
Soheil Zavari
Sensors and Actuators Communication and
Synchronization for a Mobile Manipulator
Master’s thesis

Examiners: Professor Kalevi Huhtala
Dr. Reza Ghabcheloo

Examiner and topic approved by
the Faculty Council of the

Faculty of Engineering Science on
8 May 2013

i

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY
International Master’s Degree Programme in Machine Automation
ZAVARI,SOHEIL: Sensors and Actuators Communication and Synchronization for a Mo-
bile Manipulator
Master of Science Thesis, 50 pages
December 2013
Mechatronic Engineering
Examiners: Professor Kalevi Huhtala and Dr. Reza Ghabcheloo
Keywords: CAN open, EPOS controller, Servo motors, Real-time OS, Xenomai, SPI

Modern mobile manipulator hardware architecture is combination of mechan-
ical, electrical, software and control units. Integrating numbers of mechanical and
electrical components in the system rise the number of parameters to control. Hence
the issues of controlling such systems to achieve the best performance is critical. A
key aspect for this purpose is integration of sensors and actuators to provide a low
level of mobile manipulator control and my thesis involve in providing a low level of
control for iMoro mobile manipulator.

To operate such a mobile manipulator several intelligent components needs to
be installed and cooperate at same time. Due to the application that iMoro made
for, the platform is equipped with 8 actuators and number of sensors. Therefore
control of such a system is complicated and demands accurate synchronization and
communication among four legs.

Since iMoro robot is equipped with IMU, in following chapter IMU is calibrated
and the process of providing meaningful data out of raw data explained by modeling
the IMU. In addition, an equation is developed for robust calibration of IMU and
camera.

ii

Preface

This thesis work was part of project PURESAFE (Preventing hUman intervention
for incREased SAfety in inFrastructures Emitting ionizing radiation) and it was done
at department of Intelligent Hydraulics and Automation of Tampere University of
Technology.

First of all, I feel honored to work under supervision Dr. Reza Ghabcheloo
because of his great experience and suggestions in this field. I am also grateful from
Prof. Kalevi Huhtala for his support. Furthermore I thank Reza Oftadeh who share
his superb knowledge during my thesis period.

Finally I have gratitude to my father Siavash Zavari because of his efforts to
support me and special thank to my kind-hearted mother Sharareh Zavari.
15.11.2013 Tampere
Soheil Zavari

iii

List of Terms and Abbreviations

Notations Description
AC Alternating Current
API Application Programming Interface
CAN Controller Area Network
CiA CAN in Automation
DC Direct Current
DCM Direction Cosine Matrix
DS Device Profile
EC Electronically Commutated
ECI Earth-Centered Inertial
ECEF Earth-Centered Earth-Fixed
EPOS Electronic Positioning System
GPS Globall Positioning System
IMU Inertial Measurement Unit
INS Inertial Navigation System
IP Internet Protocol
NED North-East-Down
NMT Network Management
OD Object Dictionary
OS Operating System
PDO Process Data Object
RTDM Real-Time Driver Module
UDP User Datagram Protocol

CONTENTS

Abstract . i

Preface . ii

List of Terms and Abbreviations . iii

List of Tables . vi

List of Figures . vii

Introdution . 1

1. Theoretical Background . 3

1.1 Inertial Sensors . 3

1.2 Attitude Representation . 5

1.2.1 Rotation Matrix Rate . 5

1.2.2 Euler Angle Rate . 6

1.2.3 Quaternion . 7

1.3 Velocity and Changing Coordinate Frame 8

1.4 Relevant CANopen Introduction . 10

1.4.1 Object Dictionary . 10

1.4.2 Data Transmission . 10

2. iMoro Hardware Architecture . 13

2.1 Locomotion Mechanism . 13

2.1.1 Electronically Commutated Motors 14

2.1.2 EPOS Position Controller . 14

2.1.3 Driving and Steering Motors 16

2.2 Communication Protocols . 16

2.2.1 Standard Communication Protocols 16

2.2.2 Nodes Number In iMoro . 17

2.3 Controller Set Point and Feedback 18

2.4 Control Word and Status Word . 19

2.5 Real-time Software Interface . 20

v

3. IMU and Camera Simulation and Calibration 22

3.1 Navigation Technique . 22

3.2 Inertial Measurement Unit . 23

3.2.1 IMU Installation . 23

3.2.2 IMU Acceleration . 24

3.2.3 IMU Angular Velocity . 25

3.2.4 IMU Errors . 26

3.2.5 Calculating Acceleration Scale factor 28

3.2.6 Angular Velocity and Acceleration 29

3.3 Inertial Measurement Unit and Camera Calibration 31

4. Result and Discussion . 37

Bibliography . 42

LIST OF TABLES

1.1 SDO frame . 10

1.2 communication parameters TPDO or RPDO 11

1.3 COB ID for TPDO and RPDO . 12

2.1 Node ID of motors and sensors and embedded PC in CAN bus 17

3.1 IMU Installation Specification . 24

LIST OF FIGURES

1.1 Earth-Centered Earth-Fixed Frame 4

1.2 Local Navigation Frame . 5

2.1 Electrically Commutated motor . 14

2.2 EPOS position controller . 15

2.3 EPOS controllers rack under the iMoro platform 15

2.4 CAN bus . 18

2.5 Device Control (State of Drive) . 20

3.1 Inertial Measurement Unit ADIS16385 23

3.2 Location of IMU in front of platform between the gearboxes 24

3.3 Raw acceleration data . 25

3.4 Raw angular velocity data . 26

3.5 Displacement test on straight line in X direction 30

3.6 Changing yaw angle . 31

3.7 Calculating (PB
BC)y component of variable PB

BC over 20s in periodic
circular path . 34

3.8 Quadrant path with 2 meter radius 36

4.1 Intelligent components and communication interfaces of iMoro platform 38

4.2 Quadrant path with 2 meter radius 39

1

Introdution

Mobile robot is machine able to move in different environments based on its loco-
motion mechanism. Locomotion mechanism determines the ability of the mobile
robot to walk, slide, jump or fly. Wheeled locomotion is a common mechanism for
flat surface with high efficiency and there has been variety of research in this area
recently.

iMoro robot is a four wheel steered platform for mobile manipulation under
investigation for high maneuverability in high speed motion. As it is demonstrated
in the picture the dimension of iMoro is 655mm× 335mm with 120 kg weight. For
more detail refer to [1].

I interlaced IMU and encoder and 8 actuators and controller drivers in wise
order within a CANbus base on design and expectation from system and provide
a level of communication for sending command and receiving feedback within real-
time environment (Xenomai OS). That implies the crucial role of timing to achieve
better level of control. Also it is essential to make software interface for each sensors
for communicating with Embedded PC.

iMoro 4 wheel steered mobile robot

Among different communication protocols, Controller Area Network is cho-
sen for synchronization between all actuators. Thus CAN network among different
components of system is implemented. Real-time software interfaces for sensors and
message queue services for communication among several software modules are de-

2

veloped to provide a foundation for controlling iMoro in real-time environment and
that is what explained in chapter 2.

Since iMoro is equipped Inertial Measurement Unit (IMU) on top of platform,
the process of receiving meaningful data to estimate the position and velocity of
robot body is done. Later in chapter 3 IMU characteristics is explained and a
method for finding IMU-camera transformation matrix is presented.

1. THEORETICAL BACKGROUND

1.1 Inertial Sensors

Broad range of sensors used in mobile robots can measure from simple internal val-
ues like encoders or complicated terms from environment and interpret them for
mobile robot like laser range scanner. In a general categorization, proprioceptive
sensors measure internal states of the robot like rotary encoders or Inertial Measur-
ment Unit (IMU) and exteroceptive sensors gain information from environment like
camera.(See for instance Q. Zhang [2])

Proprioceptive sensors available in iMoro robot are incremental and absolute
encoders, hall sensors, inertial measurement unit and exteroceptive sensors are vision
sensors like camera, laser range scanner.

To choose a sensor for a specific type of application on a mobile robot, first
you need to evaluate its performance. There are variety of terms that express sen-
sor characteristic and performance, some of them are Dynamic range, Resolution,
linearity, sensitivity, accuracy, error.

Individual sensors has range of errors that can interfere with making a right
decision of robot. Thus it is essential to identify the type of errors individually
and compensate them. Some errors are predictable and they can be modeled to
exclude from system. Some errors has random nature and they are expressed with
probabilistic terms and more complicated to calculate them. See section[3.2.4]

Sometimes to achieve more accuracy, output data from different sensors are
combined and lead to more complete and accurate data. This process is called sensor
fusion and there are several algorithm to perform sensor fusion like Kalman Filtering
(For more detail refer to [3]). A key factor in this process is calibration between
several sensors. See section[3.3] Some sensors express their output as a value in a
standard range, on the other hand there are some sensors that need a coordinate
frame to express their output like vision sensors or IMU (See for instance J. Vagany
[4]). See section[3.2]

Output of IMU based on Inertial navigation equation can be expressed in differ-
ent coordinate frames depends on which the form of equations change, some popular
coordinate frame are : Inertial Navigation Frame, Earth Frame, Local Navigation
Frame .

