
Renjie Xie
Dataflow-Based Implementation of Deep Learning
Application

Master of Science Thesis

Examiner: Prof. Shuvra Bhattacharyya,
Prof. Jarmo Takala, and
Dr. Heikki Huttunen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on Nov 4, 2015

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master‘s Degree Programme in Information Technology
Renjie, Xie: Dataflow-Based Implementation of Deep Learning Application
Master of Science Thesis, 51 pages, 3 Appendix pages
June 2016
Major: Pervasive Systems
Examiner: Prof. Shuvra Bhattacharyya, Prof. Jarmo Takala, Dr. Heikki Huttunen
Keywords: Dataflow, LIDE, DICE, Matlab, C, Deep Learning, DNN, Car Recognition

The proliferation of research on high efficient performance on deep learning has
contributed to an increasing challenge and interest in the topic concerning the in-
tegration of this advanced-technology into daily life. Although a large amount of
work on the domain of machine learning has been dedicated to the accuracy, effi-
ciency, net topology and algorithm in the training and recognition procedures, the
investigation of deep learning implementations in highly resource-constrainted con-
texts has been relatively unexplored due to the large computational requirements
involved during the process of training large-scale network. In light of this, one pro-
cess concentrated on parameters extraction and dataflow design, implementation,
optimization of one deep learning application for vehicle classification on multicore
platforms with limited numbers of available processor cores is demonstrated. By
means of thousands of actors computation and fifos communication, we establish
one enormous and complex dataflow graph, and then using the resulting dataflow
representations, we apply a wide range of design optimizations to probe efficient
implementations on three different multicore platforms. Through the incorporation
of dataflow techniques, it is gratifying for us to see its effectiveness and efficiency
in the several flexible experiments with alternative platforms that tailored to the
resource constraints.

Besides, we pioneer three general, novel, primitive and thorough flow charts dur-
ing the work - deep leanring model, LIDE-C establishing model, LIDE-C coding
model. Finally, not only LIDE-C we utilize for the implementation, but also DICE
we apply for validation and verification. Both tools are incubated by DSPCAD at
Maryland of University, and will be updated better in the future.

ii

PREFACE

This Master thesis is a joint project on efficient dataflow between DSPCAD GROUP
at Maryland of University and the Department of Pervasive Computing at Tampere
University of technology, part of which is supported by Tekes (Finnish Funding
Agency for Innovation). The major aim is to contemplate a methodology and then
implement an overall deep learning dataflow model through LIDE-C from scratch.

First of all, I would like to give my sincere thanks to my advisor and mentor Prof.
Shuvra Bhattacharyya for his priceless guidance, support, encouragement and in-
spiration. His persisting support, not only made me own high confidence but also
motivated me during the difficult time in my thesis. His introduction to the group
members (Yanzhou Liu, Shuoxin Lin and Timo Viitanen) is to expand my friend
circle as well as to further discuss on the topic, especially the tool DICE and LIDE-
C tools developed by the DSPCAD GROUP. Due to his concentration on detail,
thorough and disciplined review process, I learned much advanced and practical
knowledge which, without doubt, will be fruitful and pay dividends in the future.

Furthermore, I also gratefully thank Prof. Jarmo Takala for introducing Prof. Shu-
vra Bhattacharyya to me, presenting me a brief of relative dataflow knowledge and
also giving me an opportunity to conduct this topic, particularly at the beginning
of my master thesis.

Finally, I would also express my appreciation to Dr. Heikki Huttunen for deep
learning knowledge, structure, multicore platforms (merope instructions) and espe-
cially the introduction to his recent paper from the department of signal processing,
which illustrates a clue where the topic starts and a vision on the meaning of my
master thesis topic.

For all these and many all, I am so grateful and thankful to all of you. Certainly,
three years studying in Tampere University of Technology broadens my knowledge
span intensively and extensively, many thanks!

Tampere. 22.03.2016

Renjie Xie

iii

CONTENTS

1. Introduction 1
1.1 Thesis Objective . 1
1.2 Author Contribution . 2
1.3 Thesis Organization . 3

2. Deep Learning 4
2.1 Image Classification . 4
2.2 Datasets . 4
2.3 Neural Network and Deep Neural Network 7
2.4 Convolutional Neural Network . 8
2.5 Deep Learning Toolbox - Caffe . 9

3. Dataflow Modeling 11
3.1 Dataflow Modeling Principle . 11
3.2 Overview of Dataflow Models . 11
3.3 Dataflow Modeling Environment: LIDE-C 12

4. Application and Simulation Model 15
4.1 DNN Topology for Vehicle Classifier 15
4.2 Parameters Extraction . 16
4.3 Matlab Implementation . 17
4.4 Experiment and Result . 18

5. LIDE C-Based Design and Implementation 20
5.1 Actors in Dataflow Graph . 20
5.2 Design Dataflow Graphs . 22

5.2.1 Dataflow Model of Design One 22
5.2.2 Dataflow Model of Design Two 26
5.2.3 Dataflow Model of Design Three 28

5.3 Software Implementation Process . 30
5.3.1 Actor Code . 30
5.3.2 Graph Scheduler . 32

5.4 Functional Validation . 33

6. Dataflow Graph Transformations 36
6.1 Transformation One : Broadcast Optimization 36
6.2 Transformation Two : Global Memory 36
6.3 Transformation Three : Multi-Addition Actor 36
6.4 Transformation Four : Simplification of First Two Layers 37

iv

6.5 Transformation Five : In-Place Operations 39
6.6 Transformation Six : Clustering into Threads 39

7. Experimental Results 40
7.1 Single Core Processor . 40
7.2 Multi-Core Processors . 41

8. Conclusions and Future Work 43

BIBLIOGRAPHY 48

A. Test Results 52
A.1 Single Core on Four Design Versions 52
A.2 Multi-Core: Intel Core i5 4248U . 52
A.3 Multi-core: Two Six-Core AMD Opteron 2435 Processors 53
A.4 Multi-core: ARM Cortex-A15 quad core 54

v

TERMS AND DEFINITIONS

BDF Boolean Dataflow

BP Back Propagation

CFDF Core functional dataflow

CNN Convolutional Neural Network

CSDF Cyclo-Static Dataflow

CTC Computation to Communication

DBN Deep Belief Network

DICE DSPCAD Interative Command Line Envirnment

DL Deep Learning

DNN Deep Neural Network

EIDF Enable-Invoke Dataflow

FP Forward Propagation

ILSVRC Large Scale Visual Recognition Challenge

LIDE Lightweight Datalow Environment

MLP Multi-layer Perception

PD Parameterized Dataflow

PSDF Parameterized Sychronous Dataflow

RNN Recurrent Neural Network

SDF Synchronous Dataflow

SIMD Single Instruction Multiple Data

1

1. INTRODUCTION

With the increment of appealing on smart city establishment all over the world, the
increasing development of artificial intelligent learning in an academic circles, and
the growth of associated applications in mobile and distributed contexts, big data
and deep learning have been heating “words” (Fig. 1.1), however, it correspondingly
brings a throng of questions – how to select the best deep learning model tailored to
one specific application; how to training the net model with a view to increasing the
prediction of overall performance and accuracy; and how to excavate and extract
invaluable features from the nearly an infinite loads of datum, and so on.

It is admitted that a great deal of advanced-algorithm on machine learning has
already been contributed and testified its feasibility, flexibility and adaptivity for a
diversified of applications, but it is still impractical to apply these methods into our
daily life without advanced-supercomputers. The reason for that is these algorithm
set up a byzantine framework that is rooted in complicated computation, convoluted
network structure and many layers’ iterations. Correspondingly the space and time
on operation are extremely demanding, which seems paradox to a broad spectrum
of real-time application areas, like surveillance, intelligent transportation, particu-
larly the application in the small smart devices, like IC chips, Cell-Phone, IPAD.
In addition, with the concurrent advances in application areas for ubiquitous em-
beded computing, such as automotive embeded systems and the Internet of things,
it also motivates the investigation of design methodologies for deploying deep neu-
ral network systems on resource-constrained embeded platform. All in all, future
trend needs further simplification with regards for a trade-offs among DNN com-
plexity, classification accuracy, real-time implementation performance, and resource
requirement(cost).

1.1 Thesis Objective

The main objective of this thesis is to make an implementation on one deep learning
application, employing vehicle classification as a case study to concretely demon-
strate the methodology throughout the thesis and to sum up a series of methods
that are developed to accommodate algorithm-, application-, implementation and
design space-models and integrate them into a systematic manner for optimized
system design.

1. Introduction 2

Figure 1.1: Heating words.

1.2 Author Contribution

We apply the signal processing oriented dataflow model of computation and com-
munication and employ the resulting dataflow representations to implement, experi-
ment with, iteratively optimize deep learning vehicle classification on three different
multicore platforms using limited numbers of processing cores. More specifically,
it introduces a unified methodology for modeling, mapping, and transforming deep
learning implementations using dataflow technique, along with methods to integrate
the hyperparameter tuning and simulation processes of deep learning system design
with the proposed dataflow-based implementation approach. While this methodol-
ogy is not specific to any particular application area, it is particularly well suited
to embedded signal, image and video processing applications, where dataflow-based
design is especially relevant. As a mentioned above, the thesis contribution is as
following:

• Project Methodology – how to set up DNN to specific application and then
breed up one product from zero (Fig. 8.1).

• LIDE-C Methodology – how to design, implement and optimize one DNN
application in LIDE-C from scratch (Fig. 8.2).

• Code Methodology – how to write codes (actor, fifo and graph) based on
dataflow model from nothing (Fig. 5.12).

• Parallel and distributed computing on LIDE-C model.

