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Mobile agent technology is a paradigm where a program can move autonomously in the
different executable environment of a network. The program is the mobile agent, that
can move its code, suspend and resume the execution in the new environment.The use
of a mobile agent provides numerous benefits over the traditional paradigm like client-
server. It reduces the network traffic, connection time and bandwidth consumption by the
moving agent between the client and server. However, the security issue of the mobile
agent makes difficult to acquire the benefits.

The HTML5-based mobile agent framework was developed in Tampere University
of Technology (TUT). The core of this thesis is to secure the mobile agent framework.
The security threats to the mobile agent and agent platform are classified to design and
implement a secure framework. These threats are the agent attacking platform, platform
attacking agent, agent attacking agent and agent system attacked by external entities.

This thesis focuses first two threats and provides a solution to protect mobile agent
framework against them. The solution uses a signing method that involves salting and
hashing of source address to generate signature. Furthermore, the RSA encryption using
the static private key of an agent origin server to create a signature. The signature moves
along with the agent and it is used to verify the agent source address using a static public
key. This verification ensures that particular agent comes from the legitimate source and
it is trusted as a non-malicious in the current platform. This solution overcomes the secu-
rity issues like unauthorized access to the data, changing the agent and platform code, the
misuse of others identity, eavesdropping and altering the important information, the ex-
cessive use of the resources etc. Also, the implementation helps to minimize the problems
in agent mobility, agent and platform communication and identification of agents.
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1. INTRODUCTION

The HTML5-based mobile agent framework [1; 2] was developed in TUT. The frame-
work transfers the application and its state i.e. inner data of an application, from the
browser to server, server to the browser and server to another server [1]. The applica-
tion in the framework is the mobile agent, that moves autonomously in various host [4].
The state of the mobile agent can be preserve, transport to the new host and continue its
execution in new host [3].

It is believed that the mobile agent paradigm is a promising technology of the near
future. It has a wide range of applications in electronic commerce, personal assistance,
distributed information search and retrieval, monitoring, network management, real-time
control, building middleware services, military command and control, parallel processing
and the provider of important applications for the future mobile communication systems
[13]. However, its mobility characteristics, as well as its ability to reside in different hosts,
makes more vulnerable. So it requires some security services to preserve its originality.
The security services should preserve an identification and mobility of an agent. It should
guarantee the authenticity of an agent and platform in the framework. [5]. The purpose of
this thesis is to design and implement a security framework. A proper security framework
includes secured agent mobility, identification, and authentication of an agent [1].

The design and implementation described in this thesis use a signing method that cre-
ates a signature using the source address of an agent. In the framework, the agent is always
downloaded from the agent origin server that is pointed by the source address. When an
agent migrates, the source address is delivered along with the agent that is used to fetch
the agent content. So, it is important to prevent the unnecessary modification of the source
address. The signing method creates a signature to prevent the source address from the
modification. The agent carries the signature and verifies in each host it moves.The proper
verification will confirm that there is no modification in the source address of an agent.
Furthermore, the receiver of an agent will ensure that the current agent comes from the
legitimate origin server.

On the basis of an agent and platform i.e. an environment where an agent originates
and executes, the security threats of the mobile agent technology are categorized into 4
types. They are the agent attacking platform, platform attacking agent, agent attacking
agent and agent system attacked by other entities. However, the security implementation
in the thesis gives solution for first two threats. In the solution, the security implementa-
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tion works with the life cycle i.e., the agent stage from the origin to the exit of the mobile
agent and its source address is authenticated in every host it moves. The authenticated
source address guarantees that the particular agent comes from the trusted source. Also,
an agent can be identified by its origin server. Furthermore, Chapter 2 presents the the-
oretical background of mobile agent technology. Chapter 3 presents the overview of the
HTML5-based mobile agent framework. Chapter 4 categorizes the threats on the mobile
agent component i.e., the agent and platform. It also provides the security measures for
securing the agent and platform. Chapter 5 describes the security framework and its im-
plementation method for this thesis. Chapter 6 evaluates the security implementation and
it also presents drawback and future work for security implementation. Finally, Chapter
7 presents the conclusion of this thesis.
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2. BACKGROUND

This chapter focuses on describing the basic concepts of agent, mobile agent, its advan-
tages, their types and multi-agent system.

2.1 Introduction

The agent technology was originated from the Artificial intelligence(AI) and distributed
computing research. The purpose of AI research is to use intelligent computing enti-
ties i.e. learning and adjust itself in an environment. On the other hand, the distributed
computing will help to execute a task by cooperating several distributed agents on inter-
connected computers [7].

The term "agent" has different uses in different domains. So, there is no any universal
definition that can be accepted everywhere. The dictionary meaning says that an agent is
a computing entity that performs some tasks on the behalf of somebody or something [6].
For the context of this thesis, an agent is a computer program that is programmed to do
specific work on behalf of others [6]. According to Bradshaw [8], an agent is continuous
and autonomous in nature. An agent can move and function continuously in an environ-
ment over a long period of time and it is able to learn from its experience. Without any
guidance, an agent is capable of doing its activities in a flexible and intelligent manner in
a changing environment. Also, an agent can cooperate with other agents and processes
in an environment [8]. In addition, the communication among the agents makes them an
excellent candidate for distributed computing and software development. Thus, an agent
can be used for the software development, such agent is called "software agent" [10]. It
has general properties, they are as follows [11; 12]:

• Reactive: The ability to perceive the current context and changes of an environment
and act in a timely fashion to the changes.

• Autonomous: An agent can control its action and internal state without any other
support.

• Goal-driven: An agent has goal-directed behavior.

• Temporally continuous: An agent runs continuously deciding when to perform
some activities.
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There are some additional properties that help to distinguish an agent from the ordi-
nary program. Such distinctive properties are communicative, social, mobility and learn-
ing. The communicative property of an agent helps to interact with other agents in the
network. The mobility property refers that an agent can be moved from one environment
to another to get enough resources for execution. Similarly, the learning property refers
to the ability of an agent to learn from the past experience in an environment [12]. Fur-
thermore, the additional property "mobility" classifies software agents into two types :
stationary and mobile agents. The stationary agents are not able to move from the origi-
nated environment. They work and execute on their originated environment. On the other
hand, the mobile agents can move between the various hosts in the network. This ability
to move helps an agent to transport their state and code with it to another environment
and resumes the execution. Here, the term "state" refers to the attribute properties that
determine what and when to resume execution in a new environment. It is also called the
execution state . Similarly the term "code" is object-oriented context, class code that is
necessary for the agent to execute [12].

2.2 Components of mobile agent technology

Mobile agent technology consists of two components: mobile agent and mobile agent
platform. This section describes the mobile agent and mobile agent platform.

2.2.1 Mobile agent

From Section 2.1, the mobile agent is defined as the self-contained and identifiable com-
puter programs that can move over the networks and act on behalf of the user or any other
entity. An agent can suspend execution in a current environment, transport its code and
state to another environment and resume execution in that new environment. It is capa-
ble of detecting and adapting dynamically to changes in an environment [7]. The mobile
agent is also called special type of mobile code [37]. The mobile code is such code that
is sourced from remote, possibly untrusted systems and it is executed in the local system
[24].

2.2.2 Mobile agent platform

A platform is a basic environment where compatible computer system and application
programs can be developed and run, as a specific computer processor or network con-
nection(hardware platform) or an operating system, database etc. The mobile agent is
created and executed in a mobile agent platform. The platform where an agent is created
is called "Home Platform" [17]. From the security point of view, it is the most trusted
environment for that agent. The agent user defines an agent name and starts the agent
from the home platform. An agent has its owner information, that is useful to prove itself
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trustworthy to the other platforms. The owner information also helps an agent to return
its home usually, the agent returns its home after the completion of the task [17; 37].
Furthermore, the platform controls the execution of the agents and provides other basic
function such as agent communication, agent control, security, and migration [36]. Some
of the existing examples of the mobile agent platforms are, Telescript, Concordia, Java
Agent Development Framework (JADF), Voyager, Tromso And Cornell Moving Agents
(TACOMA), Grasshopper, XML-based mobile agents etc.

Figure 2.1: Mobile agent technology [17].

2.3 Why mobile agent?

The major objectives of the mobile agent are to reduce the network traffic and asyn-
chronous interaction. The use of mobile agents will reduce the connection time and band-
width consumption for processing the data between the server and client. This is possible
only by moving the agents between the hosts. Similarly, the mobile agent also supports
asynchronous computation. The agent can operate in an environment, without the contin-
uous connection of the platform that has started. The mobile agent technology has been
proposed as an alternative to a client-server paradigm. It is envisioned as a promising
paradigm to deal with dynamic, heterogeneous and changing environments, that are suit-
able for modern Internet applications. The figure below shows the difference between the
client- server and mobile agent-based paradigm [7].
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Figure 2.2: Client-server vs mobile agent based technology [7].

