translated. All possible translation scenarios for ICMPv6 to

ICMPv4 translation are explained in detail in [RFC6145, Section 5.2].

3.1.9 ICMPv6 Error Messages into ICMPv4

Translating ICMPv6 error messages into ICMPv4 is slightly more complicated than trans-

lating other ICMPv6 messages into ICMPv4. All the ICMPv6 error messages that contain a

packet, must have the included packet translated as well as the actual ICMPv6 header. This

translation process might change the length of the datagram. In this case, then the outer

IPv4 header’s total length field must be updated accordinglyto match the new length. If

the datagram includes more than one embedded IPv6 header, the packet must be dropped
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immediately and must not be processed any further. As a result, the translation is done only

to the first embedded IPv6 header. Figure 3.9 shows the general translation idea of ICMPv6

error message into ICMPv4 error message.

IPv6 IPv4
header header
ICMPv6 ICMPv4
header header

IPv6 ===> IPv4
header header
partial partial

transport layer transport layer
header header

Figure 3.9: IPv6 to IPv4 ICMP error translation.

3.1.10 IPv6 to IPv4 Translation Notes

The translator can drop IPv6 packets in certain situations.If this happens, an ICMPv6 error

message should be generated and sent to the original sender.If the IPv6 source address can

not be translated to an IPv4 address, the error message wouldbe of a type 1 and with a code

of 5 (Source Address Failed Ingress/Egress Policy). Typically the network administrators

want to decide whether to send, not send or rate-limit the sending of ICMPv6 error messages

so the translator implementation should provide means for this. [RFC6145, Section 5.4]

Transport layer protocols, like TCP and UDP, have a pseudo-header checksum. The address

translation algorithm that is used in the translator can be checksum neutral, or not checksum

neutral. The translator has to recognize the latter case andupdate the affected TCP or UDP

checksum accordingly. [RFC6145, Section 5.5]

If the translator offers forwarding functionality and not just simple bridging (like a router),

it has to check if the destination of packets is reachable by amore specific route without

translation. If this is possible, then the packets must be forwarded without translation.

Otherwise, all the packets must be translated. [RFC6145, Section 5.6]
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3.2 Stateful NAT64

In stateful NAT64, a specific IPv6 address range, WKP (64:ff9b::/96) for example, is used

to represent IPv4 systems. IPv6 systems, on the other hand, can have any legal IPv6 ad-

dresses. This is because stateful NAT64 stores informationlike the translation table, so

that it remembers all the required information needed for translating connections between

systems.

Stateful NAT64 is meant for IPv6-only hosts to be able to connect to IPv4-only hosts. But

stateful NAT64 can also support a situation where the connection is initiated by the IPv4-

only node. This ability requires special statically configured bindings in the translator.

Stateful NAT64 uses SIIT to translate packet headers between IPv4 and IPv6. However,

the actual source and destination addresses are partially handled differently compared to

stateless NAT64. IPv4 addresses are algorithmically mapped to IPv6 addresses according

to the algorithm in [RFC6052]. IPv6 addresses are translated to IPv4 addresses like in

NAPT. In this case, the translator uses a pool of IPv4 addresses, that are specially assigned

for the translator to be used in the translation process.

Currently, NAT64 is defined to work with unicast packets carrying TCP, UDP or ICMP

traffic. Multicast and other protocols like Stream Control Transmission Protocol (SCTP)

and IP Security Architecture (IPsec) are not standardized.[RFC6146, Section 1]

3.2.1 Overview

Stateful NAT64 has two main parts, protocol translation mechanism and address translation

mechanism. The former is basically the same as SIIT. The latter is the translation algorithm

([RFC6052]) combined with two address pools. The IPv6 address pool is used to translate

IPv4 address to IPv6 addresses (represent IPv4 addresses inthe IPv6 network). The IPv4

address pool is used to translate IPv6 address to IPv4 addresses (represent IPv6 addresses

in the IPv4 network).

The IPv6 pool is either the WKP (64:ff9b::/96) or a NSP. Moreover, the translator can have

multiple pools and prefixes. The organization, that deploysthe translator, must route all the
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assigned prefixes to the NAT64 device. The IPv6 pools must be the same pools that are

configured on to a DNS64 device (or devices) located in the network.

The IPv4 pool is a set of IPv4 addresses that are assigned to the translator to be used in the

translation process. Typically this pool is some small IPv4prefix assigned by the deploying

organization. Due to the scarcity of IPv4 addresses, one to one mapping is not possible.

Hence, NAPT is the typical translation type in NAT64. Organization, that deployes the

translator, must route the assigned IPv4 pool to the NAT64 device.

Typically, a connection can be established only from the IPv6 network side of the translator.

However, some exceptions exist. If the translator has a static mapping configured for the

IPv6 node, a connection can be established from the IPv4 side. Also, the translator can have

a dynamic mapping in memory from a previous connection and therefore a new connection

can be established from the IPv4 side if it matches the previous mapping. Moreover, some

NAT traversal techniques, like Interactive Connectivity Establishment (ICE) [RFC5245],

can be used. [RFC6146, Section 1]

NAT64 needs at least two logical interfaces, one that is connected to the IPv4 network and

one that is connected to the IPv6 network. Packets from the IPv6 network are routed to

the IPv6 interface of NAT64. NAT64 translates the IPv6 packets and then forwards the

translated IPv4 packets to the IPv4 network. The reverse direction is similar. Packets from

the IPv4 network get routed to the IPv4 interface of NAT64. Then the IPv4 packets get

translated and are forwarded to the IPv6 network. Stateful NAT64 is not symmetric, so

it requires a state for each connection. A state contains theIPv4 and IPv6 addresses and

their TCP or UDP ports. IPv4 or IPv6 address and TCP or UDP portpair is called IPv4 or

IPv6 transport address from this point forward. A state for aconnection can be statically

configured or created when the first packet arrives to the translator from the IPv6 side.

