
CASPER VRANKEN

COMBINATION OF IOT FRAMEWORK WITH LIQUID SOFT-

WARE

Master of Science thesis

Examiner: Prof. Kari Systä

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 2nd May 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ABSTRACT

CASPER VRANKEN: Combination of IoT framework with liquid software
Tampere University of Technology

Master of Science thesis, 43 pages, 1 Appendix page

May 2018

Master’s Degree Programme in Engineering Technology

Major: Engineering technology Electronics-ICT

Examiner: Prof. Kari Systä

Keywords: IoT, liquid software, liquidIoT, NodeJS

To mass-deploy and manage IoT applications, an IoT framework was developed

by TUT. The capabilities of this framework have been expanded to include liquid

functionalities. To limit the extra work an IoT programmer has to add to their IoT

applications, the liquid functionalities were added to the application non-specific

code rather than the application specific code. To limit power consumption, a

polling technique was introduced to check for changes in the state of the applications.

To limit the data communication, two ways were created to communicate state

changes between applications. One uses a peer-to-peer topology to communicate

and the other a master-slave topology. Synchronization collisions are also solved

using timestamps.

A network of four IoT devices was used to test the speed of the liquid functionalities

as well as the amount of communication between the devices when synchronized. It

was found that cloning takes marginally longer than migrating or forking, that liquid

transfer speeds are greatly influenced by the presence of a resources folder and that

communication between devices works as predicted. To limit power consumption

when initiating a liquid transfer, a new way to initiate a liquid transfer has been

discussed. It migrates the power to the RR rather than the IoT device. Data

communication can be limited by saving all synchronized applications on the device

instead of using a syncID.

II

PREFACE

To conclude the final year of engineering technology at the joint program of UHasselt

and KU Leuven, I wanted an experience I would never forget. This is why I chose

to go do my thesis on Erasmus in a country I have always appreciated and admired

before, Finland. Internet of things has always fascinated me, because of the rapid

growth of the amount of devices connected to the internet and the growing power

these devices have. I believe this is a field worth investing time in.

This interest in Finland and IoT has led me to the department of pervasive com-

puting at Tampere University of Technology, where a lot of resources are invested

in IoT and liquid software. Liquid software was unknown to me, but interested me

from the moment I researched it. This led me to do my thesis on both of these

topics.

I would like to thank my supervisor at TUT, prof. dr. K. Systä and my supervisor at

the joint program of UHasselt and KU Leuven, dr. K. Aerts for providing assistance

and valuable feedback regarding the thesis. I would also like to thank M. Sc. F.A.

Ghohandizi for providing information about the IoT framework and helping me

resolve any issues I encountered with it. Lastly, I would like to thank my parents

for giving me the unforgettable opportunity to study and live abroad.

I sincerely hope my work contributed to the field of IoT and liquid software and the

future development of the IoT-framework.

Tampere, 23.5.2018

Casper Vranken

III

CONTENTS

1. Introduction . 1

2. Background and terms . 3

3. Literature Study . 6

3.1 Liquid software . 6

3.1.1 Key Requirements . 6

3.1.2 Maturity Levels and Layering . 7

3.1.3 Architecture . 10

3.1.4 Design space . 11

3.1.5 Comparison of the liquid software programming frameworks . . . 13

3.2 IoT Application Framework . 15

3.2.1 Implementing distributed systems 15

3.2.2 LiquidIoT . 16

3.3 Continuous Delivery . 19

3.4 Conclusion . 20

4. Method . 22

4.1 Design science research . 23

4.2 Migration and Forking . 23

4.2.1 Algorithm of migration and forking 23

4.3 Cloning . 25

4.3.1 Transfer of applications . 26

4.3.2 Peer-to-peer synchronization of the state 26

4.3.3 Master-slave synchronization of the state 27

4.3.4 Synchronization collisions . 28

4.4 Technical changes . 30

4.4.1 REST APIs . 31

4.4.2 Links to code . 32

5. Results . 33

IV

5.1 Test setup . 34

5.2 Migration and forking test results . 35

5.3 Cloning test results . 36

6. Discussion . 37

6.1 Migration and forking . 37

6.2 Alternative method for migration or forking 37

6.3 Cloning . 39

6.4 Alternative method for cloning . 40

6.5 UI in liquid software . 40

7. Conclusion . 42

Bibliography . 44

A. Test measurements . 48

V

LIST OF FIGURES

2.1 The state of 2 devices before and after forking. 4

2.2 The state of 2 devices before and after migration. 4

2.3 The state of 2 devices before and after cloning. 4

2.4 The state of 2 devices before and after forwarding. 5

3.1 The four levels of abstractions LfP can transfer to another device. . . 14

3.2 The developer uses this framework to give the application the func-

tionalities it needs. 17

3.3 This screen is used to deploy applications to devices. Another tab

can be used to manage the applications. 17

3.4 The flow of deploying and managing an application with LiquidIoT. . 19

4.1 To develop the project, an iterative way of working was used. 22

4.2 The source device packs a tarball that it can send to the target device. 24

4.3 Synchronizing two applications with peer-to-peer communication. . . 27

4.4 Example of data that needs to be synchronized. 27

4.5 Synchronizing two applications in a master-slave fashion. 28

4.6 The endpoints added to the device and application level of the non-

application specific code. 30

5.1 The tab created for all liquid use cases. 33

5.2 A schematic representation of the test setup. 34

6.1 The IDE packs the tarball and sends it to the target device. 38

VI

LIST OF TABLES

3.1 The differences between LfD and LfP. 15

4.1 When two applications have a state-change close to each other, syn-

chronization issues arise. 29

4.2 Synchronization issue solved using timestamps. 29

4.3 The REST APIs present in the runtime environment at the device

level. 31

4.4 The REST APIs present in the runtime environment at the applica-

tion level. 31

4.5 The REST APIs present in the resource registry. 31

5.1 The time to migrate or fork the application with varying amounts of

resources. 35

5.2 The time to migrate or fork the application with varying amounts of

target devices. 35

5.3 The time to clone the application with varying amounts of resources. 36

5.4 The amount of synchronization messages sent between a certain amount

of synchronized devices. 36

A.1 Raw test measurements. 48

VII

LIST OF ABBREVIATIONS AND SYMBOLS

CD Continuous Development

DSR Design Science Research

DOM-tree Document Object Model tree

IDE Integrated Development Environment

IoT Internet of Things

LfD Liquid.js for DOM

LfP Liquid.js for Polymer

MVC Model View Controller

QR Code Quick Response Code

RR Resource Registry

TUT Tampere University of Technology

UI User Interface

URL Uniform Resource Locator

WoT Web of Things

1

1. INTRODUCTION

Internet of Things (IoT) is the connection between everyday devices, with a certain

level of intelligence, through the internet. IoT is becoming more popular by the

minute. These devices range from fire detectors to health monitors and from auto-

matic cars to smart homes [1, 2, 3]. Right now, these devices collect the data and

send it to an external server that processes the data of all devices. Programming

off the devices itself will become possible as these devices get smarter and technol-

ogy advances. To program these devices, a system with a web browser-based IDE

has been proposed and is under development by Tampere Univeristy of Technol-

ogy (TUT) [4]. This system can be used to develop IoT-applications, mass deploy

these applications and monitor the used IoT-devices. More information on how this

system is composed and how it functions, can be found in Chapter 3.

Besides this system for IoT, TUT has also been active in the field of liquid software.

The number of devices connected to the internet that a person owns, will increase

dramatically in the following years [2, 5]. This will eventually lead to liquid software.

Liquid software is a concept that states that data, state and applications should be

able to move freely between multiple devices and screens [6]. This means, that when

writing an email with an email application on a smartphone the email can transfer

to a computer with the help of a simple swipe. Then, the user can continue writing

his/her email with another email application on the computer, without any dis-

ruption. Several structures and frameworks have already been developed for liquid

software [7]. Liquid software has also been integrated in vendor-specific applications

such as Apple’s Handoff and the Google Documents app [8, 9]. There are 4 main

use cases in liquid software: migration, forking, cloning and forwarding.

The purpose of this Master’s thesis is to combine the IoT application framework

developed by TUT and the first three use cases of liquid software. This means that

applications running on devices deployed by the system should be liquid. Support

for liquidity should also be integrated in the browser based IDE. This expands

the possibilities of the IoT system and makes it more versatile. When implementing

liquid software, synchronization issues arise. These issues are addressed and possible

solutions are proposed.

1. Introduction 2

The following Chapter explains the background and some terms. Chapter 3 is the

literature study. This explains the IoT system and analyses the different architec-

tural decisions and use cases for liquid software. In Chapter 4, the method of how

the liquid software is combined with the IoT system is explained. Here, the synchro-

nization issues are addressed as well. The results of this combination with a short

demonstration of all use cases are presented in Chapter 5 and discussed in Chapter

6. Here, future work is also proposed. Conclusions are given in Chapter 7.

3

2. BACKGROUND AND TERMS

Liquid software is a vision or concept that states applications and data should not

be constricted to one device, but should be able to move freely between devices.

