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Ultra Wideband(UWB) communication have been increasingly used in indoor po-
sitioning systems to complement Global Positioning System(GPS) in indoor envi-
ronments. This thesis demonstrates the accuracy and application capability of the
technology in a small-scale factory environment. The factory environment consists
of 3m by 3m area with designated loading areas for pallets.

The forklift type robots have forks to lift pallets and are fixed with mecanum wheels.
The forklifts have to move the pallets based on the commands received through
network effectively avoiding other robots and static obstacles in the area. The
forklifts are 18cm by 25cm in size and have to move through the path of 30cm in
width.

For positioning the robots in the environment, position from UWB is fused with
onboard Inertial Measurement Unit(IMU) using extended Kalman filter. The path
planner which plans from the current position of the robot to target area uses the
map of the environment in OpenDRIVE format. A* planning is used to plan the
path from the current position on the map to the goal. A dynamic obstacle grid is
used to avoid moving robots in the vicinity of the robot.

Pure pursuit algorithm which selects a point on the path to follow is used for path
following. Pallets are fixed with visual markers which are detected by the camera
on forklifts. The marker detection provides the relative distance of pallets from the
forklift which is used to pick and place the pallets. All these individual systems
are integrated using state machines for seamless task execution. Four forklifts were
effectively able to move pallets between loading areas without colliding.
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1. INTRODUCTION

Indoor positioning systems are used to locate objects or humans inside closed en-
vironments such as buildings. There are wide range of applications for the indoor
positioning systems from inventory management in factories, locating patients in
hospitals, indoor navigation of unmanned vehicles to locating people in large shop-
ping malls and offices to name a few.[1]

Global positioning system(GPS) is the most popular technology used for locating
objects in the outdoor environment[1]. But there are certain limitations to GPS
technology in indoor environments. The signals are weak when they reach the
Earth’s surface from GPS satellites to the receiver. They also suffer from multipath
effect due to reflections in obstructed areas such as buildings[2]. They mostly need
line of sight transmission between satellite and receivers. Achieving sub-metre level
accuracy in indoor environment with satellite systems is infeasible and alternate
systems have been considered[3].

Indoor positioning systems can be broadly classified into two types[1]. The first
method is to use existing hardware infrastructure deployed for the purpose other
than positioning such as Wi-Fi, Bluetooth and GSM. The second method requires
extensive deployment of infrastructure and special hardware for positioning. RFID,
infrared, ultrasound, lights, Ultra Wideband(UWB) are some of the technologies
that fall under this category[4]. Further comparison and evaluation of these tech-
nologies can be found in but not limited to some of these surveys[3],[4],[1],[5],[6],[7].
UWB is one of the emerging technology for high accuracy indoor positioning[8].

UWB positioning systems use radio wave communication between transmitters and
receivers over wide portion of the frequency spectrum to determine location. They
relatively consume low power have become an important technology in high accuracy
indoor positioning systems. UWB positioning systems have the capacity to provide
high accuracy in the presence of objects due to its low interference with other radio
waves and high-level of multipath resolution.[8] These advantages make it suitable
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for critical positioning applications and one such application is indoor navigation of
robots.

The idea of the thesis is to implement UWB positioning in small-scale robots as
an industrial project in HERE Technologies. These robots are used to demonstrate
the accuracy of the positioning system designed by the company. The robot is
built using 3D printed chassis and parts readily available in marketplace. Design
process of the robot platform is out of scope of this thesis. Software for the robot is
developed in modular architecture for easy testing and integration.

Though the hardware platform is small compared to real-world robots that achieve
meaningful tasks, the robot serves as a portable test platform for the software which
is designed to be scalable. Specifically, the robots are miniature forklifts which
can lift small pallets. To our knowledge, there is no small size hardware platform
available to create and test pallet picking algorithms with the software architecture
of a full scale robot. Moreover, the modularity of the software and size of the forklifts
allows testing scenarios using multiple robots which can be expensive in large scale.
The small size of the forklifts also makes accurate localization challenging for pallet
picking. The objective of the thesis is a demonstration of what the platform is able
to achieve as a test platform and also the high accuracy of UWB based localization.

1.1 Objective

The objective of this thesis is to make small forklift robots to move autonomously
using UWB positioning in the demonstration area. The demonstration area is 3 by 3
metres in size. Size of the forklifts is 15cm by 25cm. The forklifts should also detect
and move pallets based on orders. Orders are communicated to forklifts through
Wifi communication from visualization server functions of which are explained in
chapter 3. The forklifts have cameras that detects pallets fixed with visual markers.
These markers provide the relative distance of pallets from the robot using aruco
marker detection library.

Demonstration area should be able to run multiple robots. Planning routes for
forklifts have to be done using known map of the environment. The planner should
also avoid other robots in the area and designated static obstacles. Since there
are no other sensors for obstacle detection, static obstacles and robot position are
transmitted over the network to other robots through visualization server.
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A path follower should be implemented to follow the planned path. Pallet picking
and placing algorithms are implemented independent of path planner. To achieve
the demonstration objectives a state machine has to be designed. State machine
manages when to do different tasks of the demonstration. All the systems have to
be integrated with each other for execution of tasks autonomously with minimum
intervention.

1.2 Thesis Structure and Contribution

My contribution to this demonstration is to implement kinematic modeling for the
localization of forklifts using Extended Kalman Filter, path planning with obstacle
avoidance, path following, parts of pallet picking and placing algorithms for forklifts
and integration of these individual systems using state machine for task execution.

All the topics discussed in each chapter are huge field in itself, so the thesis structured
in a way such that each chapter explains brief background of different methods and a
detailed explanation of the chosen method along with experimental data and results.

Chapter 2 explains the theoretical background of different UWB positioning methods
and the current positioning system. Chapter 3 describes the software and hardware
design of the demonstration system. Motion and measurement models and its fusion
with inertial measurement unit and UWB using extended Kalman filter is briefed
in Chapter 4.

Obstacle tracking using occupancy grid and path planning using the obstacle and
map information is explained in Chapter 5. Tracking of paths provided by path
planner and state machine is explained in Chapter 6. Chapter 7 discusses the in-
tegration and communication of all modules and the experimental results of the
demonstration.
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2. BACKGROUND

2.1 Ultra Wideband

Any device which has the fractional bandwidth greater than 0.25 or occupying 1.5
GHz or more spectrum is defined as UWB device[9, pp. 12]. UWB have been
used in military radar applications and communications for several years. When
the Federal Communications Commission(FCC) allowed the unlicensed use of UWB
communications in 2002, the technology received widespread interest.[10]

IEEE 802.15.4a standard targeted for UWB have been set up to create physical layer
for low data rate communication with positioning capability. UWB radars differ from
UWB sensor networks for various reasons. Sensor nodes work in harsh environment
and cannot choose the environment whereas UWB radars can choose surroundings
for minimum disturbance. Sensor nodes are affected by multiple interference whereas
radars affect from narrowband jammers.[10]

Figure 2.1 Classification of Wireless Localization Techniques
[7, ,Fig.3]
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Farid et al.[7, Ch.3] broadly classifies wireless indoor positioning systems as prox-
imity, triangulation and scene analysis as shown in Figure 2.1. Proximity-based
methods detects position by the location of beacon with the strongest signal as
shown in Figure 2.2.a. Scene analysis methods are not related to UWB as they
involve analysing large dataset for positioning.

Triangulation methods determine location by using geometric properties of trian-
gles. Triangulation methods can be subdivided into Lateration and Angulation
techniques. [7, Sec. 3.2]

Figure 2.2.c. shows angulation technique which determines target location by using
the detected angle between the target and base station. UWB owing to its large
bandwidth and multipath errors is prone to errors in determining angles[10].

Time based lateration techniques calculates position based on time propagation.
There are different kinds of lateration techniques using measurement of propaga-
tion(TOA, TWR and TDOA). Lateration techniques determines location by mea-
suring distance between different reference points as shown in Figure 2.2.b. [7, Sec.
3.2.2]

Figure 2.2 Localization Techniques a) proximity b) trilateration c) angulation
[6, ,Fig.1]

Time based methods(lateration) are more suitable for UWB as they have better per-
formance in multipath and indoor environments. They can achieve better accuracy
by improving effective signal bandwidth. Large bandwidths of UWB signals allows
highly accurate location estimates. [10]
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2.1.1 Time of Arrival

To determine the location of a target node from a reference node, Time of Ar-
rival(TOA) method determines the time taken by the UWB signal to travel from
the reference node to target node. TOA method can also be called as One-Way
Ranging(OWR) method. Since the speed of signal is constant, distance between
reference and target node can be calculated by determining travel time. The target
receiver node needs exact start time of signal from reference node, thus needing
accurate synchronization of time between nodes.[7] Once the ranges of target node
from multiple reference nodes at different locations are measured, the target location
can be calculated by trilateration technique as shown in Figure 2.2.b. Small errors
such as 3ns in synchronization between nodes can cause high degree of errors upto
1m[11].

