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Over the past few decades, the development of wireless communication systems in

both hardware and software calls for the speed-up in the execution of the involved

functions. Moreover, in embedded systems which are including di�erent types of

communication systems, a large number of computations yet with short execution

time are needed while power consumption is required to be minimized. There is an

increasing demand to use application-speci�c accelerators assisting general-purpose

RISC processors.

This thesis focuses on designing the application-speci�c accelerators for Orthogo-

nal Frequency Division Multiplexing (OFDM) IEEE 802.11a receiver blocks using

CREMA (Coarse-grain REcon�gurable array with Mapping Adaptiveness). At �rst,

some of the common techniques used in OFDM receivers are presented. Then, the

basic structure of COFFEE RISC processor as the main implementation platform

is described. In addition, the de�nition of di�erent recon�gurable architectures

has been discussed. The experimental part of this research work covers the design

and implementation of three di�erent application-speci�c accelerators for OFDM

receiver blocks. The accelerators work particularly for COFFEE RISC core �rmly

integrated with a Direct Memory Access (DMA) device.

The performance of the accelerators is evaluated in terms of the number of clock

cycles, resource utilization and synthesis frequency on an Altera Stratix-IV Field

Programmable Gate Array (FPGA) device. It is observed that the designed acceler-

ators give speed-up of 4.8× to 18.6× in comparison with COFFEE RISC processor

software.
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1. INTRODUCTION

Currently, mobile communication systems are one of the most fruitful markets for

embedded processors. All users expect their smart phones to work perfectly without

any interruptions. In order to have short execution time and high production volu-

mes, recon�gurability plays a signi�cant role for embedded systems. Many embedded

applications require a large number of computations every second while power con-

sumption needs to be minimized. In addition, it could be observed that as computa-

tional requirements are increasing, RISC processors are not able to provide all kind

of computations especially for multimedia and telecommunication applications. The-

refore, there is an increasing demand to use application-speci�c accelerators coupled

to general-purpose RISC processors. Moreover, application-speci�c accelerators can

diminish the computation time while operating at low frequencies. In general, acce-

lerators are required in computer hardware to perform a single computationally in-

tensive task. In other words, by utilizing accelerators, there is no need to implement

the instructions one by one in processors and the overall computational power of a

processor system is increased. Furthermore, in embedded systems, accelerators are

essential because of the limited area and energy. Basically, there are two kinds of

accelerators for general purpose microprocessors: general-purpose accelerators and

run-time recon�gurable accelerators. Accelerators can di�er from one another which

can be related to their designing objective, implementation technology, interface for

communicating with the other parts of a system and architecture.

Recon�gurable architectures are one of the most successful platforms containing

di�erent levels of con�gurability and parallelism. Dynamic recon�gurability allows

behavior and functionality at the run-time for several applications. The functiona-

lity of recon�gurable devices can be speci�ed by a user at system design time and

can be changed at runtime, therefore permits to add functionality to the same chip

without using more silicon . Recon�gurable systems are characterized by their gra-

nularity, programmability, recon�gurability (either static or dynamic), interface and

computation model [1]. The recon�gurable devices can be classi�ed according to the

level of granularity into Fine-Grain, Middle-Grain and Coarse-Grain [2].

During recent years, Coarse-Grain Recon�gurable Array (CGRA) has become a po-
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pular platform for several research groups due to its high level of granularity which

allows us to map 8-, 16- and 32-bit arithmetic or logic operation onto a single Proces-

sing Element (PE). Coarse-grain architecture is a favorable solution for industrial

and academic environments because of its energy consumption and programmabi-

lity. The product of total power consumption and the execution time is equal to

the energy consumption which is low for CGRAs as they are not active most of

the time. In addition, an array of prede�ned Processing Elements (PEs) is used in

CGRAs to provide high computational power. Since an application can be written

entirely in C, its programming is much easier for an application developer. CGRA

is a 2D array of PEs that are either connected using a Network-on-Chip (NoC) or

dedicated point-to-point connections. CGRAs provide high level of data parallelism

and throughput because of the symmetry in their structure [3]. Moreover, CGRAs

are ideal for research groups to be used for digital signal processing applications

and processing of streams. On the other hand, CGRAs are very resource demanding

due to the large amount of interconnections and operations. Considering this is-

sue, CREMA (Coarse-grain REcon�gurable array with Mapping Adaptiveness) was

introduced so that the designers can assign those resources which are required for

a particular application [4]. CREMA is developed to work as an accelerator with

general-purpose RISC processor in order to have easiness for producing application-

speci�c accelerators while �exibility is conserved. In other words, they are integrated

together to work in a processor/coprocessor model to yield the bene�ts of general-

and special-purpose processing.

1.1 Objective and Scope of Thesis

This research aims to generate application-speci�c accelerators for Software De�ned

Radio (SDR) base-band prcoessing using CREMA template. CREMA is a suitable

candidate for wireless applications as a powerful computing engine that is tight-

ly coupled with general-purpose COFFEE RISC processor. COFFEE is an open

source 32-bit Reduced Instruction Set Computing (RISC) processing core [5]. The

main objective of this thesis work is to design and implement special-purpose accele-

rators for Orthogonal Frequency Division Multiplexing (OFDM) receiver baseband

processing on CREMA platform. In addition, the performance of the designed acce-

lerator for each block of OFDM receiver is evaluated in terms of the number of clock

cycles, resource utilization and maximum operating frequency by synthesizing on Al-

tera Stratix-IV family of Field Programmable Gate Arrays (FPGA). In an OFDM

transciever, the processing of some blocks are too computationally-intensive to be

processed by a processor core. For instance, at the receiver side of IEEE 802.11a [10],

there is need to compute Time Synchronization and Fast Fourier Transform (FFT)
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for each received data symbol which are computationally very intensive and demand

high computational power from a processor. As the �rst step of this work, the base-

band processing of OFDM receiver is described. Then some limitations are identi�ed

in order to design accelerators based on CREMA for di�erent applications. For ins-

tance, there are no prede�ned functions to compute some mathematical operations

related to this work (e.g., division and ATAN) in COFFEE RISC core. Accordingly,

some parts of OFDM receiver are implemented in software on COFFEE RISC co-

re by using di�erent algorithms, e.g., Taylor series. Furthermore, division process is

implemented using two di�erent algorithms on both CREMA platform and processor

software.

1.2 Thesis Outline

This thesis is organized as follows; Chapter 2 describes the basic structure of OFDM

WLAN receiver baseband signal processing under IEEE 802.11a speci�cations. In

addition, di�erent methods for each block of the OFDM receiver are explained. In

chapter 3, several examples of CGRA are presented as a literature review. Chapter

4 presents a survey of COFFEE platform architecture and structure of CGRAs,

in particular CREMA. Chapter 5 explains the mapping of several applications on

CREMA and execution details of baseband algorithms. Moreover, the performance

of each accelerator is evaluated in terms of di�erent metrics using both simulation

and synthesis results are also presented. Finally in Chapter 6, concluding remarks

and future work is presented.
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2. OFDM WLAN OVERVIEW

OFDM is one of the most popular digital multi-carrier modulation techniques for

achieving higher data rate. By using OFDM technique, there is a possibility to cope

with attenuation of high frequencies in a long wire, Inter-Symbol Interference (ISI)

and frequency selective fading because of multipath propagation in wireless commu-

nication. It should be mentioned that ISI can be reduced by transmitting several

symbols in parallel and increasing the symbol duration. Moreover, frequency se-

lective fading issue could be resolved by converting frequency-selective channel into

several adjacent �at fading sub-channels. OFDM is breaking higher bit rate encoded

data stream into several lower rate ones and sending them on di�erent sub-carriers

in parallel while orthogonality is kept between them [6]. This operation can be easi-

ly done in the transmitter by using N-point Inverse Fast Fourier Transform (IFFT)

[7]. Unlike single carrier system, OFDM is a mixture of Multi-Carrier Modulation

(MCM) and Frequency Shift Keying (FSK) [8]. FSK means that data are transmit-

ted on one carrier where there is a set of orthogonal carriers. The most important

advantages of OFDM, as can be understood from its name, is orthogonality between

subcarriers. Orthogonality can be attained by using IFFT for modulation and iso-

lating the carriers by an integer multiple of the inverse of the symbol duration. In

order to preserve orthogonality, transmitter and receiver must be in same modu-

lation frequency and time-scale. One of the advantages of OFDM, as it is shown

in Figure 2.1, is saving the bandwidth where adjacent sub-channels are overlapped

with each other.

As other single-carrier and multiple access methods, OFDM has some advantages.

Main ones are listed as following [7]

• Robustness against multipath fading

• High spectral e�ciency

• Interference elimination by using cyclic pre�x

• Narrow-band interference mitigation that may occur due to the radio non-

linearities
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Figure 2.1 Non-overlapping and overlapping multi-carrier modulation

• Adaptive modulation

On the other hand, there are some drawbacks for OFDM like: [7]

• Sensitivity to phase noise and frequency synchronization errors

• High Peak-to-Average Power Ratio (PAPR) which can be reduced by using

di�erent methods like Selected Mapping (SLM), Partial Transmit Sequences

(PTS), Tone Injection and Tone Reservation [9].

This chapter is organized as follows: during �rst two sections, description of MAC

frame structure of OFDM and its physical layer speci�cations are provided. Furt-

hermore, the general structure of OFDM including the transmitter, channel and the

receiver will be discussed. After that, we will proceed with an explanation of each

OFDM receiver block, considering IEEE 802.11a standards speci�cations.

2.1 MAC Frame Structure for WLAN Standards

Presently, there are three accepted WLAN standards in the world which are di�erent

from each other in terms of Medium Access Control (MAC). These standards are

listed in Table 2.1 [8]. The �rst two are used in Europe and North America and

the last one is utilized in Japan. Moreover, since we are using the most widely used

MAC, IEEE 802.11, it is described in detail in the following.
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Table 2.1 OFDM WLANs Standards

S/No Standard S/No Type of MAC

1. IEEE 802.11a 1. Distributed MAC based on Carrier Sense Multiple
Access with Collision Avoidance

2. HiperLAN/2 2. Centralized and scheduled MAC based on wireless
Asynchronous Transfer Mode (ATM)

3. MMAC 3. Both of mentioned MACs

Header

PLCP header

Preamble (SYNC)
12 symbols

16 µs

Preamble (SYNC)
12 symbols

16 µs

Signal
One OFDM Symbol

4 µs

Signal
One OFDM Symbol

4 µs

DATA or Payload
(Variable Number of OFDM Symbols)

DATA or Payload
(Variable Number of OFDM Symbols)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 Guard Guard Guard GuardLT1 LT2
Data

Symbol 1

Data
Symbol 2

Signal …

802.11a OFDM Burst

Lo
gi

ca
l P

D
U

P
h

ys
ic

al
 P

D
U

O
FD

M
 e

n
co

d
in

g

Short Training
10 × .8 µs = 8 µs 

Long Training
1.6 µs + 2 × 3.2 µs = 8 µs 

Rate
(4 bits)

Res.
(1bit)

Length
(12 bits)

Parity
(1 bit)

Tail
(6 bits)

Service
(16 bits)

PSDU
Tail

(6 bits)
Pad
Bits

Figure 2.2 PLCP Protocol Data Unit (PPDU) in 802.11a c©IEEE, 1999

Figure 2.2 shows the MAC frame structure of IEEE 802.11a. In order to access

to the network, Mobile Terminal (MT) ask data from the Access Point (AP). After

transmitting the packet, MT has to wait for an acknowledgment (ACK) frame which

is necessary for avoiding collisions. The header �le of received packet composed of

information about the transmission rate, the length of the payload and is transmitted

via Binary Phased Shift Keying (BPSK) which is a modulation technique and will be

discussed later in detail [8]. In the following, the brief de�nition of header parameters

can be seen:

• Rate: Type of modulation and coding rate of the entire packet

• Length: Number of bytes in Physical Layer Service Data unit (PSDU) that

might be varied between 1 and 4095

• Tail: Return the convolutional encoder to the �zero state� [10] and play out

the code trellis in the decoder

• Service: The bits from 0-6 are set to zeros and are used for synchronizing the

descrambler, the last 9 bits are reserved for the future.



2.1. MAC Frame Structure for WLAN Standards 7

PLCP header consists of a preamble, signal and data �eld. There are 10 short trai-

ning symbols and 2 long training symbols in the preamble which can be used for

packet detection, time synchronization, frequency o�set estimation and channel es-

timation. Totally, preamble is composed of prede�ned samples which are known to

the receiver and can be used for synchronization purposes. As can be seen from

Figure 2.2, length of both training symbols is 8.0 µs with the total time of 16.0 µs.