[RFC6146, Section 1]

3.2.2 State Details

Stateful NAT64 has to keep track of all the current connections to be able to perform its

duty. The session and binding information are stored in memory in dynamic data structures.

NAT64 uses the following conceptual separation of data. [RFC6146, Section 3]
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UDP Binding Information Base

UDP Session Table

TCP Binding Information Base

TCP Session Table

ICMP Query Binding Information Base

ICMP Query Session Table

In TCP and UDP Binding Information Bases (BIBs), one entry specifies the mapping be-

tween IPv4 transport address and IPv6 transport address (IPv6+port <–> IPv4+port). The

IPv4 address belongs to the NAT64 device and the IPv6 addressbelongs to some host in

the IPv6 network. One IPv4 or IPv6 transport address can appear only once in a BIB.

More specifically, one transport address can appear in both TCP and UDP BIB at the same

time, just not more than once in the same BIB. The ICMP Query BIB stores mappings of

IPv4 address plus ICMPv4 identifier and IPv6 address plus ICMPv6 identifier (IPv6+id6

<–> IPv4+id4). This address and identifier pair can appear only once in the ICMP query

BIB. The identifier is the value of the identifier field in ICMPv4 or ICMPv6 echo message

[RFC792, Page 14] [RFC4443, Section 4.1] for example.

NAT64 also has three session tables: UDP, TCP and ICMP. Each table keeps information on

the states of sessions belonging to that table category. UDPand TCP session table entries

specify a mapping between a pair of IPv6 transport addressesand a pair of IPv4 transport

addresses (IPv6a+port & IPv6b+port <–> IPv4a+port & IPv4b+port). IPv6a is the address

of a client in the IPv6 network and IPv6b is the IPv6 representation of IPv4b. IPv4a is some

address assigned to NAT64 and IPv4b is the address of a host inthe IPv4 network (where

IPv6a wants to connect to). In addition to these four IP and port pairs, the Session Table

Entry (STE) has one more bit of information regarding the entry called the STE Lifetime.

The ICMP session table is different from UDP and TCP session tables. The ICMP session

table entries specify a mapping between IPv6 source address, IPv6 destination address and

ICMPv6 identifier and IPv4 source address, IPv4 destinationaddress and ICMPv4 identifier

(IPv6a+IPv6b+id6 <–> IPv4a+IPv4b+id4). IPv6a, IPv6b, IPv4a and IPv4b have the same

meaning as in UDP or TCP session table. The ICMP query sessiontable also has the STE

Lifetime information.
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One single entry in a BIB can have multiple sessions associated with the entry. When the

last session is deleted, then the BIB entry can also be deleted (unless statically configured).

[RFC6146, Section 3]

3.2.3 Packet Processing

NAT64 receives packets from its interfaces. The packets canbe either IPv4 or IPv6 packets.

The following functions are performed for each incoming packet.

1. Determine the incoming tuple

2. Filtering and updating binding and session information

3. Determine the outgoing tuple

4. Translate the packet

For every incoming IP packet, a tuple is associated with it. In the case of UDP, TCP or

ICMP error messages, the tuple has five parts: source IP address, source port, destination

IP address, destination port and transport protocol. In thecase of ICMP queries, the tuple

has three parts: source IP address, destination IP address and ICMP identifier. For ICMP

error messages, the tuple is formed based on the embedded IP packet inside the ICMP

error message. Furthermore, the destination and source roles are swapped around in this

case. Other tuples are formed straightforward from the appropriate fields of their respective

packets. Tuples are easily formed, when the arriving packets are not fragmented, but the

situation immediately becomes more complex, when fragmented packets are taken into

consideration. Since NAT64 allows and handles fragmentation, it can be vulnerable to

well-known malicious attacks as described in [RFC1858] andin [RFC3128]. [RFC4963]

describes problems with high rate assembly of fragmented packets, which also has to be

taken into consideration in NAT64. [RFC6146, Section 3.4]

NAT64 has to filter incoming packets. The only acceptable IPv6 packets are the ones that

have a destination address in the assigned NSP or WKP range. Similarly, the only accept-

able IPv4 packets are the ones that have a destination address from the pool that has been

assigned to NAT64. Furthermore, if an IPv6 packet has a source address from the NSP or

WKP range, it must be discarded in order to prevent hairpinning loops. Hairpinning loop

is a situation where a packet comes inside and goes outside through the same side of the
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NAT64 device. [RFC6146, Section 3.5]

For an incoming UDP IPv6 packet, the UDP BIB is checked for an existing entry that

matches the source transport address of the packet. If no existing entry is found, a new one

is created. Then NAT64 searches for an STE entry with the incoming tuple. Again, if no

entry is found, a new one is created. STE lifetime value is setto some default value, or in

the case of an existing entry, the lifetime value is reset.

For an incoming UDP IPv4 packet, the UDP BIB is checked for an existing entry that

matches the source transport address of the packet. If no existing entry is found, the packet

is dropped. If an entry was found, the UDP STE is searched next. If no entry is found, a

new one is created. STE lifetime value is set to some default value, or in the case of an

existing entry, the lifetime value is reset.

TCP session handling is similar in principle to UDP session handling, but much more com-

plicated. It involves a state machine for each TCP connection for example. A full descrip-

tion of TCP session handling is found in [RFC6146, Section 3.5.2]. ICMP session handling

is similar in principle to UDP session handling. [RFC6146, Section 3.5.3]

The outgoing tuple is created based on the address translation algorithm ([RFC6052]) or

it can already exist in the BIB, in which case no computation is needed. The packet is

translated according to stateless NAT64, or SIIT, as already described in Section 3.1 and

also in [RFC6145].

