
SIRIPHAT POMYEN
SIGNAL AND IMAGE PROCESSING WITH MATLAB ON
RASPBERRY PI PLATFORM

Master of Science thesis

Examiner: Prof. Irek Defee
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 4 February 2015

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
SIRIPHAT POMYEN: Signal and Image Processing with Matlab on Raspberry Pi
Platform
Master of Science thesis, 64 pages
May 2015
Major: Multimedia
Examiner: Prof. Irek Defee
Keywords: Raspberry Pi, Signal and Image processing, Matlab and Simulink

Raspberry Pi is a powerful and affordable small computer. It was produced with
an aim in education to help young adult learn about computer and programming
language. Hence, it consists of high functional features and is sold at low cost for
easy access to everybody. Moreover, there are many supports available for Raspberry
Pi in both technical and commercial field making it appealing for running various
kinds of application.

In this thesis, Raspberry Pi computer is studied and evaluated for its features and
capability using Matlab software as a code porting tool due to a free availability
of the support package. The implementation is done with examples of signal and
image processing based on problem from relevant courses in university level as well
as real world applications from Simulink Computer Vision toolbox. The model is
constructed using Simulink blocks and Matlab scripts. The input is provided in
two ways; one as a parameter added through the software and the other is fed
directly from a peripheral device. With an aim to provide the use of Raspberry
Pi computer in practical courses, a limitation of model compilation time is taken
into account for the evaluation. The results from examples show that time taken to
generate the code is slower if the model comprises many Simulink blocks or contains
Matlab scripts. The larger size and software input parameter also causes the delay
compilation. However, these factors fall into an acceptable range. Hence, Raspberry
Pi can be used with Matlab as a learning tool for hands-on experience for students.
The possibility of the future work would include the use of graphic processor in
Matlab and Simulink application. The research would involve determining Matlab
code generation method used as a compiler for a graphic processor modified code.

ii

PREFACE

This thesis has been carried out at the Department of Signal Processing at Tampere
University of Technology, Finland. It contains the work studied and evaluated on
Raspberry Pi computer. The thesis has been supervised by Prof. Irek Defee and
entirely prepared by the author based on available information of the product as
provided in references.

I would like to warmly thank my supervisor Prof. Irek Defee for his time and
guidance on the topic. Working on it has been interesting and enjoyable. There
are new information to learn and update all the time. However, one could not deny
the difficulty when no good ideas come up during the writing and implementing
process. I feel I have learned a lot, not only about the topic but also about myself.
This thesis period will always remain one of my memorable experience in Finland.

Lastly, thank you to my family and friends for your supports and thank "you" for
reading.