Short Training Sequence (STS) is composed of ten short symbols with 12 subcarriers,

each of them based on speci�c repetitions (every 4th subcarrier has equal magnitude)

given in frequency domain in Equation 2.1. The reasons behind this choice are good

correlation properties and low peak-to-average power ratio. Also, in the transmitter,

a 64-point IFFT is required in order to create a time domain sequence. Since STS is

known for the receiver, it can be used in di�erent blocks like packet detection or time

acquisition by using its correlation peaks properties [11]. Moreover, it is needed for

frequency o�set estimation because of repetition of samples which will be described

it in more detail later.

S−26,26 =

√
13

6
{0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0, 0,−1− j, 0, 0, 0,−1− j,

0, 0, 0, 1 + j, 0, 0, 0, 0, 0, 0, 0,−1− j, 0, 0, 0,−1− j, 0, 0, 0, 1 + j, 0, 0,

0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0}
(2.1)

Long Training Sequence (LTS) is an another preamble sequence with 53 subcarriers

in each one of two 3.2 µs long training symbols that can be seen in Equation 2.2.

Furthermore, 1.6 µs Guard Interval (GI) is needed between short and long training

symbols for combating with Inter-Symbol Interference (ISI). LTS is used in more

accurate time synchronization and �ne frequency o�set estimation [11].

L−26,26 ={1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1,

0, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1,

1, 1, 1, 1}
(2.2)

The next �eld in the header of PLCP is the signal �eld, which has information about

Rate and Length of the TXVECTOR. The rate is used for representing the type

of modulation and encoding. This single OFDM symbol is always BPSK-modulated

and its duration is equal to 4.0 µs. It should be mentioned that this �eld can be

found just in 802.11a standard [10].
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The next and most important part is the data �eld with variable number of OFDM

symbols (depends on the modulation type). There are 52 subcarriers in each data

symbol which are composed of 48 data subcarriers and 4 pilot subcarriers. Further-

more, there is one IFFT per symbol with the length of 64, thus, each data has 12

unused subcarriers. Pilots shall be put in subcarriers -21, -7, 7 and 21 while the type

of their modulation is always BPSK in order to avoiding the generation of spectral

lines. In addition, data modulation could be BPSK, QPSK, 16-QAM and 64-QAM

which are same for each burst. The contribution of pilot subcarriers can be observed

in Equation 2.3.

P−26,26 ={0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0}

(2.3)

The frequency spacing of each subcarrier is equal to 312.5 kHz (20 MHz for all

64 subcarriers). In the following, Table 2.2 lists the timing parameters related to

802.11a signal [10].

Table 2.2 IEEE 802.11a Timing Analysis

S/No Parameter Value Description

1. Symbol Interval Time 4.0 µs (TGI + TFFT )
2. Data Interval Time 3.2 µs 1/FSP
3. IFFT/FFT Duration 3.2 µs 1/FSP
4. SIGNAL Symbol time 4.0 µs (TGI + TFFT )
5. Training Symbol GI Duration 1.6 µs (TFFT /2)
6. Preamble 16.0 µs (TSHORT + TLONG)
7. Short Training Sequence 8.0 µs (10 × TFFT /4)
8. Long Training Sequence 8.0 µs (TGT + 2 × TFFT )
9. Guard Interval Duration 0.8 µs (TFFT /4)

Furthermore, it should be noticed that for each data symbol, the maximum number

of bits per each frame is equal to 4096 which means 1024 samples or 16 symbols.

2.2 Physical Layer Speci�cations for WLAN Standards

Presently, OFDM is used in many recently standardized broadband communication

systems toward combating with frequency-selective fading. During this section, it

can be seen that what will be occurred exactly for the data in OFDM transmitter,

channel and especially in the receiver. OFDM is working at 2.4 GHz operating

frequency that enables data transmission at a rate of 6, 9, 12, 18, 24, 36, 48, or 54

Mbps with 1/2, 9/16, 2/3 and 3/4 coding rate [8]. The simpli�ed version of OFDM

transceiver is shown in Figure 2.3.
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Figure 2.4 IEEE 802.11a constellations

After generating data randomly, QAM mapper is the �rst block in the transmitter.

As it is mentioned before, there are di�erent constellations which are used in IEEE

802.11a standard and can be observed from Figure 2.4. The modulations are two-

dimensional for using both In-phase (I) and Quadrature (Q) carrier waves and can

be implemented by changing the amplitude, phase or frequency, while the last one

is unused in OFDM systems because of destroying the orthogonality. Thus, in IEEE

802.11a, there are two methods for doing modulation: Phase shift keying (PSK) and

Quadrature Amplitude Modulation (QAM). In PSK, information is transmitted by

altering the phase of the carrier waveform that is shown in Equation 2.4 where s(t)



2.2. Physical Layer Speci�cations for WLAN Standards 10

Q

I

0011 0010 0001 0000

0111 0110 0101 0100

1011 1010 1001 1000

1111

I

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

Q

00101110 1101 1100 0110 1110 1010

Figure 2.5 QAM natural order (left) and Gray coding (right)

is a transmitted signal. The bene�ts of PSK is the PAPR (equal to 1) and simpli�ed

RF design for transceiver [8].

s(t) = cos(ωt+ φk) (2.4)

QAM is the composition of ASK and PSK, it means QAM changes both amplitude

and phase of the carrier as can be observed in Equation 2.5. Furthermore, amplitude

and phase of carriers can be calculated from Equation 2.6 and Equation 2.7.

s(t) = Ikcos(ωct)−Qksin(ωct)

= Akcos(ωt+ φk)
(2.5)

Ak =
√
I2
k +Q2

k (2.6)

φk = tan−1

(
Qk

Ik

)
(2.7)

All constellation points must be labeled by assigning a bit pattern (mapping). This

issue can be done in two ways: natural order or Gray coding which is shown in

Figure 2.5. The di�erence between natural coding and Gray one is that the �rst one

assigns decimal numbers from 0 to 15 in order, but in the second one, all samples are

di�erent from the adjacent one in just one bit. Hence, two-bit errors (most common

type of error) for symbol errors between neighboring points can be reduced by using

Gray coding, which means decreasing bit error rate (BER) and symbol error rate

(SER) [8].

Once all data bits are mapped to the speci�c bit pattern, virtual subcarrier insertion

block adds 12 unused subcarriers based on the standard prior to the 64-point IFFT.

That means zero padding is implemented by inserting 6 zeros to both sides of data.

Then, as it is discussed before, four pilot symbols are added to data. The next block
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and one of the most important ones is inverse FFT (IFFT) that is explained in the

following brie�y.

Once solution to many engineering problems is using Fourier series as a tool in order

to predict the output of the linear time-invariant system by breaking up the input

signal into simple signals and knowing how the system responds to these simple

signals. The Fourier Transform is an extension of the Fourier series that can be

applied to continuous and periodic functions. Given a sequence of N samples f(n)

(time domain), Discrete Fourier Transform (DFT) is de�ned as F(k) (frequency

domain) which is shown in Equation 2.8. In other words, DFT converts the signal

from the time domain to frequency domain. This procedure can be reversed in order

to calculate f(n) from F(k) by using IDFT that is shown in Equation 2.9 [7].

Fk =
1√
N

N−1∑
n=0

f(n)e−j2πkn/N (2.8)

fn =
1√
N

N−1∑
k=0

F (k)ej2πnk/N (2.9)

Thus, IFFT is implemented on the frequency domain QAM subcarriers to produce

time domain sum of sinusoids. In addition, it is the simplest way to control the

amplitude and phase of the subcarriers in the frequency domain and modulate data

onto orthogonal subcarriers.

Once IFFT is performed, Guard Interval (GI) or Cyclic Pre�x (CP) is added to the

output of IFFT [8]. As can be observed from Figure 2.6, to add the cyclic pre�x, 16

samples (0.8 µs) from the end of the OFDM symbol are appended to the beginning

of the OFDM symbol. The cyclic pre�x is introduced in order to cope with Inter-

Symbol Interference (ISI). ISI is essentially caused by receiving several copies of

the transmitted signal due to multipath e�ect and dispersion of the channel [12].

Let us assume that there are two OFDM symbols, it can be seen that the last
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portion of the �rst OFDM symbol creates interference with the �rst portion of

second OFDM symbol upon it is received, thus amplitude and phase of subcarriers

might be deviated. For this reason, the cyclic pre�x is really critical in order to solve

this problem and its length must be more than delay spread. Accordingly, delayed

portion of the �rst OFDM symbol can be absorbed via cyclic pre�x of the second

OFDM symbol [13].

After cyclic pre�x addition, IEEE 802.11a preambles are generated, which are com-

posed of short and long training symbols. Before transmitting the signal over air

interface by using an antenna, the signal must be converted from digital domain

to analog one via Digital to Analog Converter (DAC). Also, it should be noticed

that upon samples go through the DAC, a reconstruction �lter is needed in order

to remove replication of the spectrum. The �lter design is becoming much easier if

there is oversampling by a factor of two because of the reason that after it, spectra

replicas are much further apart. Oversampling can be done by using null subcarriers

which should be located around middle subcarriers. For instance, for a sequence

x={1,2,3,4}, for two times oversampling, (2-1)×4=4 zeros should be added around

the center subcarrier. The new signal is equal to X={1,2,0,0,0,0,3,4}.

In mobile wireless communications, transmission channel generates di�erent unde-

sired changes in the information signal caused by re�ections and di�ractions. These

changes might be attenuation, noise, interference and distortion (a�ected by the

non-ideal response of the communication system). Channel can be modeled as a li-

near time invariant transfer function with Additive White Gaussian Noise (AWGN).

It means received signal is y(t) = x(t) + n(t), because the noise n(t) is added to

transmitted original signal x(t). The fundamental type of the noise source is the

thermal noise which is random in nature and has zero mean Gaussian distribution.

The noise is called white if the power spectrum density of the thermal noise is the

same over a wide frequency band [14]. In other words, noise level is completely �at

at every frequency. As it is mentioned before, received signal is composed of in-

formation bearing message and noise. Signal strength relative to the noise can be

measured by using Signal-to-Noise Ratio (SNR) which is measured in decibels (dB).

As can be seen from Equation 2.10, SNR is the ratio between the power of original

transmitted signal and unwanted background noise.

SNRdB = 10 log10

(
x̄2

n̄2

)
= 10 log10

(
Psignal
Pnoise

)
(2.10)

Figure 2.7 shows Power Spectral Density (PSD) of OFDM spectrum by using PWELCH

function in MATLAB according to the IEEE 802.11a speci�cations after transmitting
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Figure 2.7 Transmit spectrum of OFDM based on 802.11a speci�cation

16-QAM modulated signal across di�erent four channels in terms of the amount of

SNR. It is clear that the quality of signal is improved as SNR is raised and vice-

versa. It should be noted that in the case where there is no noise on the channel, the

PSD still looks noisy, since the data bits are generated randomly and the number of

subcarriers are limited.

On the receiver side, the entire process which is required in the transmitter, must be

accomplished in reverse order. The received signal is composed of training symbols

(short and long), OFDM signal and data symbols. The �rst block is Analog to Digital

Conversion (ADC) that converts the signal from an analog domain to the digital

one for further processing. Furthermore, Automatic Gain Control (AGC) must be

computed in order to control the gain of signals (more gain is applied on weaker

signals and less gain on stronger signals) and to make sure the signal is not out

of ADC dynamic range [15]. Once ADC is done, as it is shown in Figure 2.3, the

next block performs packet detection and time synchronization. Packet detection

is used in order to detect the beginning of the packet. This can be done by using

correlation with short training symbols. Furthermore, time synchronization speci�es

the start point of received packets by correlating the inbound packet with known

training symbols or delayed version of itself. Then the cyclic pre�x or guard interval

of data symbols is removed. It should be noticed that removing cyclic pre�x must
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be done after time synchronization since before that there is not any information

about the exact start point of the incoming packet. After removing cyclic pre�x,

frequency o�set estimation is required in order to estimate the amount of frequency

o�set which is added to the transmitted signal in the channel and a�ected by clock

deviation between the transmitter and the receiver. Once the frequency o�set is

estimated, received signal must be corrected. The corrected signal goes to FFT block

for converting the time domain signal to the frequency domain. The subsequent block

is channel estimation for estimating the channel impulse response by comparing

received pilots and known transmitted ones. The comparing result must be used for

the whole packet by interpolation. Finally, pilots are removed from the subcarriers

and data carriers should be corrected in the channel correction block by dividing the

data carriers by the estimated channel response. In the last stages, corrected data is

demodulated based on chosen constellation (BPSK, QPSK, 16-QAM and 64-QAM)

and the symbols are converted into a bitstream [8].