2.1.2 Two Way Ranging

Time synchronization requirement in TOA method is eliminated to some extent in
Two Way Ranging(TWR) method. Instead of using two clocks at two different nodes
this method uses the clock on the transmitter side to measure the transmitting and
arrival times[7]. Figure 2.3 shows two way ranging technique as described by Kwak
et al.[11]. tround represents the total time taken by the signal to reach receiver and
return. treply is the time taken by the receiver to calculate and respond to the signal.
Assuming no clock drift in the transmitter and receiver,the time of flight tp can be
measured by equation 2.1[11, Eq. 1].

tp =
1

2
(tround − treply) (2.1)

TWR systems face significant delays if multiple range measurements have to be car-
ried out consecutively. Clock crystals which calculate time can drift from reference
time and is not unique for all devices. This induces an additional error known as
clock drift. TWR method suffers from error measurements since clock drift is not
considered in the calculation.

Let eA and eB be the crystal offsets of device A and B respectively, then the estimated
time of flight is given by the equation 2.2[11, Eq. 2].
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Figure 2.3 Two Way Ranging
[11, ,Fig.1]

t̂p =
1

2
(tround(1 + eA)− treplyB(1 + eB)) (2.2)

Error in the TWR method is the difference between true time of flight and estimated
time of flight given by subtracting 2.1 from 2.2[11, Eq. 3].

t̂p − tp = tpeA +
1

2
treplyB(eA − eB) (2.3)

If tp is small compared to treplyB, then error due to clock drift is given by 2.4

t̂p − tp =
1

2
treplyB(eA − eB) (2.4)

2.1.3 Symmetric Double-Sided Two-Way Ranging

The method used in this thesis to determine UWB position is Symmetric Double-
Sided Two way Ranging(SDS-TWR). SDS-TWR method minimizes the clock drift
errors in TWR method. Figure 2.4 shows message exchange in SDS-TWR algo-
rithm. This method calculates the range measurements twice symmetrically, once
on each device and requires packets to be exchanged to four times. By following
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the notations in TWR method, theoretical time of flight in this method is given by
equation 2.5 [11, ,Eq. 6]

tp =
1

4
((troundA − treplyA) + (troundB − treplyB)) (2.5)

Figure 2.4 Symmetric Double-Sided Two-Way Ranging
[11, ,Fig.2]

The estimated time of flight with clock drift eA and eB is given by equation 2.6 [11,
,Eq. 7].

t̂p =
1

4
((troundA − treplyA)(1 + eA) + (troundB − treplyB)(1 + eB)) (2.6)

Error in time of flight estimate in this method is given by equation 2.7 [11, ,Eq. 8].

t̂p − tp =
1

2
tp(eA + eB) +

1

4
(treplyB − treplyA)(eA − eB) (2.7)

If treplyB -treplyA is chosen to be large compared to tp, neglecting tp term gives the
ranging error due to clock drift as 2.8. [12]

t̂p − tp =
1

4
(treplyB − treplyA)(eA − eB) (2.8)
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Compared with clock drift error in TWR method as given by equation 2.4, SDS-
TWR method reduces the clock drift error by atleast half. [12]

2.1.4 Time Difference of Arrival

Time difference of Arrival(TDOA) algorithm for UWB positioning systems mea-
sures the difference in arrival times from multiple transmitters at known location
to a receiver at unknown location. The transmitters should have synchronized time
between them. The difference in time from two transmitters to receiver gives a non
linear hyperbolic equation. To determine the location of a receiver in 2D plane three
time-synchronized transmitters are needed. For 3D location, four transmitters are
needed. [13]
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3. SYSTEM OVERVIEW

The complete system was developed in HEREMaps B.V, Tampere for public demon-
stration of UWB positioning. This chapter explains the system and platform which
has been designed for demonstration by other team members in the company. My
work on this thesis is to use this existing platform to achieve the demonstration
objectives.

The demonstration area is 3m by 3m. The area does not have any fixed maps. In-
stead, the area can show different maps based on user selection. An image projector
displays the selected map on a flat white table. Figure 3.1(a) and 3.1(b) displays
different maps displayed on the demo table. The map projections are scaled to
match the exact dimensions of the table.

(a) Demonstration Map 1 (b) Demonstration Map 2

Figure 3.1 Different map images shown by the projector on the table

The current map of the area is provided to forklifts in OpenDRIVE format. Open-
DRIVE is an XML based map format for storing road networks and logic. Detailed
explanation of this format is explained later in chapter 5. These different maps can
be read by the forklifts at runtime when the map changes.

Architecture of the sytem is shown in Figure 3.2. UWB transmitter beacons are
deployed around the demo table. These are fixed at known locations in the area.
Movable UWB receiver beacons fixed in the forklifts provide positioning in the area.
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Forklifts can read the location of all stationary beacons as configuration parameter
for UWB positioning. The demo is limited to a maximum of four robots at a time.

The forklifts should move pallets between loading areas based on commands received
from visualization server. Forklifts and visualization server are connected through
Wi-Fi router. User inputs are available to provide orders from moving pallets from
one place to the other. Users can also to add obstacles to the robots at run-time.
The capability of the robots to replan routes when encountering static obstacles and
other robots in the area have to be demonstrated.

Figure 3.2 System Architecture

Visualization server is a key part of the system which acts as a centralized command
center also as a message router. Map to be used by each robot is assigned by the
visualization server at the start and whenever it is changed by the user during
runtime.

Each forklift broadcasts its own position and the planned path to the visualization
server which forwards it to other robots connected to the server. Figure 3.3 shows
different map visualization capabilities of the server. Visualization screen can display
the planned path of all robots and their positions. User inputs of the system are
directed from this system.

Designated static obstacles status of which are forwarded to robots whenever it is
changed by the user and also when the robots start. The static obstacles are fixed
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(a) Map 1 2D View (b) Map 2 2D View

(c) Map 1 3D View (d) Map 2 3D View

Figure 3.3 Different Maps available and their views in Visualization Server

for each map and are displayed in the visualization. Users can enable the static
obstacles by a single click.

Order management system can assign orders automatically at random whenever
there is a free forklift. Users can also provide orders manually by using touchscreen.
Manual orders are disabled when there is no free forklift. Orders are sent to the
forklifts based on ascending order of forklift id.

Order messages contain the location and direction of the loading area and their ids.
Each message has two loading areas one for origin id to pick the pallet and the other
for the target area for placing the pallet.

3.1 Robot Hardware

Forklifts consist of four mecanum wheels fixed to four servo motors. Mecanum
wheel is designed by Bengt Ilon in 1973 for a Swedish company Mecanum AB.
Compared to conventional wheels these have additional rollers at an angle around
the circumference of the vehicle as shown in Figure 3.4(a). These rollers have their
own axis of rotation additional to the rotation of the wheel. This feature translates
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a portion of the force in wheel direction to the direction normal to the rollers.

(a) Mecanum Wheel (b) Force vector of a typical Mecanum Wheel
Robot[14]

Figure 3.4 Mecanum Wheel Configuration

These wheels are designed so that a robot can move in any direction without chang-
ing wheel direction. A typical four-wheel configuration and its force vector is shown
in Figure 3.4(b). Let x and y denotes the direction of the robot in vertical and
horizontal direction as shown in 3.4(b). Conventional wheels have force vectors only
in y-direction. Mecanum wheels additionally have force vectors in x-direction.

(a) Servo mounted mecanum wheels (b) Forklift hardware

Figure 3.5 Hardware of the forklift

Chassis of the forklift is built with 3D printing technology. It is powered by 7.4V
lithium ion battery. Onboard processor board powered by Intel Atom processor
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runs on Ubuntu Linux. Forklifts also consists of MEMS 9-axis Inertial Measurement
Unit(IMU), camera for marker detection and UWB receiver for positioning. Servo
motor at the front provides lifting capacity for the forklifts.

3.2 Software System

The software system is a proprietary code written in c++. Software framework
allows creation of modules that can run independently as a process inside the system
and also allows sharing of data in the form of messages between these modules.
This framework allows for dividing, developing and testing of complex tasks such as
the pallet movement using forklifts into small individual components. Then these
components are integrated into the system using the message passing capability of
the software. Software modules created for the purpose of this demonstration is
shown in figure 3.6.

IMUUltrawide Band

Sensor Fusion

Camera

Marker Detection
Path Planner

Network Comm.

Path Tracker Servo Drive

Figure 3.6 Block diagram of the system

Network Communication module is the only component that can communicate
outside the software system. Position messages, planned path, current execution
status of the forklifts and orders from visualization server are communicated through
this module.

Ultrawide band module calculates location fixes from UWB range measurements
using the UWB receiver fixed in the forklift.
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Inertial Measurement Unit(IMU) module communicates with hardware IMU
and sends rotational velocities in 3-axes(pitch, roll, yaw). Servo Drive module
communicates commands to the motor.

Sensor Fusion module fuses measurements from IMU, UWB location and control
values from path tracker to produce the pose of the robot in the map coordinate.