As already mentioned in the introduction, there are four main use cases respecting

liquid software: forking, migrating, cloning and forwarding. Forking an application

is making a copy of the original application and deploying it to the target device, so

that both devices run the same application separately. Migrating an application is

the same as forking it, except that the original application will be deleted from the

source device. This means that only one instance of the application will run at any

point in time. An example of forking in everyday-life could be playing music on your

phone and then fork the song to every speaker in the house while still continuing to

play on your phone. This is illustrated in figure 2.1. The difference with migrating

is that the music would stop playing on your phone after the liquid transfer. An

example of migration is depicted in figure 2.2. In both of these use cases, the

persistent data and state have to be transferred to the source device too. Persistent

data or storage is data that is saved in the application for next usage sessions. State

is data that is only temporarily saved in the application, but includes the values

of the variables in the application. Cloning an application includes forking it, but

keeping all application synchronized. An example of cloning an application is writing

simultaneously with multiple people on a document. This is depicted in figure 2.3.

The final use case is forwarding, where the inputs are taken from one device and

forwarded to the application running on another device. Similarly, the outputs can

be taken from the device running the application and forwarded to another device

[7]. An example of forwarding is typing an e-mail on your phone but using the

keyboard for your laptop. This example is illustrated in figure 2.4. Forwarding is

not necessary for IoT devices, as inputs and outputs can be accessed with URLs..

2. Background and terms 4

Figure 2.1 The state of 2 devices before and after forking.

Figure 2.2 The state of 2 devices before and after migration.

Figure 2.3 The state of 2 devices before and after cloning.

2. Background and terms 5

Figure 2.4 The state of 2 devices before and after forwarding.

6

3. LITERATURE STUDY

The literature study will be divided into two parts. The first part will elaborate on

liquid software. Here, the key requirements are explained for software to be liquid,

followed by the maturity levels of liquidity for applications. Then, the architectural

design space will be explained. Finally, two existing liquid frameworks will be com-

pared. The second part of the literature study will explain the IoT framework. The

structure is thoroughly explained and all separate components are elaborated on.

3.1 Liquid software

3.1.1 Key Requirements

According to [5], there are six key requirements for a casual multiple device owner-

ship world. In this Chapter, they will be elaborated on.

The first requirement states that users should be able to switch between all the

devices connected to the Internet that they have and continue the usage as before.

This is one of the basic concepts of liquid software and is essentially what liquid

software stands for. An effect of this is that all the devices available to the user,

should be known to the software. This can be achieved through a process called

discovery. Discovery of devices can be done through a multitude of ways such as

QR codes, Wi-Fi and Bluetooth [7]. QR codes hide the complexity of long URLs

and remove the tedious process of typing a long link.

The second requirement states that changing between devices should be as easy

and casual as possible. This can be done multiple ways. Some of which include

URLs, QR codes and Wi-Fi that consequently trigger the liquid transfer. This QR

code or URL will be generated by the device that requests a liquid transfer and can

be scanned by the device to which to transfer. If a device is known through Wi-

Fi discovery, the relative location of the host and target device can be calculated.

However not trivial to implement, this can enable geometrical based gestures for

transferring the liquid application [7, 10, 11]. Maintenance and management of the

device should be hidden from the end-user to improve user friendliness.

3.1. Liquid software 7

The fourth requirement is that when a transfer occurs, the full state of each applica-

tion shall be transferred or recreatable, so that the user can continue their activities

on another device. Web-browsers use Document Object Model-trees (DOM-trees)

to represent data and state. Transfer of state can be achieved through the use of

virtual DOM-trees. DOM-trees consist from a root <html> tag and then a <head>

and <body> tag, which on their turn consist of other nodes [12]. In this approach,

only the initial virtual DOM tree is loaded from the server. When the user requests

a liquid transfer, only the differences between the initial DOM-tree and the current

DOM-tree are sent to the receiving device. This way it suffices to send only the

deltas instead of the entire state, which greatly reduces the amount of data that

needs to be sent [13].

The fifth requirement states that roaming between devices should not be tied to

a single vendor ecosystem. Nowadays, most liquid applications are tied to a single

vendor. This should not be the case in truly liquid applications. Examples of vendor

based liquid applications are Handoff by Apple and Google docs [14].

The sixth and final requirement states that the user should be in full control about

the liquidity of his or her applications and data. For privacy reasons, the user can

choose to not save certain data on certain devices. When migrating or cloning to

another user’s device or a public device, strict control policies should be defined to

ensure privacy and security of data [7].

Today, automatic synchronization is still an exception rather than the norm. Ac-

cording to [5, 7], automatic synchronization will become the norm for data and

applications.

3.1.2 Maturity Levels and Layering

According to [15], liquid web applications can be evaluated with maturity levels.

This can be done by dividing applications into layers, according to the Model View

Controller (MVC) pattern, and defining a maturity model regarding the liquidity of

websites ranging from solid applications to liquid web applications. The model is

based on three facets, which will each be elaborated on. First logic deployment will

be discussed, then data and state storage and finally the communication channel

will be discussed. Each facet can be divided into three levels.

3.1. Liquid software 8

Logic deployment (Controller)

The first layer is the controller layer. This is where the web application executes its

tasks. The three levels regard the client thickness. The first level is an ultra-thin

client. Here, the only entity that can do logic is the server. No logic can be done on

the client-side, meaning scripting languages such as JavaScript can not be used. The

only logic present on the client concerns the retrieving and displaying of the data.

The second level is a thin client. Here the logic is shared between the server and the

client. The server can offload part of its logic to the client. Views can be altered by

user input and made responsive. The third and final level is a thick or rich client.

At this level, the logic is entirely deployed on the client-side. These thick client can

also be aware of other thick clients connected to the web. This is very helpful for

liquid applications, as the view can adapt depending on the other devices. For a

thick client, enough computing power should be available on the client side. Off-line

operation becomes more accessible for thick clients [7].

State storage (Model)

The second layer is the model layer. This is where the persistent data of the appli-

cation is stored. The three levels regard where the data is stored, ranging from a

server system to a distributed system.

The first level is a centralized storage system. Here, all data-management is deployed

on the server-side. This is good for consistency, all devices of one user can have the

data as the data is stored on the server. However, privacy suffers from this approach

if no proper security is provided. As said in Chapter 3.1.1, the final requirement

for liquid applications is that the user should be in full control of the liquidity of

their data. This is obviously not the case in this approach. All data is stored on the

server, the user cannot decide where to store their data. Examples are centralized

MySQL [16] and NoSQL [17] databases. No off-line mode is possible for the clients.

The second level is decentralized storage system. Here, data is stored both on the

server- and client-side. Cookies are a form of a decentralized storage system by

caching the data received from the server. The client can also choose to use the

client-side as a primary data storage system, and the server-side as a backup. This

method of data storage enhances data privacy. This is only the case when a direct

connection between devices can be set up. It also enhances performance during

off-line operation, as long as the data is cached beforehand. Another benefit is that

less data should be downloaded from the server, meaning that a weaker Internet

3.1. Liquid software 9

connection is possible.

The third and final level is a distributed system. Here, the data is stored solely

on the client-side and none on the server-side. This enhances privacy as the data

is only stored on the users devices, unless the devices are not properly secured.

Data is shared between devices through a peer-to-peer channel. It is, however, more

challenging to maintain data synchronization across all devices as data is stored

in multiple places. Another problem is the likeliness of devices being off-line for

prolonged periods of time, not being able to synchronize data. In this approach,

only a local internet connection is necessary [7].

Communication channel (View)

The third layer regards the communication channel on which data is exchanged.

The three levels concern the direction of communication and whether the clients can

communicate between each other or not. Any higher levels contain the functionalities

of the previous level. For example, level 3 contains the features from level 1 and 2.

The first level is a client-server pull. Here, only the client can pull data from the

server. An example of this is RESTful HTTP. Cloning and forwarding of the ap-

plication state is not obvious with this approach, but can be achieved by regularly

polling the state of the server. The second level is a client-server push. Here, a

duplex connection is opened by the client to the server. An example of this are

Web-sockets. Here, cloning and forwarding is a possibility. The third level is a

peer-to-peer communication channel. Here, clients communicate with each other

without the need of a server. This can reduce latency, as the number of hops can

be decreased. This can, for example, be achieved by the WebRTC protocol.

Maturity levels

With the three facets of the model divided into three levels, maturity stages can

be defined based on these levels. The first stage are Web 1.0 applications. These

applications only have the view on the client side and the rest on the server side.

The applications use the first level of all facets.

The second maturity stage are rich web applications. Rich web applications use a

thin or ultra-thin client meaning that the client can execute logic. It is possible for

rich web applications to use a decentralized storage system. Rich web applications

are still on the first level of the communication channel facet.

3.1. Liquid software 10

The third maturity stage are real-time web applications. Real-time web applications

can use centralized and decentralized storage systems, but are still restricted to a

thin client. Real-time web applications can however use the second level of the

communication channel facet. These applications can not only pull data from the

server, but also push data. All liquid web applications should be at least at this

maturity level.

The fourth stage are hybrid web applications. These applications use the same level

as real-time web applications for the model and controller facet, but are at the third

level for the communication channel facet. Communication is done in a peer-to-peer

fashion. Latency is thus significantly lower.

The fifth and final maturity stage are peer-to-peer web applications. These appli-

cations are at the third level of every facet. They use a distributed storage model,

a rich client and peer-to-peer communication.