Other reasons are as follow [7; 12; 29]:

a. The mobile agent facilitates the system with high quality, high performance, eco-
nomic applications. It uses all resources as a local resource, rather than accessing it
remotely in other traditional paradigms.

b. It enables the use of portable, low-cost, personal communications devices. It con-
tains a lightweight server that manages the movement of agents in the networks.

c. Efficient and economical uses of low bandwidth, high latency, error-prone commu-
nication channels. It has a mechanism of storing and forwarding of agents in the
networks along with advanced queuing and persistent checkpoints.

d. Adapt and react autonomously in the changed environment.

e. The heterogeneous nature of the mobile agent will always have flexibility on het-
erogeneous the distributed system.

f. Mobile agents can be used in different applications such as diagnostic, e-commerce,
entertainment, broadcasting, intrusion detection, home health care and many more.

2.4 Topology of agent

This section attempts to classify to study a topology of agents. The topology is the study of
certain properties that do not change as geometric figure changes. Nwana [34] proposes
four dimensions of agent topology [34; 35]:

• Mobility: As discussed in Section 2.1, one of the additional properties of the soft-
ware agent is mobility. Based on the agent mobility in a network classifies them
into two: stationary and mobile agent.
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• Behaviour: On the basis of its behaviour, the agent can be classified into the delib-
erative agent and reactive agent. The deliberative agent is derived from the delib-
erative thinking paradigm. It possesses an internal symbolic, reasoning model and
the engagement in planning and negotiation for the coordination with other agents.
On the other hand, reactive agent identifies suitable environment, its changes and
responds according to the current status of an environment.

• Ideal and primary attributes: This dimension includes three attributes: auton-
omy, cooperation, and learning. Autonomy refers that agents can operate without
any guidance. An agent consists of individual internal states and goals that are
maintained to achieve on the behalf of its users. The key element of autonomy is
agent pro-activeness, i.e. ability to take an initiative. Similarly in a multi agent
system, cooperation between multiple agents is a prerequisite. The agent possesses
social ability to interact with other agents using communication language that helps
in coordination as well. An agent can be smart with learning from their action and
other from the environment. This ability of learning makes them intelligent agents.
Using these attributes we can derive four agents in the topology: Collaborative
agents, collaborative learning agents, interface agents and smart agents.

Figure 2.3: Nawana’s Software agent topology [34].
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• Role: With the role, information/ Internet agents are derived. These agents are
the tool for managing the explosive growth of information. There are various roles
to manage information such as managing, manipulating or collecting information
from distributed sources. This agent will exploit Internet search engines and man-
ages a large amount of information on the Internet.

2.5 Multiagent system (M.A.S.)

Multiagent system (M.A.S.) is based on agent technology. MAS consist of a computa-
tional system where multiple agents interact for their own objectives and good for overall
systems. The multi agent system consists of good cooperation, co-ordination, and negoti-
ation among abilities that helps in the completion of agent objectives. Cooperation refers
to good communication among the agents. Coordination is about organizing various ac-
tions of the agent to achieve goals. Similarly, negotiation is about satisfying all parties of
a system [9; 28].

A multi agent system is comprised of multiple autonomous agents and they have char-
acter like: [5]:

a. An agent depends on the system, sometimes they had to depend on other agents as
well. So the agent cannot solve problems without a support of others.

b. No global controlling system and decentralized data, a multi agent system is envi-
sioned as the system that communicate over the Internet, means anybody is able to
connect with any platform and agents. So, MAS can be called a system with no
global controlling system. Similarly, data in such systems are highly decentralized.
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3. HTML5-BASED MOBILE AGENT FRAMEWORK

This chapter describes the idea behind HTML5 based mobile agent framework, architec-
tural overview and execution. This chapter is mostly based on the given references of the
thesis and papers [1; 2; 26; 38].

3.1 Introduction

The latest version of HTML family, HTML5 extends the applicability of the technology
towards the client(-side) applications. It allows more application to be run in browsers and
that application can be deployed over networks using the standard web technologies. The
HTML5 mobile agent framework is based on HTML5 technologies. Here, the HTML5
agent runs in two modes. One with a user-interface inside browsers and other in a headless
mode i.e., without a user interface that runs on an agent server. When the state of an
agent is changed between the server and the browser, its state is saved. With the help
of saved state of the particular agent will be able to continue its execution in a different
environment, where it has been stopped before [1; 38].

The HTML5-based mobile agent framework uses a mobile agent paradigm to transfer
an agent from the server to browser and vice-versa. It also uses the code-on-demand
paradigm i.e., a paradigm where a code is downloaded to the client from different origin
for execution, to get the static file of an application when an agent travels in the network.
The browser represents the client side and agent server represents the server side of a
mobile agent framework. An agent application is in the running state and continues its
execution when it is on the server. Later on, the running application can be transferred to
a browser. The HTML5 agent consists of two parts [1; 26]:

a. Implementation of the user interface is done with HTML5, CSS and image files.

b. JavaScript is used to implement the executable content and dynamic aspects of a
user interface.

The reason for choosing HTML5 for implementation is that WEB is everywhere and
the platform will be widely available. Also, the HTML5 controls user and makes an agent
more user-oriented. The server side execution is done with Node.js. Thus both, the client
and server are implemented with one common programming language. i.e. JavaScript [1].
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3.2 Architecture of HTML5-based mobile agent framework

Figure 3.1: Basic architecture of HTML5-based mobile agent framework [1].

Above Figure 3.1 presents the basic architecture of HTML5- based mobile agent frame-
work. The architecture is subdivided into two parts: application and framework. On the
basis of the agent, it consists of two parts: a generic agent part and an application agent
part. The generic interface provided by a generic agent that is used to access the server
agent. The generic class is the base class for each agent applications and provides generic
parts of an agent to all agent applications. On the other hand, the application agent part
accesses the browser agent. It is the real implementation of this application which moves
between browser and server [1].

3.2.1 Generic agent

It is the base class for agent application that provides generic services to agents and it is
not instantiated. The generic agent is responsible for preserving the state of an agent. The
basic structure of the generic agent is shown below:
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function Agent(src, html) {

var that = {};

that.auri = src;

that.huri = html;

that.method1 = function(args) {.....}

that.method2 = function(args) {.....}

return that;

}

Listing 3.1: Basic structure of generic agent [1]

Where, that is the variable where all the functions and variables also the application
agent has access should be saved. The parameters src and html are the initialization
parameter that are URLs to JavaScript and HTML file respectively. auri gives JavaScript
and huri gives HTML based UI code file [1].

3.2.2 Application agent

It is the concrete implementation of the application that moves in between the browser
and the server. An example of inheritance from the generic agent is shown below:

function MyAgent (src , html ) {

var that = new Agent (src , html );

/* new and overridden methods */

return that ;

}

Listing 3.2: Inheriting from generic agent [1]

Where, that is a variable responsible for saving agent [1].

3.3 Execution of HTML5 based mobile agent

The agent life-cycle starts with downloading HTML agent from the origin server. The
life-cycle refers to the various agent stage from the origin to exit. Similar to today’s web
applications, the HTML file of the agent includes references to Cascading Style Sheets
(CSS), to other HTML files, images and other resources and JavaScript. The protocols are
Web-friendly and rely on standard HTTP. Both origin server and agent server are HTTP
servers that can be accessed with HTTP request i.e., GET and POST. GET is used to fetch
agents to execute from the server while POST is used to push the agent to the server. This
mechanism shows that agent can move from one server to another [2]. Some functions
are discussed below, that are used in the framework.

• /list: This function list the active agents as an HTML file, which can be shown in
browsers.
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• /upload: This function sends URLs to agent code and the user interface together
with the serialized state. The agent server starts the agent after receiving URLs.

• /<id>: This function pause the agents in server, serialize the state and send it to the
requesting browsers.

The agents are serialized when they are about to move in between servers and browsers.
When an agent is about to move from one to another location, its state is serialized into
JavaScript Object Notation(JSON) based on the state variable. The serialization contains
URLs for agent functionality i.e., the JavaScript file and HTML based UI. The URLs are
denoted by auri and huri. Also, it consists of unique id for identification and other sets of
variables. An example of serialized agent content is shown below [2]:

{"auri":"http://localhost:8890/ClockExample.js",

"huri":"http://localhost:8890/ClockExample.html",

"id":"526636",

"memory": {

"high":"0.053",

"low":"0.0214",

"count":"3",

"history":[0.0253,0.0234,0.0214]

}

}

Listing 3.3: An example of serialized agent [2]

The code is often downloaded from the origin server pointed by auri and huri. The
auri gives JavaScript code and huri gives HTML based UI code of the serialized agent.
When the agent server receives a serialized agent description i.e. JSON file, it fetches
the JavaScript code from auri. Additionally, an agent downloads other JavaScript files
for agent implementation that helps in initializing the agent and starts the execution of the
agent. When a browser requests the agent from the agent server, it responds to the browser
by sending the content of HTML file identified by the huri field of agent description. The
agent server injects JavaScript to HTML file so that agent can be resumed in the local
environment. [2]. The life cycle of an HTML5 agent in the framework is shown below:
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Figure 3.2: Life-cycle of an HTML5 agent in framework [2].
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4. SECURITY IN MOBILE AGENT TECHNOLOGY

This chapter focuses on describing the security threats in mobile agent technology. It also
provides the survey of the techniques that can solve the problems of threats.