Camera module communicates with the onboard camera and forwards images.
Marker Detection module detects markers on the pallet and provides relative
distance from the forklift using aruco marker detection library.

Filter Output Variables Update
Rate(Hz)

IMU Rotation velocity 70
UWB Position of UWB Antenna 20
Camera Video 30
Sensor Fusion Position and Orientation 70
Network Comm. Position,path for all Robots Variable(based

on network
speed)

Path Planner Path points Variable(based
on order sent
and obstacles)

Path Tracker Linear and Angular Speed 70(30 for Visual
Servoing during
pallet pickup)

Table 3.1 Update Rates of Different filters

Path Planner module creates path from local maps from current location to target
location avoiding obstacles.

Path Tracker module follows the path produced by the path planner module by
sending commands to servo drive module. Added to this, the path tracker module
manages the state machine for task execution.

Messages passed from one module in the system can trigger a process in another
module. This method is used to create a sequence of events that are executed in the
forklift. The execution rate of each module depends on the message that executes
the process. The update rate of each of the modules in the system is shown in Table
3.1.
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4. LOCALIZATION

This chapter describes the Localization method used in the forklifts. Localization
is the method of estimating robot’s location with respect to an external reference
frame using sensors and map of the environment[15, pp.3]. Sensor measurements
are not always accurate and are limited by noise, range and resolution. This creates
uncertainty in the information about the robot location for autonomous execution
of tasks. Hence robots ability to tolerate uncertainty is critical for mobile robot lo-
calization. [15, pp. 2]. Probabilistic method is one of the important approaches that

Figure 4.1 Normal Distribution with mean µ=0 and variance σ2=1

considers the uncertainty in robot localization. It models the uncertainty in mea-
surements as probability distributions.[15, pp.3] Gaussian filters models the uncer-
tainty as multivariate normal distributions with mean µ and covaraince Σ. Normal
distributions described with vectors instead of single scalar variable are called Mul-
tivariate Gaussian distribution[15, pp.11]. Figure 4.1 shows normal distribution of
a scalar variable with mean zero and variance one. Further theoretical explanation
on Gaussian filters can be found in Chapter 3 of [15].

Alternative to Gaussian filters are Non-parametric filters. Thrun et. al[15, pp 67]
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define Non-parametric filters as the filters that use approximate number of finite
values as probability distribution instead of Gaussian function. Nonparametric fil-
ters are not considered for the localization in this thesis because of the popularity
of Gaussian filters specifically Kalman filter in the industry.

Position and orientation of the body together are usually referred as pose. In gen-
eral, a rigid body in three dimension system requires six variables(three cartesian
coordinates and three angular orientations pitch, roll and yaw together called Euler
angles) to determine accurate pose of the system. For robots in planar environments,
the pose is determined by three variables (two cartesian coordinates and orientation
of the robot called yaw).

In this thesis, the forklifts are always running on a flat surface. Hence, the localiza-
tion deals with estimation of forklift pose in three variables {x, y, θ} where x and y
are position of {B} with respect inertial frame {I} and θ denotes orientation(θ > 0

indicates anticlockwise direction) as shown in Figure 4.2

Extended Kalman Filter(EKF) is used for the estimation of forklift pose. Kalman
Filter assumes the relation between the estimated variables known as state to be
linear[15, pp. 35]. EKF is a non-linear form of Kalman Filter which linearizes the
states using first order Taylor’s expansion[15, pp. 49]. EKF is used because of the
non-linear relationship between robot velocities and robot location.

Thrun et. al [15, pp. 19] describe two fundamental interaction between robot
and external environment. Sensor measurement where external information about
environment or robot is obtained. Control action which is applied to modify the
robot state in the environment. This is the basis for EKF estimation.

EKF algorithm runs in two steps: Prediction and Update. In prediction step, infor-
mation about the robot motion is used to predict the state and covariance. In the
update step, measurement data is integrated into the estimation. The update step
decreases the uncertainty of the robot pose whereas the prediction step increases
the uncertainty of the robot pose[15, pp. 39].

Equations 4.1- 4.5 show the equations of EKF[15, pp.51].

Prediction Stage:
µt|t−1 = g(ut, µt−1|t−1) (4.1)
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Σt|t−1 = GtΣt−1|t−1G
T
t +Rt (4.2)

Update Stage:
Kt = Σt|t−1H

T
t (HtΣt|t−1H

T
t +Qt)

−1 (4.3)

µt|t = µt|t−1 +Kt(zt − h(µt|t−1)) (4.4)

Σt|t = (I −KtHt)Σt|t−1 (4.5)

Notations used in EKF equations:

{xt} State of the Robot at time t given the state.

{zt} Measurement e at time t.

{ẑt} Measurement e at time t.

{ut} Control data at time t.

{µt|t−1} Estimate of mean of the state at time t given µ at t-1.

{Σt|t−1} Covariance of the state at time t given Σ at t-1.

{Gt} State Transition Matrix at time t.

{Rt} Transition Noise Covariance at time t.

{Ht} Measurement matrix at time t.

{Qt} Measurement Noise Covariance at time t.

{Kt} Kalman Gain at time t.

{In} Identity matrix of size n.

Added to these equations, EKF needs measurement and motion model. These mod-
els are used to convert the sensor measurements and control action of the robots
into EKF equations.[15, pp.91]

UWB and IMU are the sensors present in the forklifts. UWB location which can
be classified as absolute localization is based on external reference and can provide
accurate measurements over time but cannot provide measurements always[16]. IMU
measurements are internal sensors that provide continuous measurements in high
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frequency but drifts with time. Hence only UWB measurement is used in the Update
step of EKF. IMU measurement is used in prediction step in the motion model.

x

y

x
y

x

y

x
y

{I}

{imu}

{B}
{uwb}

[h!]

Figure 4.2 Coordinate system of Sensors

Notations used for Motion model:

{x, y, θ} - Pose of the body frame {B} with respect to {I}.

{xuwb,yuwb} - Position measurement of {UWB} frame with respect to {I} from UWB
module.

{ω1, ω2, ω3, ω4} - Rotational velocities of individual wheels marked as shown in 6.1

r - Radius of the wheel.

{lx, ly} - Half of the distance between the center of the wheels in x and y direction
as shown in Figure 6.1.

{vx, vy} - Instantaneous Linear velocities in the x and y direction of body frame
{B} at {B}.

{vx|t, vy|t} - Linear velocities in the x and y direction of body frame {B} at time t.

{Vx, Vy} - Calculated linear velocities in the x and y direction of body frame {B}
from control values.

{ω} - Angular velocity of the forklift about an axis perpendicular the body frame
{B}.
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{ωC} - Calculated angular velocity of the forklift about an axis perpendicular the
body frame {B} from control values.

Figure 4.2 shows different coordinates systems used by the forklifts. The center of
the forklifts is represented by body frame {B}. Inertial coordinate {I} is the sta-
tionary reference frame in which all the forklift locations are measured. Localization
of the forklift in this context is finding the pose of the coordinate system {B} with
respect to the inertial coordinate {I}. UWB module provides the location measure-
ment of the UWB sensor at {UWB} with respect to {I}. {IMU} is the location of
IMU with in the forklift.

Added to the pose, linear velocities(vx and vy) and angular velocity(ω) of the forklift
are estimated by EKF. All these variables that affect the localization of the robot
together are called state.

As explained before, the state of the forklift to be determined by EKF is given by
equation 4.6.

xt =
[
x y θ vx vy ω

]T
(4.6)

Motion Model:

Motion model propagates the state vector with time about the robot movement.
Equation 4.7 shows the Gaussian motion model with error Rt.

xt|t−1 = g(ut, µt−1|t−1) + Rt (4.7)

In the IMU measurements only gyro measurement which is the rotational velocity
ωimu in the direction perpendicular to the forklift is used for propagation of motion.
Linear velocities are modelled as errors. Equation 4.8 shows the motion model used
for propagation in prediction calculated from the kinematics of the mecanum wheel
robot.
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g(ut, µt−1|t−1) =



xt−1 + vx|t−1 × dt.cosθt−1 + vy|t−1.dt.cos(θt−1 + π/2)

yt−1 + vx|t−1 × dt.sinθt−1 + vy|t−1.dt.sin(θt−1 + π/2)

θt−1 + ωimu.dt

vx|t−1

vy|t−1

ωt−1


(4.8)

Measurement model

Measurement values zt modeled with Gaussian noise Qt is given by 4.9.

zt = zo +Qt (4.9)

where zo is the true value of the measurement. Measurement values of position from
UWB sensor is given by 4.10.

zt =I PUWB =

[
xuwb

yuwb

]
(4.10)

Given the state heading at xt|t−1 as θt. Then measurement estimate of {UWB} with
respect to {I} is given by,

IP̂UWB =I R̂B ×B PUWB +I P̂B (4.11)

where the rotation matrix IR̂UWB can be calculated using robot orientation estimate
θt as given by equation 4.12. UWBPB is measured from the 3D diagram of the forklift
chasis.

