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ABSTRACT
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Microservices are a method for creating distributed services. Instead of monolithic applica-
tions, where all of the functionality runs inside the same process, every microservice
specializes in a specific task. This allows for more fine-grained scaling and utilization

of the individual services, while also making the microservices easier to reason about.

Push notifications can cause unexpectedly high loads for services, especially when they
are being sent to all users. With enough users, this load can become overwhelming. Most
services have three options to meet this increased demand: scale the service either ho-
rizontally or vertically, improve the performance of the service or send the notifications in
batches. In our service, we chose to implement the batched sending of notifications. This
caused issues in the amount of time it took to send all notifications. Instead of a short peak

in traffic, the service had to manage consistently high load for a long period of time.

This thesis is part literary study, where we research microservices in more detail and go th-
rough the more common architectural patterns associated with them. We explore a produc-
tion service that had issues with meeting the demand during high load caused by push no-
tifications. To understand the production environment and its restrictions, we also explain
the runtime, Node.js, and the cloud provider, Heroku, that were used. We go through the
clustering implementation details that allowed our API gateway to scale vertically more
effectively.

Based on our performance evaluation of an example Node.js application and our produc-
tion environment, clustering is an easy and effective way to enable vertical scaling for No-
de.js applications. However, even with better hardware, there still exists a breaking point
where the service can not manage any more traffic and autoscaling is not good enough to
meet the demand. A service requires constant monitoring and performance improvements
from the development team to be able to meet high demand.
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Mikropalvelut ovat tapa tehdé hajautettuja jarjestelmia. Monoliittisissa sovelluksissa kaik-
ki toiminnallisuus ajetaan samassa prosessissa, kun taas mikropalveluissa jokainen palve-
lu keskittyy yhteen tiettyyn toiminnallisuuteen. Tdmai tekee mikropalveluista helpommin

ymmarrettivia.

Push-viestit voivat aiheuttaa odottamattoman paljon liikennetta palveluille, erityisesti kun
niitd ldhetetddn kaikille kayttédjille. Useimmilla palveluilla on kolme vaihtoehtoa timén
kasvavan liikenteen kisittelyyn: palvelua voidaan ajaa useammilla tai tehokkaammilla
palvelimilla, palvelun tehokkuutta voidaan parantaa tai push-viestit voidaan léhetta eris-
sd. Me valitsimme push-viestien ldhetyksen erissd ratkaisuksi. Tdma johti pitkddn lapi-
vientiaikaan viestien ldhetyksille. Yksittdisen korkean liitkennepiikin sijaan palvelun piti

pystyd vastaamaan pitkdkestoiseen ja korkeaan kuormaan.

Tama tyo on osittain kirjallisuustutkielma, joka keskittyy mikropalveluihin ja niiden ylei-
siin arkkitehtuurivalintoihin. Tutustumme meidin tuotantoympéristoon ja sielld push-vies-
tien aiheuttamaan ongelmaan korkean kuorman kisittelyssd. Tuotantoympéristomme ja
sen rajoitteiden ymmartamistd varten kiymme ldpi myods meidédn ajonaikaisen ympériston
eli Node.js:n ja Herokun. Kdymme ldpi klusterointiin liittyvat muutokset, jotka mahdol-

listivat tehokkaampien palvelimien hyddyntimisen meiddn API-yhdyskaytdvassa.

Node.js pohjaiseen esimerkkisovellukseen tehtyjen kuormitustestien ja tuotantoympéris-
tomme tulosten perusteella klusterointi on helppo ja tehokas tapa mahdollistaa Node.js
pohjaisen sovelluksen kayttd tehokkaammilla palvelimilla. Tehokkaammilla palvelimil-
lakin tulee kuitenkin jossain vaiheessa vastaan niin korkea kuorma, etté palvelimet ja au-
tomatisoidut jirjestelmét kapasiteetin lisddmiselle eivit endd kykene sithen vastaamaan.
Palvelu vaatii jatkuvaa kehitystd ja tarkkailua kehittdjatiimiltdén, jotta se voi vastata kas-

vavaan kysyntdan.
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1. INTRODUCTION

Traditionally, procuring hardware has been a big undertaking for companies. Ordering,
setting up and configuring server hardware is a process that can easily consume a month of
calendar time, if not more, since server hardware is rarely available off the shelf, due to the
multitude of different configuration options [1, p. 85]. Hardware is also a large financial
investment, one which smaller companies would often rather live without. Mistakes in

capacity planning can also lead to catastrophic failures once the product launches

Self-hosted hardware comes with a heavy maintenance burden. Being responsible for
the whole hardware and software stack is most likely not the core competency of most

companies.

Modern cloud hosting providers like Amazon Web Services (AWS) and Google Cloud
Platform (GCP) offer more elasticity when it comes to hosting options. Infrastructure as
a Service (IaaS) [2, p. 13-15], Platform as a Service (PaaS) [2, p. 15-17] and Software as
a Service (SaaS) [2, p. 17-18] allow different options of hosting where maintenance gets
shared between the service provider and the client to varying degrees. Hardware is always
taken care of by the service provider, and due to modern virtualization techniques, adding
new instances and scaling up happens in minutes instead of months. Ability to utilize
different cloud based resources effectively is seen as a business advantage. Since cloud
based resources are often priced by the hour or based on usage, even smaller companies
and startups can start with smaller investments or test different configurations for their
applications very cheaply [2, p. 2]. Even some larger companies like Netflix have moved
their infrastructure completely to the cloud [3] due to the amount of elasticity and freedom
it provides: scaling servers up and down based on usage can lead to cost savings. Pay as
you go payment models allow for quick and cheap experimentation while trying to mix

and match the best possible hardware and software for the problem at hand.

Typically, web applications are ran as a singular process, scaled to multiple different
servers when or if necessary. This means that if a specific part of the service receives
a disproportionate amount of the overall traffic, our only option is to scale the whole ser-
vice to meet the necessary demand [4]. Easily available computing resources have also

led to alternative ways of building software, that allow us to utilize modern cloud based
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hosting solutions more effectively.

Microservices split the functionality of a product into multiple independent services that
communicate with each other over the network through an application programming in-
terface (API). Since the services are independent, they can also be scaled independently
based on demand. Smaller services can also be easier to reason about, since they tend to

focus on a single piece of functionality.

Both the hosting environment and the runtime of a service can introduce restrictions on
how a service is run. Modern PaaS environments often have restrictions in place for dif-
ferent aspects of running an application on the platform. For example, third party applica-
tions like databases or caches are managed by the platform and can not be run inside the
application servers. Runtimes like Node.js can also impose their own set of restrictions
on the application. On Node.js, all the user created code runs inside a single thread and
execution happens asynchronously.

API gateways are a common approach to make a fleet of microservices seem like a single
service to the API consumer. An API gateway consolidates all of the individual microser-
vice APIs and offers them as a cohesive set of APIs to the consumers. This makes it seem
like there is a single service handling all of the requests on the API caller side, while the
reality is more complex. The API gateway approach does have a negative effect of forcing
all of the traffic to route through the same service, which means that the gateway has to

be able to handle the combined traffic from all of the individual microservices.

In this thesis, we focus on finding the answers to the following research questions:

1. What are microservices and how to build and manage them?
2. What limitations does our environment impose on our services and scalability?

3. How did we fix our API gateway scalability issue?

This thesis is organized as follows: in Chapter 2 we go through the basics of microser-
vices in more detail. Chapter 3 explores our production service runtime, Node.js. Chapter
4 introduces Heroku, a Platform as a Service hosting provider that our production service
uses. Chapter 5 explains how push notifications caused major traffic spikes on our ser-
vices. Chapter 6 goes through the implementation details of the changes we made to our
API gateway. Chapter 7 explores the performance impact of Node.js clustering. Chapter

8 includes conclusions and future ideas for improving our API gateway performance.



2. MICROSERVICES

Microservices are small, autonomous, and distributed systems that work together [5, p. 22].
These small, individual systems are modeled after concrete business needs or functions,
where every service is responsible for a specific portion of a larger system. As a whole,
these services are utilized to achieve a plethora of different business goals, perhaps even

ones that were not originally thought of.

Microservices can be seen as an evolution of service oriented architecture (SOA), some-
times it is even called rebranded SOA [6, p. 1]. Service oriented architecture is a design
approach, where multiple individual services collaborate to provide a cohesive set of ca-
pabilities [5, p. 8]. These services communicate across the network, rather than method

calls within a single process.

”SOA at its heart is a very sensible idea. However, despite many efforts, there is a lack of
good consensus on how to do SOA well.” [5, p. 8] The main difference between microser-
vices and service oriented architecture is that microservices lack the ambiguity of SOA.
There is no clear definition for what SOA actually is: to some it means allowing systems
to communicate with some standard structure like XML, to others it is about asynchronous

messaging between services.

Microservices are the opposite of monolithic services, where all of the functionality runs
inside a single process. In a monolithic service, implementation can be divided by mod-
ules, classes or some other mechanism provided by the programming language being used.
These modules may have well defined application programming interface (API) bound-

aries between each other, but they all live inside the same code base.

2.1 How microservices are built

A clear definition for how microservices should be built does not exist. Some organiza-
tions like to enforce rules related to size of a service, which is actually one of the downsides
of the term microservices. Services should be modeled based on business needs and while
smaller services are preferable, they are not the goal.
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One common approach for creating microservices is starting with an existing, monolithic
application, and using microservices as a refactoring pattern. Because understanding of
the business domain is most likely limited at the start of a project [5, p. 33], creating new
microservices can be problematic. Refactoring the existing, stable APIs of a monolith into

new services is an easier way to get acquainted with microservices.

2.1.1 Break the monolith

Breaking down an existing service in to smaller chunks starts with a thorough examination.
Hopefully the service utilizes a clearly defined module structure with good APIs between
the different modules. Starting with smaller modules makes it easier to get familiar with

implementing microservices.

Teams can also focus on creating microservices from new features that are being created
and ones that are on the horizon. This way the existing monolith does not have to be
changed too much at the start. Old functionality can instead be slowly transitioned to the
appropriate new services that have been created while making new features. [6, p. 65]

Incremental transition is the safest way to proceed when changing an existing service.
Trying to break all of the modules in to microservices in a single “Big Bang” sort of
approach is most likely to end up failing.

2.1.2 Communication between services

Since microservices are independent, distributed services, they need to communicate be-
tween each other through the network. There are multiple different ways to implement this
communication, and some services may even choose to utilize multiple different methods

at the same time.