3.3 Example

This section provides a simple TCP connection example of DNS64 and NAT64 combined

functionality. The scenario consists of an IPv6-only client present in an IPv6 network and

an IPv4-only server in the IPv4 Internet. The IPv6 network isIPv6-only and the IPv4

Internet is IPv4-only. Figure 3.10 shows the example scenario.

The first step in creating a connection between client (C) andserver (S) is for C to perform a

DNS query for S’s FQDN (www.tut.fi). The second step is creating the synthesized AAAA

RR and sending it to C. In this case, DNS64 uses WKP (64:ff9b::/96) for synthesizing
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DNS64

NAT64

IPv6 Network IPv4 Internet

Client C
2001:aaaa::1

Server S
www.tut.fi

130.230.137.61

1. AAAA Query for www.tut.fi

2. AAAA RR for www.tut.fi
64:ff9b::130.230.137.61

Figure 3.10: A DNS AAAA Query and a synthesized response using WKP.

AAAA RR’s. These two steps are illustrated in Figure 3.10.

After receiving the IPv6 address of S, C sends a TCP SYN packetto S. The

source transport address is 2001:aaaa::1,1500 and the destination transport address is

64:ff9b::130.230.137.61,80. The packet gets routed to NAT64’s IPv6 interface. This is

step 1 in Figure 3.11.

DNS64

NAT64

IPv6 Network IPv4 Internet

Client C
2001:aaaa::1

Server S
www.tut.fi

130.230.137.61

1.
Source: 2001:aaaa::1 port 1500
Destination: 64:ff9b::130.230.137.61 port 80

2.
Source: 195.140.195.20:2000
Destination: 130.230.137.61:80

3.
Source: 130.230.137.61:80
Destination: 195.140.195.20:2000

4.
Source: 64:ff9b::130.230.137.61 port 80
Destination: 2001:aaaa:1 port 1500

Figure 3.11: A connection between an IPv6-only client and anIPv4-only server.

NAT64 selects a free port (2000) on one of its IPv4 address (195.140.195.20) and creates

a mapping entry 2001:aaaa::1,1500 <–> 195.140.195.20,2000. Then NAT64 translates the

packet from IPv6 to IPv4, changes the source transport address to 195.140.195.20,2000 and

the destination transport address to 130.230.137.61,80. NAT64 sends the translated packet

out from its IPv4 interface (step 2 in Figure 3.11).

Step 3 in Figure 3.11 is the response from S. The response is a TCP SYN+ACK packet

with source transport address of 130.230.137.61,80 and destination transport address
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195.140.195.20,2000. This packet gets routed to the IPv4 interface of NAT64.

When NAT64 receives the SYN+ACK packet, it checks the mappings and finds out that

it has one for this connection (2001:aaaa::1,1500 <–> 195.140.195.20,2000). NAT64

translates the packet from IPv4 to IPv6, changes the source transport address to

64:ff9b::130.230.137.61,80 and the destination transport address to 2001:aaaa::1,1500.

Then NAT64 sends the packet out from its IPv6 interface (step4 in Figure 3.11). A con-

nection between IPv6-only C and IPv4-only S has now been established.
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4 TEST SETUP AND M ETHODS

LM Ericsson has developed their own software that implements the DNS64/NAT64

functionality. The software was used in this thesis for testing and evaluation of the

DNS64/NAT64 system. At the time of testing, the newest version of LM Ericsson’s soft-

ware was always used. LM Ericsson’s implementation combined both DNS64 and NAT64

functionality to a single piece of software. The software was designed to be run on a 64-bit

Debian Linux. This chapter describes the server setup for running the DNS64/NAT64 soft-

ware and the configuration parameters used during testing. Furthermore, the location of the

server and the testing computers are also introduced. Finally, the testing process and test

cases are explained in the last section of this chapter.

4.1 Server Hardware Description

DNS64/NAT64 software was run on a 64-bit Debian Linux. This Linux server was a virtual

machine named nat64, which was physically located at one of the four Internet Exhange

Points (IXP) in Finland, Tampere Region Exchange (TREX) [TREX]. The virtual machine

was assigned a central processing unit (CPU) core, a certainamount of memory and hard

disk space. The amount of resources allocated to nat64 virtual machine was excessive on

purpose. The desired condition was that nat64 would never run out of resources during the

time of testing. In this way, the capabilities of the virtualmachine would never limit the

functionality (throughput etc.) of DNS64/NAT64. Later on,it was observed that the desired

situation was indeed achieved. The amount of resources allocated can be seen in Figure 4.1.

The figure shows the output that nat64 gives when given a few illustrative commands.
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root@nat64# uname -a
Linux nat64 2.6.32-5-amd64 #1 SMP Fri Aug 6 00:38:23 UTC 2010 x86_64 GNU/Linux

root@nat64# free -m
total used free shared buffers cache

Mem: 496 331 164 0 54 233
-/+ buffers/cache: 44 452
Swap: 517 0 517

root@nat64# cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 30
model name : Inter(R) Xeon(R) CPU X3430 @ 2.40GHz
stepping : 5
cpu MHz : 2393.984
cache size : 8192 KB

root@nat64# df -h
Filesystem Size Used Avail Use% Mounted on
/dev/xvda1 1020M 168M 801M 18% /
tmpfs 249M 0 249M 0% /lib/init/rw
udev 235M 48K 235M 1% /dev
tmpfs 249M 4.0K 249M 1% /dev/shm
/dev/xvda6 2.0G 190M 1.7G 10% /usr
/dev/xvda7 510M 18M 467M 4% /home
/dev/xvda8 5.9G 362M 5.3G 7% /var

Figure 4.1: Nat64 virtual machine details.