SIRIPHAT POMYEN
Tampere, May 2015

iii

TABLE OF CONTENTS

1. Introduction . 1

2. Raspberry Pi Platform . 3

2.1 General Information . 3

2.2 Basic Components . 6

2.3 System on a Chip . 11

3. Operating System and Setup Instructions 17

3.1 Operating System . 17

3.2 SD Card Preparation . 18

3.3 Connection Methods . 19

3.4 Configuration Instructions . 27

4. Matlab and Simulink Support Package for Raspberry Pi 32

4.1 Installation Instructions . 32

4.2 Connection Instructions . 36

4.3 Command Functions . 39

4.4 Block Library . 42

5. Signal and Image Processing Examples . 48

5.1 Signal Processing Examples . 48

5.2 Image Processing Examples . 50

5.3 Toolbox Examples . 53

6. Conclusions . 57

References . 59

iv

LIST OF ABBREVIATIONS AND SYMBOLS

ABI Application Binary Interface
ALSA Advanced Linux Sound Architecture
ALU Arithmetic Logic Unit
API Application Programming Interface
BIU Bus Interface Unit
CE Chip Enable
CLE Control List Executor
CPU Central Processing Unit
CRT Cathode Ray Tube
CSI Camera Serial Interface
DCU Data Cache Unit
DPU Data Processing Unit
DHCP Dynamic Host Configuration Protocol
DMA Direct Memory Access
DSI Display Serial Interface
EAN European Article Number
EEPROM Electrically Erasable Programmable Read-Only Memory
FEP Front End Pipe
FFT Fast Fourier Transform
FHS Filesystem Hierarchy Standard
FIFO First In, First Out
GPGPU General Purpose computing on Graphic Processing Unit
GPIO General Purpose Input/Output
GPU Graphic Processing Unit
HAT Hardware Attached on Top
HD High-Definition
HDMI High-Definition Multimedia Interface
I2C Inter-Integrated Circuit
I2S Integrated Interchip Sound
IC Integrated Circuit
ICU Instruction Cache Unit
IoT Internet of Things
L2C Level 2 Cache
LAN Local Area Network
LED Light Emitting Diode
LSB Linux Standard Base

v

MISO Master Input, Slave Output
MOSI Master Output, Slave Input
MSE Mean Square Error
NOOBS New Out Of the Box Software
ntpd Network Time Protocol daemon
NTSC National Television System Committee
OS Operating Systems
PAL Phase Alternating Line
PC Personal Computer
PFU Prefetch Unit
Pi-GEMM Raspberry Pi General Matrix Multiply
PSE Primitive Setup Engine
PTB Primitive Tile Binner
QIC Instruction cache
QPS Quad Processing Unit Scheduler
QPU Quad Processing Unit
QUC Uniforms cache
RAM Random Access Memory
RCA Radio Corporation of America
SCL Serial Clock Line
SCLK Serial Clock
SCP Secure Copy Protocol
SCU Snoop Control Unit
SD card Secure Digital Card
SDA Serial Data Line
SDL Simple DirectMedia Layer
SDR Software Defined Radio
SFU Special Function Unit
SIMD Single Instruction, Multiple Data
SoC System on a Chip
SPI Serial Peripheral Interface
SS Slave Select
SSH Secure Shell
STB Store Buffer
TB Tile Buffer
TCP Transmission Control Protocol
TMU Texture Memory Unit
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol

vi

URL Uniform Resource Locator
USB Universal Serial Bus
V4L2 Video for Linux Two
VCD Vertex Cache Manager Direct Memory Access
VCM Vertex Cache Manager
VNC Virtual Network Computing
VPM Vertex Pipeline Memory
VRI Varying Interpolation Unit

1

1. INTRODUCTION

The very first computer had a size as large as a room and consumed high amount
of power. However, things had been changed since semiconductor technology was
introduced. The size of computer became rapidly shrinking while the computing
power was growing. The advent of integrated circuits (ICs) or chips had speeded up
the miniaturization of computer technology where smaller and smaller elements are
integrated to build a chip [47]. This is described by so called Moore’s law which says
that the number of transistors on chip is doubling every two years [49]. As a result,
personal computers (PCs) and other devices such as laptops, mobile phones, tablets
have been developed and using in daily life. Moreover, the process of miniaturization
of computers continues leading to an emergence of very small computers which can
be used in many applications covering every aspect of life. Ideas for such new
applications could be developed by anybody interested if they have knowledge about
computer operation, programming and access to a very small experimental platform.
In particular, this could be of a great attraction to children, young people and school
education. Replying to this potential, a fully operational computer of a credit card
size named Raspberry Pi has been developed by a foundation of the same name.
Raspberry Pi was originally designed to provide support for school students as a
tool for learning about computers, and programming languages. The idea was to
make a device which is attractive for hands-on experimenting and cheap enough that
everybody could afford [36]. This goal has been achieved and Raspberry Pi became
a big success in the market with millions of copies sold [73]. However, Raspberry Pi
is not only useful for school students but also for technology enthusiasts, hobbyists,
engineers who are using it in commercial applications as well as in universities both
in education and research projects. This success of Raspberry Pi is due to the
unique combination of proper price, hardware, software and the creation of global
community of users and developers sharing information.