4.1 Introduction

As discussed above in Chapter 2, mobile agent technology is a useful approach for the
distributed systems. It also has advantages over existing the client-server paradigm and it
can be used in numerous applications on the Internet. However, there are various technical
challenges in the use of mobile agents. Among of them the security is the primary issue
in mobile agent technology. From the above chapters, we came to know that an agent can
move autonomously and widely distributed in the network to accomplish the various task
on the behalf of users. The autonomous characteristics of an agent will expose and make
them vulnerable to various attack in the network [13].

There are various attacks in the mobile agent technology some are as follows: [13]:

• Masquerading: This attack tries to misuse the identity of others. The malicious
mobile agent or platform claims the identity of others in order to get the access of
other component resources.

• Denial of services (DOS): The malicious platform ignores the mobile agents re-
questing the services and resources from the platform. It terminates the execution
of an agent without any notification or assign it continuously so, that it will never
reach the goal. Similarly, the malicious agent consumes enormous amount of re-
sources from the platform or deletes the important file. The other agent will be
scarce of the resource, thus it causes harm to the platform and other mobile agents.

• Annoyance attacks: This opens many windows on the platform or tries to make
the computer beep repeatedly.

• Eavesdropping: The malicious platform monitors the behavior of the mobile agent
to get the important information from the mobile agent. Monitoring can be used for
identifying communication channels or can be other requests to the mobile agent.

• Alteration: The modification of mobile agent information by insertion, deletion or
altering the agent code, data and execution state. The modification of code or the
execution state causes malfunctioning in platforms and agents.
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The characteristics of the secure mobile agent paradigm are as follows [1][4]:

• Confidentiality: The information of a mobile agent and stored in the platform
should only be accessible for the authorized parties.

• Integrity: The protection of mobile agent code, the state and the data from be-
ing modified.Detecting and preventing the unauthorized modification will help to
achieve this characteristic.

• Availability: The mobile agent has huge demands of services and data from the
platform. If requirements are not met, then platform needs to notify. Also, the
platform should afford a certain level of fault tolerance and fault recovery from
unpredicted and hardware failure.

• Accountability: The audit logs are maintained to keep the tracks of mobile agent
actions. The audit log will help to recover important files in a situation of system
failure.

• Anonymity: The actions of the mobile agent in audit logs should be private and the
platform needs to balance the need for audit logs.

• Authentication: The process of proving one’s identity.

• Non-repudiation: The mechanism to prove that sender has really sent this mes-
sage. The sender will not be able to deny about the message that it has sent.

Furthermore, a secure mobile agent system develops a trusted environment. Unfortu-
nately, there is no such explicit definition of trust. According to Oxford dictionary, It is a
belief that somebody or something is good, sincere, honest etc. and will not try to harm
or trick you. The security mechanism should maintain the trust among the entities of the
mobile agent paradigm. The trusted component of the mobile agent does not harm other
component and networks. For example, a home platform is always trusted environment
for an agent [5; 31]. The trust in a component depends upon the reputation. In other
words creating trust between entities is possible with its history and knowledge of each
other. In mobile agent technology, the sources of components can be either trusted or un-
trusted. In trusted scenarios, it is assumed that there will not be the situation of threat to
any mobile agent entities. The threat and other security issue are only from the untrusted
sources. So, to trust and use the resources of untrusted sources, they are authenticated.
Authentication is necessary to make sure that the resource of untrusted sources will not
have any negative effect on the mobile agent system [5; 31].
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4.2 Security threats in mobile agent technology

As discussed above in Chapter 2, mobile agent technology has two components: an agent
and agent platform. The first component is responsible for the code and state information.
The latter component is responsible for providing the computational environment for the
agents. Based on the agent and platform, the security threats are categorized into four: the
agent attacking platform threat, the platform attacking agent threat, the malicious agents
attacking agent threat, the agent system attacked by other entities [14].

4.2.1 Agent attacking platform/host threat

The agent attacking the platform refers to the threat of launching attack against the plat-
form by exploiting its weakness. The malicious agent can have some ways to attack on
the platform to get unauthorized access to information, masquerading, the denial of ser-
vice attack etc. Unauthorized access is a threat that occurs in the platform due to lack
of adequate access control mechanism. The unauthorized agent in the platform claims
themselves to be a trusted agent to gain the access to services and the resources of the
platform. Behaving as trusted agent situation is called masquerading. A masquerading
agent destroys the trust and reputation which was developed by the legal agents in the
community of the platform and networks. A masquerading agent gains access, informa-
tion, confidential data, instruction and code related to the platform. With the access level
these agents tries to tamper and render the resources by modifying information or creates
the situation of Denial of services. The agent in Denial of service (DOS) attack, consumes
excessive amount of resources and services, and denying to share the resources. The con-
stant consumption of resources and the services, also blocking other agent by overloading
will creates deadlock [14; 15; 17].

In addition, there can be the complex form of attack such as the event triggered attacks
or logic bomb. When code, concealed within a peaceful mobile agent which is triggered
by specific events such as the time location or arrival of specific person example the trojan
horse program [14; 19]. Furthermore, in some self modifiable programming language like
JavaScript, the code modifies itself. When, the agent code modifies itself it is impossible
to detect and know what the agent will be doing when it is executed in the platform. This
self-modifiable characteristics can be very harmful for the platform in the mobile agent
paradigm [2].

4.2.2 Platform/host attacking agent threat

The platform attacking agents refers to the threats of the malicious platform to agents.
The threats can be masquerading, denial of services, eavesdropping and alteration. An
agent consists of sensitive information such as collected data, information log that agent
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has visited. So a malicious platform can easily capture and attack an agent by extracting
information, corrupting and modification of information, code and information log. It can
also deny the requested services or re-initialize or terminate completely. Similarly eaves-
dropping and spying threats causes the interception, finding the secret security channels.
These effects on the agent behavior and accuracy of computation so, the outcome of an
agent can be wrong. The malicious platform may behave as a legitimate platform and try
to convince the legal agent. Similarly, a platform may not accept the request from the
agent and does not provide necessary resources which will create a situation of denial of
service attack [14; 15; 17].

4.2.3 Malicious agent attacking other agent threat

The malicious agent attacking the agent refers to the threats of malicious agents that
exploit the weakness of legal agents or launching attack against other agents. The threats
can be masquerading, unauthorized accessing, denial of services, masking, repudiation. It
can also have a threat of false transactions due to eavesdropping or interference with agent
activities. An agent can get information and authorization by serving as an intermediary to
the target agent through masquerading. The problem of the malicious agent attacking the
agent also occurs due to poor access control mechanism in the platform. An unauthorized
agent gets access to the platform and modifies the information about the agent and code
or interfere by using it public methods. Interference refers to the masking of a legitimate
agent with the malicious agent. It also collects the enormous amount of resources and
do not share with others, it leads to the deadlock. Also repeatedly sending messages or
spamming to another agent creates a denial of services attack situation where the receiver
cannot handle the messages. This will lead to the agent crash. Similarly repudiation
threat, where an agent participates in transactions or communication but always claims
that there is no transaction or communication [14; 17].

4.2.4 Agent system attack by other entities

The agent system can be harmed in both outside and inside of the agent framework. The
attack of other entities to the agent system refers to the external entities, including agents
and agent platforms. The threats can be masquerading, denial of services, unauthorized
access, copy and the reply. The entities are capable of intercepting the agent or messages
in transit and modifying the content, mask or replace other contents. Since agent services
offered by the platform and inter platform communication can have a threat of DOS attack.
The request from the remote users, processes and agents that are not legal can get access
in the mobile agent system. Due to the autonomous moving nature of the agent, the third
entities that intercept an agent or agent message can attempt to copy or clone agent and
agent messages [17].
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Figure 4.1: Summary of security in mobile agent

4.3 Security measures in mobile agent technology

Security measures are different actions, devices, techniques, procedures, methods or any
measures that try to prevent the vulnerability of a threat in the mobile agent system. Since,
the various security measures have been applied to protect the entities of mobile agent
systems depending upon the mobile agent paradigm and feasibility. The security measures
in mobile agent systems needs some common set of baseline assumption based on trust
[14].

a. The agent should trust the origin platform and start execution.

b. The agent origin platform/origin server and other agent servers should be equally
trusted, implement security and should not behave malicious.

This thesis focuses on securing the agent and agent platforms :

4.3.1 Securing the agent platform

Securing the agent platform is major issue in the securing mobile agent system. It is
susceptible to attack launched by mobile agents and other various entities. This chapter
presents various the detection and prevention method that tries to maintain security in the
agent platform [13; 14].
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• Sandboxing: It is also called Software-Based Fault Isolation [14]. This method
uses software technique that separate local or trusted code from untrusted or remote
code. Trusted code is executed with full permission and can access the resources.
The untrusted code such as the mobile agent and the downloadable applet will be
executed in a restricted area called “sandbox” [13]. The sandbox applies some
security policy for the execution of remote code. This policy controls the access of
system resources, opening the new network connection and invoke programs on the
current system [13; 14].