Earth-Centered Inertial Frame (ECI) denoted by i is fixed at center of earth.
Z axis points along the earths axis of rotation from center to the north pole and Y
axis lies 90 degree ahead of x axis in direction of rotation and both lie on equatorial
plane. For more detail refer to[5] .

4

Earth-Centered Earth-Fixed Frame (ECEF) is indicated by e and is located
at center of earth with z axis aligned with earth axis of rotation and it rotates with
earth. X axis aligned with zero meridian (0 ◦ longitude) from center to equator and
Y axis in 90 ◦ east meridian from center to equator. Fig 1.1 shows ECEF frame.

Fig. 1.1: Earth-Centered Earth-Fixed Frame

Local Navigation Frame or Geodetic is indicated by n and its origin could
locate on mobile robot as it is shown in Fig 1.2. Z axis of geodetic coordinator is
normal to the surface of ellipsoid earth from mobile robot to the center of earth and
it corresponds to the gravity vector. X axis is projection of a line direction to the
north on a plane normal to the z axis and Y axis is in east direction. Geodetic frame
also known as NED frame that denotes direction of x, y, z axes in North, East and
Down.

5

Fig. 1.2: Local Navigation Frame

Body Frame is indicated by b and its origin is located on the body (mobile
robot) like NED frame. Z axis pointing down and x axis pointing forward and y
must complete the right hand rule of coordinate frames. Another representation of
body frame is roll, pitch, yaw axes which correspond to rotation around x, y and z
axes respectively.

1.2 Attitude Representation

There are different methods to represent a vector in the coordinate frame. Sometimes
to simplify an equation, it is helpful to change the representation format. In our case
during developing Matlab Simulink or calculating formula different representation
formats are used, thus here is brief explanation about changing between coordinate
systems before delivering the main formula. For more detail refer to [6]:

1.2.1 Rotation Matrix Rate

Rotation matrix rotates a vector and represent it in a new coordinate frame by
preserving vector length. A rigid body has a 3 by 3 proper rotation matrix with
det(R) = 1 and R−1 = RT .

To transform a vector expressed in body frame to world frame :

Zw = Rw
b · Zb (1.1)

Note that in following chapters Rβ
α express the rotation matrix from frame α to

frame β in equations, both of α and β can be replaced with desire frame:

6

To transform a point, we must consider the offset between two coordinate
system origins :

Xw = Rw
b · (Xb −Xb

w) (1.2)

The origin of coordinate system always satisfy Xw
b = −Rw

b ·Xb
w

In above equations Xw is an arbitrary point in world frame and Xw
b is origin of body

frame expressed in world frame, also Xb
w is origin of world frame expressed in body

frame. To transform a point we can also use transformation matrix directly.

In case the orientation of two coordinate frames b as body frame and w as
world frame are changing with respect to one another, then rotation matrix rate
exists and its relation with angular velocity is:

Ṙw
b × A = Rw

b (ωbw × A) (1.3)

A is arbitrary vector.

Because of cross product equation p× q = Ω(p)q, in which Ω(p) is skew sym-
metric matrix of p and is equal to:

Rb
w =

 0 −pz py
pz 0 −px
−py px 0

 (1.4)

we rewrite the equation to:
Ṙw
b = Rw

b · Ωb
wb (1.5)

Ωb
wb is skew symmetric matrix of angular velocity ωbwb.

Direction cosine matrix (DCM) is a matrix that indicates the cosine of unsigned
angles between two coordinate frames which is equivalent with rotation matrix. If
the world axes coordinate system is denoted by (x, y, z) and body axes coordinate
system is denoted by x́, ý, ź, then cosine matrix would be :

Rb
w =

cos(θx́,x) cos(θx́,y) cos(θx́,z)
cos(θý,x) cos(θý,y) cos(θý,z)
cos(θź,x) cos(θź,y) cos(θź,z)

 (1.6)

1.2.2 Euler Angle Rate

Another form of rotation representation is using Euler angels. Three coordinate
rotation u = (φ, θ, ψ) in sequence with no two consecutive rotation about same axis
can express any rotation.
Rotation matrix from world frame to body frame (Rb

w)is calculated by multiplying
elementary rotation matrices along single axes in correct order:

Rijk(φ, θ, ψ) = Ri(φ) ·Rj(θ) ·Rk(ψ) (1.7)

7

ψ is first rotation about z axis of world frame and θ and φ are the second and third
rotation about y and x axes respectively.

If êi, êj, êk are unit vectors, then matrix E can be calculated:

Eijk(φ, θ, ψ) = [êi, Ri(φ)êj, Ri(φ)Rj(θ)êk] (1.8)

The matrix that correlates Euler angle rate to angular velocity in body frame is:

ωbnb = Eijk(u) · u̇ (1.9)

and base on that :
u̇ = E−1

ijk · ω
b
nb (1.10)

There are 12 possible sequence of Euler angle that can lead to rotation matrix.
Between 12 possible sequence, (1, 2, 3) rotation sequence is more common and is
indicated by (φ, θ, ψ) as (roll, pitch, yaw) angles that can correspond to the body
frame coordinator. This order of sequence is used in calculations in this thesis. The
rotation matrix that yield from Euler angle is equal to:

R123(φ, θ, ψ) = R1(φ) ·R2(θ) ·R3(ψ) = (1.11) cos(θ)cos(psi) cos(θ)sin(ψ) −sin(θ)
sin(φ)sin(θ)cos(ψ)− cos(φ)sin(ψ) sin(φ)sin(θ)sin(ψ) + cos(φ)cos(ψ) cos(θ)sin(φ)
cos(φ)sin(θ)cos(ψ) + sin(φ)sin(ψ) cos(φ)sin(θ)sin(ψ)− sin(φ)cos(ψ) cos(θ)cos(φ)


To calculate Euler angles from rotation matrix, we can write Euler angles as function
of rotation matrix:

u123(R) =

φ123(R)
θ123(R)
ψ123(R)

 =

atan2(r23, r33)
−asin(r13)

atan2(r12, r11)

 (1.12)

Inverse of Euler angle rate matrix E in body frame with (1, 2, 3) sequence is:

E−1
123(φ, θ, ψ) = (1/cos(θ))

cos(θ) sin(φ)sin(θ) cos(φ)sin(θ)
0 cos(φ)cos(θ) −cos(θ)sin(φ)
0 sin(φ) cos(φ)

 (1.13)

1.2.3 Quaternion

Quaternion q ∈ H is a popular method to represent the attitude of mobile robots
and it is denoted with vector q as combination of one real and three imaginary parts,

8

the real part shows the magnitude of rotation and the imaginary vector shows the
axis around which rotation take places:

q =


q1

q2

q3

q4

 (1.14)

or

q = q0 + q1i+ q2j + q3k

quaternion has definition for different mathematical operation and here I mentioned
some of them: quaternion conjugate (transpose of complex conjugate) is :

q̄ = [q0,−q1,−q2,−q3] (1.15)

If we indicate quaternion q with [q0, q]T and quaternion p with [p0, p]T ,then multi-
plication between quaternions q and p is equal to :

q · p =

[
q0p0 − qTp

q0p + p0q− q× p

]
(1.16)

Norm and inverse of quaternion are defined as:

|q| =
√
q2

0 + q2
1 + q2

2 + q2
3 (1.17)

q−1 = q̄/|q| (1.18)

Mapping between quaternion rate and angular velocity is :

q̇ = (1/2) ·W (q) · ωbnb (1.19)

In which W(q) is called quaternion rate matrix that maps H −→ R3×4

W (q) =

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 (1.20)

1.3 Velocity and Changing Coordinate Frame

If ωγβα would be angular rate rotation of object frame α with respect to frame β
(reference frame) and represented in frame γ, then the representation frame can
be changed by multiplying to suitable coordinate transformation matrix. Simply
angular rate vectors with same resolving frame can be added easily:

ωγβδ = ωγβα + ωγαδ (1.21)

9

Angular rate rotation vector reverse by sign if the object frame and reference
frame replace with each other in a same resolving frame (representation frame γ):

ωγαβ = −ωγβα (1.22)

Velocity is produced as result of moving the origins of reference β and object
frame α or as result of rotating the axes of reference frame with respect to object
frame (notice that no velocity is produced by moving or rotating the axes of refer-
ence frame). If resolving frame γ and reference frame β has angular motion with
respect to each other, then velocity V γ

βα is not the only term in correlation with time
derivative of position ṙγβα :

ṙγβα = Ṙγ
β · r

β
βα +Rγ

β · ṙ
β
βα = Ṙγ

β · r
β
βα + V γ

βα (1.23)

In case there is no angular motion between reference frame and object frame,
interchanging the reference and object frame is possible by reversing the sign of
velocity vector, otherwise equation extends to:

V γ
βα = −V γ

βα −R
γ
αṘ

α
βr

β
βα (1.24)

Moreover if Ṙβ
α = 0, then:

V γ
αδ = V γ

αβ + V γ
βδ (1.25)

10

1.4 Relevant CANopen Introduction

CAN is a serial bus communication with multi master capabilities based on message
priority and message identifier, moreover CANopen came to existence by developing
standardized application and functionality base on CAN.