1. Introduction 3

1.3 Thesis Organization

Chapter two and three provides background on two topics that are relevant for this
research, separately the theory of deep learning and dataflow modeling. The rest
of the thesis, one dataflow-based implementation of vehicle recognition application
based on the recent of deep neural network [1] is demonstrated. Chapter four is
to introduce how to select the hyper-parameters for the best deep learning network
topology specific to one application, and then matlab simulation. Chapter five is the
design and implementation on this application using lightweight dataflow technique,
followed by the transformation on the dataflow graph described by chapter six, and
The experimental results are recorded in the chapter seven. Finally, the conclusions
and future work is presented in chapter eight.

4

2. DEEP LEARNING

In artificial intelligence, deep learning has attracted great research interests in many
signal processing application areas recently and also gets numerous fruits from time
to time. To start with, in this chapter, the related task of image classification
is introduced. Next, some popular datasets used in recent years are listed and
illustrated. At last, the basic theories and toolbox pertaining to the thesis are
presented.

2.1 Image Classification

Image classification is one of the most fundamental application in deep learning
domain, such as face recognition[2]. Through analysis and numerical property ex-
traction from various image features, one label is attached to one input image within
a predefined set of categories. The algorithm that maps a wide range of images to
its corresponding categories is called classification, typically consisting of two phases
of processing: training and testing phase shown on Fig. 2.1.

The target of initial training is to capture and isolate some salient properties of
typical image features. On the basis of these, a special description of each classifi-
cation category is created. The subsequent testing phase is to classify image feature
from these feature-space partitions. There are two major categories techniques for
image classification - supervised classification, where the training data are accompa-
nied by the labels indicating the categories of the observations and then new data is
classified based on the training set, and unsupervised classification, where the train-
ing data without the label naturally and automatically set up one groups of the
similar features and new data is used in feature extraction, clusters and other pur-
poses. The merit and demerit of both classification is illustrated in Fig 2.2, and the
most significant benefit of unsupervised learning is there is no need for annotation.

2.2 Datasets

With the development of computer vision, a growing number of datasets are collected
and emerged in order to meet various requirements and solve different kinds of image
classification issues. Some popular dataset is described as following.

MNIST dataset [3] is a huge database of handwritten digits that has 60,000
training example and 10,000 testing example, commonly focused on the deformed

2. Deep Learning 5

Figure 2.1: Training and testing phases.

image. Figure 2.3 shows the example of MNIST dataset.
CIFAR-10 dataset [5] possesses 60,000 natural images within 10 categories,

averagely 6000 pieces of 32 x 32 RGB images per one categories. All datasets are
decomposed into training data, Randomly selecting 5000 images from each cate-
gories, and testing data, the rest 10000 images of the datasets. Ten categories
separately are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
Figure 2.4 shows the example from CIFAR-10 dataset.

CIFAR-100 dataset is the extension of CIFAR-10 dataset. It has 100 classes
(fine label), each of which is composed by 500 training images and 100 testing images.
Furthermore, 100 classes are fallen into 20 superclasses(coarse label). Each image is
32 x 32 RGB image with one fine label and coarse label.

ImageNet dataset[7] is a large-scale database organized based on the WordNet
hierarchy. There are millions of images from more than 20, 000 categories, a very
useful resource for image classification, object detection and localization. A large
number of researchers in the academic field, as well as educators all over the world
apply this dataset to participate two main competitions and two taster competitions

Figure 2.2: Pros and cons of supervised and unsupervised classification.

2. Deep Learning 6

Figure 2.3: Examples of MNIST dataset [4].

held by ILSVRC each year.
In this thesis, we need to draw a line between objects that belongs to one cate-

gories(vehicle). New database collected by company Visy Oy, which has gathered
tens of millions of vehicle image over the year, finally tailored to 6555 pieces of 96 x
96 color images in four classes (car, van, bus, truck that belongs to vehicles). Paper
[1] illustrates the details of the image collection.

Figure 2.4: Examples from CIFAR-10 dataset [5].

2. Deep Learning 7

Figure 2.5: Features learned from training on deep face [6].

2.3 Neural Network and Deep Neural Network

The general idea of neural network is Sprung from biological neural network, analog-
ically evolved into ICT field, a massively and complexly parallel distributed neural
model that contains a great deal of neurons (processing unit), which are the funda-
mental to operation of a neural network, namely dealing with experimental knowl-
edge(computation) and self-studying. Figure 2.5 demonstrates features learned from
training on face recognition, which is robust to errors in the training process. Tra-
ditional neural network is multilayer perception(MLP)[8], back propagation(BP)[9],
[10] and recurrent neural network(RNN) [11], in possession of various properties
- nonlinearity, input-ouput mapping, adaptively and so on. Figure 2.6 shows the
traditional neural network architecture.

After several years of development, however, deep neural network[12][13][14][15]
still emerged because of these bottlenecks in the traditional neural network - the
more layers structure in MLP does not work well as a result of diminishing error
problem, which means the error propagating from the output layer to input layer
is getting smaller and smaller (cannot learn), while only three layers MLP is only

Figure 2.6: Traditional neural network.

2. Deep Learning 8

Figure 2.7: Deep neural network(CNN) [16].

a universal approximator. Deep learning solve this by layer-wise mechanism (learn
from the lower layer before move up to the higher layers) and fine-tuning (adjust the
unsupervisedly learn weights). Figure 2.7 shows deep neural network architecture, it
is obvious that deep learning provide more abstraction complexity and hierarchical
features learning through its more layers. Such is to lead to the currently best
recognition performance of deep learning in many cases [17],[18],[19].

2.4 Convolutional Neural Network

Convolution neural network [20], [21] - a multiple-layers neural network, which is
composed by several two dimensional surfaces containing several independent neu-
rons, in possession of local receptive fields, shared weights, and the time or spatial
sub-sampling, displacement , scale invariant deformation advantage(to some degree)
- is one of the most popular and distinction in the deep neural network, especially
in the computer vision filed. As the typical deep learning, CNN employs the feed-
forward propagation for recoginition and backforward propagation for training. In
the thesis, we train CNN off-line in the supercomputers and then used after-trained
network to perform time-sensitive recognition. Therefore, the time consumption of

Figure 2.8: Graph of a convolutional layer [21].

2. Deep Learning 9

feedforward propagation is what we focus.
There are two components in the CNN: feature extractors and a classifier. For

one thing, the target of feature extractors is to filter the vectors of image datum into
many same or lower dimensional vectors of "feature maps", separately representing
various kinds of features - corners, lines, edge and so on. For another thing, the
classifer is used to predict the maximum likelihood of predefined categories that
input image belongs to. Figure 2.7 illustrates one example of convolutional neural
network, which is composed by several feature extractors (two convolutional lay-
ers, two pooling layers, one dense layer) and final classifier layer. Among these,
convolutional layers are accounted for more due to its high computation and most
complexity. Figure 2.8 shows the example of one convolutional layer. There are N
input feature maps, and each one makes convolutions with a shifting window (the
size of K x K) to breed up one corresponding pixel in one specific output feature
map (R x C). After the complete of the convolutional layer, the total of M out-
put feature maps will be the set of next layer’s inputs to do next operations. The
recent study [21] on feedforward propagation proves that the computation time of
the convolution operations will account for the 90% of the whole processing time.
Therefore, the optimization described later will be concentrated into this point.

2.5 Deep Learning Toolbox - Caffe

Caffe[22], [23] is a deep learning tools developed by the Berkeley Vision and Learning
Center (BVLC) and by community contributors. It is majorly composed by C++
libraries, python and matlab interfaces, provides a series of utilities for training,
testing, fine-tuning and anything the designer could make use of during the process
of research. The merit of the caffe is modularity - facilitate the design, modification
and extension of datum, layers, functions and structures; expression - implement the
designed network in one configuration file; reference model - apply pre-train model
for research. Caffe has it own definition on the basis of layer-by-layer and bottom-
to-top module from input data to loss. Blobs, layers and networks constitutes the
caffe network. Figure 2.9 is the layer computation and communication in the left
and an concrete example of caffe network in the right.

2. Deep Learning 10

Figure 2.9: Left: layer computation and connections; Right: an example of Caffe
network.

11

3. DATAFLOW MODELING

Dataflow-based model has been explored intensively and extensively over the recent
years, especially in the embedded system due to the fact of difficulty in extracting
the high level application structure from platform-based design tool, but dataflow
model could facilitate system analysis, synthesis integration and optimization.

3.1 Dataflow Modeling Principle

In the context of dataflow modeling [24], a dataflow graph is represented as a directed
graph, and composed by a set of actors(vertices) and a set of edges(first-in-first-out,
FIFO), where the actors represent computational functions of arbitrary complexity
and the edges represent communication channels between actors. Actors produce
and consume data value, which is encapsulated in a token as it passes from the
output of one actor to the input of another.

A dataflow edge could be represented as an order pair e = (v1, v2) to mean
data from v1 to v2. Here, v1, denoted by src(e), is called the source actor (or
simply "source") of e, and v2, denoted by snk(e), is called the sink actor (or simply
"sink") of e. One dataflow actor executes the graph by enable functions any time
as long as sufficient data from its incoming edges is adequate to perform its specific
computation, where each actor execution consumes and produces a well-defined
number of tokens on each input and output port respectively. A dataflow graph
firing is a well-defined discrete units of execution.

In Fig. 3.1, FS1, FS2 are the actors of type “File Source”; Adder is an actor of
addition operation; FK is an actor of type “File Sink”. The whole graph produces
(consumes) one token onto (from) each actor output (input) port per actor firing.

