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Syöpä on tauti jonka määrittävä piirre on solujen hallitsematon ja invasiivinen kasvu. 
Syövät saavat alkunsa geneettistä muutoksista jotka muuttavat solun toimintaa ja 
johtavat haitalliseen fenotyyppiin joka periytyy syöpäsolun jakautuessa. Fuusiogeenit 
ovat yksi geneettisten muutosten muoto jossa kahden geenin palaset liittyvät yhteen ja 
muodostavat uudella tavalla käyttäytyvän geenin. Fuusiogeenien on osoitettu olevan 
tärkeässä roolissa monissa ihmisten syövissä. Tässä työssä käytimme laskennallisia 
menetelmiä ja koko transkriptomin kattavaa sekvensointia etsiäksemme fuusiogeenejä 
40 aivosyöpäpotilaan aineistosta. Löysimme uuden FGFR3-TACC3 fuusiogeenin, joka 
määrittää uuden glioblastooman alityypin. Glioblastooma on äärimmäisen tappava ja 
yleinen aivosyövän muoto ihmisissä. Tutkimalla isompaa potilasaineistoa löysimme 4 / 
48 fuusiogeenille positiivista glioblastoomaa, mutta emme yhtään positiivista tapausta 
43 matala-asteisen aivosyövän joukosta. Löytämämme fuusiogeeni johtuu tandem-
kopioituneesta alueesta kromosomissa 4, ja tuottaa kimeeristä proteiinia joka muuttaa 
aivosyövän pahalaatuisemmaksi ja voimistaa solukasvua. FGFR3-TACC3 fuusiogeeni 
ei koskaan esiintynyt yhdessä EGFR, PDGFRA tai MET geenien amplifikaation kanssa. 
On mahdollista, että fuusiogeeniä kantavia potilaita voidaan tulevaisuudessa hoitaa 
käyttäen olemassaolevia FGFR3 proteiinin toimintaa estäviä lääkkeitä. 
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ABSTRACT 
 
TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Information Technology 
ANNALA, MATTI: Discovery of a novel fusion gene in glioblastoma using com-
putational methods 
Master of Science Thesis, 59 pages, 0 appendix pages 
April 2013 
Major: Signal Processing 
Examiner: Prof Olli Yli-Harja 
Keywords: cancer genomics, fusion gene, brain cancer, computational biology 
 
Cancer is a disease characterized by the uncontrolled and invasive growth of cells. All 
forms of cancer are caused by genomic alterations that alter normal cellular function, 
leading to a malignant phenotype that is inherited across cell division. Fusion genes are 
a type of genomic alteration where pieces from two genes are fused together, forming a 
new gene with altered behaviour. Fusion genes are known to play a role in many human 
cancers. In this work, we used computational analysis and whole transcriptome se-
quencing to search for fusion genes in a cohort of 40 brain cancer patients. We discov-
ered a novel fusion gene FGFR3-TACC3 that characterizes a new subtype of glioblas-
toma, a highly lethal form of brain cancer. In a larger validation cohort, the fusion gene 
was found in 4 of 48 glioblastoma patients but not in any of 43 low-grade gliomas test-
ed. The fusion gene is caused by tandem duplication and encodes a chimeric protein that 
promotes glioma progression and cell growth. The fusion gene was mutually exclusive 
with the amplification of EGFR, PDGFRA and MET, three oncogenes associated with 
glioblastoma. The availability of small molecule inhibitors for FGFR3 suggests an ef-
fective treatment strategy for glioblastoma patients harboring the fusion. 
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TERMS AND ABBREVIATIONS 
 
aCGH Array comparative genomic hybridization. A method where 

DNA microarrays are used to assess the copy numbers of 
genomic regions.  

BLAST Web-based sequence alignment tool that can locate a given 
sequence in an organism’s genome or transcriptome. 

cDNA Complementary DNA. DNA produced by reverse transcrip-
tion of RNA back into DNA. 

CDS Coding sequence of a messenger RNA. The RNA segment 
that is translated into protein by ribosomes. 

Codon A nucleotide triplet that codes for an amino acid or the 
start/end of a coding sequence. 

Copy number The number of copies of a gene or genomic region found 
within a cell. 

Cytoplasm The contents of a cell, excluding the nucleus. The cyto-
plasm is enclosed by the plasma membrane and includes 
most of the organelles found in cells. 

DNA Deoxyribonucleic acid. The nucleic acid that acts as a blue-
print for the behavior of all living cells. 

DNA microarray A device used to quantify the amounts of thousands of dif-
ferent short DNA sequences within a cell. 

ENCODE Encyclopedia of DNA Elements. A public research consor-
tium that is mapping all functional elements in the human 
genome. 

Exon A segment of pre-messenger RNA that remains in the pro-
cessed messenger RNA transcript. See also intron. 

Eukaryote A branch of life characterized by cells that contain nuclei. 
FDA Food and Drug Administration. A US agency that promotes 

public health by supervising food and drug safety. 
Frameshift A change in the reading frame of a protein’s coding se-

quence. 
GBM Glioblastoma. The most common and aggressive type of 

primary brain cancer in humans. 
Glioma A brain cancer that arises from glial cells. 
HTS High throughput sequencing. A term that describes a num-

ber of new DNA sequencing technologies capable of pro-
ducing millions of short sequence reads per day. 

Indel Insertion or deletion of one or more nucleotides into a DNA 
or RNA segment. 

Intron A segment of pre-messenger RNA that is spliced out of the 
transcript to produce the final messenger RNA. 
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MDACC The University of Texas MD Anderson Cancer Center. One 
of the world’s leading cancer hospitals and research centers. 
Located in Houston, Texas. 

miRBase A curated public repository of microRNA annotations for a 
number of different organisms. 

miRNA MicroRNA. A form of small noncoding RNA that regulates 
gene expression through RNA interference and other mech-
anisms. 

mRNA Messenger RNA. Processed RNA transcripts that exit the 
nucleus and are translated by ribosomes into proteins. 

NCBI National Center for Biotechnology Information. 
Nucleus A membrane-enclosed cellular compartment that contains 

all of the DNA found in eukaryotic cells (except for mito-
chondrial DNA). 

PCR Polymerase chain reaction, a wet-lab technique for copying 
segments of DNA. 

Primary cancer A mass of cancer cells that is situated at the site of origin. 
Contrast with metastasized cells that have migrated to a new 
site through the bloodstream or otherwise. 

Reading frame The set of codon locations found in the coding region of a 
gene. 

RefSeq A curated public repository of RNA and DNA sequence 
data from multiple biological organisms. 

Reverse transcription Biological process where a complementary DNA strand is 
produced using an RNA strand as template. The process is 
performed by reverse transcriptase enzymes. 

RNA Ribonucleic acid. 
RNA-seq RNA sequencing. A technique where high throughput se-

quencing is used for transcriptomic profiling. 
RT-PCR Polymerase chain reaction preceded by a reverse transcrip-

tion step where RNA is reverse transcribed into cDNA. 
SNP Single nucleotide polymorphism. 
TCGA The Cancer Genome Atlas. A large-scale collaborative re-

search project that is cataloguing cancer-causative genomic 
alterations in over 20 different cancer types. 

Transcript A strand of RNA produced by an RNA polymerase enzyme 
that copies a strand of DNA into RNA. 
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1 INTRODUCTION 

The field of computational biology has advanced rapidly during the last 20 years. Tech-
nologies such as DNA microarrays and high-throughput sequencing have provided re-
searchers with an unprecedented amount of biological information (Hawkins et al. 
2010), while modern computers have made it possible to analyze the data within practi-
cal timescales. We are reaching a stage where organisms can be studied and understood 
in a holistic manner at all levels of their dynamics. This new field of study has come to 
be known as systems biology. In practical terms, systems biology studies the complex 
networks of molecular interactions that govern the functioning of biological organisms 
(Kitano 2002). As such, it provides a powerful platform for the study of complex and 
heterogeneous diseases such as cancer. However, in order to fully realize the promise of 
systems biology, we must first understand the parts that make up the system under 
study. 
 
This vision led the computational systems biology group at the Tampere University of 
Technology to initiate a project with the goal of using high throughput sequencing and 
computational analysis to discover novel features and regulatory mechanisms in human 
cancers. The project was initiated in cooperation with Prof. Wei Zhang, director of the 
Cancer Genomics Core Laboratory at the University of Texas M.D. Anderson Cancer 
Center. The first cancer type chosen for study was brain cancer, with particular empha-
sis on glioblastoma multiforme, the most common and lethal form of brain cancer in 
humans (Furnari et al. 2007). Prof. Zhang’s group had years of experience in the study 
of this cancer, and in 2010 they decided to use the newly introduced technique of whole 
transcriptome sequencing to characterize the RNA content of a large number of brain 
tumors. Our group was tasked with analyzing the sequencing data and generating bio-
logical hypotheses for subsequent functional validation. Particular emphasis was placed 
on the discovery of novel chromosomal alterations or mutations that drive the malignant 
behavior of brain cancer. 
 
To fulfill the technical requirements of this project, we implemented a software aimed at 
identifying fusion genes from whole transcriptome sequencing data. A fusion gene is a 
chimeric gene that combines pieces from two original genes. They are formed when 
chromosomes break into pieces and cellular repair mechanisms fail to reassemble the 
fragments correctly. By combining the growth-inducing potential of one gene with the 
activating potential of another, fusion genes can single-handedly transform a benign, 
normal cell into an uncontrollably proliferating cancer cell. Indeed, fusion genes have 
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been shown to act as drivers of malignant transformation in dozens of human cancers 
(reviewed in Mitelman et al. 2007). In BCR-ABL1 fusions found in 95% of chronic my-
elogenous leukemias (CML), the inclusion of protein domains from BCR renders the 
growth-inducing ABL1 protein constitutively active (Davis et al. 1985), resulting in 
cancer even in the absence of other genetic lesions (Daley et al. 1990). After the discov-
ery of BCR-ABL1 in 1985 (Shtivelman et al. 1985), a drug targeting this fusion protein 
was successfully tested in 1996 (Druker et al. 1996). This drug, imatinib, received FDA 
approval in 2001 and single-handedly transformed CML from an invariably lethal can-
cer into a chronic, manageable condition for 95% of patients (Druker et al. 2006). This 
example illustrates the clinical impact that targeted molecular therapies can have on 
cancer treatment. Unfortunately in many cancers the driving mechanisms are still poorly 
understood, and no suitable molecular targets are available. 
 
In this thesis we discuss the implementation of a software for fusion gene discovery, 
and then demonstrate how the software was used to identify a novel fusion gene in glio-
blastoma, the most lethal and common form of primary brain cancer in humans. We also 
describe the computational analyses and wet-lab experiments that were performed to 
understand the function, origin, and clinical significance of the fusion gene. In other 
words, we describe the entire process that goes into the discovery and functional valida-
tion of a novel fusion gene. 
 
We start in chapter 2 by providing the reader with the biological background necessary 
for understanding the biological quantities and entities that make up the subject matter 
of this thesis. In particular, we give an overview of the study of cancer from the point of 
view of molecular biology, and discuss the current state of knowledge on brain cancer. 
 
In chapter 3 we describe the experimental methods and computational algorithms used 
in this thesis. We provide a basic overview of DNA microarrays and high throughput 
sequencing, and describe the algorithm we used for identifying fusion genes from whole 
transcriptome sequencing data. We also discuss the other algorithms that were used to 
translate raw microarray or sequencing measurements into meaningful and quantitative 
biological phenotypes. 
 
After describing the computational methods, we illustrate their use in chapter 4 through 
a case study. In the case study we show how the algorithms were used to discover a 
novel fusion gene in human brain cancer. We also describe how we validated the fusion 
gene by combining wet-lab experiments with microarray and sequencing data. Finally, 
we demonstrate how we applied our algorithm to other public datasets and found more 
patients positive for the fusion gene. 
 
In chapter 5 we conclude the thesis and discuss anticipated future developments in basic 
research and clinical applications relating to the novel fusion gene. 
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2 BIOLOGICAL BACKGROUND 

2.1 Genes, chromosomes and cellular function 

All organisms on our planet are composed of cells, the basic building blocks of life. 
Cells come in a variety of shapes, sizes, and functions. Simple organisms such as bacte-
ria are unicellular, while more complex organisms such as humans are composed of 
hundreds of cell types acting in concert to produce our diverse behavior. Cells replicate 
through cell division. Multicellular organisms begin their life as a single cell, the zygo-
te, which undergoes multiple generations of cell division and produces the billions of 
cells that make up an organism. 
 