1.4.1 Object Dictionary

Object Dictionary (OD) is a set of accessible data each with specific ID and name
which are ordered within a table. Each entry of object dictionary differentiated by
an index and subindex. Index consists of 16 bits that assigns an ID to entry and it
can contain up to 256 sub entries each 8 bits in size.

Mainly OD categorized into data type entries, communication entries, manu-
facture specific and device profile parameter. Therefore each sensor could have its
own object dictionary corresponds to DS − 301 standard. Each entry has data type
from Standard data type list or from complex data type list. Standard data type
includes Boolean and Integer. Complex data includes predefined or manufacturer
data type within index 0001 to 0FFF. Moreover each entry has access type that
indicates to write in an entry or read from an entry. RW, WO, RO abbreviations
stands for Read and Write, Write Only, Read Only .
Index range 1000 to 1FFF is assigned to communication entries that contains dif-
ferent services of CANopen communication.
Index range 2000 to 5FFF is assigned to manufacturing specific entries that allow
manufacturer of specific node to store data.

1.4.2 Data Transmission

CANopen provide two type of data transmission. Service Data Object provides a
service to access the data in object dictionary; therefore a node as master or client
can read or write data to the object dictionary of another node as server. COB ID
of SDO messages is 0x600+node ID from master to slave and 0x580+node ID from
slave to master. Table 1.1 indicates the data frame of SDO message type.

byte 0 byte 1 byte 2 byte 3
Specifier OD Index lower byte OD Index higher byte Subindex

Tab. 1.1: SDO frame

Here is most common use of SDO command specifier for transferring maximum 4
bytes of data (in hexadecimal):
Download Request: 22
Download Response: 60
Upload Request: 40
Upload Response: 42

The second type message for real-time transmission data is Process Data Object
(PDO) that provides a communication level for transmitting data up to 8 bytes in

11

every message that can be triggered by several means. This message is divided
into two type of Receive Process Data Object (RPDO) and Transmit Process Data
Object (TPDO), and they indicate to generate a message by a node (TPDO) or
consume the same message by another node (RPDO). TPDO and RPDO have to
be configured by communication parameter that shows on table 1.2.

Subindex Name
0 Number of entries
1 COB ID
2 Transmission type
3 Inhibit Time
4 Reserved
5 Event Time

Tab. 1.2: communication parameters TPDO or RPDO

Each index in TPDO communication parameters correlate to an index in
TPDO mapping parameters, for instance TPDO1 communication parameters are
at index 1800 and its mapping parameters are at index 1A00.

One means to trigger a TPDO is Event driven, which transmits the message as
soon as a change in data occurs. Data can be anything from device profile and it is
also possible to define an inhibit time to determine a minimum interval to transmit
a message with next event after inhibit time is expired. Another means to trigger
a message is Time driven ,which transmits a message based on a constant period of
time. This time is a local timer on each CANopen nodes.

A common methods in robotic and drive system is Synchronized polling to
trigger a message and it assures to receive all messages from different nodes at the
same time. In this method a node in the system is producer of a signal that works
as trigger for the other nodes and it is called SYNC signal. SYNC signal ID is
configurable in object dictionary 1005 in each nodes. Also there could be several
SYNC signal in a system that each of them could synchronize a specific group of
nodes that has same ID in their OD.(By default the SYNC message COB ID is set
to 80h based on hexadecimal).

It is worth mentioning a predefined range of COB ID is available for each
CANopen node base on table 1.3.

Network management (NMT) implements transitions between different operat-
ing states of a slave node by sending series of commands by Mater node. There are
several states for a node, some states transition by specific NMT commands and
some are automatically. Basically there are 3 main states of Preoperational, oper-
ational, stopped. It is worth mentioning that there is merely in operational state
that SDP, PDO, heartbeat, SYNC services are available and in the rest of states
only few of them exist.

NMT master message starts with identifier (COB ID) 0 and consists of 2 bytes
data, the first byte is command specified and second byte is node ID that can be
filled with zero to address all slave nodes in the system.

12

OD Identifier PDO type and number
181 to 1FF First TPDO
201 to 27F First RPDO
281 to 2FF Second TPDO
301 to 37F Second RPDO
381 to 3FF Third TPDO
401 to 47F Third RPDO
481 to 4FF Fourth TPDO
501 to 5FF Fourth RPDO

Tab. 1.3: COB ID for TPDO and RPDO

operational=1
Stopped=2
Preoperational=128
Reset nodes=129
Reset Communication=130

In order to raise the communication and safety of system with multiple nodes,
every node must demonstrate its current state within 1 byte of message that indicates
they are in operational or fault state. This protocol is called Heartbeat and its COB
ID is 700.

2. IMORO HARDWARE ARCHITECTURE

2.1 Locomotion Mechanism

Design and control of a mobile robot with wheeled locomotion mechanism changes
base on the number of degrees of freedoms. Different types of wheel configuration
provide different level of strength in terms of traction, stability and maneuverability
of robot. (See H. Rajaei [7] or R. Grepl [8])

Minimum of two wheels configuration can achieve static stability, but it pro-
vides limited maneuverability. Instead three or four wheel mechanism with two
independent driven wheels improve maneuverability (For more detail refer to [9]).
A step further are omni directional mobile robots that can move in any direction
at any time, this means that they need more complicated control model because of
rises in degree of freedom.(See R. Siegwart [10]) iMoro robot with four wheeled legs
is considered as a semi-omnidirectional which makes it able to follow a given desired
path.(For more detail refer to [11])

Therefore design of a mobile robot is a complicated process and depend on its
application, it can be equipped with number of high or low precision sensors and
actuators. iMoro robot is equipped with 8 Electronically Commutated motors (EC
motors) and digital positioning controllers (known as EPOS) described in section
2.1.1 and section 2.3 described how to synchronize these 8 motors via controller
driver and communication protocol.

For linking of intelligent electronic components within a system a bus or net-
work needed to be established as communication protocol. Communication proto-
cols in automation system reduce the number of controllers and physical size and
cost, moreover it is a foundation for centralized control unit. Section 2.2.1 briefly
described available communication protocols in the market and the advantages of
the CANopen protocol as selected communication protocol for iMoro. In following
installing the CAN bus between all nodes in iMoro described in section 2.2.2.

Section 2.5 explains software interface for IMU and absolute encoders in real-
time operating system. For more detail a brief description about CANopen protocols
used in iMoro is provided in section 1.4. Locomotion mechanism of a mobile robot
determines what type of actuators can be employed. Among variety of linear and
rotary actuators, DC or AC motors, Brush less DC motors are offered in smaller
size and higher angular velocity that make them suitable for robotic applications.
See section2.1.1

Because of high precision in mobile manipulator application brushless servo or
stepper motors are the two most common types. They provide higher precision and

14

availability with different angular velocity and torque. Moreover the recent version
of these motors provide an angular velocity feedback. For a drive system like iMoro
an actuator is chosen base on require angular velocity and torque and precision of
control. Moreover gearboxes after steering motors and after driving motors change
the proportion of angular velocity to torque.

Nowadays EC motors are offered along with a different range of driver units.
Those units work as controller for motors and they can send command and receive
a feedback from motors. See section2.1.3

2.1.1 Electronically Commutated Motors

EC motors are brushless DC motors that consist of electronic communication block
instead of mechanical communication that can invert DC electric power to AC elec-
tric signals with specific frequency and amplitude. Utilizing electronic communica-
tion increases the motor life and the maximum motor speed. Hall sensor detects the
position of rotor (control magnet) and produces signals that are used as input for
electronic communication block.

Fig. 2.1: Electrically Commutated motor

Two EC motors assigned for every wheel, one for steering and another for
driving. Driving shaft passes through the steering gearbox with ratio (1:3) and it
connects to wheel by a belt with ration (1:8) and steering shaft gearbox (1:60) and
it connects to the wheel by holding the wheel axis from two sides.

2.1.2 EPOS Position Controller

EPOS positioning controller is a digital positioning system suitable for DC and EC
motors with incremental encoders in a modular package. EPOS controller has several
input connectors from motors side like hall sensor, incremental encoder, signals that
is used for brake and it has two CAN bus connectors for communicating with other
devices.

15

Each of controller devices has 8 dip switches are designed to set NOD ID by
first 7 switches and last switch represents resistor when controller is located as first
or last node in CAN bus it can.

Fig. 2.2: EPOS position controller

As it is demonstrated in Fig 2.3 controllers were located in racks under the
platform on both side and they are wired to the motors through a hole in middle
of platform. Each of controllers are connected to each other to make CAN bus line.
See section 2.2.2.