So far a general OFDM receiver system is described brie�y, the next section provides

full behavior of �ve main blocks of a receiver which are essential and vital for OFDM

systems.

2.3 IEEE 802.11a Receiver

As earlier discussed, the receiver is the most important part of OFDM systems since

transmitted symbols must be extracted with highest accuracy. The IEEE 802.11a

receiver generally performs time and frequency synchronization, channel estima-

tion, equalization and demodulation. Based on IEEE 802.11a standard speci�ca-

tions, from the received training symbols, the �rst seven of short training symbols

can be used for packet detection, AGC and diversity selection. The remaining th-

ree short symbols might be used for coarse frequency o�set estimation and timing

synchronization. Moreover, the long training symbols should be used for channel

and �ne frequency o�set estimation. In the following subsections, these operations

are explained in detail.

2.3.1 Timing Estimation

Timing estimation in OFDM systems is divided into two main tasks: packet detection

and symbol timing synchronization. Packet detection is necessary for OFDM systems

since a receiver does not have any information about the start point of the received

packet. In addition, time synchronization is essential in order to �nd the precise start
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point of the OFDM symbols which de�nes the correct position of the FFT window.

As it is mentioned before, short training symbols could be used for detecting the

packet since they are known to the receiver. It implies it is better to have a brief

explanation of correlation before describing the algorithm of the mentioned block.

Correlation, is a method to determine the level of similarity between two signals.

Here are two kinds of correlation: cross-correlation and autocorrelation.

Cross-correlation means correlation between two di�erent signals while autocorrela-

tion stands for correlation between a signal with its delayed or shifted version and is

maximum when two signals are exactly matched with each other. Since correlation

is computationally intensive and time-consuming, there are di�erent fast algorithms

for solving this problem. For instance, correlation of two signals might be computed

by using their Euclidian distance d(x̂, ŷ) in frequency domain [19] which is given by

Equation 2.11.

d(x̂, ŷ) =| x− y |=

√√√√ n∑
i=1

| xi − yi |2

corr(x, y) = 1− 1

2
d2(x̂, ŷ)

(2.11)

Packet detection can be implemented by using delay and correlate algorithm

where the received signal is correlated with its delayed version [8]. The output of

this algorithm, cn can be seen from Equation 2.12

cn =
L−1∑
k=0

yn+ky
∗
n+k+D (2.12)

Here yn stands for received packet, D is equal to 16 which is the period of short

training symbols in IEEE 802.11a and L is the length of correlation. Moreover,

received signal power (pn) might be applied in order to normalize cn during the

correlation period calculated in Equation 2.13 [17]

pn =
1

2

L−1∑
k=0

| yn+k |2 + | yn+k+D |2 (2.13)

In order to �nd out that when two di�erent correlation windows match completely

(peak of correlation), decision metric (mn) is computed from Equation 2.14

mn =
| cn |2

(pn)2
(2.14)
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.

Thus detection is made once a correlation peak is observed.

Timing synchronization or timing acquisition could be implemented by using

two di�erent methods [20]:

• Using special symbols, e.g., training symbols, null symbols, PN-sequence.

• Cyclic Pre�x (CP) or Guard Interval (GI) correlation method.

In the �rst method, a particular symbol is transmitted by the transmitter which is

known to the receiver and the start point of the actual data carrying OFDM symbols

can be found. In IEEE 802.11a, the end of short training symbols or the long training

symbols of a received data packet might be used for timing synchronization which

can be observed from Equation 2.15

zn =
L−1∑
k=0

yn+kt
∗
k (2.15)

where yn is received signal, tn is representing the known symbols and ∗ stands for

the complex conjugate operation.

Whenever there is not any information about the data content, the second method is

used which is the most common way in OFDM systems. As it was discussed before,

cyclic pre�x or guard interval is used to combat against ISI. Thus in this method,

received signal is correlated with its delayed version. The signal �ow structure can

be observed from Figure 2.8. The amount of delay z−D is equal to the length of

cyclic pre�x which is 16 based on IEEE 802.11a standard speci�cations.
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.

This method will product an output cn and zn which is given by Equation 2.16 and

Equation 2.17, respectively.

cn = cny
∗
n−D (2.16)

zn =
L−1∑
i=0

ci+n (2.17)

Once a correlation is �nished, pursuant to Equation 2.18, its largest peak must be

recognized in order to compute the index of time o�set which speci�es the edge of

the �rst FFT window.

τ̂s = argmax
n

| zn | (2.18)

Figure 2.9 shows treatment of | zn | in a noisy channel without any multipath

propagation. When the length of received data symbol in 802.11a is equal to 80 (64

FFT and 16 CP), if there is no multipath propagation, the data symbol correlated

with itself has got one peak (τ̂s) of which location minus one is exactly equal to

the length of the cyclic pre�x. Once the time o�set is found, samples before the

peak value have been skipped (corresponding to cyclic pre�x removal) and the data

without this o�set is fed to the frequency o�set estimation and correction module

in the receiver for the subsequent processes.

2.3.2 Frequency Synchronization

As it is discussed earlier, OFDM waveform is composed of multiple sinusoidal com-

ponents. In wireless communication systems, as it is shown in Figure 2.10, a signal

must be upconverted (baseband to passband) to carrier frequency before transmis-
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.

sion. On the receiver side, the signal is downconverted (passband to baseband) from

the same carrier frequency prior to demodulation.

One of the disadvantages of OFDM is its sensitivity to carrier frequency o�set which

is due to device impairments [8]. It means that when carrier frequency of the receiver

is not exactly the same to the transmitter one, the received baseband signal will

be centered at a f∆ instead of zero. Thus, f∆ is equal to the di�erence between

the carrier frequencies in transmitter and receiver side that can be observed from

Equation 2.19.

f∆ = fTx − fRx (2.19)

In other words, Carrier Frequency O�set (CFO) is created in OFDM systems due

to inconformity of frequencies between the oscillators of the transceivers or due to

the Doppler spread [16]. This issue causes a rotation of demodulated symbols in

the constellation and may lead to intersymbol interference [17]. There are di�erent

methods to estimate the amount of CFO in OFDM systems [8]:

• Using special training symbols that are added in the transmitter

• Analyzing received signal in frequency domain (post FFT)

• Using cyclic pre�x

Here, the �rst method will be explained in detail.

Frequency synchronization must be operated very accurately at the receiver in order

to avoiding losing orthogonality between the samples. Frequency o�set estimation
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in time domain could be performed by using Maximum Likelihood estimator. For

this purpose, it is possible to use short training sequences while the duration of each

of them is equal to 0.8µs. Let us assume that xn is our transmitted signal, then

by considering Figure 2.10, passband signal yn could be modeled from the complex

baseband one as

yn = xne
j2πfTxnTs , (2.20)

where fTx is carrier frequency of the transmitter. As described earlier, once the

signal is received, it must be downconverted to baseband signal rn with a carrier

frequency fRx that can be seen from Equation 2.21. Also, f∆ stands for frequency

o�set.
rn = sne

j2πfTxnTse−j2πfRxnTs

= sne
j2π(fTx−fRx)nTs

= sne
j2πf∆nTs

(2.21)

Frequency o�set could be computed by using the same delay and correlate method

which is illustrated in Equation 2.22. Based on IEEE 802.11a speci�cations, the

amount of delay, D, calculated from the period of short training symbols (0.8µs ×
20MHz(fs) ) is equal to 16.

yτ̂ =
L−1∑
n=0

rnr
∗
n+D

=
L−1∑
n=0

sns
∗
n+De

j2πf∆nTse−j2πf∆(n+D)Ts

= e−j2πf∆DTs

L−1∑
n=0

| sn |2

(2.22)

Once above multiplication between the received signal and the complex conjugation

of its delayed version is performed, the frequency o�set estimate can be represented

as

f̂∆ = − 1

2πDTs
6 yτ̂ , (2.23)

where Ts is giving the sampling period and 6 takes the angle of yτ̂ which is a cor-

relation output from last equation. Frequency o�set correction could be performed

by utilizing the frequency o�set estimated above and multiplying the received signal

according to Equation 2.24 where rn
′
is the corrected signal, n is sample index and

N is the number of samples in a symbol.

rn
′
= rne

−j2πf∆
n
N (2.24)
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Furthermore, noting that phase calculation by using angle function is limited from

−[π,+π), thus the minimum and maximum value of frequency o�set that could be

estimated is ±625 kHz [10].

2.3.3 Demodulation

One of the features of OFDM systems is a simple structure of modulator and de-

modulator to be performed by using IFFT and FFT, respectively. After calculation

of the time o�set and correction of the received signal in terms of frequency o�set,

transmitted data bits must be recovered. Based on IEEE 802.11a speci�cations, de-

modulation is operated by applying 64-point FFT within 3.2 µs. As it is mentioned

before, FFT is a particular type of DFT since the number of multiply-accumulate

operations is reduced considerably. On the other hand, it is still among the most

computationally intensive blocks. The DFT of a signal x may be de�ned by [21]

Xk =
N−1∑
n=0

xne
−j2π nk

N , (2.25)

where the sequence of N complex numbers is transformed into an N-periodic sequence

of complex numbers. Also, e−j2π
nk
N is called twiddle factor (W nk

N ). Di�erent kinds of

FFT algorithms could be used in OFDM systems based on a particular communica-

tion standard or special concern during system design. One of the most common

FFT algorithms is the radix-2 algorithm proposed in [22] and its complexity is equal

to O(NLogN) (while a DFT can compute the same in O(N2) operations). First

of all, N-point (N is a power of 2) data sequence is divided into two N
2
-point data

sequences which is expressed as Equation 2.26.

Xk =
N−1∑
n=0

xnW
nk
N

=
∑
neven

xnW
nk
N +

∑
nodd

xnW
nk
N

=

N
2
−1∑

m=0

x2mW
2mk
N +

N
2
−1∑

m=0

x2m+1W
(2m+1)k
N

=

N
2
−1∑

m=0

x2mW
2mk
N +W k

N

N
2
−1∑

m=0

x2m+1W
2mk
N

(2.26)

According to the theory behind radix-2 algorithm, a 64-point FFT needs six stages

(26 = 64) to be performed [23]. Furthermore, in order to reduce the number of stages,
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Figure 2.11 Channel estimation based on linear interpolation

.

increasing the processing speed, reducing the complexity and decreasing the num-

ber of operations, other radix-N algorithms have been developed based on radix-2,

such as radix-4 and radix-8. Solving a 64-point FFT by using Radix-4 and Radix-8

algorithms requires three and two processing stages, respectively. Designing accele-

rators for FFT algorithms has always been challenging. There are di�erent methods

for doing this, one of which is using CREMA (discussed later on in detail) as a

CGRA accelerator for RISC processors. The implementation of N-point FFT using

the algorithms of radix-2 and radix-4 has been presented in [3] and [24]. The execu-

tion details of radix-N algorithms are very well described in the above-mentioned

reference papers.

2.3.4 Channel Estimation

Transmitted symbols after passing through the wireless channel will get destroyed

because of various impairments. Hence, these channel impairments require correc-

tion. Once data symbols are recovered after FFT, the frequency spectrum of the

received signal must be estimated [8]. It is implemented by a channel estimation

block which is located next to the FFT block. Received and demultiplexed OFDM

symbols, Yn, can be written as

Yn = XnHn +Nn (2.27)

Here n is representing the subcarrier number, Hn stands for channel response and

Nn is the additive noise. Thus, in the case of a linear channel, there are two steps

for performing channel correction [7]:

• Channel estimation attempts to estimate Hn
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• Channel equalization attempts to correct Yn based on Xn

There are di�erent methods for performing channel estimation. Pilot-assisted linear

interpolation and least square algorithm is one of them and is explained in the

following. As it is discussed earlier, in WLAN OFDM some training symbols like

pilots are transmitted which are known for the receiver and could be used for di�erent

purposes [25]. Based on IEEE 802.11a speci�cations, four speci�c values are inserted

as pilots between data subcarriers in the transmitter. In the receiver side in order

to accomplish the channel estimation, �rst of all, a diagonal matrix (is a square

matrix in which the entries outside the main diagonal are all zero), M, is formed

from transmitted pilots as

M =


M1,1 0 · · · 0

0 M2,2 · · · 0
...

...
. . .

...