3.2 Overview of Dataflow Models

There are several number of dataflow models that are applied into the design and
implementation of DSP context.
Core Functional Dataflow (CFDF) [25] is a dataflow model of computation

that is geared towards design, analysis, and implementation of signal processing
system. CFDF can be regarded as a programming model for developing signal
processing components and systems that have already known ratio of production
and consumption, as well as ones that utilize dynamic dataflow rates.

3. Dataflow Modeling 12

Figure 3.1: Simple dataflow graph.

Synchronous Dataflow (SDF) [26] introduced by Lee and Messerschmitt, is the
simplest and most popular form of dataflow model, which imposes the restriction
that the number if data values produced by an actor onto each outgoing edge is
constant, and also similarly that the number of data values consumed by an actor
from each incoming edge is constant.
Cyclo− Static Dataflow (CSDF) [27] is a generalization of SDF. In CSDF, the

number of tokens produced and consumed by an actor is permitted to vary as long
as the variation takes a fixed and periodic pattern.
Parameterized Dataflow (PDF) [28] is a meta-modeling approach for integrat-

ing dynamic parameters and run-time adaption of parameters in a structured way
into a certain class of dataflow models of computations, in particular, those models
that have a well-defined concept of a graph iteration.
Boolean Dataflow (BDF) [29] model of computation is the extension of syn-

chronous dataflow with another class of dynamic actor, where the production-to-
consumption ratio on one actor ports depends on two-valued functions of control
tokens, which originates from one designated control ports in dynamic dataflow
actors.
Enable − Invoke Dataflow (EIDF) [30] is another dynamic dataflow modeling

technique. It divided actors into a set of modes, each of which has a fixed number
of tokens consumed and produced, representing one branch/process that can be
exploited during the switch of a diversified of modes at run time.

3.3 Dataflow Modeling Environment: LIDE-C

LIDE-C (lightweight dataflow environment C) is a flexible design and C program-
ming environment that allows designers to excavate dataflow-based techniques for
design, implementation and optimization of signal processing systems [31] [32].

3. Dataflow Modeling 13

Figure 3.2: Actor interface function.

LIDE-C concentrates on essential application programming interface (API) features
for signal processing oriented, dataflow-based development. The whole framework
provides capabilities for implementing signal processing systems in a wide range
of programming languages, and across a broad spectrum of platforms, including
field programmable gate arrays (FPGA), graphics processing units (GPU), desktop
workstations, and programmable digital signal processors.

LIDE-C software package possesses a number of libraries of dataflow graph el-
ement(actor and edge) implementations. Based on these basic elements, designers
can freely design their own dataflow graph and define elements, develop specific-
application (e.g, control-, parameterization-, and instrumentation-related modules),
and schedulers that fires the whole dataflow graph sequentially. The details on
installing the LIDE-C environment can be found from [33].

As described in chapter 3.1, two components - actors and fifos, are key points
in dataflow model. For one thing, actor design in LIDE-C includes four interface
function: the construct, enable, invoke and terminate functions (Fig. 3.2). The
creation and definition of one actor in LIDE-C is the realization of four interface
implementation:

(1) Construct Function: to create an instance of the actor and connect the ports
of actor to a set of edges that is passed through the function argument list.

(2) Enable Function: to check at run time whether or not a given actor is firable
- whether there is enough input data and empty buffer space to support the
next firing of the actor.

(3) Invoke Function: to perform a single firing/block of firing for the actor.

3. Dataflow Modeling 14

(4) Terminate Function: to close out aspects of the underlying actor, including
deallocation of relevant storage objects, once the actor is no longer needed in
the context of its enclosing graph.

For another thing, FIFO design for dataflow graph implementation in LIDE-C
is orthogonal to the design of dataflow actors. That means application designers
can concentrates on design of actors(like algorithm) and then integrating these ac-
tors through well-defined interfaces and fifos. The beauty of this is to separately
center around computation and communication with actor and fifo implementation.
FIFO operations are encapsulated by interface functions in C. Function pointers are
applied to point towards these interface functions so that they could be targeted
to different implementation in the different forms while attached to the standard
interface. Standard FIFO operations in LIDE-C execute the following tasks [34]:

(1) Create a new FIFO with a particular capacity.

(2) Read and Write tokens from/to one fifo.

(3) Check the capacity of the FIFO.

(4) Check the number of tokens that are currently in the FIFO.

(5) Deallocate the storage with the FIFO after the complete of using the FIFO.

After the creation of all actors and fifos in one dataflow-model graph application,
gradually connecting and firing the graph one step by step is the next key point
to verify the whole graph in the complex topology. Chapter five demonstrates one
example based on car recognition application.

15

4. APPLICATION AND SIMULATION MODEL

The deep learning application that we focus on in this thesis is that of image-
based recognition of vehicles. In particular, we develop DNN implementations for
automatic discrimination among four types of vehicles — bus, truck, van and car.
First step is to build on the DNN network structure based on DNN-based vehicle
classification. Next, we implement the DNN system in MATLAB for simulation and
testing purposes. The primary objective of this step is to collect results from each
layer so that the embedded implementation for each layer can be tested in isolation
in addition to performing complete, system level tests of the target implementation.
Such layer-by-layer testing helps to build up the implementation incrementally, and
localize the causes of test failures to provide for more rapid design iterations.

4.1 DNN Topology for Vehicle Classifier

Deep learning tool "Caffe" is applied into this application, to randomly search for the
best combination of selected hyper-parameters (the number of layers, nodes, the size
of convolutional kernels, etc). After a series of iterations on fifty pieces of random
hyper-parameters with the same computational resources, the hyper-parameters for
one of the best deep learning network topology is summed up to Table 4.1. The
rightmost column (Selected Value) tabulates the relative parameter of deep learning
network.

Description of CNN’s structure:

(1) Two convolutional layers + two dense layers + one classifier layer

(2) 96 x 96 square pixels size of input image.

Hyper-parameter Range Selected Value
Number of Convolutional Layers 1-4 2
Number of Dense Layers 0-2 2
Input Image Size 64, 96, 128, 160 96
Kernel Size on All Convolutional Layers 5, 9, 13, 17 5
Number of Convolutional Maps 16, 32, 48 32
Learning Rate 10−5 - 10−1 0.001643

Table 4.1: Hyper-parameters randomized over the iteration [1].

4. Application and Simulation Model 16

Figure 4.1: The structure of the proposed network [1].

(3) 5 x 5 square pixels size of convolutional kernels.

(4) 32 feature maps → 32 filters learned at each convolutional layer.

(5) 0.001643 learning rate for stochastic gradient back-propagation.

The diagrammatic sketch map on this CNN with these parameters is illustrated
in Fig. 4.1. Broadly generalizing, the deep learning net topology[1] consists of five
layers: two convolutional layers followed by two dense layers, plus an output layer.
The first convolutional layer maps one input image of 96 x 96 R.G.B three channels
into 32 pieces of feature maps, which are maxpooled and then Relu (Rectified Linear
Unit) to 48 x 48 resolution. The second convolutional layer remaps another 32
pieces of 24 x 24 resolution’s feature maps through the same functions, but the
input is the 32 output feature maps from the first convolutional layer one. After two
convolutional layers, the 32 output feature maps are fully connected into two dense
layers with 100 nodes (features) each, and between layers there is an additional Relu
non-linearity. Eventually, the outputs of two fully-connected dense layer runs to the
last dense layer and then classified into one class with high probability among four
classes by means of a softmax algorithm. he network is trained with a database
of 6555 vehicle images and adjust the net parameters. After the experiment, the
resulting prediction accuracy is 97.75%, which is clearly superior to the accuracy of
earlier studies that use manually engineered feature extraction pipelines.

4.2 Parameters Extraction

This step is crucial to put the application on some less power but smart device,
especially for so-far technology, because parameter extraction could save the training
phase in the smart device and directly set up the specific system. Figure 4.2 reveals
parameters conditions in each layer.

(1) The first and second convolutional layer respectively consist of 32 x 3 x 5 x 5
= 2400 and 32 x 32 x 5 x 5 = 25600 double type of values.

4. Application and Simulation Model 17

Figure 4.2: Parameters extraction.

(2) The number of the third layer’s parameters is astonishing (exactly 100 x 18432
= 1843200 double type of values), and the size of the file is nearly up to 48M.

(3) The fourth and fifth dense layers has separately 100 x 100 = 10000 and 4 x
100 = 400 double type of values.

Although the amount of the datum is still gigantic, the consumption of time on
loading is by far advantageous over the time on training phase.

4.3 Matlab Implementation

Figure 4.3 demonstrates the situation on matlab implementation. The key point of
that is the utilization of cell array, which is involved with four-dimensional matrix
and execute a series of operations within this huge four-dimensional space.

The description of figure 4.3 is as following:

• Directory "KERNELS-2015-05-23-12-53-32" contains all the figure ?? param-
eters’ files.

• LoadLayer.m: load parameters of each layer to the variable as the form of cell
array (4 dimensional matrix in the first two layers and 2 dimensional matrix
in the rest of layers).

• Convolve.m: execute convolution operation in first two layers with the same
the size of input and output. In terms of the number of input, there are three-
channel inputs of the first layer while there are thirty two channels inputs of
the second layer.

• Maxpool.m: occur in the first two layers, followed by the convolution opera-
tion. The maximum of value is picked up in every moving 2 x 2 square matrix
(moving distance is 2).

• Relu.m: happen in the end of every layer to do with non-linear function.

4. Application and Simulation Model 18

Figure 4.3: The implementation of matlab model.

• PredictDnn.m: the major car-recognition script that is to establish a CNN
with the specific hyper-parameter, do operations, and then predict the result.