IR̂UWB =

[
cosθt −sinθt
sinθt cosθt

]
BPUWB =

[
a

b

]
IP̂B =

[
xt

yt

]
(4.12)

where a=0.05 and b=0.0 are the values measured from the 3D diagram. Estimate of
the measurement at time t by applying equations 4.11 and 4.12 is given by 4.13.
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ẑt = h(µt|t−1) =

[
a.cosθt − b.sinθt + xt

a.sinθt + b.cosθ + yt

]
(4.13)

4.1 Sensor Fusion

Sensor Data Fusion is the process of combining incomplete and imperfect pieces of
mutually complementary sensor information in such a way that a better understand-
ing of an underlying real-world phenomenon is achieved[17, pp. ix]. In the context
of this thesis, it is the process combining UWB and IMU measurements from path
tracker for localization of forklifts.

Algorithm used in the sensor fusion module is shown in Figure 4.3. The algorithm
waits for first valid measurement from UWB for initialization.

1: if UWB V alid then
2: Initialize State Vector µ and Covariance Matrix Σ
3: end if
4: while µ initialized do
5: if IMU Received then
6: Predict EKF
7: Send Position
8: end if
9: if UWB Received then

10: Update EKF
11: end if
12: end while

Figure 4.3 Algorithm of Sensor Fusion Filter

Initialization of State:

Initial heading of the forklift is not known and assumed to be zero. Forklifts are
always started at zero heading in the map. First valid UWB measurement is used
for initialization of x and y values. By applying θt=0 and measurement values xuwb
and yuwb to 4.13, initial state vector is given by,

µ0 =
[
xuwb yuwb 0 0 0 0

]T
(4.14)

Forklifts are always assumed to be stationary at the start, so all the velocity values
of the state vector are assumed to be zero.
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Prediction Equations:

State transition matrix is the Jacobian of the state function 4.8 which is given by.

Gt = ∂g
∂xt

=



1 0 −dt ∗ (sinθ ∗ vx + sin(θ + π/2) ∗ vy) cosθ ∗ dt cos(θ + π/2) ∗ dt 0

0 1 dt ∗ (cosθ ∗ vx + cos(θ + π/2) ∗ vy) sinθ ∗ dt sin(θ + π/2) ∗ dt 0

0 0 1 0 0 dt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.15)

Rt is the process noise covariance which is the model of the noise in the predic-
tion process. These values are obtained experimentally during testing based on the
behaviour of sensors.

Rt =



10−5 0 0 0 0 0

0 10−5 0 0 0 0

0 0 10−4 0 0 0

0 0 0 10−8 0 0

0 0 0 0 10−3 0

0 0 0 0 0 10−6


(4.16)

When the IMU measurements are received, it is used in the motion model for EKF
prediction. Steps 8-12 in the algorithm describes the prediction stage. Position
measurements are sent to other modules in this stage.

Update Equations:

When UWB measurement is received, the measurement vector ẑt is obtained using
equation 4.13. Measurement matrix is found by the Jacobian of measurement
function given by 4.17.

Ht = ∂h
∂xt

= [
1 0 −a.sinθ − b.cosθ 0 0 0

0 1 a.cosθ − b.sinθ 0 0 0

]
(4.17)

Measurement noise covariances are modelled after the behaviour of sensor measure-
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ments. Figure 4.4(a) shows the UWB raw position when the forklift is stationary.
Considering the movement and accounting for delays in position input covariances
for measurement noise used for the forklift sensors are given by 4.18

Qk =

[
0.352 0

0 0.352

]
(4.18)

(a) UWB raw data at stationary position (b) Position estimate of EKF compared to UWB
measurement

Figure 4.4 Comparison of UWB measurement data and Sensor Fusion Estimate

Figure 4.4(b) shows the comparison of UWB raw data to EKF estimate. It can be
observed that the solution is smooth and within the UWB measurement in straight
lines. The actual position of the UWB is within the UWB solution, thus when
turning in curves the solution deviates from the UWB position because of delay
in velocity propagation. Having wheel speed sensors could propagate the solution
faster towards the actual position. For the demonstration, this deviation is within
the tolerance.
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5. PATH PLANNER

This chapter explains the path planner algorithm used in the forklifts. Planning in
robotics can be defined as the algorithm to convert high-level tasks given to robots
into low-level achievable instruction for the robots to execute[18, pp. 3]. The overall
objectives of the path planner in this thesis is to provide a collision-free plan to the
target for the forklifts which satisfies the below constraints.

Figure 5.1 Constraints for Planner:Roads and Loading Areas

The constraints for the path planner which are derived from the overall objectives
of the demonstration are described below.

• Map of the area is provided as roads and the planned path should always
follow the roads.

• Always avoid static obstacles. Static obstacles which can be added and re-
moved by the user. These are considered permanent obstacles and must be
avoided immediately.
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• Avoid collision with dynamic obstacles. Location of other forklifts is provided
through network communication. These are always considered as moving (dy-
namic) obstacles.

• Loading areas are always specified outside the roads but near the edge of the
roads. Pallet picking and placing is implemented by path tracker and is outside
the scope of the planner.

Figure 5.1 shows the loading areas, roads and restricted areas of one of the map.

The problem is split into two parts: 1) To create a global plan based on the map and
static obstacles. 2) To track the moving(dynamic) obstacles and create a local plan
to achieve the global plan or change the global plan if needed. The collision-free
local plan is used by the path tracker module for forklift movement.

Global planning is implemented using graph search(discrete planning) algorithm
and maps. Maps for creating the global plan is provided in OpenDRIVE format.
OpenDRIVE format provides the map data as roads. Section 5.1 explains the Open-
DRIVE format and conversion of map data into state graph for planning. A graph
contains a list of vertices and edges which are connection between vertices.

Using the state graph, a graph search algorithm is implemented in section 5.2 to
create a global plan without any obstacle cost. For adding obstacle cost to graph
search, obstacles have to be tracked. This is implemented using an occupancy grid.
Occupancy grids discretize the map area and store the occupancy as probability
values to account for uncertainty in sensors. This type of grid is used to have the
flexibility of adding range sensors in the future.

Section 5.3 explains the obstacle tracking, addition of obstacle cost to global planning
and local planning with dynamic obstacles. Static and dynamic obstacles are tracked
in different occupancy grids. Obstacle cost for global planning is implemented using
the cost from the static grid.

Separate occupancy grid for static and dynamic obstacles reduces the replanning
frequency in global planning as the static map does not change frequently. This also
gives the flexibility to change a global plan by adding an obstacle to the static grid
if the local plan is infeasible. Local planning handles the dynamic obstacles and
requests for a new global plan by adding and removing temporary static obstacles
to global planner.
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Problem Formulation for graph search

• Let x ∈ X be the state which is the distinct location of a point on the map.
X is the state space containing the set of all possible states.

• Let U(x) ⊂ X be the list of neighbour states x′ ∈ U(x) of state x where x′ 6= x
[18, pp. 28]. This state graph X along with the neighbour connections is state
graph.

• Planning algorithm must find the path as a list of states from start state xS
to goal state xG with minimum cost to the goal. Cost for the forklifts is to
minimize the travel time. Assuming constant linear and angular velocity of
forklifts, using distance and turning as cost is reasonable.

• Planning algorithm must avoid static obstacles and replan immediately when
encountered one irrespective of the distance from current location.

• Assuming the static obstacle can be removed, the plan should stop before the
static obstacle if no collision-free paths are available. This reduces the travel
time when the static obstacle is removed.

Background - Graph Search

Discrete planning or graph search methods search the state space systematically for
all states until a solution is reached or returns if there is no solution. If the state
space is infinite, these methods tend to run infinitely. Thus a basic requirement for
this method is to a have finite or countable number of states. [18, pp. 28]

There are three broad classifications based on search direction in discrete plan-
ning methods. Forward search, Backward search and Bidirectional search. [18, pp.
28]Forward search method searches the state space from start state and the search
is stopped when the goal is reached or returns when no solution is found after ex-
ploring all the states. Backward search methods searches the state space from goal
to start. Bi-directional search as the name indicates searches the state space in both
directions until the two searches meet.[18, pp. 32]

Bi-directional searches are more complicated than forward and backward search
algorithms but provide faster search results. For a simple planning problem of
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this thesis with finite states, one directional methods are sufficient. Forward search
algorithms can be applied to backward search algorithms by starting the search from
goal state. Hence, forward search algorithm is considered for this planning problem
and the backward search does not provide any advantage than the former and vice
versa.[18, pp. 39]

There are two main schemes in the general search algorithms which provides faster
convergence to the solution if one exists. First one is Dijkstra’s and A*(A-Star)
which maintains a list of visited and unvisited states and searches through the
lists to find the solution. The other one is the value iteration method which finds
optimal solution from every state to the goal. There are other search schemes such
as Breadth-first, Depth-first etc., but only the two schemes are considered for their
popularity in path planning.[18, pp. 35]

Dijkstra’s forward search algorithm works by categorizing each state in the state
space into three kinds during the search. 1) Unvisited states that are not visited
yet. 2) Dead States that have been visited and each of the next possible states are
also visited. 3) Alive States that are visited but atleast one of the next states is not
visited. At the start of the search, start state is the only alive state. [18, pp. 37]

The alive states are stored in a priority queue and the next state to be explored
from the queue is provided based on the priority function. The algorithm runs until
the goal state is found or the priority queue is empty i.e. all states are explored and
no path is found. The kind of priority function used determines the efficiency of the
search method.