0 0 0 Mk,k

 (2.28)

then the channel impulse response must be computed as follows

H̃k = M−1PRx, (2.29)

where k is the number of pilots, PRx is representing the received pilots that might

be noisy and H̃k is standing for channel impulse response of received pilots. Once

channel response of the received pilots is found, since there is no information about

the other subcarriers, the whole channel frequency response of the remaining subcar-

riers needs to be found. This can be done by linear interpolation as can be seen from

Figure 2.11 [26]. Interpolation refers to up-sampling the signal. In other words, it

means adding samples in between the existing values by using di�erent techniques

like linear, spline and so on. Linear interpolation is the method of approximating the

value at each position between two samples. Thus, samples are joined by a straight

line to each other. Equation 2.30 is extracted from interp1 function in MATLAB [27]

where channel frequency response of all subcarriers Ĥn is estimated by expanding

channel frequency response of four received pilots H̃k.

Ĥn =

Np−1∑
i=1

Ns∑
j=1

H̃k(i) + ((H̃k(i+ 1)− H̃k(i))×
j − 1

Ns︸ ︷︷ ︸
µ

) (2.30)

Here Np is representing the number of pilots, Ns stands for the number of samples

between each two pilots and µ is the step size and naturally is small value. Once
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Figure 2.12 Dividing complex plane into decision regions

.

channel frequency response is estimated, channel equalization is required to rectify

the received noisy OFDM data symbols Yn as close as possible to Xn. It could

be implemented by dividing the received signal by its channel frequency response

expressed as Equation 2.31.

Ŷn =
Yn

Ĥn

(2.31)

Subsequent to channel equalization, it can be observed that the amount of Bit

Error Rate (BER) versus Signal-to-Noise Ratio (SNR) is reduced after implementing

channel estimation in comparison with AWGN channel.

2.3.5 Symbols Demapping

Subsequent to carrying out all synchronization operations and demodulation, the

next and last essential part of OFDM receiver is symbols demapping where the

actual value of received data bits has to be decided. In other words, the main task

of symbols demapping is converting the received data symbols to data bits without

losing any precision. In the past, we have discussed the mandatory modulation

formats (BPSK, QPSK, 16-QAM and 64-QAM) which are used in IEEE 802.11a

standard. According to the utilized modulation type, decisions about received data

bits must be performed. Based on the amount of information about each transmitted

bit, decisions are divided into hard and soft [8].

Hard Decision

A hard decision demodulator might be used whenever the number of transmitted

data bits is equal to the number of received ones. Also, consider that the received

data bits could be noisy which will form a Gaussian cloud around the points in

the constellation as can be observed in Figure 2.12. In such a case, the problem
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is to make a decision about transmitted data symbols, based on the received ones.

Pursuant to the maximum-likelihood decision, if the received bit is closest to the

constellation point, assigning bits is done by using hard decision. Thus, the complex

plane could be divided into the set of points that are closest to a certain symbol.

Soft Decision

In this case, decision is made by using information bits instead of intermediate

decisions about transmitted symbols along with giving better performance in terms

of execution complexity in comparison with hard decision [28]. To perform soft

decision, demodulator has to maximize the probability of similarity between the bit

(x ) transmitted and the bit (y) received as

P (x | y) =
P (y | x)p(x)

p(y)
, (2.32)

where P (y | x) is the conditional density of the received symbol when the transmitted

one is known and P (x) is the prior density of transmitted bit. Noting that since

occurrence probability of all constellation points are equal, maximizing P (y | x) is

equivalent to P (x | y) [29].

Once received data symbols are demapped to data bits, the quality of OFDM sys-

tems might be measured in terms of bit error rate (BER). BER is the percentage of

bits with errors divided by the total number of bits that have been transmitted and

is changing as a function of SNR. BER is declining by increasing the SNR. Further-

more, it should be noticed that in the same SNR environment, BER is dependent on

modulation type. For instance, BER in BPSK is lower (higher performance) than in

64-QAM with the same SNR. The formula for bit error rate can be written as

BER = Q

(√
2Eb
No

)
=

1

2
erfc

(√
Eb
No

)
, (2.33)

where Eb is representing energy per bit, No is the noise power spectral density and

totally, Eb

No
stands for SNR [30].
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3. RECONFIGURABLE ARCHITECTURES

Currently, recon�gurable architectures are one of the most successful platforms con-

taining di�erent levels of recon�gurability and parallelism. Recon�gurability means

modifying functionality at run-time for several applications. Most important featu-

res of recon�gurable computing systems can be listed as following [35]:

• Granularity: Data size for operations of the Recon�gurable Processing Unit

(RPU) of a system.

• Depth of Programmability: The number of recon�guration programs or con-

texts inside the RPU.

• Recon�gurability: In order to perform several applications, it is required by

recon�gurable processing unit to be recon�gured at di�erent times.

• Computation Model: It could be SIMD or MIMD or even in some cases, sys-

tems may follow the VLIW model.

The recon�gurable devices can be classi�ed according to the level of granularity into

Fine-Grain, Middle-Grain and Coarse-Grain. The last one is most popular between

di�erent recon�gurable architectures because of playing an important role for the

digital base-band signal processing. In the following, we will describe some of the

examples of CGRA brie�y.

3.1 AVATAR and SCREMA

CREMA is a 4 × 8 PE CGRA template with two 32-bit local memories which will

be described in detail in Chapter 4 as part of the implementation platform for this

work. AVATAR is a scaled-up version of CREMA [47]. It consists of 64 PEs (4×16),
therefore, it has more computational power than CREMA. In AVATAR, there are 32

inputs in the �rst row of PEs which means 32 of the 32×1 multiplexers are required
in each I/O bu�er. It can be observed that AVATAR energy consumption is almost

the same as for CREMA while being 1.3X faster [31].
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If we are going to scale-up AVATAR, next generation could be 4×32 PE CGRA

which o�ers additional parallelism. On the other hand, it can be very resource de-

manding. As CREMA and AVATAR were CGRAs of �xed sizes, SCREMA was int-

roduced as a CGRA platform with a scalable number of rows and columns (number

of columns must be power of 2, such as 4, 8, 16 and 32). The basic structure of CRE-

MA and SCREMA is the same, so, the functionality of PEs and routing between

them is similar. Furthermore, user can make a decision about the number of PEs,

thus, accelerators can be generated based on the user's design while it is possible

to scale SCREMA at the compilation time. It shows the �exibility of SCREMA in

order to have di�erent sizes between CGRA templates [32].

3.2 ADRES

ADRES (Architecture for Dynamically Recon�gurable Embedded System) is Very

Long Instruction Word (VLIW) processor tightly coupled to a CGRA [33]. Talking

about the advantages of this integration, increasing the performance, declining com-

munication cost and decreasing programming complexity could be mentioned. It is

a platform executing at 40 MOPS/mW (Mega Operation Per Second) implemented

in 90nm technology [34]. ADRES is a recon�gurable array of 8× 8 elements where

each of them is composed of Functional Units (FU) and Register Files (RF), which

are connected in a certain topology (the simplest option is mesh). Moreover, since

physical speci�cs of FUs and RFs are fundamentally the same, resources might be

shared in order to have remarkable cost-saving. The FUs communicate through a

multi-port global Data Register File (DRF) along with one destination and at most

three source ports. In addition, the data bus width between FUs and DRFs is 32-

bits. Furthermore, data access to the main memory could be done by using load

and store operations which are accessible on FUs. The FUs support Single Instruc-

tion Multiple Data (SIMD) for high data level parallelism purposes. There are 1-bit

Predicate Register Files (PRF) that store the predicate signal and other RFs can

store intermediate data. The number of words in local and global RF is 16 and 64,

respectively. It should be noticed that in ADRES just �xed-point operations can be

executed. The ADRES instances can be generated using an XML-based architecture

description language which is transformed into the VHDL �les for further processes.

3.3 MorphoSys

MorphoSys is a system-on-chip which is composed of 8× 8 array of Recon�gurable

Cells (RCs), a general-purpose RISC processor and a high bandwidth memory in-

terface to exploit data transfers between RCs and external memory [1]. The RC
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array is divided into four quadrants which are comprised of three hierarchical levels

in terms of interconnection network [35]. These levels are nearest neighbor con-

nectivity (2D mesh), intraquadrant connectivity (complete row and column) and

interquadrant connectivity (express lane). The RC array follows SIMD model and

consists of an ALU-multiplier for �xed-point operations and a register �le. Moreo-

ver, its con�guration memory can store up to 32-bit context word in the context

memory for providing dynamic recon�guration. The host processor of MorphoSys is

a 32-bit processor, called TinyRISC which is a four-stage scalar pipeline and hand-

les general-purpose and control operations by adding special instructions. Another

important component of MorphoSys is Frame Bu�er (FB) that is an internal data

memory for enabling stream-lined data transfer between RC array and main memo-

ry. FB is physically organized into two sets, each of which is further subdivided into

two banks (each bank has 64× 8 bytes of storage) of memory. The context memory

of MorphoSys stores the con�guration program into two context blocks (each block

has 8 context sets and each context set has 16 context words) and broadcasts them

to the RC array. Since MorphoSys supports regularity and parallelism, all eight RCs

share the same context word and perform the same operations in a row or column,

respectively. Furthermore, DMA controller is used in MorphoSys in order to control

all data movement between frame bu�er, context memory and the external memo-

ry. Another important feature of MorphoSys is dynamic recon�gurability where the

context memory can be reloaded in parallel with RC array accomplishment. Several

applications could be simulated using MorphoSim which is the VHDL simulator. By

utilizing 64, 128 and 256 elements RC array, MorphoSys could show a perfomance

of 6.4, 12.8 and 25.6 GOPS (Giga Operations per Second) while performing Discrete

Cosine Transform (DCT) and Inverse-DCT at 100.0 MHz.

3.4 PACT-XPP

The eXtreme Processing Platform (XPP) is a runtime-recon�gurable computing arc-

hitecture composed of a 2D array of coarse-grain, adaptive PEs and interconnection

resources [36],[37]. Various types of parallelism like pipelining, instruction level, da-

ta �ow and task level are provided in the architecture of XPP which is suitable

for stream-based applications. The most important feature of XPP is its sophistica-

ted run-time recon�guration and automatic packet-handling mechanisms. Run-time

recon�gurability means that part of PEs might be recon�gured with a new functio-

nality while others keep processing data without any interruption. There are several

structures for XPP. The typical XPP is composed of four Processing Array Clusters

(PACs) where each of them is attached to the Con�guration Memory (CM) res-

ponsible for writing con�guration data from external memory into the con�gurable
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resources of the array. There are two sets of buses for interconnection resources: data

bus (identical word length for each device) and event bus (one-bit control informa-

tion). There is a possibility for XPP to reduce con�guration time by prefetching

mechanisms where other con�gurations can be loaded to the CM cache (internal

RAM) during loading main con�guration onto the array. Another important feature

of XPP is the possibility of performing an application containing several phases wit-

hout any external control by asking self-recon�guration of the device. However, the

phases may contain similarities. For such cases, di�erential con�gurations are more

e�ective where only con�guration parts of PEs are changed. In order to exploit the

performance of the XPP architecture, Native Mapping Language (NML) is develo-

ped which is a PACT dedicated language. Also, there is a C compiler (XPP-VC) for

translating C functions to NML modules. The peak performance of PACT-XPP is

estimated to be 57.6 GOPS when running at 150 MHz.

3.5 MORPHEUS

MORPHEUS ([2],[38]) is a complex SoC and dynamically recon�gurable that is a

platform consisting of three main types: �ne-grained, middle-grained and coarse-

grained, which are Heterogeneous Recon�gurable Engines (HREs). FlexEOS is well

suited for �ne-grain algorithms. It is SRAM-based and embedded Field Program-

mable Gate Array (eFPGA) that can be programmed using VHDL. FlexEOS is

constructed from high-density multi-function logic cells. DREAM is a middle-grain

recon�gurable digital signal processor, composed by a 32-bit RISC core processor and

PiCoGA-III recon�gurable datapath (matrix of recon�gurable logic cells). DREAM

could be used for various applications (e.g. multimedia and telecom) where instruc-

tion level parallelism is required. XPP-III is a coarse-grain recon�gurable signal

processor provides high parallel processing performance for streaming applications.

In other words, XPP-III is a heterogeneous recon�gurable processor architecture con-

sisting of a data�ow array and VLIW processor. Interconnection of MORPHEUS is

divided into three independent parts: data transfer, con�guration transfer, control

and synchronization. All system modules (HREs, memory units and I/O peripherals)

communicate with each other based on a 64-bit NoC. All data transfers between the-

se devices might be Direct Network Access (DNA), Direct Memory Access (DMA) or

manipulated directly by ARM (general purpose processor). Consequently, the most

important features of MORPHEUS can be runtime recon�gurability, Ethernet-based

network, remote updates, energy and time e�ciency, real-time protocol decoding and

dynamic changes of hardware con�guration.
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4. PLATFORM ARCHITECTURE

The hardware platform which is used during this research work is a template-based

CGRA called CREMA. CREMA is working as an accelerator for a 32-bit general-

purpose Reduced Instruction Set Computing (RISC) core. Both CREMA and COF-

FEE have been designed and implemented at the former Department of Computer

Systems, Tampere University of Technology (TUT), Tampere, Finland.