Communication between service boundaries can be either synchronous or asynchronous.
An example of synchronous communication can be the request response model: a client
sends a requests and waits until the server responds with the result. A message queue on
the other hand is a good example of asynchronous communication: clients add work to
the queue and does not wait for it to be completed. The queue distributes the work to the

relevant workers.
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Synchronous communication

Remote procedure calls (RPC) is a technique where a local function call is actually ex-
ecuted on a remote server [5, p. 46]. There are multiple different implementations of
RPC, like Java RMI [7] or Thrift [8]. Many RPC implementations are binary in nature,
like Thrift, but some use textual representations, like how Extensible Markup Language
(XML) is used with Simple Object Access Protocol (SOAP). There are many different
networking protocols in use, like the Hypertext Transport Protocol (HTTP) as well as
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP).

RPC tries to hide remote calls as local function calls, which can lead to issues. Assum-
ing that the network is always reliable is one of the eight fallacies related to distributed
computing [9]. This is why clear distinction between local and remote calls is always
preferable.

Some RPC implementations can also be very brittle. Java RMI can generate stubs for
clients and servers, but it also requires the client and server to have matching object de-
scriptions. This forces client and server releases to happen at the same time, which makes
us lose out on one of the key benefits of microservices, independent deployments.

\ Send request
[ Service A J(Receive response Service B ]

Figure 2.1 Synchronous communication. Service A calls B directly and waits for the response until
proceeding. This call is done over the network and is subject to connection issues and timeouts
that are not a problem when calling functions inside the same process

Figure 2.1 is an example of synchronous communication. When two services are com-
municating synchronously, the calling service waits until the service receiving the call
responds. Since the requests are done over the network, they are inherently more error
prone than function calls inside the same process.

REpresentational State Transfer (REST) is a web inspired architectural style. In REST,
the concept of resources is key. The server might have multiple different resources that the
client can ask different representations for. The client can ask for a resource in JavaScript
Object Notation (JSON) or XML and the server responds as requested, based on its capa-
bilities.

REST is built on top of HTTP, and it utilizes multiple aspects of it. HTTP verbs like
GET, POST and PUT are used to denote fetching a resource, creating a new resource and

updating an existing resource [5, p. 50]. Utilizing HTTP gives us a lot of existing tooling
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like caching, load balancing and monitoring utilities.

REST also introduces the concept of hypermedia as the engine of application state (HA-
TEOAS). The idea of HATEOAS is that REST resources can contain links between other
resources in a lot of different formats. The clients should perform their operations by

utilizing and navigating these links. [10]

Clients utilizing HATEOAS do not need to know the exact location of all the available
REST resources. They can navigate the links between resources to find the necessary
information. Unfortunately, HATEOAS results in APIs that require a lot of back and forth
communication between the server and the client, which is why it is pretty seldom utilized
inside RESTful services. [5, p. 52]

The main difference between REST and RPC is that REST is just a way to build HTTP
APIs. Calling a RESTful service requires HTTP communication with another server, so it
is more explicitly a request going over the network than an RPC function call is in many
cases.

REST is a common choice for service to service communication, but it has downsides.
Utilizing HTTP for communication is most likely not suitable for low latency needs. REST
also does not generally have the stub generation features that some RPC implementations
may have.

Asynchronous communication

Asynchronous and event based communication can be achieved by utilizing message bro-
kers. There are multiple message broker implementations available, but a good, free exam-
ple of one is RabbitMQ [11]. In an event based message broker pattern there are producers
and consumers.

RabbitMQ can be configured in two different ways: work queues and publish/subscribe.
In work queue mode, producers add messages to a queue. Work is divided between all
the registered consumers and every message is processed at least once. This workflow is
shown in figure 2.2.

In publish/subscribe mode, instead of a queue, producers send messages to an exchange.
The exchange is responsible for pushing messages to queues based on the exchange type.
Typically in a publish/subscribe mode, the exchange is configured to relay all messages to
every consumer. This means that every consumer has a queue of its own and the exchange
adds the messages to every queue it is aware of.
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Consumers process

messages
Consumer
Producer adds new messages to queue \ J
] f N
Producer J Queue Consumer
\, g
f N
Consumer
\, g

Figure 2.2 Asynchronous communication. Producers know of the queue, but are not necessar-
ily aware of the different consumers for their messages. This enables better decoupling between
services

This sort of asynchronous, de-coupled form of communication allows producers to not
know what systems are actually going to react to the events that they produce, making it
easier to add new or additional steps to the event chains. Message broker patterns are built
to be resilient and scalable, but this scalability does not come for free [5, p. 55].

The biggest problem with asynchronous communication is the added complexity. Besides
the fact that services need to add additional code for producers and consumers to be able
to function, there is the additional complexity of the message broker itself. This is an

additional process or service that needs to be managed along other services.

When the producers do not actually know all of the consumers, the best one can hope for
in terms of data consistency is eventuality: given enough time, the system and data will
end up in a consistent state. This is due to the CAP theorem, which states that a distributed
systems can, at best, have two of the three following guarantees: consistency, availability
and partition tolerance [12]. Since distributed transactions are non-feasible almost all of
the time, most services choose availability and partition tolerance in favor of consistency,
settling for eventual consistency. The CAP theorem is true for all distributed services,
not just asynchronously communicating ones, but it is a big consideration when utilizing

asynchronous communication patterns.

2.1.3 Service discovery and service composition

In a distributed environment with services communicating over the network, Internet Pro-
tocol (IP) addresses become the basic building blocks of those services: IP addresses are
used to identify and communicate between services. Hard coding or configuring these

values becomes unwieldy with a large amount of services and may even be an ill-advised
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venture in some hosting environments: laaS and PaaS providers often give servers or

computing units dynamic [P addresses that can change on every reboot.

The Domain Name System (DNS) can be seen as a lightweight form of service discovery:
instead of using IP addresses, we utilize domain names that eventually resolve in to IP
addresses. Services do not often talk to one another directly. Instead, load balancers are
utilized between service boundaries, which handle redirecting traffic to the actual appli-
cation servers. When DNS is used for service discovery, we can setup the domain names
to resolve to the load balancers, which will route the traffic to the actual services. Most
IaaS or PaaS service providers will provide a method for automatic traffic routing from

the load balancer to the server instances.

A load balancer will either provide a static IP address for the domain, or another method
that will make it discoverable from the same address at all times. The downsides of uti-
lizing DNS as a method of service discovery are mainly the amount of configuration and
maintenance required. Every service requires a domain name to be registered. Changes
on the service level are minimal, however, since instead of [P addresses, services can just

use the domain names to communicate between one another.

Another alternative for service discovery is utilizing a service broker. A service broker is
basically a highly available, distributed key-value storage, which has information on all
of the services that are running and their locations. An example of a distributed, highly
available service broker is Consul [13] by HashiCorp. Every service knows the location
of the service broker and it is the job of the service broker to know the location of every
other service.

In a service broker configuration, every service that comes online registers themselves and
their address with the service broker. The service broker can also query the health of the
registered services. This way the service broker can avoid directing traffic to unavailable
nodes. Other services can query for the locations of the services that they need and they can
continue using the received location information until the address becomes unresponsive,

which is when they will query for the potential new address again from the service broker.

Main issue with the service broker method of service discovery is the additional logic re-
quired at the service level: registering the service and querying the service broker for other
service addresses, caching the responses and re-querying for a new address on connection
failure. The service broker itself also has to be highly available to ensure that communica-
tion between services does not fail just because the service broker was down. The service

broker can be seen as a single point of failure, if it happens to go down.
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2.1.4 Gateway

While API consumers can access a microservice architecture based service by using the
same service discovery pattern that a service might use internally, this requires a lot of
complexity from the service consumer. Instead of a single API, consumers need to manage
multiple different APIs and possibly varying authentication schemes. This is what the
gateway pattern aims to simplify.

In the gateway pattern, external consumers have a single API they can call that proxies
requests further to the relevant microservices. This makes it easier to unify authentication
schemes required for external API consumers and hides the internal complexity of the
service from the consumers [6, p. 15]. Due to the popularity of this pattern, there are also
existing solutions out there, like the AWS API Gateway [14] or Kong [15].

The gateway pattern can also help in high latency applications like mobile networks, where
doing multiple simultaneous and separate API calls just to achieve one thing is costly.
Results from multiple actual services can be combined behind a single API endpoint at
the gateway level, which again simplifies the usage of the service on the consuming side.

The problem with the gateway approach is mainly that it needs to be efficient at managing
the incoming and outgoing traffic. It reroutes a lot of traffic, so bad performance on the
gateway level will make service worse for all API consumers, and may lead to service
outages if the gateway goes down. This is why the gateway should be highly available
and it should preferably do minimal additional processing besides the traffic routing itself.

2.2 Scalability

There are two different ways to scale services: horizontally and vertically. Horizontal
scaling means adding more individual machines to distribute the load. Vertical scaling
means upgrading existing hardware. [1, p. 155-157]

Figure 2.3 represents what horizontal and vertical scaling means for a monolithic service.
Both figures have a load balancer between the service and the service consumer. Load
balancers are responsible for distributing load between multiple servers. In the horizontal
scaling example 2.3a, the service can be scaled by adding additional servers behind the
load balancer. The larger box in the vertical scaling figure 2.3b represents a larger server

instance being used.

In a monolithic service, everything is running inside the same process. This makes it
impossible to scale individual parts of the same service. For example, if the search func-

tionality receives two times the traffic of another part of the service, we can not just scale
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Figure 2.3 Horizontal and vertical scaling for monolithic applications

the search. We need to scale everything along with it. [4]
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Figure 2.4 Horizontal and vertical scaling for microservices

Figure 2.4 demonstrates how scaling works with microservices. In these examples the API
gateway pattern is utilized. Both the horizontal 2.4a and vertical 2.4b scaling examples
show that microservices can be scaled individually.

Being able to scale services individually allows for more flexibility. In a monolithic appli-
cation, it makes most sense to use instance types optimized for generic computing, since it
is not possible to run parts of the same process on different hardware. With microservices,

instance selections can be optimized on the individual microservice level.
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2.3 Benefits of utilizing microservices

Microservices are not a silver bullet, but there are situations where they do excel. Prop-
erly managing a fleet of microservices requires a lot from a team, but depending on team
composition and business needs, they can be the right choice as the architecture pattern

for a problem.

2.3.1 Smaller services are easier to reason about

Monolithic services, especially ones that have been developed for multiple years, can
grow quite large in terms of the amount of functionality, code, and tests. Over time, the
clear module boundaries of the service can also start to corrode and eventually similar
functionality starts to spread across the whole service [5, p. 2]. This can make the service

quite difficult to reason about.