The priority function calculates the cost-to-come from the start state to the current
state. State with the lowest cost-to-come is given highest priority. Thus in the
priority queue, states with the lowest cost-to-come are first explored. All the states
are explored systematically by minimizing cost until the goal is found or return
if there is no solution. One necessary requirement is for the cost function to be
non-negative to avoid revisiting dead states(creates infinite loops).

A* algorithm works similar to the Dijkstra’s, except in the calculation of cost for
the priority queue. In addition to the cost from start to current state another
heuristic(assistance) cost which provides an underestimate of the cost to goal is
added. This additional heuristic cost directs the search towards the goal faster than
Dijkstra’s by assigning lower cost to states closer to the goal. Thus A* is more
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efficient than Dijkstra’s for most cases and preferable because of faster computation
times.

Value iteration method iteratively computes the optimal cost to the goal from every
state. This method is similar to Dijkstra’s algorithm in finding the solution except
that it does not maintain any lists. Hence reducing complexities for large state
spaces. For this thesis, with the small number of states, A* is used over value
iteration as there is no need for solution from every state and A* can provide an
optimal solution from start to goal.[18, pp. 55]

5.1 OpenDRIVE Maps

The State graph X is extracted from the OpenDRIVE maps. This format is used
because of the popularity of its use in automotive companies[19]. OpenDRIVE
format is an xml based syntax which divides the map into a number of road sections.
OpenDRIVE map can contain any number of road sections but should have atleast
one road section[20].

(a) Road Section (b) Points extracted from Road Section

Figure 5.2 Sample OpenDRIVE Map with one road

Each road section has the information about the geometry and profile of the road,
number of lanes in the road, connections to other roads etc. Discussing all the
available options of OpenDRIVE format is out of scope of this thesis and only the
XML tags that are used are discussed further. Detailed specification of OpenDRIVE
format can be found in [20].
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A sample OpenDRIVE map with one road is shown in Program 5.1. Image of the
road and the map points extracted from it are shown in 5.2(a) and 5.2(b) respec-
tively.

Program 5.1 Sample OpenDRIVE Road Element

1 <?xml version=" 1 .0 " encoding="UTF−8" standalone="no" ?>
2 <OpenDRIVE>
3 <header ea s t="88.068139276165681 " north="

75.454771912232701 " revMajor="1" revMinor="4" south="
−2.6450232105176767" west="0">

4 </header>
5 <road id="98" junc t i on="86" l ength="9.0104831542520678 "

name="_along">
6 <l i n k>
7 <predec e s s o r contactPo int=" s t a r t " e lementId="30"

elementType="road"/>
8 <suc c e s s o r contactPo int=" s t a r t " e lementId="57"

elementType="road"/>
9 </ l i n k>

10 <planView>
11 <geometry hdg="−3.1390204013397978" l ength="

9.0104831542520678 " s="0" x="30.754649345320242 " y=
"25.977241937401093 ">

12 <paramPoly3 aU="0" aV="0" bU="10.660850785432578 " bV
="0" cU="−7.097389422503575" cV="
−4.5493778325431746" dU="1.1878204543096822 " dV="
−1.5164592775143679"/>

13 </geometry>
14 </planView>
15 <e l e v a t i o nP r o f i l e>
16 <e l e v a t i o n a="0" b="0" c="0" d="0" s="0"/>
17 </ e l e v a t i o nP r o f i l e>
18 <lane s>
19 <laneSec t i on s="0">
20 <cente r>
21 <lane id="0" l e v e l=" f a l s e " type="none">
22 <l i n k />
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23 <roadMark laneChange="both" sO f f s e t="0" type="
none" weight=" standard " width="0"/>

24 </ lane>
25 </ cente r>
26 <r i gh t>
27 <lane id="−1" l e v e l=" f a l s e " type=" dr i v i ng ">
28 <l i n k>
29 <predec e s s o r id="1"/>
30 <suc c e s s o r id="−1"/>
31 </ l i n k>
32 <roadMark c o l o r=" standard " laneChange="none"

sO f f s e t="0" type=" s o l i d " weight=" standard "
width=" 0.1016 "/>

33 <userData>
34 <referenceLaneBoundary index="0"/>
35 </userData>
36 </ lane>
37 </ r i gh t>
38 </ laneSec t i on>
39 </ lane s>
40 </road>
41 </OpenDRIVE>

An XML parser strips data from the OpenDRIVE file. Attribute values from the
XML file provides the information about the roads.

Road sections provides the profile of the path as parametric cubic polynomial with
parameter p in the range[0;1][20, pp. 46]. Figure 5.2(b) shows a road created with
10 points(p=0,0.11,0.22,..0.88,1). By choosing the right interval, any number of
finite points can be created on the path of the road. Since the OpenDRIVE maps
available for this thesis had small road sections in uniform size. Same number of
points have been created from each road. This need not be the case for all maps
and can be varying for each road based on the length of the road section.

To proceed further all the states x and the list of neighbour states U(x) for each
state must be extracted from the OpenDRIVE map. Algorithm used for extracting
states and connections is shown in Figure 5.3. Steps 1-6 in algorithm 5.3 extracts
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1: for road do
2: From <road> Get roadId, junctionId
3: From <link> Get Successor and Predecessor Id, contactPoint
4: From <geometry> Get x, y, heading
5: From <paramPoly3> Get aU, aV, bU, bV, cU, cV, dU, dV
6: end for
7: for road do
8: Find points in local coordinate ulocal and vlocal
9: Transform points to global xglobal and yglobal

10: Create Unique id i
11: Find neighbour states x′i
12: Add xglobal, yglobal and x′i to State Space to X
13: end for

Figure 5.3 Algorithm for Creating Map Points

information about each road. Profile of the road is specified by parametric cubic
polynomial in a local frame. Steps 7 and 8 in algorithm 5.3 uses the extracted
polynomial parameters to create map points in global frame. Global frame is the
frame at the origin of the map. Equations used for extracting map points in local
frame from polynomial is given by 5.1 and 5.2. p is the parameter value between
0 and 1 where p=0 gives the location of first point and p=1 provides the location
of last point in the local frame[20, pp. 46].

ulocal = aU + bU .p+ cU .p
2 + dU .p

3 (5.1)

vlocal = aV + bV .p+ cV .p
2 + dV .p

3 (5.2)

Translation and rotation of local frame is provided by the parameters x, y and
heading. Location of each point in the global frame is found using rotation and
translation given by equations 5.3 and 5.4.

xglobal = ulocal.cos(heading)− vlocal.sin(heading) + x (5.3)

yglobal = ulocal.sin(heading) + vlocal.cos(heading) + y (5.4)

Any number of unique points can be created by using a unique parameter value p
between 0 and 1. Each point can have a unique number m=1:M on the road where
M is the number of points for each road. For the small maps in the thesis, this
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number is chosen to be M=10. This along with a unique road id provided in the
map is used to create a unique global id i where i=1,2..N and N=NR*M(NR is the
total number of roads). This unique id is assigned to each map point as shown in
step 10 of algorithm 5.3 for identifying the next possible states from current state.
These identifiers are also required to retrace the path once the goal is found which
is explained in section 5.2.

(a) Points from map 1 (b) Points from map 2

Figure 5.4 Map Points from different OpenDRIVE Maps

To find the connection between map points, connection information from roads is
used. Each road has a unique road id . Links between roads are specified by successor
and predecessor road id. The links are road ids of other roads if connection is not
ambiguous. If a road has multiple successor or predecessor then a junction id is
used. Junction are nothing but a group of roads that connect different roads. An
example of a group of connecting roads in a junction is shown in Figure 5.5. These
group of roads together are provided by a unique junction id in OpenDrive maps.
This is used to extract multiple road connections of the road if exists.[20]

Possible next states of the current state are found based on successor and predecessor
road id provided in the road information for last points (p=0 or 1). For other points
in each road(p 6= 0 and p 6= 1), the previous or next point in the same road are
the possible next states. Figure 5.4 shows the map points extracted from the
OpenDRIVE maps. With this information the neighbour states U(x) of all x is
determined.
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Figure 5.5 Example: Connecting Roads(in Red) of a Junction

5.2 Graph Planning

The next step is to implement a planning algorithm from start to goal pose using
the state graph X extracted from map in the previous section. Figure 5.6(a) shows
a sample start and goal pose for which the planning has to be implemented.

