

TIIA LEUHU

SENTIMENT ANALYSIS USING MACHINE LEARNING

Master’s thesis

Examiner: University lecturer Heikki
Huttunen Examiner and thesis ap-
proved by the Academic Board on
21 April 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250163020?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TIIA LEUHU: Sentiment analysis using machine learning
Tampere University of Technology
Master of Science Thesis, 54 pages, 0 Appendix pages
May 2015
Master’s Degree Programme in Signal Processing
Major: Multimedia
Examiner: university lecturer Heikki Huttunen

Keywords: sentiment analysis, supervised learning, pattern recognition, data
mining, naive bayes, random forest, k-nearest neighbor, twitter

In recent years, social media and TV-production has formed a strong link between each

other. The most popular social media platform in TV-industry is Twitter, where over a

million tweets are shared in one day. Tweet content is feedback straight from the view-

ers, and might include more valuable information than individual surveys. Going

through millions of tweets is hard or impossible manually. This thesis studies, how to

teach a machine by supervised manner to analyze tweets. Machine analyzes sentiments

based on the features that tweets include.

The main goal of this thesis is to clarify how the content can be received, prepared, ex-

tracted and classified. The study indicates that sentiments can be caught from Twitter

data using mathematical patterns.

The thesis is divided into 5 chapters. Chapter 1 is the introduction for the sentiment ana-

lyzing with machine learning capabilities. Chapter 2 is the literature study part, where

elements and techniques are explored. Chapter 3 is the implementation part, where se-

lected classification methods and techniques for text data are specified. Chapter 4 co-

vers results and chapter 5 finishes the work with conclusions.

ii

TIIVISTELMÄ

TIIA LEUHU: Tunneanalyysi koneoppimisen avulla
Tampereen teknillinen yliopisto
Diplomityö, 54 sivua, 0 liitesivua
Maaliskuu 2015
Signaalinkäsittelyn diplomi-insinöörin tutkinto-ohjelma
Pääaine: Multimedia
Tarkastaja: yliopiston lehtori Heikki Huttunen

Avainsanat: tunneanalyysi, ohjattu oppiminen, hahmontunnistus, tiedon louhin-
ta, naive bayes, random forest, k-nearest neighbor, twitter

Viime vuosina sosiaalinen media ja TV-tuotanto ovat muodostaneet vahvan linkin tois-

tensa välille. Suosituin media-alusta keskustelulle TV-tuotannossa on Twitter, missä

vaihdetaan päivittäin yli miljoona twiittiä. Twiittien sisältö on suoraa palautetta katsojil-

ta, joiden sisältö voi olla arvokkaampaa kuin yksittäiset mielipidekyselyt. Miljoonien

twiittien manuaalinen läpikäyminen on vaikeaa tai lähes mahdotonta. Tämä diplomityö

tutkii, kuinka opettaa kone analysoimaan valvotusti twiittejä. Kone analysoi twiittien

sisältämien piirteiden avulla, millaisia tunnetiloja twiitit sisältävät.

Diplomityön tavoite on selvittää kuinka saadaan hankittua datasisältöä, kuinka se esikä-

sitellään, irrotetaan ja luokitetaan. Tutkimus osoittaa, että tunnetila voidaan irrottaa

Twitter datasta käyttämällä matemaattisia kaavoja.

Diplomityö on jaettu 5 osaan. Kappale 1 sisältää johdantoa koneoppimisen mahdollis-

tamaan tunneanalyysiin. Kappale 2 on kirjallisuusosio, jossa käydään läpi elementit ja

tekniikat. Kappale 3 on toteutuskappale, jossa avataan valitut tekniikat ja toimintamalli

toimivan analysaattorin rakentamiseen. Kappale 4 pitää sisällään työn tulokset sekä ana-

lysoinnin ja kappale 5 päättää työn tiivistelmään.

iii

PREFACE

Studying at Technical University of Tampere has offered a lot. Multimedia as a major

was the right choice and even though all the hard work, I have enjoyed every bit of it.

This thesis is written towards the interest of pattern recognition methods, machine learn-

ing and improving interactivity between TV-content and viewers.

I would like to say thank you for all supportive people around me during these four

years. Thanks go also for Demola, Eyeworks, and Heikki Huttunen.

Now it is time for a self-five.

Tampere, 20.05.2015

Tiia Leuhu

iv

CONTENTS

1. INTRODUCTION .. 1

2. THEORY .. 5

2.1 Feature extraction from text ... 8

2.1.1 Word count features ... 8

2.1.2 TF-IDF features.. 10

2.2 Feature selection ... 12

2.2.1 Select k-Best .. 13

2.2.2 Forward Selection .. 14

2.2.3 Recursive feature elimination .. 15

2.2.4 LASSO ... 16

2.3 Classification .. 17

2.3.1 Random forest .. 20

2.3.2 K-Nearest Neighbor ... 22

2.3.3 Naïve Bayes ... 23

2.3.4 Comparison between above algorithms ... 25

2.4 Validation / Evaluation... 26

3. IMPLEMENTATIONS ... 28

3.1 Data retrieval .. 29

3.2 Lexicon based sentiment classification .. 32

3.3 Learning based sentiment classification ... 33

3.4 Feature extraction ... 34

3.5 Feature selection ... 35

3.6 Classification .. 38

3.6.1 Random forest .. 41

3.6.2 K-Nearest Neighbor ... 42

3.6.3 Naive Bayes ... 43

4. RESULTS ... 44

5. CONCLUSIONS ... 51

REFERENCES .. 53

v

LIST OF SYMBOLS AND ABBREVIATIONS

Accuracy the proportion of true results (both true positives and true negatives)

among the total number of cases examined

API application programming interface

Bagging the essential idea in bagging is to average noisy but approximately

unbiased models, and hence reduces the variance, see bootstrap ag-

gregating

Bias error from erroneous assumptions in the learning algorithm

Bootstrap

aggregating also called bagging, a machine learning ensemble meta-algorithm

designed to improve the stability and accuracy of machine learning

algorithms used in statistical classification and regression

Confusion matrix a specific table layout that allows visualization of the performance

of an algorithm, used typically in supervised learning

Corpus text corpus (in linguistics), a large and structured set of texts

Eyeworks a production company behind SuomiLOVE

Feature vector an n-dimensional vector of numerical features that represent some

object

Finnish a part of the Finno-Ugric branch of the Uralic language family

Fisher's criterion a classification method that projects high-dimensional data onto a

line and performs classification in this one-dimensional space

where the projection maximizes the distance between the means of

the two classes while minimizing the variance within each class

Hyper surface a generalization of the concept of hyper plane

i.e. identically distributed

IDE an integrated development environment

Logistic regression type of probabilistic statistical classification model

OAuth used to connect users to Twitter and sending secure, authorized

requests to the Twitter API

Over fitting happens when a machine learning algorithm captures the noise of

the data

Precision the proportion of the true positives against the entire positive results

(both true positives and false positives)

Sparse matrices used in arithmetic operations: they support addition, subtraction,

multiplication, division, and matrix power

SuomiLOVE TV-format where 100 love stories are told by a 100 love songs

Twitter micro blogging service that allows people to communicate with

short 140-character messages that roughly correspond to thoughts

or ideas

Under fitting happens when high bias causes an algorithm to miss the relevant

relations between features and target outputs

Valid a measurement system is valid if it is both accurate and precise

Variance error from sensitivity to small fluctuations in the training set. High

variance can cause over fitting: modeling the random noise in the

training data, rather than the intended outputs.

the # symbol, called a hashtag, is used to mark keywords or topics

in a Tweet.

1

1. INTRODUCTION

TV culture has changed during last year’s when social media has become an important

part of it. Most of the discussion takes place on social networks and TV companies want

to make use of it. When adding interactivity between TV and viewers, social media

forms a dialogical connection. Getting live feedback from the audience is valuable and

it should be exploited somehow. One alternative is to analyze sentiments from received

social media texts. For example, by mining Twitter data, tweets, feelings and opinions

about the live TV content can be extracted. Results can be then expressed in graphics

and numbers in real time.

The reason for analyzing and discovering knowledge from social media texts lies be-

hind the big data revolution. Data streams flow fast and people have the ability and

tools to analyze the content. Discovering knowledge from the data is also called data

mining. Goal of the data mining is to extract information from a data set using machine

learning algorithms. Extracted information is then analyzed and transformed into valua-

ble and understandable form. In today’s business environment, data mining possess

great importance.

People use social media for different reasons. Whether the reason is that they want to be

heard or satisfy the curiosity, they are using it. In 2014 there were 64 000 registered

Finnish users in Twitter and 40% of Finnish citizens use Facebook. People want to write

and read updates in social media easily and at once. It is a way to connect and engage

with other people, share ideas, observations and experiences, ask questions, to be heard,

and feel importance. People are curious about the world and how to organize and ma-

nipulate it.

Because of the need and interest towards sentiment analysis, Demola Tampere started a

project where the goal was to create an analysator for tweets. Project started by imple-

menting a sentiment analysis with a lexical approach. The lexical project was imple-

mented for YLE where a football match between Finland and Hungary was analyzed.

Due to certain factors, the project continued later under different circumstances and

approach for sentiment analysis changed to learning based method. Sentient analysator

using machine learning algorithms was for a TV-show called SuomiLOVE.

SuomiLOVE was a new kind of TV format where 100 love stories are told by a 100

love songs. Love is not just about romantic, thus stories tell about friendship, family or

being a fan. Stories include winning the fears, unbelievable luck, tough counting on life,

deep grief and great joy. SuomiLOVE goes deep and opens tear channels, but also

2

brings happiness and laugh. Songs in stories varies from classics to newest hits. The

mission was to analyze what kind of emotions people feel when watching the show and

whom artist, story or song gets the most feelings and tweets.

As a social media platform Twitter allows you to keep up with the latest happening of

any other user even when you don't know the other user even exist. This kind of media

channel suits well for TV and for opinion mining. Some social media platforms like

Facebook and LinkedIn require the mutual acceptance of a connection between users.

Twitter gives boundless opportunities to satisfy human’s curiosity. When analyzing,

tweet must contain a hashtag or a word, which allows grouping and searching similar

messages.

Hashtag became a style for Twitter posts during 2009-2010 and has been used in a mass

broadcast media promoting, purchasing, event promotion, consumer complaints and

sentiment analysis. Hashtags reveals the sentiment an author attaches to a statement. It

can be the state of mind, statement to make a tweet more powerful or to make it sarcas-

tic. Nowadays almost every popular social media platform uses hashtags in their ser-

vice.

Sentiment analysis from tweets (text data) is a natural language processing (NLP) task

that includes pointing out the writers feeling about products, services or specific topic.

A sentiment analysis determines the response of a user of a group of users on a topic

and categorizes opinions as positive, negative or neutral. Natural Language Processing

means computer manipulation of natural language. NLP is also known by the name of

Computational Linguistics. As simplest NLP can be, counting word frequencies to

compare writing styles or in more complex way, understanding complete human utter-

ances. NLP in sentiment analysis can be done for example using Natural language

Toolkit (NLTK).

Analyzing sentiment from the tweets has been done before this work. Most of them are

done in English and there was no Finnish sentiment analysis tool for this kind of pur-

pose when the project started. Today, there are few Finnish companies offering senti-

ment analysis for Twitter data. Researches and documents about data mining, sentiment

analysis and machine learning are available in great amount, and this thesis delves into

decision to make analysis using scikit-learn and NLTK with Python. Different tech-

niques and algorithms to make a sentiment analysis were tested during the project and

the best working algorithms were chosen for the analysator.

Sentiment analysis can be done in three ways. One is a lexicon-based technique where a

dictionary is used to perform entity-level sentiment analysis. This technique uses dic-

tionaries of words annotated with their semantic orientation (polarity and strength) and

calculates a score for the polarity of the document. Usually method gives high precision

but low recall. The second way to do sentiment analysis is a learning based technique,

3

which requires creating a model by training the classifier with labeled examples. This

means gathering a dataset with examples for each class, extract features/words from the

examples and then train the algorithm based on examples. The third method for senti-

ment analysis is a linguistic analysis, which in contrast, exploits the grammatical struc-

ture of text to predict its polarity, often in conjunction with a lexicon. For instance, lin-

guistic algorithms may attempt to identify context, negations, superlatives and idioms as

part of the polarity prediction process [15].

Choosing the right method depends on the application, domain and language. Lexicon

based techniques enables achieving good results when using large dictionaries. Learning

based techniques deliver good results when obtaining data sets and training. Main dif-

ference selecting to use a statistical technique or a syntactic one is following: Syntactic

technique uses rules of the language in order to detect the verbs, adjectives and nouns.

Syntactic technique may achieve better accuracy, but is heavily depending on the lan-

guage of the document and the classifiers can’t be ported to other language. Statistical

techniques use probabilistic background and focus on the relations between the words

and categories. When comparing statistical and syntactic techniques, statistical method

benefits over the syntactic ones, by making translation into another language easy. Us-

ing statistical technique in other language is possible with minor or with no adaptations.

Quite good results can be achieved when using machine translation of the original data

set [17].