Sandboxing mechanism is common in Java interpreter inside Java enabled the web
platform. It contains three security level [13].

a. ClassLoader: It is responsible for converting remote code into data structure
which is added to the local class hierarchy.

b. Verifier: The verifier is responsible for security checking before loading re-
mote code and remote code should valid virtual machine code.

c. Security Manager: The security manager is responsible for checking the re-
mote class and grant access of resources using verification.

Problem

a. Three parts of Java interpreter inside Java enabled the web platform are inter-
related, so the failure of any of them leads to a security violations [13].

b. This method increases the execution time of legal remote code [13].

• Code Signing: Code signing technique involves public key cryptography to en-
sure the integrity of remote code. The public key cryptography uses key pair, the
private and the public key. The private key is kept secret while a public key is
distributed freely. From the pair, one key is for encryption i.e., the process of trans-
forming readable information to unreadable or unintelligible form. Similarly other
key is used to decryption i.e. transforming encrypted information to the original
state [25]. The code signing uses the digital signature that employs the public key
cryptography and hash algorithm. The hash algorithm is responsible for encrypting
the original messages into fixed length hash value. The hash value is also called
the message digest. The hash value is very difficult to recover in the original state.
For example SHA-256. SHA-256 comes in the family of SHA-2 and stands for “
Secure hash algorithm” designed by National security agency (NSA) of the USA
[43]. The digital signature may use the salt because of its randomly generating
property. Salting is a technique in cryptography, that uses randomly generated data
as an additional input in the hash algorithm along with the original message. The
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primary function of this technique is to defend against the “dictionary attack”. It is
attack based on trying all the strings as possible [44; 45].

A digital signature is serves as handwritten signature but more secure than hand-
written. It starts with calculating the hash value of the original message that is in-
tended to send to other parties. Using the public key cryptographic techniques, hash
value is signed with the private key to produce the digital signature. Thus the digital
signature and the original message is send to the intended receiver. On the receiver
side, the digital signature is decrypted to produce hash value with sender’s public
key that has been distributed. Similarly, the hash value of the original message is
also calculated. Finally, both hash values are compared to validate, the message
sent by the intended sender in the network. Only identical hash value is validated.
The working of the digital signature also depicted in the Figure 4.2 [16; 18; 25]:

Figure 4.2: Digital signature and signature verification

The code signing techniques uses the digital signature and the hash algorithm to
confirm the authenticity, originality and integrity of remote code. It also verifies the
code that has not been corrupted or modified after signing, normally code is signed
by its producer, user or some third party. For example, Microsoft Authenticode, it
uses , the platform signing code such as ActiveX controls and Java applet [13; 14].
Code signing technique verifies the code creator and sometimes guarantees the code
creator are trustworthy. It depends upon how code signing is used. So, in that case
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to maintain trust, the platform where mobile code run maintain an index list of
trusted source. So before running the code, the platform maps and checks the index
of trusted source with the remote code source. Code is assumed to be trustworthy,
if the remote code source is found in the index list of trusted source maintained by
the platform. Finally, remote code is treated and given full privilege as trusted local
code. Code signing treat code in trusted or untrusted form. This policy is known as
“black-and-white” policy [13].

Problems

a. This approach assumes that the trust lists of the source maintained by the plat-
form are always trustworthy and uncorrupted. If any malicious agent enters
the platform,it not only affect the platform but also changes the policy of the
platform, it opens the door for other malicious agents to enter. This attack ef-
fects will be seen later on that makes impossible to make connection between
attack and attackers. So it is also called “delay attack” problem [13].

b. Sometimes code signing mechanism may not run the remote code from un-
trusted source, so this approach seems to be more restricted. It also depends
upon how code signing is implemented [13].

• Combining Sanboxing and Codesigning approach: This approach tries to over-
come the execution time increment of legal remote code and the over restriction
over the legal agent from untrusted sources. For example, in JDK 1.1 the remote
code is granted full privilege like local code when the signer of remote code is
trusted. While a code is not trusted, it will runs into a security policy of sandbox.
This approach combines the advantages of sandboxing and code signing that will
facilitates the execution of the untrusted remote code. Still, it has the problem of
“delay attack” [13] as in code signing approach [13].

Similarly, in JDK 1.2 (Java 2) the advantages of both approaches are combined and
it also incorporates access control and “shades-of-gray” policy [19]. Since “black
and white” policy separates code into trusted and untrusted so that only trusted can
be used. While “shades-of-gray” policy come up with the degree of partial trust in
code. In JDK 1.2, local code and remote code are treated with the same security
policy. At run-time, code is parted into groups called “protection domains” [13]
and all code in particular group is granted with the same set of privileges. Also, the
end-users can authorize certain “protection domains” to utilize maximum amount
of resources. Additionally, in each domains different subsets of permission and
privileges are granted [13; 19].

Problems
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JDK 1.2 combine the sandbox and code signing with shades-of-gray works
well. Still, the malicious code can be granted with full privileges that create
the similar problem of code signing approach and threaten the platform [13].

• Proof carrying code (PCC): The technique of Proof-Carrying Code (PCC) was
introduced by Lee and Necula [13]. In the PCC method, the code creator provides
formal proof of the code for the consumer with the security policy of the agent plat-
form. This technique tries to prevent the execution of unsafe code. The safety proof
and code are sent to the consumer, that compiles with security policy and verified.
This is also called “machine checkable proof” [13]. Thus, with the result from
the validation process, code is executed if it is safe else rejected. PCC is also called
“self-certifying” [1] , since not cryptographic or any third party authentication is re-
quired. It is the low-cost static program checking without any expensive run-time.
Using PCC, modification in code can be identified by reading the proof. So PCC is
used as “tamper-proof” [13].

Problems

a. It has problems with the proof generation. Many of the proof are not auto-
mated, it needs lots of studies and research on automated proof generation
[13].

b. The time consumption of proof validation and size of proof are the problem
[13].

• State Appraisal: According to W. M. Farmer “State Appraisal” [20] ensures that
mobile agent has not been harmful or altered with the change in its platform or state.
Since a moving agent consist of code, static data, collected data and the execution
state. The state appraisal methodology has an appraisal function, that is owned
by the both creator and user of the agent. The function becomes a part of agent
code and agent is digitally signed by the both creator and the user. The appraisal
function is now protected with undetectable modification. When an agent comes
to a new environment, the agent platform uses the function to verify the correct
state of the agent. In addition, it determines the privileges given to the agent during
execution. On the basis of the result of appraisal function the platform security
policy, privileges and permission are given to that agent [13; 14].

The success depends upon to which extent unnecessary modification can be pre-
dicted and protect them from malicious entities. Here appraisal function verifies
the state of agents and calculates the privilege for an agent depending upon the
platform policy. The signed state should not be violated to get the privilege in the
platform, otherwise the agent does not get any privilege. The advantage of this tech-
nique is that it is s flexible way to request privilege being on a particular platform
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[13; 14].

Problems

a. It is difficult to obtain the state appraisal function [13].

b. It is not easy to formulate appropriate security polices [13].

• Path Histories: The purpose of path histories is to maintain a visited record of
the agent in the different platform. Current platform needs information on the vis-
ited platform histories and to what extent an agent has transformed into malicious.
Depending upon the information, an agent is trusted and the service, the resource
and the permission is granted from the platform. Similarly, the path of the visited
platform is recorded and signed by a current platform [13].

Problems

a. Path histories technique has the problems of the cost path which is visited by
agents [13].

4.3.2 Securing the agent

Securing mobile agent technology also includes another part as major issue, securing
the agents. It refers to securing an agent from the malicious platform. Agents are always
susceptible to various threats of the agent platform that they visit, since agents are exposed
in the mobile agent platform. The threats or malicious behavior cannot be prevented but
it can be detected. This chapter presents various threat detection methods that will help to
secure agents from maliciously behaving the platform [14].

• Co-operating agents: This technique uses a peer agent to protect themselves from
a malicious platform. The co-operating agents of disjoint set of the platform share
the same data and exchange information in a secret way. The agent, when moves be-
tween the platform, with the help of authenticated channel information are passed to
its co-operating agents. Information includes the current platform, the state and the
successor platform to be visited. Both co-operating agents will execute the similar
task and preserve the information of it. The co-operating agent will take necessary
action if anything goes wrong in the mobile agent. This also helps to reduce the
modification of shared data. Co-operating agents can be for the e-commerce task or
protocol such as the authorization of negotiation, bidding, auction electronic pay-
ment [13].

Problems

a. The high cost of setting up the authentication communication channels [13].
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b. The co-operating agent may be killed or lost [13].