Given any random start pose and goal pose within the map area, A* planner must
find the path using the map points. Since the state space is a set of discrete locations,
a suitable state has to be selected from the state space for each pose. State with the
closest Euclidean distance is used as matching state for each pose. By this method
a start state xS ∈X and a goal state xG ∈X is chosen for planning. Figure 5.6(b)
shows an arbitrary start and goal pose along with their chosen states.

Figure 5.7 shows the A* algorithm used for map planning. Given the start state xS
and goal state xG in the state space, this algorithm finds the list of states from start
to goal. Using the goal state a heuristic cost H(x,xG) is calculated from every state
to the goal state. This cost must be an underestimate i.e. less than the actual cost
from the a state to goal state to provide an optimal path. Euclidean distance is the
shortest possible distance between two points in a 2D plane. Hence this distance is
used as the heuristic cost.
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(a) Random start(Green arrow) and
goal(Red arrow)

(b) Selected state from the map(state
space)

Figure 5.6 Selection of state from state space based on Euclidean distance

Figure 5.8 shows the Euclidean heuristic cost of all states as color codes from green
to red. Green being the lowest and Red being the highest with goal state shown
as red arrow. Start state xS is the first state to be explored hence added to the
list with cost-to-come C(xS)=CS. CS is the cost for reaching the start state. It is
calculated as the Euclidean distance from the start pose to start state.

Open list is sorted according to the goal cost f(x) = C(x) + H(x, xG) which is an
estimate of the cost to goal. Cost for movement from x to x′ is given by C(x,x′)
which is explained through the algorithm.

The algorithm runs in a while loop until the goal is found or open list is empty. At
the start of the loop, a state with the lowest cost is removed from the open list and
added to the closed list. If this removed state x is the goal, then the loop ends and
the path is traced back to the start as shown in steps 9 to 11 of algorithm 5.7.

Neighbours are explored if the goal is not reached. If the neighbour is an unvisited
state i.e. not in open list or closed list, then the cost-to-come of the neighbour is
updated as C(x′)= C(x)+ C(x,x′) + Obs(x′). Obs(x′) is the cost of the obstacle in
x′ which will be discussed in section 5.3. For tracing the path back to start, current
state x is marked as parent state of x′. This is shown in steps 15-18 of algorithm
5.7.

If the neighbour state is already in the open list i.e. alive state, then cost-to-come
through x to x′ which is C(x)+ C(x,x′) should be less than the neighbours cost-
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1: Get xS and xG
2: Upated Heuristics cost H(x,xG)
3: Upated cost-to-come C(xS)
4: Add xS to OpenList
5: while OpenList not empty do
6: x=GetLowCostState(OpenList)
7: Remove x from OpenList
8: Add x to ClosedList
9: if x==xG then

10: return Path
11: end if
12: for each neighbour x′ of x do
13: if x′ in OpenList and C(x) + C(x,x′) + Obs(x′) < C(x’) then
14: Mark x as parent and update cost C(x’) = C(x)+C(x,x′) + Obs(x’)
15: else if x′ not in ClosedList then
16: Mark x as parent and update cost C(x’) = C(x)+C(x,x′) + Obs(x’)
17: Add x′ to OpenList
18: end if
19: end for
20: end while

Figure 5.7 Algorithm for A-Star Planning

to-come C(x′). This implies a more efficient plan, thus the neighbour cost C(x′)=
C(x)+ C(x,x′) and parent state are updated.

C(x, x′) provides the cost from state x to x′. If only Euclidean distance is considered,
then the cost of going forward and reverse for the forklifts will be same. Even
though the forklifts are omnidirectional, turning and switching directions increases
the travel time. To avoid switching direction or sharp turns, the actual movement
of the forklifts must be considered for a realistic cost estimate.

Map points have only two-dimensional location without any orientation. But the
forklift movement has to consider turning cost as well. For this each state is assigned
with the temporary orientation during planning. When assigning the parent states
in steps 14 and 16 of algorithm 5.7, orientation is assigned to the child state.
Absolute angle(arctan) between the parent state and child state is assigned as the
heading for the child state.

For two states x1 = (x1, y1, h1) and x2 = (x2, y2, h2) where h1 and h2 are assigned
temporary headings, equation 5.5 shows the cost calculation between the two states.
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(a) (b)

Figure 5.8 Sample Euclidean heuristic cost map with different goals.(Goal is shown by
the red arrow. In the color map, Green indicates lower cost and increases to red being the
highest cost)

Weights wd and wh are used to tune the priority for each cost. Note that h2 is not
used as this assigned heading is from a different parent.

C(x1, x2) = wd ∗ Euc(x1, x2) + wh ∗ |norm(h1− arctan(y2− y1, x2− x1))| (5.5)

where Euc(x1, x2) =
√

(x1− x2)2 + (y1− y2)2 is the Euclidean distance and norm(h)

is the angle normalized between −π and π.

For the states there is no assigned heading (for example, start state), h1 is invalid,
Hence heading cost is zero and C(x1, x2) = wd ∗ Euc(x1, x2).

5.3 Obstacle Tracking and Implementation

In the previous section, obstacle cost obs(x) is not provided for the planning. For
this obstacles and other forklifts in the area must be tracked. As mentioned before
this information is provided by the network because of lack of onboard sensors.
Future addition of range sensors is considered in the design of obstacle tracking.
Range sensors are a type of sensors that can detect the presence of obstacles from a
distance.

Provided obstacle information is divided into two categories:static and dynamic
obstacles. Static obstacles are similar to any new changes to the map information
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or long-term disruption in the path e.g. construction work. This is simulated and
provided by the user in order management system. Dynamic obstacles are analogous
to moving objects that change their location over time. Location of other forklifts
is received through the server to simulate this situation. This can be substituted by
range sensors in future.

To enable easy addition of range sensors which scan the area for obstacles, an oc-
cupancy grid-based tracking is used. Occupancy grid store the information about
obstacles in a discretized spatial space. Sensor uncertainty is observed in occupancy
maps as probabilistic values. Since there are no sensors the details of the probabilis-
tic occupancy map is left for future work. All the occupancy maps used contains
binary occupancy values i.e. absence or presence of the obstacle is denoted by either
0 or 1 respectively.

(a) Occupancy Grid from Map Points (b) Occupancy Grid with Static Obstacles

Figure 5.9 Comparison of map occupancy grid to static occupancy grid

To avoid the robots to go outside the roads, the map information is first included in
the occupancy grid. This is done by setting the values of map points with a square
of side equal to road width. Since the map points are sufficiently close to each other,
this creates a traversable occupancy map. Figure 5.9(a) shows map occupancy grid
created from map points.

There are two types of occupancy grid used in the planning. Static occupancy
grid maintains the current state of the map and static obstacles which is used by
the planner. This map changes occasionally whenever any new static obstacles are
added or the target loading areas are changed. Dynamic occupancy grid is the one
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which tracks all the moving and static obstacles. This grid is used for the local
planning to avoid obstacles dynamically. Map information is added to both static
and dynamic grid and changes when the map of the area is changed.

Information from the map is the fixed reference map. Static obstacles and target
loading area changes overlayed on top of map grid to get static occupancy grid.

(a) (b)

Figure 5.10 Cost map of the static grid

Loading areas are outside the roads and to enable collision check in these areas,
they have to be valid in the occupancy map. For this, the loading areas and static
obstacles are added to the existing map information. This occupancy grid is used
for calculating the obstacle cost.

Figure 5.9(b) shows a target loading area added as a free space and a static obstacle
created as a non-free space. Obstacle cost obs(x) at a map point x is taken from
this static occupancy grid. Assigning high cost(for eg. obs(x)=100) to map points
in the obstacle area provides high traversing cost to obstacle areas. Figure 5.10
shows the estimated goal cost f(x) used for sorting the open list in the graph search.
From this it is obvious that the map points that fall in the obstacle area are pushed
to the bottom of the open list queue.

With high cost for obstacles, obstacle-free paths can be found if available. If no
obstacle free paths are available, then the forklift cannot move from its place and can
block other forklifts. Hence, map points that fall in the obstacles are not completely
avoided but not preferred in global planning. If the global planner finds a plan
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(a) Global planning without obstacles (b) Plan ends before obstacles when there is no
alternate path

Figure 5.11 Global Planning with and without obstacles

through an obstacle if all path are blocked, the plan is created until the obstacle.
This case creates paths through obstacles if all the paths are blocked. This feature
is specifically enabled for the demonstration for allowing the forklifts to reach the
obstacles and wait for it to change. Figure 5.11 shows the global planning in the
cases where there is no static obstacle and planning until the obstacle if there is no
alternative.

(a) Global and local plan without collision (b) Global plan with collision but local plan
without collision

Figure 5.12 Local Plan used from global plan for collision avoidance(Blue line denotes
the global plan and Green to Red is the local plan)

To avoid dynamic obstacles, the global plan is used to create a local plan and checked
for collision in the dynamic grid. Local plan is the selected as the plan from the
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current location to short distance based on the forklift speed. For slow speeds a
distance of 1m is used. This implies the collision is checked for the next 1m from
the current location of the forklift. This plan is checked with dynamic grid for
collisions.