3.1.3 Architecture

In this section, several architectural considerations will be elaborated on. They

contain the key elements to form the technical choices or design space discussed in

section 3.1.4. Four architectural considerations are proposed by [7].

A major element of liquid software is the ability to benefit from the advantages of

each device. A truly liquid application should consider different input and output

methods for different devices. A smaller screen should probably display the data in

a different way than a larger screen. Here, UI adaptation plays a major role.

Another element is data and state synchronization. In software, there are two kinds

of application data, persistent and dynamic. Nowadays, persistent application data

is stored locally on each device and can be synchronized using cloud-based solution.

These are, unfortunately, often vendor based. Liquid software includes not only

synchronization of persistent data, but also dynamic application data. An example

of dynamic application data is the zoom-level or position of a web-page. These dy-

namic application data can be caught at different levels of granularity. Identification

is needed to apply the correct user settings to the correct user.

The third architectural consideration is the client/server partitioning. This has been

widely discussed already in section 3.1.2. The final element is data security. This

has also been touched on by section 3.1.2. People using liquid software should be

able to decide the liquidity of their data.

3.1. Liquid software 11

3.1.4 Design space

This section discusses some of the technical choices that need to be made to develop

a liquid application. This is also often called the design space. The design space is

formed from the architectural choices discussed in Chapter 3.1.3. Following technical

choices are proposed by [7] and [18]. Each element of the design space is discussed

in a separate section.

The topology of a liquid architecture can be centralized, decentralized or distributed.

This has already been discussed in Chapter 3.1.2. This topology has the same struc-

ture for state replication as well as application source distribution. The topology

of the state replication and application source distribution can differ within one

application.

Discovery is a major part of liquid software as the device that wants to do a liq-

uid transfer must know to which device it can transfer. The process of finding

these devices is called discovery and can be achieved in a number of ways. The

first approach is by creating a personal network with either Wi-Fi or Bluetooth and

then connecting devices. Another approach is creating a server and linking devices

through shared URL- or QR-codes. Both of these approaches fall under the term

existence discovery. The third method of discovering new devices is location discov-

ery. Through certain methods, relative positions can be calculated through Wi-Fi

or Bluetooth. To migrate or clone a session, specific geometrically based gestures

can be used (for example swiping left or forward). The final approach is ownership

discovery. This is based on the authorization of users. When a user is authorized on

a certain device, it can initiate a liquid transfer to it. Authorization can be achieved

in a number of ways, such as user/password combination, smartcards and shared

secrets.

Layering of liquid software is already discussed in Chapter 3.1.2 with the MVC-

model. The choice between a thick and thin client can be made based on a number of

criteria. These criteria include computing power, energy consumption and required

bandwidth.

The following paragraphs discuss the part of the software that is responsible for the

liquid transfers. This ranges from operating system level to component level, each

having its own benefits.

The lowest level is the operating system level. If liquid software is implemented at

this level of granularity, liquid software would not be tied to certain applications, but

all applications would be liquid by default. It is the most complete but also most

3.1. Liquid software 12

complex way of implementing liquid software. Problems include security issues,

hardware differences and resource consumption. Another struggle would be that

every device should run the same operating system.

At a higher level, virtual machines and containers can be used. The transfer of

running all applications can be achieved and it is the most adopted system for doing

so. Problems with limited bandwidth, can be solved by selecting parts of the virtual

machine or container that need to be transferred.

The next level is the application level. It is probably the most natural way when

thinking of moving a running application. In the previous method, all applications

would have liquid capabilities by default. Here, all applications would have to be

programmed to be liquid.

The final level is the component level. Here, only parts of the application will be

transferred. This positively impacts bandwidth usage as less data should be sent to

the target device. Every component has to be programmed to be liquid.

There are two major alternatives to deploy applications to a client device. The

first alternative is on-demand applications. Here, no installation is required and the

application is downloaded when necessary. The second alternative is pre-installed

applications. On-demand applications can only be used in on-line mode, except if

the application is cached. Pre-installed applications can always be used in off-line

mode in a non liquid manner.

Liquid software deals with two types of data. The first is persistent user data. This

kind of data needs to be stored so that it is available to all devices of the user.

The second type is the application state. This data must be stored in a manner

so that it is easy to transfer the data when a liquid transfer is requested. During

cloning and forking, conflicts may occur because multiple devices are working on

one application. These conflicts need to be solved at the application level. State

synchronization can happen in two major ways, as briefly discussed in Chapter

3.1.1. The first possibility is trickle updates. This way, all changes are updated

as soon as they are made. The second possibility is batch updates. Here, changes

are cumulated and updated after a period of time. The latter approach is useful

when updating devices that have been off-line for prolonged periods of time. The

last consideration to be made when choosing how to update the state and data,

is the way the data gets to the device. The first possibility is pushing. Here the

device that is sending initiates the communication between devices. The second

possibility is pulling. In this approach, the device that is receives data initiates the

communication between devices.

3.1. Liquid software 13

3.1.5 Comparison of the liquid software programming frame-

works

In this final section of the literature study regarding liquid software, two program-

ming frameworks mentioned in [7] will be compared. They are called Liquid.js for

DOM (LfD) and Liquid.js for Polymer (LfP). The comparison is based on the design

space discussed in Chapter 3.1.4 and described in [7]. These are two frameworks

with the same goal, but developed in parallel by different teams.

Overview

On the one hand, LfD is a framework based on virtualized DOM trees. Virtualized

DOM trees are a way of quickly manipulating DOM trees through an abstraction

layer. It is deployed as a JavaScript file and runs on the client. This means it has to

be included in the application. Some initialization code also has to be implemented.

On the other hand, LfP is a framework based on web-components and the Polymer

project by Google. A LiquidBehaviour class can be instantiated into the definition

of a component and can define which properties of the component should be liquid.

Topology and Code Deployment

LfD can use both a centralized topology and a decentralized one. It is made such

that any communication protocol can be used to transfer the application. Right

now, it uses WebSockets and all data needs to go through a centralized server. LfP

however, aims to be as decentralized as possible. With LfP, the states are transfered

through a peer-to-peer channel using WebRTC.

Both LfD and Lfp work on an on-demand basis and can be cached afterwards.

Individual components can be cached separately when using LfP. With LfP, any

client can request any other client their copy of the application to enable client

repository paradigm. This is not possible for LfD.

Granularity

For LfD, the entire application is always sent to synchronize. This means that the

user can not choose what should be liquid and what not. However, only differences

in the DOM tree are sent to limit data consumption. LfP is component based and

3.1. Liquid software 14

Figure 3.1 The four levels of abstractions LfP can transfer to another device.

allows single components to be synchronized independently. This way, it is possible

for the user to keep certain parts of the application private.

Liquid User Experience

LfD and LfP support all liquid use cases except forwarding. LfD is developed with

migration being its top priority, but both forking and cloning are possible too.

For LfP, four levels of abstraction were developed. Devices, assets, components

and properties can all be separately transferred to another device. The differences

between these 4 levels of abstractions are depicted in figure 3.1 [7]. The devices

consist of assets and components. Assets are the definitions of components and

components have properties that define how it behaves [19].

State and data

LfD sends the state and data of the application to another device by comparing the

initial DOM tree with the current DOM tree and the difference between the two is

sent. The developer can choose when to send the state and data. (For example with

the press of a button or when a change in the tree occurs). Sequential use is perfect

for this, but simultaneous use is also possible because conflicts are minimized. The

framework supports both trickle and batch updates [13].

LfP stores the state and data of the application in the clients by default. The

developer can however choose to store the state and data in a centralized web-server.

Only trickle updates can be used.

3.2. IoT Application Framework 15

Summary

Table 3.1 illustrates a quick summary of all the differences and similarities between

the two frameworks discussed in this section.

LfD Lfp
Technology DOM-trees Polymer
Topology Centralized Decentralized

Code Deployment On-demand with caching On-demand with caching
and client repositories

Caching No individual components Individual components
Granularity Application level Component Level

Liquid use cases Migration, forking, cloning Migration, forking, cloning
Updates Trickle & Batch Trickle

Table 3.1 The differences between LfD and LfP.

As can be seen, both frameworks have their advantages and disadvantages. However,

it can be seen that LfP has progressed further in the liquid field. With its support for

client repositories and decentralized topology, LfP enters the hybrid web applications

maturity level whereas LfD remains at the real-time web applications maturity level.

On top of this, LfP provides more freedom to choose which part of the application

is liquid and which part is not. This freedom is not present in LfD. Both LfD and

LfP provide the same liquid functionalities. LfD does provide both trickle and batch

updates where LfP only provides trickle updates.

3.2 IoT Application Framework

Nowadays, IoT devices have relatively little computing power and only retrieve

data and send it to the cloud. But according to [20, 21], IoT devices will become

more powerful and will eventually be able to host applications. Following is a close

analysis to the dynamic, distributed platform, named liquidIoT, developed by TUT

and the requirements it needs to satisfy. Lastly, continuous development (CD) for

IoT programming is discussed.