With microservices, every service should solve a single and concise business need. For
example, lets say that we need to store and manage loyalty points for our customers based
on their purchases. The microservice created for solving this need should only handle tasks
related to loyalty points: creating a new balance for a registered user, updating the balance
and so on. Even the idea of an user might be foreign to our loyalty service: we only have

an identifier pointing to the user. User details can be managed by another microservice.

When services are split into these smaller units, each service has a clear focus on a specific
implementation detail. The developers know where all of the functionality related to this
single piece of the whole ecosystem is located at, and the service will most likely end up

being more simple due to having less code and functionality associated with it. [5, p. 2]

2.3.2 Testing

Testing a monolith can become a hassle. Just like the code itself, tests can become a
mess or the functionality itself might be hard to create tests for since everything is so
interconnected with everything else. Creating testable code requires focus and discipline,
and retrofitting tests might be impossible

With microservices, testing becomes a bit more simplified, at least when compared to
the monolithic approach. Data that the microservice itself is not responsible for will be
provided by other services via remote calls, which can be easily stubbed or faked in testing.
Testing does not become trivial just because the services are smaller, and testing the fleet
of microservices as a whole will require additional effort, but on an individual service

level tests do become simpler, easier to reason about.
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2.3.3 Right tools for the job

Microservices allow development teams to choose the tools that best suit them and the
needs of the service. With monolithic applications, both large and small technology con-
straints are formed at the start of a project. Large technology constraints like a program-
ming language, can be hard or even impossible to change later on. Smaller technology
constraints, like libraries or coding patterns, can usually be swapped, but may require
some effort to do so. Microservices can be built with a right tool for the job mindset.

Since services talk to each other over the network through an API, the actual implemen-
tation details of the service are not important to API consumers. This means that inside
a single microservice ecosystem, services can be built with multiple different languages,
varying tooling, and data stores [16, p. 2]. Development teams can make autonomous
decisions about what is best for their service, as long as the API consumers can get their

needs fulfilled by the actual implementation.

While development teams can choose their tools freely, it is sensible to have some de-
faults. For example, Netflix has chosen the Java virtual machine (JVM) as their default
platform and has developed most of their tooling on top of it [17]. Teams are free to choose
something else, but they will lack the internal support that Netflix has for the JVM, if they

decide to go with an alternative approach.

2.3.4 Resilient services

Microservices can enable development teams to have more resilient services. In his book
Building microservices, Sam Newman describes how an isolated failure of a single mi-
croservice does not necessarily bring down the whole system, if built properly [5, p. 5].
When a monolith goes down, every part of the service stops working with it. A microser-
vice based solution can still function at a limited capacity, if parts of the distributed system

are down.

For example, an e-commerce application could still show products and offers, even if the
actual order service was momentarily down. Unfortunately, this resiliency does not come
without a cost and teams can easily build services that may be susceptible to cascading
failures. A cascading failure is an error state, where one service going down takes other

services down with it.
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2.3.5 Deployment

Deployments with larger services can be painful, which is why teams often accrue a lot of
smaller changes and delay deployment until absolutely necessary. Unfortunately, releas-
ing a lot of smaller changes at once can also increase the likeliness of failure. This is why
developers should be able to release early and release often: releases should be so easy to
do that they can be done multiple times a day if necessary [1, p. 326-327].

Since microservices are smaller, more isolated pieces of functionality, teams are able to
deploy changes to a single service without affecting the rest of the system [6, p. 9]. Botched
deploys are easier to notice and faulty code can be rolled back to an earlier state on a service
by service level. This allows teams to iterate faster: fixing a simple bug can be deployed

to production in minutes to hours instead of days to weeks.

2.3.6 Finding new uses for existing functionality

Monolithic services are often built with a specific use case in mind. Depending on the
actual implementation details, this can really narrow down the ability to re-use the imple-

mented functionality for something else later on.

Since microservices are autonomous by definition, having an application programming
interface (API) is a requirement instead of a nice to have feature for the service. Having
well defined APIs for services built around core business needs can enable companies to
compose the available functionality in new and different ways. Multiple different API
consumers like websites and mobile apps are a given, of course, but APIs can even bring

up combinations and use cases for the data, that were not originally thought of.

Data is the most valuable asset for a lot of companies. Making it readily available in an
easy to consume ways can enable new and more agile ways of working and allow for more

rapid evolution of businesses.

2.4 Downsides of microservices

While microservices can be a beneficial approach to some situations and team composi-

tions, they are not without their downsides and additional complexities.

2.4.1 Fallacies of distributed computing

Because microservices are distributed, they are susceptible to the fallacies of distributed

computing [9]. These fallacies are common errors or false assumptions that developers
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often make when developing distributed services. The following paragraphs explain the
different fallacies in more detail.

The first fallacy claims that the network is reliable. This is a false assumption since both
networking hardware and software can fail. Given enough volume of traffic, failures in
the network are inevitable [18]. Networks can also face physical issues like cables being

disconnected or power outages.

Assuming that latency is zero is also a fallacy. While latency can be quite good on a
Local Area Network (LAN), once we cross over to Wide Area Network (WAN), latency
is something that needs to be taken into account. Assuming zero latency over a network
can make one assume that networked calls are like local calls, but this assumption becomes

even more false when the other fallacies are taken into consideration. [18].

Bandwidth being infinite is another common assumption that is not true. While physical
network connections are fast, the amount of data and the speed with which we would like
to process that data has also progressed. Networks can also be affected with packet loss,

which diminishes the amount of bandwidth available [18].

Thinking that the network is secure is also bad form. Even legitimate users can unknow-
ingly spread malware, and there are a lot of bad actors actively trying to break services
[18]. Security should be built in from the start and potential risks should be evaluated.
Security is always a tradeoff of costs, risks and the probability of those risks occurring.

Topology not changing is false both on the client and the server side. A service provider
might move applications to other servers at a moments notice, which changes IP addresses
and makes them unreliable [18]. Clients, especially mobile ones, can change between

different forms of wireless and wired networks constantly.

Having one administrator is an unrealistic expectation both on the service provider side,
as well as the application development side, especially when microservices are concerned.
Every service might have a different team responsible for it. Service providers have mul-

tiple administrators responsible for their massive amounts of infrastructure [18].

Transport cost is never zero in a distributed environment. There is a clear cost associated
with bandwidth in services like AWS or Google Cloud, where it is often billed by the gi-
gabyte. Serializing data for transfer is another important cost related to data transportation
[18].

While assuming a homogenous network is not a big issue on the lower levels of the
networking stack, it is unlikely to be true for network clients and the applications running

on the network. There are multiple different operating systems like Linux, Windows,
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Android and iOS likely running on the same network [18]. Proprietary protocols should
be avoided to make interoperability between different clients as easy as possible.

When communicating over the network, developers should always assume the worst. Ser-
vices being unavailable, unresponsive or slow can be common things that we should ac-
count for. When a singular service is slowing down, it can lead to a cascading failure in
other parts of the system: requests start to queue up and consume more memory than the
servers can handle, until they go down. Timeouts can help with slow services, but they
do not completely remove cascading failures from the equation. If the timeout is too long

and the requests are coming in too fast, a slow service can still lead to cascading failures.

The circuit breaker pattern [19] can be used to help with potential cascading failures. A
circuit breaker utilizes timeouts and health checks to determine the overall health of the
remote service. Once a circuit breaker is tripped, the remote calls will fail instantly for a
certain time. This way requests will not start queueing up due to an unresponsive server
[20, p. 9]. The circuit breaker can slowly start to ramp up the traffic going through when
the remote service recovers. Failing instantly for a portion of API calls is better than failing

to serve anything due to the servers going down.

2.4.2 CAP theorem

The CAP theorem states that in a distributed system, only two of the following three guar-
antees can be true at the same time: consistency, availability, and partition tolerance. Since

microservices are distributed, the CAP theorem applies.

Consistency is something that users expect from services and it is what we strive for
when choosing Atomicity, Consistency, Isolation, Durability (ACID) compliant databases
[12]. Services are expected to function in a transactional manner: changes should be only
committed if everything succeeds. Otherwise the whole transaction should be rolled back.

Web services are expected to be highly available. Sent requests should all receive a re-
sponse [12]. Services being down can have unexpected results, and often the services are

needed the most when they are unavailable.

A distributed network should be tolerant towards partitioning. If a single node of a
service crashes, the service should still be able to recover [12].

Since distributed transactions are hard to do and can be costly to run, most services choose
availability and partition tolerance. At best, distributed systems can settle for eventual
consistency. This means that the data for the service might be inconsistent at a single

point in time, but given enough time it will end up in a consistent state [12]. Being able
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to achieve this requires some effort from the developers. All the possible error situations
that can crop up when syncing state between service boundaries have to be handled.

2.4.3 Performance

While performance on the individual service level can be on par with monoliths, whenever
we have to go over the network for an answer, there is an inherent performance hit over a
local function call, like inside a monolith. The actual impact on performance depends on
the way the services and their data has been separated from one another, but unnecessary

service boundary communication should be avoided, if at all possible.

2.4.4 Overextending a team

More services to maintain leads to more operational complexity for the team in charge of
maintenance. A small team in charge of a fleet of microservices can lead to issues in both

maintenance and monitoring.

Monitoring tasks become more complicated with multiple services [5, p. 11]. When ser-
vice boundaries are crossed, details on which request was related to what can become
fuzzy. This can be avoided with good logging and attaching some sort of identifiers to

requests, but requires effort to accomplish.

In a monolith, dependencies and their updates are maintained for a single service only, and
everything is contained in a single repository. With microservices, there is additional com-
plexity in maintenance, since every service needs to be managed individually. If different
teams are responsible for different services, there can be both large and small variances be-
tween microservices. This makes moving between projects and tasks more complicated,

since there is more of a context switch involved in moving on to another service.

2.4.5 Microservices necessitate automation

Traditional production deployments can sometimes be really complicated, involving a lot
of manual steps and man-hours to complete [1, p. 326-327]. While these can be man-
ageable with a single service, there is no room for manual procedures in the microservice
world. When there are multiple different services to manage, everything that can be auto-
mated, should be.

Microservices require a lot from a team when it comes to workflows and automating them

[20, p. 40]. Continuous deployment, continuous integration and automated deployments
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become almost a necessity to be able to successfully manage all the complexity of multiple

individual services.
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3. JAVASCRIPT ON THE SERVER WITH
NODE.JS

JavaScript is a dynamically typed scripting language. It was originally created by Netscape
Communication for their Netscape Navigator browser [21], but was later standardized by
Ecma International as ECMAScript. Modern browsers all support the ECMAScript stan-
dard, to varying degrees. JavaScript is an implementation of the ECMAScript standard,
and as such, it can provide extensions not included in the standard. These extensions may

differ from one browser manufacturer to another.