All cells carry within them a set of blueprints that define their function and behavior. 
This blueprint is encoded in the form of a DNA double helix stored inside the cell. The 
double helix contains two linear strands of nucleotides: the four building blocks of DNA 
(represented by the letters ACGT). The DNA strands are connected to one another so 
that the nucleotides form complementary pairs (A-T or C-G). The totality of all DNA 
within an organism is known as its genome. The genome of an organism is subdivided 
into physically disjoint subunits known as chromosomes. Chromosomes are highly con-
densed structures composed of a long string of DNA wrapped around scaffold proteins. 
The human genome consists of 46 chromosomes, 23 from each parent, plus the small 
quantity of DNA found within mitochondria. In eukaryotic cells such as human cells, 
DNA is tucked away safely in the nucleus, a membrane-enclosed compartment inside 
the cell. 
 
Chromosomes can be subdivided into functional units known as genes. Genes are conti-
guous genomic regions that are transcribed into RNA transcripts in a process known as 
transcription. RNA transcripts are nucleotide chains similar to DNA, with the exception 
that they are single-stranded and use the nucleotide U instead of T. Another difference 
is that the deoxyribose sugar found in DNA is replaced with a ribose, rendering RNA 
molecules shorter-lived than DNA. While DNA never leaves the nucleus, RNA trans-
cripts known as messenger RNAs (mRNA) are allowed to pass outside the nucleus into 
the cytoplasm. There they are processed by ribosomes, complex molecular machines 
that translate the RNA transcripts into proteins. A protein is a chain of amino acids, 
each of which is represented by a nucleotide triplet (a codon) in the RNA transcript. The 
43 = 64 possible codons are redundant and code for only 20 different amino acids. The 
ribosome does not translate the entire mRNA transcript, but instead starts translating 
when it encounters a specific three-nucleotide sequence known as a start codon. Trans-
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lation stops when the ribosome encounters a nucleotide triplet known as a stop codon. 
The region between (and including) the start and stop codons is known as the coding 
region of a transcript, and the positions of all codons are known as the frame. A transla-
ted protein folds into a thermodynamically stable conformation and then begins execu-
ting its evolved function in the cell. In total, the human genome contains over 20,000 
such protein coding genes (ENCODE Project Consortium 2012). Many proteins can 
combine with other proteins to produce intricate molecular complexes that perform 
highly sophisticated functions. A simplified view of the information flow from DNA to 
RNA to protein is shown in Figure 1. 
 

 
Figure 1. An overview of the canonical mechanism by which information flows from DNA 
to RNA to protein in eukaryotic cells. 

 
In eukaryotic cells such as human cells, the information flow from DNA to RNA to pro-
tein is complicated by a process known as RNA splicing. Genes subject to splicing are 
first transcribed into long transcripts called pre-messenger RNAs (pre-mRNA), and the-
se transcripts then undergo splicing, a process where fragments (introns) from the mid-
dle of the pre-mRNA are cut out, and the remaining fragments (exons) are joined back 
together (Figure 2) (reviewed in Clancy 2008). The pre-mRNAs of some genes can be 
spliced in multiple alternative ways, leading to different protein structures. Such alterna-
tive mature transcripts are known as splice variants, and their relative abundance in 
cells varies in a tissue-specific manner. 
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Figure 2. An illustration of mRNA splicing. The gene is first transcribed into the pre-
mRNA (primary transcript). The introns are removed and the exons are joined back to-
gether to form the mature transcript. Image courtesy of John S. Choinski, University of 
Central Arkansas. 

 
Proteins are the primary molecules responsible for the majority of functions that take 
place inside living cells. Yet they are not the only molecules capable of complex functi-
on. RNA molecules directly participate in many cellular processes beyond their role as 
carriers of genetic information between the DNA and ribosomes. Ribosomes themselves 
are molecular machines composed of equal amounts RNA and protein (Cech 2000). 
RNA molecules can also form regulatory networks where RNA transcripts target other 
RNAs for degradation. A classic example is provided by microRNAs, short RNA frag-
ments that bind to mRNA transcripts that carry a complementary sequence, and target 
them for degradation by a protein complex known as the RNA-induced silencing comp-
lex (reviewed in Sun et al. 2010). 
 
The proteins found within cells vary by cell type. The quantity of a protein inside a cell 
is determined by multiple factors, including the quantity of mRNA available for transla-
tion, the degradation time of the protein, and translation efficiency. Degradation time is 
affected by a protein’s inherent stability and its interactions with other proteins. Transla-
tion efficiency is affected by the transcript sequence and the regulatory effects of mic-
roRNAs and other molecules. The quantity of mRNA produced by a gene varies widely 
between genes and cell types. Some genes are only expressed in specific tissue types, 
while some genes are expressed in all cells. The expression level of a gene is deter-
mined by proteins known as transcription factors. These proteins enter the nucleus and 
bind to chromosomal sites harboring a specific DNA sequence. Upon binding, the pro-
teins alter the conformation of the surrounding DNA and cause nearby genes to express 
at a higher or lower rate. 
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2.2 Molecular pathology of cancer 

Cancers are a heterogeneous class of diseases characterized by the abnormal prolifera-
tion of cells. They are the leading cause of death in the developed world, and have prov-
en notoriously resistant against attempts at finding a cure (Jemal et al. 2011). This is 
largely due to two characteristic features of cancers: resilience and heterogeneity. Can-
cer cells are resilient in that they robustly adapt to external challenges such as drug 
treatments or changes in their microenvironment. They are heterogeneous in the sense 
that cancers of different tissue or cell type are often driven by different molecular mech-
anisms. Even histologically identical cancers of the same tissue can be driven by differ-
ent abnormalities of the cellular machinery, although common themes have been identi-
fied (Salk et al. 2010; Visvader 2011). The heterogeneity of cancer makes it difficult to 
find treatments that are effective for a significant number of patients, while resilience 
means that even if a treatment is initially effective against a tumor, the tumor will even-
tually acquire resistance to it. 
 
The currently accepted view is that cancers initially originate from a single cell that ac-
quires a phenotype of uncontrollable proliferation as a result of sporadic genetic chang-
es (Visvader 2011). These genetic changes can range from single nucleotide mutations 
to large rearrangements that drastically alter the structure of chromosomes. The 46 
chromosomes found in the nucleus of every (somatic) human cell constantly acquire 
cumulative genetic damage, which is why biological organisms have developed repair 
and backup mechanisms against its effects (Helleday et al. 2008). These backup mecha-
nisms explain why cancers rarely arise due to a single genetic alteration: if one gene 
starts acting pathologically, compensatory mechanisms will soften the impact. However, 
if one cell acquires the perfect storm of genetic lesions that causes malignant prolifera-
tion, the phenotype will propagate to its offspring across cell divisions. 
 
The genomic alterations that have been implicated in the formation of cancers can be 
divided into four groups: mutations, copy number alterations, fusion genes, and epige-
netic modifications. Mutations are changes involving a single nucleotide or few nucleo-
tides in a chromosome. The most common type of mutation is the point mutation, a sub-
stitution of one nucleotide with another. Insertion/deletion (indel) mutations are muta-
tions where one or more nucleotides are added to or removed from a genomic locus. 
Copy number alterations are genetic lesions where a large segment of a chromosome is 
deleted or duplicated. Copy number alterations can also involve entire chromosomes, a 
phenomenon known as aneuploidy. Epigenetic modifications are alterations involving 
nucleosomes, chromatin structure, and DNA methylation. Fusion genes are discussed in 
the next section. 
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2.3 Fusion genes 
 

2.3.1 History 

Fusion genes are hybrid genes that combine parts of two or more original genes. They 
can form as a result of chromosomal rearrangement or abnormal transcription, and have 
been shown to act as drivers of malignant transformation and progression in many hu-
man cancers (reviewed in Mitelman et al. 2007). The first signs of fusion genes in hu-
man cancer were identified in 1960 when a reciprocal translocation between the q-arms 
of chromosomes 9 and 22 was discovered in over 90% of chronic myelogenous leuke-
mia patients (Nowell et al. 1960; Rowley et al. 1973). After two decades the translocati-
on was understood to produce a chimeric BCR-ABL1 transcript that encodes a constitu-
tively active form of the ABL kinase (Shtivelman et al. 1985). At the same time, Bur-
kitt’s lymphoma was found to harbor activating fusions between immunoglobulin genes 
and MYC (Manolov et al. 1972; Zech et al. 1976; Dalla-Favera et al. 1982). These initial 
findings led to the prompt discovery of many more fusion genes in hematological ma-
lignancies and solid cancers (Table 1). 
 
Among hematological malignancies, the identification of PML-RARA fusions in acute 
promyelocytic leukemia paved the way for an effective tretinoin-based molecular thera-
py (Borrow et al. 1990; Warrell et al. 1991), while a RUNX1-ETO chimeric protein was 
found to characterize a morphologically distinct subtype of acute myeloid leukemia 
with prolonged median survival (Erickson et al. 1992). Early examples of fusion genes 
in solid cancers included the discovery of fusions between EWSR1 and members of the 
ETS transcription factor family in Ewing’s sarcoma (Turc-Carel et al. 1983; Aurias et al. 
1983), and characteristic SS18-SSX fusions in synovial sarcoma (Turc-Carel et al. 1987; 
Smith et al. 1987; Clark et al. 1994). In myxoid liposarcoma, FUS-DDIT3 and EWSR1-
DDIT3 fusions were found to be pathognomonic for the disease (Crozat et al. 1993; 
Rabbitts et al. 1993; Antonescu et al. 2001). A breakthrough happened in 2005 when 
fusion genes juxtaposing the gene TMPRSS2 and members of the ETS transcription fac-
tor family were found in 70% of prostate cancers (Tomlins et al. 2005). Subsequent dis-
coveries in solid cancers included the discovery of EML4-ALK fusions and CHD7 rear-
rangements in non-small cell lung cancer (Soda et al. 2007; Rikova et al. 2007; Pleasan-
ce et al. 2010), KIAA1549-BRAF fusions in pediatric glioma (Jones et al. 2008), and R-
spondin fusions in colon cancer (Seshagiri et al. 2012). 
 
Some cancers were found to associate with multiple fusion genes that presented in a 
mutually exclusive manner. For instance, the fusions TMPRSS2-ERG and TMPRSS2-
ETV1 are common findings in prostate cancer, but almost never co-occur in a single 
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tumor (Tomlins et al. 2005). In some cases, fusion genes also exhibit mutual exclusivity 
or co-occurrence with other types of genomic aberrations, as exemplified by the mutual 
exclusivity of ETS fusions and SPINK1 overexpression in prostate cancer (Tomlins et 
al. 2008). 
 
 
Table 1. Fusion genes in human cancers. 

Cancer Fusion gene Frequency Mechanism of formation Biological impact References 
Acute lymphocytic leukemia ETV6-RUNX1 25% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Golub et al. (1995), Romana et al. 

(1995) Acute myeloid leukemia RUNX1-ETO 10-15% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Erickson et al. (1992) 
 CBFB-MYH11 10-15% Inversion Oncogenic chimeric 

protein 
Liu et al. (1993) 

Acute promyelocytic leukemia PML-RARA 95% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Borrow et al. (1990), Warrell et al. 
(1991)  PLZF-RARA 0-5% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Chen et al. (1993) 

Anaplastic large cell lymphoma NPM1-ALK 75% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Morris et al. (1994), Shiota et al. (1994) 
 TPM3-ALK 15% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Lamant et al. (1999) 

Burkitt’s lymphoma IG@-MYC 90-100% Interchromosomal 
translocation 

Promoter exchange Manolov et al. (1972), Dalla-Favera et 
al. (1982) Chronic myelogenous leukemia BCR-ABL1 95% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Nowell et al. (1960), Shtivelman et al. 

(1985) Inflammatory myofibroblastic tumor TPM3-ALK 50% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Lawrence et al. (2000) 
Adenoid cystic carcinoma MYB-NFIB 90-100% Interchromosomal 

translocation 
Loss of microRNA 

regulation 
Persson et al. (2009) 

Bladder cancer FGFR3-TACC3 0-10% Tandem duplication Oncogenic chimeric 
protein 

Williams et al. (2012) 
Clear cell sarcoma EWSR1-ATF1 90-100% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Bridge et al. (1990), Zucman et al. 

(1993) Colon cancer PTPRK-RSPO3 5-10% Inversion Promoter exchange Seshagiri et al. (2012) 
 EIF3E3-RSPO2 0-5% Deletion Promoter exchange Seshagiri et al. (2012) 

Congenital fibrosarcoma ETV6-NTRK3 90-100% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Knezevich et al. (1998) 
Ewing sarcoma EWSR1-FLI1 90% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Turc-Carel et al. (1983), Aurias et al. 

(1983) Follicular thyroid carcinoma PAX8-PPARG 60% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Kroll et al. (2000) 
Glioblastoma FGFR3-TACC3 0-5% Tandem duplication Oncogenic chimeric 

protein 
Singh et al. (2012), Parker et al. (2012) 

Mucoepidermoid carcinoma MECT1-MAML2 60% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Tonon et al. (2003) 
Myxoid liposarcoma FUS-DDIT3 90-100% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Crozat et al. (1993), Rabbits et al. 