• Execution Tracing: Execution tracing involves cryptographic traces of mobile
agents and its behavior in various the platform. The tracing agent behavior will
help to get information about the unauthorized modification, state and execution
flow. The execution traces are logs of each agent performance and history of the
different platform. The traces consist of statement identifiers and the signature of
platform activities performed in a particular platform. For verification the state-
ment in traces can uses agent values of internal variable are called “white” [13]
statements. However, the statement that requires external information so trace must
contain the digital signature of the platform and requires third party authentication.
This statement is called “black” [13] statement. Execution tracing assumes that all
parties such as agent user, platform uses public and private key and they communi-
cate through cryptographic signed messages. Traces are used to verify and protect
the legitimate agent and the performance from malicious entities [13; 14].

Problems

a. Verification is not compulsory until any suspicious condition occurs. How-
ever, Tan and Moreau [13] has suggested a new technique to have compulsory
verification [13].

b. Tracing every movement of agent yields large size and number of logs, this
creates managing problems [13].

c. Verification servers can have collaboration with a platform and servers [13].

• Environmental key generation: Environmental key generation technique requires
some environmental condition to be true to access the mobile agent. The environ-
mental condition can be matching strings. When a platform wants to communicate
with another platform, an agent is send with encrypted information with it. The
encrypted information may contain some data or some executable codes. The agent
itself cannot predict and visualize the information. So, the agent itself is clueless
and waits for the environmental condition to met. Hence, the agent is also called
"clueless agent" [27]. The agent will go through the process of meeting environ-
mental condition in the receiving platform. If condition happens to be true, the
information generates a key that decrypts the information carried by the agent. The
agent is not able to decrypt its own message without meeting the environmental
conditions. The technique of generating key will ensures that platform or any enti-
ties cannot affect the agents only by reading the agent’s code [13; 14; 27].

Problems

a. The receiver platform can change after environment key generation [13] .
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b. The platform can be considered unsafe to execute the code that is attached
with the mobile agent [13].

• Non-Interactive Computing with Encrypted function: Computing with encrypted
function is a software solution, that is responsible for determining a methodology
for the safe computation of cryptographic primitives, such as the digital signature.
This technique uses an encrypted function along with the executable program on a
mobile agent platform [13; 14]. Non-interactive computing involves the owner of
an agent to execute encrypted programs over the untrusted platform. For example:
The home platform has an algorithm to compute a function f. The target platform
has an input x is able to provide services to the home platform by computing f(x).
However, the home platform does not wants the target platform to learn anything
about function f. So, the home platform encrypts the function f and gets E(f). The
home platform creates a program P(E(f)) that uses E(f). The P(E(f)) is send along
with the mobile agent to the target platform for execution. The agent is received at
the target platform and execute it. The execution also includes program P(E(f)) at x
to produce P(E(f))(x). The agent is send back to its home platform. Now the home
platform extracts the result from the agent and decrypts to get f(x) [1]. [13].

Problems

a. Finding a way to apply it to an arbitrary function f [13].

b. It is still vulnerable to certain attack such as denial of services and replay
attacks [13].

• Obfuscated Code: Hohl [13; 14], gives obfuscation technique to use the blackbox
security. The blackbox security is the technique of scramble code, so that no one is
able to understand the code. It is difficult to modify the code without understanding.
Obfuscated code technique tries to prevent the mobile code from being analyzed or
read by the host. It involves the mobile code modification and preserve the semantic
of code such that the host is not able to learn or understand them. There are some
obfuscated code types such as layout obfuscation, remove or modify some informa-
tion in the code such as comments and debugging information. Data obfuscation is
responsible for modifying the data and the structure of data without harming the ex-
ecution. Control obfuscation modifies the control in the code. Similarly preventive
Obfuscation protects code from decapitators and debuggers [13; 14].

Problems

a. There is no known algorithm or any approach for providing the blackbox pro-
tection [13].
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• Partial Result Encapsulation: Partial Result Encapsulation (PRE) is used for find-
ing the security breaches of agents when it executes in the different platform. It en-
capsulates the output of each agent performances at the particular platform. These
encapsulated information uses for verification to ensure that agents are not affected
by the malicious platform. The verification can be in a home platform or in some
intermediate place.The purpose of an agent performance encapsulation provides in-
tegrity, accountability, confidentiality and privacy. Depending upon our goal, infor-
mation is encapsulated in the platform. For example, certain security requirement
such as integrity, accountability and privacy of agent uses cryptographic primitives
such as encryption, digital signature, authentication codes and hash functions. For
confidential, the encrypted result is decrypted with the public key [13].

Furthermore, Young and Yung propose “Sliding Encryption” [13]. It encrypts small
amount of data from large amount. Another method is “Partial Result Authentica-
tion Code” (PARC) [13], the creator of the agent maintains the list of secret key.
The secret key is supplied to the agent for PARC computation. The key is used once
with encapsulated information and destroyed before migrating to the next platform
and guarantee "forward integrity" [13]. It enables that there is no change in the plat-
form that are visited in future by the previously visited platform, since there is no
secret key to compute PARC. The problem with PARC is that malicious platform
can generate copies of original keys. The revisit of the agent will causes modifi-
cation. PARC focuses on integrity but no confidentiality is maintained. Karjoth
[13], improves the PARC technique and come up with “Strong forward integrity”
[13] where the visited platform cannot be modifies its own previous result. In this
process, encapsulation is done by the platform instead of the agent. It uses creator’s
public key to encrypt the agent result, thus confidentiality is maintained. The en-
crypted result is signed with the private key and hash chain by the visited platform.
The hash chain connects the outcome of the previous platform with the identifica-
tion of the latter platform. This is how, the result is not modified later in revisit of
the agent in the same platform [13].

Problems

a. PARC has the problem of changing the result of the platform which is revisited
by the agent [13].



27

Figure 4.3: Summary of security measures
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5. SECURITY IMPLEMENTATION ON
HTML5-BASED MOBILE AGENT FRAMEWORK

This chapter describes the security solution for HTML5- based mobile agent framework.
As discussed in previous security chapters a secure mobile agent framework should ensure
that its agent and platform are not malicious. Also, the agents of the framework should
provide authentic information and protect that information.

The motive of the security implementation is to develop a secure mobile agent frame-
work that includes a secure agent mobility, identification and authentication of an agent.
This security implementation mainly focuses on securing the source address of the mobile
agent i.e., the source URL. A source URL is an address of the platform (also called origin
platform/server) where an agent is created. So, it is an important part of the framework
that is denoted by auri [2].

As discussed in the previous chapter, the instance of an agent is created in the origin
platform and downloaded to a browser. The downloaded agent can move between differ-
ent servers (also called the agent server) and browsers ( the client of the network). When
an agent moves, the source URL that points to the origin server is delivered to the agent
receiving platform which is used to fetch the agent content [2]. The malicious entities
can attack and modify the source URL that points to the malicious servers. The malicious
server may provide a malicious agent that will affect on the platform by misusing the iden-
tity of the legitimate agent, consuming the enormous amount of the platform, eavesdrop
on the platform, inserting and deleting the important data and code of the agent and plat-
form etc. Hence, it is necessary to prevent the modification of a source URL and ensure
that it points to the trusted origin server. However, this security solution is not enough for
the whole framework, but it can be the major part of the security. As it protects an integral
part of an agent framework.

5.1 Element used in security implementation

This section describes the elements used in security implementation of mobile agent
framework.
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5.1.1 Key pair and public key encryption

The security implementation uses an RSA key pair i.e., the private key and public key.
The keys in a pair have a relationship and they are used for public key encryption i.e.,
encryption and decryption. In the implementation, the key pair is static so, they are called
static private and static public key. Here the static means the keys are fixed, in the imple-
mentation keys will remain same. In comparison with the non-static keys i.e., frequently
changing keys, the static keys are simple and easier to implement. The non-static keys
are unique and generated by the trusted authority in the public key encryption. [49].
Whereas, a static private key is kept secret in agent origin server which encrypts the mes-
sage in the public key encryption.

In the implementation hash value, i.e. a value produced by a hash algorithm using
source URL is encrypted to create a digital signature. The signature is sent to the other
parties in the framework. Sometimes, the malicious entity may discover the signature and
use it to claim malicious source as a trusted source. The agent origin server always runs
the encryption however, the malicious source may not run the encryption and used the
previous signature to claim itself as trusted source.

The encryption process produces the same signature for a particular message using a
static private key. This is the consequence of the static private key, that can be solved
by using salt. The hash algorithm, digital signature and salt are the elements used in this
thesis implementation that will be explained in next Section 5.1.2. On the other hand,
the public key is in the framework that is used for the decryption of the messages. The
signature is only decrypted with the static public key. It helps to ensure the authenticity of
the source platform. It also provides a confidentiality that the information coming from a
particular origin platform is legitimate.

For the purpose of this thesis, the key pair is generated from the RSA library of Herbert
Hanewinkel [41]. The key generation is not part of this implementation as once the keys
are generated and used as static private and public key. In general the RSA key pair is
used in two ways [40]:

a. The public key is used for encryption and the private key is used for decryption.
The message encrypted by the public key is only decrypted with the private key
which is the other pair of the public key.

b. A message can be “signed” with the private key. The signed message can be verified
by only with the public key, which is the other pair of the private key that signed
the message.