Node.js is a JavaScript runtime designed for server side execution [22]. It is based on the
V8 JavaScript engine created by Google [23], which was originally made for JavaScript
execution on the Google Chrome web browser. Originally released in 2009, it has since
gathered a massive following and an ecosystem to match.

Before Node.js, JavaScript programmers were mainly constrained to use the web browser
as their platform of choice. The release of Node lead to a lot of web frontend developers
being able to develop on the server side for the first time. Having a familiar language with
familiar conventions on the server has been one of the larger reasons for Node.js adoption
as a server side technology.

Multithreading allows programs to better utilize the available resources in a multi-core
system, or allows a single core system to change execution context from one thread to
another while we are waiting for input/output (I/O) to finish. A web server could have
multiple execution threads, each ready to serve a single incoming query, which would
allow the service to serve a lot more requests than a non-multithreaded version due to all
of the synchronous execution calls slowing down the request handling. [24]

Multithreading is widely used successfully, but it does not mean that it is easy. Threads
can become deadlocked, meaning that they can not continue their execution unless another
thread releases a lock or does something else, that then never happens. Sharing data or state
between threads can result in some really hard to figure out issues that can be complicated
to reproduce.
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3.1 Asynchronous execution

Typically JavaScript execution is constrained to a single thread or process, and the same
constraint is true for Node.js. Node.js handles concurrency by utilizing the event-driven
asynchronous programming model. This is something that is familiar from traditional web
user interface programming, where we can register event handlers to various events like

button clicks or page loads.

In an asynchronous execution model, everything I/O constrained is delegated to be handled
through events and their associated callbacks or event handlers. This allows the code
execution to jump from place to place while we are waiting on I/O bound things to finish
so that we can continue processing the results. While this is not true concurrency like
multithreading in a multi-core system, I/O tasks like networking or data handling on disk
are often the parts of our programs where most of the time is spent. Instead of blocking
and waiting for these operations to finish, execution can move on to other things while
waiting for the relevant events to fire.

Since a lot of operations in a typical server environment are 1/0 bound, asynchronous
execution is a good fit for server side programs. Waiting for database queries to return,
disk reads or writes to finish or external service requests to come back. While these events

are waiting to happen, code execution can move on to things that have already returned.

const sys = require('sys')
const http = require('http')
const url = require('url')
const path = require('path')
const fs = require('fs');

http.createServer (function(request, response) {
// Parse incoming request
const uri = url.parse(request.url).pathname;
const filename = path.join(process.cwd(), uri);

// Check if file exists
path.exists(filename, function(exists) {
if (exists) {
// Read file
fs.readFile(filename, function(err, data) {
// Respond with file contents
response.writeHead (200);
response.end(data) ;
b;
} else {
response.writeHead (404);
response.end() ;
}
b;
}) .1listen(8080) ;

sys.log('Server running at http://localhost:8080/');

Listing 1 Asynchronous file server created in Node.js. Code modified from source [24]

The example code 1 shows how a simple file server can be built in Node.js by utilizing
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asynchronous callbacks. The example contains three different asynchronous calls: the
http.createServer call on line 7, path.exists call on line 13 and the fs.readFile
call on line 16. The http.createServer callback is called every time the server receives
an HTTP request. While waiting for such requests, the process can either move on to other
things or idle, if there is nothing else to execute. Once a request is received, we check for
the existence of a file with path.exists. Since this is an I/O bound task, we will utilize a
callback, that will get called once the disk read returns and the Node process is executing
I/O callbacks.

If the file exists, we utilize the last asynchronous call of fs.readFile to read the contents
of'the file. Once the I/O operation finishes, we write the received file contents as a response
to the initially received request. Node.js utilizes asynchronous interfaces a lot and rarely
even offers synchronous counterparts. Blocking execution kills performance in a single
process environment.

Node.js uses an event loop to organize the code execution for all the incoming events. The
event loop is also used to determine whether the program should continue to run: if there

are no active timers or asynchronous I/O calls waiting, the running process may stop. [25]
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Figure 3.1 Simplified overview of the Node.js event loop execution order [25]

Figure 3.1 shows a simplified overview of the Node.js event loop and its execution order.
Every phase of the event loop has a First In, First Out (FIFO) queue of relevant callbacks
to execute. Generally, in a given phase, the event loop only executes tasks related to
that phase and executes callbacks in the queue until the queue is empty or a maximum
number of callbacks have been executed. After this, the event loop moves to the next
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phase and repeats until there are no active timers or callbacks waiting in the event loop,

or the program is otherwise stopped.

Starting from the top, a quick overview of the phases is as follows:

« timers: callbacks scheduled by setTimeout and setInterval functions

* 1/0 callbacks: almost every other callback except close, timers or setlmmediate
* idle, prepare: used internally by Node.js

* poll: retrieve new I/O events, execution may block if necessary

* check: setlmmediate callbacks

* close: closing events for sockets etc.

While the asynchronous model utilized by Node.js is powerful and can offer seemingly
concurrent execution, it is still executed inside a single process. This means that unlike
multithreading, a single Node process may not be able to fully utilize a modern multi-core
processor to its fullest. Node.js provides support for clustering and forking of processes,
which allows multiple Node processes to share the same socket to distribute work between
them. One of the service scaling aspects explored in this thesis later on is dependent on
the clustering support of Node.js.

3.2 The Node.js ecosystem

Node.js has amassed a large developer community around it. At the time of writing, the
package manager for Node and JavaScript, npm, has around 600000 packages registered
[26]. Npm includes both frontend and backend libraries, but it was originally created as a

package manager for Node.js.

JavaScript is also a very popular programming language. It is the language with most
repositories hosted at GitHub [27], a centralized hosting service for the git Source Control
Management (SCM) software. It is also the most popular language for the fifth year in
a row and Node.js is the most popular framework in the Stack Overflow 2017 developer
survey [28]. Stack Overflow is a popular discussion platform for programming related

questions.

While technology choices should not be based on popularity alone, it is a good metric for
figuring out how healthy the community is. Even the best languages and technologies need
users to thrive, produce libraries and provide support. Having a large amount of existing

documentation and discussion to fall back on when facing issues is really valuable.
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4. CLOUD BASED HOSTING

Companies have a lot of options for hosting their software. Traditionally, hosting would
require purchasing and maintaining own server hardware, which has large upfront costs
associated with it as well as a maintenance burden. Purchasing and setting up said hard-
ware is also a painstakingly long process. These days it is much more common to offload

some of this maintenance and management burden to third party service providers.

Infrastucture as Platform as a Software as a
a service (laaS) Service (PaaS) Service (SaaS)

On premises

Operating System Operating System Operating System Operating System
Physical property ]: Physical property Physical property Physical Property

Figure 4.1 Modern companies have a lot of options when it comes to hosting their software,
ranging from self-hosted to fully managed by third parties

sulejurew IapInoid

Figure 4.1 shows the breakdown of the four different ways companies can host their
software: on premises, Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). The figure also shows how the responsibility is divided
between the service provider and the company in the different hosting scenarios.

On premises hosting is the classic way of hosting software. With this option, all the hard-
ware as well as the software is managed by the company itself. Depending on the size of
the business, this can be quite a heavy approach. The upfront cost for hardware as well as
the continuous maintenance costs are not sensible for smaller companies, though there is
a break-even point, where moving from cloud to self-hosted can make sense. Procuring
and setting up the hardware is also a time consuming process, that most companies would

like to avoid, unless necessary.

Infrastructure as a Service means that the service provider is responsible for the hardware,

while the company buying the service has to manage the operating system, supporting
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software and the custom code. In this context, supporting software means things like
databases or other ready made software utilized by the custom code.

Modern virtualization techniques have made [aaS solutions readily available and quite
common. Hosting expenses are quite low, but the developers or maintainers have to pay
attention to the whole software stack instead of just their own product. Automating the
setup for the hosting environment might require a lot of effort, but it is pretty much nec-
essary when dealing with multiple services instead of a singular monolith.

The next service level up from IaaS has the developers only caring about their custom
code. Platform as a Service aims to make the life of developers as easy and straightfor-
ward as possible by allowing developers to focus mainly on the application, and not the
environment. Due to performance considerations, the hardware layer can not ever be truly
ignored, but PaaS providers make common maintenance tasks easier and ease the burden
on the development team.

Since the application layer of PaaS providers is often concerned only with the custom code
part of applications, PaaS providers need to provide a solution for managing supporting
software like caches or databases. These are often provided in the form of additional
managed services. PaaS environments provide opinionated options for developers, which
can be both a good and a bad thing. Pre-made choices can expedite the development
process, but working around platform restrictions can also become painful, if the platform

decisions do not fit the project.

The easiest hosting option in terms of maintenance is Software as a Service. SaaS does
not require any custom code, instead, everything is handled by the service provider and
users can just focus on utilizing the features of the ready made product. This can also be
the least flexible choice in terms of customization.

SaaS services often have multiple end users and clearly defined backlogs, so getting new
feature ideas or changes through from support to implementation is hard. Often SaaS
services are a good choice for things that have existing solutions and that are not a key
part of the unique value proposition provided by a service. Being able to offload some of
the maintenance burden on other providers makes it easier for the developers.

4.1 Heroku, a modern PaaS solution

Heroku is a Platform as a Service provider, focusing on web applications [29]. Originally
founded in 2007, Heroku was later acquired by Salesforce.com in 2010 as a wholly owned

subsidiary [30]. Heroku was one of the first cloud platforms available.
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Build apps

...not infrastructure

Figure 4.2 Heroku aims to minimize the time and money spent on Infrastructure and maximize the
time spent on the application being built

As a cloud platform, Heroku wants users to focus on applications instead of infrastruc-
ture 4.2. Having proper infrastructure in place is important for application development
and maintenance, but it is also an often overlooked area in software development. In-
frastructure rarely offers a clear return on investment, which is why its importance might
get downplayed. It is important to remember, that just getting the application running is
not good enough, it also needs to be maintained. Maintenance benefits immensely from
having the proper tooling around it and getting it right from the start is very valuable.

Heroku itself runs on Amazon Web Services (AWS) [31] by utilizing the Amazon Elastic
Compute Cloud (Amazon EC2) [32] service on the AWS laaS platform. Heroku hosts
user applications inside lightweight Linux containers, but it also has support for Docker
containers.

4.1.1 The Heroku way

As was mentioned earlier about PaaS environments, they can be quite opinionated about
the way applications should be built and run. Heroku is no exception in this regard.

One of the co-founders of Heroku, Adam Wiggins, wrote the The Twelve-Factor App
[33] guide on how modern web applications should be built. Unsurprisingly, a lot of these
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details are also enforced or greatly encouraged by the Heroku platform. The twelve rules
of a twelve-factor application are explained in more detail in the following paragraphs.