3.2.1 Implementing distributed systems

The first alternative that needs to be considered is the communication protocol be-

tween peers, the two obvious alternatives being Web Services like SOAP and WSDL

and the RESTful style. SOAP, being resource-hungry and complex, is complicated

3.2. IoT Application Framework 16

for programmers in the usage of these services. REST provides scalability and is

straightforward. IoT devices very often provide simple interfaces and functionali-

ties, so REST is the obvious choice between the alternatives. Using REST as an

interface for IoT applications is a concept called Web of Things (WoT). In the plat-

form suggested in [21], the user interacts directly with the peers through their URL

rather than with a mash-up that interacts with the peers and filters the data. A ser-

vice discovery mechanism needs to present because users often need to interact with

multiple peers. This mechanism has to have a group communication mechanism in

place for bulk operations.

Only services are not enough to make a distributed system. In IoT, innovation is

often a requirement for finding the best business cases. This requires rapid and reg-

ular updates to the devices. Because in IoT not all devices are equally powerful and

differ from each other, they do not need the same version at all times. The deploy-

ment mechanism should automate the discovery process to avoid human errors when

deploying new applications. The deployment mechanism should also be scalable, as

many applications need to be deployed and updated with single operations. Both

of these reasons call for CD.

3.2.2 LiquidIoT

With the requirements listed above, TUT developed a programming platform for

IoT devices called LiquidIoT. LiquidIoT consists of 3 components: the application

framework, the runtime environment and the resource registry. All will be explained

in detail now including the workflow of deploying an application and the communi-

cation between the components.

The application framework

The application framework provides the developer with certain functionalities that

he/she needs to fill in with application specific code. There are three functions that

need to be filled in, as can be seen in figure 3.2. The first one is task. This is

the function that gets called on regular intervals. It is also possible to only execute

this task once. The second function is initialize. This gets called before the task

function is called, like establishing a connection. The third and final function is the

terminate function. This gets called before the applications stops and is used for

gracefully killing connections with other peers. Applications can also provide REST

interfaces called application interfaces (API) that can be called from anywhere in

the network. Figure 3.2 displays all functionalities the application needs.

3.2. IoT Application Framework 17

Figure 3.2 The developer uses this framework to give the application the functionalities

it needs.

After all functionalities are filled in and the API’s are in place, the tool packs

the application in to one package. This contains a main.js file that defines the

source code and main liquidIoT functions, which can be expanded by adding other

source files, and a Package.json file that includes some metadata like name and

version. It also includes a liquidiot.json file used for discovery and bookkeeping and

a folder called resource that contains any images or sounds. The package can then

be deployed. The deployment window can be seen in figure 3.3. The table on the

right displays all applications that can be deployed on the devices, displayed on the

left.

Figure 3.3 This screen is used to deploy applications to devices. Another tab can be

used to manage the applications.

3.2. IoT Application Framework 18

The runtime environment

The runtime environment is a system based on NodeJS [22] and it transforms any

IoT device to an application server that can host IoT applications. The runtime

environment receives the code from the framework, prepares the application and

notifies the resource registry about its status.

Resource registry

All IoT devices and applications are in this system are managed by centralized

system called the resource registry (RR). It also contains a resource discovery system,

which will be explained in Chapter 3.2.2. It keeps track of all resources and their

capabilities. Resources are divided into four categories: applications, devices, device

capabilities and application interfaces.

Application deployment flow

When an application needs to be developed and deployed, the following steps are

followed. First, when a new device is installed, it registers itself to the RR. Secondly,

the new application needs to be developed or an already existing application needs

to be found. Then, all suitable devices are found through the RR. The fourth step is

deploying the application through the application management API provided by the

runtime environment. Then, the deployment returns the status of the deployment

to the development tool and if successful to the RR too. Now the developer can

query the application and finally manage and monitor the application through the

RR. A diagram is shown in figure 3.4.

Discovery Mechanism

In this Chapter, the technical details of the discovery mechanism used in LiquidIoT

are explained. All resources known to the RR are described in JSON format. All

devices have an id, name, location and a list of capabilities among other pieces of

information. It also has a list of applications which on its turn have an id, name,

list of interfaces and many more.

For the RR to find appropriate resources, a query language has to be used. It should

be easy to understand for all people that come into contact with it and it should

3.3. Continuous Delivery 19

Figure 3.4 The flow of deploying and managing an application with LiquidIoT.

support complex query patterns. Currently the ArangoDB Query Language (AQL)

is used due to its similarity to the Structured Query Language (SQL) and its support

for document oriented structures. On top of this, AQL also has some procedural

elements like a for-loop.

3.3 Continuous Delivery

Continuous delivery (CD) is the act of automatically testing of new pieces of code

and preparing them for deployment. When a new piece of code is written, it goes

through testing. If the code passes all automated tests, it goes to the automated

release process. Only the actual release is done manually. This has several benefits

such as an accelerated time to market, improved productivity and reliable releases

[23].

CD is mostly used in cloud-based infrastructures. However, [20] has found simi-

larities between CD for cloud-based Internet services and IoT applications. When

deploying a new application with CD, there are several deployment patterns, all

with advantages and disadvantages. The most straightforward method is in-place

deployment. Here, the new version replaces the old one and only a short down-

time is present. If only the application changes, downtime can be short. However

if a change of execution environment is necessary, downtimes may be larger. This

method is easy to transfer to IoT.

Another method is rolling deployment. The in-place deployment pattern changes all

3.4. Conclusion 20

applications at once, where the rolling deployment pattern updates the applications

sequentially. This strategy takes more time but has the advantage of having zero

down-time, as there is always one host running. Another advantage is that if the new

version is faulty, the old version can be rolled back before all applications have been

changed to the new faulty one. This pattern requires a balance-loader to regulate

which application needs to be updated at what time. This is not easily integrable

to IoT because of the need of a balance-loader.

One more method that will be discussed is the blue-green deployment pattern. Here,

when the application needs to be updated, the old application remains on the device

during transition. When the new software is stable, the URL’s are swapped and the

new version is active. Using this approach, zero down-time is present and a rollback

is easy as it only requires changing the URL’s back. A disadvantage is that the

transfer of persistent data between versions is complicated. With the mindset of

IoT devices becoming more powerful, a limited version of the blue-green deployment

pattern is integrable.

Staging can also be used with the blue-green deployment pattern. Staging makes

use of a staging environment that is an exact replica of the production environment.

IoT devices are always tightly connected with the physical world, so a staging area

is impractical. However, a simulator can be used. The staging environment can

be hosted in the target device as the new application. When the simulation runs

correctly, the URL’s can be swapped.

Canaries are a final optimization to application deployment. Canaries are a subset

of the IoT-devices that host the new applications, while all other devices still have

the old application. When all goes correctly with the canaries, it is to be expected

that the application will work too in the other devices. Staging, the blue-green

deployment pattern with the integration of canaries, seems to be the most stable

version of application deployment.

3.4 Conclusion

To develop IoT-applications, a framework has been developed to easily code, manage

and deploy these applications. This framework consists of three main components:

the resource registry, the IDE and the runtime environment. The IDE is used to

create, deploy and manage all applications and devices. The RR is used to keep

track of all applications and devices. Finally, the runtime environment is used to

run all applications on the devices.

3.4. Conclusion 21

Liquid software is a vision to make all applications liquid, meaning they can seam-

lessly flow from one device to another. There are four main use cases regarding

liquid software. The first is forking. This means making a copy of an application,

its state and its storage and deploying it on another device. The second use case is

migrating. Migrating is the same as forking except that the original application gets

deleted from the source device after the transfer. The third use case is cloning. This

is forking an application and keeping state updates synchronized with each other.

This means that all cloned applications are always in the same state. The final use

case is forwarding, where the inputs and outputs of one device are forwarded to

another device.

The design space is an important part to design liquid software. It discusses how the

liquid software is implemented. This includes state replication topology, application

source topology, the discovery mechanism, layering, granularity, client deployment

and state and data. Two frameworks have been developed that implement the facets

of the design space differently. LfP is at a higher maturity level and provides more

freedom regarding liquid support.

22

4. METHOD

The goal of the thesis is to implement basic liquid functionalities such as migration,

forking and cloning in the IoT framework so that the IoT developer has minimal

extra work to implement these liquid functionalities. To achieve this, an incremental

and iterative way of working was used [24]. This means that only one problem was

being solved at a time. First, the existing code of the IoT framework was analyzed

so that further development would go fluently. Then work continued in small steps.

The first step in coding added support for communicating between IoT devices.

Then, an extra tab was added to the IDE. After every step, testing was done to

make sure everything worked as expected. When a test failed, a new design was

made, developed and tested again. Each iteration of code was reviewed by the

research team led by Professor K. Systä and feedback was provided to improve the

code and liquid support. An illustration of the iterative development method can

be seen in figure 4.1.

Figure 4.1 To develop the project, an iterative way of working was used.

4.1. Design science research 23

4.1 Design science research

Design science research (DSR) is an important research paradigm for information

systems (IS). DSR for IS describes how to properly design a scientific artifact and

then research it. An artifact can be defined as multiple things, but in the scope of

this thesis, an artifact is a system design [25]. According to [26], there are seven

research guidelines for a research to be a DSR. Firstly, the research must provide an

artifact of some kind. Secondly, the artifact should solve existing problems. Thirdly,

the artifact must be tested. Fourthly, the research must provide contributions to

the field of the artifact. Fifthly, the construction and testing of the artifact should

rely on tested methods. Sixthly, the artifact should make use of existing and tested

methods provided by others. And finally, a DSR must be presented so its clear for

technology-oriented as well as business-oriented people.