4.2 Software Setup and Network Configuration

DNS64 was in a proxy resolver mode and it utilized other nameservers found from nat64’s

resolv.conf file (/etc/resolv.conf). Two other nameservers were utilized by nat64, both of

which were provided by TREX. The first one was resolver1.dns.trex.fi (2001:67c:2b0::1

and 195.140.195.21) and the second one was resolver2.dns.trex.fi (2001:67c:2b0::2 and

195.140.195.22).

root@nat64# cat /etc/resolv.conf

nameserver 2001:67c:2b0::1

nameserver 2001:67c:2b0::2

nameserver 195.140.195.21

nameserver 195.140.195.22
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The IPv6 address space used for the synthetic AAAA RR’s was 2001:67c:2b0:1::/96. Nat-

urally, the same address space was configured for both DNS64 and NAT64 to be used in

the address translation. This is a mandatory action, since DNS64 and NAT64 only work

together, not separately. Routing was configured in a way, that the address space used for

synthetic RRs, got routed to nat64. Nat64 used an IPv4 address space of 195.140.194.0/26

as the source address pool for outgoing translated connections. This address space was

routed to nat64. Nat64 had two main interfaces, eth0 and eth1and also a third interface

(loopback). Interface eth1 was used by DNS64 and eth0 by NAT64. Interface eth0 was

both the inside and outside for NAT64.

In this particular case, anyone anywhere in the world could get access to the DNS64/NAT64

service offered by TREX by using one of the addresses assigned to DNS64 as

their DNS nameserver. The DNS64’s addresses were 195.140.195.25, 195.140.195.26,

2001:67c:2b0::4 and 2001:67c:2b0::6. The original idea was to set up a second DNS64

device later on and use addresses .26 and ::6 for it. Unfortunately this idea was never re-

alized. The service was made available in the hopes of getting some real world usage and

feedback. The general network setup with nat64 is shown in Figure 4.2. TREX is an Inter-

net exchange point provider, that peers with all of the operators connected to the exchange

point. TREX has its Internet connection provided by Elisa (transit connection).

Internet

CSC/FUNET, FNE Finland,
Academica, Cybercom Plenware

and other operators

TREX peering

TREX transit (Elisa)

TREX switch TREX router
Nat64

TREX nameservers

Figure 4.2: Network topology of the test setup for DNS64/NAT64.

4.3 General Test Setup

The general idea for testing was to find out how different protocols and applications be-

have with the presence of DNS64/NAT64 functionality in the network. DNS64/NAT64 was
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designed to enable IPv6-only devices to connect to IPv4-only servers, but IPv4-only or

dual-stack devices can use DNS64/NAT64 too. The deployer ofDNS64/NAT64 system can

not always be sure what type of devices the end users are goingto have connected to the

network. The end users just want to connect to all kinds of services online and do not really

care about how this connectivity is achieved in the network.This is why it is very important

that DNS64/NAT64 is designed so that it works with IPv6-only, IPv4-only and dual-stack

devices. This logic is behind the decision that DNS64/NAT64was also tested with IPv4-

only and dual-stack connectivity in this thesis. The presence of DNS64/NAT64 should go

unnoticed by the end user. It should not break anything from the end user’s point of view.

Instead, it should offer extra value by making otherwise unavailable content available.

Theoretically, IPv4-only end users should not notice any difference when operating in a

network with DNS64/NAT64 functionality. This statement should also apply to dual-stack

end users, although most of their connections would be made with IPv6 via DNS64/NAT64

device instead of with native IPv4. This is becacuse IPv6 addresses are preferred over IPv4

addresses in the case when both are available according to [RFC3484]. An organization

deploying DNS64/NAT64 functionality has to make sure to provide enough capacity to

accommodate the amount of traffic flowing through the DNS64/NAT64 device. The largest

added value from the presence of DNS64/NAT64 would appear toIPv6-only end users with

the availability of previously unaccessable IPv4-only content.

Almost all of the testing was done with a laptop Personal Computer (PC) running Windows

7 with all the newest updates. The test PC had both IPv4 and IPv6 capabilities. Some tests

were executed also with a linux PC that had the newest versionof 32-bit stable Debian

Linux installed. The Linux PC also had IPv4 and IPv6 capabilities. Both of the test PCs

were located in the Department of Communications Engineering (DCE) in Tampere Uni-

versity of Technology (TUT). Figure 4.3 shows the location of the test PCs. The PCs were

logically located in one of the subnets in DCE that had IPv6 connectivity available. The

actual IPv6 addresses of the PCs were not important and did not affect testing.

In order to access and test the DNS64/NAT64 functionality with the test PCs, manual con-

figuration of the DNS64 address as the nameserver address wasneeded for both PCs. No

other changes were required for the PCs. All tests were run atleast three times. First the

test PC had dual-stack enabled. Second time the PC had IPv6-only and finally the PC had
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IPv4-only.

Internet

CSC/FUNET, FNE Finland,
Academica, Cybercom Plenware

and other operators

TREX peering

TREX transit (Elisa)

TREX switch TREX router
Nat64

TREX nameservers
Tampere University

of Technology

Test PCs

TUT transit (CSC/FUNET)

Figure 4.3: The location of the test PCs.

To test the DNS64/NAT64 system, the addresses of DNS64 servers were added as name-

servers in both Windows 7 and Linux test PCs. In Linux, this requires manually changing

the contents of resolv.conf file (/etc/resolv.conf). The new contents after this change to the

configuration file are shown below.

root@testpc# cat /etc/resolv.conf

nameserver 2001:67c:2b0::4

nameserver 2001:67c:2b0::6

nameserver 195.140.195.25

nameserver 195.140.195.26

Lines in the configuration file can be commented out by adding ahash in the beginning of

the line. During IPv6-only tests, the IPv4 addresses of the nameserver were commented out.