For Heroku to be able to deploy an application, the codebase has to be in a Version Control
System (VCS). Not only is this a good practice, Heroku also enforces that applications can
only run code that is actually committed to the repository. This way running versions and
features in different environments become easier to track. Being able to figure out what is
running in development, staging and production should be easy and straight forward, not
a mystery to unravel. [34]

Applications should explicitly state their dependencies. On Heroku, when an application
is deployed, the Heroku platform always builds the container that is going to be ran on
the service after the deploy. The environments always start from a blank slate, with code
being the only input added at the start. Every dependency needs to be either included with
the code or defined through a dependency management system used by the language in
question. Examples of such systems include npm [26] for Javascript, Leiningen [35] for

Clojure and pip [36] for Python.

The configuration for an application is something that is likely to vary based on deploy-
ment. Development, staging and production will have different environments and all of
these will require their own configuration for things like database addresses, hostnames or
third-party service credentials. Storing all of this inside a version control system is prob-
lematic for multiple reasons. First of all this exposes private secrets inside the VCS and
it also leads to unnecessary commits when managing the environment configuration. On

Heroku, configuration is handled through environment variables.

Backing services, like databases or other resources the application needs for it to properly
function are referenced with Uniform Resource Locators (URL) or other credentials stored
in the configuration. When external services are consumed like this, it allows for easier
swapping of service providers, by just changing the corresponding URL. Backing services
are called add-ons on Heroku, and we will explore them in more detail later.

A codebase should be transformed into a running application through a three step process:
build, release and run. When these phases are separated properly, ensuring a consistent
and predictable release pipeline becomes easier. During the build stage an application gets
transformed or compiled in to an executable bundle that can be ran on the servers. The
release stage combines the build with a configuration, making the application ready for
the run stage. The run stage is the execution environment for the release stage bundle.
[37]

Applications should be broken down in to multiple different processes. The processes
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should be stateless, and the only data shared between them should be stored in a backing
service. The filesystem and memory of a runtime can be used to momentarily store some-
thing, but properly built twelve factor applications should not rely on them being available
during future requests: when multiple processes are serving the requests, chances are high
that a future request will be handled by another process. Heroku cycles dynos every 24
hours, which forces application developers to store everything important outside of the
filesystem or Random Access Memory (RAM) of the runtime.

Twelve factor applications listen to incoming requests by binding to a port. Applications
should not rely on a web server to handle the traffic for them, this is something that will
be handled completely inside the application code. For HTTP there are many popular
libraries like Jetty [38] for Java or Thin [39] for Ruby to achieve this. Heroku expects
applications to be listening on a port defined in an environment variable called PORT.
This port binding approach means that applications can also become backing services for

other applications through configuration of the consuming service.

Inside a twelve factor application, processes are first class citizens and concurrency is
achieved by scaling these processes. Services can consist of multiple different process
types, for example we might have web processes for handling traffic and worker processes
to handle background jobs like messages from a queue. These processes can be scaled
individually on Heroku based on the needs of the application. [40]

Application processes are ephemeral and should be considered disposable. They can be
started and stopped at a moments notice, based on scaling needs or when deploying new
configuration changes or versions of the application. This also requires the application
to boot up fast so that it can start receiving incoming requests after a few seconds. Pro-
cesses should also close down gracefully, so that clients do not see interrupted requests
from closed processes. This means stopping listening to incoming connections and letting
existing connections finish before exiting. This also requires requests made to the appli-
cation to be short, which is enforced by Heroku by automatically timing out requests after

30 seconds.

Developers often have configurations and environments during development that are com-
pletely different from the production runtime. This can lead to unexpected issues that only
manifest themselves after going to production. This is why dev/prod parity is important
in a twelve factor application. If a PostgreSQL database is being used in production, it
should also be used in development and staging, instead of something easy and lightweight
to setup like SQLite.

Logs are event streams that let us peer into the running state of the application. Tradi-
tionally they are stored inside log files, but this is just one output format for logs. Twelve
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factor applications should not consider the storage or routing of their log events, the event
stream is just written to standard output or stdout. In staging and production environments,
it is the job of the execution environment to capture and route the event streams produced
by the application. Heroku leaves this job partially to backing services: the logs will be
collected and routed by Heroku, but long term storage requires an additional service, since
Heroku only stores the last 1500 lines of events produced.

Eventually, every production application needs to have some administrative work done on
it, be it database migrations or one time scripts for fixing or cleaning up data. These sorts
of tasks should be handled as one-off administrative processes. These administrative
processes are a part of the application just like the long-running processes, only difference
being the fact that they are not on at all times, instead being invoked on demand and
running only for a set amount of time. On Heroku this can be accomplished by running
one-off dynos, which are spawned with the same application runtime that is used by all
the other process types.

4.2 The Heroku environment

Heroku consists of multiple different components, some of which are user controllable
and some that are completely handled by the platform. We will go through some of the
more important details of the platform, starting with the application containers, which are

called dynos in Heroku nomenclature.

4.2.1 Dynos

All applications on Heroku run in a collection of lightweight Linux containers called
dynos. Dynos can be put in to three different categories: web-, worker- and one-off dynos.
Web dynos are the only dyno types that can receive HTTP traffic, while worker dynos are
often used for background processing tasks like message queue workers and timed jobs.
One-off dynos are mainly used for administrative tasks. Backing services are never ran

inside dynos, dynos are reserved for application code only. [41]

Besides their own container format, Heroku also supports Docker [42]. However, some
of the platform features are not either available or do not work as well when running
on Docker containers, so the Heroku custom container format is the preferred method of
running applications on Heroku. [43]

There are multiple different dyno types available on Heroku, as can be seen on table 4.1.

These dynos are differentiated between one another based on memory and computational
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Table 4.1 Dyno types available on Heroku

Type Memory | CPU Share | Dedicated | Compute
free 512MB Ix No Ix-4x
hobby 512MB Ix No 1x-4x
standard-1x 512MB Ix No Ix-4x
standard-2x 1024MB 2x No 4x-8x
performance-m | 2.5GB 100% Yes 11x
performance-1 14GB 100% Yes 46x

power available, but there are some other, more subtle differences as well. The free and
hobby dynos differ from other dynos mainly in the fact that they don not have all of the
Heroku runtime features available for them, like application metrics. The free dyno types
can also be put to sleep, if the account has ran out of free dyno hours or the application is
not actively receiving any traffic.

By default, dyno types ranging from free to standard-2x are ran inside shared instances,
meaning that applications from multiple different users are being executed on the same
machine. This is why the compute metric is indicated as a range. Also, the share of
CPU time or priority the app receives is limited. Performance dynos are ran on dedicated
instances, so they always have all of the CPU resources for themselves.

Another option for running smaller dyno types on their own dedicated hardware is to utilize
private spaces. Private spaces are a feature intended for larger and enterprise customers,
which allows higher level of isolation and security through features like private network-
ing. Inside the common runtime, where applications are being executed by default, every
application and backing service is publicly available. Applications in the common run-
time can only choose between two zones, the United States or Europe, while private spaces

offer more fine-grained control, based loosely on AWS datacenter availability.

Dynos can either be scaled horizontally or vertically. Horizontal scaling happens by
adding more dynos of the same type. By default, this is always initiated by the developer
or the maintainer, but there are some add-ons that can offer autoscaling features based on
metrics like traffic, time of the day or load. Heroku also offers autoscaling features for

their performance dyno types. Vertical scaling is achieved by moving to larger dyno types.

Dynos are controlled by a dyno manager. All non-enterprise customers use a shared dyno
manager for each availability zone. An availability zone is a region that Heroku provides
server capacity for. The shared dyno manager means that Europe and US regions have
different dyno managers. Private spaces, which is feature for enterprise customers, has a
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dedicated dyno manager. The dyno manager is responsible for running automatic health
checks on the application, deploying additional dynos when requested by user or autoscal-
ing and doing different kinds of maintenance tasks, trying to make the application run as

free from unnecessary interruptions as possible.

Slugs

During deployment, Heroku applications get compiled into slugs, which are then handed
off to the dyno manager for execution. Slugs are a compressed and pre-packaged copies of
the applications. The slug compilation process begins when a new deployment is initiated
by a git push command to the Heroku remote git. The slug compilation process downloads,
builds and installs application dependencies based on the defined or detected language and
tooling. [44]

Slugs have a maximum size limit of 500 megabytes of disk space. Smaller slugs are
preferable, since this makes creation of new dynos faster due to faster transfers of the
slugs to the machines that are going to be running the new dyno instances.

4.2.2 Buildpacks

Buildpacks are responsible for transforming an application code repository into a deploy-
able slug. Buildpacks are compromised of a set of scripts, which, depending on the pro-
gramming language, retrieve dependencies, output assets, compiled output, and more.
Officially, Heroku supports Node.js, Python, Ruby, Java, Clojure, Scala, PHP and Go.
[45]

By default, the Heroku deploy process tries to automatically match the project with a
matching buildpack by checking one by one, until a matching buildpack is found. If a
matching buildpack is found, it is permanently marked as the matching buildpack for fu-
ture builds. Users can also explicitly define the required buildpack through the Heroku
Command Line Interface (CLI).

The buildpacks are built upon the platform base images, which Heroku calls stacks. These
stacks are maintained by Heroku and they are based on the Ubuntu Linux distribution [46].
While Heroku provides buildpacks for a limited set of languages and frameworks, users
can build custom buildpacks to support virtually any language and framework that can run
on Linux. The official buildpacks are provided as open-source for reference on how new
buildpacks can be created.
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4.2.3 HTTP Routing

In Heroku, HTTP traffic is automatically routed to the hostnames associated with the web
dynos of an application. On the common runtime, every application gets a herokuapp.com
sub-domain associated to them. All web dynos that are not located in a private space are
publicly available. [47]

Inbound HTTP requests are received by load balancers that can do SSL termination for Hy-
pertext Transfer Protocol Secure (HTTPS) traffic. The load balancers hand off the requests
to Heroku routers, which determine the location of the corresponding web dynos and for-
ward the traffic. Routers distribute requests randomly between available web dynos.

For normal HTTP requests, routers will wait up to 30 seconds to receive an answer from the
web dyno the request was forwarded to, after the connection was accepted. If an answer
is not returned within 30 seconds, the router times out the connection and replies with
an error to the client. Servers can extend this timeout window by utilizing long-polling,
where every byte returned from the server resets a rolling 55 second window in which the
server needs to send more data or end the request before the router times out.