Here, the signing means applying the decryption over the original message [40].
However, for this thesis purpose the key pairs are used differently, as the private key

is used for encryption and the public key is used for decryption. Mathematically, in RSA
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algorithm, encryption with private and decryption with the public key is also correct.
Typically, encryption with the private key is called “sign” and decryption with the public
key is called “verify”. The mathematical example is shown below [40; 30]:

The RSA algorithm starts with generating public and private key.

a. Selecting two random prime numbers, p and q. Let p = 5 and q = 11.

b. Computing n, as product of two prime numbers p and p. n = pq = 55.

c. Calculating φ(n) as φ(n) = (p-1) (q-1) = 40.

Where, φ(n) is the Euler totient function giving number of positive integers less
than n which are relatively prime to n. Two numbers are "relatively prime" when
they have no common factors other than 1 [50].

Now, selecting public exponent e, which is relative to φ(n) 1 < e < φ(n)

i.e., 1 < e < 40,

it gives 3, 7, 9, 11, 13 ....

Selecting e = 3 from the above list and it is the public exponent of public key.

d. Computing the private exponent d from e, p and q. It will be the private exponent
of the private key.

Finding the modular inverse of e with respect to φ(n)

i.e., e * d mod φ(n) = 1.

solving for d it gives d = 7.

Now,
Private key:

(n, d) = (55, 7) (5.1)

Public key :
(n, e) = (55, 3) (5.2)

Message :
m = 20 (5.3)

The RSA encryption operation is exponentiation to eth modulo n:

c = Encrypt(m) = me mod n (5.4)

The RSA decryption operation is exponentiation to the dth modulo n:

m = Decrypt(c) = cd mod n (5.5)
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Where,
m = message
c = encrypted message
e = public exponent
d = private exponent
mod = modulo (%). It is the remainder when one integer is divided by another

[51].

a. Encryption with public key and decryption with private key

c = Encrypt(20) = 203 mod 55 = 25

m = Decrypt(25) = 257 mod 55 = 20

b. Encryption with private key and decryption with public key

c = Encrypt(20) = 207 mod 55 = 15

m = Decrypt(15) = 157 mod 55 = 20

Furthermore, the keys in the implementation consist of constants and exponents. When
keys are used for encryption and decryption, the constants and exponents is calculated.
The exponents are the original key that is used for encryption and decryption.

5.1.2 Digital signature

The security implementation employs RSA algorithm, public-key encryption, hash al-
gorithm and salt to create a digital signature. The general description about the digital
signature, RSA algorithm, public key encryption, hash algorithm and salt is given in Sec-
tion 4.3.1. The implementation uses "SHA-256" [43] as the hashing algorithm that is
used over the source URL of an agent origin server to produce the hash value. As dis-
cussed above chapter, the hash value is very difficult to recover and it helps to ensure
the integrity of the source URL. Also, the hash value is in an unreadable form, there is
no problem of information being theft even it is exposed. It also ensures the privacy by
hiding the original information.

As discussed in the key pair Section 5.1.1, the consequences of a static private key
can be solved by salt. Salt is an additional input to the hash algorithm which is hashed
along with the source URL. Here, the implementation uses a timestamp as salt in the
encryption process. The current timestamp is taken before the source URL is hashed and
it is concatenated with URL to produce the hash value. The current timestamp as input
is different for each time of hashing or for each particular user, though the source URL
is same. The hash values thus created will be identical for each hashing or hashing for
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the particular user. It means an identical hash value is encrypted to produce an identical
signature. Hence, the problem of the same signature is solved. The salt is also sent along
with the signature to the other parties where verification is required.

The digital signature is created with encrypting the hash value of source URL and a
timestamp using the static private key in an origin server. The digital signature, salt and
source URL is sent to the agent receiving platform. The receiver platform verifies the
source URL is of authenticated source using the static public key of the framework. It
also checks the source URL authenticity, integrity and non-repudiation. However, the
hash algorithm also ensures the integrity of source URL. The authentication and non-
repudiation of the source URL are possible with encrypting the hash value to produce a
signature. The signature is only verified with the another key pair of the static private key
i.e. static public key. The verification on the receiver side ensures that source URL come
from the trusted origin server. Similarly, the origin server cannot deny that its source URL
and other entities cannot claim for that source URL.

5.1.3 RSA library

The implementation uses the RSA library that helps in encryption and decryption. The
RSA library used in implementation is of Herbert Hanewinkel [41]. The library does
RSA encryption using function RSAencrypt() and RSA decryption using function function
RSAdecrypt() from rsa.js file. The RSA library is of two type, one for server and another
for the client in the mobile agent framework. The server side library has bas64.js, hex.js
and rsa.js while client side has base64.js, hex.js and sha256.js [41].

5.2 Proof-of-concept implementation

From above discussion, this implementation focuses on securing source URL i.e. auri of
an origin server. The source URL is encrypted using the static private key in the origin
server. The static private key is shown in Listing 5.1.

var private_key = "AgCc6r2Tq3ouG3lCHkKYAqpmQj3nTHdwcM2JtbbHzj4FaV

ACGBrvovoNRJGr/ffhRboCq8aqMJCE9nRb+N8r1op7Af9uw

9Ec8YNr1yhq6C8B48OTeg2UNfn1BFTZrXH2c3cS39I52vPB4

heEaS4A0NmsKMedU2qsVd/QbmXM2I19yKDx";

Listing 5.1: An example of static private key

The implementation works with the life cycle i.e., an agent stages from the origin to
the exit of a mobile agent [2]. When an origin server starts, it also loads the RSA server
library. The browser (In Figure 5.1, Browser 1) requests the agent using HTTP request
with the origin server. The RSA client library is also downloaded that has been added to
the configuration.js. When an agent is downloaded from the origin server, an instance of
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an agent is created using the source URL. Also, the source URL of that agent is encrypted
to create a digital signature. The encryption process uses function encrypt() (Listing 5.2).
In the function encrypt(), source URL is concatenated with the time stamp i.e. salt. The
concatenation result is the input to the hash algorithm i.e. “SHA-256” [43] to produce
hash value (Figure 5.2, step 2). The hash value is encrypted using the static private key
that produces the digital signature (Figure 5.2, step 3). The digital signature is bound in
JavaScript Object Notation (JSON) format that includes source URL and the time stamp
(Figure 5.2, step 4). Each of the agent instances has its own digital signature that moves
with the agent. The code for function encrypt() is given below:

function encrypt(source_url) {

// obtaining current time to use it as salt in hashing

var currenttime = Math.round(Date.now() / 1000) ;

// hashing origin url and currenttime as salt

var hashing = SHA256(source_url+currenttime).toString();

// extracting first 40 string from the hashvalue

var hashtext = hashing.substr(0,39);

// encryption process

var enc=rsa1.RSAencrypt(hashtext,private_key);

var encryptedhex=hex.s2hex(hex.b2s(enc));

// sending values such as digital signature,original url of server ,

currenttime from server to client as json

var jsonx = ’{"digitalsig":"’+encryptedhex+’","originalmsg":"’+

source_url+’","currenttime":"’+currenttime+’"}’;

return jsonx;

}

Listing 5.2: An example of function to encrypt the source address.

An agent moves from server to browser and vice versa. On the successor platform,
the agent has to verify its source URL is of the authentic origin server before the agent is
fully downloaded. The agent is verified when it moves from server to client and client to
server.

• When an agent moves from server to client

The agent source URL is verified using the digital signature and static public key
of the framework. The digital signature is decrypted using the public key that gives
the hash value , let it be HASH A (Figure 5.2, step 5). On the other hand, source
URL is concatenated with the time stamp which is the input to the hash algorithm,
that produces another hash value, let another hash be HASH B. Both hashes HASH
A and HASH B are compared. If the hashes are identical to eachother, it verifies
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that the source URL is of legitimate origin. However, if hashes are non identical to
eachother, the process halts giving the invalid origin message (Figure 5.2, step 7).
The code for the authentication of source URL when agent moves from server to
client is given in Listing 5.4:

var public_key="AgCc6r2Tq3ouG3lCHkKYAqpmQj3nTHdwcM2JtbbHzj4FaV

ACGBrvovoNRJGr/ffhRboCq8aqMJCE9nRb

+N8r1op7AAUR";

Listing 5.3: An example of static public key

// parsing variable jsondata to convert into javascript value

var myvar = JSON.parse(jsondata);

// assigning digital signature, source url and currenttime.

var sig = myvar.digitalsig;

var originalmessage = myvar.originalmsg;

var currenttime = myvar.currenttime;

// decryption process

var enc=s2b(hex2s(sig));

var dec=b2s(RSAdecrypt(enc, public_key));

var decrypted=dec.substr(0, dec.length-1);

//hashing original message and currenttime as salt in client.

var origin_add = src.substr(0,21)

var hashing = CryptoJS.SHA256(origin_add+currenttime).toString()

;

// extracting first 40 string from the hashvalue

var hashvalue = hashing.substr(0,39);

// comparing decrypted value and evaluated hash value

if (decrypted == hashvalue) {

console.log("valid orgin");

} else {

document.write("invalid_origin");

}

Listing 5.4: An example of authentication process in client.