When making analysator in Finnish, straight converting from English to Finnish is im-

possible. In Finnish language, there are 200 morphological derivations in linguistics and

words can mean two or even more things. For example, word ‘pöllö’ means an owl and

stupid, word ‘kuusi’ means number six and a spruce. The Finnish alphabet is based on

the same Latin alphabet used in English, plus three vowels with diacritics which are

placed after z, å, ä, ö. Grammar between English and Finnish has some same basics, for

example Subject-Verb-Object word order, but in Finnish, it allows much more flexibil-

ity in the placement of elements in a sentence. Two further areas of difference result in

negative transfer. In Finnish, there are no separate pronouns for he and she, and Finnish

does not use the definite or indefinite article.

What comes to vocabulary, even though the languages have the same letters, there are

no cognates since the languages are from distinct language families. Even words that are

imported into Finnish are transcribed so that they lose their familiarity. For example, the

English word crazy becomes ‘kreisi’ in Finnish. Making vocabularies with different

values is time spending even though vocabularies are available. This is one of the rea-

sons that machine learning algorithms were used in the final version of the analysator.

Either way, in the beginning, manual analyzing and labeling the tweets is mandatory.

One of the difficult things in any language is sarcasm. Even some humans can't under-

stand it so how to teach a machine to be aware of sarcasm.

4

Automatic recognition, description, classification, and grouping of patterns are im-

portant problems in this work. A pattern has been defined [19] as “opposite of chaos; it

is an entity, vaguely defined and that could be given a name”. For example, in this work

a pattern is the way how a tweet is written and what kind of emotions it includes. Given

a pattern, its recognition/classification may consist of supervised, unsupervised or semi-

supervised classification. This study concentrates to supervised learning method and the

best algorithms for text (tweets) analyzing in Finnish.

Thesis consists of 5 main chapters starting with an introduction. Section 2 covers the

theory part of the work including feature extraction, feature selection and classification.

Section 3 covers the implementation part, where the chosen methods are explained and

demonstrated with a help of a block diagram. Section 4 covers the results and the final

chapter number 5 covers discussion and conclusions.

5

2. THEORY

This section describes the theoretical principles and methodologies used in the imple-

mented text classification. The objective of theory section is to designate the most rele-

vant factors behind the machine learning when making sentiment analysis from text

data. Machine learning in general investigates how computers can learn based on data

and this is done so that people could more efficiently use available data. The machine

needs to learn how to automatically recognize even complex patterns and make intelli-

gent decisions based on data. In text classification task, this involves feature extraction,

feature selection and classification.

Before going into text classification process, we look into knowledge discovery process,

demonstrated in Figure 1 [4] as an iterative sequence. First process in knowledge dis-

covery is data cleaning, where the noisy and inconsistent data is removed. After data

cleaning, only usable data material should be left. Data integrations can be done by

combining multiple data sources. When having a combined data mass, data selection

can be performed, where the relevant data for the analysis is retrieved from the data-

base. For the selected data, a data transformation is performed, where the data will be

transformed and consolidated into appropriate forms for mining.

The essential part of the process follows data selection. This is called data mining,

where intelligent methods are applied to extract data patterns. After discovering pat-

terns, a pattern needs evaluation. The purpose is to identify the truly interesting patterns

representing knowledge based on interestingness measures. At the end of the process, a

knowledge presentation can be visualized and use knowledge representation techniques

to represent mined knowledge for users.

6

Figure 1. Steps to mine knowledge from the data. [4]

The scope of this thesis concentrates on the data mining step, where studying the text

classification process: how to divide text segments to categories automatically. The text

classification pipeline is illustrated in Figure 2, where the recognition system for text

and images is split into two modes: training (learning) and classification (testing). In the

training mode, the feature extraction and selection modules find the appropriate features

for representing the input patterns and the classifier is trained to partition the feature

space. The feedback path allows a designer to optimize the preprocessing and feature

extraction and selection strategies. In the classification mode, the trained classifier as-

signs the input pattern to one of the pattern classes under consideration based on the

measured features.

7

Figure 2. Model for statistical pattern recognition.

Distinction between feature selection and extraction is important. Feature extraction is

related to dimension reduction, where the large input data to an algorithm is trans-

formed into a reduced set of features. The term feature selection refers to algorithms

that select the best subset of the input feature set. In the literature, these two terms are

used interchangeably, but means different stages of the classification process. Feature

extraction normally precedes feature selection, because first, features are extracted from

the data and then some of the extracted features with low discrimination ability are dis-

carded.

A term statistical pattern recognition can be used to cover all stages from problem for-

mulation and data collection through to classification, assessment of results and inter-

pretation. The decision making process in statistical pattern recognition can be summa-

rized as follows: A given pattern is to be assigned to one of c categories 1,2, 𝑐 based on

a vector of d feature values 𝑥 = (𝑥1, 𝑥2, 𝑥𝑑). The features are assumed to have a proba-

bility density or mass (depending on whether the features are continuous or discrete)

function conditioned on the pattern class.

Each pattern is a point in a d-dimensional space. Goal is to choose features that allow

pattern vectors belonging to different categories to occupy compact and disjoint regions

in a d-dimensional feature space. The goal is to make the feature set effective, so that

patterns from different classes can be separated. From each class a set of training pat-

terns is needed, because the objective is to establish decision boundaries in the feature

space with separate patterns belonging to different classes.

The decision boundaries are usually determined by the probability distributions of the

patterns belonging to each class, which must either be specified or learned. In statistical

classification decision boundary is a hyper surface that partitions the vector space into

number of sets (number of classes), one for each class. Decision boundaries for classifi-

cation can be outlined also using a discriminant analysis-based approach. In this ap-

proach, a parametric form of the decision boundary is specified and then the best deci-

sion boundary of the specified form is found based on the classification of training pat-

terns. This kind of boundaries can be constructed using for example some loss function

to be minimized.

8

Assumptions about the nature of the training data can be very general or weak by most

machine learning algorithms. It is typical that they require large amounts of training

data to learn accurate classifiers. This problem can be solved by exploiting prior

knowledge to eliminate from consideration classifiers that are not consistent with the

prior knowledge [2]. This leads to learning algorithms that may be able to learn from

very few training examples. It should be remembered that introducing prior knowledge

involves a risk. If using incorrect knowledge, all accurate classifiers will be eliminated

from consideration by the learning algorithm. Prior knowledge introduces bias into the

learning process, and it is important that this bias is correct.

2.1 Feature extraction from text

Feature extraction consists of transforming arbitrary data, such as text or images, into

numerical features usable for machine learning. Feature extraction starts with a dimen-

sionality reduction to an initial set of measured data by building derived values about

features that are informative and non-redundant. When the algorithm receives too large

input data, that is suspected to be redundant, it can be transformed into a reduced set of

features, so called feature vectors. This is the process of feature extraction and can be

called vectorization. Extracted features contain the relevant information from the input

data and will be used for further means instead of the complete initial data.

Feature extraction can be done for text and image data sets, in a format supported by

machine learning algorithms. Because feature extraction reduces the amount of re-

sources required to describe a large data set, performing analysis of complex data con-

tains some problems. For example, when having a large number of variables, algorithm

requires a large amount of memory and computation power.

2.1.1 Word count features

Typically, machine-learning algorithms are defined in terms of numerical vectors. This

is because the raw data, a sequence of symbols cannot be fed directly to the algorithms.

There are different ways to extract numerical features from text content. One choice is

to use Bag of Words representation, which is a specific strategy using tokenization,

counting and normalization. In this representation, documents are described by word

occurrences while ignoring completely the relative position information of the word in

the document.

Bag of Words first tokenize the strings and gives an integer identification for each pos-

sible token, for example using white spaces as token separator. Then it counts the occur-

rences of tokens in each document and finally normalizes and weights importance of

tokens that occur in the majority of samples or documents. In this scheme, each individ-

ual token occurrence frequency is treated as a feature. The vector including all of the

token frequencies for a given document is considered a multivariate sample. Data for

9

training can be represented by a matrix with one row per document and one column per

word occurring in the corpus.

For example, if we tokenize and count word occurrences of a text documents: [‘this is

my first tweet.’ 'This is my second tweet.’ 'And the third one.’ 'Is this my first tweet?'].

Each term found by the analyzer during the fit is assigned a unique integer index corre-

sponding to a column in the resulting matrix. This gives us now ['and', 'first', 'is', 'my'

'one', 'second', 'the', 'third', 'this', 'tweet'].

Tokenization algorithm mentioned above needs several preliminary tests to find the best

algorithmic configuration. When tokenizing text, one choice is to use n-grams frame-

work. N-gram, (also called shingles) is a contiguous sequence of n items from a given

sequence of text or speech. Items for n-gram can be in case of text, letters, words or

base pairs. The number of n should not be too big. In sentiment analysis, using 2-grams

or 3-grams increases the number of keyword combinations and can hurt the results. De-

cision to take multiple occurrences of the words into account, it should be remembered

that the number of occurrences of the word in the text does not make much of a differ-

ence. Binarized versions of the algorithms perform better than the ones that use multiple

occurrences [17].

If you want to form 2-grams, in other words, bigrams, you define n-gram range for the

vectorizer. For example, unigram vectorizer would analyze sentence Sentiment analysis

is fun!' as: ['sentiment', 'analysis', 'is', 'fun'] but using bigram, the vectorizer gives you

['sentiment', 'analysis', 'is', 'fun', 'sentiment analysis', 'analysis is', 'is fun']. This can make

a huge difference in some languages, like in Finnish. For example, when trying to solve,

if a text includes an opinion from two possible choices the word just in front of another

word can make a huge difference. In Finnish 'pärjää' (cope) and 'kyllä pärjää' means

positive and 'ei pärjää' negative opinion. For this reason we need to use bi-grams or tri-

grams for analyzing and consider carefully which words to include to the stop words

list.

When extracting features from text, there usually are also not relevant words included in

the data set. These irrelevant words come from the tokenization algorithm, and should

be erased from the models feature list, to make a model more efficient. This is done by

using a string or list of stop words in feature extractor. There are ready-made lists avail-

able for some languages but not for all. Usually list includes words that are not relevant

to classify. Stop-words can make a big difference in classification and should be think

through carefully.

After the input documents are indexed and the initial word frequencies computed, trans-

formations can be performed to summarize and aggregate the information that was ex-

tracted. Generally, the frequencies of a word or term reflect on how important or salient

a word in each document is. Words that occur with great frequency are usually better

10

descriptors of the contents of specific document. However, the word counts themselves

should not be assumed proportional to importance as descriptors of the documents. For

example, if a word 'työkalu' (tool) occurs once in a document 𝐴, and four times in a

document 𝐵, it is not necessarily reasonable to conclude that this word is four times as

important a descriptor of document 𝐵 as compared to document 𝐴. A common trans-

formation of the raw word frequency counts (𝑤𝑓) is to compute:

𝑓(𝑤𝑓) = 1 + 𝑙𝑜𝑔(𝑤𝑓), 𝑓𝑜𝑟𝑤𝑓 > 0.

This transformation will weaken the raw frequencies and their affect to the results of

subsequent computations. A simpler transformation can be used to enumerate whether a

term is used in a document. This simpler version is called binary frequency, defined by:

𝑓(𝑤𝑓) = 1, 𝑓𝑜𝑟𝑤𝑓 > 0.

Here the resulting document-term matrix contains only 𝑜𝑛𝑒′𝑠 and 𝑧𝑒𝑟𝑜′𝑠, which indi-

cate the presence or absence of the respective words. Document-term matrix describes

the frequency of terms that occur in a collection of documents. However, like in previ-

ous transformation, this will also weaken the effect of the raw frequency counts on sub-

sequent computations and analyses.

Another issue to consider more carefully and reflect in the indices used in further anal-

yses is the relative document frequencies (𝑑𝑓) of different words. For example, a word

'luulen' (I think) may occur frequently in all documents, while another word such as

'rakastan' (I love) may occur only in a few. A common and useful transformation that

reflects both the specificity of words (document frequencies) and the overall frequencies

of their occurrences (word frequencies) is inverse document frequency (for the 𝑖'th word

and 𝑗'th document):

𝑖𝑑𝑓(𝑖, 𝑗) = {
0 𝑖𝑓 𝑤𝑓𝑖𝑗 = 0

(1 + log(𝑤𝑓𝑖𝑗))𝑙𝑜𝑔
𝑁

𝑑𝑓𝑖
 𝑖𝑓 𝑤𝑓𝑖𝑗 ≥ 1

 (1)

In above formula (1) 𝑁 is the total number of documents; 𝑑𝑓𝑖 is the document frequency

for the 𝑖'th word.

2.1.2 TF-IDF features

In text classification, a text document may partially match many categories. Finding the

best matching category for the text document can be done with the term frequen-

cy/inverse document frequency (TF-IDF) approach [13]. TF-IDF is a numerical statistic

that is intended to reflect how important a word is to a document in a collection or cor-

pus. TF-IDF has found good use in document classification and clustering as it original-

ly is a term weighting scheme for information retrieval. In text classification, it weights

11

each word in the text document according to how unique it is. The TF-IDF value in-

creases proportionally to the number of times a word appears in the document and cap-

tures the relevancy among words, text documents or categories.

Example of term frequency could be having a set of Finnish tweets from which wanting

to determine, what tweet is most relevant to the query 'Aivan älyttömän hyvä' (totally

awesome). A simple approach is to first eliminate the tweets that do not contain all three

words 'aivan', 'älyttömän', 'hyvä', but still several tweets are left. To further distinguish

them, we count the number of times each term occurs in each tweet and sum them all

together. The number of times a term occurs in a document is called its term frequency.