(1993)  EWSR1-DDIT3 0-5% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Panagopoulos et al. (1996) 
Non-small cell lung cancer EML4-ALK 0-10% Inversion Oncogenic chimeric 

protein 
Soda et al. (2007), Rikova et al. (2007) 

NUT midline carcinoma BRD4-NUT 90-100% Interchromosomal 
translocation 

Promoter exchange French et al. (2003) 
Papillary thyroid carcinoma CCDC6-RET 15% Inversion Oncogenic chimeric 

protein 
Grieco et al. (1990) 

 NCOA4-RET 15% Complex rearrangement Oncogenic chimeric 
protein 

Santoro et al. (1994) 
Pediatric renal cell carcinoma PRCC-TFE3 20-40% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Weterman et al. (1996) 

Pilocytic astrocytoma KIAA1549-BRAF 70% Tandem duplication Oncogenic chimeric 
protein 

Jones et al. (2008) 
Prostate cancer TMPRSS2-ERG 60% Deletion Promoter exchange Tomlins et al. (2005) 

 TMPRSS2-ETV1 0-5% Interchromosomal 
translocation 

Promoter exchange Tomlins et al. (2005) 
 TMPRSS2-ETV4 0-5% Interchromosomal 

translocation 
Promoter exchange Tomlins et al. (2006) 

Secretory breast carcinoma ETV6-NTRK3 90% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Tognon et al. (2002) 
Serous ovarian cancer ESRRA-C11orf20 15% Intrachromosomal 

translocation 
Oncogenic chimeric 

protein 
Salzman et al. (2011) 

Synovial sarcoma SS18-SSX1 70% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Turc-Carel et al. (1987), Clark et al. 
(1994)  SS18-SSX2 30% Interchromosomal 

translocation 
Oncogenic chimeric 

protein 
Crew et al. (1995) 

 SS18-SSX4 0-5% Interchromosomal 
translocation 

Oncogenic chimeric 
protein 

Skytting et al. (1999) 

 
 

2.3.2 Clinical significance 

Traditional cytotoxic drugs used in cancer chemotherapy usually target cells that divide 
quickly or are DNA repair deficient (both are common hallmarks of cancer). These 
kinds of therapies have the problem that their molecular targets are not fully specific to 
cancer cells, often causing the drugs to have strong side effects. Because fusion genes 
are only found in cancer cells, they provide an excellent target for molecular thera-
peutics. Indeed, many known fusion genes are already used as FDA approved drug tar-
gets. Examples include the treatment of BCR-ABL1 positive leukemia patients with the 
ABL kinase inhibitor imatinib (Druker et al. 1996), and the treatment of EML4-ALK 
positive non-small cell lung cancer patients with ALK inhibitor crizotinib (Shaw et al. 
2011). However, it must be noted that even the latest drugs have not reached full speci-
ficity to fusion proteins, and can have some off-target effects on healthy cells. 
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Fusion genes have also been employed as diagnostic and prognostic markers. For 
example, detection of BCR-ABL1 transcripts is used to confirm chronic myelogenous 
leukemia diagnoses, and transcript levels are followed throughout treatment to monitor 
for loss of therapeutic response (Hughes et al. 2006). 
 
 

2.3.3 Biological impact 

Fusion genes can affect cell function through a number of mechanisms. One common 
mechanism is the overexpression of an oncogene through promoter exchange. For 
example, the overexpression of ETS transcription factors in prostate cancer is caused by 
their fusion with the androgen regulated TMPRSS2 promoter (Tomlins et al. 2005). Si-
milarly, B cell lymphomas are characterized by fusion genes where the promoter of an 
immunoglobulin heavy locus is fused with an oncogene (Croce, 1986). A fusion event 
can also change the expression level of an oncogene by replacing its 3'-UTR, leading to 
altered regulation when microRNA binding sites in the 3’-UTR are lost (Persson et al. 
2009). 
 
Another mechanism by which fusion genes alter cellular function is through the forma-
tion of chimeric proteins. Altered protein structure may render a chimeric protein cons-
titutively active, lead it to activate alternative downstream targets, or sabotage a critical 
cellular function. For example, ALK fusion genes in anaplastic large cell lymphoma 
involve 5' partner genes that harbor dimerization domains that promote ALK dimeriza-
tion and autophosphorylation, rendering ALK constitutively active (Chiarle et al. 2008). 
Another example is provided by the constitutively active BCR-ABL1 kinase in leuke-
mia (Davis et al. 1985). 
 
Not all fusion genes necessarily have biological impact. Cancer genomes are often hea-
vily rearranged and contain pairs of genes that have fused together at random. Therefo-
re, any discovery of a novel fusion gene always requires functional validation to ensure 
that the fusion actually has biological impact. 
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2.3.4 Mechanisms of fusion gene formation 

The formation of fusion genes in cells can occur through multiple mechanisms. In the 
most common scenario, a fusion gene is formed via somatic chromosomal rearrange-
ment. The four basic types of chromosomal rearrangement are deletions, translocations, 
tandem duplications, and inversions (Figure 3). 
 

 
 

Figure 3. Examples of the different classes of chromosomal rearrangements that can lead to 
the formation of a fusion gene. The horizontal lines represent chromosomal regions, and 
the boxes represent gene exons (two genes, red and green). In each scenario, the upper line 
shows the situation before the rearrangement, and the lower line after the rearrangement. 

 
A fusion gene can arise via deletion when a genomic region between two genes located 
on the same strand is deleted (Figure 3). The TMPRSS2-ERG fusion in prostate cancer 
is an example of a fusion that results from a 2.7 Mb deletion on chromosome 21 (Perner 
et al. 2006). Interestingly, fusion genes can also arise from tandem duplication, a type of 
chromosomal rearrangement where a genomic region is duplicated one or more times, 
and the copies are tiled next to the original region. When the amplicon breakpoints are 
situated near existing genes, this can result in the formation of a fusion gene at the junc-
tion of the copied and original region (Figure 3). Examples of fusion genes formed 
through tandem duplication include KIAA1549-BRAF fusions in pilocytic astrocytoma 



 19 

(Jones et al. 2008), and C2orf44-ALK fusions in colorectal cancer (Lipson et al. 2012). 
A tandem duplication or deletion is likely the cause when two genes located on the sa-
me chromosomal strand are fused. The order of the two genes in the fusion transcript is 
also a helpful clue, as tandem duplication creates chimeric transcripts where the genes 
are in reverse order relative to their positions on the strand. 
 
Occasionally fusion genes arise via inversion events where chromosomal segments are 
flipped around (Figure 3). For example, the EML4-ALK fusion gene in non-small cell 
lung cancer results from a 12 Mb inversion on chromosome 2 (Soda et al. 2007). If a 
fusion gene involves two genes located on opposite strands of a chromosome, there is 
suitable cause to suspect an inversion event. The genes can face inward or outward; an 
inversion in either scenario can lead to a fusion gene. A characteristic feature of this 
class of fusion is the formation of reciprocal fusion genes at both ends of the inversion 
(Ciampi et al. 2005; Soda et al. 2007). However, depending on the properties of the 
promoters involved, one or both reciprocal fusions may not be transcribed, rendering 
them impossible to detect through transcriptome sequencing. 
 
In addition to chromosomal rearrangements involving genes on the same chromosome, 
many fusion genes involve genes located on separate chromosomes. Such fusions are 
always caused by a translocation of some kind, whether it involves the translocation of a 
small genomic fragment to a new locus, or a reciprocal translocation involving the 
swapping of entire chromosome arms (Figure 3). Examples of fusion genes caused by 
translocations include the BCR-ABL1 fusion, formed by a reciprocal translocation bet-
ween 9q and 22q (Shtivelman et al. 1985) More complex rearrangements are also possi-
ble but less frequent (Lawson et al. 2011). 
 

2.3.5 Distribution of genomic breakpoints 

The genomic breakpoints of fusion genes usually occur in intronic or intergenic regions, 
and rarely disrupt coding sequences. This phenomenon is partly explained by introns 
being 35 times longer than exons on average (Zhu et al. 2009). Oncogenic selection may 
also play a role, as fusions that disrupt an exon have a two-in-three chance of creating a 
frameshifted protein with little effect on cellular function. Conversely, intronic break-
points often lead to in-frame chimeric proteins because exons tend to terminate at codon 
boundaries (Long et al. 1999; Sverdlov et al. 2003; Ruvinsky et al. 2005). Despite the 
bias for intronic breakpoints, isolated cases of exon disrupting breakpoints have been 
reported in the literature (Martinelli et al. 2002; Tort et al. 2004). 
 
A characteristic feature of many fusion-generating chromosomal rearrangements is the 
presence of sequence microhomology at rearrangement breakpoints. A study of 40 RAF 
gene fusions in low-grade glioma found that 85% harbored microhomology at or near 
the breakpoints (Lawson et al. 2011). The microhomologies ranged in length between 1-
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6 bp and were significantly more common than expected by chance. This pattern is cha-
racteristic of microhomology-mediated break-induced replication (MMBIR), implying 
that MMBIR may be a major causative mechanism behind many fusion events (Lawson 
et al. 2011). Another study that looked at TMPRSS2-ETS breakpoints in prostate cancer 
also found evidence of microhomology, but implicated non-homologous end joining 
(NHEJ) as the driving mechanism behind the chromosomal rearrangements (Lin et al. 
2009). 
 

2.3.6 Read-through and splicing 

A particular class of fusion genes known as read-through chimeras can arise in the ab-
sence of any DNA level alterations. This type of fusion gene forms when an RNA po-
lymerase does not properly terminate transcription at the end of a gene, but instead con-
tinues transcribing until the end of the next gene (Figure 4). The chimeric pre-mRNA is 
spliced to produce a fusion transcript. In almost all cases, the resulting chimeric mRNA 
will lack the last exon of the upstream gene, and the first exon of the downstream gene. 
This phenomenon occurs because the last exon of a gene lacks a splicing donor site that 
is required for spliceosome function. Similarly, the first exon of a gene lacks a splicing 
acceptor site (Figure 4). Due to the lack of these splicing sites, both exons are spliced 
out of the mRNA transcript (Akiva et al. 2006). Since the stop codon of a protein-
coding gene is usually found in the last exon, the splicing of the last and first exons can 
lead to the formation of a functional chimeric protein (Figure 4). The reason for the stop 
codon’s preferential localization to the last exon of a gene is the avoidance of non-sense 
mediated decay, a cellular safety mechanism that degrades mRNAs whose coding se-
quence terminates prematurely before the last exon (Chang et al. 2007). 
 

 
 

Figure 4. A read-through fusion is formed when an RNA polymerase continues transcrib-
ing beyond the end of a gene and transcription continues to an adjacent downstream gene. 
Exon skipping due to missing splice sites can give rise to a fusion transcript encoding a 
functional chimeric protein. Boxes indicate exons, thicker boxes indicate coding sequence. 
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Last and first exon skipping can also occur in fusion genes that arise from chromosomal 
rearrangements. In this way a rearrangement can produce a functional fusion protein 
even though one or both genomic breakpoints localize to intergenic regions. Consider a 
case where two genes A and B are located on the same chromosomal strand, and a dele-
tion event removes the region between the two genes. Further, consider that the break-
point in the upstream gene A is located in an intron, while the other breakpoint is loca-
ted 20 kb upstream of gene B. Surprisingly, such a fusion gene can encode a functional 
chimeric protein, as the first exon of gene B is spliced out of the pre-mRNA (Figure 5). 
Similar reasoning applies to the case where one breakpoint is located downstream of 
gene A, and the other breakpoint in an intron of gene B (Figure 5). In fact, a functional 
fusion protein may arise even if both breakpoints are located in intergenic regions outsi-
de genes A and B. Examples of exon skipping in cancer-associated fusion genes are 
rare, but first exon skipping has been observed in BCR-ABL1 fusions (Laurent et al. 
2001). 
 

 
 

Figure 5. A chromosomal rearrangement with intergenic breakpoints can result in a fusion 
gene encoding a functional chimeric protein. Illustration depicts two example scenarios. 
Boxes indicate exons, thicker boxes indicate coding sequence. 
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2.4 Pathology of brain cancer 

Tumors of the brain and central nervous system are rare but difficult diseases with an 
estimated worldwide mortality of 100,000 people per year (Ferlay et al. 2008). These 
cancers are difficult to treat because of the vital nature of the involved organs: radical 
surgery is not possible, and even small tumors can have lethal consequences. Molecular 
therapy is also more difficult due to the circulatory limitations imposed by the blood-
brain barrier. 
 