This thesis provides a solution to implement liquid functionalities to IoT devices

within an IoT framework. The design of the functionalities has been described in

the following sections of this Chapter. The liquid functionalities are tested and the

results of tests and evaluations are presented in Chapter 5. The results are discussed

in Chapter 6. The construction of this research was based on a incremental design

process, as explained in the previous section. Several packages made by and tested

by others were used in the creation of the system, such as the tar-pack [27] package

and Lodash [28] provided by npm.

4.2 Migration and Forking

The implementation of migration and forking forms the basis of the other use cases

of liquid software. The only difference between migration and forking, is that the

application gets deleted from the source device after migration whereas it stays

active after forking of the source application. Because of this, both methods run the

same code but with an extra function that deletes the application for migration.

4.2.1 Algorithm of migration and forking

For migration and forking, the entire application code, state and local storage has

to be transferred to a new device. As can be seen in figure 4.2, the transfer consists

of three steps. Firstly, the IDE needs to send a signal to the source device that

it needs to migrate or fork its application. This signal contains the applicationID

of the application that needs to transferred, the URL of the target device and if

4.2. Migration and Forking 24

the transfer method should be a migrate or a fork. The sending of the signal does

not necessarily have to be done by the IDE. If the signal is correct, the application

will transfer regardless of the origin of the signal. Secondly, the source device needs

to do the migration or forking. To do this, the source device collects all necessary

code-files from its application and stores them in a separate directory. Then it polls

the state of the application and saves it in a JSON-format that is then saved in

the same directory as the code. Afterwards, the storage gets copied into that same

directory. The storage contains all resources like sound- and image-files. Finally,

the directory that contains all information is packed into a tarball with the .tgz

extension-format. To do the packing, the device uses the tar-pack package [27]

provided by npm. This tarball is then sent to the target device that handles it. The

handling is explained in the next paragraph. Everything necessary for migrating

and forking, from collecting all required files to sending the tarball, is done by the

runtime environment. No extra code has to be added to the applications written

by the developer. It is important to notice that the IDE also sends a tarball to the

target device when deploying a normal non-liquid application, without a state-file.

This tarball can also contain a number of resources.

Finally, when a target device receives a tarball, it unpacks it like it would unpack any

normal application that it would receive from the IDE. It saves the file that contains

the state of the source application for later use. When the application is deployed, a

function gets called from the application code before any task is ran. This function

reads the contents of the file that contains the state of the source application, and

changes its state accordingly. The application then reports its status to the RR and

the IDE for user feedback about the transfer. After this, the application code is ran

as usual, with the correct initial state.

Figure 4.2 The source device packs a tarball that it can send to the target device.

4.3. Cloning 25

4.3 Cloning

To implement cloning, two alternative methods were developed for the communica-

tion of state-changes. The first method uses peer-to-peer communication between

applications, the second method communicates in a master-slave fashion. Here, the

master is the RR and the slaves are the applications. For both methods, a push-

ing technique is used rather than a pulling technique. This means that when the

state of an application changes, it will forward this to other devices rather than

the devices asking to other devices if they have had any state-changes. Both meth-

ods use the same approach for the transfer itself, as this is similar to forking with

subtle additions. The methods for communicating state changes will be explained

afterwards.

To keep applications synchronized, each application has a syncID. All applications

that are mutually synchronized have the same syncID. Applications that are not

synchronized with any other application, have a value of -1 for the syncID. This

syncID is saved in a separate file in the application that is used for all liquid purposes.

This file right now only contains the syncID. The file is generated in the browser-

based IDE. When an application gets deployed from the IDE, the syncID is always

-1.

Applications are synchronized if the state of the applications are the same. Syn-

chronization is necessary when a state change happens. A state change is defined

as the addition of a variable, the deletion of a variable or the change in contents

of a variable within the memory. Applications can be ordered to not synchronize

their state and only accept state changes. This way, the application will listen to

the applications that are sending out their state changes.

State changes can be detected in three major ways. The first way is by polling the

state on a regular basis. This can be done using JavaScript’s setInterval method.

For this approach, the application’s state has to be cached in memory and this cache

can be compared to the actual state of the application. When a change is detected

between the cache and the actual state, synchronization is necessary. The cache is

always updated to the actual state when a state has been detected.

The second way is by triggering an event when the state changes. Because JavaScript

does not call any event when a variable changes, this is harder to implement. A

possible solution can be made by altering the source code of JavaScript itself. The

final way is by only sending state changes when a specific function is called, imple-

mented by the developer. This requires extra code for the application developer but

expands the liberty that the developer has. This has already been implemented in

4.3. Cloning 26

LfD [7].

4.3.1 Transfer of applications

When a transfer has been initiated by the user on the IDE, the application that is

being cloned first needs to check its syncID. If the value of the syncID is not -1, the

application that needs to be cloned is already synchronized with other applications.

In this case, the source application can be forked. The syncID, application and state

are transferred to the new device. The application on the new device is automatically

synchronized with any other applications with the same syncID.

If, however, the value is equal to -1, the application needs to initialize the synchronize

operation. It does this by requesting a syncID from the RR. The RR then generates

a new random unique syncID and sends it back to the application that needs to be

cloned. The application saves this value and a normal fork can be initiated.

4.3.2 Peer-to-peer synchronization of the state

The first method for cloning applications uses a peer-to-peer communication pro-

tocol. This means that in principle, no external server is necessary. This method

does still require the RR that is present in the IoT framework. It uses the RR for

receiving a syncID and requesting synchronized devices. For the communication of

the synchronization, 4 steps are defined for the peer-to-peer approach, as can be

seen in figure 4.3. The steps are as follows:

1. A state change happens in the first application.

2. Application 1 requests all applications with the same syncID as it from the

RR.

3. The RR returns all applications with the syncID that was provided.

4. The first application publishes all state changes to the applications it received.

The RR uses an AQL query to find all applicationIDs and the URLs for the devices

and sends it back when requested. The application that is sending the state updates

then sends data in JSON format to the second device via a POST method that

contains the applications ID (aid), the variables that have been added or changed

(data), the variables that have been deleted (dels), the synchronization ID (syncID)

4.3. Cloning 27

Figure 4.3 Synchronizing two applications with peer-to-peer communication.

and the time of the update (time). The device receives the POST data and sends it

to the application that changes its state accordingly. An example of the POST-data

in JSON format can be seen in figure 4.4.

Figure 4.4 Example of data that needs to be synchronized.

When an application requests all synchronized applications from the RR and it

receives an empty array, the device sets its syncID to -1 locally and requests the

RR to update its value to -1 as well. After this, the application is not synchronized

anymore.

4.3.3 Master-slave synchronization of the state

An alternative method for the synchronization of cloned application uses a master-

slave topology. As there is already an external server, the RR, present in the IoT

framework, no extra hardware is necessary. It is however possible to create a ded-

icated server just for synchronization. As depicted in figure 4.5, three steps are

needed for this method. The steps are as follows:

4.3. Cloning 28

1. A state change happens in the source application.

2. The device sends the state change to the external server.

3. The external server handles the state change and forwards it to all synchronized

devices.

The external server uses the same method as the option for synchronization to find

all synchronized devices and to send the synchronization data to target devices.

However, in this method, the external server can decide whether to accept or drop

any synchronization requests. This enables more control over the system, as all

states are centralized and conflicts can be handled in a centralized place.

Similarly to the first method for synchronization, when a device requests synchro-

nization and no other devices are synchronized with it, the external server will urge

the device to change its syncID value to -1 so that it is no longer requesting syn-

chronization.

Figure 4.5 Synchronizing two applications in a master-slave fashion.

4.3.4 Synchronization collisions

When a state change happens in two applications at approximately the same time,

they will send the state changes to each other, which will result in a collisions where

the devices have different states. To solve this, [29] has proposed a solution that

uses timestamps. Firstly, an example of a certain use case is given which results in a

non-synchronized state. For simplicity, time-steps of 1ms are presumed and sending

the new state to other applications takes 2ms to travel over the communication

channel.

4.3. Cloning 29

Time Application 1 Application 2 Communication channel
0ms State changes to 1 Idle in state 0 Idle
1ms Idle in state 1 State Changes to 2 Transmitting state 1

to application 2
2ms Idle in state 1 Idle in state 2 Transmitting state 1

to application 2 and state 2
to application 1

3ms Idle in state 1 Receive state of application 1 Transmitting state 2
to application 1

4ms Receive state of application 2 Idle in state 1 Idle
5ms Idle in state 2 Idle in state 1 Idle

Table 4.1 When two applications have a state-change close to each other, synchronization

issues arise.

As depicted in table 4.1, two applications can result in different states after a

synchronization attempt. This is because a state change happened in application 2

while the state change of application 1 was still transmitting, which resulted in a

swap of states rather than a synchronization of states. To solve this, timestamps

are added to each state change and each application saves the timestamp of the last

state change. When an application receives a state change, it will first check if the

state change is newer than the last state change. If it is newer, the state change is

accepted, otherwise it is discarded. Only timestamps of accepted state changes are

saved. Table 4.2 depicts the same situation as table 4.1, but with the solution in

place. The text in red depicts a discarded received state change. The variable t is

the saved timestamp of the last accepted state change for the two applications.