The term frequency 𝑡𝑓(𝑡, 𝑑) is simple when choosing to use raw frequency of a term in

a tweet. For example, the number of times that term t occurs in a tweet 𝑑. If we denote

the raw frequency of 𝑡 by 𝑓(𝑡, 𝑑), the simple 𝑡𝑓 scheme is 𝑡𝑓(𝑡, 𝑑) = 𝑓(𝑡, 𝑑).

If the tweet contains a common term for example 'aivan' (totally), this will incorrectly

emphasize tweets that happens to use word 'aivan' more frequently, without giving

enough weight to the more meaningful terms 'älyttömän' (ridiculously) and 'hyvä'

(good). This is an example of inverse document frequency. The term 'aivan' is not a

good keyword to distinguish relevant and non-relevant tweets and terms, unlike the less

common words. Hence, an inverse document frequency factor is incorporated which

diminishes the weight of terms that occur very frequently in the document set and this

increases the weight of terms that occur rarely.

The inverse document frequency is a measure of how much information the word pro-

vides. In other words, is the term rare or common in all tweets. This measure is loga-

rithmically scaled fraction of the tweets that contain the word, and is obtained by divid-

ing the total number of tweets by the number of tweets containing the term, and finally

taking the logarithm of that:

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑∈𝐷:𝑡∈𝑑}|
 . (2)

In above formula (2), 𝑁 is the total number of documents in the corpus, denominator is

the number of documents where the term 𝑡 appears. If the term is not in the corpus, this

will lead to a division-by-zero. For this reason, it is common to adjust the denominator

to 1 + denominator.

Using TF-IDF instead of raw frequencies of occurrence of a token in a document gives

opportunity to scale down the impact of tokens that occur very frequently. Frequently

occurring tokens are less informative than features occurring more rarely in the training

corpus.

Hereby the TF-IDF is calculated as:

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡, 𝐷). (3)

12

The effect of this (3) is that terms with zero 𝑖𝑑𝑓, i.e. which occur in all documents of a

training set, will not be entirely ignored. High term frequency will give high weight in

TF-IDF and low tweet frequency of the term in the whole collection of tweets. This

means that weights tend to filter out common terms. Ratio inside the IDF's log function

is always greater or equal to 1; the value of TF-IDF is greater or equal to 0. When a

term appears in great amount of tweets, the ratio inside the logarithm approaches 1, and

brings the IDF and TF-IDF closer to 0.

2.2 Feature selection

After feature extraction the next important step is feature selection, which is essential to

successful data mining. It is one of the most important parts of the text data prepro-

cessing and frequently most used techniques. Feature selection reduces the number of

features and removes irrelevant, redundant, or noisy data. Selection process brings the

immediate effects by improving the scalability, efficiency and accuracy of a text classi-

fier. For example, feature selection is important for applications, which need speeding

up a data mining algorithm, and improving mining performance such as predictive accu-

racy and result comprehensibility.

In text classification, the feature selection is the process of selecting a specific subset of

the terms of the training set and using only them in the classification algorithm. For text

classification the high dimensionality of the feature space is a major problem. For

counting an optimal feature set, evaluation criterion can be used as a measure system.

When the dimensionality of a domain expands, the number of features N increases. The

main advantages for using feature selection algorithms are the facts that it reduces the

dimension of the data, improves accuracy by removing noisy features and it makes the

training faster.

A noisy feature increases the classification error on new data, when added to the docu-

ment representation. For example, a rare term, which has no information about a class

X, but all instances of this term happen to occur in class X documents in training set.

This causes that the learning method might produce a classifier that misassigns test doc-

uments containing this word to class X. This kind of incorrect generalization from acci-

dental property of the training set is called over fitting. One way to avoid over fitting is

to use consequence feature selection.

When designing the classifier, if the used training sample count is small relative to the

number of features, the performance of a classifier can degrade if adding more features.

This is referred as the peaking phenomenon. A reduction in the number of features may

lead to a loss in the discrimination power and lower the accuracy of the resulting recog-

nition system. Without bias, classification is impossible. When choosing the features,

remember to make choices carefully, since it is possible to make two patterns too simi-

lar by encoding them with a sufficiently large number of redundant features.

13

The driving force of the training procedure is however, the minimization of a criterion

such as the apparent classification error. Selection methods can be compared using for

example cross-validation. Cross-validation is a model validation technique that esti-

mates how accurately a predictive model will perform in practice. The best algorithm is

usually found by trial and error. Data mining applications involve usually thousands of

features, so the computational requirement of a feature selection algorithm is important.

All feature selection algorithms can be represented in a space of characteristics accord-

ing to the criteria of search organization (Org), generation of successor states (GS) and

evaluation measures (J). This space encompasses the whole spectrum of possibilities for

a feature selection algorithm. Algorithm 1 shows the general algorithm for feature selec-

tion.

 Input:
2 S – data sample with features X, |X| = n
 J – evaluation measure to be maximized
4 GS – successor generation operator
 Output:
6 L := Start_Point(X);
 Solution := {best of L according to J};
8 repeat
 L := Search_Strategy(L,GS(J),X);
10 X’ := {best of L according to J};
 if J(X’) ≥J(Solution) or (J(X’)=J(Solution)
12 and |X’|<|Solution|)
 then Solution := X’;
14 until Stop(J,L)

Algorithm 1. General Algorithm for feature selection.

2.2.1 Select k-Best

K-best method is one of the simplest feature selection methods available. K-best method

composes the best subset of 𝑘 features of the 𝑘 best features, which are considered one

at a time. K-best method has its downside, because a set of the best individual 𝑘 feature

is not necessarily the best set of 𝑘 features.

Univariate feature selection holds Select k-Best, and works by selecting the best fea-

tures based on univariate statistical tests. This can be seen as a preprocessing step to an

estimator. The basic feature selection algorithm for selecting the k best features is pre-

sented in algorithm 2 [11].

14

SELECTFEATURES(D,c,k)
1 V⇐D
2 L⇐[]
3 for each t ∈V
4 do A(t,c)⇐COMPUTEFEATUREUTILITY(D,t,c)
5 APPEND(L⟨A(t,c),t⟩)
6 return FEATURESWITHLARGESTVALUES (L,k))

Algorithm 2. Feature selection algorithm for selecting the k best features.

In algorithm 2 for a given class 𝑐, compute a utility measure 𝐴(𝑡, 𝑐) for each term of the

vocabulary 𝐷 and select the 𝑘 terms that have the highest values of 𝐴(𝑡, 𝑐). All other

terms are discarded and not used in classification. [11] There are three different utility

measures, which works for text data. These utility measures are Mutual information,

Chi square test, and frequency. Each feature selection algorithm evaluates the keywords

in a different way and thus leads to different selections. In addition, each algorithm re-

quires different configuration such as the level of statistical significance, the number of

selected features et cetera.

2.2.2 Forward Selection

In Forward Selection, the best single feature is selected and then one feature at a time is

added, which in combination with the selected features maximizes the criterion func-

tion. Once a feature is retained, it cannot be discarded. Forward selection is computa-

tionally attractive because to select a subset of size 2, it examines only (𝑑 − 1) possible

subsets.

Starting with 𝑋′ = ∅
Adds features to the current solution 𝑋′, among those that have not been se-
lected yet
In each step, the feature that make 𝐽 be greater is added to the solutions
The cost of operator is 𝑂(𝑛).

Algorithm 3. Forward Selection algorithm.

In forward feature selection, all feature subsets, which consist of only one input attrib-

ute, are evaluated at the beginning. For example, in case of one-component sub-

sets {𝑋1},{𝑋2}, . . . , {𝑋𝑀}, where 𝑀 is the input dimensionality, measuring starts with

the Leave-One-Out Cross Validation (LOOCV) error. Purpose of this measurement is to

find the best individual feature 𝑋(1). After LOOCV, forward selection finds the best

subset consisting of two components 𝑋(1) and feature from remaining 𝑀 − 1 input at-

tributes. It can assumed, that 𝑋(2) is the next best pair. This continues evaluating the

third, fourth and more features for the input subset. The best feature subset in forward

selection is the one with m-tuple consisting of 𝑋(1), 𝑋(2), . . . , 𝑋(𝑚).

15

The best feature set is the winner out of all the 𝑀 steps. If the cost of a LOOCV evalua-

tion with 𝐼 features is 𝐶(𝑖), the computational cost of forward selection searching for a

feature subset of size 𝑚 out of 𝑀 total input attributes will be 𝑀𝐶(1) + (𝑀 −

1)𝐶(2)+. . . +(𝑀 − 𝑚 + 1)𝐶(𝑚). The overall best input feature set can be found also

employing exhaustive search. Method begins with searching the best one component

subset of the input features, which is the same in forward selection algorithm. Next, it

goes to find the best two-component feature subset, which may consist of any pairs of

the input features. Then it moves to best triple and so on. From the cost of exhaustive

search it is clear that it is 𝑀𝐶(1) + (𝑀/2) ∗ (𝐶(2)+. . . +(𝑀/𝑚) ∗ 𝐶(𝑚).

When comparing exhaustive search and forward selection, the latter is much cheaper.

Forward selection can suffer from its greediness. For example, if 𝑋(1) is the best indi-

vidual feature, it does not guarantee that either {𝑋(1), 𝑋(2)} 𝑜𝑟 {𝑋(1), 𝑋(3)} must be

better than {𝑋(2), 𝑋(3)}. For this reason, a forward selection algorithm may select a

feature set different from that selected by exhaustive searching. If making a bad selec-

tion of the input features, the prediction 𝑌ˆ𝑞 of a query 𝑋𝑞 = {𝑥1, 𝑥2, … , 𝑥𝑀} is signif-

icantly different from the true 𝑌𝑞.

2.2.3 Recursive feature elimination

Recursive feature elimination (RFE) is a robust and “brute-force” method where the

impacts of combined features are evaluated together. RFE is done in backward stepwise

manner, starting with the smallest weights and moving on to larger weights. In this

method, a model is first trained with all the features and evaluated the performance on

held out data. Then the weakest features are chosen and retrained on the remaining fea-

tures. Iterating continues until a sharp drop in the predictive accuracy of the model can

be seen.

Starting with 𝑋′ = 𝑋
Removes features from the current solution 𝑋′, among those that have not been
removed yet.
In each step, the feature that makes 𝐽 be greater is removed from the solu-
tion.
The cost of operator is 𝑂(𝑛)
𝑋′ = 𝑋 − {𝑥𝑖 € 𝑋′𝐼𝐽(𝑋′ − {𝑥𝑗})𝑖𝑠 𝑏𝑖𝑔𝑔𝑒𝑟}

Algorithm 4. RFE algorithm.

The goal of recursive feature elimination (Algorithm 4) is to select features recursively

considering smaller and smaller sets of features. The initial set of features is trained and

then weights are assigned to each one of them (or the coefficients of a linear model).

After training, the features whose absolute weights are the smallest are pruned from the

current set features. This procedure will be repeated recursively on the pruned set until

the desired number of features to select is eventually reached. In addition to RFE, rank-

16

ing features of the best number of features can be done using RFECV (Recursive Fea-

ture Elimination and Cross-Validated).

2.2.4 LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) is also called L1 penal-

ized linear method that estimates sparse coefficients. L1 regularizer promotes feature

selection while learning, and is a considerable choice when training a generalized model

for classification or regression. In this algorithm the coefficient for the weakest features

are set to zero by the learning algorithm itself.

Despite that L1 is called as logistic regression; it is a liner model for classification rather

than regression. Lasso is useful in some contexts due to its tendency to prefer solutions

with fewer parameter values and effectively reducing the number of variables, which

are needed for the solution. Lasso and its variants are fundamental to the field of com-

pressed sensing and under certain conditions; it can recover the exact set of non-zero

weights.

Mathematically the Lasso consists of a linear model, which is trained with 𝑙1prior as

regularizer. L1 regularized regression solves the optimization problem following:

min
𝑤,𝑐

‖𝑤‖1 + 𝐶 ∑ log (exp (−𝑦𝑖(𝑋𝑖
𝑇𝑤 + 𝑐)) + 1) .

𝑛

𝑖=1

The Lasso estimate solves the minimization of the least-squares penalty with

𝑎𝑙𝑝ℎ𝑎‖𝑤‖1 added, where alpha is a constant and ‖𝑤‖1it the 𝑙1-norm of the parameter

vector. The implementation in the class Lasso in scikit-learn uses coordinate descent as

the algorithms to fit the coefficients.

For a good choice of alpha, the Lasso can recover fully the exact set of non-zero varia-

bles using only few observations. The number of samples should be large, or L1 model

will perform at random and the definition of large depends on the number of non-zero

coefficients, the logarithm of the number of features, the amount of noise, the smallest

absolute value of non-zero coefficients, and the structure of the design matrix 𝑋. This

design matrix 𝑋 cannot be correlated and display certain specific properties. There is no

general rule for selecting an alpha parameter for recovery of non-zero coefficients. Al-

pha can be set by cross-validation LassoCV or LassoLarsCV, but this can lead to under-

penalized models. Under-penalized models refers that including a small number of non-

relevant variables is not detrimental to prediction score.