During the �rst section, the architecture of COFFEE RISC core is explained brie�y.

In the second part of this chapter, CREMA is described in detail which is a template-

based CGRA to generate run-time recon�gurable accelerators. Later, the implemen-

tation of SDR related algorithms is shown by using CREMA and its tools.

4.1 COFFEE RISC Core

In this section, di�erent views to the COFFEE RISC core will be described in terms

of software, hardware and pipeline structure which is an implementation technique

in order to execute multiple instructions that are overlapped.

4.1.1 Introduction to the COFFEE RISC core

As we know, there are di�erent kinds of processor architectures which di�er in terms

of the number of gates, power consumption, or in general complexity. COFFEE is an

open source RISC processor core. By looking at COFFEE RISC core architecture,

it can be found that there are some features which make it a typical RISC such as

ability of doing one instruction per cycle which can be done by using pipelining,

�xed instruction length in order to make decoding of instruction more simple and

32-bit data path width. RISC is also known as load and store machine since only

load and store instructions access memory, whereas all data processing is done inside

of the core datapath. In addition, addressing modes are simpli�ed by using simple

RISC instruction in order to reduce the critical path [5].

The main target of using COFFEE RISC core is setting up embedded systems as a

general-purpose platform. In addition, more tasks can be accelerated by coprocessors
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Figure 4.1 Programmer's View of the Core's Registers [5]

related to the telecommunications and multimedia applications [5]. The instruction

set was designed as for a typical RISC processor and also to enable coprocessors [5].

Based on COFFEE RISC core user manual, it has 66 instructions in which fourteen

are arithmetic instructions (add, addi, etc.), ten byte and bit �eld instructions (exb,

exbf, etc.), six Boolean bitwise operations (and, andi, etc.), eight conditional jumps

(beq, bnq, etc.), four other jumps (jmp, jmpr, etc.) and six shift instructions (sll,

srl, etc.) and can be operated on two register operands, or one register operand and

one immediate operand. In COFFEE RISC core, in order to implement conditional

branches, it should compare register data and produce condition �ags, based on

which branch instructions can be executed [5].

4.1.2 Software and Hardware View of the COFFEE RISC core

As can be seen from Figure 4.1, there are two general-purpose register banks, user

register set and supervisor register set which are introduced to support real-time
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operating system (RTOS) for COFFEE RISC core and each of them holds 32 regis-

ters [40].

Both register sets along with the full memory are obtainable in supervisor mode,

whereas supervisor register set is not available in user mode. Moreover, there are

two more blocks in order to enable software con�gurability and con�gure periphe-

ral devices around COFFEE RISC core which are core con�guration block (CCB)

and peripheral control block (PCB), respectively. Talking about the advantages of

memory mapped registers, it can be said that they are accessible by load and store

instructions and also the core is con�gurable via boot code.

The COFFEE RISC core is a 32-bit Harvard architecture by which it is possible to

distinguish interfaces for data and instruction memory. Furthermore, large and slow

memories can be linked directly due to multi-cycle access whose access times are

software con�gurable by using CCB. As can be seen on the interface of the COF-

FEE RISC core in Figure 4.2, there can be up to four coprocessors whose addressing

include 2 bits for coprocessor identi�cation and 5 bits for register indexing. Co-

processors are able to interrupt the core by asserting an exception signal. Moreover,

there is a capability for coprocessor interface which can be connected to dissimilar

clock domains [40].

As one can observe in Figure 4.2, instead of access to data memory for peripheral

devices, it is possible to have direct access to PCB by asserting its write and read

signals, pcb_wr and pcb_rd, respectively. Also, COFFEE RISC core provides an

internal interrupt controller which can support twelve external interrupt sources

where four of them are for coprocessors when connected. Moreover, interrupt sources

can be classi�ed by means of CCB registers between 0 to 15 based on priority. The

interrupt is activated by an interrupt signal which is a high pulse on one of the

interrupt lines and then the controller performs priority resolving, switching to an

interrupt service routine and returning from an interrupt service routine, respectively

[5].

Referring to the interface diagram of the COFFEE RISC core shown in Figure 4.2,

boot_sel is high for reading boot address from data bus for �rst executed address by

COFFEE RISC core. In addition, in order to save power in battery powered system,

stall signal can be enabled when the system is in idle mode and there is nothing to

happen. By releasing stall signal, software execution resumes immediately [5].
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4.1.3 Core Pipeline Structure

The COFFEE RISC Core contains six stages pipeline, each of the stages can be

done in a clock cycle, totally in six clock cycles for an instruction. At the end of

each stage, intermediate or �nal results are clocked to the next stage from left to

right. In an ideal case, we can have one instruction per cycle which means that new

instruction enters the �rst stage and the other one completes the last stage without

any stalls. Before talking about de�nition of each stage, let us have a short review

about pipelining. As can be understood from its name, pipelining is a technique

that multiple instructions can be implemented while overlapped in carrying out. So,
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Figure 4.3 E�ect of Pipelining Technique on Execution of a Sequence of Load Instructions
[42]

there is no need to wait for executing each instruction before starting the next one

[41].

Figure 4.3(a) shows the single-cycle design which is slowest one, so, it takes 3×40 ns
or 120 ns for implementing these three instructions. On the other hand, Figure 4.3(b)

depicts that by using pipelining it is possible to have a four-fold improvement over

the single-cycle design.

The COFFEE RISC core pipeline stages are shown in Figure 4.4 and in the fol-

lowing, the task of each stage is summarized. In the �rst stage, Fetch, there are

three operations. A new 32-bit instruction is read from the memory location speci-

�ed by the program counter (PC) and placed in Fetch register. In some cases when

the address is even in the 16-bit mode, a 32-bit double instruction is fetched. Furt-

hermore, the address is checked in PC and an exception will be generated in case of

a violation. After that, the PC address is increased by two or four and loaded back

for next clock cycle.

During the Decode stage, which is the most important one based on control stand-

point, it identi�es an instruction and makes a decision about its performance for

the next stages. In the case of 16-bit decoding mode, the instruction is extended to
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the 32-bit format. In order to make sure that execution condition is right, there is a

particular �eld within the instruction word which speci�es the execution condition.

After evaluation of the condition, if there is any di�erence between pre-evaluated

condition �ags and evaluated execution condition, instruction gets �ushed on the

next rising edge of clock. Furthermore, there is a control section which checks da-

ta dependencies among signals assessed in decode stage and signals decoded from

earlier instruction. All data dependencies could be resolved in COFFEE RISC core

by forwarding the required data once it becomes available. In addition, fetch and

decode stages are stalled in the case that source operand data cannot be forwarded

(not available at the register �le). All other operations like extending immediate

operand and also all jump instructions and conditional branches are executed in

Decode stage. Then register operands are clocked to the Execute register for further

operations.

All kind of executions such as data manipulation, integer addition, shifting, Boolean

and bit-�eld are performed inside the Execute stage. Multiplication instructions can

be implemented at least in two or at most in three execution stages for 16-bit and

32-bit multiplications, respectively. During multiplication operations, intermediate

results are produced for further processing in the second or third execution stages.

In the fourth stage, the condition �ags which are assessed through earlier stages are
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written to the speci�ed condition register and are available for decode stage prior to

written to the condition register bank. It can be performed by forwarding data inside

condition register bank from input to output while the source register and target

register are the same. Moreover, in this stage, coprocessor accesses are achieved and

also address calculation over�ow is checked.

Memory stage is the last one for load (ld) and store (st) instructions, where data

memory is accessed. It should be mentioned that because of the importance of fast

data memory or data cache, pipeline will be stalled in the case of multi-cycle till the

instructions are accomplished in order.

Finally, in the last stage, Write Back, execution gets �nished and result is written

to the selected destination register and data become observable to the decode stage

due to internal forwarding of register �le.

In the COFFEE RISC core implementation, it should be noticed that it is a Re-

gister Transfer Level (RTL) soft core described in VHDL (Very high speed inte-

grated circuit Hardware Description Language) and is able to be portable between

di�erent technologies. The COFFEE RISC core is a general-purpose processing ele-

ment which is suitable for System-on-Chip (SoC) environment and embedded sys-

tems. Furthermore, it is possible to add application-speci�c processing power such as

CGRA accelerators to a COFFEE RISC core which is described in the next chapter

in detail.

4.2 CREMA

CGRAs normally require an area of a few million gates as they contain a large

amount of computational and communication resources. CREMA was introduced as

32-bit CGRA template in order to simplify the instantiation of application-speci�c

CGRAs and computation intensive tasks to work as accelerators with COFFEE

RISC core. The main concept behind CREMA is that designers can instantiate re-

sources which are required for a particular application. Since the run-time recon�-

gurability is the main feature of CREMA, there is an ability to switch the functio-

nality of the PEs at run-time. With compile-time con�gurability each PE supports

just required operations and interconnections which is called mapping adaptiveness

and makes CREMA suitable for many application [4]. In addition, the �nal resource

utilization would be reduced considerably. It should be noticed that mapping adap-

tiveness is a design-time option. The designers can modify the functionality and

routing of the existing PEs in one cycle by switching the context used. It is per-

formed by using the recon�guration memory inside the PE which is composed of
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recon�guration words from di�erent recon�guration patterns. Each con�guration

word includes an operation �eld and address �eld for specifying the task of each PE

and its address, respectively. For a new recon�guration pattern, the con�guration

words are sequentially injected into the array of PEs and distributed along the ho-

rizontal and vertical direction in a pipelined way until they arrive to the correct PEs.

The size of the recon�guration memory depends to the size of the recon�guration

word and the number of contexts for fast switching [4]. Context means the pattern

of interconnection among all PEs and the operations to be performed by the PEs

which can be switched at run-time [31].

As it is shown in Figure 4.5, CREMA is equipped with 32 (4 rows×8 columns)

PEs and (16 rows×256 columns) local memories for increasing the throughput of

the CGRA. It can be seen that there are two I/O bu�ers made of registers and

multiplexers for transferring data between local memories and PEs [44]. Each bu�er

has 16 I/Os and each of them is 32-bit wide. The �rst I/O bu�er distributes the data

from the �rst local memory to the PEs while the second I/O bu�er redistributes the

data from the PEs to the second local memory. The two local memories are working

in �ping-pong� mechanism and they recieve the data to be processed from a Direct

Memory Access (DMA) device [45]. In addition, the con�guration words are loaded
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into the con�guration memories of each PE with the help of same device and using

a pipelined infrastructure [46]. The address of the destination PE is carried by a

header in the con�guration words.

Figure 4.6 depicts that the architecture of CREMA is composed of 3 main parts

i.e., routing for operand selection by using two-input multiplexers, recon�guration

in order to de�ne the functionality and routing of PE by using the con�guration

words and functionality in the PE core which are explained in detail in the following

sections.

4.2.1 PE Core Parameters and Interconnections

All components of the PE core can be seen in Figure 4.7 which can be divided in-

to functional blocks and con�guration control blocks. Each PE receives two input

operands and performs 32-bit integer and �oating-point operations (IEEE-754 for-

mat) [31]. Furthermore, data can be exchanged between PEs through their ports

and multiplexers are inside each PE [4]. A PE consists of a LUT, adder, multiplier,

shifter, immediate register and �oating-point logic. Unlike the two operand regis-

ters which are always active, each of these blocks (dashed borders) are instantiated

only at design-time based on the processing requirements of the applications. Furt-

hermore, there are two more blocks: decoder and output multiplexer. The size of

these blocks has a direct relation with the number of operations that are going to

be performed by each PE. For instance, if there is just one operation, there is no

need to have decoder or output multiplexer, while in other cases, for n number of

operations, the size of decoder and output multiplexer must be 1-to-n and n-to-1,
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respectively. Moreover, there is one bit (con�g) belonging to functionality selection

at run-time [4].
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The Figure 4.8 shows all the possible interconnections between PEs in order to

process data which are coming from the �rst local memory to the second local me-

mory and selected by each multiplexer at run-time. By using this kind of interconnec-

tions, it is possible to process data in optimal way. For example, in order to calculate

the sum of values in an array, designer can use LOOPs while the length of iteration

should be equal to the length of the array and then, transfer the �nal result to the

second local memory. Every PE can accept and process two input operands (32-bit

wide). Totally there are 15 di�erent routing possibilities in three categories i.e., local,

interleaved and global. Local connections are only with the nearest-neighbor PEs

while the global connections are divided into vertical and horizontal connections for

distributing data between PEs. Furthermore, vertical connections are used for loa-

ding the immediate values to the PEs which are required for shift operation. This

placement and routing for an application is performed using an in-house designed

Graphical User Interface (GUI) tool.