The most common type of brain cancer in humans are the gliomas. Gliomas are brain 
cancers that originate from glial cells: a family of non-neuronal cells that perform vital 
support functions for neurons. Gliomas can be subdivided into ependymomas, astrocy-
tomas, oligodendrogliomas, and mixed gliomas (Louis et al. 2007). The most common 
form of glioma is a form of high-grade astrocytoma called glioblastoma, a highly lethal 
and aggressive form of brain cancer. The standard-of-care for glioblastoma is surgical 
resection, followed by radiotherapy and adjuvant temozolomide. Without treatment, life 
expectancy after glioblastoma diagnosis is 6 months. Modern treatment regimes have 
increased the median survival time to 14.6 months (Stupp et al. 2005), but the cancer is 
still invariably lethal. 
 
The genetic mechanisms that drive glioblastoma have been extensively studied, but ma-
ny open questions still remain. Many glioblastoma cases are known to involve mutually 
exclusive high-level amplification of the receptor tyrosine kinases EGFR, PDGFRA, 
and MET. Other known alterations include deletion of CDKN2A/B, amplification of 
CDK4, and deletion of the tumor suppressor PTEN (Cancer Genome Atlas Research 
Network 2008). However, no recurrent fusion genes had ever been discovered in glio-
blastoma.  
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3 METHODS 

3.1 High throughput measurement 

In the past 20 years, many new technologies have become available for the study of the 
constituents and interactions within biological cells. DNA microarrays and high 
throughput sequencing in particular have made it possible to comprehensively catalog 
the genomic and transcriptomic events that occur inside cells. Figure 6 highlights some 
of the high throughput technologies used in the study of cancer genomics today. 
 

 
Figure 6. Overview of genome-wide measurement technologies used in the field of cancer 
genomics today. The middle portion of the figure represents the canonical DNA -> RNA -> 
protein model of information flow inside cells. 

  



 24 

 

3.1.1 DNA microarrays 

Ever since the role of DNA as the blueprint of life was first demonstrated by Avery, 
MacLeod and McCarty (Avery et al. 1944), people have deviced new strategies for the 
efficient study of this biopolymer. In 1995, miniaturized DNA microarrays were intro-
duced for the high throughput analysis of DNA fragments with specific sequences 
(Schena et al. 1995). The basic idea behind DNA microarrays is simple: spots of oligo-
nucleotide probes are printed onto a specially designed surface, and fluorescently la-
beled DNA fragments from a sample are allowed to base pair with the probes. All oli-
gonucleotide probes in a spot have identical sequences, and so DNA fragments contain-
ing a complementary sequence will hybridize to them (Figure 7). Automated fluores-
cence imaging is used to estimate the number of labeled DNA fragments that have hy-
bridized to the probes in each spot. Modern off-the-shelf microarray platforms can con-
tain hundreds of thousands of spots, enabling the simultaneous interrogation of thou-
sands of different sequences in a single experiment. 
 

 
 

Figure 7. Illustration of the basic principle behind DNA microarrays. Spots of oligonucle-
otide probes are printed on a surface, and each spot contains multiple DNA probes with 
an identical sequence. DNA from test and control samples is labeled with different fluo-
rescent dyes and is allowed to hybridize onto spots on the microarray based on sequence 
complementarity. 

 
  



 25 

By careful probe design, DNA microarrays can be used to probe a number of different 
genetic features. The main applications of DNA microarrays are: 

• Transcriptomic expression profiling, where the enzyme reverse transcriptase 
(RT) is used to convert RNA into complementary DNA (cDNA), which is then 
hybridized onto a microarray to calculate expression levels for individual tran-
scripts, exons, or microRNAs (Schena et al. 1995). 

• Array comparative genomic hybridization (aCGH), where genomic DNA is hy-
bridized to determine the copy number of different chromosomal loci (Solinas-
Toldo et al. 1997; Pinkel et al. 1998).  

• Single nucleotide polymorphism (SNP) profiling, where hybridization of ge-
nomic DNA is used to identify individual nucleotides at known polymorphic or 
mutant sites (Mei et al. 2000). 

• Methylation profiling, where methyl-immunoprecipitated or bisulfite-treated 
DNA is hybridized onto an array, and probe intensities are used to determine 
whether the probed sites are methylated in a test sample (Gitan et al. 2002). 

• Chromatin immunoprecipitation profiling (ChIP-chip), where antibodies are 
used to capture DNA fragments bound by a specific protein, and probes tiling 
the whole genome are used to determine genomic sites bound by the protein 
(Blat et al. 1999). 

 
Despite their usefulness, microarrays have a number of limitations that must be taken 
into account when designing experiments. The first limitation is that probes cannot be 
changed after an array has been designed or manufactured. Since our knowledge of the 
human genome has only recently achieved a high standard, old microarray platforms 
often contain probes that are not actually complementary to their intended targets, or 
lack probes for genetic features that were discovered after the array was designed. A 
second limitation is that hybridization does not require perfect complementarity, and 
hence labeled DNA fragments will also attach to probes with near-match sequences. 
This non-specific hybridization causes background noise in experiments. Thirdly, mi-
croarrays are subject to a number of experimental artifacts, including dye bias (Yang et 
al. 2002) and spatial artifacts (Wilson et al. 2003) (Figure 8). 
 

 
Figure 8. Examples of spatial artifacts in seven microarray hybridization experiments. 
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3.1.2 High throughput  sequencing 

The term high throughput sequencing (HTS) describes a family of new technologies 
aimed at sequencing millions of DNA fragments per day. These technologies are based 
on the idea of splitting chromosomes or cDNA transcripts into short fragments that are 
then sequenced in millions of parallel chemical reactions, producing short nucleotide 
strings or “reads” that are typically between 20-200 bases in length (Mardis, 2008). The 
current generation of HTS platforms can interrogate tens of gigabases of sequence per 
day, and sequencing costs are falling rapidly. Indeed, sequencing technologies have 
recently displaced DNA microarrays in many applications. 
 
A major benefit of HTS platforms over DNA microarrays is that they characterize the 
total DNA/RNA content found in cells, whereas microarrays only interrogate features 
selected by the manufacturer. Sequencing technologies also tend to have lower noise 
levels and less bias, although this depends on the technology and chemistry used. The 
main sources of bias in sequencing experiments are: 

• GC content bias, which causes fragments with high or low GC content to be se-
quenced to a lower depth. 

• Amplification bias, where PCR cycles lead to non-uniform fragment amplifica-
tion. 

 
All sequencing platforms are subject to sequencing errors, which manifest as sporadic 
nucleotide substitutions or insertions/deletions (indels) in read sequences. Error rates 
differ between platforms; some platforms are more subject to indels than substitutions, 
and vice versa. Error rates can also vary by offset into the read. For instance, the ABI 
SOLiD platform has higher error rates at the 3’ ends of reads. 
 
Once a sequencing run has finished, the sequencing instrument outputs all read se-
quences (known as reads) and associated per-base quality scores. The encoding of the 
sequence output can vary depending on the technology used, but typically the sequences 
are represented in either nucleotide space or colorspace. In nucleotide space representa-
tion, each sequenced base is denoted by an ACGT symbol or one of the IUPAC nucleo-
tide ambiguity symbols (Cornish-Bowden 1985). Colorspace is a more complex repre-
sentation that is used by sequencing platforms based on dinucleotide ligation, such as 
ABI SOLiD. The colorspace alphabet consists of four symbols, each carefully chosen to 
represent a set of four dinucleotides so that two subsequent colors uniquely specify a 
nucleotide (Breu 2010). The benefit of colorspace representation is that it makes it pos-
sible to differentiate between sequencing artifacts and true single nucleotide mutations 
in sequencing data (McKernan et al. 2009; Mardis 2008). 
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To interpret the results of a sequencing experiment, the read sequences produced by the 
instrument are aligned against reference sequences or assembled de novo to reconstruct 
the sequenced chromosomes or transcripts. Read alignment is a process where a compu-
tational algorithm takes a short input sequence and tries to find a matching region in a 
set of larger reference sequences. If reads are aligned against chromosome sequences, 
for example, the resulting alignments contain information about the relative contribution 
of different genomic regions to the collection of DNA fragments that were sequenced 
by the instrument. 
 
Repetitive sequences in the human genome pose a major challenge for sequencing ex-
periments due to the short read lengths of current technologies. This is because short 
reads originating from repetitive elements cannot be linked to any particular repeat, as 
the read sequence matches with all of them. This issue has been partially resolved 
through the introduction of paired end sequencing, a sequencing protocol where both 
ends of DNA fragments are sequenced. Since DNA is usually fragmented to a length of 
200-500 bases, this means that a paired end read pair from a fragment can be uniquely 
localized by aligning both of the reads against a reference, and then filtering out align-
ments where the pairs are situated farther than 500 bases apart (Fullwood et al. 2008). 
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3.2 Wet-lab techniques 

 

3.2.1 Reverse transcription 

Reverse transcription is a laboratory technique by which RNA is converted into DNA. 
This effect is achieved through the use of reverse transcriptase enzymes isolated from 
retroviruses (Myers et al. 1976). The term complementary DNA (cDNA) is used when 
referring to reverse transcribed DNA. The process of reverse transcription is a highly 
useful technique, as it allows scientists to study RNA molecules using techniques deve-
loped for the analysis of DNA. The short-lived nature of RNA would render many expe-
riments difficult, but this problem is circumvented through the use of reverse transcri-
bed RNA as a proxy for the original RNA. 
 

3.2.2 Polymerase chain reaction 

Polymerase chain reaction (PCR) is a technique for amplifying (copying) DNA. In this 
technique, double stranded DNA is repeatedly melted and duplicated using DNA poly-
merase enzymes, resulting in exponential amplification of DNA (Saiki et al. 1988). The 
DNA polymerase used in the reaction cannot construct the complementary strand from 
scratch, but requires the presence of a primer complementary to the template strand, 
which is extended to create the complementary strand. Through careful design of the 
primer sequences, DNA can be amplified selectively, so that only desired sequences are 
amplified. 
 
PCR has many applications in biology, ranging from the global amplification of DNA 
for sequencing purposes to the validation of the presence of particular DNA/RNA se-
quences within cells.  When PCR is performed on cDNA, the process is referred to as 
RT-PCR. PCR can be used to measure the levels of specific RNA transcripts within a 
cell. This technique, known as quantitative RT-PCR (or qPCR), begins with the reverse 
transcription of RNA into cDNA. PCR with carefully designed primers is then used to 
amplify cDNA arising from the transcript of interest, and the levels of amplified cDNA 
are compared against a reference for quantification. 
 
The use of PCR in biological experiments can introduce artifacts. For instance, PCR 
efficiency is highly dependent on the GC content of sequences. Such factors, combined 
with the exponential nature of PCR, can easily introduce strong non-uniformities in the 
amplification of different sequences. PCR chimaeras are another common artifact where 
the PCR reaction fuses two unrelated DNA fragments together, introducing anomalous 
sequences in the data (reviewed in Kanagawa 2003). This effect is particularly trouble-
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some for high throughput sequencing, although this artifact can be somewhat mitigated 
through the use of emulsion PCR (Williams et al. 2006). 
 

3.2.3 Immunoblotting 

Immunoblotting (also known as Western blotting) is a technique that allows one to es-
timate the quantity and molecular weight of select proteins of interest. To perform an 
immunoblot, the cells in a sample are homogenized and the protein content is extracted. 
The proteins are then placed at one end of a gel containing multiple columns, and a vol-
tage is applied to the gel. This causes the proteins to migrate through the gel at a speed 
that depends on the protein’s size. Voltage is cut before the protein molecules exit the 
gel, and the proteins are transferred onto a membrane while maintaining the location 
they had within the gel. A labeled antibody specific to the protein of interest is then 
used to probe for the protein of interest. Protein from multiple samples can be analyzed 
simultaneously on an immunoblot by racing the proteins in different columns of the gel. 
(Burnette, 1981) 
 
 

3.3 Genome assemblies and annotations 

The first nearly complete human reference genome was sequenced and assembled by 
the Human Genome Project in 2004 (International Human Genome Sequencing Consor-
tium 2004). This reference genome did not represent the genome of any single individu-
al; instead it was an amalgamation of multiple human genomes. Since this time, many 
genomes of individual humans have been sequenced. All of these genomes are different: 
in general, no two human genomes are exactly alike. The differences between individual 
genomes range from single nucleotide polymorphisms (SNPs) to large structural varia-
tions. The total inter-individual variation for humans has been conservatively estimated 
at 0.5% (Levy et al. 2007). Since lack of a common reference makes communication 
difficult, geneticists have defined reference genomes that represent the most common 
alleles and structural variants found in the human population. The human reference ge-
nome is currently maintained by the Genome Reference Consortium (Church et al. 
2011). 
 