Similarly during IPv4-only tests, the IPv6 addresses of thenameserver were commented

out. For dual-stack tests, the nameserver configuration wasas above in the example paste.

In Windows 7, the nameserver addresses were added in the local area connection properties.

The IPv4 nameserver addresses were added to the IPv4 configuration and IPv6 nameserver

addresses to the IPv6 configuration. For IPv6-only tests, the IPv4 protocol was disabled

from the local area connection properties window. For IPv4-only tests, the IPv6 protocol

was disabled from the local area connection properties window. For dual-stack tests, both

IPv4 and IPv6 protocols were enabled.

After configuring the test PCs with the correct addresses of DNS64, both PCs could test the

operation of DNS64/NAT64 system. In the Figure 4.4 below, the paths for DNS messages

are shown. The test PCs send all their DNS queries to the DNS64. If DNS64 does not
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have the answer stored in cache for example, then it asks an answer from TREX recursive

nameservers. If the answer is not found from there either, the query is made to some other

nameserver in the Internet. This process continues until ananswer for the query is found.

The answer is then sent back to the test PCs, but in the opposite direction (reverse path) of

what the queries took.

Internet

CSC/FUNET, FNE Finland,
Academica, Cybercom Plenware

and other operators

TREX peering

TREX transit (Elisa)

TREX switch TREX router
Nat64

TREX nameservers
Tampere University

of Technology

Test PCs

TUT transit (CSC/FUNET)

Nameserver

Recursive Search

DNS Query

Figure 4.4: The paths that DNS Queries and recursive search takes.

Tests were analyzed with Wireshark packet analyzer [WS] with the support of netstat com-

mand in both PCs. Netstat command shows all the current connections that the PC has and

the addresses (or hostnames) used for those connections. With the help of these tools and

the author’s previous knowledge on networking, everythingthat was happening during the

tests was figured out. Figure 4.5 shows the location of the test PC’s and the two possible

routes that connections take to reach servers in the Internet. If a server has an IPv6 address

bound to its hostname in the DNS, then the connections to thatserver do not go through

NAT64. Instead, the connections take a shorter and faster route from the test PCs to the di-

rect server. For IPv4-only servers, a connection from IPv6-only test PC’s has to go through

the NAT64 translator.

Internet

CSC/FUNET, FNE Finland,
Academica, Cybercom Plenware

and other operators

TREX peering

TREX transit (Elisa)

TREX switch TREX router
Nat64

TREX nameservers
Tampere University

of Technology

IPv6-only Test PCs

TUT transit (CSC/FUNET)

IPv4-only
Server

Native IPv6

Translated IPv6/IPv4

IPv6-only or dual-stack
Server

Figure 4.5: The two possible routes to the Internet from the test PC’s.

39



4.4 Test Cases

A large variety of protocols and applications were picked totest DNS64/NAT64 with. How-

ever, the focus was mostly on the most common protocols and applications, and too rare

or specific cases were avoided. This was because of the short amount of time available to

complete the testing phase of this project. The general cases are also the most important

ones to work properly without problems, since most real world use cases are exactly these

general cases.

First, some basic testing that involved the use of ping and traceroute was completed. Both

IPv4 and IPv6 were tested right away. This first basic stage was done in order to confirm the

operation of DNS64/NAT64. Testing was a success and the belief in DNS64/NAT64 was

strengthened to a level, where more testing could be done. The second stage in testing was

web surfing. There was no predetermined list of web sites to test other than YouTube. On

the contrary, the nature of web surfing was general and randomon purpose. Second phase

of testing was also a success and no major problems were discovered yet in this stage.

The third and final phase of testing involved bringing out Wireshark packet analyzer and

netstat command. These tools were not previously used, because the information desired

during the first two test phases was more general in nature. This third phase was aimed to

spot problems and complications that DNS64/NAT64 may cause. Naturally, this required

detailed analysis of protocols and applications in question. The testing in the third phase

was done with applications and protocols such as ICMP, TCP, UDP, HTTP, SSH, IMAP,

RTMP, FTP, games and peer-to-peer applications.

During all of the three testing phases, the test PC’s were dual-stack, IPv6-only and IPv4-

only for every test to achieve good coverage and to spot some unexpected situations. All

the tests were primarily run on the Windows 7 test PC, but a fewspecifically selected test

cases were also run with the Linux test PC. However, the operating system of the test PC

had no effect in the results in any test case described above.

Karri Huhtanen, founder and chairman of the board at Arch RedOy [archred], set up a

wireless IPv6-only access point. The access point acted as arouter, but it was only bridging

traffic between test devices and a router in DCE. The access point was then tested with
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various wireless devices such as mobile phones and laptop PC’s. These devices included

a Nokia N900 mobile phone, an Android mobile phone, a Windows7 laptop and a Mac

laptop. The access point was sending out router advertisements, so that the devices in range

could only get an IPv6 address. This setup caused some interesting observations, which are

mentioned in the next chapter.
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5 RESULTS

Several cases, where IPv6-only test PC was unable to communicate properly with IPv4-

only devices, were discovered during testing. When things were not working, the problems

were usually quite similar in nature. The main problem was not the underlying protocols

used nor the DNS64/NAT64 software, but the actual design or the implementation of the

applications in question. A rough categorization of the problems found was assembled

based on the data gathered from tests. The categories are hardcoded addresses, addresses

inside packet’s payload and trackers. For each category, the problems and their impact

are discussed below in their own respective sections of thischapter. Furthermore, some

solutions for the problems are also presented. Other interesting notes and discoveries are

also explained later in this chapter.