4.4 Experiment and Result

The criteria for testing the performance is the whole processing time , which is the
sum of loading coefficient time and computing time. I put several experiment in
different computers and get different results. Among this, the best result is loading
coefficient is 50.51s and computing time is 1.36s, but the average consumption time
is approximately 90s, The MATLAB Profiling tool’s result is Figure 4.4.

From the Profile Summary view, the whole processing time is a bit longer (173s),
which is beyond human-being’s endurance, impractical to the real-time application.
The reason for that is the utilization of four-dimensional cell array, which needs load,
do and store four-dimensional cell array in every operation, wastes lots of processing
time.

4. Application and Simulation Model 19

Figure 4.4: The profiling of matlab model.

20

5. LIDE C-BASED DESIGN AND

IMPLEMENTATION

After developing the MATLAB-based simulation model for our DNN-based vehicle
classification system, we proceed to develop an initial dataflow-based implementa-
tion, which will be employed as a starting point to evaluate the system on different
kinds of platforms, and then iteratively optimize dataflow graph for the purpose of
the improvement on performance.

5.1 Actors in Dataflow Graph

To begin with, the diagrammatic sketch map (Fig. 4.1) is transformed into the
block diagram, which is depicted into the Fig. 5.1. Although this block diagram
encompasses thousands of individual signal processing blocks (actors), there is a
great deal of regularity in the way the blocks are instantiated and connected. Such
regularity can be exploited from deriving LIDE-C designs in the form of compact,
parameterized dataflow graph implementations that designers can efficiently analyze
and manipulate (e.g., see [35]). The block diagram in Figure 5.1 incorporates a total
of 10 different types of actors, which are summarized as following.

• Read Channel Actor: One image is decomposed into R.G.B three channels,
and every channel has 96 x 96 resolution matrix to be read into one fifo.

• Covolutional Actor: A way of "multiplying together" two arrays of numbers
to produce a third array of numbers with the same size and dimensionality.
The formula definition is (5.1)

y[m,n] = φ(p) = φ(b+
K−1∑
k=0

K−1∑
l=0

V [k, l]x[m+ k, n+ l]) (5.1)

• Maxpool Actor: A form of non-linear down-sampling, which partitions the
input image into a set of non-overlapping rectangles and, for each sub-region,
outputs the maximum value. Figure 5.2 is the illustration of maxpooling
definition. Left figure → the input volume of size [96 x 96 x 32] is pooled
to the output volume of size [48x48x32] with the stride size 2, noted that the

5. LIDE C-Based Design and Implementation 21

Figure 5.1: Block diagram of deep neural network.

depth is preserved. Right figure→ the demonstration of maxpooling operation
with stride 2.

• Relu Actor: Rectified Linear Unit, which is a very popular non-linearity
function ⇒ f(x) = max(0, x), x is the input. Softmax Actor: A neural
transfer function, which calculates a layer’s output from its net input ⇒
a = exp(n)/sum(exp(n)).

• Write Actor: Write the datum into the appointed file.

• All_to_one Actor: to decrease the dimension of the matrix, which means to
assembly several inputs matrice to one output matrix. For example, 3 pieces
of the size of 2 x 24 inputs would be assembly into one input matrix, whose
size is 1728 x 1.

• Broadcast Actor: Copy the input matrix on every fifo outputs.

Figure 5.2: Maxpooling operation.

5. LIDE C-Based Design and Implementation 22

Figure 5.3: The definition of matrix multiplication.

• Matrix Multiplication Actor: Assuming A is an n x m marix and B is an m x
p matrix, the definition is Fig. 5.3, where each i,j entry is given by multiplying
the entries Aik (across row i of A) by the entries Bkj (down column j of B),
for k = 1,2,. . . ,m, and summing the results over k.

• Matrix Addition Actor: Two matrices of equal number of rows and columns
are added. The definition is Fig. 5.4, the sum of A and B is denoted A + B,
which is computed by adding corresponding elements of A and B.

• Matrix Multiple Addition Actor: several inputs matrice with the same size
and dimension add together once.

5.2 Design Dataflow Graphs

Though the whole CNN dataflow graph is not only much too huge but also little bit
complicated and links is magnificently massive, the complex of network is majorly
focus on the two convolutional layers that has some inherently regularity. Therefore,
how to design the subgraph and then gradually establish the whole graph is a key
point. In this section, we develop three different kinds of CNN design graph with
different subgraph patterns. And every design has its own advantage and disadvan-
tage.

5.2.1 Dataflow Model of Design One

The dataflow graph of design one is illustrated in figure 5.5.

• Five columns composed by different actors represents five layers of CNN.

• Every actor in Figure 5.5 is a hierarchical actor, which encapsulates one sub-
graph.

Figure 5.4: The definition of matrix addition.

5. LIDE C-Based Design and Implementation 23

CONV1_SFM

CONV2_SFM

DENSE_LAYER_1

DENSE_LAYER_2

LAST_LAYER

ACTORS:

Fully
Connected

Figure 5.5: Dataflow model of design one.

• The first layer is made up of 32 conv1_SFM_Actors(blue), which signify 32
feature maps. The size of [3 x 96 x 96] matrix input maps to the size of [48 x
48] matrix output. Figure 5.6 is the details on subgraph_conv1_SFM.

• From convolutional layer one to layer two, every subgraph_conv2_SFM is
fully connected all the outputs from subgraph_conv1_SFM, which means all
the outputs of 32 feature maps from convolutional layer one is the inputs of
every feature map in the convolutional layer two.

• The subgraph_conv_SFM actors(red) is almost the same function as sub-
graph_conv1_SFM actors(blue) - the symbols for the feature map in the
second convolutional layer. Regard 32 outputs of the first convolutional layers
as 32 inputs [48 x 48 x 32], which are transferred to the corresponding convo-

5. LIDE C-Based Design and Implementation 24

Conv_1

Conv_2

MaxpoolAdd_2

Add_1

Conv_3

Read

5 x 5 kernel
convolution weight

5 x 5 kernel
convolution weight

5 x 5 kernel
convolution weight

96
x9

6

96x96

96x96

96x96

96x
96 96x96

96x9
6

96x96 48x48

Figure 5.6: Dataflow subgraph of subgraph_conv1_SFM actor.

lutional actors, followed by adding all 32 output together and finally maxpool
to [24 x 24] matrix output. The dataflow of subgraph_conv2_SFM is figure
5.7 .

• Dense_layer_one is composed by matrix multiplication actor and Relu actor.
Assembly 32 pieces of [24 x 24] matrix into the size of [1 x 18432] before
multiply the size of matrix [18432 x 100], and then go through Relu operation
to get the final [100 x 1] size of output. Figure 5.8(a) is the dataflow of dense
layer one .

• Dense_layer_two is also made up of matrix multiplication actor and relu
actor. The difference from dense_layer_one is only one input fifo and the
multiplication size of matrix is [100 x 100]. Figure 5.8(b) is the dataflow of
dense layer two .

• The classifier_layer is a combination of matrix multiplication actor and soft-
max actor. By means of matrix multiplication [100 x 4], the matrix result is
precisely classified into one of four results after softmax actor. Figure 5.8(c)
is the dataflow of classifier layer.

Summary: The benefit of design one (based on feature map or layer as one actor)
is that the whole network establishment structure is very crystal-clear, by far closest
to the block diagram. Furthermore, it is straightforward to implement, validate and
check the result as a whole graph. However, the drawback is the difficulty of further
and deep optimizing when the subgraphs are determined, because one subgraph
could be considered as a complete and “big“ actor which is encapsulated, generally

5. LIDE C-Based Design and Implementation 25

24x2448x48

48x48

48
x4
8

48
x4
8

48x48

48x48

48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48
48x48

48x48

48x48

48x48

48
x4
8

48x
48

48x
48

48x
48

48x
48

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48

48x4
8

48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5
48x48
5x5
48x48
5x5

48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5

48x48
5x5
48x48
5x5

48x48
5x5
48x48
5x5
48x48
5x5

Actors:

Convolution

Addition

Max-pool

Figure 5.7: Dataflow subgraph of subgraph_conv2_SFM actor.

less to modify. Last but not the least, some subgraphs referred from other dataflow
graph is not convenient to debug and check when it is encapsulated. Therefore it
would be disaster if the error was occurred in the huge subgraph referred from other
project when you had established tremendously large graph. All in all, it is a better
method from scratch but more attention to the reference of other subgraphs written
by other projects, more emphasis on the pre-requirement of actor.

5. LIDE C-Based Design and Implementation 26

(a) Dense layer one.

(b) Dense layer two.

(c) Classifier layer.

Figure 5.8: Layer three, four and five of the deep neural network.

5.2.2 Dataflow Model of Design Two

The concept on design two is the further decomposition of the first two convolutional
layers into some basic and characteristic chunks. Figure 5.9 is the dataflow of design
two.

The description of design two

• Sub_graph_1 (red) consists of two convolution actors and one addition actor,
and the dataflow of sub_graph_1 is figure 5.10(a)

• Sub_graph_2 (blue) is short of one convolution actor compared to sub_graph_1,
the dataflow of sub_graph_2 is figure 5.10(b)

• Maxpool actor for itself is one individual subgraph, the dataflow of maxpool
is figure 5.10(c)

5. LIDE C-Based Design and Implementation 27

.

26 subgraph

..

..

.

..

..

sub_graph_1

sub_graph_2

max_pool

dense_layer_1

dense_layer_2

layer_last

ACTORS:

broadcast_token
F
u
l
l
y
-
C
o
n
n
e
c
t
e
d

Figure 5.9: Dataflow graph of design two.