4.2.4 Add-ons

Since dynos are only meant for application code, Heroku provides backing services like
databases through add-ons. These add-ons get attached to specific Heroku applications
and they most often expose themselves or their configuration through environment vari-
ables. [48]

The add-ons available range from databases to application management services to ana-
lytics to testing: a lot of different services are readily available, for those that are willing
to pay the price. Some of these add-on services are managed by Heroku themselves, but
most of them are handled by third-party service providers.

4.3 Conclusions

Heroku is a PaaS, which offers a lot of expensive to build infrastructure built in. It also
aims to make application management as simple as possible. All of this ease of use and

ready built infrastructure does come with a cost, however.

Since every process runs in its own dyno, a simple app can easily rack up a few dynos.

Each dyno is paid for by the hour based on how long the dyno was running in a given
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month, and even a few dynos start to add up, especially on larger dyno types. Add-ons are
also paid for, with only the most simple plans being offered for free. All in all, hosting
services on Heroku is more expensive than setting up a virtual server or multiple virtual

servers to run on.

But building infrastructure is also expensive and a time consuming task. The fact that
Heroku gives a lot of it upfront and makes it possible to focus mainly on the applica-
tion itself is really valuable in projects, where visible results are needed fast. On shorter
projects, the time spent on building comparable or worse infrastructure than what Heroku

offers out of the box may never pay itself off during the lifetime of the application.

The choice between a PaaS service and self built infrastructure comes down to time and
cost. In the long run, self built infrastructure will be cheaper, but that approach will also
incur heavier costs upfront. Costs, which depending on the lifetime of the project being
worked on, might never be paid off by the savings in runtime costs.
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5. PRODUCTION SERVICE ISSUE

We have gone through what microservices are, what Node.js is and what the ecosystem is
like, and what the Heroku PaaS offering looks like. These are all relevant factors in the
case of our production service, since it is programmed in Node.js, hosted on Heroku and
it is split into multiple independent services.

/H HEROKU \\ E ==

Android i0OS Windows Phone
| . Backlng API Gateway
microservices

o L

Figure 5.1 Simplified view of the overall architecture for our production application. The mobile
platforms are the main consumers for the service, but we also have additional consumers in the
form of websites and other services
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Figure 5.1 shows a simplified view of the overall architecture for the service. Our main
API consumers are the mobile applications. To simplify the usage of our microservices,
we have also created an API gateway to coordinate the API calls between different services
and to route traffic.

In addition to the mobile applications, we also have some third party websites and services
utilizing our APIs. Some of them use the microservices themselves directly, while others
go through the same API gateway the mobile applications use. Because the microservices
are hosted on the common runtime of Heroku, they are all publicly available, although they
do require authentication credentials for actual use. Heroku supports private networks,

called private spaces on Heroku, only on enterprise customer levels.
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Besides the main API gateway created for the mobile applications, we also have some
additional, smaller gateway services. These offer limited access to a subset of our mi-
croservices for some of our integrations. This allows us to manage the incoming traffic

better, while also enforcing finer-grained access to our API consumers.

5.1 Push notifications

On mobile platforms, push notifications are a popular way to increase user engagement.
Push notifications are messages that are sent from a central server to end users’ devices.
These notifications are application specific and can have different customizations depend-
ing on the mobile platform. Typically the message being shown to the user and the appli-
cation view associated with that message can be defined when sending a notification, but

even more customization options might be available.

Every major mobile operating system has its own service for sending and receiving push
notifications. iOS has Apple Push Notification service (APNs) [49], Android uses Google
Cloud Messaging [50] and Windows Phone has Windows Push Notification Services (WNS)
[51]. Implementing logic for interfacing with all of these services separately in a multi-
platform application like ours would require a lot of work, but luckily there are services

that take care of this complexity for us.

5.1.1 Notifications causing peaks in traffic

Push notifications are often sent either as a reaction to something that an end user did or
as general announcement messages. In our applications, users can share shopping lists
between one another. The recipients of the share get a push notification that notifies them
about the share that occurred, and that opens the shared list when clicked. Since these lists
are often shared between very small groups, the traffic caused by user initiated notifica-
tions are minimal. However, general announcement type notifications to all users or user

segments consistently cause high loads on our servers.

When a notification is sent from the servers to the clients, the user sees a notification
prompt with the application logo and the message that was sent. The sent notification
does not send requests to our servers, but once the user clicks the notification and loads
the application, our servers start to receive traffic When many users do it at the same time,
we can see clear peaks in traffic to our services. Of course, the meaning of the notifications
1s not to generate traffic, but that is a clear side-effect that happens every time a batch of
push notifications is being sent.
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(a) Gateway traffic pattern when push notifications start

(b) Daily visitors exhibiting clear spikes on days with push notifications

Figure 5.2 Gateway load and daily visitor graphs that demonstrate the effect of push notifications

Figure 5.2 shows metrics from our gateway service, demonstrating the effect that push
notifications can have. Almost immediately after a push notification batch has been ini-
tiated, we see double to triple the normal amount of traffic, as seen in figure 5.2a. This
trend continues until the sending of push notifications eventually stops. The effect of push
notifications can also be seen in figure 5.2b, which shows the amount of daily visitors.

When this service was initially launched, we sent all push notifications at once. SNS
can handle a lot of concurrent notifications being sent, but that does not necessarily mean
that our service could handle all of the incoming traffic. This effectively caused us to do
a Denial of Service (DoS) attack on our own service. While every user does not click
the notification as soon as they receive it, the clear majority of users interact with their
notifications quite fast. Since we were sending the notifications as fast as SNS would

accept them, we ended up generating way more traffic than our server capacity could
handle.

Our initial fix to the traffic peaks was to do the notification sending in batches. Instead
of sending all of the notifications as fast as we can, we send them a batch at a time while
waiting a moment between every batch. While this does mean that it takes longer to finish
sending the notifications and there is a large difference in the time different users get the

same notification, this allows us to manage the traffic a little bit better.
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5.2 Consistent high load is problematic in a shared environment

Our fix for the push notifications caused traffic to have smaller peaks, but it also made the
traffic stay higher for a longer period of time. This in turn means that our servers need to
be able to sustain double to triple the normal amount of traffic over a long period, until

the push notification traffic eventually dies down.

Originally we used the standard 1X and 2X dyno types from Heroku to host the gateway.
While our initial fix for the push notifications helped at the start, once the amount of users
grew, we started to see a new issue in our gateway service. During consistently high loads,
like the ones we would see during push notifications, our gateway would start timing out

connections.

One solution to ease the load on the gateway would have been to adjust the size of the
notification batches or the frequency of them. With our existing batch size and sending
frequency, sending a single notification to all of our users took around seven to eight hours.

We did not want to slow down the notification sending process any more than necessary.

The standard dyno types are hosted in the common runtime by default. This means that
they are hosted on machines that are sharing resources with other users of the Heroku
common runtime. While Heroku tries to make resources available as evenly as possible,
there is nothing stopping a single service from hogging up a significant portion of the
resources available. It is unlikely that this service can keep on going for longer periods,
but momentarily it may cause issues for other customers. As we can see from the table
4.1, the performance levels for standard dynos is indicated as a range. This is both due
to the performance depending on the implementation, but also being affected by available

resources at the time of execution.

While our application does not have strict Service Level Agreements (SLA), dropping re-
quests randomly is non-ideal and something we would like to avoid. Even if this did not
affect all of our users, we wanted to explore potential solutions for the problem. Eventu-
ally, we tracked down the issue to insufficient resources at peak traffic coupled with the
potential for noisy neighbors of the shared environment to cause even more issues when
we are already at max capacity. While we could have easily mitigated the traffic by adding
more standard dynos, that would not help with the shared environment issues. We also
needed to figure out what sort of server configuration would be reasonable for the amount

of traffic we were seeing.

One option to dealing with noisy neighbors is to optimize the implementation, so that the
CPU usage stays below maximum. Depending on the application, this can be quite time

consuming, and it might also turn out that the application is already quite well tuned and
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additional hardware is needed to match the demand. Another option is to move away
from a shared environment, so that we get better guarantees for our level of performance.

Heroku offers the premium dyno types and the private spaces for this purpose.

Just changing the dyno type to premium would not really work in our situation. Due to the
single threaded nature of the Node.js runtime, we would not have been able to utilize all
of the available computing resources of the larger dyno types. Node.js offers clustering to
solve issues in vertical scaling.
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6. CLUSTERING NODE.JS TO IMPROVE
VERTICAL SCALABILITY

In chapter 3, we mentioned the single threaded nature of Node.js. On smaller servers or
dyno instances in Heroku, a single Node.js process is enough to utilize all of the available
resources. The available resources on larger instance types will be wasted, unless Node.js

clustering is implemented.

Clustering [52] allows Node.js processes to spawn and manage child processes that can
share incoming work between them through a shared server port. While clustering has
been made mainly with networking in mind, it can also be used for other use cases where

multiple worker processes are needed.

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
console.log( Master ${process.pid} is running’);

// Fork workers.
for (let i = 0; i < numCPUs; i++) {
cluster.fork();

}

cluster.on('exit', (worker, code, signal) => {
console.log( worker ${worker.process.pid} died’);
b
} else {
// Workers can share any TCP connection
// In this case it is an HTTP server
http.createServer((req, res) => {
res.writeHead (200);
res.end('hello world\n');
}) .1isten(8000);

console.log( Worker ${process.pid} started’);

Listing 2 Example of Node.js clustering of a web server. Code copied from source [52]

The code example 2 shows how a simple web service can be clustered. When we are clus-
tering an application, we have two types of processes: the master process and the forked
child processes. This is represented in the example code by the if-statement beginning on

line 5. The master process is responsible for creating the forked child processes as well
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as managing their lifecycle. The child processes go to the else branch of the if-statement,
and launch a web server. In this example, we create as many worker nodes as there are

CPU cores on the machine executing the code.

The workers are spawned by using the child_process.fork() method. The fork method
is special, in that it is used to spawn new Node.js processes [53]. The spawned process has
a built-in channel for communication between the new process and the one that spawned
it. Besides this Inter-process communication (IPC) channel, the child processes are com-
pletely independent from the one that spawned them. This means that every process has
its own memory and their own V8 instance. The created IPC channel is how the processes

can share the listening sockets that they create with the master process.

By default, the master process in clustering is responsible for listening on the port and
dividing the work between the child processes in a round-robin fashion. The master pro-
cess also avoids overloading any single worker. There is a secondary operation mode
available, where the master process creates the socket and sends it to the child processes.
The default method is the recommended one, since the alternative approach can have very

uneven performance characteristics depending on the machine the program is running on.