Fig. 2.3: EPOS controllers rack under the iMoro platform

16

2.1.3 Driving and Steering Motors

Among different types of modes available on each of the controller, position mode
is used to operate on steering motors in which position is the input value (it must
be set in OD 0x2062 known as position mode setting value), moreover maximum
velocity and acceleration and position limit are terms that have to be configured.

On the other hand velocity mode is chosen as desire operation mode for driving
motors. Therefore velocity value that is called velocity mode setting value is the
input and two terms of maximum velocity and acceleration has to be defined as the
configuration parameters.

In object dictionary, variable units are defined and they are configurable. By
default device internal unit for position is ”steps” or ”quad counts” and rev/min
and rpm/sec are assigned to velocity and acceleration respectively.

2.2 Communication Protocols

2.2.1 Standard Communication Protocols

Nowadays many communication protocols are available in the market like Ethercat,
CAN, device net, RS232 and most protocols work based on the serial transmission.
To choose a protocol several criteria must be considered based on your applica-
tion for instance maximum distance between component, network layout, product
availability.

Ethernet based protocol like EtherCAT has been brought fast and low cost
hardware communication to automation applications and Profibus provides a com-
munication protocol with capability of transmitting higher size of data frame in long
distance and also variety of device profiles for different applications are available.

Controller Area Network first was designed for automobile industries and be-
cause of its high efficiency it was developed further to applications like cranes, rail-
way vehicle, robotic. Up to now CAN has been developing day by day and low cost
CAN protocol made manufacturer of different sensor and actuator brands to use this
protocol in their products. Therefore by covering the malfunction of last produced
protocols, CAN became suitable option for mobile machines applications. Another
advantage of CAN for mobile robot integrated with multiple electronic components
was providing a secure communication protocol that guarantees a safe transmission
of data.

Communication interface of all nodes in iMoro follows application layer and
communication profile the DS-301 of CiA CANopen standard. DS-301 standard is
the foundation of CANopen and it mainly includes basic communication and data
structuring and network management method (like SDO and NMT).

Depend on the application of CANopen device, additional standard can be
added to the protocol that has already been defined by CiA. Basically, different
standards in CANopen device are located in different level of protocol, mostly ap-
plication profiles and device profiles (DS4xx)are in higher level and communication

17

profiles and frameworks (DSP3xx) are in lower level of communication.(For more
detail refer to [12])

For instance the states of drive follows the DSP-402 known as device profile
drives and motion control, base on that several internal behaviors of device like stop-
ping and starting and variety of operation modes can be controlled by a sequence
of commands. See section 2.4

2.2.2 Nodes Number In iMoro

As mentioned earlier in 1.4 to communicate with every node in the system, specific
NOD ID must be assigned to them. Table 2.1 indicates specified NOD ID.

Device Node ID
Drivring:

Rear 11
21

Front 31
41

Steering:
Rear 12

22
Front 32

42
Embedded PC 70
Encoders:

left 51
right 52

Tab. 2.1: Node ID of motors and sensors and embedded PC in CAN bus

CAN low and CAN high are the two signals that must pass through all nodes
within a network through wiring to establish CAN bus communication, thus wiring
connection for a CAN bus implemented easily. Moreover, both end of the CAN low
and CAN high must be terminated with 120 Ω resistor.

Every controller driver (motor driver) has two line of CAN bus with Molex
Micro 4 pole connector that allows us to extend CAN bus to other nodes and em-
bedded pc which is equipped with two M12 connectors. Because of the high number
of nodes and consequently high number of CAN frame in the system, it is possible
to lose data in maximum baud rate 1Mbps. That is why we considered to set two
CAN bus to increase the reliability of CAN bus to avoid losing data. The first line
includes motor drivers, embedded PC, absolute encoders and it is called CAN bus
1. The second line connects IMU to embedded PC directly and it is called CAN bus
2.

As it is demonstrated in Fig 2.4, CAN bus 1 starts from absolute encoder
to node 11 and it passes through nodes number 12, 21, 22 to embedded PC and

18

it follows by motor driver on the other side of platform which are nodes number
31, 32, 41, 42 and it ends up to absolute encoder again. Finally CAN bus line is
terminated with 120 Ω resistor at both ends.

Fig. 2.4: CAN bus

2.3 Controller Set Point and Feedback

As steering motors are working in position mode, a PDO that consists of 2 bytes
control word and 4 byte position send as set point to motor by master node. Same
method is implemented for driving motors only by replacing velocity instead of
position.

A SYNC signal sends by master node after sending set points in every 5 ms.
Therefore each motor driver has one RPDO with synchronization signal as its trans-
mission type (it processes data after receiving SYNC signal). On the other hand
each motor driver sends two TPDO, the first TPDO consists of 2 bytes status word
plus 4 bytes position actual value and second TPDO consists of 4 bytes velocity
actual plus 2 bytes current value. TPDO are sent upon receiving the SYNC signal
in every 5ms.This routine is implemented on a real-time task with 5ms period that
causes to received PDO from all motor drivers at the same time as feedback.

As mentioned earlier in 1.4 to improve the reliability of system heartbeat
protocol or node guarding can be added to system communication. To make sure
about state of every node in each second, every motor driver and absolute encoder
send heartbeat within 100ms and embedded PC sends heartbeat every 50ms.

19

CAN bus 2 is more simple than CAN bus 1, because IMU does not have any
state except operational, therefore as soon as the device is turned on, it starts to send
data every 7.8 ms and none of the above protocols like SYNC or Heart beat needs
to be implemented for IMU. IMU sends two packages of CAN frame every 7.8ms,
the first CAN frame consists of 6 bytes acceleration data and 2 byte diagnostic data.
The second CAN frame consist of 6 bytes gyroscope data and 2 bytes temperature.
Each of these 6 bytes of data in acceleration or gyroscope are divided to 2 bytes for
each direction .

2.4 Control Word and Status Word

According to Fig 2.5 the state of drive can change between three main state of Power
disable and Power Enable and Fault,Power Enable state is when the system is oper-
ational and ready to receive higher level of control command to drive the motor.
Power Disable is happened whenever the system is turned on and initialized, more-
over whenever a fault occurred in system, state changes into Fault state and stops
there till fault reset command will be sent to server.

These states change by sending 1byte commands message that is called Control
Word in object dictionary 0x6040. Every state follow a specific number that is
assigned to bits zero to 3 of control word and rest of bits are reserved or related to
operation modes-specific.here are some important ones:
Shutdown: 6
Switch On when power disable: 7
Switch On when power enabled: 15
Disable Voltage: 0
Quick Stop: 2
Fault Reset: 128

20

Fig. 2.5: Device Control (State of Drive)

States of drive can be read from object dictionary 0x6041 that is called Status
Word and based on each state, a control word is expected to send to the drive for
transition. Status word is 2 bytes message in which a specific number is assigned to
bits zero to 6 and 8 and 14, the rest of bits are meant for operation mode.

2.5 Real-time Software Interface

Nowadays real-time systems are applied in control industries, chemical process in-
dustries, simulation systems, etc. Basically real-time operating system guarantee
the action in response to events within specified amount of time.

iMoro is equipped with quad-core embedded PC as controller and has Xenomai
real-time linux as the Operating System (OS). Xenomai is real-time OS that can
employ time constraints for executing each task. Real-time programming contains
a task that waits for an event or time expiration to be triggered. After that task
starts to execute its function and then it stops again till next period.

Sometimes different independent tasks needs to communicate to achieve syn-
chronization in real-time operating systems. There are several mechanisms that are
offered services like Queue, Semaphore, mailbox. Queue is the service implemented
on iMoro between IMU sensor or controller drives and embedded PC for sending
commands and receiving data.

Queue provides a mechanism when tasks need to share data. One task sends
data to queue and another task wait to receive data from queue. A queue can hold

21

multiple messages base on the size of queue when it is created and it can order
messages based on higher priority.(For more detail refer to [13])

Since CANopen is a relevant network under real-time applications, the soft-
ware interface for sensors with CANopen protocol was implemented using Xenomai
RTDM library. Real-Time Driver Module (RTDM) is associated for developing de-
vice drivers and it is implemented on Xenomai, offers a service between applications
requesting a service from a certain device and device driver.

RTDM supports message based devices like CAN by choosing protocol family
and socket type and also it provides support for messages transmission. CAN pro-
tocol family (PF-CAN) has been implemented in socket layer for communication in
CAN bus.

In addition Low level CAN Framework (LLCF) provides transport protocols
like Broadcast-Manager or RAW socket, In brief the former is a socket interface that
allows to send a message in CAN bus periodically and the latter is a socket interface
that allows direct communication for a single message. In general CAN protocol has
similarity to Internet protocol sockets with system calls like bind(), socket(), read(),
send(). However there are some differences in address structure and data frame that
are defined in include files pcan.h and af-can.h.