• Convolutional layer is made up of these three actors: run sub_graph_1 first,
and iteratively operating several times of sub_graph_2 operation according
to different layers, finally do maxpool.

Summary: The advantage of the design two is that the dataflow graph is more
clear to use loop unrolling (computing in parallel) and pipeline for optimization
in the convolutional layer. That means the whole graph might extend the latency
but increase the throughput. This feature is benefit to training the net (especially
thousands of batch samples execute in the network and adjust the parameter through
the forward, backward propagation). Certainly, it needs some tricks and analysis on
the specific issue, and here it only comes up with possible idea. Overall speaking,
the whole CNN dataflow graph on design two is still understandable.

5. LIDE C-Based Design and Implementation 28

(a) Sub_graph_1.

(b) Sub_graph_2.

(c) Maxpool_graph.

Figure 5.10: Sub_graph in Design Two.

5.2.3 Dataflow Model of Design Three

Although design two has already anatomize the whole graph to some degree, it does
not dig deepest. The best and complete optimization, verification and debug always
happen in the origin way. Therefore, the concept of design three is to consider one
actor as one subgraph, which could divide the task into two aspects. On the one
hand, actor is principally and exclusively the optimization of algorithm; on the other
hand, how to optimize the whole graph is the scheduler responsibility. The dataflow
of design three is the figure 5.11, but the huge graph is a little bit rearrangement
and omitted in order to be readable and extendable in one page.
The description of design three:

5. LIDE C-Based Design and Implementation 29

.

.

.
28
.
.
.

CONVOLUTION
LAYER

 ONE
96*96

CONVOLUTION
LAYER

TWO
48*48

DENSE
LAYER
 THREE

100*18432

DENSE
LAYER
 FOUR

100*100

LAYER
FIVE
100*4

MATRIX
MAXPOOLING_RELU

MATRIX
MULTIPLICATION

MATRIX
RELU

MATRIX
ADDITION

SOFTMAX/SIGMOD

ALL_TO_ONE

MATRIX
CONVOLUTION

READ CHANNEL

ACTORS

WRITE CHANNEL

Figure 5.11: Dataflow graph of design three.

• Eight different actors are in the whole graph, and corresponding eight different
subgraphs connects to the whole dataflow graph.

• Original convolutional neural network dataflow topology.

Summary: The merit of design three is to arbitrarily monitor, control, manage,
validate and check the datum/buffer in every step/actor/area, and it is general to
have inspiration of optimization from the primitive graph. Besides, do the parallel
computing thoroughly (feature maps, loop unrolling in every convolutional layer;
convolution actors parallelize in every feature map; convolution itself and matrix
multiplication itself). Finally, it could simply execute some surgeons (optimization)
in tiny region. Conversely, the demerit is that it is not simple to establish, optimize
and implement the huge and complicated dataflow graph from start.

5. LIDE C-Based Design and Implementation 30

Write N actor
functions of one

data-flow graph in
one file

utilise the function
pointer to N actor

functions

 Create one actor

 Transfer function
pointer in every
actor's invoke

interface

Validate the actor

N--
N==0?

No

 Implement the
graph scheduler

gradually
(connectivity)

Yes

Write a test script
that validates the
graph(change)Write a test code

that validates N
function

Run the test, and
(if applicable)
watch it fall

Update a new
graph, connect

one more actor to
expand the graph

verify new and all
previously-

developed tests
pass

Yes/No?

Fail

No

Yes

Figure 5.12: Flow diagram of LIDE-C code implementation.

Three designs has their own advantage. Design two and design three could be
prepared for the future work and the following writing is majorly based on the design
one.

5.3 Software Implementation Process

The process of implementation code is majorly made up of two steps. One is to
create actors and the other is to connect the actors, set up the graph scheduler.
Figure 5.12 describe the details of LIDE-C code implementation process.

5.3.1 Actor Code

From the chapter three’s LIDE-C description, to creat one actor needs four key
function and here it takes convolution actor implementation for example.

Figure 5.13 demonstrates the outline of construct function for this actor. The
first three parameters of function, fifo_in, fifo_out, fifo_conv_wgt, have a relative

5. LIDE C-Based Design and Implementation 31

Figure 5.13: Construct function for convolutional actor.

with the corresponding fifos, which is the dataflow edges, connecting to the actor
port in one enclosing graph. The datum of fifo_in and fifo_conv_wgt’s buffer are
processed by the actor, and the result is produced and re-encapsulated into new
buffer that fifo_output carries. Furthermore, the instantiation of one actor is also
the initiation of the function pointers, like enable, invoke and lide_c_func_para_5.

Figure 5.14 reveals the outline of enable function for this actor. It is noted that not
all of the actor ports would be needed during all of the CFDF modes. For example
of this code, the mode of “LOAD_1” is only involved with fifo_in; “LOAD_2” is

Figure 5.14: Enable function for convolutional actor.

5. LIDE C-Based Design and Implementation 32

Figure 5.15: Invoke function for convolutional actor.

just for fifo_out; “PROCESS” mode is exclusively related with fifo_out.
Figure 5.15 illustrates the outline of invoke function with an unconditional actor

firing, because it is scheduler and enable function’s responsibility to ensure there
is enough resources to invoke the function. The invoke function calling without
adequate datum and space would lead to unpredictable results. In the unit test
process, this issue could be addressed.

Figure 5.16 elucidates the outline of terminate function. The target is to discharge
the memories that has allocated during the construction and execution process.

5.3.2 Graph Scheduler

The steps of implementation on the graph scheduler are as followings:

(1) Create new actors and fifos.

(2) Allocate the buffers and space on these actors and fifos.

(3) Initialize these actors.

(4) Connect all the actors.

Figure 5.16: Terminate function for convolutional actor.

5. LIDE C-Based Design and Implementation 33

Figure 5.17: Graph Scheduler Code.

(5) Run the schedule and execute the dataflow graph.

(6) Normal termination.

The sample code on dataflow of conv1_SFM(figure 5.6) is figure 5.17.

5.4 Functional Validation

Functional validation is a critical step for automatically validating the correctness of
each implementation iteration before different transformations are applied. For this
purpose, we apply the DSPCAD Integrative Command Line Environment (DICE),
which provides language- and platform-agnostic features for testing of embedded
signal processing software [36], [37].

Figure 5.18 illustrates the DICE-based organized, associated and systematic di-
rectory tree, which contain all hierarchy of the software and test modules for the
DNN system design.

• All the sources (*.c,*.h,*.o) is contained in the directory "src".

• Every autotest-output directory depicts the current root’s running situation.

5. LIDE C-Based Design and Implementation 34

DL_CNN

autotest-
output doc srctest matlab

code

README.txt
test_output.txt

test_summary.txt

convolve.m
loadLayer.m
maxpool.m

predictDnn.m
relu.m

Lane1.png
Lane2.png

Kernel directory

version.txt
dlconfig
makeme

README.txt
14 actor .h files
14 actor .c files

test_actors test_dl_graph

test_dl_lide
_c_softmax

test01 util

12
directories
of actors

Autotest_output
input.txt

output.txt
correct-output.txt
expected-errors
diagnostics.txt
test-desc.txt

makeme
runme

README.txt

dlcconfig
lide_c_softmax

_driver.c
makeme
runme

parameter 5
filestest_dl_design test_dl_opimization

test_dl_design
_one

3
directories
of designs

Autotest_output
output.txt

correct-output.txt
expected-errors
diagnostics.txt
test-desc.txt

makeme
runme

README.txt

test01 util

dlcconfig
lide_c_car_reco
gnition_dl_d1_d

river.c
lide_c_dl_graph

_01.c
lide_c_dl_graph

_01.h
makeme
runme

test_dl_optimiz
ation_one

5
directories

of op

Autotest_output
output.txt

correct-output.txt
expected-errors
diagnostics.txt
test-desc.txt

makeme
runme

README.txt

dlcconfig
lide_c_car_recogniti
on_dl_op1_driver.c

lide_c_dl_gh_op01.c
lide_c_dl_gh_op01.h

makeme
runme

test01 util

Figure 5.18: Directory tree of DL_CNN project.

• Test directory is divided into two section. On the thing is for the actors, and
the other is for graphs.

• Every actor has its own test suite and individual directory to validate, verify
itself.

• There are 12 actors (including optimized actor described later) in this dataflow
graph and correspondingly produce 12 directories, and in every directory, there
is at least one test sample to check the actor whether it is correct or not.

• After the validation on the actor, subgraph is needed to be establish with
these validated actor before the final whole dataflow graph is completed based
on these subgraphs, all which would be kept in the design directory. Three
design patterns in this project produce three individual directories to record
and store the files, which exert the compilation, validation’s function.

• The process of optimization follows the design’s step to update the designed
dataflow graph. Similarly, the number of optimization has the number indi-
vidual directories.

• There are 12 test suites of actors (unit test), 3 test suites of designs (system

5. LIDE C-Based Design and Implementation 35

test) and 5 test suites of optimizations (system test), 20 test suites all together.
Only use “dxtest” command, all the 20 test suites would be tested, which saves
an enormous amount of effort during the test validation process.

For further details on development and testing of signal processing systems using
DICE, we refer the reader to [37].

36

6. DATAFLOW GRAPH TRANSFORMATIONS

After the complete of deep neural network design and implementation, we transform
the whole DNN for the purpose of the better performance and efficiency. Figure 6.1
demonstrates our six transformations.