17

2.3 Classification

Classification can be expressed as a categorization process where objects are recog-

nized, differentiated and understood. A data object represents an entity, typically de-

scribed by attributes. Data objects become data tuples when stored in a database, where

rows correspond to the attributes. Classification process finds a model that describes

(discrete, unordered) data class labels. This model is made of on the analysis of a set of

training data. Purpose of this model is to predict the class label of objects for which the

class label is unknown. Classification is usually referred in machine learning to super-

vised learning. There are also unsupervised, semi-supervised and active learning meth-

ods available to perform classification. Many classification methods have been pro-

posed by researchers in machine learning, pattern recognition, and statics.

While performing Sentiment analysis for text, the class labels must be think through

carefully. If using polarity classes’ positive and negative, also a neutral class needs to be

taken into consideration. Not every comment on a product or experience expresses pure-

ly positive or negative sentiment. In many cases, some comments include objective

facts without expressing any sentiment, while others might express mixed or conflicting

sentiment [9]. Training the classifier to detect only the two classes forces several neutral

words to be classified either as positive or negative, which leads to over fitting. Learn-

ing from negative and positive examples alone will not permit accurate classification of

neutral examples. Moreover, the use of neutral training examples in learning facilitates

better distinction between positive and negative examples [9].

Classes can refer to different things and can be numeral or textual. For example, they

can indicate whether a sentence involve a specific word or not. In this case, classes are

'yes' (1) and 'no' (0). Another example is to point out what color should one paint their

house. If answers indicate red, green, blue, yellow, and brown, these are the classes to

use when classifying the answers. In text data sentiment analysis there can be classes for

happiness, sadness, sarcasm, sports, love, hate and so on. One object can have more

than one class if wanted. Marking classes more than one can help in further develop-

ment of the analysator, when having already labeled examples for different classes.

Classification problem can be choosing between answers ‘yes’ or ‘no’, ‘happy’ or ‘sad’

or ‘party A’, ‘party B’, ‘party C’. These categories can be represented by discrete val-

ues, where the ordering among values has no meaning. Data classification is a two-step

process where the first process is the learning (constructing the classification model)

and the second one a classification (predicting class labels for given data by the model).

Supervised learning means, that the supervision in the learning comes from the labeled

examples in the training data set. For example handwritten postal codes images and

their corresponding machine-readable translations are used as the training examples,

which supervise the learning of the classification model. For supervised classification

18

and regression, there are many different learning algorithms available. These algorithm

types are grouped according to the formalism they employ for representing the learned

classifier or predictor. Groups are separated to decision trees, decision rules, neural

networks, linear discriminant functions, Bayesian networks, support vector machines,

and nearest-neighbor methods.

When the values for the class properties in the training set are unknown, it is unsuper-

vised learning which refers for clustering. In this method, the input examples are not

class labeled. Clustering can be used to find classes within the data, where the algorithm

clusters the data into different groups, like recognizing different types of headlines.

Semi-supervised learning is a class of machine learning techniques that make use of

both labeled and unlabeled examples when learning a model [4]. One way to classify

with semi-supervised learning is to use labeled examples to learn class models and use

unlabeled examples to refine the boundaries between classes. When the user play an

active role in the learning process, it is active learning. In this method user labels a

sample, which may be from a set of unlabeled examples or synthesized by the learning

program. This method optimizes the model quality by actively acquiring knowledge

from human users given a constraint on how many examples they can be asked to label

[4].

In general, supervised learning includes a training set of 𝑁 training examples of the

form {(𝑥1, 𝑦1), … , (𝑥𝑁 , 𝑦𝑁)} such that 𝑥𝑖 is the feature vector of the 𝑖-th example and 𝑦𝑖

is its label. Object in the process is to learn a mathematical function f that can be evalu-

ated on the input x to yield a prediction of class 𝑦. In supervised machine learning fea-

tures that show little variation across samples, or are not ‘interesting’ should be filtered

out. There should be also a distance, or similarity measures for two samples if they are

close each other. Feature selection is important phase in supervised classification proce-

dure. If using cross-validation in feature selection, the feature selection should be per-

formed at each iteration.

Despite chosen classification method, classifier must be trained using the available

training samples. The performance of a classifier depends on both the number of availa-

ble training samples as well as the specific values of the samples. The final goal is to

classify future test samples, which differ from the training samples.

Sentiment classifier can be for example SVM (Support Vector Machine), Naïve Bayes,

Random Forest or k-NN (k-Nearest Neighbor). Trying different classification methods

will show you which of the algorithms give the best classification result for the data.

Different algorithms deliver different results and some classifiers might work better

with specific feature selection configuration. It is said that state of the art classification

techniques such as SVM would outperform more simple techniques such as Naïve

Bayes [18] [12]. Nevertheless, it can be the opposite. Sometimes Naïve Bayes is able to

provide the same or even better results than more advanced methods.

19

There is no single algorithm, which would perform well in all topics, domains and ap-

plications. The accuracy of some classifier can be as high as 90% in one domain/topic

and as low as 60% in some other. For example for restaurant reviews Max Entropy with

Chi-square as feature selection is the best combination, and for Twitter data the Bina-

rized Naïve Bayes with Mutual Information feature selection is a good selection [18]. In

Twitter data classification task, odd results can be seen and lexicon-based techniques

should be avoided because of the use of idioms, jargons and Twitter slangs that affect

strongly to the polarity of the tweet.

When classification predicts categorical (discrete, unordered) labels, regression model

predicts continuous-valued functions. Regression is used to predict missing or unavaila-

ble numerical data values rather than discrete class labels. Regression analysis is a sta-

tistical methodology that is most often used for numeric prediction. Regression also

encompasses the identification of distribution trends based on the available data [6].

In case of regression, more than two measures could be predicted from one feature. For

example giving an image of a horse and wanting to know the height, weight and sex. In

this case, each labeled training example is a pair of an object and the associated numeri-

cal value [2]. The quality measure of a learned prediction function is a square of the

difference between the predicted value and the true value. Sometimes the absolute value

of this difference is measured instead [2].

Next chapters embody algorithms for supervised classification. Prediction models are

explored via literature scientific sources. Each of these algorithms has well qualitative

to be chosen and tested. In Figure 3 (modified from example of [13]), the boundary dif-

ferences between selected classifiers are represented for the same data. The plots show

positive features as red and negative features as blue. Circles of solid colors represent

training data and semi-transparent circles testing points. Number in the right lower cor-

ner represents the classification accuracy on the test set. Comparison is done on synthet-

ic datasets [13], which makes the conveyed intuition uncertain over real dataset. When

there are high-dimensional spaces involved, Naïve Bayes leads to better generalization

than other classifiers.

20

Figure 3. Decision boundaries for different classifiers.

2.3.1 Random forest

Commonly used method in data mining is decision tree learning. It is a combination of

mathematical and computational techniques to aid the description, generalization and

categorization of give data. The goal in decision tree learning is to create a prediction

model for a target variable based on several input variables. Tree is split from the source

into derived subsets based on an attribute value test, and the split is done in a recursive

manner called recursive partitioning. When splitting does not add any value to the pre-

diction or when the subset at a node has the same value of the target variable, the recur-

sion is completed.

21

Random forest is a special type of classifier developed from decision tree. Decision tree

is trained by an iterative selection of individual features that are most salient at each

node of the tree. Tree classifier has its advantages, for example the speed and the possi-

bility to interpret the decision rule in terms of individual features. The criteria for fea-

ture selection and tree generation include the information content, the node purity, or

Fisher’s criterion.

Random forest is a substantial modification of bagging combined with random selection

of features. Bagging is another mechanism that uses large collection of de-correlated

trees, and averages them. Difference is that Random forest uses a modified tree learning

algorithm that selects, at each candidate split in the learning process, a random subset of

features. The reason for doing this is the correlation of the trees. Random forests are a

combination of tree predictors such that each tree depends on the values of a random

vector sampled independently and with the same distribution for all trees in the forest.

Significant improvements in classification accuracy have resulted from growing an en-

semble of trees and letting them vote for the most popular class [1]. Random forest

learning method operates by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes output by individual trees. Ran-

dom forest allows constructing a collection of decision trees with controlled variance.

Decision trees are a popular method for various machine learning tasks. Trees that are

grown very deep tend to learn highly irregular patterns and overfit the training sets. This

is caused by their property to have low bias and very high variance. [5] Historically, the

bias–variance insight was borrowed from the field of regression, using squared–loss as

the loss function [17]. Random forests are a way of averaging multiple decision trees,

trained on different parts of the same training set, with the goal of reducing the variance

[5]. Training algorithm for Random forests applies the general technique of bootstrap

aggregating, or bagging, to tree learners. See algorithm 4.

For b = 1 to B:
1. Draw a bootstrap sample Z* of size N from the training data.
2. Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the tree, un-
til the minimum node size 𝑛𝑚𝑖𝑛 is reached

3. Select m variables at random from the p variables.
4. Pick the best variable/split-point among the m.
5. Split the node into two daughter nodes.

Output the ensemble of trees {𝑇𝑏}1
𝐵

.

Algorithm 4. Random Forest for Regression or Classification.

To make a prediction at a new point x:

Regression: 𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1 .

22

Classification: Let 𝐶𝑏(𝑥) be the class prediction of the 𝑏th random-forest tree.

Then, 𝐶𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑣𝑜𝑡𝑒{𝐶𝑏(𝑥)}1

𝐵.

Since trees are notoriously noisy, they benefit greatly from the averaging. Moreover,

since each tree generated in bagging is identically distributed (i.d.), the expectation of

an average of B such trees is the same as the expectation of any one of them [20]. This

means the bias of bagged trees and individual trees is the same, and improvement can be

done only through variance reduction. This can be seen as opposed to boosting, where

the trees are grown in an adaptive way to remove bias, and hence are not i.d.

An average of B i.d. random variables, each with variance 2, has variance 1B2. If the

variables are simply i.d. (identically distributed, but not necessarily independent) with

positive pairwise correlation p, the variance of the average is

𝑝𝜎2 +
1−𝑝

𝐵
𝜎2.

The idea in random forest (Algorithm 4) is to improve the variance reduction of bagging

by reducing the correlation between the trees, without increasing the variance too much.

This is achieved in the tree-growing process through random selection of the input vari-

ables. Typically, values for variables 𝑚 from variables 𝑝 are even as low as one [20].

2.3.2 K-Nearest Neighbor

K-Nearest Neighbor (k-NN) algorithm is fundamental and simple non-parametric meth-

od for classification and regression. It is used to test a degree of similarity between doc-

uments and 𝑘 training data and to store a certain amount of classification data and de-

termine the category of the test document. The input in both cases, in classification and

regression, consists of the 𝑘 closest training examples in the feature space. Output in

classification is a class membership where an object will be classified by a majority

vote of its neighbors. This means that the object will be assigned to the class most

common among its 𝑘 nearest neighbors. Typically 𝑘 is a user-defined constant, small

positive integer.

In case of regression, the output is the property value for the object, which value forms

as the average of the values of its k nearest neighbors. For both cases in machine learn-

ing, k-NN algorithm is among the simplest algorithms. Figure 4 shows example of k-

NN classification. The test sample (green) should be classified either to the class of

blues or reds. If 𝑘 = 3 (solid line circle), it is assigned to class red, because there are

two reds and only one blue inside the circle. If 𝑘 = 5 (dashed line circle) it is assigned

to the class blue (3 blues vs. 2 reds inside the outer circle).

23

Figure 4. Example of k-NN classification problem.

In classification cases where is little or no prior knowledge about the distribution of the

data, k-NN is good choice to study. K-NN classification was developed for discriminant

analysis and is a type of instant-based learning algorithm, where the goal is to catego-

rize the objects based on closest feature space in the training set. Here function is only

approximated locally and all computation is deferred until classification. Because k-NN

uses only the training point closest to the query point, the bias of the 1-nearest-neighbor

estimate is low, but the variance is high. Asymptotically the error rate of the 1-nearest-

neighbor classifier is never more than twice the Bayes rate [7].

Training examples in k-NN are vectors in a multidimensional feature space, each la-

beled with a class. The training phase of the algorithm only stores the feature vectors

and class labels of the training samples. Distance between vectors is typically computed

with Euclidean Distance. This method provides availability of a similarity measure for

identifying neighbors of a particular document. In the classification phase an unlabeled

vector is classified by assigning the label, which is most frequent within query point.

The best choice of k depends on data. Noise of the classification reduces if k gets large

values, but in this case, boundaries between classes are less distinct.

The accuracy of the k-NN algorithm depends on the presence of noisy or irrelevant fea-

tures. In two class (binary) classification, it is helpful to choose k to be an odd number

as this avoids tied votes. Validation of results of a k-NN classification is often done

with a confusion matrix. Confusion matrix is a specific table layout that allows visuali-

zation of the (typically a supervised learning) performance of an algorithm.

2.3.3 Naïve Bayes

Naive Bayes (NB) classifier is a simple probabilistic classifier based on Bayes theorem.

It is a popular machine learning algorithm for text classification, and it outperforms al-

ternatives that are far more sophisticated. Algorithm applies “naive” assumption of in-

dependence between every pair of features. This means that the presence or absence of a

24

particular feature of a class is unrelated to the presence or absence of any other feature.

Each feature contributes independently to the decision of which label should be used.

This can be seen problematic when more than two of the features are correlated with

another.

Another concern is that the individual class density estimates may be biased, but it does

not hurt the posterior probabilities much, when occurring near the decision regions.

During its operation, naive Bayes assumes a stochastic model of document generation.