As we can see in our code example 2 on line 13, the master process can listen and react to
some child process events, most notably process exits. By default, the clustering module
does not manage the worker pool in any way. If all workers have exited, the master process
just stops accepting incoming connections, but it does not restart crashed processes by

default. This is something that has to be managed by the end user.

6.1 Implementing clustering in an existing web application

Since we are implementing clustering for a web application, the implementation details
themselves are quite simple. We used the default clustering approach, where the master
process distributes work between the child processes. We did not use the raw clustering
API, but instead opted for an NPM library building on top of it called throng [54].

Code example 3 shows how we use throng in our API gateway service. The main reason
we chose throng for our clustering implementation, was that it takes care of the child
process lifecycle for us. We could even define process lifetimes if we wanted to, but in
our use case all of the workers should be up and running until the process is restarted
or stopped. Throng restarts crashed processes automatically. Ideally, crashes should not
happen, but they are nicely taken care of by the library itself.

Starting from line 6, we can see how throng is configured. We define the amount of work-
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const createApp = require('./index');
const config = require('./config');
const http = require('http');

const throng = require('throng');

throng({

workers: config.WEB_CONCURRENCY,

lifetime: Infinity,

start: startServer,

grace: 10000, // Grace period for shutting down workers
b

function startServer(id) {

const app = createApp();
const server = http.createServer (app);

server.listen(config.PORT);
server.on('listening', function serverListening() {
logger.info('Server worker %d listening on port %d', id, this.address().port);

1N

Listing 3 Clustering with the throng library

ers we want to spawn, the lifetime of the workers, the function that the child processes
should run, as well as a grace period for the processes when we are shutting down the
service. The config.WEB_CONCURRENCY configuration value is something that is pro-
vided by Heroku, and it is based on the available memory on the dyno type that is being
used [55]. We can define the WEB_MEMORY environment variable to configure how much
memory we want to allocate per concurrent process. Heroku then defines the concurrency

value based on the total memory available and our planned memory allocation.

Inside the worker start function startServer, we first initialize the Express [56] web
application by calling createApp on line 14. This initializes the routes that are served
by the gateway, authentication and other business logic required for the different API
endpoints. The Express constructor returns a function that we can pass on to Node.js’
http.createServer function. Once we call the listen method for the server object that
gets returned, our processes are ready to receive connections. The PORT configuration
value is provided by Heroku, and it is the only port through which Heroku will forward
traffic through to the web application. This value can change on every restart, which is

why the application reads it from the environment variables.

Implementing clustering in an existing application required minimal changes, since it can
be fully implemented at the entry point of your application. We only modified the way
our application is initialized and added some additional configuration values to it. After
these changes, we could deploy the clustered version of your API gateway and manage
the number of running workers by configuring the WEB_MEMORY environment variable. We
went with 512 megabytes of memory per process as the baseline, which allows us to run

five concurrent processes on a premium-1 dyno.
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7. EVALUATION OF THE PERFORMANCE
IMPACT

Performance testing of an API gateway service is complicated. Since the service is mainly
responsible for doing request proxying to the underlying microservices, we would have
to generate a lot of traffic to start to see the benefits of clustering. We created a simple
example service [57], so that we could explore the effects of clustering on response times

in a more controlled manner.

The example service is a Node.js based application written in TypeScript [58], which is
a superset of JavaScript that adds typing support. It is a simple application that has only
two endpoints, both of which do a simple data fetch from a PostgreSQL [59] database
and return the result as JSON. The implementation for the controller layer, responsible for
request input validation and HTTP responses, can be seen in appendix A. The clustering

implementation is shown in appendix B.

7.1 Performance testing with Gatling

We used Gatling [60] to create the performance tests used to measure the effects of clus-
tering in our example application. Gatling offers a Scala based domain-specific language
(DSL) for test implementation. We used two different tests for our example backend: one
for each API endpoint. The test contents are shown in appendices C and D. Only thing
different about the tests is the API endpoint being called. Every simulated user fetches a

random data item from the backend.

Table 7.1 Test system specifications

Laptop model | 15 Macbook Pro, Mid 2015 model
CPU Intel Core 17 2,5 GHz
Memory 16GB 1600 MHz DDR3
Node.js version | 8.11.1

The performance tests were ran locally, with the test system running both the load gener-
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ating tests with Gatling and the backend service under test. Key specifications of the test
machine are described in table 7.1. Since we are sending and receiving traffic on the same
host, these tests trivialize network latency. In a more realistic environment, the database
server, application server and load generating application would most likely be running
on different machines. While our test setup is not ideal, it is enough to demonstrate the
effects of clustering on more CPU intensive workloads. We ran the Gatling tests for non-
clustered and clustered versions of the application, and compared the results. Since we

were using a four core CPU, we clustered the application to four processes.
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Figure 7.1 95th percentile application response times for the non-CPU bound API. The clustered
version of the application performs a little worse than the non-clustered one

Figures 7.1 show the response times for the non-clustered and clustered versions of the
non-CPU intensive API. In the non-clustered version response times, we can see some

peaks, but overall it is very similar to the clustered results.
Table 7.2 Non-CPU bound API test response times in more detail

Non-clustered | Clustered

Minimum (ms) 2 2
50th percentile (ms) 4 4
75th percentile (ms) 5 5
95th percentile (ms) 5 7
99th percentile (ms) 7 8
Maximum (ms) 20 48
Average (ms) 4

Standard deviation (ms)
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When we look at the response times shown in the table 7.2 in more detail, we can see that
the difference between the two test runs are minimal. In fact, the clustered version seems

to be ever so slightly slower that the non-clustered one.

The reason we are not seeing any benefits from clustering with this workload is the fact
that it is not CPU bound. Since we are sending and receiving traffic on the local network
and doing very minimal data transformation for the responses, we can easily serve all of
the traffic that the tests generate. To get anywhere near 100% single core CPU usage
would require a lot more traffic. The reason the clustered application is performing worse
than the non-clustered one is because of the additional process doing the round-robin work
distribution. With the test workload, the added latency is minimal, but it is still there.

To emulate a more CPU intensive workload, we added another route to our example back-
end that is almost identical with the one we already tested, but it also has a busy loop in
it. The busy loop is just an empty for loop, where the CPU will spend lots of iterations on
every request. While not a realistic representation of actual CPU intensive work, a busy
loop is enough for our testing.
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Figure 7.2 95th percentile application response times for the CPU-bound API. The non-clustered
version of the application starts to slow down once there are enough simultaneous requests

Figure 7.2 shows the response times for the CPU bound API tests. Here we can see the
non-clustered application response times keeping up with the load at first, but the response
times start climbing once a certain threshold of concurrent users is reached. The response
times stay high until there are no new users being added, and the application has the chance
to clear the backlog of requests. On the clustered application side we see smooth response
times for the whole duration of the test. Since we are spreading the load to multiple cores,
we do not get the same issue of queued up requests waiting for their responses.
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Table 7.3 CPU bound API test response times in more detail

Non-clustered | Clustered

Minimum (ms) 32 31
50th percentile (ms) 18834 34
75th percentile (ms) 23793 35
95th percentile (ms) 28688 37
99th percentile (ms) 29856 41
Maximum (ms) 30144 80
Average (ms) 16392 34
Standard deviation (ms) 9842 3

Table 7.3 shows the CPU bound workload response times in more detail, and we can see
the non-clustered application was clearly struggling to serve the traffic it received. Most
users would have most likely stopped waiting for a response after a few seconds, and
on Heroku, our connections would have been forcefully ended by the router after thirty
seconds of waiting.

While the penalty of clustering is minimal and the implementation details are really simple,
we can clearly see that more CPU bound loads benefit a lot better from spreading the load
across multiple cores. While request proxying on the API gateway is not CPU intensive,

everything starts to add up once you have enough traffic.

7.2 Clustered gateway in production

Since the actual implementation details of the clustering were quite simple, we were able
to do the necessary changes fairly quickly. This allowed us to effectively use the larger
instance types provided by Heroku. By default, Heroku recommends using clustering on
standard-2x type dynos and up. [61]

After we deployed the application, we scaled it up to performance-1x dynos. This allowed
us to cluster up to five Node.js processes per server. Because the gateway application is
mostly proxying traffic, the memory footprint of each individual Node.js process is mini-
mal, since memory is mainly allocated for requests being handled by the server. Unfortu-
nately, the CPU resources are in much higher demand, and once we reach that maximum
of allocated CPU resources, we start to see timed out connections.

Since the API gateway needs to be able to handle the combined traffic of all of the ser-
vices behind it, it has to perform well. Because gateways mostly just proxy traffic, even

simplistic implementations are usually good enough, but once the servers need to be able
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Figure 7.3 Peak traffic on the API gateway. This traffic was about five times larger than our usual
peak traffic, which quickly lead to timed out connections due to low capacity. Red portions of the
graph describe HTTP internal server error responses. The darker purple is used to denote HTTP
client error responses

to handle hundreds of requests in a second, even small delays in processing can become
huge bottlenecks. This can be seen in figure 7.3, which shows a snapshot of extremely
high traffic occurring on our API gateway. During a timespan of around 30 minutes, our
notification servers erroneously sent as many notifications as fast as they could, which
lead to our API gateway receiving around five to six times higher peak traffic than we

would have normally anticipated.

This overflow of traffic leads to our gateway timing out connections. After the first ten
minutes of the peak, we manually scaled the servers up to be able to meet the demand.
After we scaled the API gateway up, the timeouts stopped. Our backing services were
able to meet the demand, the main issue was just our API gateway being scaled too low
for the amount of traffic. While Heroku offers autoscaling for performance dynos [62],
which we were using at the time of the traffic spike, it does have the downside of taking
a while to react to large traffic spikes. When it eventually did start to scale up, we had set

the maximum scaling limit too low to be able to handle all of the incoming traffic.

Clustering gave us the ability to move up to larger instance types and take autoscaling
in to use. While useful, no autoscaling solution is perfect. The one provided by Heroku
is a bit problematic in our gateway use case, since it scales based on the 95th percentile
response times. Because the gateway is mainly a proxy, response times can vary based on
backing services and their integrations, so slower response times are not necessarily due to
degrading performance or not being able to meet the demand. Still, having the autoscaling

is a helpful, since we are only actively monitoring the service during work hours.

With increased traffic either through peaks or just organic user growth, we still need to
manually scale up our services to be able to meet the normal level of demand. There is no
automated system that will do this perfectly. Adding more capacity is trivial in Heroku,
so for our use case this mostly comes down to investigating traffic patterns and reacting
accordingly.
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8. CONCLUSIONS

At the start of this thesis, we introduced the following research questions that we wanted

to find the answers for:

1. What are microservices and how to build and manage them?
2. What limitations does our environment impose on our services and scalability?