4.2.2 CREMA Control Unit

CREMA control unit is a user de�ned technique to exploit di�erent number of

latencies (varied from one to thirty-two) which can be implemented using delay

chains. CREMA control unit is based on two Finite State Machines (FSMs) which
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are read state machine and the write state machine. Both of them are working in

parallel to read the data from one local memory and write in the other in a time-

multiplexed way. The write state machine supports both write cycles and write stalls

which mean writing for a given number of cycles and then disable the writing for a

de�ned number of stalls, respectively [4].

For instance, as it is shown in Figure 4.9, the data stored in a single bank needs to

be processed in parallel. Therefore, an additional step is required for reordering the

data. It can be performed by using a 5-element delay chain and write latency for 5

cycles until the �rst input (x0 ) attains the last delay element.

4.2.3 Process of Application-Speci�c Accelerator Design on

CREMA Platform

CREMA can be used for developing accelerators to COFFEE RISC core for Softwa-

re De�ned Radio (SDR) purposes. Application-speci�c CGRAs are generated from

CREMA template based on user-speci�c input. The computational kernels which are

required to be accelerated using CREMA must be identi�ed by application develo-

per. All application-speci�c accelerators should be designed based on the algebraic

expressions with suitable placement and routing. A given application can be acce-

lerated by using several con�guration pattern. A con�guration pattern speci�es the

operations to be performed by each PE and the interconnection between PEs. It

should be noticed that CREMA generated CGRA accelerator is programmable in

C. The design, program and execution �ow of CREMA is almost same for all applica-

tions. Mapping of the kernels on CREMA can be performed manually by using a

graphical interface and text description, respectively.

In order to design application-speci�c accelerators, the application designer has to

manually de�nes the functionalities of the PEs and routing between them by using

a dedicated tool, called Firetool. Firetool is a GUI which has been written in JAVA

(language) and is used for recon�guration management and �eld-programming of

CREMA [4]. In other words, a set of con�guration patterns for each application can

be speci�ed with Firetool. Each pattern is composed of information related to the

functionality of each PE and the routing between PEs. The GUI of the Firetool for

the context description is composed of 32 PEs in form of a drop down menu. Each PE

has two source operands where they are composed of all possible interconnections

between PEs. Another important part of designing speci�c accelerators by using

CREMA, is de�ning I/O bu�ers which make connections between local memories

and PEs. Once all these steps are performed, the tool creates a set of con�guration
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package that includes VHDL package and a set of C header �les for the run-time

recon�guration.

The con�guration stream is loaded in the con�guration memories of CREMA acce-

lerator by the user-speci�ed program �ow entirely written in C. The program �ow

contains custom function calls which are supported for COFFEE RISC core. After

con�guring the array with a set of contexts, the data must be loaded into the local

memories of CREMA for processing. Then a context must be activated in order to

process data which are in local memory. These steps may be repeated for processing

the previous results or loading new data into the local memories and switching the

contexts until the algorithm completes its execution [3].
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5. DESIGN IMPLEMENTATIONS AND

ALGORITHMS MAPPING

In last two chapters, the basic structure of OFDM systems and platform architectu-

re including analyzing the general characteristics of run-time recon�gurable devices

is explained. Furthermore, it is described in detail how an application-speci�c acce-

lerator could be designed by utilizing CREMA. In this chapter, design and execution

of four blocks of OFDM receiver using CREMA are studied in detail and fully desc-

ribed. As it was explained earlier, a baseband receiver performs digital signal proces-

sing algorithms in order to exploit the received data bits with highest accuracy. First

of all, the whole transceiver algorithms have been implemented using MATLAB to test

the functionality of baseband algorithms and also, the random data symbols using a

chosen constellation based on IEEE 802.11a speci�cations is generated. Afterward,

each block is written in C in order to map the applications platforms. Then accele-

rators are designed and implemented for each block and their output is compared

with the result of MATLAB.

In this experimental work, OFDM data symbols are generated based on 16-QAM and

the channel is modeled with Additive White Gaussian Noise (AWGN) where SNR is

equal to 20 dB. Moreover, it is assumed that the amount of CFO is equal to 40 kHz.

In the following, it can be seen that how an application speci�c accelerator for each

receiver blocks can be designed and implemented in CGRA. Furthermore, ModelSim

is used for simulation purposes and testing the functionality of each accelerator along

with computing the number of clock cycles in terms of COFFEE and execution

time for each. Furthermore, the designed accelerators will be synthesized on Stratix

FPGAs (Field Programmable Gate Arrays).

5.1 Time Synchronization

The �rst block of OFDM receiver is time synchronization which is used in order to

�nd the right position of FFT window. Basically, synchronization in di�erent wire-

less standards requires the calculation of the correlation for determining similarity

between received signal and its delayed version. As it was mentioned before, there
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Figure 5.1 First context for the calculation of the correlations

are two ways to perform time synchronization: using special symbols or cyclic pre�x

correlation method. In this experimental work, the second method is used. Thus,

a correlation is implemented between the received signal and a delayed version of

itself where the amount of delay z−D is equal to the length of cyclic pre�x that is

D = 16 according to the IEEE 802.11a speci�cations. The mapping of an 80-point

correlation algorithm on CREMA is depicted in Figure 5.1 and Figure 5.2. It should

be noticed that these two contexts must be used consecutively. Moreover, they are

completely same in terms of the interconnections among PEs and the operations to

be performed by PEs. However, the only di�erence between them is their I/O buf-

fers. First of all, the received data symbols (the output of IFFT) must be loaded into

the �rst local memory. Based on Equation 2.16, the received data symbol should be

multiplied by complex conjugation of its delayed version. The multiplication of a

complex number and its complex conjugate could be written as

(xi + iyi)(xi+D + iyi+D)∗ = (xixi+D + yiyi+D︸ ︷︷ ︸
RealPart

) + i(xiyi+D − yixi+D︸ ︷︷ ︸
ImaginaryPart

), (5.1)
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Figure 5.2 Second context for the calculation of the correlations

where xi, yi, xi+D and yi+D are equivalent to IFFTi (real), IFFTi (imag), IFFTDi

(real) and IFFTDi (imag), respectively. In order to perform time synchronization

for 80 data samples in one data symbol, 80 correlations are required. As it is mentio-

ned earlier, a shift operation is needed after each multiplication (12 bits in this case).

For each correlation, a sum-of-product of the results of complex multiplications must

be calculated which could be done by utilizing LOOPs, noting that the length of an

iteration should be equal to the length of the array. Otherwise, the delayed version

of received data symbol is shifted by one and the correlation is repeated. This issue

can be solved by using Unregistered-Feed Through (URF) operation. There is a pos-

sibility for us to perform two correlations in parallel in just one context. As can be

observed in Figure 5.1, URF is used in a context in order to shift the delayed version

of received data symbol by one- and two-cycle delay which allows accomplishment

of the next step. Subsequent to each iteration, the �nal result of a sum-of-product is

transferred to the main memory for further processing. In addition, a shifted version

of data is transmitted to the second local memory to execute further correlations

utilizing a same context. Hence, there is no need to transfer back all data samples

between two subsequent correlations and the inputs could be recycled. Once corre-
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Figure 5.3 Two columns of the context for the square modulus

lation is done, another kernel used in the time synchronization should be mapped

on CREMA which is shown in Figure 5.3 and Corri and SMi are representing the

complex result of each correlation and the result of square modulus, respectively.

The square modulus of the complex results is required in order to acquire the maxi-

mum value (time o�set) after the correlation. Thus, the complex result of each

iteration is transferred back from main memory to the �rst local memory and the

sum of the square values of the real and imaginary part could be written in the

second local memory for comparison purposes. It should be mentioned that since

the calculation of the square modulus and the pure modulus is equally bene�cial

for comparison, we just mapped square modulus on CREMA for this purpose. For

instance, if z = a + bi is a complex number, square modulus and pure modulus of

z can be de�ned as (a2 + b2) and (
√
a2 + b2), respectively. For each data symbol,

only one context of square modulus is enough which can be implemented in two co-

lumns. It means that we can operate square modulus for four data symbols by using

all eight columns of one context at once. In addition, it should be considered that

since CREMA is e�cient only for a large amount of data, in some cases is better to

perform square modulus by using the processor instead mapping on CREMA. With

the completion of the implementation of this code, the index of the largest peak is

speci�ed which is equivalent to the start point of FFT window.
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1 int maximum , x, location = 1;

2 maximum = Result [80];

3

4 for (x = 1; x < 80; x++)

5 {

6 i f (Result[x] > maximum)

7 {

8 maximum = Result[x];

9 location = x+1;

10 }

11 }

Program 5.1 C code for the search of maximum value inside an array

Once the calculation of square modulus is �nished, results are transmitted back to

the main memory in order to detect the largest peak and compute the index of time

o�set which is the edge of the �rst FFT window. The search of the largest peak for

each data symbol is executed by the C code in Program 5.1 which is performed in

COFFEE RISC processor software. Subsequent to �nding the time o�set, the data

symbol is transferred to the next block which is Frequency o�set estimation that is

discussed in the next section.

Simulation Results

Out of the simulations that are implemented for time synchronization, mapping of

correlations and square modulus use altogether Three contexts and four I/O bu�ers.

The �rst context is used for loading the immediate values into the PEs which is

required for shift operation. The rest three contexts are utilized for correlations and

square modulus, respectively. The 80-point correlation is performed in only 50 CC

(clock cycles), totally, in 4017 CC for the whole 80 correlations. It should be noticed

that there is an overhead between each correlation due to the control operations

which is composed of context switching, reloading of I/O bu�ers, loading another

con�guration and transferring data from main memory to local memory or vice

versa and also, it is implemented in COFFEE RISC core. The whole performance

of correlations can be performed in COFFEE processor software with 85681 CC by

using nested loops or 12800 CC by using a loop for each correlation separately. It

should be mentioned that in an ideal case, the time o�set could be observed after

only 879 CC. Execution of square modulus will take 225 CC in CREMA, versus

1680 CC in COFFEE RISC core. Then, at the last part of time synchronization,

maximum value along with its location could be found in COFFEE RISC core

software (Program 4.1) and requires 835 CC. Finally, it can be observed that the

whole process of time synchronization can be implemented in 5077 CC by using

both CREMA and processor software.
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Figure 5.4 Context for the multiplication between a signal and its complex conjugation

5.2 Frequency O�set Estimation

As it was mentioned before, carrier frequency o�set occurs in OFDM systems because

of mismatch between the oscillators of the transmitter and receiver that could be

estimated and corrected by using several methods. Based on IEEE 802.11a speci-

�cations, short training symbols might be used in order to estimate the amount of

carrier frequency o�set. For this purpose, according to Equation 2.22, delay and cor-

relation method is utilized where the amount of delay is equal to 16. In other words,

received training symbols must be multiplied by complex conjugation of its delayed

version in order to acquire the phase di�erence between them. Thus, there is need to

160 complex multiplications (equal to the length of short training sequences) that

can be performed via CREMA in just one context.

The �rst context is depicted in Figure 5.4 where short training symbols are loaded

into the �rst local memory along with its delayed version by utilizing DMA from

the main memory of the system. Here SP and SPD stand for short preamble and its

delayed version, respectively. It is considered that this context is the most optimal

implementation of multiplication between complex numbers as all sixteen PEs are

used. Subsequent to multiplication between received signal and its delayed version,

the amount of phase di�erence must be computed in the next step. Hence, the result

of �rst context is transferred back from the second local memory to the main memory
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for further processing.

There are several methods in literature for computing the phase angle of a complex

value. One of these methods is using ATAN function, expressed in radians. Let us

assume that we are going to �nd the phase angle of a complex number like x + iy

where x and y are real and imaginary parts, respectively. The required equation

could be expressed as

z = atan(
y

x
), (5.2)

where z is representing the phase angle of a complex number. Thus, at �rst, an

imaginary part must be divided by the real part and then, phase angle to be com-

puted by utilizing ATAN function. It is feasible to emulate division in software using

CORDIC algorithm ([48], [49], [50]).

CORDIC Algorithms

COordinate Rotation DIgital Computer (CORDIC) is an e�cient algorithm for the

calculation of trigonometric and hyperbolic functions (functions of an angle), inclu-

ding exponential and logarithmic. In addition, it might be used for other purpo-

ses containing complex number multiplication, division, matrix inversion, eigenva-

lue computation, conversion between binary and mixed-radix systems and general

scienti�c computation. CORDIC algorithms could be vital when there is no prede-

�ned hardware multiplier since it is using only addition, subtraction, bit-shift and

lookup table. The reason behind the popularity of CORDIC algorithms is due to

simplicity of its hardware implementation which could be performed using the basic

shift-add operation of the form a± b.2−i.