Using Bayes’ rule, the model is inverted in order to predict the most likely class for a

new document. In spite of apparently over-simplified assumptions, naive Bayes classifi-

ers have worked well in document classification for example in spam filtering. NB re-

quires a small amount of training data to estimate the necessary parameters. In addition,

naive Bayes learners and classifiers can be extremely fast compared more sophisticated

methods.

A classifier based on naive Bayes algorithm [10]:

In order to find the probability for a label, this algorithm first uses the Bayes rule to ex-

press 𝑃(𝑙𝑎𝑏𝑒𝑙 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) in terms of 𝑃(𝑙𝑎𝑏𝑒𝑙) and 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑙𝑎𝑏𝑒𝑙):

P(label|features) =
P(label)∗P(features∨label)

P(features)
.

The algorithm then makes the ‘naive’ assumption that all features are independent, giv-

en the label:

P(label|features) =
P(label)∗P(f1|label)∗…∗P(fn∨label)

P(features)
.

Rather than computing 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) explicitly, the algorithm just calculates the de-

nominator for each label, and normalizes them so they sum to one:

𝑃(𝑙𝑎𝑏𝑒𝑙|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =
𝑃(𝑙𝑎𝑏𝑒𝑙)∗𝑃(𝑓1∨𝑙𝑎𝑏𝑒𝑙)∗...∗𝑃(𝑓𝑛∨𝑙𝑎𝑏𝑒𝑙)

∑[𝐼](𝑃(𝐼)∗𝑃(𝑓1∨𝐼)∗...∗𝑃(𝑓𝑛∨𝑙))
.

Two probability distributions parameterize the classifier. 1) 𝑃(𝑙𝑎𝑏𝑒𝑙) gives the proba-

bility that an input will receive each label, given no information about the input feature.

2) 𝑃(𝑓𝑛𝑎𝑚𝑒) = (𝑓𝑣𝑎𝑙|𝑙𝑎𝑏𝑒𝑙) gives the probability that a given feature (𝐹𝑛𝑎𝑚𝑒) will

receive a given value (𝑓𝑣𝑎𝑙), given that the label (𝑙𝑎𝑏𝑒𝑙). If the classifier encounters an

input with a feature that has never been seen with any label, then rather than assigning a

probability of zero to all labels, it will ignore that feature [2].

There are 3 types of Naive Bayes classifiers. These differ mainly by the assumptions

they make regarding the distribution of 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒|𝑙𝑎𝑏𝑒𝑙). Gaussian naive Bayes im-

plements the Gaussian naive Bayes for classification where the likelihood of the feature

is assumed Gaussian. Multinomial naive Bayes implements algorithm for multinomially

25

distributed data, and is one of the two classic naive Bayes variants used in text classifi-

cation, where the data is represented as word vector counts.

Multinomial NB classifier is suitable for classification with discrete features and nor-

mally multinomial distribution requires integer feature counts. However, also fractional

counts like TF-IDF vectors are known to work well in practice. In case of TF-IDF, the

distribution is parameterized by vectors for each class, where the number of features is

the size of the vocabulary (in text classification).

Bernoulli Naive Bayes is for training classification algorithms for data that is distributed

according to multivariate Bernoulli distributions. For example if there are multiple fea-

tures but each of them is assumed a binary-valued variable. This class requires samples

to be represented as binary-valued feature vectors.

The decision rule for Bernoulli naive Bayes is based on:

𝑃(𝑥𝑖|𝑦) = 𝑃(𝑖|𝑦)𝑥𝑖 + (1 − 𝑃(𝑖|𝑦))(1 − 𝑥𝑖).

This differs from multinomial naive Bayes rule in that it explicitly penalizes the nonoc-

currence of a feature 𝑖 that is an indicator for class 𝑦, where the multinomial variant

would simply ignore a non-occurring feature. In the case of text classification, word

occurrence vectors (rather than word count vectors) may be used to train and use this

classifier. Bernoulli NB might perform better on some datasets, especially those with

shorter documents. It is advisable to evaluate both models, if time permits. Bernoulli

model is particularly sensitive to noise features and requires some form of feature selec-

tion or else its accuracy will be low.

2.3.4 Comparison between above algorithms

The comparison of the classifiers and using the most predictive classifier is very im-

portant. Based on datasets each methods show different efficacy and accuracy. The goal

is to find the most accurate classifier for text classification task where the classification

subject can change. For example, when classifying sentiments from the tweets, we can

search different kind of feelings. Whether it is just 'yes' or 'no' to something, or we are

searching content that makes people cry.

There is a relationship between Random forests and the k-Nearest Neighbor algorithm.

Both of these algorithms can be viewed as weighted neighborhoods schemes. When

comparing decision trees, which a Random forest is, and Naïve Bayes, the result is more

complicated. Decision trees are very flexible, easy to understand and debug, and they

will work in classification and regression problems. Decision trees will handle predict-

ing a categorical value like (red, green, up, down) and continuous value like 1.5, 4.2.

Decision trees need only a table of data and they will build a classifier directly from that

data without needing any up front design work to take place. Because Random forest is

26

more advanced than simple decision tree, it does not tend to over fit the training data.

To get the best performance out of decision trees, Random forest perform quite well.

This adds options to tune and more implementing.

Naïve Bayes classification must be built by hand. When decisions trees will pick the

best features from tabular data, picking features for Naïve Bayes is up to user. Bayes

can perform well and it does not over fit like decision trees. This means simpler algo-

rithms to implement. However, Naïve Bayes is harder to debug and understand because

it is all probabilities multiplication. When the training data contains certain possibilities,

Naïve Bayes works quite well. When there is a lot of data, decision trees work better

compared to Naïve Bayes.

Decision trees are handy because they tell what inputs are the best predicators of the

outputs. If there is a statistical relationship between input and output, using decision

trees will show how strong that relationship is. Best way to research the best classifier is

to test and compare the results.

2.4 Validation / Evaluation

When trying different training data, feature selection methods and classification algo-

rithms, validating the results is the thing that shows how the combination of these phas-

es works together. Measurement for this is the accuracy of each classifier. Accuracy

measure is not a reliable metric for the real performance of a classifier. This is caused if

there is a different amount of data in each class. If taking randomly 90% of the data for

learning and 10% testing, classifier is easily biased into classifying to the class, which is

the most present in the learning data. To get good validation metric for the classifiers

other techniques must be involved and these are the cross-validation and confusion ma-

trix.

Cross-validation is a model validation technique to test how the results of a statistical

analysis will generalize to an independent data set. Cross-validation is used when esti-

mating the accuracy of a predictive model. Model is a dataset of known data (training)

and unknown data (test). Goal is to define a dataset to test the model in the training

phase, and limit problems like over fitting or get insight how the model generalize to an

in depend dataset. Cross-validation takes time, because each round of cross-validation

partitions a sample of data into subsets and performing the analysis on one subset (train-

ing set), and then validating the analysis on the other subset (test set). Multiple rounds

of cross-validations are performed using different partitions to reduce variability, and

finally all the validation results are averaged to get results. There are two types of cross-

validation, exhaustive and non-exhaustive cross-validation. Exhaustive cross-validation

learns and tests all possible ways to divide the original sample into training and a vali-

dation set. Examples of these are Leave-p-out cross-validation and Leave-one-out cross-

validation. Non-exhaustive cross-validation methods do not compute all ways of split-

27

ting the original sample. Example of non-exhaustive cross-validation is k-fold cross-

validation and repeated random sub-sampling validation.

Another testing measurement is to run confusion matrix for classifiers. Confusion ma-

trix is also known as contingency table or an error matrix. This specific table allows

visualizing the performance of an algorithm and it is used typically in supervised learn-

ing. Here each column of the matrix represents the instances in a predicted class, and

each row represents the instances in an actual class. Table shows easily if the system

confuses classes. For example if wanting to distinguish between positive, neutral and

negative, a confusion matrix will summarize the results of testing the algorithm for fur-

ther inspection. Table 1 shows resulting confusion matrix for an example where total

amount of samples (30 tweets), includes 12 positive, 8 neutral and 10 negative.

Table 1. Example of confusion matrix.

In this confusion matrix, system predicted that two of twelve positives were neutrals,

and from the neutrals (8), system predicted that 3 were positives and 1 negative. From

eight negatives system predicted that two of them were neutrals. Matrix shows, that the

system has trouble distinguishing between neutral and positives, but can make the dis-

tinction between negative and positive well. Correct guesses are in the diagonal of the

table and makes inspecting the results visually easy.

 Predicted class

 Positive Neutral Negative

Actual class Positive 10 2 0

Neutral 3 4 1

Negative 0 2 8

28

3. IMPLEMENTATIONS

This section of the thesis contains the implementation phases that were used and tested

to make most accurate sentiment analysator. Building the analysator started with a lexi-

con based sentiment analysis but the approach were changed later to learning based

methods. Analysator was built in flexible way, so it can be used even though the subject

of analysis changes. This makes modeling the training data more difficult than using

topic specific training data.

Implementations chapter describes the classification process and different techniques

that were used. Chapter starts with an introduction to the process as a whole and moves

to explain in more detail data retrieval, feature extraction, feature selection and classifi-

cation. For each of the previous mentioned sections few different methods were tried

and the best performing combination was selected.

Process started with studying the structure of training and test data. How to get data

from Twitter and what pretreatment does the data need. The accuracy of different classi-

fiers varied during testing and implementing different feature extraction and selection

methods. The goal was to build as accurate classifier as possible to classify sentiments

out of Finnish tweets. Fine-tuning the analyzer continued after the SuomiLOVE project

by modifying training data and trying out different feature selection methods.

Figure 5 shows different parts of the analysator and chapter goes each phase through

with some examples. Chapter 3.1 starts describing the process from the data retrieval

from Twitter. Twitter was sensible choice as a social media platform due to its diverse

application-programming interface for developers and amount of available data. Chapter

encompasses manual human rating of training data and how the data is handled from

and to the database. After the training data is labeled into correct sentiment classes,

classification process can begin. Classification process starts with feature extraction and

moves through feature selection to the classification. This work comprises TF-IDF fea-

ture extraction, few feature selection methods and three classification algorithms.

29

Figure 5. Block diagram of the implemented analysator.

3.1 Data retrieval

Getting data out of Twitter is maybe the fastest and easiest selection for the first timer

when observing differences between social media platforms and how to get data out of

them. Twitter has a great Application Programming Interface (API) for developers and

one tweet contains a lot of information. Tweet is a short message sent using Twitter,

which can include text and/or media. One tweet can be maximum 140 letters long, but it

includes a lot more metadata. Tweet is usually a bundled text with two additional pieces

of metadata, which are entities and places. Entities are users (@usernick), hashtags

(#thesis), URLs (http://…) and media that may be associated with a tweet. Places are

locations in the real world like school, cafeteria, city or country.

Twitter metadata includes a lot of information about the user and this enlarges the pos-

sibilities with analyzing data from different perspectives. Table 2 shows what infor-

mation includes in one tweet.

30

Table 2. Metadata of one tweet.

<tweet’s unique ID>
<text of the tweet>
<when the tweet is created>
<the ID of an existing tweet that the tweet is in reply to>
<user screen name>
<user ID of replied to tweet author>
<the authors user ID>
<authors biography>
<authors screen and user name>
<authors URL>
<authors location>
<rendering information for the author>
<creation date for the account>
<is the account contributors enabled>
<number of favorites which user has>
<the author of the tweet>
<number of tweets that user has>
<number of users that the user is following>
<time zone and offset>
<selected language>
<is the user protected or not>
<number of followers>
<does user has a verified badge>
<the place ID>
<geo tag (if enabled)>
<printable names of the place>
<contributors ID>
<URL to fetch a detailed polygon for the place>
<type of the place>
<place associated with the tweet>
<country where place is>
<application that sent the tweet>
<bounding box for the place>

To access Twitter API, a Twitter account is required for creating an application for de-

velopers. This standard allows Twitter to monitor and interact with third party platform

developers as needed. With an authorized API connection, a request can be issued. API

is crafted intuitive and it is easy to use. Available libraries make usability even easier.

For example, in Python there is an available package called 𝑡𝑤𝑖𝑡𝑡𝑒𝑟.

The purpose of using Twitter API is to pick tweets from the stream, where a specific

hashtag or word is used. A Representational State Transfer (REST) API together with

open standard for authorization (OAuth) allows programmatically reading and writing

Twitter data. Because of the nature of the analysator, Streaming APIs is needed, which

continuously deliver new responses to REST API queries. Responses from REST API

are available in JavaScript Object Notation (JSON) serialization format.

At the beginning, receiving tweets were done manually from old tweets. This was due

to the reason that we used the REST API algorithm and not the Streaming APIs. About

2000 tweets were needed from the analyzing subject that the classifier could be taught

properly. It might be expected that Finns don’t tweet much because we don’t speak

31

much, but that is not correct. Collecting tweets happened fast and Twitter API helped in

a way, that it enables to search at least two weeks old tweets. This is a profitable feature

also when streaming encounters errors.

After receiving the tweets through Twitter API, tweets are stored to a database for later

use. Database runs important part of the work and has several different sections for the

data, each of them having a specific meaning. Database collects 1) requested tweets, 2)

manually classified tweets and 3) classified tweets by the machine. Incoming tweet con-

tains in excess of 5 KB of total content when represented in uncompressed JSON [14].