6.1 Transformation One : Broadcast Optimization

The transformation own “fork” function by means of creating the new actor (broad-
cast_token actor) after every conv1_SFM actor and the beginning of the read image
datum. This behavior is to copy the buffer and pioneer another several fifos (threads)
rather than to do repeat redundant operations from scratch, especially forking 32
fifos occurred between the first convolutional layer and the second convolutional
layer. Figure 6.2(a) is the illustration of this “fork” optimization. The green dia-
mond buffer is changed to red rectangle buffer after subgraph_conv1_SFM actor.
In case the graph needs 32 pieces of the red rectangle buffer, the primitive graph
makes it through repeat 32 times of the same operation. Therefore, it is fairly clever
to create the broadcast_token actor, which exert the fork function, to avoid the
thirty-two repeats of the same data-flow graph operation from the start point.

6.2 Transformation Two : Global Memory

With the consideration of relatively slow memory transfer (Read/Write I/O) in the
computer system, the number of data transfer (load/store) between fifos should be as
minimized as much as possible. Therefore, loading the convolution weight and other
layer’s parameters into global memory is another solution. The transformation has
impact on every actor that is in possession of parameters/coefficients from imported
datum. Figure 6.2(b) shows there are two fifo_in in the original way, which give rises
to much more time for loading the datum compared to the after transformation two
graph which has only one fifo_in to needed to load datum, plus putting convolution
weight into global memory (imprint pointer).

6.3 Transformation Three : Multi-Addition Actor

This transformation is pointed to lots of lide_c_mtx_add actors. The idea is to use
one multiple addition to replace these lots of additions. To take subgraph_conv2_SFM

6. Dataflow Graph Transformations 37

CONV1_SFM

CONV2_SFM

DENSE_LAYER_1

DENSE_LAYER_2

LAST_LAYER

ACTORS:

Fully
Connected

OP1

OP4

OP2
OP2

OP3

OP3 OP4

OP5

OP6 OP6 OP6

Direct operation in fifo,
whichs apply everywhere

Pointed to
Parameters

Multi_Addition
Actor

Broadcast_token
Actor

All_to_One Actor

Parallel Computing

OP1

OP2

OP3

OP4

OP6

OP6

OP1

OP2

OP2OP2

Figure 6.1: Transformation map.

as an example, there are 31 addition actors in that dataflow graph, which need much
superfluous operations to load the fifo, do operation and then write the datum to
fifo. It wastes some time on the 31 additions. The solution for that is to create
a multiple_addition actor of dealing with a series of input additions once. Figure
6.3(a) is the illustration of this situation that addition actors (green) are replaced
by one multiple_addition actor.

6.4 Transformation Four : Simplification of First Two Layers

From the view of design one, the transfer between convolutional layer one to layer two
is a little bit heavy-worked. Too many links occurred there infer too much time to use
for loading, operating, storing and transferring. Therefore, transformation four is to
create a new actor (all_to_one actor), whose function is to assembly all input fifos
into one fifo (decrease the dimension of datum). To add two actors (all_to_one
actor and broadcast_token actor) between two convolutional layers could highly
decrease the complexity of the dataflow and also the number of operations and
actors. Figure 6.3(b) display the detailed dataflow graph of transformation four.

6. Dataflow Graph Transformations 38

Broadcast
_token

buffer after SFM

subgraph_
conv1_

SFM

buffer before SFM

(a) Broadcast optimization.

Conv

5 x 5 kernel
convolution weight

96x96

Conv

5 x 5 kernel
convolution weight

96x96

(b) Global memory optimization.

Figure 6.2: Transformation one and two.

mutiple_addition

Convolution

Addition

(a) Multi-addition actor.

CONV1_SFM

CONV2_SFM

ALL_TO_ONE

BROADCAST_TOKEN

ACTORS:

(b) Simplification of first two layers.

Figure 6.3: Transformation three and four.

6. Dataflow Graph Transformations 39

ACTOR

ACTOR

Buffer_1

After-Actor
Buffer_1

Buffer_2

Figure 6.4: Transformation five : In-Place operations.

6.5 Transformation Five : In-Place Operations

Transformation five is to perform "in-place" operations on input data rather than
having load mode. That means, instead of loading an image from an input FIFO
into some internal storage for the actor, utilize the data directly from the input
FIFO during the actor’s computation, which will get rid of the associated LOAD
mode, and the actor could run a lot faster. The transformation works on every actor
in this dataflow graph. Figure 6.4 shows the details of transformation five. Shape
represents container/fifo and color signifies the datum. The original one is to change
the shape and color, which means to change the datum as well as fifo, need time
to do two steps. Contrarily, after-transformed one is exclusively change the color,
which exclusively changes the datum.

6.6 Transformation Six : Clustering into Threads

In this transformation, we cluster (or group together) subgraphs within the overall
DNN dataflow graph to be executed as concurrent threads in the target multicore
implementation [38]. This enables parallel execution of DNN subsystems when mul-
tiple cores are employed. Execution within the subgraph for each thread is managed
by a LIDE-C-based dataflow graph scheduler that is dedicated to the thread, and
the different schedulers for the different threads therefore execute concurrently for
the overall DNN system. We employ pthreads as the interface for implementing
the thread-based concurrent execution of the dataflow subgraph schedules[39],[40].
In our experimentation with alternative clusterings, we find that parallelization of
32 feature maps computations in the convolutional layers is especially effective in
improving performance on the target platforms.

40

7. EXPERIMENTAL RESULTS

In this chapter, we separately operate the deep learning application in single core
processor, test its performance in different environment, tools and conditions. Next,
as a result of recent research [40] indicating the eventual optimizing effect would
be still limited without concentration on the time-consuming operations, we run
the after-parallelized DNN topology in the multiple core processors, respectively
in the three different kinds of platform configurations that are targeted to three
specific simulation situations: home application, remote application and embeded
application.

7.1 Single Core Processor

Test items we focus on here are, the loading time - the time to load the DNN pa-
rameters obtained from the after-trained neural network, prediction time - the time
required for classification of a single input image as soon as the training parameters
has been loaded, and processing time - the addition of loading time and prediction
time, which are measured from executing four versions of our DNN system concern-
ing vehicle classification: (1) simulation implementation in matlab implementation;
(2) unoptimized LIDE-C implementation; and (3) LIDE-C implementation with C
compiler optimization - O3; (4) LIDE-C implementation with C compiler optimiza-
tion - O3 and the dataflow optimization techniques discussed in chapter six. We
refine the Fig. 7.1 from Table A.1, which are derived using a single-core, Intel Core
i5-4248U processor with 8 GB memory and tested three times. The results in-
dicate that applying model-based optimization techniques in LIDE-C significantly
improves the overall single-core performance compared to the matlab simulation
version, the unoptimized (initial) LIDE-C version and LIDE-C implementation with
only C compiler optimization, while also exposing high-level dataflow structure that
can be exploited to map the application onto multicore configurations in next step.

7. Experimental Results 41

Figure 7.1: Speedup results on single core.

7.2 Multi-Core Processors

Here, with the aid of the clustering transformation described in transformation six,
we map the after-transformed LIDE-C implementation to parallelize the design for
efficient execution on various alternative multicore configurations and run in the
following plaforms.

Figure 7.2 is speedup results on the multiple cores, summed up from Tables A.2,
A.3, A.4.

Table A.2 separately shows the loading time, prediction time, processing time in
one core and two cores measured after mapping the optimized LIDE-C-based DNN
implementation onto intel core i5 4248U. This situation could be applied in the home
application with only one computer.

Table A.3 elucidate loading time, prediction time and processing time recorded
three times, which are consumed in after-parallelized DNN and respectively run
on one core, two cores, three cores, four cores, eight cores and twelve cores. This
is remotely control case - a device that has an internet connection to one server,
under the utilization of high performance on supercomputer clusters, remotely and
automatically for pattern recognition.

Table A.4 reveals those loading time, prediction time and processing time in ARM
A15 quad core (Odroid XU3 Board), and execute separately on one core, two cores,
three cores, four cores. It could be worked as a embeded system - integrate the deep
learning module into one device and off-line pattern recognition.

To sum up, these results quantitatively demonstrate the utility of after-transformed
LIDE-C implementations in exploring complex design spaces for DNN systems in-
volving alternative multicore platforms. From the results’ view, the loading time
could be invariant to how many cores the application runs on while the prediction

7. Experimental Results 42

Figure 7.2: Speedup results on multiple cores.

time is consumed less and less with the utilization of an increasing number of cores.
With the consideration of loading data incurred only once, at system setup time,
the decrease of prediction time is a expected result - achieving further performance
improvement by exploiting parallelism in these platforms.

43

8. CONCLUSIONS AND FUTURE WORK

This thesis is pertaining to the automatic classification on image-based vehicle recog-
nition by deep neural network. We build on the DNN network structure derived in
recent work on DNN-based vehicle classification, and we go beyond this previous
work [1] by investigating aspects related to the efficient embedded implementation
of this structure. Figure 8.1 shows a unified methodology for selecting, designing,
establishing, modeling, mapping, transforming and validating deep learning archi-
tecture and implementations on resource-constrained platforms (FPGA implemen-
tation, the final two steps of Fig. 8.1, are the future work as is described later).
With a view to iterative development of DNN implementation and optimization, we
incorporate the lightweight dataflow environment (LIDE), which is a dataflow-based
programming environment that allows signal processing system designers to apply
and experiment with dataflow modeling approaches relatively quickly and flexibly
in the context of existing design processes.

In particular, we employ LIDE-C, which is a part of the LIDE environment that
is designed for use with C as the language for implementing dataflow-based software
components (actors). LIDE-C provides application programming interfaces (APIs)
that can be used when developing software modules using C such that the modules
can be integrated together systematically as actors in an enclosing dataflow graph.
This allows complete signal processing systems, such as our targeted DNN-based
vehicle classification system, to be constructed as dataflow-based signal flow graph
implementations where the actors are realized in C. Our use of LIDE-C in this
thesis, as compared to other variants of LIDE, is motivated by the important role
of C in embedded software implementation. Figure 8.2 is to summarize the process
of LIDE-C design, implementation and optimization (LIDE-C Methodology). It is
not only targeted to this thesis’s application of LIDE-C programming, but also to
any general application that is based on dataflow graph programming.