Communication between different parts of software in iMoro robot is imple-
mented in real-time environment as much as possible, however wireless connection
doesn’t have properties of a real-time communication. Thus a UDP is established
for a fast wireless connection.

UDP, User Datagram Protocol provide a fast, but unreliable packet delivery
system. The size data in every packet can’t exceed more than a single IP packet
(65077 bytes) and the destination address uniquely will be identified by IP and port
number of recipient. Delivery of UDP packages are out of order and there is no
acknowledge part, that is a reason for fast and unreliable communication.

3. IMU AND CAMERA SIMULATION AND CALIBRATION

3.1 Navigation Technique

Navigation technique is a method for determining position and velocity of vehicles.
The output of navigation technique is known as navigation solution. Most of Navi-
gation technique are based on dead reckoning and position fixing method. For more
detail refer to [5] A dead reckoning system integrated with position fixing provides a
better navigation solution. In fact the position fixing system can be used by an esti-
mation algorithm (like Kalman Filtering) to apply correction to the dead reckoning
navigation system for example see S. Won [14].

Modern navigation systems like Global Navigation Satellite System (GNSS)
utilize the advantage of satellite for navigation that provides the position of an
object on or near to the earth surface. The accuracy of position navigation depends
on receiver on earth and climate situation. While GPS has many advantages for
different applications today, it is not helpful for indoor applications like indoor
mobile robot. Therefore Inertial Navigation System (INS) still is key element for
navigation applications for instance see T. Lee [15].

Current inertial sensors development are based on MEMS technology that im-
proves the performance and reduces the size and sensor costs, however the process
of IMU calibration by itself is essential step to receive precise and meaningful data
from raw IMU data. Different methods can be used for calibration, for instance
multi-positioning method that collects data by locating the IMU in different orien-
tation and used for instance by Q. Cia [16] and also by A. Amirsadri [17], moreover
auxiliary devices are introduced during calibration process such as optical tracking
device see for example A. kim [18]. The process of receiving meaningful data out of
raw data for iMoro IMU explained in this chapter.

Moreover, due to characteristic of IMU and camera (or laser range scanner) to
present the motion of a vehicle, data fusion between these two sensors has became
a popular research topic see for instance relevant recent works by F. M. Mirzaei [19]
or James Underwood [20].

In this chapter in section 3.2 IMU characteristic is explained briefly. Moreover
method to calibrate and reduce error is explained in sections 3.2.4 and 3.2.5. Finally
Calibration method between IMU and camera by driving the mobile manipulator is
described in section 3.3.

23

3.2 Inertial Measurement Unit

Inertial Navigation System provides three dimensional navigation solutions obtained
from inertial sensor measurement. Mostly accelerometer and gyroscope are sensors
that used in INS to provide the position of an object. The computation of inertial
navigation solution would be an iterative process in navigation processor. Velocity
and position of body is updated by integrating of acceleration and attitude of body
is updated by integrating angular velocity.(See for instance J. Yi [21])

Inertial Measurement Unit is composed of three accelerometers and three gy-
roscops which are mounted in three directions orthogonally to produce acceleration
and angular velocity. The produced acceleration abib and angular velocity wbib are
expressed with respect to inertial space in body frame.

3.2.1 IMU Installation

ADIS 16385 shows in Fig 3.1 is the IMU used for iMoro with tri-axis accelerometer
and tri-axis gyroscope which support serial peripheral interface (SPI) with approxi-
mate dimension 36mm× 47mm× 39mm. Table 3.1 shows ADIS16385 specification
briefly. (For more detail refer to [22])

Fig. 3.1: Inertial Measurement Unit ADIS16385

The IMU is located in a metal box and it is fitted on front of iMoro between
the gear box as it is shown in Fig 3.2. Therefore the IMU z axis (yaw) coordinate
frame corresponds to gravity. The position of the body coordinate frame origin is

24

21.4, 8.1 centimeter.Two electric plugs located on the edge of box, one is feeded 24
voltage for the IMU and another is connected to CAN bus 2. See section 2.2.2

IMU box dimension 36mm× 47mm× 39mm
Body frame position: x=21.4 cm

y=8.1 cm
Supply Voltage 24 v
CAN connection CAN bus 2

Tab. 3.1: IMU Installation Specification

Fig. 3.2: Location of IMU in front of platform between the gearboxes

3.2.2 IMU Acceleration

Specific force is the non gravitational force per unit mass on body, sensed with
respect to an inertial frame. IMU measures the specific force of IMU body with
respect to inertial frame that is expressed in body frame and is indicated by f bib as
follow:

f bib = Ma · asens − ba (3.1)

In which asens is the acceleration output from IMU and ba is bias, also Ma is mis-
alignment matrix and its components calculated in section 3.2.5.

A sample of raw acceleration data from IMU is shown in Fig 3.3, in this test
IMU was at rest for 2 minutes with 7.8 millisecond sampling time and around 15000

25

data collected. If IMU has misalignment matrix equal to identity matrix and biases
equal to zero, then in stationary condition the value of acceleration in 2 directions
must be equal to zero and equal to gravity in third direction.

0 20 40 60 80 100 120 140
−10

−8

−6

−4

−2

0

2

Time (second)

A
c
c
e

le
r
a

ti
o

n
 (

m
/s

2
)

X
Y
Z

Fig. 3.3: Raw acceleration data

3.2.3 IMU Angular Velocity

Angular velocity as output of IMU consists of angular rate of body where IMU (wbib)
is attached and bias (bg):

wsens = wbib + bg (3.2)

Raw angular velocity data is indicated in Fig 3.4, As IMU is in stationary
position for 2 minutes, the value of angular velocity must be equal to zero. Noise in
output data eliminated by averaging over 2 minutes.

26

0 20 40 60 80 100 120 140
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Time (second)

A
n

g
u

la
r
 v

e
lo

c
it
y
 (

r
a

d
/s

)

X
Y
Z

Fig. 3.4: Raw angular velocity data

3.2.4 IMU Errors

IMU errors are categorized into deterministic and nondeterministic or stochastic
errors. There is direct relation between input (acceleration or angular velocity) and
output(signal) in deterministic error but stochastic errors have random nature and
they change within time, so that the models are determined with different algorithm
and experiments in laboratory.(For more detail refer to [18] and [5])

Two main part of errors are about biases and scale factors. To attain better
understanding of scale factors first we should consider the fact that accelerometers
and gyroscopes must be mounted orthogonally to produce proper output data. But
from mechanical aspect this alignment never can be 90 ◦ exactly, therefore misalign-
ments exist in IMU and they are called orthogonal alignment error and package
alignment error.

Misalignment matrix is 3 by 3 matrix with nine components that express non
orthogonality of each axis in compare with other two axes and diagonal elements
are called scale factor (scale factor consist of a fixed and temperature variation part
):  Sx Mxx Mxz

Myx Sy Myz

Mzx Mzy Sz

 (3.3)

Each IMU has a unique misalignment matrix for accelerometers and gyroscopes.

27

Another major part of IMU errors is biases that is divided to fixed term,
temperature induced, turn on variation and in run (or instability) variation. The
first term is classified as deterministic errors.(see E. Nebot [23])

Stochastic errors in my model included random variation of bias, scale factor,
random sensor noise and white noise:

b = b0 + b1 + b2 + w3 (3.4)

b0 is fixed term of bias
b1 is in run variation or bias instability
b2 is rate random walk
w3 is zero mean white noise.

All of these terms must be defined for every accelerometer and gyroscope in
x,y,z direction. Thus we provide a linear model like:{

Ẋg = Ag ·Xg +Bg · ηg1
bg = Cg ·Xg +Dg · ηg2

(3.5)

All coefficients for gyroscope are introduced here one by one. First Xg is a 6 by 1
vector:

Xg =
[
bxg1 bxg2 byg1 byg2 bzg1 bzg2

]T
(3.6)

And bg is equivalent with b in equation (3.4).
ηg1 is 6 by 1 matrix of white noise:

ηg1 =
[
ωxg1 ωxg2 ωyg1 ωyg2 ωzg1 ωzg2

]T
(3.7)

Ag matrix is 6 by 6 matrix that contains correlation time:

Ag =


1/Txg 0 0 0 0 0

0 0 0 0 0 0
0 0 1/Tyg 0 0 0
0 0 0 0 0 0
0 0 0 0 1/Tzg 0
0 0 0 0 0 0

 (3.8)

Bg is a 6 by 6 matrix that defines bias instability and rate random noise:

Bg =


Bxg 0 0 0 0 0
0 Kxg 0 0 0 0
0 0 Byg 0 0 0
0 0 0 Kyg 0 0
0 0 0 0 Bzg 0
0 0 0 0 0 Kzg

 (3.9)

Cg is a 3 by 6 matrix that defines as:

Cg =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 (3.10)

28

Dg is 3 by 3 random noise matrix

Dg

Dxg 0 0
0 Dyg 0
0 0 Dzg

 (3.11)

ηg2 is 6 by 1 matrix of white noise:

ηg2 =
[
ωxg3 ωyg3 ωzg3

]T
(3.12)

Same equation model like gyroscope defined for accelerometer to estimate bi-
ases: {

Ẋa = Aa ·Xa +Ba · ηa
ba = Ca ·Xa +Da · ηa

(3.13)

In a general case deterministic part of gyroscope errors can be omitted by averaging
over time as long as the IMU is at rest, that implies no angular velocity applied
to the IMU and the output is bias. Moreover deterministic error of accelerometer
calculated in a same way after reducing the gravity acceleration, often it is called
zero-g bias.