This chapter includes a few terms that require some explaining. These terms are service

provider, network operator and end user. Service provider refers to an organization that

provides some application to public use via the Internet. This includes the original applica-

tion developer and hosting organizations. Network operator is an organization that provides

Internet access to its customers. End user is a person that uses some network operator to

connect to the Internet and then uses applications that service providers offer.

5.1 Hardcoded Addresses

Some applications and games, for example, have hardcoded IPv4 addresses. A good exam-

ple of this would be an online game, that has the address for a login server stored inside

the game’s code as a static IPv4 address. This design featuremakes it impossible to play

the game with an IPv6-only device. An IPv6-only device does not have means to start a
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connection to an IPv4 address by itself. When an IPv6-only end user device does not have a

hostname that it can resolve into an IPv6 address, a failure to initiate the connection occurs.

This problem concerns mostly service providers and end users. The network operator can

not really do anything more in this case, than to keep the DNS64/NAT64 available to use.

There is however one thing the network operator could do. It could deploy IPv4 to its

network. But IPv4 is the thing we want to get rid of, so there isreally no point in doing this.

Furthermore, the problem in this case is not even the networkoperator’s. So a temporary

fix of this magnitude would be a huge overreaction. And there might not even be any more

free IPv4 addresses left in the world, let alone in the hands of this specific network operator.

The service providers could fix this problem by altering the code of the application in ques-

tion. They could change the static IPv4 address into a staticIPv6 address, or even better,

into a static hostname. If deploying IPv6 is too early for theservice provider, they could use

the hostname modification. But at some point in the near future, they will have to switch

to at least a dual-stack environment like everyone else in the world. If they have deployed

IPv6 or are deploying it right now, the static IPv6 address modification would work also.

Another solution to this problem would be to create a local entity, that operates inside the

IPv6-only end users devices. This entity would turn IPv4 addresses into usable synthetic

IPv6 addresses with the same algorithm that DNS64 and NAT64 use. In order to work,

the entity would first have to discover, if the network has a DNS64/NAT64 functionality

available. This discovery can be done in many ways as proposed in [ID-nat64-disc]. One

example is to send an AAAA DNS query for a commonly known IPv4-only hostname. If

the answer contains an IPv6 address, the local entity can then be certain of the presence

of DNS64/NAT64 in the network. The entity can also figure out the IPv6 prefix that the

DNS64/NAT64 device is using from the response. After all this is done, synthesizing IPv6

addresses could be done locally for IPv4 addresses. However, the switch from IPv4 usage

to IPv6 usage (transition phase) should go unnoticed by normal end users. This local entity

solution does not fulfil that criterion. At minimum, this solution would require a Windows

update procedure or some other operating system update installation. [ID-name]
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5.2 Addresses Inside Packet’s Payload

IPv4 addresses that are transferred inside packet’s payload are problematic. For example

some applications and games have this kind of behaviour. A good example of this case

would be an online game, that has a login server, to which an IPv6-only device can connect

to via DNS64/NAT64. However in this case, the login server sends the address of the actual

game server inside a packet as an IPv4 address. This design feature makes it impossible to

play the game with an IPv6-only device. This problem is almost the same as the problem

with hardcoded IPv4 addresses.

This problem concerns mostly service providers and end users. The network operator that

deployes DNS64/NAT64 has very limited possibilities to do anything about this problem.

One solution, that the network operator could do, is to modify the NAT64 functionality so

that it searches inside every packet for an IPv4 address, andthen translates that to an IPv6

address using the same algorithm as in normal translation. However, searching through

every packet’s contents would take a huge amount of time, require a lot of resources and

slow down all the connections that do not require this functionality to work. On top of that,

there are no quarantees that the application or game in question would even work when

receiving an IPv6 address, when it expects an IPv4 address inside a packet.

This problem could be fixed by the service providers by altering the code of the application

in question. The IPv4 address transferred could be changed into an IPv6 address, or even

better, into a hostname. If deploying IPv6 is too early for the service provider, they could

use the hostname modification. However at some point in the near future, they will have

to switch to at least a dual-stack environment like everyoneelse in the world. The IPv6

address modification would also work, if they have deployed IPv6 or are deploying it right

now.

Another solution to this problem would be a local entity, that operates inside the IPv6-only

end users’ device. The last paragraph in Section 5.1 describes this case.
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5.3 Trackers

A problem with trackers is very common in online multiplayergames and peer-to-peer

applications. For example in games, when a new server becomes available for clients, it

informs the game developer’s server tracker about its availability and statistics. This often

means that the new server only gives its IPv4 address to the tracker. Now when a client

wants to browse a server list in order to select and join a server, it first connects to the

game developer’s server tracker. The tracker would then send the information regarding the

selected server to the client. But now, when the tracker onlyhas a server’s IPv4 address, it

can only send that address to the client. From this point forward, the problem is exactly the

same as in Section 5.2, where an IPv6-only device gets an IPv4address inside a packet’s

payload. The solutions, however, are not exactly the same for this tracker problem. For one,

the modifications to the game code need to be more extensive, when changing the game to

work with IPv6.

Peer-to-peer applications also suffer from the same problem. But the problem is more

severe in this case, since the end user clients, that inform about themselves to the tracker,

do not usually even have a hostname in DNS. They only have an IPv4 address. So a solution,

where the IPv4 address would be replaced by a hostname, does not work in this case.

The impact of this problem is most severe for end users and service providers, but they also

have the best tools and best locations to correct this problem. The network operator has

only limited tools to handle this problem. The solution is described in the second paragraph

in Section 5.2. In short, it involves searching through every packet’s payload for IPv4

addresses and then translating those to IPv6 addresses.