A reference genome forms the basis for genomic annotations that denote known func-
tional features of the genome. Examples of such annotations include transcriptome an-
notations from NCBI and Ensembl, the SNP database dbSNP (Sherry et al. 2001), and 
the microRNA database miRBase (Griffiths-Jones, 2004). Both the reference genome 
and annotations are updated at relatively frequent intervals as new knowledge is gath-
ered. 
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In this thesis, the following reference genomes and annotation were used: 
• Human reference genome: GRCh37 
• Human transcriptome: NCBI RefSeq release 38 
• Human microRNAs: miRBase release 18 

 
 

 

3.4 Fusion gene discovery 

A number of different strategies have been proposed in the literature for the identifica-
tion of fusion genes from high throughput sequencing data. One proposed strategy is to 
perform whole genome DNA sequencing and look for chromosomal breakpoints using 
specialized algorithms. These algorithms often use a reference genome and look for 
paired end reads whose ends align to opposite sides of a chromosomal breakpoint (Chen 
et al. 2009). Another proposed strategy is to look for evidence of fusion transcripts in 
transcriptome sequencing data (Maher et al. 2009; Maher et al. 2009). The latter ap-
proach has significant cost benefits due to reduced sequencing depth, as only a small 
fraction of the human genome is transcribed at a significant level. 
 
When fusion discovery is done on transcriptome sequencing data, it is possible to make 
use of the fact that fusion gene breakpoints tend to occur in intronic regions. By this we 
mean that the breakpoint for the chromosomal rearrangement leading to the fusion is 
within an intron, so that at the RNA level, two intact exons from separate genes are 
fused together. This suggests that a simple approach for fusion discovery would be to 
pick all 200,000 exons in the human exome, and directly align reads against all potential 
junctions between pairs of those exons. The downside is that this would require the 
alignment to be performed against 40 billion exon pairs, a task that is not computation-
ally feasible. 
  
To solve the problem, we implemented a fusion discovery algorithm that searched for 
fusion genes using short anchors extracted from both ends of each read. This approach 
to fusion gene discovery is not novel; the same technique was used in 2009 by Maher et 
al. We use the term anchor-based junction discovery when referring to algorithms that 
employ this approach. Our implementation of the algorithm was distinct because our 
software was designed to work with reads as short as 50 bp, and to support colorspace 
reads produced by the Applied Biosystems SOLiD series of sequencing instruments. To 
our knowledge, apart from a commercial service provided by Applied Biosystems, no 
other software provided these features at the time of our algorithm’s implementation. 
Our software also implements a sophisticated set of filters designed to reduce the num-
ber of false positive fusion candidates reported by our tool. Table 2 lists the fusion dis-
covery algorithms that are most widely used today. 
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Table 2. A comparison of widely used software packages for fusion gene detection. 

Software Installation requirements 
Uses DNA-seq to 
identify genomic 

breakpoints? 

Detects exon 
disrupting fusions? 

Supports colors-
pace reads? 

References 

ChimeraScan Python, Bowtie No No No Iyer et al. (2011) 

Comrad Perl, Bowtie, Blat Yes Yes No McPherson et al. (2011) 

Defuse Perl, Bowtie, Blat No Yes No McPherson et al. (2011) 

Tophat-Fusion Python, Bowtie No Yes Yes Kim et al. (2011) 

ShortFuse Python, Bowtie No Yes No Kinsella et al. (2011) 

 
The implementation of our fusion gene discovery algorithm is shown in Figure 9. The 
algorithm begins with a filtering step where all reads are aligned against both the refer-
ence genome and transcriptome. The Bowtie short read alignment software (Langmead 
et al. 2009) is used to perform the alignments. All reads that align against either are dis-
carded from further analysis, since their presence can be directly explained through 
normal transcriptional processes1. We are left with anomalous reads that may or may 
not arise from fusion transcripts. Before flagging a read as evidence of a fusion tran-
script we need to consider a number of alternative hypotheses: 

• The read originates from an as-yet unannotated transcript variant of some gene 
• The read originates from a mutated genomic site (either a SNP or indel) 
• The read is a result of RNA editing 
• The read originates from a PCR chimaera 
• The read contains multiple sequencing errors and actually originates from a ho-

mologous sequence elsewhere in the genome 
 
To determine the origin of the anomalous reads, we take each anomalous read and split 
it into two anchor sequences: one from the 5’ end and one from the 3’ end of the read. 
The anchor lengths are equal and chosen so that the anchors do not encompass the entire 
read. If the reads are of varying length, we discard any reads for which the anchors 
would overlap. Next, we use Bowtie to align the anchors against all annotated exon se-
quences from the reference transcriptome, while maintaining pairing information be-
tween the 5’ and 3’ anchors. This is akin to paired end read alignment, except that the 
“paired reads” here are far shorter, and the expected distance between two anchors is 
fully determined. 
 
In extracting the anchors, colorspace reads require special treatment because the color 
sequences always begin with a nucleotide symbol that represents the starting base, fol-
lowed by colors. However, Bowtie ignores the starting nucleotide of a colorspace read, 
and therefore we simply always place a T as the starting nucleotide for the second an-
chor. 

                                                
1 For the reads that align to the genome but not to the transcriptome, we assume that they arise from un-
annotated transcriptionally active sites, or are a result of sporadic low-level transcription. 
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Figure 9. An illustration of the fusion candidate discovery algorithm and the cascade of fil-
ters used to discard false positives. 

 
Next, we go through the list of anchor alignments and look for cases where both anchors 
of a read align to at least one known exon. For each such case, we produce a list of puta-
tive exon pairs by taking the Cartesian product 𝐸!×𝐸! = { 𝑒!, 𝑒! }, where 𝐸! and 𝐸! 
are the aligned exons for the 5’ and 3’ anchor, respectively. To reduce the computation-
al overhead due to anchors with highly abundant sequences, we filter out reads for 
which either anchor aligns to more than 3 different exons. We also discard all anchor 
pairs where both anchors aligned to exons of the same gene as such pairs represent nov-
el splice variants, not fusion genes. After these steps, we are left with a list of putative 
fusion junctions that some reads may potentially overlap with. To find full-length reads 
that align to the putative fusion junctions, we construct a new Bowtie index out of the 
fusion junctions, and align all anomalous reads against the index. To ensure that reads 
overlap both sides of a fusion junction, the putative junction sequences are built so that 
flanking sequences on both sides of the junction are 5 bp shorter than the read length. 
 
The selection of anchor length is a trade-off between analysis runtime and sensitivity. 
For our 50 bp colorspace reads, we used an anchor length of 19 bp, leaving a window of 
12 bp within which an exon-exon junction would have to fall in order to be detected. 
We allowed no mismatches in anchor alignments, but two color mismatches were al-
lowed when the full-length reads were aligned against candidate junctions. 
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3.5 Filtering of fusion candidates 

Our initial test runs of the fusion discovery algorithm produced tens of thousands of 
fusion candidates, the vast majority of which were false positives. To improve the speci-
ficity of our software, we implemented a cascade of filters to discard fusion genes that 
showed clear and automatically detectable signs of being false positives (Figure 9). We 
will now describe the filters one-by-one. Candidate fusion genes were discarded if they 
failed even one of the filters. 
 

3.5.1 Blacklisted genes 

The construction of a complementary DNA (cDNA) library for transcriptome sequen-
cing is a complex process that involves multiple steps. Some of the steps are known to 
cause technical artifacts such as chimeric cDNA sequences that combine parts of two 
unrelated RNA sequences. One source of false chimeras is the reverse transcription step. 
Reverse transcriptase enzymes are prone to template switching, an event where the en-
zyme jumps to another template without terminating DNA synthesis (Houseley et al. 
2010). Template switching has been proposed as an explanation for the anomalous chi-
meric transcripts that show up in transcriptome sequencing but are not supported by 
DNA level alterations (Houseley et al. 2010). Another potential source of false chimeras 
is the PCR amplification step where cDNA fragments are amplified to increase the 
amount of DNA available for sequencing. PCR chimeras have been proposed to arise 
when incomplete elongation occurs during a PCR cycle and the incomplete product par-
tially hybridizes with an unrelated template, followed by chimeric elongation (Figure 
10) (reviewed in Kanagawa 2003). False chimeras are enriched among highly transcri-
bed genes such as ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small 
nucleolar RNA (snoRNA). 
 
In accordance with these observations, we noted that many of the candidate fusions re-
ported by our software involved ribosomal RNA genes or other highly transcribed 
genes. We therefore chose to discard all fusion genes involving the highly transcribed 
genes and gene families RN18S1, RN28S1, RPPH1, SNORD*, SNORA*, RNY*, 
RN7SL* and RNU*. Chimeras involving these genes were also observed in normal brain 
tissue pools, ruling out the possibility of widespread rRNA gene fusions in brain cancer. 
 
We also discarded fusions involving genes located in hypervariable regions of the ge-
nome, such as the HLA and immunoglobulin loci. These genomic regions undergo exon 
shuffling during mitosis in order to produce the diverse portfolio of antibodies and im-
mune-related proteins found in human bodies (reviewed in Schatz et al. 2011). This 
natural exon shuffling resulted in many computationally identified fusion candidates 
that are not associated with cancer and were therefore discarded. 
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Figure 10. An illustration of the “incomplete elongation” theory for the formation of PCR 
chimeras. According to this theory, a PCR chimaera is formed when an incomplete elonga-
tion product (pink) of a PCR primer (red) hybridizes with an unrelated but partially ho-
mologous template (orange), followed by chimeric elongation. 
 

3.5.2 Insufficient anchor overlap 

We noted that many fusion candidates did not overlap the junction properly: in some 
cases the supporting reads only overlapped 5 bases on one side of the junction. We real-
ized that these were cases where the anchor-based junction discovery had discovered a 
false positive junction, and unrelated reads had then aligned to the junction with only 
weak support on one side of the junction. We proceeded to discard fusion candidates for 
which no supporting read contained at least 10 bases on both sides of the junction. Note 
that 10 bases is shorter than the anchor length used, allowing us to identify more sup-
porting reads in the full read alignment step than were initially identified during anchor-
based alignment. 
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3.5.3 Presence in control samples 

In our tests, many fusion candidates showed supporting reads in both tumor and control 
samples. As we were only interested in fusion genes associated with brain cancer, we 
discarded all fusion candidates that showed supporting reads in the control samples. It is 
worth noting that examples of germline fusion genes are known in the literature. For 
instance, the fusion gene TFG-GPR128 was initially associated with lymphomas and 
soft tissue tumors, but was later found to be present in the germlines of healthy individ-
uals (Chase et al. 2010). 
 

3.5.4 Recurrent nucleotide mismatches 

We noted that many fusion candidates showed recurrent nucleotide mismatches on one 
side of the fusion junction. By recurrent nucleotide mismatches we mean a nucleotide at 
a fixed offset from the fusion junction showing frequent mismatches relative to the refe-
rence genome. In many such cases, the location of junction-overlapping reads was also 
biased towards the other side of the junction, implying that the reads were of different 
origin. We decided to filter out any fusion candidates for which the average number of 
sequence mismatches per supporting read was above 0.7. This filter was controversial as 
it ran the risk of filtering out fusion genes immediately adjacent to a single nucleotide 
polymorphism (SNP) exhibiting an alternate allele. However, by setting the threshold at 
0.7 we ruled out the possibility of a single heterozygous alternate allele leading to a fu-
sion gene being discarded. 
 

3.5.5 Homology in genomic neighborhood 

While analyzing some of our fusion candidates using the web-based BLAST alignment 
software (Altschul et al. 1997), we noticed that some of the fusion candidates actually 
represented cases where an annotated exon was spliced together with a nearby unanno-
tated exon that happened to start with a similar sequence as an annotated exon elsewhe-
re in the genome. To get rid of this class of false positives, we implemented a filter to 
check that the 3′ flank of the fusion junction did not have perfect alignments against any 
genomic sequence within 50kb of the 5′ flank of the fusion junction, and vice versa. 
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3.6 Prioritization of fusion gene candidates 

Since the number of false positives in fusion discovery is often quite high, the ranking 
of fusions according to their estimated significance becomes very important. The goal is 
to rank the fusion candidates based on their estimated biological and clinical signifi-
cance, and the likelihood of the fusion gene being a true positive. The most immediate 
line of evidence about the biological significance of a fusion gene is provided by the 
number of reads overlapping the fusion junction. This quantity is important because it 
reflects the expression level of the fusion gene, and a highly expressed fusion gene has a 
higher probability of having a significant impact on a cell’s phenotype. A fusion gene 
with many supporting reads also has a reduced likelihood of being a false positive 
caused by a random sequencing error. Taken together, this suggests ranking fusion can-
didates in descending order according to the number of supporting reads. 
 
But how should fusion genes be scored when a cohort of samples is searched for fusion 
genes? Summing the total read evidence across all samples is a good approach, but can 
run into trouble if all samples are showing supporting reads for a false positive fusion. 
A better scoring system is achieved by taking into account the heterogeneity of cancer 
and noting that true cancer-associated fusion genes are usually found only in a subset of 
patients. We therefore implemented a scoring method where the distribution of support-
ing reads for each fusion is tested for goodness of fit against a discrete uniform distribu-
tion using Pearson’s chi-square test. The fusions are then ranked in ascending order ac-
cording to their p-values calculated with the goodness-of-fit test (Figure 11). This scor-
ing system is particularly useful if the number of control samples is low. 
 