In this thesis, we have concretely demonstrated this process using a design and
implementation case study of a deep neural network (DNN) for vehicle classifica-
tion. Using the lightweight dataflow environment-C (LIDE-C), we have applied
model-based design methods and using the resulting dataflow representations, we
have applied a selected subset of design optimizations for the purpose of the perfor-
mance improvement, and to derive efficient implementations of the targeted vehicle

8. Conclusions and Future Work 44

Comfirm one
application according

to requirements

Glean and import the
related samples to

randomly "caffee" DL
network(python code)

From the final results,
select the best DL
network structure

Retraining the
specific net and

validate, check the
net's accuracy

Extract every layer's
parameters

(convolution weight)

Based on these
parameters, write

matlab code to realize
the DL architecture

Calculate and get the
every key points'

results for verification
and debug.

According to Lide-C
methodology, develop

a reference
implementation of a
dataflow-based DL

network

Select circuit board
and import the code
to it and realize that

in FPGA

Apply dataflow graph
and scheduling
transformations

Validate the
classification

accuracy of the
transformed design

Final checking and
compare

Profile transformed
system to extract data
on graph- and actor-

level performance

Figure 8.1: The methodology for the thesis.

classification system on three different multicore platforms with limited numbers of
available cores. These transformations exploit the orthogonalization of actor im-
plementation, task scheduling, and buffer management in LIDE-C, which allow for
rapid prototyping of alternative implementation strategies for the given dataflow
graph. While these transformations are not new design optimizations in and of
themselves, their integration into resource-constrained multicore DNN implementa-
tions, and their application based on lightweight dataflow design principles are not
only novel aspects of this thesis, but also getting the gratifying fruition.

However, the thesis is only the first version dataflow-based implementation on
DNN application from scratch. Many sequential directions for future work include:

(1) Further optimization. It could be parallelized in the feature maps based
on the design one. Supposed that digging further, you could also be par-
allelized in every convolution actors of every feature map, especially in the
subgraph_conv2_SFM. Provided that digging thoroughly, it could be par-
allelized in every operation because every operation could be composed by
product and addition, including convolution actor and matrix multiplication
is also a typical application on computing in parallel, hence find internal par-
allelism of a certain algorithm, use lock-less asynchronous update to speed up
the procedure. Therefore, parallel scheduler protocol may be another good
and challenge topic. Furthermore, optimization of convolution actor - the
most time used in the profiling DNN dataflow graph. Last but not the least,
executing the loop tiling for the benefit of the next FPGA implementation is
to solve the memory limitation in the hardware platform.

8. Conclusions and Future Work 45

Process/Application is
described by block

diagram

Every possible function
in this process is
created an actor

Based on actors and
block diagram, design

a dataflow graph

Every feature map is
one subgraph

Write actors code,
implement the graph

scheduler, and validate
every actors and graph

Optimize the whole
graph

Fork function - create
the "broadcast_token",

avoid the repeat
operation

Keep the parameters
into the global memory

and utilize pointer to
operate that value

Iteratively two inputs
additions to one
multiple addition

Loop unrolling, and
parallelize

In-place operation -
instead of loading
datum from fifo, do

function directly in fifo

Select several based
actors to one subgraph

One individual actor is
one subgraph

Design One

Design
Two

Design

Three

Optimize

Three

Optimize
 Six

Optim
ize

One

Optim
ize

Two

Optimize Five

Create the "all_to_one"
actor, reschedule the
connection between
layer_1 and layer_2

Optimize Four

Figure 8.2: The process of LIDE-C programming.

(2) FPGA implementation. Choose one co-processor to be emphasized on how
many cores, threads, tera-flops of performance and how large memory and
bandwidth it provides, whether or not to support SIMD instruction or some-
thing. From the description, you could modify the code and make use of many
techniques, like loop tiling, loop unrolling, loop pipelining, the size of selec-
tion, local memory promotion, loop transformations for data reuse according
to CTC ratio and so on accelerator method, eventually match your board with
least time.

(3) Dataflow-based deep neural network for training phase. By utilization of dy-
namic actor modes and parameterized scheduling of topology pattern, after
forward-propagation and back- propagation training, the best combination of
deep neural network would be searched and calculated - the exact number of

8. Conclusions and Future Work 46

Coarse
Categories

Fruit

Vehicle

Animal

Coarse
Categories

Figure 8.3: Future deep neural network.

layers and the number of neurons in each layer specific to one application.

(4) Establish the gigantic and complex DNN, not limited to the resources. Based
on the methodology, accumulate different kinds of DNN according to your
application and disciplinarily pipeline it to the huge the network. Figure
8.3 shows the rough and vague ideal DNNs, it goes through several coarse
categories actor to the final refined DNNs; layer-to-layer actors are indepen-
dent;buffers flow is dependable on the pevious actor results; Any actor con-
sumed more time needs to be decomposed further. Therefore, implementation
on different DNNs is the first step. Next is to connect these DNNS and fi-
nally optimized, reorder these DNN to breed up the final smart, gigantic and
complex DNN.

8. Conclusions and Future Work 47

The thesis is highly challenge and demanding, since it is vulnerable to be the worst
consequence with the regard for the overall difficulty (understanding deep learning
theory, pre-processing the large number of datum, designing dataflow graphs, imple-
menting actor and graph codes, optimizing the dataflow graph and then implemen-
tation, finally testing in several platforms configuration, loop again and again for
the best final result), especially no reference codes for such a large dataflow graph
implementation. But completely controlling and torturing by myself, supporting
from others and making progress day by day during the exhausting process let me
gradually see the dawn of victory.

What went well this time is all the codes within the thesis are primitive, novel
and complete, originating from my mind. Every programming language, testing
platforms and compiling environment possess their own individual test directories,
including descriptions, makefile, source codes, testing scripts. The beauty of that is
researchers could continue the future job conveniently, and burn their brains to mod-
ify their codes for the purpose of the overall performance improvement, which could
be occurred at any step (maybe the selection of DNN, the actor algorithm optimiza-
tion, some specific platform application). However, there is still an imperfection that
is I should further discuss with others or think deeper before the implementation of
the whole dataflow graph, because some optimization could be solved more simply
before implementation than after implementation with consideration of the large
codes and graph, like float type instead of double type to save memory bandwidth
for the prospect of hardware memory constrains. More discussions and many-sided
thinking could make codes more robust, reliable, thorough and systematic at the
start of the implementation.

48

BIBLIOGRAPHY

[1] H. Huttunen, F.S. Yancheshmeh, and K. Chen, "Car Type Classification with
Deep Learning", ArXiv e-prints, February 2016, submitted to IEEE Intelligent
Vehicles Symposium 2016.

[2] W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, "Face Recognition: A
Literature Survey", ACM Computing Surveys, Vol. 35, No. 4, 2003, pp. 399-
458.

[3] Y. LeCun, C. Cortes, J.C. Burges, “THE MNIST DATABASE of handwritten
digits”, online: http://yann.lecun.com/exdb/mnist/.

[4] H. Li, H.F. Li, Y.T Wei, Y.Y Tang, Q. Wang, "Sparse-based neural response for
image classification", Neurocomputing, vol. 144, p.198-207, November, 2014.

[5] A. Krizhevsky, “The CIFAR-10 Dataset”, online:
http://www.cs.toronto.edu/ kriz/cifar.html.

[6] Y.Taigman, M. Yang, M.A Ranzato, L. Wolf, "DeepFace: Closing the Gap
to Human-Level Performance in Face Verification", In Computer Vision and
Pattern Recognition (CVPR), June 24, 2014.

[7] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and F.F. Li, "Imagenet: A large-
scale hierarchical image database", In Computer Vision and Pattern Recogni-
tion (CVPR), 2009 IEEE Conference on, pages 248–255, 2009.

[8] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning internal represen-
tations by error propagation", In David E. Rumelhart, James L. McClelland,
and CORPORATE PDP Research Group, editors, Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1, pages 318–362.
MIT Press, Cambridge, MA, USA, 1986.

[9] C.M. Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[10] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning repre- sentations
by back-propagating errors", Nature 323, pages 533–536, 1986.

[11] S. Haykin, "Neural Networks: A Comprehensive Foundation", Prentice Hall
PTR, 2nd edition, 1998.

[12] Y. Bengio and A. Courville, "Deep learning of representations", In Monica
Bianchini, Marco Maggini, and Lakhmi C. Jain, editors, Handbook on Neural
Information Processing, pages 1–28. Springer, 2013.

BIBLIOGRAPHY 49

[13] J. Schmidhuber, "Multi-column deep neural networks for image classification",
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 3642–3649, 2012.

[14] M. Ranzato, "Supervised deep learning - tutorial on deep learning for vision",
In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference
on, 2014.

[15] A. Ng, A. Maas, A. Hannun, B. Huval, T. Wang, and S. Tandon, "Unsupervised
feature learning and deep learning", Technical report, Stanford University, 2013.

[16] Help Conquer Cancer research team, "New imag-
ing tools accelerate cancer research", online: http://
www.worldcommunitygrid.org/about_us/viewNewsArticle.do?articleId=402.

[17] Petetin, C. Laroche, and A. Mayoue, “Deep neural networks for audio scene
recognition”, in Proceedings of the European Signal Processing Conference,
2015, pp. 125–129.