Information about other forklifts in the area is tracked in the dynamic grid. Figure
5.12(a) shows a simulated dynamic obstacle and its tracking in dynamic grid.

(a) Global planning avoiding other forklift (b) Alternate path to goal

Figure 5.13 Global replanning with dynamic Obstacles

The local plan avoids nearby dynamic obstacles by adding a temporary static obsta-
cle to the global planner, thus requesting for a new plan. This temporary obstacle
is tracked and removed when the status changes, thus freeing the area if there is no
obstacle. Figure 5.13 shows different situations where the replanning of global plan
is requested.
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6. TASK EXECUTION

This chapter explains the controller implementation of path following, pallet picking
and placing algorithms. Path following executes the local plan from the path planner
by applying control motions and guide the forklift along the plan. Path planner
does not provide any paths for picking and placing the pallets. Separate controller
is implemented for pallet picking independent of path following(and path planner).

Section 6.1 describes the path tracker algorithm implemented in the forklifts. The
controller also has the ability to move the forklift to a given pose i.e.path with single
point and heading. This enables to move the forklift to particular orientation and
thus used for searching the pallet as the target location is provided by the order.
Path following controller is implemented in differential drive mode without using
the omnidirectional movement(mecanum driving)for smoothness.

Figure 6.1 Wheel Configurations for mecanum wheel
[21, Fig.1]

Section 6.2 shows the implementation of pallet picking algorithm using marker input
from the camera without using positioning with markers. After detecting the mark-
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ers on the pallet, the algorithm is designed such that the marker always stays visible
to the camera. Omnidirectional movement is utilized extensively for this function.

Path Tracker module implements all these different functions during different stages
of demonstration. To manage the different scenarios and execute the tasks, a state
machine is implemented in section 6.4.

6.1 Path follower

Given the path or target pose, the objective of this section is to design a smooth
controller that can reach the follow and reach the target with minimum error.

Control values which is the rotational speed of all four wheels(ω1, ω2, ω3, ω4) of the
forklift can be calculated from the linear and angular velocities using kinematic
model. For kinematic modelling of the forklift, few assumptions are made. The
wheels are assumed to be fixed to the forklift body as shown in Figure 6.1 and can
only rotate about their rotational axis. Wheel slip is assumed to be zero. If linear
velocities of the forklift x and y direction in the body fixed frame is in vx and vy,
then the wheel velocities are given by equation 6.1[21, eq. 20].

ω1 = 1
r
(vx − vy − (lx + ly)ω)

ω2 = 1
r
(vx + vy + (lx + ly)ω)

ω3 = 1
r
(vx + vy − (lx + ly)ω)

ω4 = 1
r
(vx − vy + (lx + ly)ω)

(6.1)

where lx and ly are the distance of the wheels from centre of the forklift in x and y
direction. Angular velocity of the forklift is given by ω and r denotes the radius of
the wheel.

For the simplicity and smoothness of designing path controller, the path follower is
implemented in differential drive mode i.e. vy = 0 during path following. Then the
objective of the controller is to determine vx and ω. The speed limits of the linear
and angular velocity limits of the forklifts can be calculated from the speed limits
of the servo motors. Let vmax and ωmax be the linear and angular limits for the
controller.

Geometric path controllers are the simplest form of control methods. These methods
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Figure 6.2 Path Follower Error Variable β

considers the geometric relationship between the path and the current location for
control. Pure-pursuit controller is one of the most common method used in geometric
tracking. Pure-pursuit controller calculates the desired curvature of the vehicle from
the current pose to a specific target pose on the path. This target pose is chosen at
a distance ahead of the vehicle. It pursues a moving point on the path, hence the
name.[22]

vx = vmax.(ωmax − |ω|) (6.2)

Figure 6.3 Control system for path follower

Path following is always assumed to be moving in forward direction i.e.vx >= 0 and
a smooth relationship between linear and angular velocity is created. Value of vx
is set to be dependent on the angular velocity and inversely proportional i.e.vx = 0
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if ω = ωmax. In practice, this allows the forklifts to turn in place if the maximum
angular velocity is set and slow down during turning.

Instead of calculating the curvature as in pure pursuit method, deviation of heading
from the target(β) is directly used as the error. Geometrically this error turns the
forklifts towards the target. Figure 6.3 shows the control system used for the path
following. Turning error(β) is calculated from

β = h− atan(yd − y, xd − x) (6.3)

where current vehicle pose is given by (x, y, h) and target pose is given by (xd, yd, hd).

The desired target point is selected from the path using a minimum distance from the
current position similar to pure-pursuit. With the desired target pose, the deviation
angle error β is calculated from the current pose. This deviation error is tuned using
a PID controller to get the angular velocity. Parameters for the PID controller are
found by trial and error method. The tuned angular velocity is limited to ωmax and
vx is calculated from equation 6.3. Figure 6.5(a) shows the target and followed

(a) Path following (b) Linear and Angular Velocities during path
following

Figure 6.4 Path following performance in simulation(assuming perfect tracking and lo-
calization)

path by the controller from the simulation. Note that the localization is assumed
to be without error in the simulator. The tracked path is within the error tolerance
for the forklift. Control velocities shown in figure 6.4(b) are not smooth when the
target pose switches during tracking and having a continuous smooth path could
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(a) Path following (b) Linear and Angular Velocities during path
following

Figure 6.5 Path following real-time performance with the position solution from EKF

avoid this problem.

Figure 6.5 shows the performance of the controller in real-time with position from
EKF. It is not the actual position of the forklifts. Figure 6.5(b) shows the control
velocities. The tracker is aggressive in its tracking and thus not smooth when there
is jump in position solution and could be improved further.

The controller does not stop at the end of the path and thus stopped when the
heading error(heading difference between desired and actual pose) is close to zero.
During the pallet search the same controller is used. Searching is executed by
providing a local target in front of the pallet to the controller. The controller aligns
the forklift such that the pallet is within the view of the forklift camera.

6.2 Pallet Picking

When the forklift is aligned to the view the pallet, pallet location is provided by
marker detection using image processing. Markers are black and white bitmap
images that can be uniquely identified from an image. The implementation uses one
of the most used aruco marker detection from opencv library. Marker detection can
provide the defined unique id of the marker and its relative pose from the camera.

Figure 6.6 shows the parameters provided by the marker detection. Distance of
the marker from the camera(d), deviation angle of marker from the centre(α) and
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orientation difference between marker and camera(γ) are the parameters determined
from each detected marker. Control for this part is implemented using visual servo-
ing i.e. driving only using camera inputs. For this the algorithm must maintain the
marker within the viewing angle of the camera at all time.

Figure 6.7 shows the algorithm used for pallet picking. αmin,γmin and dtol are the
deviation tolerance for maintaining the marker in the centre of the camera view. For
maintaining the marker within the viewing angle, α which is the viewing angle to
the marker must be minimized during the movement. Control velocities vx, vy and ω
which are explained in 6.1 are to be calculated from the marker location parameters.

Equations 6.4 shows the error values and their mapping to the control values.
Algorithm aligns the forklift to the pallet by minimizing α and γ to zero and d to
dmin in the same order where dmin is the minimum distance required for the marker
detection to work. dmin also prevents the forks from hitting the pallet during the
maneuver. For the demonstration dmin used is 15cm. Once aligned the pallet can
be picked by driving straight through without any marker input. This solves the
problem of missing markers when the pallet is close to forklift.

vy = vminy.(
α
|α|)

ω = ωmin.(
γ

|γmin|)

vx = vminx.(
d−dmin

|d−dmin|)

(6.4)

Forklifts are run at minimum constant speed during visual servoing to avoid blurring
during marker detection. Let vminx,vminy and ωmin be the minimum velocities of
vx,vx and ω respectively. All the parameters are decoupled from each other and made

Figure 6.6 Pallet location from marker detection
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1: while Pallet Not Picked do
2: if |α|>αmin then
3: vy = vminy.(

α
|α|)

4: else if |γ|>γmin then
5: ω=ωmin.( γ

|γmin|)

6: else if |d− dmin|>dtol then
7: vx=vminx.( d−dmin

|d−dmin|)
8: else
9: Drive towards pallet

10: end if
11: end while

Figure 6.7 Algorithm for Pallet picking

proportional to the control values. Geometrically applying vy = vminy reduces α by
moving the forklift left and right. γ can be reduced by rotating the forklift(applying
ω=ωmin) to align with the pallet. When the forklift moves too close to the pallet
i.e. d < dmin vx = vminx reduces the error.

6.3 Pallet Placing

After the forklift reaches the end of the path during pallet drop-off, the target drop-
off location must be reached without going outside the restricted area. For this
no planning is implemented. Instead the omnidirectional feature of the forklift is
utilized. To minimize the forklift movement outside the roads the forklift is aligned
towards the target so that the forklift can drive straight towards the target.