 
 
Figure 11. An illustration of the difference between ranking fusion genes based on total 
read count and Pearson’s chi-square statistics for goodness-of-fit. 
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Another improvement to scoring can be achieved by noting that the library construction 
phase preceding high throughput sequencing can introduce PCR amplification artifacts 
where the same cDNA fragment is amplified and subsequently sequenced multiple 
times. Such duplicate reads do not represent the true biological abundance of an RNA 
fragment, and therefore cannot be directly counted as evidence of a fusion gene’s exist-
ence. To counteract this artifact, one can count each group of duplicate reads only as a 
single unique read. To determine which reads are duplicates, two reads can be consid-
ered duplicates if they align to the same location relative to the junction. Note that being 
aligned to the same location does not guarantee that two reads really are duplicates, and 
therefore this duplicate removal step will reduce the sensitivity of the analysis to a small 
degree. 
 
 

3.7 Transcriptomic expression profiling 

To quantify the expression levels of all exons in the genome, a custom-built Matlab 
script was used to extract exon sequences from the transcriptome GBFF files stored on 
the NCBI RefSeq FTP server. We then used Bowtie to align the whole transcriptome 
sequencing data against exon sequences parsed from NCBI RefSeq release 38 transcrip-
tome annotations, allowing for a single color mismatch against the reference genome in 
each alignment. Because the RNA had been reverse transcribed into double-stranded 
cDNA before sequencing, reads were allowed to align to exon sequences in both for-
ward and reverse-complement orientation. The number of reads aligned to each exon 
was calculated using a Matlab script that parsed the Bowtie output. To correct for inter-
sample sequencing depth bias and exon length bias, we normalized the read counts us-
ing the RPKM normalization method: 
 

RPKM =   
number  of  hits

exon  length  in  kb  ×  (total  reads 10!) 

 
RPKM stands for reads per kilobase of transcript length per million reads and was first 
introduced by Mortazavi et al. (2008). The normalization method is designed to address 
two sources of bias in sequencing experiments: 

- The number of reads that originate from a specific target (here an exon) depends 
on the length of the target sequence. This is because the cDNA is sonicated into 
short fragments before sequencing, and the number of fragments produced de-
pends on the original length of the transcript or exon. 

- The number of reads that originate from a specific target depends on the overall 
amount of reads produced from the entire sample. This is because the total read 
count in a sample is not a measure of total RNA content, but is instead deter-
mined by the protocol and sequencing instrument used. 
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Because RPKM does inter-sample normalization using total read counts, the method 
relies heavily on the expression of a handful of highly expressed genes. If these few 
genes are expressed at a higher level in one sample, RPKM normalization will down-
play the expression of other genes in that sample. To resolve this issue, the inter-sample 
normalization in RPKM can be replaced with median-of-ratios normalization. In this 
approach, each sample is represented as a column vector of gene expression values. 
Two vectors are normalized by calculating a ratio between each pair of genes (i.e. 
pointwise ratios between the two vectors), and the median of the ratios is calculated. 
The median-of-ratios is a robust estimate of the multiplicative bias between two sam-
ples. The expression values in the vectors are divided by the median-of-ratios statistic to 
produce normalized values. 
 
In this study, we normalized expression values using the RPK statistic to correct for 
gene/exon length, and median-of-ratios normalization for correcting inter-sample multi-
plicative bias. 
 

3.8 Gene expression analysis using cDNA microarrays 

To calculate gene expression levels using DNA microarrays, reverse transcribed RNA is 
hybridized onto a microarray containing probes complementary to transcript sequences 
(Schena et al. 1995). Some gene expression microarrays use a dual channel setup where 
cDNA from a test sample and a control sample are labeled with different fluorescent 
dyes and simultaneously hybridized onto the microarray. Other microarrays use a single 
channel setup where only cDNA from a test sample is hybridized onto the array. Sample 
quantity and quality can affect observed fluorescent intensities, causing systematic dif-
ferences between samples (hybridization experiments). In a dual channel setup, these 
differences can be ameliorated by using test/control channel ratios as the quantities that 
are compared between samples. However, differences in the relative quantities of the 
two dyes can still cause sample-specific bias. Normalization methods such as quantile 
normalization and median-of-ratios normalization can be used to combat this source of 
bias. 
 
In quantile normalization, the goal is to normalize N vectors of data so that their distri-
butions become identical. The vectors must be of the same length M, and are represen-
ted as an 𝑀×𝑁 matrix. Each column of the matrix is sorted, and means are calculated 
across the rows of the sorted matrix. Each column of the sorted matrix is then replaced 
with the mean vector. At this point, all columns of the matrix share the same distributi-
on. In the final step, each column is returned to its original order (Figure 12). Quantile 
normalization is a powerful technique because it can correct any sample-specific bias 
that can be represented as a monotonic transformation of the true values. However, 



 39 

quantile normalization often results in truncated distribution tails, which can be proble-
matic if very highly expressed genes are of interest in a study. 
 

 
Figure 12. An illustration of the quantile normalization process. After quantile normaliza-
tion is finished, all column vectors have identical distributions. 

 
Gene expression microarrays are often designed so that each transcript is targeted by 
multiple probes of different sequences. A set of probes targeting a specific transcript is 
called a probeset. To calculate the expression level of a transcript, probe intensities 
must be summarized across all probes targeting the same transcript. Multiple summari-
zation methods have been proposed in the literature, ranging from the calculation of a 
simple mean all the way to algorithms such as median polish. Median polish, originally 
introduced by Tukey (1977), is a robust computational method where the data 𝑦!" are 
represented through an additive model with two variables 𝑎 and 𝑏: 
 

𝑦!" = 𝑐 + 𝑎! + 𝑏! + 𝑒!" 
Or in matrix form: 

𝑌 = 𝑐 +
𝑎! + 𝑏! ⋯ 𝑎! + 𝑏!

⋮ ⋱ ⋮
𝑎! + 𝑏! ⋯ 𝑎! + 𝑏!

+ 𝐸 

 
Here 𝑐 represents the constant background, and 𝑒!" represents noise in the original data. 
In the context of gene expression microarrays, Y is a matrix containing measured log-
scaled probe intensities for all probes that target a specific transcript, so that 𝑦!" rep-
resents the log-scaled measured intensity of probe j in sample i. 𝑎! represents the true 
transcript expression level in sample 𝑖, and 𝑏! represents the affinity of probe 𝑗 to the 
transcript. The affinity of a probe is a multiplier that relates the true abundance of a 
transcript to the observed fluorescence signal. To estimate the true transcript expression 
levels 𝑎! from the data Y, the median polish algorithm performs successive operations 
known as row and column sweeps. In a row sweep the median of each row is subtracted 
from that row. In a column sweep the median of each column is subtracted from that 
column. The medians used for subtraction are tallied in vectors 𝑎 = 𝑎! … 𝑎!  and 
𝑏 = 𝑏! … 𝑏! . Row and column sweeps are applied until the table no longer chan-
ges or changes very little. After this, the medians of vectors a and b are subtracted from 
the vectors and used to define 𝑐 = median 𝑎 +median 𝑏 . At this point, the original 
data Y has been decomposed into a background component c, transcript expression le-
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vels 𝑎!, and probe affinities 𝑏!. The median polish algorithm is robust because row and 
column sweeps are largely unaffected by outlier values in Y. 
 
 

3.9 Copy number analysis using CGH microarrays 

Copy number alterations (CNA) such as deletions and duplications are commonly found 
in many cancers (Beroukhim et al. 2010). They can be studied using a technique known 
as array comparative genomic hybridization (aCGH), a technique where test and control 
DNA are fluorescently labeled with different dyes (typically cyanine-5 and cyanine-3), 
and then hybridized onto a microarray slide (Figure 13). Once hybridization is com-
plete, an optical reader is used to measure the intensities of the two fluorescent dyes at 
each spot on the microarray. The data is preprocessed to remove spatial trends and dye 
bias, and the intensities of the two fluorescent dyes are compared at each microarray 
spot to calculate the logratios log! 𝐼!"#! − 𝐼!"#$%"& . Each microarray spot contains 
probes with a specific sequence, and this sequence maps to a unique location in the hu-
man genome. The probes (and associated logratios) are ordered based on their position 
in the genome, and the data is segmented to discover CNA boundaries (Figure 13). 
Segmentation in this context refers to a process where the data is searched for contigu-
ous regions where the logratios of multiple probes differ significantly from their sur-
roundings, indicating a greater or lesser amount of DNA from that region being present 
in the cells. 
 

 
Figure 13. Overview of the different technologies used in studying the molecular biology of 
cancer today. The middle portion of the figure represents the canonical DNA -> RNA -> 
protein model of cellular function. 
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In this study, we used the Agilent Feature Extraction Software to perform spatial 
detrending and dye bias correction. We extracted all probe sequences from the microar-
ray design files and aligned them against the GRCh37 human reference genome to en-
sure that the probe locations agreed with the latest genome assembly. Using the updated 
probe mappings, we used the circular binary segmentation algorithm (Olshen et al. 
2004) to segment the probe logratios. 
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4 RESULTS 

4.1 Whole transcriptome sequencing of gliomas 

Forty glioma tissue samples were acquired from the Brain Tumor Center tissue bank of 
the University of Texas MD Anderson Cancer Center. The samples included 20 glio-
blastoma, 5 anaplastic astrocytome, 6 anaplastic oligodendroglioma, and 9 oligoden-
droglioma tissues. Additional commercial adult and fetal normal brain tissue was also 
acquired for use as control. 
 
All samples were obtained from surgery and snap frozen. RNA was extracted, then dep-
leted of ribosomal RNA using the Invitrogen Ribominus Eukaryotic Kit. The remaining 
RNA was reverse transcribed and amplified using the SOLiD Small RNA Expression 
Kit. cDNA fragments 50-100 bases long were selected using gel electrophoresis follo-
wed by cutting the gel. The samples were pooled into 8 pools according to glioma type 
and sequenced using an Applied Biosystems SOLiD 3 instrument at the Sequencing 
Core Facility at MD Anderson (Table 3). The sample pools were sequenced to an ave-
rage depth of 66 million reads. Reads were encoded in colorspace and had a fixed length 
of 50 colors. The data was received in raw FASTQ format, with associated per-color 
quality information. 
 
Table 3. Sample pools used for whole transcriptome RNA sequencing. 

Pool	
  ID	
   Pool	
  contents	
   #	
  of	
  samples	
   Seq.	
  depth	
  
ZW01	
   Glioblastoma,	
  survival	
  <	
  6	
  months	
   5	
   75M	
  reads	
  
ZW02	
   Glioblastoma,	
  survival	
  10-­‐15	
  months	
   5	
   75M	
  reads	
  
ZW03	
   Glioblastoma,	
  survival	
  15-­‐20	
  months	
   5	
   52M	
  reads	
  
ZW04	
   Glioblastoma,	
  survival	
  >	
  20	
  months	
   5	
   67M	
  reads	
  
ZW05	
   Anaplastic	
  astrocytoma	
  (AA)	
   5	
   58M	
  reads	
  
ZW06	
   Oligodendroglioma	
   5	
   66M	
  reads	
  
ZW07	
   Oligodendroglioma	
   4	
   88M	
  reads	
  
ZW08	
   Anaplastic	
  oligodendroglioma	
  (AO)	
   6	
   70M	
  reads	
  
ZW09	
   Adult	
  normal	
  (prepooled)	
   23	
   58M	
  reads	
  
ZW10	
   Fetal	
  normal	
  (prepooled)	
   21	
   55M	
  reads	
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4.2 Fusion gene discovery 

We applied the anchor-based fusion discovery algorithm to whole transcriptome se-
quencing data from the eight glioma pools and the two normal brain tissue pools. The 
search produced an initial list of 17564 fusion candidates, but the list was reduced to 52 
candidates after applying the cascade of filters described in section 3.5 (Figure 14). 
 
 

 
 

Figure 14. Pie chart showing the number of remaining fusion candidates after each filtering 
step. A total of 52 fusion candidates remained after applying the full cascade of filters. 

 
The list of 52 putative fusions was scanned for interesting candidates based on each 
candidate’s predicted biological consequence and level of supporting evidence. To de-
termine whether a fusion gene had the potential to be biologically significant, we looked 
at whether the fusion merges the coding sequences (CDS) of the two genes, or whether 
it merges the CDS of one gene to the 5’ UTR or 3’ UTR of the other gene. If coding 
sequences were fused, we calculated whether the fusion resulted in a frameshift. We 
also used existing literature to determine whether either of the involved genes had any 
known associations with glioma or cancer in general. The resulting final list of 7 inter-
esting fusion candidates is shown in Table 4. 
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Table 4. Top fusion candidates based on the level of evidence and predicted consequences. 