• When an agent moves from client to server

The agent is pushed from the browser to agent server with HTTP POST (Figure
5.2, Browser1 to Agent server 1). As discussed in Chapter 3 an agent is uploaded in
the frozen state with serialization(Figure 5.2 step 8). The serialization is in JSON
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format that contains URIs of agent functionality i.e. addresses (auri, huri), id and
other relevant parts [1; 2]. The security implementation adds a JSON that contains a
digital signature, agent source URL and timestamp in serialization. This additional
JSON is previously carried by the agent itself when it moves to Browser 1 from an
Origin server. The serialization agent description looks like (Listing 5.5):

{"auri": "http://localhost:8890/ClockExample.js",

"huri": "http://localhost:8890/ClockExample.html",

"id": "577524",

"curi": "",

"digitalsign":{"digitalsig":"f1c6ef3babeabc051a4ca8d7c10318

19aaf739ce502cb5bdbe5534586fc9936692bfcbdb4

c37dc4171f31e391424fb9b175e744fb3bdf250c1dd

faf851e1859b",

"originalmsg":"http://localhost:8890",

"currenttime":"1446045577"},

"variables": {},

"memory": {"val": 36}

}

Listing 5.5: An example of serialized agent having digital signature [2]

The Agent server 1 receives serialization and the frozen agent. Usually, the Agent
server 1 fetches the JavaScript code using the serialization variable auri to restart
the agent[14; 35]. Before that, the source URL of serialization should verify its
authenticity. The process of authenticity is similar above process as decrypting the
signature with the static public key and evaluating the hash from the source URL.
Similarly, the hashes are also compared and only the identical hashes proves that
source URL is legitimate. Also, the programs halts giving invalid source, if hashes
are not identical to eachother. This is shown in Figure 5.2, step 9, 10, and 11. The
authentication of source URL when the agent moves from client to server is given
below:

// assigning digital signature, origin url and currenttime.

var sig = Servertoclient.digitalsig;

var originalmessage = Servertoclient.originalmsg;

var nowtime = Servertoclient.currenttime;

// decryption process

var enc=hex.s2b(hex.hex2s(sig));

var dec=hex.b2s(rsa1.RSAdecrypt(enc, public_key));

var decrypted=dec.substr(0, dec.length-1);

// hashing original message and currenttime.

var origin_add = src.substr(0,21);

var hashing = SHA256(origin_add+nowtime).toString();
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// extracting first 40 string from the hashvalue

var hashvalue = hashing.substr(0,39);

// comparing decrypted value and evaluated hash value

if (decrypted == hashvalue) {

console.log("valid orgin");

} else {

console.log("invalid origin");

process.exit();

}

Listing 5.6: An example of authentication process in server.

The changed architecture of life-cycle of HTML5-based mobile agent is given below:

Figure 5.1: Implemenation of security model in HTML5-based mobile agent framework
[1].
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5.3 Security solution for threat prevention

As discussed earlier in Chapter 4, security threats are categorized into four types on the
basis of mobile agent and agent platform. The security implementation discussed in Sec-
tion 5.2 gives the solution for two threats. They are the agent attacking the platform and
the platform attacking the agent.

The primary part of the solution discussed above is centered on preventing the un-
necessary modification of the source URL i.e., auri of an agent. The implementation
uses signing technique to prevent the modification of source URL. The signing technique
is used because the agent framework is developed in JavaScript language that lacks the
sandboxing. Sandboxes are used when the executables code comes from unknown or
untrusted sources and allow the user to run untrusted code. It creates an environment in
which there are strict limitations on what resources the agent can request or access. Also,
the self-modifiable characteristic of JavaScript language i.e., JavaScript can modify its
code as it runs, can be the problem. With the self-modifiable characteristic agent code and
platform, the code may change itself when they run. However, the self-modifying char-
acteristic is not always bad but sometimes it may change the underlying run-time or other
programs in the framework [52; 53; 54]. The signing technique uses the digital signature
that employs the hash algorithm to confirm the authenticity of source URL. It also veri-
fies that source URL has not been modified when the agent moves in different platforms
(Section 4.3, Figure 4.2). Also, it ensures that the origin server is non-malicious. Further-
more, the agent source URL is verified in every platform it passes, so it can be claimed as
trusted source URL. However, the implementation does not maintain any trusted list. So,
a trusted source URL signifies a trustful origin and non-malicious agent.The solution for
the treats on agent and platform is described below:

5.3.1 Solution for agent attacking platform/host

The solution for the agent attacking the platform/host refers to the security of the execu-
tion environment i.e., platform. As discussed above the source URL is the entry point of
an agent in the platform. The source URL is verified before an agent goes to the running
state i.e. executable state, in any platform. The method of verifying the source URL will
control and prevent untrusted agent trying to enter into the framework. The untrusted
agents may be malicious and harmful for the framework. The verifying technique makes
the platform free from the malicious agents that try to consume enormous resources and
denies to share. The restriction on the malicious agents serves as an access control mech-
anism to unauthorized access and interference to the platform information. Sometimes
the malicious agents may behave as the trusted agent and destroy the reputation earned
by the trusted agent. The security solution controls the problem of masquerading and
eavesdropping of a platform.
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A verified source URL signifies that the origin server it points produces the trusted
agent that will not be harmful to the platform and other agents in the platform. The
platforms have to communicate with each other to get and transfer the agents. So a proper
verification will ensure that a particular communicating platform will send trusted agents.
This solution also serves as non-repudiation, as origin server will not be able to deny its
agents. Furthermore, an agent can have a secure movement with the help of verification
in each platform.

5.3.2 Solution for platform/host attacking agent

The solution for the platform/host attacking the agent refers securing the agent and its
important information from the malicious platform. An agent moves to the different plat-
forms, where platform may be descent or malicious. As discussed above source URL is
the most important information of an agent, the malicious platform may tamper or reuse
the source URL for the malicious activities.

The current security implementation will encrypt the source URL to make the signa-
ture. The signature is exposed but the information in it is hashed and then encrypted with
a static private key that is hidden in the agent origin server. A small modification in the
signature will not verify itself in the an agent receiving platform. Sometimes the mali-
cious platform manages to create a new signature with its own source URL that points
malicious platform. The new signature is used instead of the legal signature. However,
the verification process in the current security implementation helps to block such agent
to enter into the platform. The verification uses a static public key that helps to find out
the corrupted, modified or changed signature.

Thus current security implementation helps to get rid the problems like eavesdropping
and spying on the agents. Finding security channels and interception of an agent after
knowing their weakness will be decreased. It will minimize the effect on agent behavior
and accuracy of the computation. It also helps to minimize the problems of the mas-
querading of an agent platform. Furthermore, an agent can get an identification with its
unchanged source URL. So any origin platform will not deny taking responsibility of a
particular agent carries an address of that platform i.e. non-repudiation.



39

6. EVALUATION AND FUTURE IMPLEMENTATION

This chapter describes the evaluation of the current security implementation of Chap-
ter 5. It compares the current implementation with the security measures described in
Chapter 4. It also discusses how current implementation is the security solution of the
HTML5-based mobile agent framework. Finally, it describes the shortcomings and future
implementation in the current solution.

6.1 Possible security measures vs Security implementation

As discussed in above chapters, security is a primary issue in mobile agent technology.
There are various security measures available for maintaining security, some are discussed
in Chapter 4. The security measures depend upon the threats in mobile agent technology
i.e., the agent attacking the platform and the platform attacking the agent. Similarly, the
security implementation presented in Chapter 5 also depends upon the threats, security
objectives and architecture of a mobile agent paradigm. The objective of the implemen-
tation is developing and promoting the secure mobile agent. This implementation is in-
spired from the security measures proposed in Chapter 4. It uses some techniques of
Code signing and environmental key generation. Similar, to the concept of code signing,
the security implementation uses a digital signature employing public key cryptography
and hash algorithm. The digital signature is responsible for confirming authenticity, orig-
inality and integrity of remote information. It verifies that the information has not been
corrupted after signing. This security implementation also uses a technique of environ-
mental key generation. The hash generated from the decryption of the digital signature
and another hash is evaluated by using SHA-256 algorithm over source URL are com-
pared. Both hashes should be identical to each other as an environmental condition that is
to be met in the environmental key generation.

The security implementation uses the salting technique which makes a unique security
solution than the security measures proposed in Chapter 4. The implementation uses a
timestamp as the additional input to the source URL that serves as salt. The time stamp
is concatenated with source URL to yield unique hash value. In the implementation, the
unique hash value is encrypted with the static private key to create the digital signature.
It means that the digital signature of agents created from the same origin will not be
identical to eachother. Sometimes if any malicious entity manages to use a signature,
it will not affect on the other agents from the same source. Another unique feature of
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the implementation is the trust created by using the static key pairs i.e. static private
and static public key. The private key is kept secret in the origin and it is used only
for the encryption. Similarly, the public key remains in the framework used only for
decryption. The interesting part is the key pairs have some mathematical relationship and
the encrypted messages are only decrypted with the public key of that pair. So the agent
receiving platform can trust over the source address of the particular agent that agent does
not affect the platform and other agents.