Time Application 1 Application 2 Communication channel
0ms State changes to 1 (t=0) Idle in state 0 (t=0) Idle
1ms Idle in state 1 (t=0) State Changes to 2 (t=1) Transmitting state 1

to application 2
2ms Idle in state 1 (t=0) Idle in state 2 (t=1) Transmitting state 1

to application 2 and state 2
to application 1

3ms Idle in state 1 (t=0) Receive state of application 1 Transmitting state 2
to application 1

4ms Receive state of application 2 Idle in state 2 (t=1) Idle
5ms Idle in state 2 (t=1) Idle in state 2 (t=1) Idle

Table 4.2 Synchronization issue solved using timestamps.

The end state of both application is now the same, with minimal extra resources

needed. This is because application 2 discarded the state of application 1. It did

this because application 2 itself had already done a more recent state change.

4.4. Technical changes 30

4.4 Technical changes

In this section, the technical changes made in the code for every part of the IoT

framework are explained. The code is available on GitHub, the links for the different

components of the IoT framework can be found at the end of this section.

In the non-application specific code of the runtime environment, three new endpoints

were added on the device level. The first endpoint is to migrate or fork an application

running on the device. The second one is to clone an application and the final

endpoint is to pass along synchronization data to the correct application. These

endpoints then execute the relevant parts of the code to do the liquid transfer. An

organized table of all new endpoints at the device level in the runtime environment

can be seen in table 4.3.

On the application level, four new endpoints were added. The first endpoint is used

to receive synchronization data passed on by the device. The second endpoint is

used to save the current state of the application. The third returns the syncID of

the application and the final endpoint saves a newly received syncID. Furthermore,

a setInterval method was added to check for state changes in the application. This

method can call request the synchronized devices from the RR and send synchro-

nization data to other applications. A schematic overview of the new APIs added

to the application level of the runtime environment can be found in table 4.4. The

new endpoints of the device and application are illustrated in figure 4.6.

Figure 4.6 The endpoints added to the device and application level of the non-application

specific code.

The IDE works with Angular 1 and Jade templates. Because of this, no extra design

had to be done to implement the extra tab. The use of Jade and Angular 1 resulted

in good reusable and reliable code so that little code had to be added to implement

the liquid functionalities.

4.4. Technical changes 31

The RR has only been expanded by two new endpoints. The first endpoint is used

to generate a new syncID when requested by an application. The second endpoint

transmits the synchronization data when making use of the master-slave fashion

with cloned applications. These functions make use of queries written in AQL to

make sure that no two identical syncIDs are generated and to find synchronized

devices. A structural representation of all new APIs for the RR can be found at

table 4.5.

4.4.1 REST APIs

This section illustrates all new REST APIs added to the program in a constructive

manner.

URL Method Parameters Description

/transfer POST id Migrates or forks the application with its
url id equal to id to url. del indicates
del if the current application should be deleted.

/clone POST id Clones the application with its id equal
url to id to url.

/sync POST aid Relay the entire body to the
application with aid

Table 4.3 The REST APIs present in the runtime environment at the device level.

URL Method Parameters Description

/sync POST time Sets all applications variables to the
data ones represented in data and deletes
dels the ones represented in dels.

/savestate GET / Saves the state to a file.
/syncId GET / Returns the syncID.

/saveSyncId POST syncId Saves a new syncId.

Table 4.4 The REST APIs present in the runtime environment at the application level.

URL Method Parameters Description

/generateSyncId GET / Returns a new syncID.
/stateupdate POST syncId Sends the body to all applications

aid with the same syncId except for
the application with id aid.

Table 4.5 The REST APIs present in the resource registry.

4.4. Technical changes 32

4.4.2 Links to code

The code for the IoT framework components can be found at following links.

Resource Registry: https://github.com/caspervranken/liquidiot-server/tree/CasperRR

Runtime environment: https://github.com/farshadahmadi/liquidiot-server/tree/Casper-

clone-p2p

IDE: https://github.com/caspervranken/liquidiot-IDE

33

5. RESULTS

The three main liquid functionalities, migrating, cloning and forking were added

to the framework. In this Chapter, it is explained how the user can use these

functionalities within the framework. The functionalities are also tested on speed

and correctness. These results are then discussed in Chapter 6.

To include all liquid functionalities in the IDE, a new tab was generated in the

deploy and update window. The contents of the new tab can be seen in figure

5.1. On the left hand side, the different applications can be seen that are installed

on devices. The table on the right displays all available devices. Three buttons are

available for the different integrated liquid use cases: migration, forking and cloning.

Figure 5.1 The tab created for all liquid use cases.

N applications installed on devices can be selected and M devices can be selected on

the right hand side to initiate a liquid transfer. Every application will do the liquid

transfer to all devices selected. If a liquid transfer is initiated, the IDE sends the

list of selected devices, together with the selected liquid use case, to all applications

that then handle the request.

To initiate a liquid transfer of any kind, the developer does not need to add any

additional code to the application. All applications deployed by the IDE are liquid

by default. This is because all liquid functionalities are implemented in the runtime

environment and non-application specific code. Because of this, it is not possible to

declare components of the application non-liquid.

5.1. Test setup 34

5.1 Test setup

A network of 4 Raspberry Pi 3 Model B’s was installed and connected through a

local network to test the altered IoT framework. This enabled P2P communication

between the devices. The RR and IDE ran on a Ubuntu virtual machine running on

a Intel-i5 dual core laptop with 8GB of memory with Windows 10. This laptop was

also in the same network. The database linked to the RR ran on a virtual machine

outside the local network. A diagram of the setup is depicted in figure 5.2.

Figure 5.2 A schematic representation of the test setup.

To test migration and forking, the time taken from receiving the signal from the IDE

to preform a liquid transfer to another device receiving and reporting a good transfer

is measured. This time is also dependent on the network characteristics. The same

is done for cloning, but the amount of synchronization messages between all devices

is also measured. The task of the IoT applications gets called every second. The

code depicted in the listings below, is used to test all liquid functionalities of the

IoT framework. It contains JSON objects, arrays and normal variables. Measuring

the time it takes to do a liquid transfer and the amount of synchronization messages

with the same program across the devices, results in a good representation of the

traffic on the communication channel and the speed at which the liquid transfers

happen.

$app.$configureInterval(true , 1000);

$app.$initialize = function(initCompleted){

$app.people = [{"name":"Name 1","age":21},{"name":"Name 2","age

":19}];

$app.counter = 0;

initCompleted ();

};

$app.$task = function(taskCompleted) {

$app.counter = $app.counter + 1;

for(var i = 0; i < $app.people.length; i++){

if($app.counter %3===0){

5.2. Migration and forking test results 35

$app.people[i].age = $app.people[i].age +1;

}

console.log("Person " + i + "’s name is " + $app.people[i].

name + " and is aged " + $app.people[i].age + ".");

}

taskCompleted ();

};

$app.$terminate = function(terminateCompleted){

terminateCompleted ();

};

Program 5.1 Code for testing the liquid capabilities of the IoT framework

5.2 Migration and forking test results

Migration and forking were tested by initiating a liquid transfer with varying amounts

of resources attached. The amount of resources attached were 0MB (no resources

folder present), 1.9MB of resources and 3.6MB of resources. These resources were

arbitrary pictures and sound files. The average time needed to do the liquid transfer

with a certain amount of resources is given in table 5.1. Another test was used to

measure the importance of target devices in migration or forking time. The av-

erage time to migrate or fork an application with no resources folder for different

amounts of target devices can be seen in table 5.2. The averages were made over

five measurements and all raw measurements can be found in appendix A.

Resources (MB) Time to migrate or fork (s)
0 0.313
1.9 1.597
3.6 1.604

Table 5.1 The time to migrate or fork the application with varying amounts of resources.

Amount of target devices Time to migrate or fork (s)
1 0.313
2 0.306
3 0.316

Table 5.2 The time to migrate or fork the application with varying amounts of target

devices.

5.3. Cloning test results 36

5.3 Cloning test results

Testing for cloning was divided in to two parts, one for the liquid transfer and one

for state synchronization. The testing for liquid transfers is identical to the testing

for migration and forking. To test synchronization, the amount of synchronization

messages was measured during a time span of 10 seconds with a varying amount

of devices synchronized. The amount of time needed to clone one application with

varying amounts of resources is given in table 5.3. For this test, only one target

device was present. The amount of synchronization messages for a certain amount

of synchronized devices is given in table 5.4.

Resources (MB) Time to clone (s)
0 0.494
1.9 1.801
3.6 1.803

Table 5.3 The time to clone the application with varying amounts of resources.

Synchronized devices Amount of messages in 10s.
2 21
3 30
4 42

Table 5.4 The amount of synchronization messages sent between a certain amount of

synchronized devices.

37

6. DISCUSSION

6.1 Migration and forking

In the implemented method for migration and forking, the application source topol-

ogy uses client repositories. Applications are received through the other peers in the

network when a sequential transfer happens. The discovery and layering are already

provided by the IoT framework. The liquidity operates at the virtual machine level,

all applications are liquid by default. This is because the packing is done on the de-

vice rather than on the application. The applications are downloaded and installed

on the devices, this means they are able to run in off-line mode. The applications

are thick-clients, as the model, view and controller are all present on the device

running the applications.