3.2.5 Calculating Acceleration Scale factor

Scale factors are diagonal elements of misalignment matrix that directly effect on
the value of acceleration.
In an ideal IMU scale factors are equal to one but in reality they have different value
depends on the quality of IMU. Scale factor as deterministic error is calibrated by
a test (For more detail refer to [17]). In principle the value of accelerometer at rest
is fix and equal to 1g on the surface of ground, no matter of the orientation of IMU
at rest, the outcome of acceleration should be equal to gravity of earth or 1g .

~a2
x + ~a2

y + ~a2
z = ~g2 (3.14)

In above equation ax,ay,az are output of accelerometers in x,y,z directions. By using
equation (3.1) and replacing the Ma from equation (3.3), we have:

(Sx · ax −Bx)
2 + (Sy · ay −By)

2 + (Sz · az −Bz)
2 = g2 (3.15)

To find the six unknowns in above equation we must find six equations, this
has been achieved by placing the cubic housing of IMU on its six sides. As bias grows
with time and can make a significant drift on output data, the whole test took 30s
which makes to keep the IMU housing on each side for 5s at rest. Then acceleration
data filtered and averaged values used as input for the equation, Finally the equation
solve by fmincon function in matlab environment. As expected the answer are near
to one:

S =

Sx = .9986
Sy = .9991
Sz = .9984

 (3.16)

29

3.2.6 Angular Velocity and Acceleration

Angular velocity of mobile manipulator with respect to NED frame (n) expressed in
body frame is equal to:

ωbnb = Mg(ωsens −Rb
n(λ) ·Rn

e (reeb) · ωeie)− bg (3.17)

Mg misalignment matrix of gyroscope is considered to be identity matrix.
ωsens is the angular velocity output from IMU.
Rb
n(λ) is rotation matrix from Geodetic to body frame which is a function of Euler

angles, and Rn
e (reeb) is rotation matrix from ECI frame to Geodetic frame which is a

function of distance between earth center to mobile robot.

As illustrated earlier, equations (1.10) and (1.13) link the angular velocity and
Euler angle rate, as a result after computing angular velocity from equation (3.17)
we can calculate Euler angle rate.

Earth rotates about common z axis of ECI and ECEF frame with 7.292e−5rad/s,
therefore the earth rotation vector is:

ωeie = ωiie =
[
0 0 ωie

]T
(3.18)

A differential equation for velocity is available to estimate the value of velocity:

V̇ e
eb = Re

n(reeb) ·Rn
b (λ) · f bib +Re

n(reeb) · gnb (reeb)− 2Ωe
ie · V e

eb (3.19)

gnb (reeb) is the earth gravity which depends on the distance between mobile manipu-
lator and earth center.
Ωe
ie is the skew symmetric matrix of earth angular velocity.

Finally the position of mobile manipulator with respect to ECEF derived from ve-
locity integral:

ṙeeb = V e
eb (3.20)

Solving equations of (3.20), (3.19) and (3.17) involves integration of the equa-
tions with given an initial condition. This process called Inertial Navigation and it
demonstrates the position and orientation of mobile robot.

Furthermore a model developed in Matlab Simulink to receive the raw data
from IMU as input and calculate the position and orientation of robot in each sample
time. It is crucial to calculate the initial orientation of body as accurate as possible,
because it directly affects on estimation of position and orientation on next moments.

Two tests provided here that demonstrate the estimation of position and orien-
tation after running the model by collected data from IMU. In both tests components
of reeb initialized at some point in Tampere region (base on meter) :

Initial position =

2794852.511
1236477.835
5579670.98

 (3.21)

The first test indicates the robot when it is at rest for 61 seconds and then
it starts driving in a straight path with the length of 108 centimeters till to 68th

30

second. During the stationary period we stop the integration process of acceleration.
During the time that robot is driven, bias of accelerometer is calculated by average of
acceleration over the stationary period and initial gravity vector. For simplicity the
value of bias is considered to be constant and thus it is subtracted from acceleration
during driving period and during period the robot stopped to move.

Fig 3.5 shows the result of displacement of reeb components in x,y,z directions
in meter on vertical axis and time in second on horizontal axis. As you see in Fig
3.5 displacements before 61th second is zero, but from 61th to 68th the displacement
in x direction is around 127 centimeters, which has 19 centimeters error. Also there
is displacement error in y and z direction around 10 and 8 centimeters respectively.
After 68th second the robot stops, but because of biases the value of displacement
in all directions increasing fast.

45 50 55 60 65 70 75 80
−1

0

1

2

3

X: 68
Y: 1.29

Time (second)

X
 D

is
p

la
c
e

m
e

n
t

(m
e

te
r)

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

X: 68
Y: 0.1348

Time (second)

Y
 D

is
p

la
c
e

m
e

n
t

(m
e

te
r)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

X: 68
Y: 0.09079

Time (second)

Z
 D

is
p

la
c
e

m
e

n
t

(m
e

te
r)

Fig. 3.5: Displacement test on straight line in X direction

In second test the heading of robot is changed by 90◦ through driving on a
quadrant with 90 cm radius. Fig 3.6 shows the result in a diagram with degree on
vertical axis and time in second on horizontal axis. After 60 seconds when robot
was at rest, it starts driving on quadrant path till to 65th second and the heading
changed almost 90◦. Also pitch and roll angles remained around zero. After 65th
seconds the robot stops again and biases increase the value of orientation in each
direction. During stationary period we stopped integration process from angular

31

velocity. During the time that robot is driven, bias of gyroscope is calculated by
average of angular velocity over the stationary period and then it is subtracted from
angular velocity during driving period and during peridod that robot stopped to
move.

0 20 40 60 80 100 120 140
−4

−2

0

2

Time (second)

R
o

ll
 (

d
e

g
r
e

e
)

0 20 40 60 80 100 120 140
−1

0

1

2

Time (second)

P
it
c
h

 (
d

e
g

r
e

e
)

0 20 40 60 80 100 120 140
−50

0

50

100

Time (second)

Y
a

w
 (

d
e

g
r
e

e
)

Fig. 3.6: Changing yaw angle

3.3 Inertial Measurement Unit and Camera Calibration

Data provided by each sensor is expressed in its own coordinate frame. In the
case of sensor fusion, first we must provide a common coordinate frame for multiple
sensors to express the data (For more detail refer to [24]). Therefore the process of
calibration between sensors and deriving the rigid transformation matrix for each
of them is a fundamental process to do. Calibration process of extroceptive sensors
are more straight forward, but calibration of IMU with respect to a camera bring
more difficulties because of different nature of sensors (see EM. Foxlin [25] or H.
Zhao [26]). IMU calibration must be done with regard to kinematic and dynamic
characteristic of vehicle.

Therefore a simulation model of mobile robot is implemented in Matlab Sim-
Mechanics to test the calibration method easier and faster before real experiments.
Therefore a model from the mobile robot is designed that consists of four actuators

32

to enable the robot to move in X and Y direction, changing the yaw and pitch angles.
Two body sensors considered as IMU and camera and attached on main body and a
marker placed in 10 meters away from mobile robot. All dimensions try to be same
with real mobile robot. Moreover simulation made it possible to control the motion
and defines the desire path for mobile robot. Even small changes in the system can
be tested and the result can be seen by running the simulation.

Now to find the transformation matrix between IMU and camera, an equation
base on the position of camera, IMU, marker is developed. IMU is located in a same
position as body frame on mobile robot. Also the full pose of marker in camera is
given (PM

MC and RM
C) and we assume the position of inertial coordinate frame is on

the marker, thus:
Ri
M · PM

MC = P i
iB +Ri

B · PB
BC (3.22)

Where:
M, i, C, B are marker, inertial, camera and body frame respectively.
Ri
M and PB

BC are the terms that we are looking for.
PM
MC is already known from camera and P i

iB is derived by integrating from IMU
acceleration output expressed in inertial frame.
Ri
B is the rotation matrix from body frame to inertial frame which is calculated from

IMU data.

If the value of PB
BC and Ri

M would be calculated, it is possible to determine
RB
C as the rotation matrix of camera coordinate frame and body frame with respect

to each other (refer to equation (3.34)). Thus when PB
BC and RB

C are cleared, the
full pose of IMU and camera with respect to each other is cleared and they are
calibrated with respect to each other.

To acquire P i
iB we need to calculate two times acceleration integral from IMU.