Fusion	
   Exons	
   Evidence	
   Putative	
  mechanism	
  
FGFR3-­‐TACC3	
   e18-­‐e11	
   16	
  reads	
  in	
  GBM	
  pool	
  #3.	
   Tandem	
  duplication	
  
NUP188-­‐SPTAN1	
   e8-­‐e27	
   5	
  reads	
  in	
  GBM	
  pool	
  #4.	
   Tandem	
  duplication	
  
ZNF713-­‐VSTM2A	
   e1-­‐e4	
   4	
  reads	
  in	
  GBM	
  pool	
  #3.	
   Tandem	
  duplication	
  
YEATS2-­‐GPBP1	
   e2-­‐e9	
   3	
  reads	
  in	
  oligodendroglioma	
  pool	
  #1.	
   Interchromosomal	
  translocation	
  
NPAS3-­‐AKAP6	
   e5-­‐e2	
   2	
  reads	
  in	
  GBM	
  pool	
  #3.	
   Tandem	
  duplication	
  
TADA2B-­‐SORCS2	
   e1-­‐e2	
   2	
  reads	
  in	
  GBM	
  pool	
  #3.	
   Deletion	
  
CYB5R1-­‐AGXT2L2	
   e5-­‐e12	
   2	
  reads	
  in	
  GBM	
  pool	
  #3.	
   Interchromosomal	
  translocation	
  
	
   	
   	
   	
  

The most striking finding in the data was a putative fusion between fibroblast growth 
factor receptor 3 (FGFR3) and transforming acidic coiled coil protein 3 (TACC3) in 
glioblastoma pool #3. The FGFR3-TACC3 fusion was supported by a total of 16 reads 
that overlapped the fusion junction. The reads showed no nucleotide mismatches and 
were distributed evenly on both sides of the junction (Figure 15). Genomic regions close 
to FGFR3 did not contain sequences homologous to the 3’ side of the putative fusion 
junction, and a BLAST alignment found no contiguous genomic regions containing a 
close match for the junction sequence. Taken together, these findings strongly suggested 
that the fusion gene was a real biological event and not a technical artifact. 
 
 

 
 

Figure 15. Visualization of the 16 RNA-seq reads that supported the fusion between 
FGFR3 and TACC3 in the third glioblastoma pool. Genomic reference sequence is shown 
in bold. 
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4.3 Protein level validation of FGFR3-TACC3 

To determine the exact number of FGFR3-TACC3 positive tumors, we acquired an 
FGFR3 antibody specific to an epitope found in the N-terminal portion of FGFR3. An 
antibody with a C-terminal epitope would not have detected our fusion protein, as a 
segment of the FGFR3 C-terminal had been replaced in the chimeric protein. As a posi-
tive control, we transfected SNB19 cells (a widely used glioblastoma cell line) with a 
vector containing an FGFR3-TACC3 e18-e11 construct. As a negative control, we trans-
fected SNB19 cells with a vector containing the wildtype FGFR3 gene. We used the 
antibody to immunoblot cell lysates from the 40 gliomas in our cohort (plus controls), 
and observed that 2 of 40 glioma samples produced strong bands indicative of a fusion 
gene. The first fusion positive tumor (GBM-13) was from glioblastoma pool #3 and 
yielded bands that matched those from the fusion-transfected SNB19 cells, implying 
that this sample was the origin of the fusion gene discovered by transcriptome sequenc-
ing. The second fusion positive tumor (GBM-07) was from glioblastoma pool #2 and 
produced weaker bands, implying lower expression of the fusion gene. This weaker 
expression explained why no fusion-supporting reads were detected from this pool by 
transcriptome sequencing. We repeated the immunoblot validation with 51 glioma 
samples acquired from the Tumor Tissue Bank of the Tianjin Medical University Can-
cer Institute and Hospital. 2 of 51 samples (denoted GBM-T01 and GBM-T02) in the 
Tianjin cohort were positive for the fusion gene (Figure 16). In total, we observed the 
FGFR3-TACC3 fusion in 4 of 48 glioblastomas and in none of 23 lower grade gliomas, 
implying that the fusion gene was specific to glioblastoma. 
 

 
Figure 16. FGFR3 immunoblot of glioblastoma tumors and SNB19 cells transfected with 
the FGFR3-TACC3 fusion or wildtype FGFR3. β-tubulin was used as loading control. Mo-
lecular weight ladder is shown on the left. Asterisk denotes stable transfection. 

  



 46 

Fusion negative tumors (represented by GBM-08, GBM-16, and GBM-18) and control 
SNB19 cells transfected with green fluorescent protein (GFP) produced no immunoblot 
bands, indicating low endogenous FGFR3 protein level in gliomas (Figure 16). In fu-
sion positive tumors and positive controls, we observed that the antibody always pro-
duced two bands. The upper and lower bands corresponded to the fully and partially N-
glycosylated forms of FGFR3, respectively. In fusion positive tumors and controls, the 
bands had migrated a shorter distance in the gel than bands from the FGFR3-transfected 
SNB19 cells, consistent with fusion-induced replacement of the FGFR3 C-terminal with 
a longer C-terminal from TACC3 (Figure 16). Using a molecular weight calculator we 
calculated a 17 kDa difference between the masses of wildtype FGFR3 and the FGFR3-
TACC3 fusion protein (e18-e11 variant), a result that agreed with immunoblot meas-
urements. Intriguingly, we noticed that the bands in GBM-07 had a higher molecular 
weight than corresponding bands in GBM-13 and GBM-T01, implying that GBM-07 
harbored a fusion variant that produced a longer chimeric protein. This prompted us to 
identify the exact structure of the FGFR3-TACC3 fusion in all four fusion positive sam-
ples. 
 
Immunohistochemical analysis of GBM-T01 and GBM-T02 patient tissues revealed 
extensive FGFR3 staining that was absent in control tissues (Figure 17), suggestive of a 
simple diagnostic measure that could be used in clinics to screen for fusion positive pa-
tients. 
 

 
Figure 17. FGFR3 immunostaining of patients GBM-T01 and GBM-T02 and a control fu-
sion-negative tumor. Original magnification, ×200. 
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4.4 Sanger sequencing of fusion junctions 

To determine the exact structures of the fusion transcripts found in the four fusion posi-
tive tumors, we designed a set of nested primers for RT-PCR amplification and Sanger 
sequencing. The outer primers were designed to capture and amplify the RNA sequence 
surrounding the fusion junction. The inner primers were designed to act as starting 
points for the primer elongation step in Sanger sequencing. However, available Sanger 
sequencing instruments could only produce reliable sequences up to a 1000 bases long. 
This meant that inner primers had to be carefully designed for the correct exon bounda-
ries, otherwise the fusion junction would be missed. For samples GBM-13 and GBM-
T01, the primer design was straightforward as we knew the fusion structure of GBM-13 
from transcriptome sequencing, and we knew that GBM-T01 likely shared the same 
structure (based on immunoblot bands). 
 
To determine the fusion structure in GBM-07, we turned to transcriptome sequencing 
data and calculated the number of sequencing reads that fell within each exon of 
TACC3. We normalized the read counts by exon length, and then plotted the expression 
level of each of the 16 TACC3 exons in the glioblastoma pools. As a positive control, 
we noted that in glioblastoma pool #3, exons 11-16 of TACC3 were significantly over-
expressed relative to exons 1-10 (p = 0.00025, Mann-Whitney U test) (Figure 18). This 
matched with expectations, as the fusion gene’s expression is driven by the active 
FGFR3 promoter, causing a spike in the expression of TACC3 exons included in the 
fusion transcript. Looking at glioblastoma pool #2, we observed weaker but significant 
overexpression of exons 5-16 of TACC3, implying that the fusion gene in GBM-07 
fused together FGFR3 exon 18 with TACC3 exon 5. This matched with immunoblot 
results that had shown GBM-07 to have a higher molecular weight than GBM-13. 

 
Figure 18. Expression of TACC3 exons in the two glioblastoma pools harboring a fusion 
positive tumor. Read counts were quantile normalized and normalized by exon length. 
Dashed line indicates the location of the fusion junction in TACC3. P-values calculated us-
ing the Mann-Whitney U test. 
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Starting with the putative fusion junctions acquired by integrating transcriptome 
sequencing and immunoblotting, we designed a specific set of primers for each fu-
sion positive tumor and performed reverse transcription and Sanger sequencing on 
RNA extracted from the tumors. After some trial and error with sample GBM-T02, 
we were able to sequence all four fusion junctions with single-base accuracy (Fig-
ure 19). Samples GBM-13 and GBM-T01 harbored the e18-e11 variant, while 
GBM-T02 harbored a slightly longer e18-e10 variant (the difference in molecular 
weight had been too small to be evident in immunoblots). GBM-07 harbored a fas-
cinating fusion variant where the DNA breakpoints occurred inside exons 19 and 4 
of FGFR3 and TACC3, respectively. The two exons were disrupted by the fusion 
and merged together, but the chimeric protein was still in-frame. In fact, all four 
fusions were in-frame. This was strong evidence for the fact that only in-frame 
FGFR3-TACC3 proteins are under selective pressure, implying that the FGFR3-
TACC3 protein drives tumorigenesis in glioblastoma. 

 

 
Figure 19. Fusion transcript structures and Sanger electropherograms for the four fusion-
positive glioblastomas. GBM-07 and GBM-13 were patients treated at the University of 
Texas MD Anderson Cancer Center (MDACC); GBM-T01 and GBM-T02 were patients 
treated at Tianjin Medical University Cancer Institute and Hospital (Tianjin). 
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4.5 FGFR3-TACC3 is caused by tandem duplication 

After determining the exact structure of the fusion transcripts, we wished to know the 
nature of the chromosomal rearrangement that had produced the fusion gene. We im-
mediately noted that TACC3 and FGFR3 were situated in the same chromosome and 
locus, separated by a distance of roughly 70 kb. Interestingly, the TACC3 gene was lo-
cated upstream of the FGFR3 gene, while in the fusion gene FGFR3 exons were found 
upstream of TACC3. This suggested that the fusion was caused by a 70 kb tandem du-
plication that partially overlapped both genes, as discussed in section 2.3.4 (Figure 20). 
Similar fusions caused by tandem duplications have been reported earlier in the litera-
ture (Jones et al. 2008; Lipson et al. 2012). 
 

 
Figure 20. Based on the relative locations of FGFR3 and TACC3, we hypothesized that the 
fusion gene was caused by tandem duplication of the region between the two genes. 

 
To validate the presence of a tandem duplication, we hybridized genomic DNA from the 
four fusion positive glioblastomas onto custom-designed CGH microarrays with dense 
probe coverage at 4p16.3. The microarray slides were imaged using a laser-based Ag-
ilent scanner and the Cy5/Cy3 fluorescence ratios were segmented computationally to 
reconstruct the copy number landscape of the tumor cells. In all four fusion positive 
tumor samples, we obtained a result showing a clear duplication in the region between 
TACC3 and FGFR3 (Figure 21). This result supported our hypothesis of a tandem du-
plication causing the fusion gene. 
 
Interestingly, in many of the samples the tandem duplication boundaries stretched be-
yond the 3’ end of FGFR3. We initially found this problematic, because this implied 
that the fusion transcripts should have joined FGFR3 exon 19 (the last exon) with 
TACC3. However, due to the lack of a splice donor site in the last exon, the exon is 
skipped by the RNA splicing machinery as described earlier in section 2.3.6. 
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Figure 21. Validation of the tandem duplication in fusion positive glioblastomas using cus-
tomized Agilent CGH microarrays with dense coverage for the fusion locus. Each dot rep-
resents a microarray probe. Probe signal logratios are measured relative to the reference 
channel containing commercial reference DNA. 
 

The CGH microarray results clearly proved the presence of DNA duplication be-
tween TACC3 and FGFR3, but did not conclusively prove the presence of tandem 
duplication, as the duplicated region might have been copied to a different region in 
the genome. To prove tandem duplication, we designed primers for Sanger sequenc-
ing the genomic breakpoints, using the rough breakpoints calculated from CGH 
microarrays as a guide. After lots of trial and error, the exact breakpoints were suc-
cessfully sequenced and were found to confirm the tandem duplication hypothesis 
(Figure 22). 
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Figure 22. Genomic structures of the four fusion genes found in our cohort. Homologous 
sequence at the breakpoint is shown in orange colour. 

 

4.6 Biological function of FGFR3-TACC3 

To understand the biological significance of FGFR3-TACC3 fusions in glioblastoma, 
we first looked at literature. FGF receptor 3 (FGFR3) is a membrane-bound growth fac-
tor receptor that is activated by its ligand, fibroblast growth factor (FGF). After activa-
tion, FGFR3 dimerizes and functions as a tyrosine kinase that activates the MAPK and 
PI3K pathways (reviewed in Eswarakumar et al. 2005; Turner et al. 2010). FGFR3 is 
frequently mutated in bladder and cervical cancers (Cappellen et al. 1999), and the mu-
tation leads to constitutive dimerization and auto-phosphorylation of the protein. Trans-
forming acidic coiled-coil containing protein 3 (TACC3) encodes a centrosomal protein 
that is involved in mitosis (Gergely et al. 2000) and is overexpressed in lung and colon 
carcinomas and in multiple myeloma (Still et al. 1999). TACC3 overactivity has been 
previously associated with a number of cancers, including GBM (Duncan et al. 2010). 
 