In this case, we just used CORDIC algorithm in order to execute division operation

in COFFEE RISC processor software. Let us assume that the imaginary part (y)

should be divided by the real part (x ). The division (z ) could be found using the

following C code which is composed of shifted version of x.
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1 for (i = 0; i < MaxBits; i++)

2 {

3 i f (y < 0 || z >= 0)

4 {

5 y = y + x*t;

6 z = z - t;

7 }

8 e l se

9 {

10 y = y - x*t;

11 z = z + t;

12 }

13 t = t >> 1;

14 }

Program 5.2 C code for CORDIC division algorithm

Here the initial value of z is equal to zero. Moreover, since all numbers are repre-

sented in 12-bits format, the initial value of t must be assumed 1 ∗ 212 = 4096. Also,

by increasing the number of iterations (MaxBits), the results increase in accuracy

accordingly. The CORDIC division algorithm is based on rewriting the equation

z = y
x
into the form y − x ∗ z = 0. The value of z is computed by driving t to zero

1 bit at a time (right shift).

Once the division is performed, based on Equation 5.2, the phase angle of a complex

number must be calculated by using the result of division from the previous part.

As it was discussed earlier, there are no prede�ned functions in COFFEE RISC

processor, thus we should implement ATAN function by utilizing another method

such as Taylor series [51]. Taylor series is an expansion of a particular function into

an in�nite sum of terms about a point. A Taylor series of a real or complex-valued

function f(x) could be written as Equation 5.3.

f(x) = f(a) + f
′
(a)(x− a) +

f
′′
(a)

2!
(x− a)2 + ...

=
∞∑
n=0

f (n)(a)

n!
(x− a)n

(5.3)

Moreover, Taylor series could be expanded particularly for di�erent functions like
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ATAN which is expressed as Equation 5.4.

arctan x = x− x3

3
+
x5

5
− x7

7
+ ... for − 1 < x < 1

=
∞∑
n=0

−1n

2n+ 1
x2n+1

(5.4)

Thus, the phase angle of a complex number can be computed using above equation.

In addition, since all numbers are represented in 12-bits format, the precision is not

lost and we are con�dent on the accuracy of the Taylor series.

Once the phase angles of the received data symbols are found, carrier frequency

o�set must be estimated using Equation 2.23 which was explained earlier. Then,

data symbols should be corrected separately based on estimated frequency o�set

using Equation 2.24 where the exponential function is required. Accordingly, Taylor

series expansion of exponential function is needed that could be written as

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ... for − inf < x < inf

=
∞∑
n=0

xn

n!

(5.5)

Considering to the above equation, it is clear that it is just working for integer

numbers, not the complex ones. Hence, Equation 5.5 can be rewritten for a complex

number z as

ez = ex(cos(y) + isin(y)), (5.6)

where z is composed of real part (x ) and imaginary part (y). Meanwhile, Taylor

series is still required in order to expand COS and SIN functions as a sum series

which are depicted in Equation 5.7 and Equation 5.8, respectively.

cos y = 1− y2

2!
+
y4

4!
− y6

6!
+ ... for − inf < y < inf

=
∞∑
n=0

(−1)n

(2n)!
y2n

(5.7)

sin y = y − y3

3!
+
y5

5!
− y7

7!
+ ... for − inf < y < inf

=
∞∑
n=0

(−1)n

(2n+ 1)!
y2n+1

(5.8)

Finally, the received signal must be multiplied by the correction factor that is calcu-

lated above. This multiplication can be mapped in another context which is shown
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Figure 5.5 Context for the complex multiplication
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Figure 5.6 Third context for the frequency o�set estimation

in Figure 5.5. It should be noticed that the previous context of this block (complex

conjugate multiplication) is not suitable for complex multiplication due to the sign

of the imaginary part.

As can be seen in Figure 5.5, the output of IFFT is loaded into the �rst local memory

using DMA along with estimated correction factor (ECF) in order to be corrected

prior to demodulator block (FFT). Once complex multiplication is performed, results
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(RDC standing for Received Data Corrected) are stored in the second local memory.

As it was mentioned before, the shift amount is required after each multiplication

where in this case the shift amount is equal to 12 (since all numbers are represented

in 12 bits). Thus, in the last part, the �nal result could be shifted in a separate

context which is depicted in Figure 5.6.

After executing the operation of frequency o�set estimation, the local memories al-

ready have the data symbols which can be demodulated directly. It should be noticed

that cyclic pre�x must be removed before demodulating the data symbols. Based

on IEEE 802.11a demodulation, 64-point FFT operation is executed to retrieve the

transmitted data symbols in the frequency domain.

Simulation Results

The simulation of the whole frequency o�set estimation block is executed using

both CREMA and processor software. Totally, mapping on CREMA consume alto-

gether four contexts and three I/O bu�ers. The processing of 160-point multiplica-

tion between a complex number and its complex conjugate is performed in only 26

CC using CREMA, against 4338 CC for the COFFEE RISC core. However, due to

the communication overhead, the number of clock cycles is increased to 485 CC.

The second part of frequency o�set estimation, division using CORDIC algorithm,

requires 163 CC for each division. Thus, we need 29357 CC in order to execute 144-

point division (the �rst 16 points are ignored due to their zero values) which is done

in software of COFFEE RISC core. Then, the correction factor could be implemen-

ted by using Taylor series in 5868 CC in software. It should be mentioned that the

amount of n is equal to 8 and 9 based on Equation 5.7 and Equation 5.8 respec-

tively in order to keep precision. The last part of this block is 80-point complex

multiplication along with shift operation that require 30 CC (842 CC with commu-

nication overhead) in CREMA, while, it will take 2338 CC in processor software.

5.3 Channel Estimation

Once data symbols are recovered in demodulator block, the channel frequency res-

ponse must be estimated in the next step. As it was discussed earlier, the transmit-

ted symbols may be distorted in the wireless channel due to di�erent impairments.

Channel estimation can be performed using the long training sequences or the pi-

lots which are already known to the receiver. At the beginning part of this block,

channel impulse response must be calculated based on Equation 2.29 which is the

complex multiplication between the received pilots and inverse of the transmitted

ones. Based on IEEE 802.11a speci�cations, the number of pilots is equal to four for
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Figure 5.7 First context for the channel estimation

each data symbol that is inserted between subcarriers in the transmitter.

As can be observed from Figure 5.7, only four columns of PEs are utilized for the

�rst context of channel estimation while six PEs are unused. Here, RP and ITP

are representing the Received Pilots and Inverse of Transmitted Pilots which are

loaded into the �rst local memory for further processing. This context is the same

as the context of complex multiplication for the frequency o�set estimation, but the

di�erence is that the shift operation is performed in the same context, not in the

separate one. Thus, the channel response (HLS) could be computed and stored in

the second local memory using only one context.

As it was discussed previously, subsequent to computation of the channel impulse

response of pilots, it should be expanded for the rest of the subcarriers by using linear

interpolation algorithm (Equation 2.30) that refers to adding samples between each

two pilots. Linear interpolation could be mapped on CREMA using only one context.

However, it must be executed for real and imaginary parts of the channel impulse

response separately.

First of all, as it is shown in Figure 5.8, the real part is loaded into the �rst local

memory along with the step size which can take sixteen di�erent �xed values speci-

�cally for this case (64-point OFDM). The last two columns of PEs which are not

active in the �rst context are used in order to transfer the result of the real part of



5.3. Channel Estimation 54

HLS0

(Real)

HLS0

(Real)
Mu15Mu15

HLS1

(Real)

HLS1

(Real)
HLS2

(Real)

HLS2

(Real)
HLS3

(Real)

HLS3

(Real)

HLS0

(Real)

HLS0

(Real)
Mu1Mu1

HLS1

(Real)

HLS1

(Real)
HLS2

(Real)

HLS2

(Real)
HLS3

(Real)

HLS3

(Real)

HLS0

(Real)

HLS0

(Real)
Mu0Mu0

HLS1

(Real)

HLS1

(Real)
HLS2

(Real)

HLS2

(Real)
HLS3

(Real)

HLS3

(Real)

-- -- --

×× ×× ××

++

>>>> >>>> >>>>

ChEst15

(Real)

ChEst15

(Real)
ChEst31

(Real)

ChEst31

(Real)
ChEst47

(Real)

ChEst47

(Real)

ChEst14

(Real)

ChEst14

(Real)
ChEst30

(Real)

ChEst30

(Real)
ChEst46

(Real)

ChEst46

(Real)

…
..

ChEst0

(Real)

ChEst0

(Real)
ChEst16

(Real)

ChEst16

(Real)
ChEst32

(Real)

ChEst32

(Real)

Lo
ca

l

M
em

or
y 

2

…
..

Lo
ca

l 

M
em

or
y 

1

+ +

>
>

>
>

>
>

>
> >
> >
>

Figure 5.8 First context for the Linear Interpolation

linear interpolation to the second context through delay operation. Once linear in-

terpolation is completed in Figure 5.9 for both real and imaginary part, the channel

frequency response for all of the subcarriers is transmitted back to the main memory

since it will be required in the last step for implementing channel equalization. After

computing the channel estimates, the demodulated data symbols must be equalized

with respect to Equation 2.31. Channel equalization can be performed by dividing

the received data symbols and their channel response one after another. As it was

mentioned earlier, division operation is not available in COFFEE RISC core and

CREMA. Accordingly, we should use another algorithm in order to perform division

operation which is essential for channel equalization. During the previous section,

frequency o�set estimation, we described and implemented CORDIC algorithm for

division. CORDIC algorithm could be one of the best and most e�cient methods if

there is no knowledge about the values of the numerator and denominator. However,

we made a decision to use another algorithm for two reasons:

• Designing CGRA for CORDIC algorithm is not e�cient due to using iteration

in that.

• Denominator could be assumed a �xed value in this case that is explained in

the following.
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Figure 5.9 Second context for the Linear Interpolation

Newton-Raphson method [52] is an algorithm for �nding the root of an equation.

If there is a given function f(x), the algorithm can be applied to obtain the �rst

approximation of its root which is expressed as

xn+1 = xn +
f(xn)

f ′(xn)
, (5.9)

where n = 0, 1, 2, 3, ... is the number of iteration, x0 is the initial guess for the

root of the function f and f
′
is derivative of a function. Also, there is a possibility

for Newton-Raphson method to be simpli�ed for the division operation purpose. For

example, let us assume that we are going to �nd 1
D
. For this purpose, a function f(x)

should be found which has a zero at x = 1
D
. Thus, a function could be written as

f(x) = 1
x
−D and expressed speci�cally for division based on the above equation as
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xn+1 = xn +
1
xn
−D
− 1
x2
n

= xn + (
1
xn
−D
− 1
x2
n

× −x
2
n

−x2
n

)

= xn − (−xn +Dx2
n)

= 2xn −Dx2
n

= xn.(2−Dxn)

(5.10)

Here D is representing the denominator. In this case, the denominator is a complex

number due to the noisy channel. Hence, it would be simpli�ed to an integer for

further processing using Newton-Raphson method and mapping on CGRA according

to the Equation 5.11 where x + iy, a + ib and a − ib stand for demodulated data

symbols after FFT block, estimated channel response and complex conjugation of

the channel response, respectively.

x+ iy

a+ ib
× a− ib
a− ib

=
(x+ iy)× (a− ib)

a2 + b2
(5.11)

First of all, in order to perform channel equalization, we should map Newton-

Raphson method on CREMA for computing the value of 1
a2+b2

where D is equi-

valent to (a2 + b2) based on Equation 5.10. Here a and b are representing the real

and imaginary part of the channel frequency response which are already computed

and stored in the local memory. Mapping of Newton-Raphson method follows the

same methods demonstrated before for CREMA. The mapping is depicted in Fi-

gure 5.10 and Figure 5.11 which means the whole algorithm could be done in two

di�erent contexts.

The mapping occupies seven and six columns of the �rst and second context, res-

pectively. During the �rst context, the �rst row of PEs performs multiplication in

order to calculate the square values of the real and imaginary parts of the chan-

nel frequency response which are added to each other on the second row. Then,

obtained results must be multiplied by the initial guess (Dxn). In the next stage,

referring to Equation 5.10, 2 is loaded into the local memory along with the results

of the previous context. It is to be noticed that since local memories are only line

readable in CGRAs (to become simpler and faster), the values of X and 2 are loa-

ding along with every column for correct performance. From the second context, it

is apparent that the �rst row of PEs executes preprocessing of data using latency

which is described earlier. Finally, within the last three rows of PEs, the required

shift operations, subtractions and multiplications are implemented and the ultimate
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Figure 5.10 First context for the Newton-Raphson method
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Figure 5.11 Second context for the Newton-Raphson method

result of division ( 1
a2+b2

) is transferred back to the main memory utilizing special

DMA operations.
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Figure 5.12 Sixth context for the channel estimation

In the next stage, the numerator of Equation 5.11 must be computed which is a

complex multiplication between demodulated data symbols and complex conjugation

of estimated channel frequency response. As it is shown in Figure 5.12, data is

transferred back from the main memory to the �rst local memory for performing

complex multiplication in a context where only six columns of its PEs are used.