None of the games that used this tracker system worked with anIPv6-only client. Also

in peer-to-peer, the IPv6-only client was unable to connectto clients with IPv4 address.

However, peer-to-peer still worked partially, since connections to 6to4 [RFC4213] clients

were able to be made. This could be application dependent, but at least with uTorrent

[UTOR] the situation was as mentioned here.
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5.4 Wireless Test

In the wireless IPv6-only access point test, some interesting things were discovered. In this

test, a wireless access point was connected to TUT’s networkand it was sending out router

advertisements that included the address for DNS64. This way, the clients that connect to

the access point, would automatically use DNS64/NAT64 system. Furthermore, the access

point was only providing IPv6 access. This setup was tested with a few different operating

systems. The devices that were used to test this setup were a Nokia N900 mobile phone, an

Android mobile phone, a Windows 7 laptop and a Mac laptop.

Windows 7 was the only operating system that started workingright away with IPv6-only

and was able to access IPv4-only content via DNS64/NAT64. Other devices did receive the

router advertisements, but without an IPv4 address, they did not recognize the availability

of an Internet connection. The situation might have been different, if DHCPv6 was used

instead of RAs to provide addresses to test devices. This problem can only be solved inside

the end users device itself. The operating systems themselves need some modifications in

order to function without the presence of IPv4. This is something to be taken into con-

sideration when deploying IPv6-only networks before theseoperating systems have been

updated.

5.5 Other Notes

An interesting observation was made while testing DNS64/NAT64 with a dual-stack test

PC. All the connections were made with IPv6, unless encountered with one of the prob-

lems described earlier in this chapter. Even though the client device has IPv4 available, it

will still prefer to use the synthetic IPv6 addresses received from DNS64. This situation

occurs because IPv6 addresses are preferred over IPv4 addresses when possible as defined

in [RFC3484]. This means that pretty much all traffic will flowthrough DNS64/NAT64.

Only in the cases where IPv6 does not work, the connection is made natively with IPv4.

This situation should be avoided since it creates unnecessary load for DNS64/NAT64 de-

vice. Also, the operation of the applications that do not work with DNS64/NAT64 for some

reason or another, might get slowed down due to initially trying to use IPv6.
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This situation affects end users, network operators and service providers. The end users

will notice their activities online being slowed down and having some weird wait times.

The network operator will notice traffic being concentratedto DNS64/NAT64 device. The

service providers will notice an increasing amount of traffic concentrated on the same links,

those around the NAT64 device.

This situation also creates another problem. If a dual-stack client wants to connect to an

IPv4-only server located in the same domain as the client, itfirst resolves the hostname into

a synthetic IPv6 address. Then it tries to connect to that address, which results in the traffic

going to NAT64. Then the NAT64 tries to connect to the server.But this connection can be

refused, for example, because of some firewall rules that arein place to protect the domain

from outsiders. With IPv4, the client could have connected straight to the server, which

is located in the same domain as the client. This situation isshown in Figure 5.1. In this

example, a firewall blocks an outside connection trying to access a printer that is located

inside TUT’s network. IPv4 could be used to access the printer directly, but when available,

IPv6 is preferred and a connection to the printer can not be made.

Internet

CSC/FUNET, FNE Finland,
Academica, Cybercom Plenware

and other operators

TREX peering

TREX transit (Elisa)

TREX switch TREX router
Nat64

TREX nameservers
Tampere University

of Technology

Test PCs

TUT transit (CSC/FUNET)

printer.tut.fi

firewall

X

Native IPv4

Translated IPv6/IPv4

Figure 5.1: A translated connection is blocked by a firewall.

In some cases, NAT64 can have so much traffic flowing through it, that it would be wise

to deploy multiple NAT64 devices in the network to share the load of translated traffic.

[ID-nat64-load] describes load balancing solutions for DNS64/NAT64 and their advantages

and disadvantages. One example load balancing solution forDNS64/NAT64 is a case where

IPv6-only clients are directed to specific NAT64 devices by DNS64. In this case, every

NAT64 device has a different NSP and DNS64 directs clients todifferent NAT64 devices

based on the IPv6 address of clients. [ID-nat64-load, Section 6.2.1]
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5.6 Traceroute and DNS reverse mapping

Traceroute is an important tool for understanding how traffic flows in the Internet. Tracer-

outing through NAT64 device and understanding what is showncan be difficult. Luckily,

traceroute translates IPv4 and IPv6 addresses into hostnames by default in order to ease the

decyphering of traffic paths in the network. However, when tracerouting through a NAT64

device, the addresses on the IPv4 side are not being translated to hostnames. This is be-

cause the IPv4 side addresses are in the WKP and NSP ranges andthose do not have any

mappings in the DNS. But it would be a very useful feature, if the DNS64 could do reverse

mapping for the synthesized IPv6 addresses. This would evenbe a simple process. First

retrieve the original IPv4 address from inside the synthesized IPv6 address and then do a

DNS query to find out the hostname mapped to the IPv4 address. The first traceroute below

is the current situation. The second traceroute below is theresult of the reverse mapping

functionality proposed here for DNS64. It is easily seen that the second traceroute output

is far more informative and clear than the first one.