The android application store also uses the public key cryptography to maintain secu-
rity, however the use of keys is somehow different from current security implementation.
The android applications are stored in a marketplace such as a google play, from where
applications can be downloaded in the client device. In android, uploading an application
in a marketplace is called signing an application while a verifying application is called
license verification. The application uploading in marketplace takes place in two modes,
debug mode and release mode. The application is in debug mode automatically when a
project is run or debug. This mode is for developers so that developers can run, debug
and make changes in their applications. Similarly, when an application is ready to be
downloaded in client device then it is in release mode. A key( it is called private key in
android) is generated from a certificate that contains information about the application
such as app developers, organization etc and the key is stored securely in a keystore. The
key is used to upload an application in the marketplace and further that application is
updated using the same key [55]. For the verification of the applications that are stored,
the google play service generates RSA private and public key. This key pair is associated
with the applications but it are not the same key that is used for uploading the applica-
tions. The public key is exposed and embed with the application and private key is kept
secret. when an application request for the verification i.e. license check, the google play
signs response with the private key of that application, which is verified with the public
key that is provided in the application [56].

The security measures for the open source web operating system (OS) like Firefox and
Tizen uses the signing technique. Firefox and Tizen have packaged web application. The
packaged web application mean all the necessary files that are required for the installa-
tion is packaged into the zip package. When an application is installed the zip package is
downloaded on the device. For Firefox and Tizen, the package contains a manifest and
configuration file which list the APIs that application intends to use. A Firefox manifest
is the root directory that contains JSON file that has information such as the application
name, description, the developer and the icon. Similarly, a Tizen configuration file con-
tains the application name, description, licenses, developer information and other list of
required features. In both OSes, the packages are signed before they are transferred to the
device. When the current security implementation is compared with them, the source ad-
dress of the agent is signed while the package is signed in open source OSes. The source
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address in the current implementation is signed in the agent origin server while, in a case
of Firefox, the package is signed in the marketplace/ distributor. While in a case of Tizen
package is signed by the developer as well as store. Both OSes maintains a trusted source
list in manifest and configuration file but the current implementation does not maintain
any trusted source list. Similarly, an application is installed when the signature is valid in
the device otherwise in case of invalid signature application is not installed. The applica-
tion verification in the client is similar to the android, where marketplace generates a key
pair for each of the applications stored in it. The public key is exposed and attached with
the application and private key is kept secret. When an application is requested for the
verification, the response is signed with the private key of that application. Finally, the
signed response is verified with the public key of the application [46; 47].

Though the open source OSes, Firefox and Tizen uses the signing technique for main-
taining the security, it has other features as well. Both OS use content security policy
(CSP), that protect from the attack like cross scripting and data injection. The cross
scripting refers to the client side code injection attack where the attacker executes mali-
cious script into the legitimate websites [48]. Similarly, there are level of security, for
example Tizen has public, the partner and the platform. The level decides the type of sig-
nature to be distributed to the users. The signature is installed with the trusted signature
and privilege is given according to the level [46; 47].

6.2 Proof-of-concept as security system in mobile agent

The current architecture of mobile agent requires a proper security system as security
is a primary issue of the mobile agent development. The proof-of-concept presented in
Chapter 5 overcomes the security related issue of the mobile agent. The objective of this
implementation is the development and promotion of the secure agent in a mobile agent
framework. The implementation ensures that the source address of an agent has not been
modified when it moves. The agent moves through the various platform and also prove
itself as a non-malicious with the current implementation. Similarly, the platform can be
assured that the residing agents came from the legitimate sources. This assurance among
the mobile agent entities is maintained with a digital signature, that moves with the agent.
The digital signature uses static key pairs, where the static private key remains secretly
in origin server and it is used to generate the digital signature when an agent is created.
One can be easily assured that the digital signature can only be verified with the static
public key of that particular pair. The method of authentication is defined in the current
implementation always helps the legal agents to prove themselves that they come from
the legitimate origin and they will not harm on the residing platform.

The source URL of an agent is an identification of the origin, where that particular
agent is created. Sometimes, malicious entities are able to change an agent identity, the
authentication method will help to find out such agents. So, the when platform commu-
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nicates to get and transfer an agent, it will help to maintain trust between origin platform
and currently agent accepting platform. The proper authentication will help the legitimate
agent to enter the platform. So, when agent accepted in any platform, it can communicates
with other agent of a platform without any obstruction.

Furthermore, the use of salt in the digital signature will make it more secure. The salt
helps to create random and the different digital signature for each of the agents. So mali-
cious entities cannot harm other agents by capturing an agent. It also helps to defend from
the “dictionary attack” in the network [45]. The use of the hash algorithm as SHA-256,
over the source URL and salt, will produce the hash value. The hash value is very diffi-
cult to recover, that adds an extra feature to make the overall implementation more secure
[44]. Similarly, the implementation uses RSA algorithm encryption and decryption. The
RSA algorithm is one of the widely used cryptographic algorithms. It has been used in
many protocols like SSH, OpenPGP, S/MIME and SSL/TLS and in software, for exam-
ple, browsers. It provides the methods of assuring confidentiality, integrity, authenticity
and non-repudiation [39].

6.3 Shortcomings and future implementation

Even though implementation has benefits, it has shortcomings that need to be overcome
in future. Some are as follows:

• Public key distribution: The public key distribution lacks in the security imple-
mentation described in Chapter 5. The security implementation uses a static key
pair i.e.,static private and static public key for encryption and decryption. The pri-
vate key remains secretly in the origin server of an agent helps on encrypting the
agent important information. The origin file containing should not be allowed to
download. On the other hand, the encrypted information of an agent is only can
be decrypted with a public key of a particular pair. So, without the proper public
key distribution authentication of the encrypted information is not possible. An
agent cannot be verified that it comes from the trusted origin server. In this version
of security implementation, the public key remains in the framework. The pub-
lic key should be distributed from the origin server. It is necessary to be properly
distributed in the mobile agent framework so, that malicious entities cannot attack
legitimate members of the mobile agent framework.

• huri is not included to create digital signature: The important agent information
is signed to create the digital signature when the agent moves in the various plat-
form. In this security implementation version, only the source URL i.e. address
where an agent is created is used for the digital signature. The source URL is also
denoted by auri variable. The platform fetches the JavaScript file from the address
pointed by auri. Similarly, huri is also important agent information as auri that has



43

HTML-based UI. It is important in the browser when a browser requests an agent
with the agent server, the content of HTML-file sends to the browser. The malicious
entities may change the information of auri to affect the mobile agent. The current
architecture needs some modification so, that both auri and huri information can be
signed digitally and preserve the agent from being malicious.

• Agent cannot find out malicious platform: Another shortcoming of this version
is an agent is not able to find out the malicious platform without residing in that
platform. If a platform is malicious, it will attack the agent and tries to modify the
information on it. From the agent view, a particular platform is non-malicious, only
if an agent from the previous platform is accepted in the successor platform. Since,
a malicious platform will attack the source URL and produce malicious agents.
These malicious agents cannot verify themselves in the successor platform. Thus,
in successor platform malicious agents are rejected and the predecessor platform
known as malicious. The possible way out from this problem is to maintain a trusted
list of the platform though the agent is restricted in the network.

• Proper RSA library: The RSA library used in the security implementation is re-
strictive. It only supports a few bits of information to be encrypted.It does not
support large agent information to be encrypted. So it is better to find or prepare
the RSA library according to the architecture of the framework.
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7. CONCLUSION

This thesis studies security challenges of the HTML5-based mobile agent framework and
includes design and proof-of-concept implementation of a security framework to protect
against some common framework. As the mobile agent technology offers a paradigm that
has advantages like reduction of network traffic, connection time, bandwidth consumption
over the existing traditional approach such as client-server. However, these advantages
would be difficult to achieve without the proper security implementation. So, this thesis
develops a secure environment for the existing framework developed in TUT.

The security study in this thesis categorizes the threats created by the malicious agent
and malicious platform for the framework.The proposed security solution is based on a
fact that the executable code of the agent is determined by a source URL pointing to the
code. The code should only be originated from a trusted source, and the origin is verified
by cryptographically signed origin URL. The solution ensures the source address to be
authenticated, non-repudiation, confidentiality, anonymity and integrity. The verification
works as the blockade for the malicious agent and the malicious platform that can trick
on the agent and platform. Furthermore, the legitimate agent and platform can be ensured
to the source address and trust over the entities of that origin will not harm them. The
signature is attached to the agent and moves with it, that gives the identification of agent
origination. Also, it ensures the agent mobility to be secured, as in every new environment
signature is verified.

The major drawback of this thesis is the public key distribution, as the signature verify-
ing platform should get the genuine key. Also, the architecture of HTML5-based mobile
agent lacks to includes the source address of the UI of the mobile agent.
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