Once the complex multiplication is implemented, results of division (which is done

using Newton-Raphson method) are transmitted back from the main memory to

the local memory of CREMA for performing channel equalization. To do so, two

more contexts are employed as depicted in Figure 5.13 and Figure 5.14. Within

these two contexts, multiplication and shift operation are used to produce the �nal

product. It should be considered that the shift operation that is required after each

multiplication is executed only during last two stages for the whole results of channel

equalization instead of having a separate context to perform it. Here Resi stands

for equalized received data which is ready for the extracting data bits from it within

the next block.

Simulation Results

Channel estimation could be executed completely with eight contexts and seven I/O
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Figure 5.13 Seventh context for the channel estimation
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Figure 5.14 Eighth context for the channel estimation

bu�ers. The contexts are composed of one context for loading immediate values in

order to perform shift operation, one context for complex multiplication between

the received and the transmitted pilots, one context for linear interpolation, two
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contexts for Newton-Raphson method and three contexts for the last part that is

explained above.

Table 5.1 Cost for di�erent step of Channel Estimation

S/No Execution Steps Clock Cycles (CC)

1 overhead 31 CC
2 stage-1 complex multiplication 5 CC
3 overhead 352 CC
4 stage-2 linear interpolation 30 CC
5 overhead 15 CC
6 stage-3 Newton-Raphson method 30 CC
7 overhead 175 CC
8 stage-4 14 CC
9 overhead 16 CC
10 stage-5 14 CC
11 overhead 12 CC
12 stage-6 14 CC

Total 708 CC

From Table 5.1, it can be observed that the overall processing of channel estimation

requires 708 CC, versus 6274 CC for the COFFEE RISC core.

5.4 Symbols Demapping

Subsequent to performing channel estimation and equalization, we should make

decisions about the received data symbols by using decision boundaries. In other

words, we should specify the most likely transmitted data bits for each received

data symbol. As it was mentioned earlier, there are two ways for making decisions

about the received data bits, namely hard decision and soft decision. Here, the �rst

method is used in order to perform symbols demapping for 16-QAM modulation

scheme with Gray coded bit mapping which is described in the following.

Transmitted data symbols are composed of two independent real baseband signals

(I/Q modulation). Accordingly, the complex plane could be divided into decision

regions where each of them consist of the set of points that are closest to a cer-

tain symbol (Maximum-likelihood detection). In addition, we are using Gray coding

which means all adjoining constellation symbols di�er by only one bit. As can be

observed from Figure 5.15, the complex plane is divided into the In-phase and Qua-

drature parts which are equivalent to real and imaginary parts of received data

symbols, respectively. Each data symbol is composed of four data bits that might

be utilized separately for symbols demapping purpose. Based on the C code written
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I
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0010 0110 1110 1010

In-phase

Quadrature

1

2

3

-1

-2

-3

2-2

Figure 5.15 Decision regions for 16-QAM constellation points

for symbols demapping block using hard decision that is shown in Program 4.3, the

two leftmost bits could be detected in the beginning. Subsequent to dividing the

complex plane into In-phase and Quadrature areas, it can be seen that there are

four zones for each two bits (leftmost and rightmost). Moreover, the �rst two bits

are repeated regularly for each zone of I-axis while the last two bits are same for each

region of Q-axis. As it is depicted in Table 5.2, the four bits in each constellation

point consist of two bits on I-axis and Q-axis, respectively.

As an example, let's suppose that '2.8 + i0.8' is received as a demodulated data

symbol in the receiver (instead of '3 + i1' due to the AWGN channel). First of all,

a decision could be made for the real part and then, imaginary part. Totally, four

states (≥ 2, <2 AND ≥ 0, <0 AND ≥ −2 and <-2) might occur for each real

and imaginary parts. Regarding this example, '2.8' is bigger than '2', thus, '10' are

assigned to the �rst two data bits. At this moment, based on Figure 5.15, received

data bits are just varied between four di�erent values ('1000', '1001', '1011' and

'1010') which are located in the same area of I-axis. In the next step, an imaginary

part could be detected in the same way which is equal to '01' in this case.

Table 5.2 Gray coded constellation mapping for 16-QAM

BIT1 BIT2 I BIT3 BIT4 Q

00 -3 00 +3
01 -1 01 +1
11 +1 11 -1
10 +3 10 -3
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Therefore, the actual transmitted constellation points for each data symbol could be

found by using at least two comparisons in the best case or at most six comparisons

in the worst case.

Simulation Results

The overall processing of symbols demapping block could be executed in at least

1824 CC using COFFEE RISC software for 48 random generated data symbols.

However, it should be noticed that we can not generalize the number of clock cycles

since it depends on the values of data symbols and the number of comparisons for

each of them. Based on our simulations, symbols demapping could be performed for

each data symbol in at least 38 CC (ideal case with just two comparisons) or in at

most 57 CC (worst case with six comparisons).
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1 for (i = 0 ; i < NUMBER_OF_DATA_SYMBOLS ; i++)

2 {

3 // REAL PART

4 i f ( RES_REAL >= 2 ){

5 BIT1[i] = 1;

6 BIT2[i] = 0;

7 }

8 e l se i f ( RES_REAL >= 0 ){

9 i f ( RES_REAL < 2 ){

10 BIT1[i] = 1;

11 BIT2[i] = 1;

12 }

13 }

14 e l se i f ( RES_REAL >= -2 ){

15 i f ( RES_REAL < 0 ){

16 BIT1[i] = 0;

17 BIT2[i] = 1;

18 }

19 }

20 e l se {

21 BIT1[i] = 0;

22 BIT2[i] = 0;

23 }

24 // IMAGINARY PART

25 i f ( RES_IMAG >= 2 ){

26 BIT3[i] = 0;

27 BIT4[i] = 0;

28 }

29 e l se i f ( RES_IMAG >= 0 ){

30 i f ( RES_IMAG < 2 ){

31 BIT3[i] = 0;

32 BIT4[i] = 1;

33 }

34 }

35 e l se i f ( RES_IMAG >= -2 ){

36 i f ( RES_IMAG < 0 ){

37 BIT3[i] = 1;

38 BIT4[i] = 1;

39 }

40 }

41 e l se {

42 BIT3[i] = 1;

43 BIT4[i] = 0;

44 }

45 }

Program 5.3 C code for Symbols Demapping
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5.5 Synthesis Results

Prior to this section, we described the mapping of three blocks of OFDM receiver

using CREMA. In order to evaluate the resource utilization and maximum frequency

of each accelerator, FPGA synthesis results need to be analyzed. Table 5.3 collects

all useful information about the area utilization of each accelerator on an Altera

Stratix-IV EP4SE360H29C2 FPGA device. Moreover, the comparison beteen desig-

ned accelerators is shown in Table 5.4 in terms of synthesis frequency in two di�erent

temperature and three di�erent categories (clock frequency of CREMA, memory and

system). It is clear that the resource utilization and maximum operating frequency

are not similar for di�erent application-speci�c accelerators.

Table 5.3 Synthesis results of the proposed accelerators on Altera Stratix-IV
EP4SE360H29C2 FPGA device

Accelerator Resource Utilization

ALUT Dedicated
logic Regs.

DSP
Block

Logic Uti-
lization

Memory
Bits

Time Synchroniza-
tion

17,149
(6%)

11,872 (4%) 48
(5%)

9% 6,930,040
(37%)

Frequency O�set 19,259 13,460 (5%) 80 11% 6,930,040
Estimation (7%) (8%) (37%)

Channel Estima-
tion

22,446
(8%)

15,129 (5%) 96
(9%)

12% 6,930,488
(37%)

Table 5.4 Synthesis frequencies of accelerators generated on Altera Stratix-IV
EP4SE360H29C2 FPGA device

Accelerator Max Frequency Max Frequency
Slow 85C Model [MHz] Slow 0C Model [MHz]

clk_crema clk_mem clk_sys clk_crema clk_mem clk_sys

Time Synchroniza-
tion

250 164 110 261 168 115

Frequency O�set
Estimation

173 178 118 181 183 124

Channel Estima-
tion

151 185 114 159 190 119

The amount of speed-up for each accelerator should be calculated based on the execu-

tion time which is the total number of clock cycles divided by the clock frequency.

Accordingly, the overall speed-up is the ratio of old execution time to the new execu-

tion time for a system or the ratio of execution times for two di�erent systems. As
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it can be observed from Table 5.5, the execution on CREMA gives a signi�cant

speed-up in comparison with COFFEE RISC software. On the other hand, as it was

discussed earlier, the amount of speed-up would be reduced because of the com-

munication overhead. It should be mentioned that the clock frequency of COFFEE

RISC core is equal to 100 MHz [5].

Table 5.5 Performance comparison in clock cycles between COFFEE RISC core software
and CREMA

Accelerator Application COFFEE
Software

CREMA Speed-
up

(clk
cycles)

(clk
cycles)

Time Synchroniza-
tion

Correlation 12800 4017 8×

Time Synchroniza-
tion

Square Modulus 1680 225 18.6×

Time Synchroniza-
tion

Overall 15315 5077 7.5×

Frequency O�set Es-
timation

160-point complex mul-
tiplication

4338 485 15.5×

Frequency O�set Es-
timation

80-point complex mul-
tiplication along with shift
operation (two contexts)

2338 842 4.8×

Channel Estimation Overall 6274 708 13.4×
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6. CONCLUSION

In this thesis work, application-speci�c accelerators were designed and implemented

for OFDM WLAN baseband receiver while following the IEEE 802.11a standard

speci�cations. In this case, the algorithms implemented are time synchronization,

frequency o�set estimation, channel estimation and symbols demapping. The map-

ping of time synchronization block including the calculation of correlations and

square modulus on CREMA shows a speed-up of 8× and 18.6×, respectively in

comparison with its implementation in COFFEE RISC software. The last part of

time synchronization, the maximum value detection, is performed using software

in 835 CC. From the implementation of frequency o�set estimation block, it could

be observed that there is no possibility for CREMA to perform the whole proce-

dure without cooperating with processor software. Thus, the �rst part (160-point

complex multiplication) and the last part (80-point complex multiplication) of this

block could be mapped on CREMA which gives us 15.5× and 4.8× speed-ups res-

pectively in comparison with processor software of COFFEE RISC core. On the

other hand, since there are no prede�ned functions like division operation or ATAN,

there is a need of using other algorithms. Hence, the second part of frequency o�set

estimation, division operation via CORDIC algorithm, requires 163 CC for each di-

vision which is executed using processor software. In addition, the correction factor

is implemented by using Taylor series in 5868 CC in processor software. The map-

ping of channel estimation block on CREMA is executed by utilizing eight contexts

and seven I/O bu�ers in total. Considering the speed-ups achieved by designing the

application-speci�c accelerator for channel estimation block, it gives us an overall

speed-up 13.4× versus the COFFEE RISC core. The overall processing of symbols

demapping block could be executed at minimum in 38 CC or in at most 57 CC

using COFFEE RISC software. Considering the synthesis on FPGA, the maximum

operating frequencies for the �rst three implemented blocks of OFDM receiver are

approximately 250, 173 and 151 MHz at 85◦C and 261, 181 and 159 MHz at 0◦C

and 900mV. Furthermore, their resource utilizations are equal to 9%, 11% and 12%,

respectively.

From the simulation results, it can be concluded that the accelerated implementation

of wireless communication algorithms gives speed-up by exploiting CREMA architec-
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ture's inherent parallelism. Taking into account the implemented application-speci�c

accelerators for OFDM receiver, it is clear that other applications especially ones

belonging to digital signal processing could also be mapped using the CREMA plat-

form. Presently, many issues in the design of application-speci�c accelerators using

template-based CGRA remain to be resolved. In future, the algorithms mentioned in

this thesis could be implemented on a scaled-up version of CREMA like AVATAR or

SCREMA which will give more speed-up and performance improvement. Moreover,

a higher number of FFT size for OFDM-based communication systems can be as-

sumed for the designed accelerators. The design of application-speci�c accelerators

can be extended for other intensive kernels related to SDR.
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