[18] S.Ji, W.Xu, M.Yang, and K.Yu, "3d convolutional neural networks for human
action recognition", IEEE Trans. Pattern Anal. Mach. Intell., 35(1):221-231,
Jan. 2013.

[19] O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition of acoustic events
using deep neural networks”, in Proceedings of the European Signal Processing
Conference, 2014, pp.506–510.

[20] Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks”, in Proceedings of the Conference on Neural
Information Processing Systems, 2012, pp. 1097–1105.

[21] C. Zhang, P. Li, G.Y. Sun, Y.J. Guan, B.J. Xiao, J. Cong, "Optimizing FPGA-
based Accelerator Design for Deep Convolutional Neural Networks",23rd Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA2015).

[22] Y.Q. Jia, R. Girshick, S. Guadarrama, and T. Darrell, "Caffe: Convolutional
architecture for fast feature embedding", arXiv preprint arXiv:1408.5093, 2014.

[23] Jia et al., “Caffe: Convolutional architecture for fast feature embedding”, arXiv
preprint arXiv:1408.5093, 2014.

[24] S.S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds, Handbook
of Signal Processing Systems, 2nd ed. Springer, 2013.

BIBLIOGRAPHY 50

[25] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya, “Heterogeneous
design in functional DIF”, in Proceedings of the International Workshop on
Systems, Architectures, Modeling, and Simulation, Samos, Greece, July 2008,
pp. 157–166.

[26] E.A. Lee and D.G. Messerschmitt, "Synchronous Dataflow", Procceedings of
the IEEE, vol.75, pp. 1235-1245,1987.

[27] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete, "Cyclo-Static
Dataflow", IEEE Transactions on Signal Processing, vol.44, pp.397-408, 1996.

[28] B. Bhattacharyya, S.S. Bhattacharyya, "Paramterized dataflow modeling for
DSP systems", IEEE Transactions on Signal Processing 49(10), 2408-2421,
2001.

[29] S.S. Bhattacharyya, E.F. Deprettere, and B.D. Theelen, "Dynamic Dataflow
Graphs", online: http://www.es.ele.tue.nl/sadf/publications/HSPS12.pdf.

[30] W. Plishker, N. Sane, M. Kiemb, K. Anand, S.S. Bhattacharyya, "Functional
DIF for rapid prototyping", In Proceedings of the International Symposium on
Rapid System Prototyping, pp. 17-23. Monterey, California (2008).

[31] C. Shen, W. Plishker, H. Wu, and S.S. Bhattacharyya, "A lightweight dataflow
approach for design and implementation of SDR system", In Proceedings of
the Wireless Innovation Conference and Product Exposition, pages 640-645,
Washington DC, USA, November 2010.

[32] C. Shen, W. Plishker, and S.S. Bhattacharyya, "Dataflow-based design and
implementation of image processing applications", In L.Guan, Y.He, and S.-
Y.Press, second edition, 2012. Chapter 24.

[33] C.C. Shen, L.H. Wang, I. Cho, S. Kim, S. Won, W. Plishker, and S.S. Bhat-
tacharyya, "The DSPCAD Lightweight Dataflow Environment: Introduction
to LIDE Version 0.1", Institute for Advanced Computer Studies, University of
Maryland at College Park, USA, 2011.

[34] C.C. Shen, W. Plishker, and S.S. Bhattacharyya, "Dataflow-based Design and
Implementation of Image Processing Applications", Institute for Advanced
Computer Studies, University of Maryland at College Park, USA, May 23,
2011.

[35] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya, “Topological pat-
terns for scalable representation and analysis of dataflow graphs”, Journal of
Signal Processing Systems, vol. 65, no. 2, pp. 229–244, 2011.

BIBLIOGRAPHY 51

[36] S. Kedilaya, W. Plishker, A. Purkovic, B. Johnson, and S.S. Bhattacharyya,
“Model-based precision analysis and optimization for digital signal processors”,
in Proceeding of the European Signal Processing Conference, Barcelona, Spain,
August 2011, pp. 506–510.

[37] S.S. Bhattacharyya, W. Plishker, C. Shen, N. Sane, and G. Zaki, “The DSP-
CAD integrative command line environment: Introduction to DICE version
1.1”, Institute for Advanced Computer Studies, University of Maryland at Col-
lege Park, Tech. Rep. UMIACS-TR-2011-10, 2011.

[38] S. Kin and J.L. Pino, “Multithreaded synchronous data flow simulation”, in
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, 2003.

[39] B. Nichols, D. Buttlar, and J.P. Farrell, "Pthreads Programming: A POSIX
Standard for Better Multiprocessing", O’Reilly & Associates, Inc., 1996.

[40] L. Jin, Z.K. Wang, R. Gu, C.F Yuan and Y.H Huang "Training Large Scale
Deep Neural Networks on the Intel Xeon Phi Many-core Coprocessor", IEEE
28th International Parallel & Distributed Processing Symposium Workshops,
Nanjing University, Nanjing, China, 2014.

52

A. TEST RESULTS

A.1 Single Core on Four Design Versions

Intel Core i5 4248U
(us) #1 #2 #3

Loading Time 77380000 76730000 76170000
Prediction Time 3600000 3560000 3640000

Matlab

(2014b) Processing Time 80980000 80290000 79810000
Loading Time 1733112 1552176 1727277
Prediction Time 16048042 16101079 16008110LIDE - C

(no optimization) Processing Time 17781154 17653255 17735387
Loading Time 1648571 1632924 1726092
Prediction Time 14039306 13307456 12949667LIDE - C

(compiler optimization) Processing Time 15687877 14940380 14675759
Loading Time 1570659 1524946 1527219
Prediction Time 895575 759665 804396

LIDE - C
(optimzation and dataflow

optimization) Processing Time 2466234 2284611 2331615

Table A.1: Single core cost time on four design versions.

A.2 Multi-Core: Intel Core i5 4248U

Platform One : Macintosh Pro (Intel core i5 4248U)
One Core

(us) #1 #2 #3
Loading Time 1570659 1524946 1527219
Prediction Time 895575 759665 804396
Processing Time 2466234 2284611 2331615

Two Cores
Loading Time 1534027 1530938 1532227
Prediction Time 445137 438366 444084
Processing Time 1979164 1969304 1976311

Table A.2: Times measured on intel core i5 4248U.

A. Test Results 53

A.3 Multi-core: Two Six-Core AMD Opteron 2435 Processors

Platform Two : Two Six-core AMD
Opteron 2435 Processors

One Core
(us) #1 #2 #3

Loading Time 589142 591966 590578
Prediction Time 415293 416249 415774
Processing Time 1004435 1008215 1006352

Two Cores
Loading Time 589984 590331 597711
Prediction Time 326274 325289 333646
Processing Time 916258 915620 931357

Three Cores
Loading Time 589604 596327 591131
Prediction Time 275682 270636 274971
Processing Time 865286 866963 866102

Four Cores
Loading Time 590294 591800 595211
Prediction Time 240375 243722 252370
Processing Time 830669 835522 847581

Eight Cores
Loading Time 594109 606795 592622
Prediction Time 214285 203654 205488
Processing Time 808394 810449 798110

Twelve Cores
Loading Time 591995 601055 594560
Prediction Time 176902 178988 172799
Processing Time 768897 780043 767359

Table A.3: Times measured on two six-core processors.

A. Test Results 54

A.4 Multi-core: ARM Cortex-A15 quad core

Platform Three : ARM Cortex-A15 quad core
(Odroid XU3 Board)

One Core
(us) #1 #2 #3

Loading Time 3077248 3055248 3090440
Prediction Time 2089504 2094901 2084905
Processing Time 5166752 5150149 5175345

Two Cores
Loading Time 3102826 3109804 3091580
Prediction Time 1266860 1287002 1269194
Processing Time 4369686 4396806 4360774

Three Cores
Loading Time 3078590 3072545 3075595
Prediction Time 1046456 1041778 1032368
Processing Time 4125046 4114323 4107963

Four Cores
Loading Time 3103390 3115483 3084755
Prediction Time 905257 900453 911449
Processing Time 4008647 4015936 3996204

Table A.4: Times measured on ARM system.

	Introduction
	Thesis Objective
	Author Contribution
	Thesis Organization

	Deep Learning
	Image Classification
	Datasets
	Neural Network and Deep Neural Network
	Convolutional Neural Network
	Deep Learning Toolbox - Caffe

	Dataflow Modeling
	Dataflow Modeling Principle
	Overview of Dataflow Models
	Dataflow Modeling Environment: LIDE-C

	Application and Simulation Model
	DNN Topology for Vehicle Classifier
	Parameters Extraction
	Matlab Implementation
	Experiment and Result

	LIDE C-Based Design and Implementation
	Actors in Dataflow Graph
	Design Dataflow Graphs
	Dataflow Model of Design One
	Dataflow Model of Design Two
	Dataflow Model of Design Three

	Software Implementation Process
	Actor Code
	Graph Scheduler

	Functional Validation

	Dataflow Graph Transformations
	Transformation One : Broadcast Optimization
	Transformation Two : Global Memory
	Transformation Three : Multi-Addition Actor
	Transformation Four : Simplification of First Two Layers
	Transformation Five : In-Place Operations
	Transformation Six : Clustering into Threads

	Experimental Results
	Single Core Processor
	Multi-Core Processors

	Conclusions and Future Work
	BIBLIOGRAPHY
	Test Results
	Single Core on Four Design Versions
	Multi-Core: Intel Core i5 4248U
	Multi-core: Two Six-Core AMD Opteron 2435 Processors
	Multi-core: ARM Cortex-A15 quad core