As stated in the previous Chapter in tables 5.1 and 5.2, the speed of migration

or forking solely depends on the amount of resources present in the application to

be transferred. When no resources are present, the average time to migrate or fork

is 0.313 seconds. The time to migrate or fork barely changes when doubling the

amount of resources. This indicates that including a resource folder adds between

1.2 and 1.3 seconds to the migration or forking. The amount of target devices has

marginal impact on the time to migrate or clone.

6.2 Alternative method for migration or forking

The implemented method for migrating and forking uses the power of the devices

to pack the state and application of the source device into a tarball and to send

this tarball to the target device. An alternative method can be used when the

computational power is limited. Here, the IDE sends a request for a liquid transfer

to the source device. The source device then saves the state to a state-file and sends

it back to the IDE. Because the IDE is used to initially deploy applications, they

have the source-code saved for every application that is deployed. It is also possible

to save all applications on the RR and use the RR to do the following process. It

then packs this application together with the received state-file into a tarball and

6.2. Alternative method for migration or forking 38

sends it to the target device. Figure 6.1 depicts this process. The steps are as

follows:

1. A request for a liquid transfer is sent to the source device.

2. The source device polls the state and sends it to the IDE.

3. The IDE packs the application together with the state-file into a tarball and

sends it to the target device.

4. The target device reports the state of the deployment.

Figure 6.1 The IDE packs the tarball and sends it to the target device.

An advantage of using this approach is that the computational power is focused

on the PC or laptop running the IDE or the server running the RR rather than

on the weaker IoT device. This advantage will however become more irrelevant

over time as IoT devices get more powerful over time [5]. A major disadvantage

is that the IDE or RR must have every application stored. This is not necessary

for the implemented method, as the IDE only needs to have the application stored

at deployment. Right now, the RR never stores the applications. The energy con-

sumption due to communication does not play a major role, as the energy cost for

setting up a WiFi connection is high relative to the energy cost per bit sent [30] and

the number of connections created is equal compared to the implemented method.

The design space is similar to the implemented method except for the application

source topology, which uses a master repository instead of client-repositories.

6.3. Cloning 39

6.3 Cloning

To communicate state-changes between applications, there are two alternatives:

peer-to-peer and master-slave communication. When using the peer-to-peer alter-

native, fewer hops are needed for communicating the state-changes. There also is

less load on the RR. Both alternatives use a pushing technique rather than a pulling

technique. This is because of the size of the network of the devices. The frame-

work is made to support thousands of IoT devices, each running the synchronized

application. When a pulling technique is used, each device has to poll every other

device on a regular basis. Thus for a network consisting of n devices, n2 connection

are necessary. This results in a high bandwidth and a lot of computing power. The

pushing technique bypasses this problem by only sending the state changes when

a state change has happened. For the same network consisting of n devices, the

best case only uses n connections while the worst case (all applications having a

state-change simultaneously) has n2 connections. The pushing technique thus uses

fewer or an equal amount of connections than the pulling technique.

To detect state-changes, the polling technique is used. The polling technique does

not need to poll very often in this use case. This is because IoT devices typically

only record the environment in the order of seconds. Because of this, the polling can

be done in the order of milliseconds and still be accurate. The event-based technique

would require altering the source-code of JavaScript.

To prevent synchronization collisions, a timestamp is added to every state-change.

This approach assumes in its current form that all clocks are synchronized over the

devices. Due to clock drift [31], the clocks of the different devices will differ after

some amount of time. There are fortunately a number of ways to synchronize clocks

in distributed systems [32, 33]. It is also possible to create a dedicated time server

to synchronize across all devices. This time server first fetches the time of all devices

in the network, averages these times and reports back to all devices how much they

should alternate their time. This is referred as the Berkeley algorithm for clock

synchronization and has proven itself useful and efficient [34].

Chapter 5 depicted the time to clone and the amount of synchronization messages

between certain numbers of synchronized devices in tables 5.3 and 5.4. The time

it took to clone an application without any resources was on average 0.494 seconds.

This is about 0.2 seconds more than the time it takes to migrate or fork. This is

because the application has to request a syncID from the RR. The same amount of

extra time can be found when resources are included. This is because cloning and mi-

gration initializations have a lot of shared code. When 2 devices were synchronized,

6.4. Alternative method for cloning 40

21 synchronization messages were measured in a time span of 10 seconds. This is 1

more synchronization message more than expected. The target device when hosting

a new cloned application first sets its new applications state to completely empty,

which is then immediately changed by the initialization code of the application.

This results in an extra synchronization message per cloned application. When 3

devices were synchronized only 30 synchronization messages were measured, which

is 2 less than expected. This can be caused by a lag in the communication channel.

The amount of synchronization messages is linear with the amount of synchronized

devices.

6.4 Alternative method for cloning

The current method for synchronizing cloned applications uses a syncID to deter-

mine which application is synchronized with which. An alternative method for

synchronizing could save all synchronized applications in the application’s storage.

This would require extra storage but fewer connections would be necessary and no

external server would need to be present.

A challenge in this approach is to keep all applications updated with what they

need to be synchronized with. When a device running a synchronized application is

offline for a short amount of time and then a new application gets synchronized, the

application that was offline would not know of this new application. These issues

have already been solved by decentralized storage systems [35].

The major advantage of using this approach over the implemented synchronization

approach is that no external server is needed, thus no single-point of failure is present

in the system. A minor disadvantage of using this approach is that more storage

is needed on the IoT devices. This is becoming more irrelevant because the cost

associated with SSD storage has been plummeting every year [36]. The storage

needed to save data about IoT devices is also tiny. Assuming that every device

takes up 100 bytes of memory, 1000 synchronized devices would only take up 100kB

of extra storage.

6.5 UI in liquid software

Future work in implementing liquid software in the IoT framework could be the

including of UI adaptation in the implemented liquid functionalities. Right now,

the migration, forking and cloning do not consider UI and only operate on the

6.5. UI in liquid software 41

scripting level. Both LfD and LfP consider a different approach to include the UI

and adapt it to different devices.

LfD is made for shadow DOM-trees and can thus include libraries like Bootstrap

that use CSS-class to make the UI responsive [37]. This also exists for the Polymer

project, but to a lesser extent [38]. The choice of technology for the IoT UI is thus

an arbitrary one, as long that the technology is sufficiently mature.

What does matter is the way that the UI gets transferred to the new device. One

way is to use to subtract the original UI from the current UI to get difference between

the UIs or the delta. This is the way LfD works and it does this by the use of virtual

DOM-trees. This delta can then be added up to the original UI in the new device

to replicate the UI from the source device. Another way is to set components of the

UI to liquid and then always send these elements to the new device. This approach

is used by LfP. Another way is to send the entire UI to the new device, this would

minimize complexity but would increase bandwidth.

42

7. CONCLUSION

IoT devices have grown in power over the years and will continue to follow this

trend. IoT devices will soon be able to host applications. To mass-deploy and

manage these IoT-applications, TUT has developed a IoT-framework. Besides this

IoT framework, liquid software is on the rise caused by the increasing number of

devices per capita. Liquid software states that applications, state and data should

not be bound to one device, but should flow between all devices available to the

user. There are four main use cases regarding liquid software: migration, forking,

cloning and forwarding.

The goal of this Master’s thesis was to combine the TUT developed IoT-framework

with three of the liquid use cases (migration, forking and cloning). This means that

applications hosted on the IoT-devices in the framework should be able to migrate

and fork, as well as synchronize their data when cloned.

To migrate and fork applications, the current state of the data is polled and saved to

a file. This file is then packed together with the application into a tarball that then

gets sent to the target device(s). When a migrate happens, the current application

is deleted from the source device. This does not happen when forking. Cloning

includes forking an application and keeping both the source and target application

synchronized.

To synchronize applications, the state of the application that needs to be synchro-

nized is polled on a regular interval. When the polling detects a change in state,

it will send this change to the target application. This can be done in a P2P or

master-slave fashion. The synchronization can result in synchronization collisions

where two applications end up with different states. To solve this, timestamps were

added to the synchronization updates.

To test the liquid functionalities of the IoT framework, a setup was made consisting

of four Raspberry Pi 3 Model B’s, the RR and IDE running on a virtual machine all

contained in a LAN. The RR was connected to an external database. The migra-

tion, forking and cloning of an application were all much faster without resources

7. Conclusion 43

attached in the source application. When a resources folder is present in the source

application, the size of it plays a marginal role. Cloning takes 0.2 seconds longer

than migration or forking due to the extra part of receiving a syncID from the RR.

The amount of synchronization messages between cloned applications was as much

as expected.

The combination of liquid software and the IoT framework resulted in a new tab

being created in the IDE. In this tab, N applications could be selected on the left-

hand side to do a liquid transfer on M devices selected on the right-hand side of the

tab. Three buttons were added for the three liquid functionalities implemented in

the framework.

In future work, computational load can be taken off the IoT devices when migrating

or forking by using alternative methods. One way is to pack the application at the

IDE or RR for migrations and forks with a state file received from the source device.