3. How did we fix our API gateway scalability issue?

We will go through each of these questions in more detail, evaluating the answers our
research found for the questions. Finally, we will represent possible future optimizations
and changes to our architecture, that can make scaling for peak loads easier or possible

with less hardware.

8.1 Microservices

Before we started the research for this thesis, we already had an existing service utilizing
microservice architecture and an API gateway pattern running in production. To fully
understand our scaling problem on the API gateway level of the service, we first wanted
to know more thoroughly what microservices are and how they can be built and managed.
This research is represented in chapter 2.

Based on a literary review and research, we found out that the definition for microser-
vices is a fairly loose one, mainly due to the fact that there are many ways to implement
the architectural pattern. In essence, it is an architectural pattern in which a service is
built as a collection of independent, small services, each responsible for a single piece of
functionality. Services done in the microservice architecture pattern are distributed ser-
vices which communicate over the network with different synchronous or asynchronous

communication mechanisms, like REST APIs or message queues.

The API gateway pattern we used is a common method of exposing the functionality of

a microservice based architecture. The main alternative for this is service discovery, in
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which a centralized system keeps track of the different services and their addresses. Other
microservices and clients can then query the service locations from that centralized loca-
tion, after which they can call the service directly.

The service discovery method would have been one effective method against our scala-
bility issues, but it would have also introduced additional complexity on the client side.
In the API gateway pattern, clients effectively call a single API, which proxies requests
to the individual services. Service discovery forces clients to know some details of the
underlying complexity of the system being used. Since the centralized service for discov-
ery is mainly a key-value store, performance is unlikely to be an issue even with a large

amount of calls being done every second.

Overall, we are satisfied with the architecture of our service, excluding the issues at peak
loads. If we were able to redo the whole architecture from the ground up, we would most
likely be more strict with the API gateway as a proxy, and limit the amount of custom
functionality it has. To ease up the peak loads for our main gateway, we have already
begun creating smaller, more specialized gateway implementations, that allow access to
a subset of services. These gateways often use different authentication methods than our

main one, which is also one reason why they are new and independent services.

8.2 Environment limitations

Both our execution environment and hosting provider impose some restrictions on ser-
vices, which we had to explain in more detail to make the scalability issue clearer. Our
execution environment, Node.js, is discussed in more detail in chapter 3. Our hosting and

hardware provider Heroku is explored in chapter 4.

Node.js is a JavaScript based runtime. Typically JavaScript has been a programming lan-
guage used in browsers, but Node.js allows server side execution of JavaScript code. The
main reason we used Node.js is that in our company a lot of people know Node.js, so it is
easier to rotate people in and out of the project. Technically microservices allow for ev-
ery individual service to be programmed in a different language, but there are benefits to
choosing a main language that the services utilize. For example, if every service exposes
a REST API, it is likely that some common patterns will surface that can then be shared

as libraries between services.

The main limitation that Node.js has is the single-threaded nature of its execution. All user
code is ran inside a single thread by default. This means that in a multi-core environment,

a single Node.js process is unlikely to utilize all of the available computation capacity.
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Node.js offers the clustering module to fix this issue. A single Node.js program can be
clustered to be ran inside multiple processes, which allows for more effective use of avail-
able resources in a single machine. Clustering is fairly easy to implement and solves the

vertical scalability issues that Node.js has.

Heroku enforces a set of rules on every application running on its platform. For example,
a request can last a maximum of 30 seconds, after which it is terminated by the platform.
This forces developers to think more thoroughly about synchronous and asynchronous
calls to services. Most of the machine types offered are also ran in a shared environment,
which means that a single machine is running multiple different services from different
customers. This can introduce the issue of noisy neighbors, where other services running
on the same machine are hogging most of the resources. Services can also run out of their
allocated CPU time, meaning that performance can degrade for a while if there are larger
peaks in CPU utilization.

The premium dyno types offered by Heroku run on dedicated hardware. This was one of
our motivations to get rid of the vertical scalability issues, since dedicated hardware would
rule out issues with noisy neighbors. Noisy neighbors are most likely a minor issue, but
at peak loads everything starts to add up quickly.

8.3 Fixing API gateway scalability

The issue with our API gateway timing out connections is caused during peak loads. These
peak loads are in turn caused by push notifications being sent to all of our clients. Normal
service traffic is something that we can handle easily, but peak traffic really pushes our
API gateway to its limits. The issue is explored in more detail in chapter 5. The actual

implementation details of the clustering are shown in chapter 6.

We wanted to scale up to the dedicated instance types provided by Heroku, which meant
that we had to implement clustering on our API gateway service. The clustering imple-

mentation itself was trivial and was deployed to production quickly.

Scaling vertically to larger instance types did not remove the issue of timeouts completely.
Moving to the premium instance types of Heroku clearly improved the amount of requests
we could process, but we can still receive too many requests, which cause timeouts to
happen. The premium instance types also allowed us to utilize the autoscaling feature
provided by Heroku. While helpful, it often takes a while to react to increased load and is
not fast enough for really sharp increases in traffic. It uses response times as its metric for

scaling, which causes a lot of unnecessary scaling events on our API gateway service.
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There is also the issue of optimizing costs with these new dyno types. Previously the
API gateway used standard-2x dynos, costing 50 dollars a month per dyno. Performance-
m dynos, which the service is currently utilizing, cost 250 dollars a month per dyno. A
single performance-m dyno can be clustered up to 5 processes per dyno, if every process is
allocated 512 megabytes of memory. A standard-2x dyno can be clustered to two processes
per dyno, if we are leaving every process with 512 megabytes of memory. There is a clear
premium here being paid for the dedicated hardware, since running an equivalent amount

of standard-2x dyno processes would cost 150 dollars a month.

We think that the dedicated hardware makes it easier for us to gauge the performance of
the API gateway. Additionally, the autoscaling is helpful, especially since the service is

not monitored outside of work hours.

8.4 Future work

The clustering implementation allowed us to do vertical scaling, but it did not fully solve
the core issue. While we can process more traffic, we will still eventually hit a cap after
which our API gateway starts to time out connections. It is only natural that higher loads
eventually require more hardware to deal with, but we feel like there are further optimiza-
tions that could be done on the gateway level to improve performance further and possibly

save on costs.

Currently the API gateway is configured to parse all of the JSON payloads of every re-
quest. In a normal API service this is a sensible thing to do, since you save a lot of boiler-
plate code not having to parse the JSON payloads inside every route individually. But in
a service that mostly proxies traffic forward and relays the responses, this leads to wasted
CPU cycles. Parsing JSON is most likely well optimized in Node.js, but when processing
hundreds of requests per second, even smaller computations can start to add up.

The main reason this configuration change has not been done or tried yet, is that there are
some routes that actually use the payloads of incoming requests. The change would then

require more thorough investigation than just a simple configuration edit.

Additionally, the instance types being used could be optimized further. A performance-m
dyno can be clustered to 5 processes, but a performance-1 dyno clusters up to 28 processes
and costs 500 dollars a month. If one or two performance-1 dynos were enough to handle
all of the traffic going through our gateway, we could get some cost savings by scaling
even further vertically. This would require mainly analyzing existing scaling patterns,

their performance and further testing.
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Another option would be to completely rewrite the API Gateway in another language. A
language like Go or Rust could result in a more efficient gateway implementation. This
would require a lot of testing before deployment, and would increase the maintenance

burden of the development team due to a different language being used.
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A. EXAMPLE SERVICE CONTROLLER
IMPLEMENTATION

import { Request, Response } from 'express';
import joi from 'joi';

import * as DataCore from '../core/data';
import { Datald, dataldParameter } from '../types/data';
import { validateParameters } from '../util/common';

export async function getDataById(req: Request, res: Response) {
const id = validateParameters<Datald>(req.params.id, dataldParameter);

const result = await DataCore.getDataById(id);
if (result === undefined) {

return res.sendStatus(404);

+
return res. json(result);

export async function getDataByIdCpu(req: Request, res: Response) {
const id = validateParameters<Datald>(req.params.id, dataldParameter);

for (let i = 0; i < 5e7; ++i);
const result = await DataCore.getDataById(id);

if (result === undefined) {
return res.sendStatus(404);

3

return res. json(result);
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B. EXAMPLE SERVICE CLUSTERING
IMPLEMENTATION

import sourceMapSupport from 'source-map-support';
sourceMapSupport.install();

import dotenv from 'dotenv';
dotenv.config();

import { Server } from 'http';
import throng from 'throng';
import createApp from './app';

import logger from './util/logger';
import connect from './db';
import { PORT, WEB_CONCURRENCY } from './config';

function closeServer(server: Server) {
logger.info('Stopping incoming connections');
server.close(() => {
logger.info('Server has stopped listening to incoming connections');
logger.info('Closing database connection');
connect () .destroy();
b;
}

function startServer(id: number) {
logger.info('Starting server...');

const app = createApp();
const server = app.listen(PORT, () => {

logger.info( Server worker ${id} listening on port ${PORT} );
b

process.on('SIGINT', () => closeServer(server));
process.on('SIGTERM', () => closeServer(server));

}

if (require.main === module) {
throng ({
workers: WEB_CONCURRENCY,
start: startServer,
H;
}
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C. BACKEND GATLING TEST FOR NON-CPU
INTENSIVE WORKLOAD

package data

import io.gatling.core.Predef._
import io.gatling.http.Predef._
import scala.concurrent.duration._

class TestSimulation extends Simulation {

val httpConf = http
.baseURL("http://localhost:3000")
.acceptHeader ("application/json")
.acceptEncodingHeader ("gzip, deflate")
.userAgentHeader ("Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.8; rv:16.0)")

val rand = new scala.util.Random()

val scn = scenario("Scenario Name")
.exec(http("request_data")
.get(s"/api/data/${rand.nextInt (1000000)}")
.check(status.is(200)))

setUp(scn.inject (rampUsersPerSec(10) to (80) during (30 seconds))
.protocols (httpConf))
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D. BACKEND GATLING TEST FOR CPU
INTENSIVE WORKLOAD

package data

import io.gatling.core.Predef._
import io.gatling.http.Predef._
import scala.concurrent.duration._

class TestSimulationCpu extends Simulation {

val httpConf = http
.baseURL("http://localhost:3000")
.acceptHeader ("application/json")
.acceptEncodingHeader ("gzip, deflate")
.userAgentHeader ("Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.8; rv:16.0)")

val rand = new scala.util.Random()

val scn = scenario("Scenario Name')
.exec(http("request_data")
.get(s"/api/data-cpu/${rand.nextInt (1000000)}")
.check(status.is(200)))

setUp(scn.inject (rampUsersPerSec(10) to (80) during (30 seconds))
.protocols (httpConf))
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