Even in the case of insignificant IMU error, two times acceleration integration in-
volves more error in our calculation and that is what affect in result accuracy and
we have to avoid. But the derivation of the above equation with respect to time is
what that can help to replace real data with less error inside the equation

Ri
M · V M

MC = V i
iB + Ṙi

B · PB
BC (3.23)

In above equation V M
MC is velocity of camera with respect to marker and V i

iB

is the acceleration integral from IMU (velocity) represented in inertia frame. Note
that the value of Ri

M and PB
BC in equation (3.23) are constant over the time, but

the value of rest terms can change with time.

Ṙi
B is the rate of rotation matrix that discussed earlier in equation (1.5) and

based on that it is equal to:
Ṙi
B = Ri

B · ΩB
iB (3.24)

and ΩB
iB is skew symmetric matrix (based on (1.4)) of IMU angular velocity after

removing biases terms :

ΩB
iB =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (3.25)

33

Thus the value of matrix Ri
B in every second computed by integration from equation

(3.24).

To calculate the value of V i
iB, we do the same process like in (3.19). First

we need to transform the IMU acceleration from body frame to inertia frame by
multiplying with rotation matrix Ri

B. Secondly we need to subtract the value of
acceleration due to gravity and bias from IMU acceleration, at this point velocity
of body frame at every second is computed by a simple integration over time. Since
the mobile robot start to move from stationary position, the initial value of V i

iB in
integration process is equal to zero vector.

On the other side of equation (3.23) there is V M
MC and since the PM

MC is known
the position differentiation with respect to time can provide us the velocity.

Since equation (3.23) is linear with respect to measurement, we can apply
linear operators like summation over the time . Therefore equation is reformed
during period t0 to tn:

Ri
M · (

n=tn∑
n=t0

V M
MC) =

n=tn∑
n=t0

V i
iB + (

n=tn∑
n=t0

Ṙi
B) · PB

BC (3.26)

Above equation solved with nonlinear optimization method known as fmincon in
Matlab, in which linear inequalities constraints provided for the distance between
IMU and camera PB

BC and rotation angle between marker frame and inertia frame
Ri
M .

Equation (3.26) can lead us to answer if it fulfills some properties such as:

Property I) Coefficient matrices of equation (3.26) must be full rank to avoid
indefinite answers of equation. This means that summation of Ṙi

B over time should
be full rank. In practice rotation about merely one of x, y, z axes, always produce a
singular derivative rotation matrix (a row or column of zero component). As a result
changing only the heading (or pitch or roll) angle of mobile robot is not enough and
at least two different angles axes must change during t0 to tn to provide a full rank
rotation matrix.
There are two methods here that we can change two angle axis at same time, first
is to run the mobile robot only by changing the heading and save the data and next
time run mobile robot only by changing pitch angle and save the data. At this point
we can add two set of data base on equation (3.26).
Second method is to drive mobile robot in a way that both its heading and pitch
angles changes with time, thus by substituting the data in equation(3.26), the final
rotation matrix is:

Ri
B = (Ri

B)roll · (Ri
B)pitch · (Ri

B)yaw (3.27)

and since the roll angle remains constant, derivative of above formula is:

Ṙi
B = (Ṙi

B)yaw · (Ri
B)pitch · (Ri

B)roll + (Ri
B)yaw · (Ṙi

B)pitch · (Ri
B)roll (3.28)

Therefore the final derivative rotation matrix is affected by (Ṙi
B)yaw and (Ṙi

B)pitch.

34

Property II) Second condition that equation (3.26) must contain become clear
if we extract the last part of equation (3.26) at second tn base on (1.5), then:

Ṙi
B · PB

BC = Ri
B(ωBiB × PB

BC) = (Ri
Bω

B
iB)× (Ri

BP
B
BC) = (ωiiB)× (Ri

BP
B
BC) (3.29)

Again this equation illustrates the fact that if two components of angular veloc-
ity vector are zero, third component of cross product would be equal to zero and
the equation regresses, thus we lose the accessibility to calculate unknown terms in
equation.

Property III) Variable PB
BC in equation (3.26) could be equal to zero if mobile

robot is driven in a path periodically from. By driving mobile robot collected data
for V M

MC over the time indicates that there are points with the same value, but
negative sign. Therefore the summation of data

∑
V M
MC over the time in (3.26)

would be equal to zero. The same thing happens for V i
iB over the same path and

finally it leads the variable in equation (3.26) to be equall to zero.

As an example the mobile robot start from an arbitrary point and drives in a
circular path with 2 meter radius and π/4 rad/s as yaw rate for 20 second. With
the help of equation (3.26), the variables during 20 second calculated. Only second
component of variable PB

BC based on meter is demonstrated in Fig 3.7 as an example
and the graph indicates a curve shape that merge to a constant value which is about
0.519 meter equivalent to (PB

BC)y. But as you see in the graph there is a jump at
10th which happened when mobile robot complete one round of circle and the next
jump happened 8 second later at 18th second, because the period of circular path
is 8 second.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

Time (second)

S
e

c
o

n
d

 c
o

m
p

o
n

e
n

t
o

f
v
a

r
ia

b
le

 P
B B

C
 (

m
e

te
r
)

Fig. 3.7: Calculating (PB
BC)y component of variable PB

BC over 20s in periodic circular path

35

By regarding the facts that mentioned above, the values of Ri
M and PB

BC can
be computed successfully by driving the mobile manipulator over a quadrant. As
it is demonstrated in figure 3.8 in our experiment we drove the mobile manipulator
with π/20 (rad/s) as yaw rate for 10 second with .31 (m/s) velocity to go through
quadrant with 2 meters radius and also with π/90 (rad/s) as pitch rate for 10 second
with same speed.

By replacing the data in equation (3.26) and solving the nonlinear equation,
unknown terms calculated after 60 times iteration. The value of variable PB

BC base
on centimeter is calculated:

PB
BC =

−5.13
51.92
28.37

 (3.30)

and the value of Ri
M base on radian is equal to:

Ri
M =

 0.9187 −0.2614 0.2961
0.2983 0.9505 −0.0864
−0.2588 0.1677 0.9513

 (3.31)

which are very near to real values that equal to:

(PB
BC)Real =

−5.1763
51.925
28.354

 (3.32)

and

(Ri
M)Real =

 0.9187 −0.2616 0.2961
0.2985 0.9505 −0.0864
−0.2588 0.1677 0.9513

 (3.33)

36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X direction (meter)

Y
 d

ir
e
c
ti
o
n
 (

m
e
te

r
)

Fig. 3.8: Quadrant path with 2 meter radius

Now it is time to calculate RB
C to complete the full pose of IMU and camra.

For this means equation (3.34) indicates the relation between coordinate frames of
marker, camera, body or imu:

Ri
B ·RB

C = Ri
M ·RM

C (3.34)

In above equation Ri
B is the rotation matrix from body frame to inertial frame

computed from equation (3.24).
Ri
M is rotation matrix from marker to inertial frame computed from equation (3.26).

RM
C is rotation matrix from camera to marker that estimated from camera data. By

differentiating with respect to time, we have:

Ṙi
B ·RB

C = Ri
M · ṘM

C (3.35)

That makes it possible to average over entire sets of data to determine RB
C .

4. RESULT AND DISCUSSION

CANopen was developed as main communication interface to connect sensors and
motor driver to embedded PC. Particularly Process Data Object protocols is imple-
mented to send set points to the driver and Heart beat is implemented to monitor
the status of components and Sync protocol is used to synchronize the actuators.

Since operating system of Embedded PC is Xenomai real-time, encoders and
IMU were connected to embedded PC with real-time communication interface by
Xenomai Real-time Driver Modules (RTDM) library. Programming in real-time en-
vironment (Xenmai) is quite helpful, because Xenomai provides sophisticated com-
mands (API) for RTDM and message services to optimize time interval in communi-
cation with IMU and encoder and motor’s driver. Hence different software modules
are executed in different threads (multi-thread programming approach), real-time
queue was implemented to share data among different software modules.

As it is demonstrated in Fig 4.1 now the network communication allows us
to send control commands to motor’s drive and receive feedback (from encoders) in
exact time interval. We are able to control the steering position and driving speed
of each wheel. Moreover sending control command to steering and driving wheels
and using forward kinematic to calculate the velocity and pose of main body and
using IMU output as feedback could be considered as future enhancement .

Besides many adavantages that CAN network provides, there were some cases
that we couldn’t run the robot because of mechanical malfunctions. For instance
the CAN socket of motor drivers (EPOS) could be loose after a while or one of CAN
low or CAN high wires were disconnected.