Figure 6.8 Target for pallet placement with restricted movement(Current pose is indicated
in Green and Target pose in red)
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Sensor fusion localization solution is used for the controller and the target pose is
provided by the order as explained before. If (x,y,h) defines the current pose of the
vehicle and (xd, yd, hd) denotes the target pose, then the errors in each state variable
is given by dx = x − xd,dy = y − yd and dh = h − hd. If the heading error dh is
zero, then the forklift is in the same orientation as the target. Then the problem
becomes simple for the controller. The forklift can move left and right using x-
error dx to be in straight line with the target and finally moving towards the target
with dy without going out of the restricted area. So the errors dh,dx and dy are
brought to zero one by one in the same order instead of simultaneous movement. If
implemented in this order, then the velocities become directly proportional to the
errors as given by equations 6.5.

ω = −adh
vy = −bdx
vx = −cdy

(6.5)

where a,b and c are gains for each of the errors.

6.4 State Machine

The path tracker module implements all the algorithms specified before and they
must be integrated to work together during different stages. To execute the tasks a
state machine is implemented for switching between tasks. State machine is model
that has a finite number of states and switches between different states based on
conditions. The state machine can be in one state at a time. This finite state
machine is used to switch between different controllers. Figure 6.9 shows the state
machine of the path tracker module.

At the start, the tracker waits for the position from sensor fusion and initializes to
idle state(STATUS_IDLE). When an order is sent from the server, it is accepted by
the tracker if it is in idle state. Receiving the order switches the state to path tracking
state(STATUS_TRACK_PATH) for movement to the pallet picking area. Path
planner is requested for a plan to the target picking area. In this state, whenever
a new path is sent by the planner it is followed using the path follower without
exception.

When the path ends which is indicated by the planner, the tracker starts to search
for the pallet in pallet search state(STATUS_SEARCH_PALLET). If the pallet is



6.4. State Machine 50

Figure 6.9 State Machine for task execution

not found after the search maneuvers, the area is reported empty and switches to idle
state (STATUS_IDLE_GO_HOME). The forklift moves to the start location by
requesting a plan to the target. The behaviour of this state is same as the tracking
state except new orders are accepted at this state.

If a pallet is found, then it is switched to pallet picking mode(STATUS_PICK_PALLET)
where control using camera-based markers is used for picking the pallet. After suc-
cessful completion of pallet picking, new path for the drop-off location is requested
from the planner in tracking mode. When the path ends, the drop-off maneuver is
executed in drop pallet mode(STATUS_DROP_PALLET). After all the tasks are
executed, the forklift reaches home position by requesting a path to the same and
waits for the next order.
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7. SYSTEM INTEGRATION AND RESULTS

The algorithms are tested separately in individual modules and are combined to
execute tasks in real-time. These modules can communicate with each other and
some modules are dependent on each other for their own behaviour. Section 7.1
describes the communication messages and interaction between the different modules
in the system for real-time execution. Demonstration results are described in section
7.2. The overall objective of the demonstration is reviewed and the actual results
were evaluated for their performance.

7.1 System Integration

Given the pallet movement order, the tasks must be executed by the forklifts. Ex-
ecution of demonstration tasks require complex communication between different
modules as specified before. This complex communication is best represented in a
Unified Modeling Language(UML) diagram. Figure 7.1 shows the UML diagram of
communication between the modules.

To execute the tasks wheel velocity commands must be sent to Servo Drive module.
The frequency of the command determines the responsiveness of the forklift to the
changes in the environment. Position solution from the sensor fusion is of high
frequency(70Hz) which is same as the IMU frequency. This frequency is sufficient
for the control. Hence all the control actions are triggered by the position solution
except when picking the pallet. For this function, a camera based trigger control is
implemented for pallet picking which is of 30Hz frequency. The camera module is
active during the pallet picking state and stays idle otherwise.

State machine and Path tracker are implemented in the same module to enable a
single point control for the servos. This module provides all the control actions to
the servo drive. State machine manages all the tasks for execution and requests for
information from other modules. State machine requests path to picking location
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Figure 7.1 UML diagram of communication between different modules

from path planner when a new order is received or path to drop off location when
the pallet is picked.

Path planner receives the position information from sensor fusion and obstacle in-
formation from the network. When the planner sends a path to the tracker, it
continuously checks for collision and provides an alternate path if available. Path
planner stays idle if there is no request or no active target is being executed.

7.2 Demonstration Results

The demonstration is initialized with the forklifts aligned to zero heading. They can
be started from any location but the heading is fixed. In the future having a heading
sensor can solve this issue and the forklifts can start from any pose. Figure 7.2(a)
shows the forklifts waiting for the orders. Orders are assigned to any free forklift
without any particular order. Movement order is provided through this interface by
the user. Figure 7.2(b) shows the one of the forklifts has accepted the order and
moving towards the pallet for picking.

The forklifts were able to stay inside the roads most of the time. They sometimes
ran close to or over the edge of the roads because of tracking errors or localization
errors if the line of sight of the UWB beacons is blocked.
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(a) Forklifts in starting position waiting
for order

(b) Order assigned to one forklift and
the other being idle

Figure 7.2 Starting Position of forklifts during the demo

(a) Planning to target through free
path

(b) Forklift on route to target

(c) Stopping before obstacle and wait
for it to change

(d) Planning through a different free
route

Figure 7.3 Planning with static obstacles

User inputs of static obstacles are integrated in to the path planning and responsive
for changes in the user inputs. Figure 7.3 shows planning with different user inputs
of static obstacle. Planner creates path always avoiding the static obstacles. If the
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no path is available as shown in figure 7.3(c), plan is created towards the closest
obstacle and wait for any path to be free.

Multiple robots were able to run without colliding if the network communication is
robust. The collision avoidance fails if there is a delay in receiving other forklifts
position. Since the collision avoidance is based on the global plan, they are not
without errors. There are cases where the forklift runs without any plan such as
pallet picking and placing. These combined errors could cause collision during the
execution.

Addition of onboard obstacle sensors provides better visibility of the forklift sur-
roundings and hence these issues can be avoided. Dynamic planning could be in-
dependent of the plan and can be based on the predicted trajectory of the forklift.
The platform and algorithm could easily add these changes without many changes
to the system.

(a) Forklift reaching end of the path (b) Searching for the pallet

(c) Aligning with the detected pallet (d) Picking the pallet

Figure 7.4 Different stages of autonomous pallet picking
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(a) Path following (b) Aligning the heading for pallet
placement

(c) Aligning the offset (d) Placing the pallet

Figure 7.5 Two forklifts placing the pallets on their target independent of each other

Performance of the pallet picking and placing algorithms were within the demonstra-
tion requirements. Forklifts were able to detect and pick the pallets autonomously.
Figure 7.4 shows the sequence of maneuvers executed by the forklift for picking the
pallet autonomously. After reaching the end of the path the forklifts searches for the
pallet and reports the space empty if no pallet is found. Better lighting is needed
for the aruco marker detection to work. Pallet picking could fail if the pallets are
not properly lit.

Pallet placement depends on the localization and accurate if the localization error
is less. Localization errors could cause errors in the pallet placement but the robust
pallet picking algorithm was able to compensate for the errors and align itself towards
the pallet for picking.

Overall, the demonstration was able to evaluate and demonstrate the localization
capability of the UWB positioning. The software system was robust throughout
the demonstration and can be easily scaled to different autonomous systems. Its
scalability and modularity features serve as an excellent platform for development.
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8. CONCLUSION

The objective of the demonstration to implement a small-scale factory environment
using UWB positioning is achieved. The forklifts were built in-house using 3D print-
ing techniques and off the shelf hobby robot parts. Robots were able to locate them-
selves in the area using UWB positioning. UWB position and IMU are integrated
in the sensor fusion using extended Kalman filter to provide robust localization.

Using wheel encoders which provide feedback about wheel rotation can improve
the dead reckoning performance and better localization performance. The absolute
initial heading is not determined by the current sensor systems. Additional sensors
like magnetometer can provide absolute heading of the forklifts.

Robots were able to pick and move pallets between loading areas using orders from a
centralized server. Execution of tasks is managed by a state machine. State machine
runs in different modes and uses different controller for each mode. State machine
sends the path request to the path planner and provided path is executed by path
following controller in differential drive mode. Omnidirectional feature of forklift
is used for implementation of robust pallet picking and placing algorithms. State
machine reports the status of the execution continuously to the network and also
the availability of pallets. Thus the server has the updated map always.

The localized forklifts use A* graph planning and obstacle information to create
plans for routes using graph maps in OpenDRIVE format. Local planning for colli-
sion avoidance is implemented with global planning and replanning algorithm tries
to create a balance between the number of replannings and avoiding obstacles. Cur-
rent systems maintain large safe distance because of lack of onboard obstacle sen-
sors. Static obstacles and other robot location is provided by the network and failure
in communication could break the collision avoidance if the network fails. Having
onboard obstacle sensors could enable to create more robust and dynamic local plan-
ning. The objective to demonstrate the UWB positioning in small-scale is achieved
successfully.
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