This means more than 40 times the amount of data that makes up the 140 characters

tweet.

Data that were mined during SuomiLOVE included hashtags #suomilove and #su-

omiloveyle. These hashtags identified the tweets for the TV-show. To teach the ma-

chine, training data before the show begins were needed to collect. Training data were

collected by querying emotional tweets in Finnish, including love, affection and other

strong sentimental tweets.

For training, equal amount of labeled tweets from each of the classes are needed. Train-

ing data needs manual annotating and by using, a web-based application where user

classifies the tweets from the stream can speeds the process. When person has classified

apparent tweet, application shows the next one to be classified. All retweets are deserted

from the rating process to avoid duplicates.

When starting to classify tweets, in addition to positive/neutral/negative there can be

classes for other sentiments. Tweet belongs always into one of the previous 3 classes

but it might be classified also into another class, representing more specific a certain

sentiment. In this work, more specific sentiment classes were happiness, sadness, joy,

hate, sarcasm and some others, but the final system were simplified and uses only posi-

tive/neutral/negative classes. Table 3 shows the number of tweets for each class and

notes what kind of sentiments or type of tweets are classified into each one of them.

Table 3. Division into three classes.

All tweets in training data need a label (class). Manual labeling to different classes is

Class Number Notes

Positive 700 happy, supportive, loving

Neutral 700 statement/observation without clear

sentiment

Negative 700 disappointment, hate, dislike

32

time consuming, but obligatory if wanting to get correct labels for teaching the machine.

When making sentiment analysator for SuomiLOVE, all tweets that were happy, loving

and supportive were labeled as a positive. There were almost none of negative tweets,

so classifying into three classes did not quite work in that subject. For this reason, mis-

sion changed to only analyzing the positive tweets out of the stream. Later when starting

to develop the algorithm for another project, all kinds of tweets were labeled to get

standard language sentimental tweet data. 2100 sentimental tweets were labeled equally

distributed as positive, neutral and negative from different subject categories.

3.2 Lexicon based sentiment classification

Sentiment analysis project started with a lexical approach. The aim was to use learning

based sentiment classification, but lexicon approach was fast way to try what is the

main point behind sentiment analysis. Several previous studies can be found from the

Internet, which use lexical approach to extract the sentiments out of tweets. These stud-

ies [8] [16] were used as a base for the first version of the sentiment classifier.

Because lexical approach uses dictionaries and the method counts the sentiment level

out of tweets with integers, using an English vocabulary from same kind of sentiment

analysis project was used. Vocabulary was translated it into Finnish and the list was

inspected so that the values from 5 to -5 for each word add up. This means, that every

word in the list gets a value from range 5 to -5, where 5 means extremely positive and -

5 extremely negative. Scores for words were given and inspected manually by 4 person.

For example a sentence ‘Minä rakastan sinua’ (I love you), get values; mina(0), rakas-

tan(5), sinua(0) and that makes as a total 5, and is extremely positive sentence. Another

example could be ‘Vihaan tätä laulua, mutta artisti on super ihana’ (I hate this song,

but the artist super adorable). Words in this sentence get values; Vihaan(-5), tätä(0),

laulua(0), mutta(0), artisti(0), on(0, super(3), ihana(4). This sentence gets total of 2

points and is classified slightly positive, albeit it also includes a negative opinion.

Formulas were implemented with Python to calculate a total value for one tweet, which

arrived in real time from Twitter API. Polarity of the tweet was calculated from the

word values and they were presented in a bar chart at a webpage. Lexical analysis was

tested for live football match between Finland and Hungary. It seemed to work nicely,

but there was clearly noticeable effect, that almost every other tweet went to neutral

class, keeping positive and negative bars low. This happened because the tweets con-

tained many sport specific words that were not in our vocabulary.

Lexical approach was effective demonstration about the idea behind the sentiment anal-

ysis. It is said that lexical approach is no good for Twitter data, because of the slang that

people use there. For this reason learning based method for sentiment classification was

a better choice.

33

3.3 Learning based sentiment classification

Interest towards machine learning and using much-vaunted Bayesian formulas to extract

sentiments from tweets brought the second choice for sentiment analysis; the learning

based technique. Original idea was to use Naïve Bayes as a classifier. More classifiers

came along during the implementation process. Some of methods did not work for Finn-

ish Twitter data and finally 3 classifiers were chosen for our sentiment analysis. These 3

classifiers based on supervised learning are Naïve Bayes, k-Nearest Neighbor and Ran-

dom forest.

Python was used as a main programming language, because it has excellent functionali-

ty for processing linguistic data. It is also free, simple and powerful programming lan-

guage, that has a shallow learning curve, good string-handling functionality and its syn-

tax and semantics are transparent. As a Python IDE (Integrated Development Environ-

ment), we used Pycharm. Pycharm offers first-class support and advantages to use ex-

tensive standard libraries, including components for graphical programming, numeric

processing and web connectivity.

The implementation process was done with Python using mainly scikit-learn and NLTK

packages together with several free software packages. NLTK is a leading platform for

building Python programs to work with human language data. Scikit-learn is a simple

an efficient tool for data mining and data analysis. Scikit-learn contains all needed clas-

ses to perform text data analysis. Other packages used in the process are presented in

Table 4.

Table 4. Python packages for the project.

Name Description

NumPy Package provides substantial support for numerical processing in

Python. Numpy has a multidimensional array object, which is

easy to initialize and access.

Pandas Package provides high-performance, easy-to-use data structures

and data analysis tools for Python.

Matplotlib Package supports sophisticated plotting functions with a

MATLAB-style interface.

CSV Package to read and write files stored in comma-separated-values

file format.

34

3.4 Feature extraction

Feature extraction is the part where features are extracted from the labeled tweets from

the database. These extracted features are for training and testing the classifier. In addi-

tion to feature extraction algorithms together with Python, scikit-learn and mixing it

with NLTK needed more examination. Combination of these two enables creating

working environment for human language analysis. The condensed idea behind feature

extraction is to separate words out of sentences and tag them with counts or TF-IDF’s.

To extract features from labeled tweets, training data must be converted from JSON into

CSV format. After the converted data is loaded, it is separated, such that 90% is used

for training and 10% for testing. The samples are selected randomly for training and

testing at each time and this can cause deviation to accuracy.

Data is separated equally from each class, that training data contains the same amount

of tweets for positive, negative and neutral classes. The split is done in a stratified man-

ner, which means dividing the train and test indices into train and test sets. Cross-

validation object in this is a variation of k-fold that returns stratified folds. The folds are

made by preserving the same percentage of samples for each class. The goal of the

cross-validation is to estimate the expected level of fit of a model to a data set that is

independent of the data that were used to train the model [3].

Feature extraction can be done in two possible vectorizer functions; a count vectorizer

and TF-IDF vectorizer. Common usage for vectorizer is a count vectorizer, which con-

verts a collection of text documents to a matrix of token counts. This method imple-

ments both tokenization and occurrence counting in a single class. The implementation

produces a sparse representation of the counts using sparse matrices. Count vectorizer

can have many parameters, but the default values are usually reasonable for feature ex-

traction. The number of features will be equal to the vocabulary size if any a-priori dic-

tionary is not provided.

Another vectorizer function, TF-IDF vectorizer converts a collection of raw documents

to a matrix of TF-IDF features. TF-IDF feature extraction can be done also combining

all the options of count vectorizer and TF-IDF transformer in a single model. TF-IDF

transformer transforms a count matrix to a normalized TF or TF-IDF representation.

TF-IDF vectorizer defines each sentence as a vector and in each vector, the numbers

(weights) represent features TF-IDF score [13]. This work uses TF-IDF vectorizer as a

feature extractor.

When extracting data, vectorizer functions offer a choice to use n-grams. N-gram is a

contiguous sequence of 𝑛 items from a given sequence of text. This is given as a

ple (𝑚𝑖𝑛_𝑛, 𝑚𝑎𝑥_𝑛), where min and max values are the lower and upper boundary of

the range of n-values for different n-grams to be extracted. All values of 𝑛 such that

35

𝑚𝑖𝑛_𝑛 <= 𝑛 <= 𝑚𝑎𝑥_𝑛 will be used [13]. When using n-grams, the classifier ‘un-

derstands’ more. Testing n-gram ranges (1), (1, 2) and (1, 3) indicated small differences.

Difference between these methods starts to increase if using higher values, for example

(2, 3). Because of the structure of Finnish sentences, option for n-grams (1, 3) was the

best choice.

Another useful characteristic in vectorizer function is a 𝑠𝑡𝑜𝑝 𝑤𝑜𝑟𝑑 𝑙𝑖𝑠𝑡. Stop words

means words that do not make any difference in a sentence when extracting sentiments

and are filtered out before or after processing text data. If choosing to use stop words

they are usually set as a string or a list. Ready-made stop word list strings can be found

for some languages. This work uses a custom-made stop words list. List consisted from

200 most frequent words, which were present in the training data. These 200 were cho-

sen, because most likely they don’t include any sentimental information and this is

quick way to test the list.

From that 200-word list, all numbers, nouns and adjectives relative to the analyzing

subject were deleted. All Finnish personal pronouns, prepositions and conjunctions

were added to the list. This operation took some words away from the list and the final

list included 175 words. When testing how the classifier reacts on stop words list, it can

be seen, that some words cannot be in the list. Reason for this is that those words affect

the meaning of some another word too much. For example, words ‘kyllä’ (yes) and ‘ei’

(no) were removed from the list. This is somewhat problematic, because we don’t want

to automatically classify either of these words to one of the classes.

One text-preprocessing task for feature extraction would be stemming. In other words,

lemmatization is dependent on the language of the text. Purpose of lemmatization is to

reduce a word to its dominant mode, so that similarity detection can be achieved. When

using word stems to improve the accuracy of the analysator, a simple approach would

be stripping off anything that looks like a Finnish suffix. Finnish list contains 86 suffix-

es, but when stemming in Finnish, some words are not the same or recognizable any-

more. It is argued, that applying lemmatization techniques to a piece of text may affect

the semantics.

Another aspect for preprocessing is the spelling mistakes, replacing acronyms and ab-

breviations. As we see, people misspell quite often and when they are tweeting in a hur-

ry, it is easy to make a mistake. If correcting spelling mistakes from the data, the pro-

cess would eliminate noisy data before the main process starts.

3.5 Feature selection

Feature selection choses the most relevant features from the data and is one of the most

important phases in classification. Feature selection module in classification process can

be used for selecting features or reduce dimensionality on sample sets. These operations

36

can be used either to improve estimators’ accuracy scores or to boost performance on

very high-dimensional datasets.

There are several competent techniques for feature selection. For the text data, variance

threshold, univariate feature selection, forward selection, recursive feature elimination,

L1-based feature selection and feature selection as part of a pipeline can be tried as a

feature selection method.

Variance threshold is a feature selector that removes all low-variance features [13]. This

method is better to be used for unsupervised learning because it looks only at the fea-

tures, not the desired outputs. The second tested feature selection method was univariate

feature selection. This selection method works by selecting the best features based on

univariate statistical tests [13]. For this selection, for example Chi-square and Select K-

Best that implement the transform method can be used.

Chi-square computes stats between each non-negative feature and class. This score is

used to select the 𝑛 features with the highest values from 𝑋, which contains only non-

negative features such as frequencies (term counts in document classification). These

frequencies are relative to the classes. Chi-square test measures dependence between

stochastic variables. In another words, this function removes the features that are most

likely to be independent of class and is therefore irrelevant for classification.

Select K-Best selects features according to the 𝑘 highest scores. Select K-best includes

two parameters; score function and k. Score function takes two arrays 𝑋 and 𝑦, and re-

turns a pair of arrays indicating 𝑠𝑐𝑜𝑟𝑒𝑠 and 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 (significance). The number of 𝑘, is

the number of top features to select. How the score is calculated depends on the used

filters. Some of the choices are represented in Table 5. Ties between features with equal

scores will be broken in an unspecified way [13].

37

Table 5. Score functions for Select k-best feature selection algorithm.

Backward selection, or in other words, Recursive feature elimination (RFE) ranks fea-

tures given an external estimator that assigns weights to features. Parameters for estima-

tor are the objects, which in supervised learning is a fit method that updates a coefficient

attribute that holds the fitted parameters. Important features must correspond to high

absolute values in the coefficient array [13]. Another parameter that RFE includes is the

number of 𝑛 feature to select. If using none as a default, half of the features are selected.

RFE includes also a step (default=1), which corresponds to the integer number of fea-

tures to remove at each iteration.

L1-based feature selection is also called a Lasso. It is a linear model, which is trained

with L1 prior as regularizer and estimates sparse coefficients. Lasso reduces effectively

the number of variables and suits well for feature selection. Lasso has a constant alpha

that multiplies the L1 term and is a good at finding useful features when there are many

of varying quality.

Feature selection is usually a part of pre-processing step before doing the actual learn-

ing. Recommended way to do feature selection is to use 𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 in classification. In

this snippet, features importance is evaluated and the most relevant features are selected.

Then training a classifier, for example Random forest on the transformed output using

only relevant features. Pipeline can be used to similar operations with the other feature

selection methods and for classifiers that provide a way to evaluate feature importance.

The Pipeline is built using a list of pairs (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒). Here the key indicates a string

containing the name of the step and the value is an estimator object. Making a pipeline

Name Description

Chi-square Chi-squared stats of non-negative features for

classification tasks.