C:\> tracert -6 www.tut.fi

Tracing route to www.tut.fi [2001:67c:2b0:1::82e6:893d]

over a maximum of 30 hops:

1 default-gw-vlan52.atm.tut.fi [2001:708:310:52::127]

2 surf-gw-1-2-0-518.cc.tut.fi [2001:708:310:518::1]

3 funet-tut6-rtr-xe-0-0-0.cc.tut.fi [2001:708:310:2::1]

4 trex1.unicast.trex.fi [2001:7f8:1d:4::72f8:1]

5 nat64.trex.fi [2001:67c:2b0:384:c03:84ff:fe00:72f8]

6 2001:67c:2b0:1::c38c:c342

7 2001:67c:2b0:1::c38c:c011

8 2001:67c:2b0:1::82e6:1ee

9 2001:67c:2b0:1::82e6:1b3

10 www.tut.fi [2001:67c:2b0:1::82e6:893d]

Trace complete.
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C:\> tracert -6 www.tut.fi

Tracing route to www.tut.fi [2001:67c:2b0:1::82e6:893d]

over a maximum of 30 hops:

1 default-gw-vlan52.atm.tut.fi [2001:708:310:52::127]

2 surf-gw-1-2-0-518.cc.tut.fi [2001:708:310:518::1]

3 funet-tut6-rtr-xe-0-0-0.cc.tut.fi [2001:708:310:2::1]

4 trex1.unicast.trex.fi [2001:7f8:1d:4::72f8:1]

5 nat64.trex.fi [2001:67c:2b0:384:c03:84ff:fe00:72f8]

6 betty.nat64.trex.fi [2001:67c:2b0:1::c38c:c342]

7 funet1.unicast.trex.fi [2001:67c:2b0:1::c38c:c011]

8 surf-gw-xe-0-0-0.cc.tut.fi [2001:67c:2b0:1::82e6:1ee]

9 omo-gw-vlan52.cc.tut.fi [2001:67c:2b0:1::82e6:1b3]

10 www.tut.fi [2001:67c:2b0:1::82e6:893d]

Trace complete.
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6 CONCLUSIONS

A DNS64/NAT64 system was tested extensively in this thesis.The testing revealed some

problems and other noteworthy matters. Most of the problemsfound were categorized

under three separate topics. The topics were hardcoded addresses, addresses inside packet’s

payload and trackers. The first topic, hardcoded addresses,means a problem where an IPv4

address was hardcoded inside an application, thus breakingDNS64/NAT64 from working.

The second topic is quite similar, but the IPv4 address is transferred to an end user device

inside a packet’s payload. The third topic, trackers, meansa problem where servers, when

announcing themselves, only send their IPv4 address to a tracker, or the tracker only sends

an IPv4 address to a connecting end user device.

A common solution for many of the problems that were found could be a local entity inside

an end users’ IPv6-only device. This entity would first have to discover, if the network

has a DNS64/NAT64 functionality available. Based on the knowledge of translator pres-

ence and the used prefix, the local entity can then translate the problematic IPv4 addresses

to synthetic IPv6 addresses inside the end user’s device, thus bypassing the DNS64 com-

pletely. After this, a connection can be initiated by using the synthesized IPv6 address as

the destination address for the connection.

This local entity solution is not exactly desirable becausethe switch from IPv4 to IPv6

should not cause any visible change for the actual end users.The installation of a local

entity would cause some work for the end users, thus making this solution undesirable.

On the other hand, this solution would require no changes from the network operators,

application designers or server operators. From their point of view, this solution would be

a good one. However, this would only be a temporary solution,since all the problematic

applications will eventually have to be fixed to work with IPv6 addresses anyway. It is the
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opinion of the author, that a better solution would be to change the affected applications to

work with IPv6 addresses straight away and to deploy IPv6 in general as soon as possible.

Using DNS64/NAT64 with a dual-stack end user device causes many issues. All the traffic

from the end user will flow through NAT64 device, because IPv6addresses are preferred

over IPv4 when available. Furthermore, this traffic flow can cause situations, where end

users’ traffic can not reach its destination due to firewalls for example. It is the recommen-

dation of the author, that DNS64/NAT64 should only be used byIPv6-only devices.

In some cases, it can be beneficial to deploy multiple NAT64 devices in the network to share

the load of translated traffic. The author personally prefers a load balancing solution for

DNS64/NAT64, where IPv6-only clients are directed to specific NAT64 devices by DNS64.

In this case, every NAT64 device has a different NSP and DNS64directs clients to different

NAT64 devices based on the IPv6 address of clients.

A reverse DNS mapping solution is needed for DNS64/NAT64 system. The author firmly

believes that this functionality would improve the qualityof the DNS64/NAT64 system

greatly. This functionality is mainly targeted to assist network operators in deployment and

troubleshooting of a DNS64/NAT64 system. However, this functionality would offer value

to not just network operators, but to others as well.

LM Ericsson’s DNS64/NAT64 software was in a development phase during the testing

phase of this thesis. A few bugs were discovered in the software while testing. These

bugs were reported to LM Ericsson and a new version of the software was then quickly

built and taken into use for new tests. Some new ideas were also given to help develop

the DNS64/NAT64 software even further. These ideas were well received and have already

been taken into use in new versions of the software. As one of the results of this thesis, the

DNS64/NAT64 software has been improved. This was one of the main goals of this thesis.

The problems found were mostly related to the way applications are designed and imple-

mented. The application developers have considered too often only IPv4 when developing

applications for online use. Luckily designing systems to work with dual-stack has become

more and more common. The earlier lack of IPv6 mentality became clear when testing with

IPv6-only device through DNS64/NAT64. The reason for this is clear. IPv4 has been used

for so long that people are so used to it and used to working with it, that IPv6 was really not
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considered with the gravity that it deserves. Also, the end of IPv4 address space has been

a discussed topic for such a long time, that some might have thought it will never come so

why would they even prepare for it. It takes time, money and effort to learn new things.

Fortunately, the IPv6 mentality and know-how are rapidly growing now that the world is

really facing the end of the IPv4 address space.
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