This lowers the computational power needed on the source device but requires all

applications to be on the IDE or RR. For cloning, an alternative method can be

used as well. All applications could save a list with all other applications it is

synchronized with. This would remove the single point of failure that is now present

when cloning and would require less connections. It would however require more

storage, but this is a minor issue as SSD storage gets more compact and cheaper

over the years.

44

BIBLIOGRAPHY

[1] X. Feng, Y. Laurence, W. Lizhe, and V. Alexey, “Internet of things,” Interna-

tional Journal of Communication Systems, vol. 25, pp. 1101–1102, 2012.

[2] Statista. (2017) Internet of things (iot) connected devices installed base

worldwide from 2015 to 2025 (in billions). [Online]. Available: https://www.

statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[3] Forbes. (2017) 2017 roundup of internet of things forecasts. [On-

line]. Available: https://www.forbes.com/sites/louiscolumbus/2017/12/10/

2017-roundup-of-internet-of-things-forecasts/#5a5bc4fd1480

[4] F. Ahmadighohandizi and K. Systä, “Application development and deployment

for iot devices,” Advances in Service-Oriented and Cloud Computing, pp. 74–85,

2018.

[5] A. Taivalsaari, T. Mikkonen, and K. Syst, “Liquid software manifesto: The era

of multiple device ownership and its implications for software architecture,”

2014 IEEE 38th Annual Computer Software and Applications Conference, pp.

338–343, July 2014.

[6] J. Hartman, U. Manber, L. L. Peterson, and T. Proebsting, “Liquid software:

A new paradigm for networked systems,” Tucson, AZ, USA, Tech. Rep., 1996.

[7] A. Gallidabino, C. Pautasso, T. Mikkonen, K. Systä, J.-P. Voutilainen, and

A. Taivalsaari, “Architecting liquid software,” Journal of Web Engineering,

vol. 16, pp. 433–470, 2017.

[8] Apple. (2018) Use continuity to connect your mac, iphone, ipad, ipod touch, and

apple watch. [Online]. Available: https://support.apple.com/en-us/HT204681

[9] Google. (2018) Create persuasive documents. [Online]. Available: https:

//www.google.com/intl/en/docs/about/

[10] S. Thangavel and K. Systä, “Liquid transfer of user identity,” Current Trends

in Web Engineering, pp. 92–107, 2018.

[11] Z. P. A, “Accuracy of iphone locations: A comparison of assisted gps, wifi and

cellular positioning,” Transactions in GIS, vol. 13, no. s1, pp. 5–25. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9671.2009.

01152.x

BIBLIOGRAPHY 45

[12] w3schools. (2017) Javascript html dom. [Online]. Available: https:

//www.w3schools.com/js/js htmldom.asp

[13] J.-P. Voutilainen, T. Mikkonen, and K. Systä, “Synchronizing application state

using virtual dom trees,” Current Trends in Web Engineering, pp. 142–154,

2016.

[14] T. Mikkonen, K. Systä, and C. Pautasso, “Towards liquid web applications,”

Engineering the Web in the Big Data Era, pp. 134–143, 2015.

[15] A. Gallidabino and C. Pautasso, “Maturity model for liquid web architectures,”

vol. 10360, pp. 206–224, June 2017.

[16] Oracle. (2017) Mysql. [Online]. Available: https://www.mysql.com/

[17] MongoDB. (2017) Nosql databases explained. [Online]. Available: https:

//www.mongodb.com/nosql-explained

[18] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Syst, J. P. Vouti-

lainen, and A. Taivalsaari, “On the architecture of liquid software: Technology

alternatives and design space,” 2016 13th Working IEEE/IFIP Conference on

Software Architecture (WICSA), pp. 122–127, April 2016.

[19] Webcomponents.org. (2017) Introduction. [Online]. Available: https://www.

webcomponents.org/introduction

[20] F. Ahmadighohandizi and K. Systä, “Application development and deployment

for iot devices,” Advances in Service-Oriented and Cloud Computing, pp. 74–85,

2018.

[21] K. Systä and F. Ahmadighohandizi, “Multi-device application development and

management through resource discovery for iot,” 2017.

[22] NodeJS. (2018) Nodejs. [Online]. Available: https://nodejs.org/en/

[23] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE Soft-

ware, vol. 32, no. 2, pp. 50–54, Mar 2015.

[24] T. Conversations. (2014, January) Software development

models: Iterative and incremental development. [On-

line]. Available: https://technologyconversations.com/2014/01/21/

software-development-models-iterative-and-incremental-development/

[25] P. Offermann, S. Blom, M. Schönherr, and U. Bub, “Artifact types in informa-

tion systems design science – a literature review,” R. Winter, J. L. Zhao, and

S. Aier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 77–92.

BIBLIOGRAPHY 46

[26] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in

information systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2017212.2017217

[27] npm. (2017, December) tar-pack. [Online]. Available: https://www.npmjs.

com/package/tar-pack

[28] Lodash. (2018) Lodash: A modern javascript utility library delivering

modularity, performance & extras. [Online]. Available: https://lodash.com/

[29] C.-C. Lai and C.-M. Liu, “Approaches for data synchronization on mobile peer-

to-peer networks,” Advances in Intelligent Systems and Applications - Volume

2, pp. 599–608, 2013.

[30] R. Balani, “Energy consumption analysis for bluetooth, wifi and cellular net-

works,” University of California at Los Angeles, 2007.

[31] R. Tjoa, K. L. Chee, P. K. Sivaprasad, S. V. Rao, and J. G. Lim, “Clock drift

reduction for relative time slot tdma-based sensor networks,” in 2004 IEEE

15th International Symposium on Personal, Indoor and Mobile Radio Commu-

nications (IEEE Cat. No.04TH8754), vol. 2, Sept 2004, pp. 1042–1047 Vol.2.

[32] H. Kopetz andW. Ochsenreiter, “Clock synchronization in distributed real-time

systems,” IEEE Transactions on Computers, vol. C-36, no. 8, pp. 933–940, Aug

1987.

[33] J. van Greunen and J. Rabaey, “Lightweight time synchronization

for sensor networks,” in Proceedings of the 2Nd ACM International

Conference on Wireless Sensor Networks and Applications, ser. WSNA

’03. New York, NY, USA: ACM, 2003, pp. 11–19. [Online]. Available:

http://doi.acm.org/10.1145/941350.941353

[34] R. Gusella and S. Zatti, “The accuracy of the clock synchronization achieved by

tempo in berkeley unix 4.3bsd,” IEEE Transactions on Software Engineering,

vol. 15, no. 7, pp. 847–853, Jul 1989.

[35] A. Lakshman and P. Malik, “Cassandra - a decentralized structured storage

system,” April 2010.

[36] Forbes. (2016) The costs of storage. [Online]. Available: https://www.forbes.

com/sites/tomcoughlin/2016/07/24/the-costs-of-storage/#64d9ccb83239

[37] Bootstrap. (2018) Bootstrap. [Online]. Available: https://getbootstrap.com/

Bibliography 47

[38] PolymerElements. (2018) app-layout. [Online]. Available: https://github.com/

PolymerElements/app-layout

48

A. TEST MEASUREMENTS

Migrate or Fork Clone

Resources (Mb) Tijd (s) #Target Devices Resources (Mb) Tijd (s) #Target Devices
0 0,284 1 0 0,492 1
0 0,283 1 0 0,512 1
0 0,372 1 0 0,476 1
0 0,296 1 0 0,506 1
0 0,329 1 0 0,485 1
1,9 2,251 1 1,9 1,68 1
1,9 1,286 1 1,9 2,017 1
1,9 1,521 1 1,9 1,543 1
1,9 1,85 1 1,9 2,266 1
1,9 1,079 1 1,9 1,499 1
3,6 1,588 1 3,6 1,681 1
3,6 1,83 1 3,6 6,302 1
3,6 1,489 1 3,6 1,897 1
3,6 1,509 1 3,6 1,689 1
3,6 4,693 1 3,6 1,945 1
0 0,304 2
0 0,271 2
0 0,296 2
0 0,315 2
0 0,346 2
0 0,323 3
0 0,337 3
0 0,283 3
0 0,29 3
0 0,348 3

Table A.1 Raw test measurements.

	Introduction
	Background and terms
	Literature Study
	Liquid software
	Key Requirements
	Maturity Levels and Layering
	Logic deployment (Controller)
	State storage (Model)
	Communication channel (View)
	Maturity levels

	Architecture
	Design space
	Comparison of the liquid software programming frameworks
	Overview
	Topology and Code Deployment
	Granularity
	Liquid User Experience
	State and data
	Summary

	IoT Application Framework
	Implementing distributed systems
	LiquidIoT
	The application framework
	The runtime environment
	Resource registry
	Application deployment flow
	Discovery Mechanism

	Continuous Delivery
	Conclusion

	Method
	Design science research
	Migration and Forking
	Algorithm of migration and forking

	Cloning
	Transfer of applications
	Peer-to-peer synchronization of the state
	Master-slave synchronization of the state
	Synchronization collisions

	Technical changes
	REST APIs
	Links to code

	Results
	Test setup
	Migration and forking test results
	Cloning test results

	Discussion
	Migration and forking
	Alternative method for migration or forking
	Cloning
	Alternative method for cloning
	UI in liquid software

	Conclusion
	Bibliography
	Test measurements