Select Percentile Select features based on percentile of the highest

scores.

Select False positive rate Select features based on a false positive rate test.

Select False discovery rate Select features based on an estimated false discov-

ery rate.

Generic Univariate Select Univariate feature selector with configurable

mode.

38

can be done shorthand, using utility functions, which takes a variable number of estima-

tors and returns a pipeline, filling in the names automatically.

3.6 Classification

Choosing the right classifier and make the classification for extracted and selected text

features is the last part of the training process. As previous studies have indicated, there

are many possible choices for text classifiers and the selection depends entirely on the

data that needs to be analyzed. When the data is from social media, where people use

many smileys, abbreviations and slang, text differs from for example books reviews.

Text includes more typos and things which true meaning some persons can't even guess.

Example of this kind of saying is ‘yolo’ used by teenagers or abbreviation of some TV-

show like ‘TVOF’ (The Voice of Finland).

Classification in this work is done into three different classes; positive, neutral and neg-

ative. In addition to these basic sentiment categories, there were classes for more specif-

ic feelings like happiness, laughter, cry/tears, sarcasm and hate. Classifying for smaller

groups remained in the background, but ambition is that someday the text can be cate-

gorized into more accurate sentiment categories.

At this stage, feature vectors including every feature that the feature extraction and se-

lection process did not erase are defined. When passing the feature vector for the classi-

fier, classifier will take it and learn to recognize the important tweets and their polarity.

If word 'kaunis' (beautiful) is present usually in positive class, more frequently than in

negative class, the classifier learns to recognize this word and make assumption, that the

tweet containing this word goes to positive class.

Classifier counts the frequencies of each feature in the feature vector and their classes

and makes assumptions. If some important word is taught equally for two different clas-

ses, classifier seeks what are the words around this important word. In Finnish, 'kaunis'

is a positive word, but if there is the word 'ei' (no) or words 'ei ole' (is not) meaning

changes and tweet should be classified into class negative.

After the classifier is taught with the training data, it is tested with the test data set.

When the classifier has reached a wanted accuracy level, it is used for unseen tweets

from the data stream. Classifier will take one tweet at a time into examination and

checks the matching label (class) for the tweet. 10 percent of total data is used as a test

data, but in real action, new real time arriving tweets goes into classification. Tweets are

collected with specified qualities and purpose of the classifier is to recognize from the

features, in which class certain tweet belongs.

Naturally, when making an analysator it is important to see how the classifier manages

to make the classification process. By computing each classifier’s accuracy level for the

39

test set, the best performing classifier can be found. Testing is done for the test set

which is divided from the total amount of labeled data. Classifier classifies the test set

and accuracy is counted for the test set based on labels that the test set has. Accuracy

measure shows how many test tweets were labeled correctly in the classification process

for test data. Checking manually how the classifier labeled test tweets gives a nudge in

the right direction how to modify data further.

When accuracy is between 0.70 and 0.80, machine can do quite good labeling and the

importance and need of human labeling emphasizes. Human concordance is threat to

accuracy in sentiment analysis, because humans don’t agree universally with one anoth-

er. Getting 1.0 (100%) accuracy with only help of a machine is hard or not possible for

large and various text data like from Twitter. This happens because some sentences are

not easy to analyze and manual annotating can be ambiguity.

When classifying into 3 categories, positive, neutral, and negative, the data consists

with tweets that are objective and subjective. While usually subjective tweets express

some sentiments, objective does not. This is in some cases not that simple. For example,

“I think Finland is a hockey country” is a subjective tweet and goes to neutral class,

because it does not include any sentiment. However, a tweet “Years 1995, 2011 Finland

won gold, but usually they keep losing to Sweden”, is an objective as it states a fact, but

it expresses an implicit opinion: “losing to Sweden” which is more to be negative. A

Finnish person knows that the last tweet has a negative sentiment, but how would the

machine know that losing to Sweden is not a good thing.

There are also other factors influencing the accuracy. These five factors are shown in

Table 6.

40

Table 6. Main factors influencing the accuracy of text classification.

After the classification, it is interesting to see the most informative features that were

used in each class. The most informative features can be seen after mapping feature

names to the feature vectors. In this case, more than two classes are needed, where 𝑚 is

the total number of features and 𝑛 is the number of classes. If wanting to see the top 10

most discriminative features of class 1, sort the corresponding row and extract the fea-

ture names of top 10 features. Then iterate over all the indices and get the corresponding

feature names. Sorting works only if the features are being normalized. Inspection of the

results shows if some words are going badly into wrong class. The most informative

features should be seen with common sense that is the class right.

Factor Description

Context Positive and negative sentiment word can have the opposite

connotation depending on context. “You’re great!” is a positive

while “Great job by blowing my day!” is negative.

Sentiment ambiguity Tweet can be neutral even it has a positive or negative word.

For example “Can you recommend any fantastic movie?” does

not express any sentiment, but it does use the positive sentiment

word “fantastic”. In addition, a tweet “This DVD-player is

slow” is negative even though it does not express any sentiment

word.

Sarcasm If there is sarcasm involved in a tweet, positive can be quickly

negative. For example, “I’m so glad, that I drop my wallet for

that thief to be found” is clearly sarcastic and negative; even it

has the word “glad”. Sarcasm can be detected mainly from the

context (losing a wallet is not a good thing).

Comparatives If comparing something there is always two ways to see the

statement. For example, “Tappara is way better than Ilves” is

positive for Tappara and negative for Ilves (Finnish hockey

leagues). There is a positive keyword “way better” but no re-

garding for whom.

Regional variations Depending on language, a word can change sentiment and

meaning. This can be seen in slang and language variations. For

example, in Finnish “itikka” means cow and midge, depending

on a province that you use the word.

41

In order to accommodate features that depend on a word’s context, the pattern that was

used to define the feature extractor must be revised. Instead of just passing in word to be

tagged, a complete, untagged, sentence, along with the index of the target word is

passed. These target words in this work are tagged with TF-IDF technique.

From all the possible text data classifiers 3 were chosen. Target was to find the most

accurate classification method. Next will be explained the main reasons why this work

includes Random Forests, k-NN and Naive Bayes as a classification algorithms. Results

and comparison between classifiers is represented in chapter 4.

3.6.1 Random forest

Random forest was not the first selection as a classifier and is not mentioned in many

previous studies in relation to text based sentiment analysis. Implementation was easy

with scikit-learn and quite good results were achieved after the first classification test.

Random forest did not succeed to same level as Naive Bayes at first but was close. Why

Random forest is included as one of the classifiers is explained next.

Random forest can rank the importance of variables in case of classification or regres-

sion. It is a meta estimator that fits a number of decision tree classifiers on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and con-

trol over fitting [13]. When measuring the variable importance, a Random forest needs

to be fitted to the data. Data is fit with either two sparse or dense arrays 𝑋 and y. Array

X is for the training samples and array y for the target values (class labels) for the train-

ing samples.

Fitting process in Random forest includes recording and averaging out-of-bag error for

each data point. The importance of the feature can be measured by permuting the values

of the feature among the training data and calculate the out-of-bag error again on per-

turbed data set. Importance for the feature is the average of the difference in out-of-bag

error before and after the permutation over all trees. Normalization is done by the stand-

ard deviation of the differences.

Random forest ranks features, which produce large values more important than features,

which produce small values. Figure 6 shows the importance of features when using

Random forest classifier. The red bars are the feature importance’s of the forest. Plot

shows that the features 7617 and 3188 are the most important following few other im-

portant features and then the importance starts to decrease for the features. Features in

bars are words of n-grams (1, 3) that describe connection to a certain class. For exam-

ple, course words are important negative features and celebrative and warm words de-

scribe the importance of positive class.

42

Figure 6. Feature importances.

Accuracy of the Random forest increases when adding right feature selection method to

it. Feature selection works as a part of the model construction process. One way to use

feature selection is to make a pair of Random forest and feature selector in a pipeline.

For example, when using Lasso as a feature selection method, Lasso constructs a linear

model from the extracted features and shrinks coefficients (features) to zero. All fea-

tures having non-zero coefficient will be selected by the Lasso algorithm. One thing is

to find a good alpha for Lasso, so it will fully recover the exact set of non-zero variables

using only few observations.

3.6.2 K-Nearest Neighbor

K-NN was chosen because of its easiness to implement. K-NN is also in some text clas-

sification cases very effective and has good qualities because of its non-parametric

form. K-NN calculates similarity between test document and each neighbor, and assigns

test document to the class, which contains most of the neighbors. The category for the

feature is predicted based on the nearest point, which has been assigned to a particular

category. The k-Nearest Neighbor classification method is widely used because of its

simplicity and is suitable technique for text classification. This method performs well

even in handling the classification tasks with multi-categorized documents.

K-NN classification has some drawbacks. For example, it uses all features in distance

computation, and makes the method computationally intensive. Computational intensity

increases when the size of training set grows and in this research had over 10 000 fea-

43

tures after feature selection. Accuracy of k-Nearest Neighbor classification is degraded

hard if there are noisy or irrelevant features involved.

3.6.3 Naive Bayes

Naive Bayes classifier can be trained efficiently by requiring a relatively small amount

of training data to estimate the parameters necessary for classification. Because inde-

pendent variables are assumed, only the variances of the variables for each class need to

be determined and not the entire covariance matrix. An advantage of the naïve Bayes

classifier is that it requires a small amount of training data to estimate the parameters

necessary for classification. Bayesian classification approach arrives at the correct clas-

sification as long as the correct category is more probable than the others are. Catego-

ry’s probabilities do not have to be estimated very well. In other words, the overall clas-

sifier is robust enough to ignore serious deficiencies in its underlying naïve probability

model.

Naïve Bayes was a certain choice to be involved in the project as a classifier, because it

has been one of the popular machine learning methods for many years. The framework

in Naïve Bays is attractive since its simplicity in various tasks and it offers reasonable

performance, obtained in the tasks even though the learning is based on an unrealistic

independence assumption.

44

4. RESULTS

This section summarizes the research results and their relevance. Chapter includes the

most important results, sources of error and deviations from the expected results and

discusses the reliability of the research. Results relate to implementation process of the

work using lexical and learning based sentiment analysis for text data.

Preprocessing in lexicon based approach included forming a vocabulary and rate words

that have a sentimental meaning. For example, words love, hate, fantastic, and horrify-

ing were rated with values from -5 (extremely negative) to 5 (extremely positive).

Ready-made vocabulary were found and translated into Finnish from previous (English

language) study. All features and rates were inspected manually before using them for

analysator. Calculating total value for one tweet was done summing the rates. Lexical

analysator managed quite well, but slang, sarcasm and minimalistic vocabulary messed

the classification. This resulted as high amount of neutrals and low amount of positive

and negative tweets.

Data retrieval from Twitter is made easy for developers. Twitter’s application pro-

gramming interface enabled searching 2 weeks old tweets, which helped collecting data

for training. When collecting data, search was performed using descriptive search words

to collect versatile and valid training data for the machine. Content is important because

the features that tweet encompass, affects the learning process and further analyses

when using new tweets. Twitter’s Streaming API enables real-time analyzing when the

REST API together with OAuth provided collecting already existing tweets. Table 7

shows the amount of training data collected from Twitter.

Table 7. Amount of labeled training data from Twitter.

Class Rate Amount

Negative -1 700

Neutral 0 700

Positive 1 700

Total 2100

45

In learning based approach, manually annotated tweet data was split into training and

testing data. Split is mandatory to test the prediction of an estimator with different data

than what was used to fit the estimator. When the split is done, it is important that equal

amount of data is used for each class. Equality is important, because classifier is easily

biased into classifying to the class, which is the most present in the learning data. Split

in this study was done relative to 90-10, which means that 90 percent went for training

and 10 percent for testing.

Sentiment classification was done to classes positive, neutral and negative (Table 7)

where the manual annotating was done by the intuition about the sentiment that the

tweet contains. This was not quite unambiguous, because one might think that the tweet

is positive and some other that it is negative. Tweet that was hard to classify what sen-

timent it includes was labeled as neutral. Labeling was done giving values -1, 0, and 1

for every tweet using custom made rating web-application. Training data was inspected

before training, so that it won’t include any duplicates in same or different classes and

seemed reasonable.

Feature extraction was tested with word count vectorizer and TF-IDF vectorizer. There

was no huge noticeable difference between these two methods. TF-IDF was chosen and

it was used in all experiments with different parameter settings for n-gram range and

stop words list. Table 8 shows how using different n-grams affected to accuracy of the

classifiers. Grey box shows accuracy when using cross validation. Feature extraction is

done with TF-IDF vectorizer function.

Table 8. Accuracy for different n-gram range.

If using n-gram range, best result was achieved with Naïve Bayes and k-NN using n-

gram range (1, 3). Random forest gives the best result when not using n-gram at all.

This is not very good choice, because when analyzing Finnish tweets, it is better to use

n-gram range (1, 2) or (1, 3), because Finnish words change rapidly their meaning if a

word is related to a certain other words.