38

Motor Drivers

CAN 1

CAN 2

Encoder

Leg 1 Leg 2 Leg 3 Leg 4

CANopen Network

LAN

IMU
Embedded PC WLAN (UDP)

Steering and Driving motors

Fig. 4.1: Intelligent components and communication interfaces of iMoro platform

The process of receiving meaningful data from IMU and calculating the ve-
locity and position of IMU body, which is attached on body of robot, is completed.
However the modeling and calculations have been done in Matlab, this process needs
time and concentration. By using Matlab code generation, now a model is designed
on Matlab simulink to receive and read the IMU data real-time.(For more detail
refer to [27])

During this process velocity and postion are calculated with regard to differ-
ential equations (3.17), (3.19), (3.20) and a test in section 3.2.5 is implemented to
estimate the scale factor components of misalignment matrix. Also model (3.5) with
four elements is considered to calculate biases of gyroscope or acceleration.

To improve postion estimation, IMU data can be fused with camera data (or
GPS) by applying algorithms like Kalman Filtering as future enhancement of this
section. (See M. Euston [28]).

As explained before the idea of sensor fusion has became a popular research
topic recently (See P. nunez [29]). In section 3.3 the process of IMU and camera
calibration is explained and the equation (3.26) is presented and solved when robot
maintains some conditions as it follows a specific path. For example mobile robot
must have rotation about two perpendicular axes, in our case by rotating about pitch
and yaw axes. Moreover the path that robot follows must not be a periodic path,
because solving the equation will lead to singularity. This properties is explained
with more detail in 3.3.

Consequently if the robot follow Quadrant path in Fig 4.2, the collected data
can solve the equation (3.26) and presents the transformation matrix between IMU

39

and camera. Thus the value of PB
BC as position of camera with respect to body frame

and is expressed in body frame based on centimeter is equal to (detail calculation
is explained in section 3.3):

PB
BC =

−5.13
51.92
28.37

 (4.1)

and the rotation matrix from marker to inertial frame based on radian is equal to:

Ri
M =

 0.9187 −0.2614 0.2961
0.2983 0.9505 −0.0864
−0.2588 0.1677 0.9513

 (4.2)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

X direction (meter)

Y
 d

ir
e

c
ti
o

n
 (

m
e

te
r
)

Fig. 4.2: Quadrant path with 2 meter radius

BIBLIOGRAPHY

[1] R. Oftadeh, M. M Aref, R. Ghabcheloo, and J. Mattila, “Mechatronic design
of a four wheel steering mobile robot with fault-tolerant odometry feedback,”
in Mechatronic Systems, no. 1, 2013, pp. 663–669.

[2] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range
finder (improves camera calibration),” in Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,
vol. 3. IEEE, 2004, pp. 2301–2306.

[3] G. Welch and G. Bishop, “An introduction to the kalman filter,” 1995.

[4] J. Vaganay, M.-J. Aldon, and A. Fournier, “Mobile robot attitude estimation
by fusion of inertial data,” in Robotics and Automation, 1993. Proceedings.,
1993 IEEE International Conference on. IEEE, 1993, pp. 277–282.

[5] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated naviga-
tion systems, 2013.

[6] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation
vectors,” Matrix, 2006.

[7] H. Rajaie, O. Zweigle, K. Häussermann, U.-P. Käppeler, A. Tamke, and P. Levi,
“Hardware design and distributed embedded control architecture of a mobile
soccer robot,” Mechatronics, vol. 21, no. 2, pp. 455–468, 2011.

[8] R. Grepl, J. Vejlupek, V. Lambersky, M. Jasansky, F. Vadlejch, and P. Coupek,
“Development of 4ws/4wd experimental vehicle: platform for research and ed-
ucation in mechatronics,” in Mechatronics (ICM), 2011 IEEE International
Conference on. IEEE, 2011, pp. 893–898.

[9] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robotos.
The MIT press, 2004.

[10] R. Siegwart, P. Lamon, T. Estier, M. Lauria, and R. Piguet, “Innovative design
for wheeled locomotion in rough terrain,” Robotics and Autonomous systems,
vol. 40, no. 2, pp. 151–162, 2002.

[11] R. Oftadeh, M. M. Aref, R. Ghabcheloo, and J. Mattila, “Bounded-velocity
motion control of four wheel steered mobile robots,” in Advanced Intelligent
Mechatronics (AIM), 2013 IEEE/ASME International Conference on. IEEE,
2013, pp. 255–260.

41

[12] O. Pfeiffer, A. Ayre, and C. Keydel, Embedded networking with CAN and
CANopen. Copperhill Media, 2008.

[13] D. Abbott, Linux for embedded and real-time applications. Newnes, 2011.

[14] S.-h. Won, W. W. Melek, F. Golnaraghi et al., “A kalman/particle filter-based
position and orientation estimation method using a position sensor/inertial
measurement unit hybrid system,” Industrial Electronics, IEEE Transactions
on, vol. 57, no. 5, pp. 1787–1798, 2010.

[15] T. Lee, J. Shin, and D. Cho, “Position estimation for mobile robot using in-
plane 3-axis imu and active beacon,” in Industrial Electronics, 2009. ISIE 2009.
IEEE International Symposium on. IEEE, 2009, pp. 1956–1961.

[16] Q. Cai, N. Song, G. Yang, and Y. Liu, “Accelerometer calibration with non-
linear scale factor based on multi-position observation,” Measurement Science
and Technology, vol. 24, no. 10, p. 105002, 2013.

[17] A. Amirsadri, J. Kim, L. Petersson, and J. Trumpf, “Practical considerations
in precise calibration of a low-cost mems imu for road-mapping applications,”
in American Control Conference (ACC), 2012. IEEE, 2012, pp. 881–888.

[18] A. Kim and M. Golnaraghi, “Initial calibration of an inertial measurement unit
using an optical position tracking system,” in Position Location and Navigation
Symposium, 2004. PLANS 2004. IEEE, 2004, pp. 96–101.

[19] F. M. Mirzaei and S. I. Roumeliotis, “A kalman filter-based algorithm for
imu-camera calibration: Observability analysis and performance evaluation,”
Robotics, IEEE Transactions on, vol. 24, no. 5, pp. 1143–1156, 2008.

[20] J. Underwood, A. Hill, and S. Scheding, “Calibration of range sensor pose
on mobile platforms,” in Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. IEEE, 2007, pp. 3866–3871.

[21] J. Yi, H. Wang, J. Zhang, D. Song, S. Jayasuriya, and J. Liu, “Kinematic mod-
eling and analysis of skid-steered mobile robots with applications to low-cost
inertial-measurement-unit-based motion estimation,” Robotics, IEEE Transac-
tions on, vol. 25, no. 5, pp. 1087–1097, 2009.

[22] A. AUX DAC, T.-A. MEMS, and A. RATE, “Six degrees of freedom inertial
sensor adis16385.”

[23] E. Nebot and H. Durrant-Whyte, “Initial calibration and alignment of low-
cost inertial navigation units for land vehicle applications,” Journal of Robotic
Systems, vol. 16, no. 2, pp. 81–92, 1999.

[24] M. E. Antone and Y. Friedman, “Fully automated laser range calibration.” in
BMVC, 2007, pp. 1–10.

42

[25] E. M. Foxlin, “Generalized architecture for simultaneous localization, auto-
calibration, and map-building,” in Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, vol. 1. IEEE, 2002, pp. 527–533.

[26] H. Zhao, Y. Chen, and R. Shibasaki, “An efficient extrinsic calibration of a
multiple laser scanners and cameras’ sensor system on a mobile platform,” in
Intelligent Vehicles Symposium, 2007 IEEE. IEEE, 2007, pp. 422–427.

[27] R. Oftadeh, M. M. Aref, R. Ghabcheloo, and J. Mattila, “Unified framework
for rapid prototyping of linux based real-time controllers with matlab and
simulink,” in Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME In-
ternational Conference on. IEEE, 2012, pp. 274–279.

[28] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel, “A complementary
filter for attitude estimation of a fixed-wing uav,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on. IEEE,
2008, pp. 340–345.

[29] P. Núñnez, P. Drews Jr, R. Rocha, and J. Dias, “Data fusion calibration for a
3d laser range finder and a camera using inertial data.” in ECMR, 2009, pp.
31–36.

	Abstract
	Preface
	List of Terms and Abbreviations
	List of Tables
	List of Figures
	Introdution
	Theoretical Background
	Inertial Sensors
	Attitude Representation
	Rotation Matrix Rate
	Euler Angle Rate
	Quaternion

	Velocity and Changing Coordinate Frame
	Relevant CANopen Introduction
	Object Dictionary
	Data Transmission

	iMoro Hardware Architecture
	Locomotion Mechanism
	Electronically Commutated Motors
	EPOS Position Controller
	Driving and Steering Motors

	Communication Protocols
	Standard Communication Protocols
	Nodes Number In iMoro

	Controller Set Point and Feedback
	Control Word and Status Word
	Real-time Software Interface

	IMU and Camera Simulation and Calibration
	Navigation Technique
	Inertial Measurement Unit
	IMU Installation
	IMU Acceleration
	IMU Angular Velocity
	IMU Errors
	Calculating Acceleration Scale factor
	Angular Velocity and Acceleration

	Inertial Measurement Unit and Camera Calibration

	Result and Discussion
	Bibliography