Based on the fusion transcripts we inferred that all four in-frame fusion proteins in our 
cohort contained the extracellular Ig-like domains, the transmembrane domain, and 
most of the tyrosine kinase domain of FGFR3, fused to the transforming acidic coiled-
coil domain of TACC3 (Figure 23).  
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Figure 23. Schematic of protein domains — Ig, transmembrane (TM), and protein kinase 
(PTKC) — contained within the FGFR3-TACC3 fusion protein. 

 
To determine how much the fusion affected the expression of TACC3, we per-
formed qRT-PCR with primers designed to capture a region in the 3’ end of TACC3 
transcripts (as only the 3’ end was included in the fusion transcript). We found that 
the fusion gene had increased the expression of TACC3 at least 20-fold when com-
pared with fusion negative GBM samples (Figure 24). 
 

 
 

Figure 24. Log-2 ratio between the expression of TACC3 and GAPDH as observed using 
qRT-PCR with primers designed to capture the 3’ end of TACC3. 
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To interrogate the impact of the FGFR3-TACC3 fusion on the molecular pathways 
within glioblastoma cells, we transfected SNB19 cells with a stable FGFR3-TACC3 
vector or an empty vector, then hybridized reverse transcribed cDNA from the two 
transfected cell lines onto Agilent gene expression microarrays. The probe intensi-
ties were quantile normalized and summarized into gene expression values using 
median polish. Logratios between each gene’s expression in fusion-transfected and 
empty vector cells were calculated, and the Ingenuity Pathway Analysis software 
(Ingenuity® Systems, www.ingenuity.com) was then used to calculate the enrich-
ment of differentially expressed genes in different biological pathways. The soft-
ware calculated enrichment P-values using Fisher’s exact test, and also calculated 
activation Z-scores by making use of a proprietary database where each gene partic-
ipating in a biological function is annotated either as an inhibitor or activator of the 
biological function. The results of the analysis suggested that transfection of the 
fusion gene into SNB19 glioblastoma cells further increased the activity of biologi-
cal pathways related to tumorigenesis and cellular mobility (Figure 25). 
 

 
Figure 25. Scatter plot showing the gene set enrichment of different biological functions, 
calculated based on the genes differentially expressed after FGFR3-TACC3 transfection 
into SNB19 cells. A gene set’s enrichment P-value is indicated by its position along the y-
axis. Activation or inactivation of a gene set is indicated by its position along the x-axis.  
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Finally, to show that the fusion gene affects tumor growth in vivo, we implanted 
FGFR3-TACC3, wildtype FGFR3, and empty vector SNB19 cells into the brains of 
immunocompromised mice and compared survival patterns (Figure 26). One million 
cells from each line were injected into the brains of a total of 35 nude mice (n = 5 per 
group). 5 tumor-free mice died of diarrhea and were censored, while the rest of the mice 
developed large tumors by the time of their termination. Mice implanted with the 
FGFR3-TACC3 fusion died significantly earlier than mice implanted with empty vector 
(within 70–80 days of implantation compared with 110–175 days; P = 0.007, log-rank 
test). There was no statistical difference in survival observed between mice implanted 
with empty vector or wildtype FGFR3, implying that the oncogenic function of the fu-
sion gene is not explained by overexpression of FGFR3 alone. 
 

 
Figure 26. Kaplan-Meier survival plot showing the difference in survival between immun-
ocompromised mice implanted with FGFR3-TACC3, wildtype FGFR3, and empty vector 
SNB19 cells. The curves indicate the fraction of uncensored mice alive at specific 
timepoints after implantation. Five mice died of diarrhea (not due to cancer) and were 
censored from the study (times of death shown with black crosses). 
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4.7 FGFR3-TACC3 escapes microRNA regulation 

Previously we noted that the protein level expression of FGFR3 was significantly higher 
in fusion positive glioblastoma than in fusion negative ones. In fact, the difference was 
so dramatic that it was not sufficiently explained by the presence of a few extra copies 
of FGFR3. To understand this phenomenon, we set out to determine whether the tan-
dem duplication was altering the post-transcriptional regulation of FGFR3 transcripts. 
We realized that even though the fusion gene’s expression was driven by the FGFR3 
promoter, the fusion transcript lacked the 3’-UTR of FGFR3. This led us to look at re-
gulation by microRNAs, a class of small RNA that bind to the 3’-UTRs of specific ge-
nes and cause transcript degration or inhibition of protein translation (reviewed in Sun 
et al. 2010). Using the TargetScan microRNA target prediction database (Lewis et al. 
2005), we determined that the FGFR3 3’-UTR was targeted by eight different miRNA 
families. We then used our small RNA sequencing data to calculate the expression le-
vels of all human microRNAs in our sample pools. One of the FGFR3-targeting mic-
roRNAs, miR-99a, was found to be the most highly expressed microRNA in the glio-
blastoma pools, and the fourth highest expressed microRNA in normal brain tissue (Fi-
gure 27). 
 

 
Figure 27. Pie charts showing the fraction of total small RNA sequencing reads arising 
from different microRNAs. Reads were normalized by the total number of aligned reads. 
Only the top 10 microRNA are shown, and the top 5 are labeled. The gray area represents 
the rest of the microRNAs. 

 
To determine whether the loss of miR-99a regulation might have a significant effect on 
FGFR3-TACC3 protein levels, we immunoblotted three glioblastoma cell lines and 
three bladder cancer cell lines for FGFR3, then performed qRT-PCR to determine the 
expression level of miR-99a in the same cell lines. FGFR3 expression is known to be 
high in bladder cancer but relatively low in brain cancer. Through the combined immu-
noblot and qRT-PCR analysis, we could show a clear inverse correlation between 
FGFR3 and miR-99a expression (Figure 28). 
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Figure 28. Combined results of an FGFR3 immunoblot and a miR-99a qRT-PCR experi-
ment. The data suggests an inverse correlation between FGFR3 and miR-99a levels. 

 
To show the effect of miR-99a on FGFR3 protein levels more directly, we constructed a 
vector containing wild-type FGFR3, then mutated the vector to remove the miR-99a 
binding site from the 3’-UTR of FGFR3. The binding site removal was achieved by 
deleting six bases from the 3’-UTR (Figure 29). We then constructed two luciferase 
reporter assays, one with the wildtype FGFR3 3’-UTR, and one with the mutated 3’-
UTR. Upon transfection of miR-99a, the luciferase assay with the wildtype 3’-UTR 
reported a strong decrease in luciferase activity, while the assay with the mutated 3’-
UTR was unaffected. This shows that miR-99a binding to the FGFR3 3’-UTR strongly 
inhibits protein translation. 

 
Figure 29. On the left, a diagram showing the mutated and wildtype FGFR3 3’-UTRs, and 
the sequence of miR-99a. The miR-99a binding site was deleted from the mutant through 
a six base deletion in the 3’-UTR. On the right, a luciferase reporter assay shows that 
translation inhibiting effect of miR-99a on FGFR3 is dependent on its binding site in the 
3’-UTR. 
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4.8 Search for FGFR3-TACC3 in TCGA samples 

Near the end of our project, the Cancer Genome Atlas (TCGA) glioblastoma working 
group released a new dataset containing whole transcriptome sequencing data for 154 
glioblastoma patients. We used this opportunity to search for FGFR3-TACC3 fusions in 
this new dataset. By running our fusion gene discovery algorithm on the 154 samples, 
we initially identified 22 samples positive for the fusion. Other members of the TCGA 
working group also identified dozens of FGFR3-TACC3 fusions among the 154 samp-
les. However, we noticed that 21 samples shared an identical fusion structure (e18-e11), 
an observation at odds with the heterogenous nature of the fusion in our cohort. This 
raised our suspicion, and we decided to look for artifacts in the data. We noted that 
when the samples were ordered according to the numerical sample identifiers, all but 
one of the fusion positive cases clustered together. Subsequent analysis revealed that the 
154 samples had been sequenced in four batches. In the second batch, nearly all samples 
showed weak evidence for the fusion gene, while one sample showed stronger evidence. 
All samples in batch #2 also shared the fusion structure e18-e11. This strongly sugges-
ted that inter-sample contamination had occurred in batch #2, so that a low amount of 
nucleotide material from the true fusion positive sample had contaminated the other 
samples (Figure 30). This theory was further supported by the observation that overex-
pression of FGFR3 and TACC3 was only observed in the two true fusion positive samp-
les (Figure 30). We therefore concluded that the TCGA cohort actually contained only 
two fusion positive cases. After reporting the issue to TCGA, the laboratory responsible 
for batch #2 reported that they had discovered the root of the problem in one of the 
sample preparation protocols they used. The number of FGFR3-TACC3 positive pa-
tients in the TCGA manuscript was downgraded to two. 
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Figure 30. Transcriptome sequencing data from the Cancer Genome Atlas GBM project 
reveals two fusion positive tumors, and inter-sample contamination in batch #2. Overex-
pression of FGFR3 or TACC3 is not observed in contaminated samples. Structures of the 
fusion genes are shown at the top. 

 

4.9 Other fusion genes 

In addition to the FGFR3-TACC3 fusion, we also studied two other fusion genes identi-
fied by our transcriptome sequencing. A ZNF713-VSTM2A fusion was validated in one 
glioblastoma tumor, but did not occur in other tumors. Analysis of the locations of the 
two genes revealed that both genes were located in chromosome 7, flanking the EGFR 
gene. EGFR encodes for an epidermal growth factor receptor and is a well-known on-
cogene amplified in 70% of glioblastomas. We hypothesized that this fusion gene was a 
side effect of EGFR amplification, caused by a tandem duplication whose boundaries 
happened to overlap the two genes. This hypothesis was later supported by evidence 
from the Cancer Genome Atlas glioblastoma sequencing project, where we discovered 
numerous non-recurrent fusion genes involving pairs of genes flanking the EGFR locus. 
 
The third fusion, NUP188-SPTAN1, was also validated by RT-PCR in one glioblastoma 
tumor, but did not occur in other tumors. We did not pursue this fusion gene further as 
we could not show it was anything more than a one-time event. 
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5 CONCLUSIONS 

In this thesis, we have shown how the combination of high throughput measurements 
and computational algorithms can yield novel biological insights into complex diseases 
such as human cancers. The identification of the first recurrent fusion gene ever report-
ed in glioblastoma provides new hope for a treatment through targeted molecular thera-
py. The availability of multiple small molecule inhibitors of FGFR (Pardo et al. 2009; 
Lamont et al. 2011; Gavine et al. 2012; Gozgit et al. 2012) suggests that some of these 
molecules might be successfully adapted for clinical use. Our collaborators at the M.D. 
Anderson Cancer Center are currently studying the effect that different FGFR3 inhibi-
tors have on cells transfected with FGFR3-TACC3. The fusion gene also has the poten-
tial to act as a prognostic marker that could be used in a clinical setting to determine the 
types of treatments most effective for an individual patient. 
 
After the initial publication of FGFR3-TACC3 in glioblastoma by us and Singh et al. 
(2012), Williams et al. (2012) reported their discovery of FGFR3-TACC3 fusions in 
bladder cancer. They also reported a novel FGFR3-BAIAP2L1 fusion gene that is 
caused by interchromosomal translocation and involves a different 3’ partner. Intri-
guingly, both TACC3 and BAIAP2L1 contain a coiled coil domain in their 3’ end. This 
may imply that the oncogenicity of the FGFR3-* fusion genes may result from the in-
troduction of oligomerization domains to FGFR3. Coiled coil domains are known to 
function as oligomerization domains in many human proteins. The constitutive activa-
tion of an oncogene through fusion-induced oligomerization is a well-characterized 
phenomenon known to occur in multiple human cancers (Davis et al. 1985; Chiarle et 
al. 2008). This theory is further supported by the fact that many bladder cancers harbor 
FGFR3 mutations that are known to cause constitutive oligomerization of FGFR3 
(Cappellen et al. 1999). 
 
Recently, another group reported their discovery of FGFR fusions in over 10 different 
cancer types (Wu et al. 2013). This group also noted that all fusion genes involved an 
FGFR kinase domain fused with an oligomerization domain from another gene. This 
implies that FGFR3-TACC3 fusions represent the most widely distributedone of the few 
fusions known to occur in multiple cancer types. The development of targeted molecu-
lar therapies for patients with FGFR3-TACC3 positive cancer could therefore provide 
broad-spectrum relief in the struggle against cancer. 
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