Another feature extraction parameter is a stop words list. Two different sizes stop words

lists were tested and the best result was achieved using list where is 175 words. Using

stop words affect also to the informative features. Table 9 shows how the stop words list

Feature extraction (n-gram, stop)

Feature selection

None, None

None

(1, 2), None

None

(1, 3), None

None

Accuracy k-NN 0.650 0.605 0.540 0.628 0.660 0.620

NB 0.770 0.695 0.690 0.706 0.780 0.708

RF 0.790 0.730 0.670 0.719 0.750 0.713

46

affected to accuracy where grey box indicates accuracy when using cross validation

with 10 folds. Number in parentheses describes the amount of stop words. Table 10

shows some descriptive word types that are included in most informative features for

Naïve Bayes.

Table 9. Accuracy for different size of stop words lists.

Table 10. Top 10 most informative feature types for Naïve Bayes.

When feature extraction was used without any feature selection method, the accuracy of

the classifiers was slightly lower when also using cross validation. Table 11 shows what

happens to accuracy when feature selection methods were involved.

Table 11. Accuracy of the classifiers when using n-gram and stop words with feature

selection methods.

Feature extraction (n-gram, stop)

Feature selection

(1, 3),

stop(0)

None

(1, 3)

stop(1828)

None

(1, 3)

stop(175)

None

Accuracy k-NN 0.660 0.620 0.720 0.600 0.660 0.564

NB 0.780 0.708 0.780 0.680 0.840 0.660

RF 0.750 0.713 0.760 0.667 0.740 0.684

Stop words = 175 -1 Curse words, disappointment, lack of understanding

0 Words that does not include any sentiment

1 Appreciation, supporting, affection

Feature extraction

Feature selection

(1, 3)

stop(175)

Recursive

Feature

Elimination

(1, 3)

stop(175)

Forward

selection

(1, 3)

stop(175)

Select K-Best

(Chi-square,

k=10)

(1, 3)

stop(175)

Lasso

Accuracy k-NN 0.620 0.576 0.680 0.598 0.650 0.591 - -

NB 0.704 0.635 0.710 0.691 0.540 0.593 0.730 0.654

RF 0.625 0.700 0.630 0.725 0.590 0.507 0.770 0.704

47

From feature selection methods Lasso gave the best results when used with Random

forest. Naïve Bayes works best with forward selection or with none feature selection

method. The best feature selection method for k-Nearest Neighbor was Forward selec-

tion. K-NN achieved good results when using no feature selector at all.

Figures 7, 8, and 9 shows the classification report with the confusion matrix for tested

classifiers. Confusion matrix reports the number of false positives, false negatives, true

positives and true negatives. This allows more detailed analysis than mere proportion of

correct guesses (accuracy). Parameters for the classifier, training and testing time are

also included in figures. The precision is the ratio that the classifier does not label as

positive s sample that is negative [13]. The recall means the ability to find all the posi-

tive samples. F1-score is a weighted average of the precision and recall. Support de-

scribes the number of occurrences of each class.

Figure 7. Classification report for k-NN.

In Figure 7, feature selection method for k-NN was dismissed because of the bad re-

sults, that classifier gave. Reason for this is caused by the learning data. Tests showed

that the k-NN gives good results, if the learning data is specific and carefully selected

for the new data or the training and test data is relatively small. K-NN accuracy varied

the most during testing and was never a number one. Because other classifiers managed

better, k-NN was bit left behind in the developing process for classification.

48

Figure 8. Classification report for Multinomial Naïve Bayes.

Multinomial Naïve Bayes was the most accurate classifier for Finnish tweets. Naturally

this was selected as a final classifier for the analysis. Naïve Bays did not need any fea-

ture selection, because the most informative features can be sorted from discrete fea-

tures by their probability. In addition, Naïve Bayes works fine with forward selection.

Figure 9. Classification report for Random forest.

49

Classification report in Figure 9 does not include a feature selection. Figure 10 shows

the report for Random forest with Lasso. These reports indicate that Random forest is

more accurate when feature selection is involved. This result is based on the cross vali-

dation.

Figure 10. Classification report for Random forest with Lasso.

Most of the errors during the project were made in feature selection. From tested feature

selection methods, Variance threshold was discarded right after trying. Discarding hap-

pened, because all of the features in the data have such a low variance, that feature se-

lector removes them all. Variance threshold is better for unsupervised learning, because

feature selector looks only at the features (𝑋), not the desired outputs (𝑦). Univariate

feature selection method did not work either for the Twitter data. Chi-square and Select

K-Best did not exceed to the same level as forward selection and Lasso. Forward and

backward feature selection works quite well. Backward method demands more compu-

tation power than forward selection and it is clearly noticeable time difference

(>20min).

Training time rose when using cross validation and especially when classifying with

Random forest, using Lasso or RFE as a feature selection method. Table 12 shows some

differences between training times. Training time was almost 50 minutes per test.

50

Table 12. Classifiers training time with cross validation.

Classifier Training time

K-Nearest Neighbor 5.521

Naïve Bayes 0.826

Random Forest 878.736

Random Forest with Lasso 88.291

Naïve Bayes with Lasso 83.303

51

5. CONCLUSIONS

This study provides a description of a sentiment analysator for text data, using super-

vised machine learning algorithms. The purpose of the analysator is to mine sentiments

from tweets and classify them into 3 classes; positive, negative and neutral. When mil-

lions of tweets travel in hyperspace at daily basis, manual analyzing is impossible.

When using a machine to analyze tweets straight from the stream, information gain can

be maximized.

Data science has been a hot topic and various studies about mining the Twitter data and

analyzing the sentiments from content has been done before this work. Media industry

has seen an opportunity in social media to create interactivity between brands and peo-

ple. Mining the social media era is at its early phases and there are opportunities for

developing analysis in many ways.

When training the classifier it is important to choose the right datasets. If datasets are

too ambiguous, contain mixed sentiments or make comparisons, they are not ideal to be

used for training. Using human annotated datasets as much as possible gives better re-

sults than automatically extracted examples. When annotating, it is important to re-

member that the probability of classifying a document as positive, negative or neutral is

equal. Thus in the dataset the number of examples in each category should be equal.

Feature extraction can be done either using word count or TF-IDF vectorizer function.

This study exploits TF-IDF, which also measures how important a word is. When mak-

ing feature extraction using n-gram range and stop words list, accuracy can raise. Fea-

ture selection is another important part of the classification and the best method can be

found by trial and error. When implementing feature selection method Lasso to Random

forest classifier, it gave small increase to accuracy. Multinomial Naive Bayes reached

better readings without any extra feature selection method. Random forest got better

results for classification than Naive Bayes, when not using any n-gram or stop words

list. These parameters were used anyway, because of the Finnish language structure, n-

grams are needed.

Most of the previous studies about Twitter sentiment analysis have been done in Eng-

lish. These studies have tested and reported various text classification methods, where

the reached accuracy level is <0.85. This means that ≥15 percent of the test data is la-

beled in wrong class. This study differs in a way that the training data contains 2100

Finnish tweets. The best algorithm classified tweets by accuracy of 0.84. This accuracy

can be received using Multinomial Naïve Bayes. This accuracy depends how the train-

52

ing and test data is divided and the analysator does not give at every time this accuracy.

When using and relying cross validated values, true accuracy is present. By this as-

sumption forward selection is the best feature selection method for all tested classifiers

and gives cross validation 0.725 for Random forest. Getting 100 percent accuracy for

classifying Twitter data automatically is impossible. For example context, sentiment

ambiguity, and sarcasm have effect.

The study indicates that it is possible to extract sentiments, emotions and opinions from

social media’s data using machine learning algorithms. Accuracy 0.84 is almost as good

as other studies has indicated so this project managed well. Mathematical patterns be-

hind classifying algorithms can be really simple, naïve or they can be more complex

trees.

With the analyzer created, tweets in Finnish can be now analyzed with supervised ma-

chine learning into classes positive, neutral and negative. This gives valuable infor-

mation for example companies which want to know how people feel about them or me-

dia who wants to know how people react to a brand. Analysis can be also used for mak-

ing a questionnaire in Twitter and analyse people’s responses.

The best information source for sentiment analysis is academic papers. Choosing be-

tween different techniques is time consuming, and not every suggested technique will

work well in every case. Some techniques work well only in specific domains and the

quality of the results varies. When choosing a technique to be used in classification pro-

cess, it is important to test different algorithms and not blindly choose some method

from previous academic papers. Algorithms should work more accurate and efficient

way than make things unnecessary complicated.

Algorithms and possibilities for classifiers and parameters are available in great amount.

Data can have more preprocessing steps than this work comprises. These operations can

include for example compressing words or creating a pattern to recognize sarcasm. De-

veloping process can be continued to recognize sentiment also from other social media

platforms and from images. One possibility is to use sentiment analysis in text-to-

speech synthesis.

Phenomenon of the sentiment classification needs machine learning and natural lan-

guage processing techniques to extract knowledge from the growing data. It stays im-

portant to extract irrelevant and redundant features away from the training data so the

quality and cost of mining process stays appropriate.

53

REFERENCES

[1] L. Breiman, Random Forests, University of California, January 2001, 33 p.

Available: http://oz.berkeley.edu/~breiman/randomforest2001.pdf

[2] T.G. Dietterich, Machine Learning, Oregon State University, 14 p. Available:

http://web.engr.oregonstate.edu/~tgd/publications/nature-ecs-machine-

learning.pdf

[3] J. Gholamreza, T. Reza, P. Parvaneh, M. Ali, Hybrid Financial Analysis Model

for Predicting Bankruptcy, British Journal of Economics, Vol.2(1), October

2011, 37-48 p. Available:

http://www.ajournal.co.uk/EFpdfs/EFvolume2%281%29/EFVol.2%20%281%29

%20Article%204.pdf

[4] J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques (Third edi-

tion), A volume in The Morgan Kaufmann Series in Data Management Systems,

2011, 5-9, 24-26, 327-386 p. Available:

http://www.sciencedirect.com/science/book/9780123814791

[5] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Data

Mining, Inference, and Prediction, Second Edition, August 2008, 9-29, 305-317

p. Available:

http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf

[6] A. Jain, R. Duin, J. Mao, Statistical Pattern Recognition: A Review, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, Vol. 22, NO. 1, January

2000, 4-37 p. Available:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=824819

[7] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical

Learning with Applications in R, Springer, 2013, 12, 38-40,127 p. Available:

http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf

[8] C. Kaushik, A. Mishra, A Scalable, Lexicon based Technique for Sentiment

Analysis, YMCA University of Science & Technology, International Journal in

Foundations of Computer Science & Technology, Vol.4, No.5, September 2014,

35-43 p. Available: http://arxiv.org/pdf/1410.2265.pdf

[9] M. Koppel, J. Schler, The Importance of Neutral Examples for Learning Senti-

ment, Bari-Ilan University, 2006, 1-9 p. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.9735&rep=rep1&ty

pe=pdf

http://web.engr.oregonstate.edu/~tgd/publications/nature-ecs-machine-learning.pdf
http://web.engr.oregonstate.edu/~tgd/publications/nature-ecs-machine-learning.pdf
http://www.sciencedirect.com/science/book/9780123814791
http://arxiv.org/pdf/1410.2265.pdf

54

[10] E. Loper, Natural Language Toolkit: Naive Bayes Classifiers, University of

Pennsylvania, 2004, Available: http://web.mit.edu/6.863/python/nltk-

0.9.1.old/classify/naivebayes.py

[11] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,

Cambridge University Press, 2008, 271-274 p. Available:

http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

[12] A. Pak, P. Paroubek, Twitter as a Corpus for Sentiment Analysis and Opinion

Mining, Université de Paris-Sud, 2010, 1320-1326 p. Available: http://incc-

tps.googlecode.com/svn/trunk/TPFinal/bibliografia/Pak%20and%20Paroubek%2

0(2010).%20Twitter%20as%20a%20Corpus%20for%20Sentiment%20Analysis

%20and%20Opinion%20Mining.pdf

[13] Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR 12, 2011,

2825-2830 pp.

[14] M.A. Russell, Mining the Social Web, O’Reilly Media, October 2013, 5-44 p.

[15] M. Thelwall, K. Buckley, G. Paltoglou, Sentiment in Twitter events, Journal of

the American Society for Information Science and Technology, 62(2), February

2011, 406-418 p. Available:

http://www.researchgate.net/profile/Mike_Thelwall/publication/220435012_Sent

iment_in_Twitter_events/links/0912f51333fad59559000000.pdf

[16] M. Thelwall, Heart and Soul: Sentiment Strength Detection in the Social Web

with SentiStrength, Statistical Cybermetrics Research Group, University of Wol-

verhampton, August 2013, 1-14 p. Available:

http://sentistrength.wlv.ac.uk/documentation/SentiStrengthChapter.pdf

[17] G. Valentine, T.G. Dietterich, Bias-variance analysis of Support Vector Ma-

chines for the development of SVM-based ensemble methods, Journal of Ma-

chine Learning Research 1, 2000, 1-48 p. Available:

http://web.engr.oregonstate.edu/~tgd/publications/jmlr-valentini-bv.pdf

[18] V. Vryniotis, 10 Tips for Sentiment Analysis projects, Blog on Machine Learn-

ing, Statistics & Software Development, September 2013, Available:

blog.datumbox.com

[19] S. Watanabe, Pattern Recognition: Human and Mechanical. New York: Wiley,

1985, 570 p.

[20] Y. Whye Teh, Supervised Learning: Ensemble Methods, Random Forests, De-

partment of Statistics, University of Oxford, 1-18 p. Available:

http://www.stats.ox.ac.uk/~teh/teaching/datamining/l15a-RF.pdf