The objective of this thesis is to study and evaluate a capability of Raspberry Pi
computer through signal and image processing education at university level. The
availability of support packages from Matlab, which is a commonly used software in
exercises and laboratories, allows the possibility of using Raspberry Pi for an exper-
iment. In addition, the support packages, used for porting software onto Raspberry

1. Introduction 2

Pi, is available for free of charge. As a result, the board can be used as a target
device for running software providing an ability to observe the porting operation
of the software developed in simulation environment in PC to the application de-
vice. The performance of the software in the application device can then be tested.
Using Raspberry Pi gives better opportunity than only seeing simulation results.
In addition, it encourages creative thinking and experimenting with new applica-
tions. However, the application device like Raspberry Pi has limited capabilities
and thus software has to be developed with the limitations in mind. The interac-
tion between the PC and Raspberry Pi is handled by Matlab and Simulink software
where Simulink makes possible porting of the Matlab software to wide variety of
devices and platforms. Matlab in Raspberry Pi can run both in a simulation mode
where the board is connected to a PC and in a standalone mode where a software is
downloaded onto the board and runs independently from a PC. Experience gained
by using Raspberry Pi with Simulink has universal applications.

The thesis is organized as follows. Chapter 2 explains background and general in-
formation of Raspberry Pi such as released models and components including the
details of its architecture: Central Processing Unit (CPU), Graphic Processing Unit
(GPU), Random Access Memory (RAM) and general purpose input and output
(GPIO) pins with an emphasis on the recently released model of Raspberry Pi,
namely Raspberry Pi 2 model B. Basic Operating System (OS) and setup instruc-
tion including a secure digital (SD) card preparation, connection and configuration
instructions are presented in Chapter 3. Chapter 4 presents the information about
Matlab and Simulink support package for Raspberry Pi including setup instruc-
tions and detailed functions used to control the computer. The signal and image
processing implementation examples based on topics from relevant courses as well
as operations of some toolboxes are presented in Chapter 5. The usefulness of
Raspberry Pi for the exercise work is evaluated based on the topics of compilation
time, computational speed and implementation complexity. Such topics of evalu-
ation concerns the time allocated for class exercises and laboratory work. Hence,
it is important to search for the reasonable limits. Finally, Chapter 6 provides the
conclusion and the suggestions for future work.

3

2. RASPBERRY PI PLATFORM

This chapter provides a background information of Raspberry Pi starting with gen-
eral information such as released models and basic components including GPIO
operations. It also provides the information regarding the history of this single-
board computer as well as a detail of its system on a chip (SoC) including CPU,
GPU and RAM.

2.1 General Information

Raspberry Pi, as shown in Figure 2.1, is a single-board computer having a size
as small as a credit card from the Raspberry Pi foundation. An idea of producing
Raspberry Pi began in 2006 with a realization that young generation is missing
knowledges about computer operation. A group of academics and engineers from
University of Cambridge, therefore, decided to develop a very small computer which
everyone could afford to buy to create learning environment in programming. The
Raspberry Pi project became promising with the appearance of cheap and powerful
mobile processors with many advanced features allowing a possible development of
Raspberry Pi which was continued under specially created Raspberry Pi foundation
with the first product launched in 2012 [36].

(a) Raspberry Pi model B (b) Raspberry Pi 2 model B

Figure 2.1 Raspberry Pi’s generation 1 and generation 2

Development of Raspberry Pi computer is a continuing process. Until spring of
2015, Raspberry Pi foundation has released five models in two generations of the

2.1. General Information 4

computer. The first generation consists of four models as shown in Figure 2.2. First
released was model B followed by model A, model B+ and model A+ respectively.
The two latter models are upgraded versions of their previous releases to make the
computer more efficient and convenient to users especially by having lower power
consumption and more (Universal Serial Bus) USB ports. The second generation
consists of only one model called Raspberry Pi 2 model B whose specification is
based on Raspberry Pi model B+ but with faster CPU and more memory [50].

(a) Raspberry Pi model A (b) Raspberry Pi model B

(c) Raspberry Pi model B+ (d) Raspberry Pi model A+

Figure 2.2 Raspberry Pi’s released models

Raspberry Pi model B, as shown in Figure 2.2(b), was released in the early 2012
with the specification of 256 MB RAM, two USB ports and one Ethernet port. Later
in the same year, in a new release, the amount of RAM was increased to 512 MB
followed by the release of the lower-spec board, model A as shown in Figure 2.2(a).
Model A was released with same amount of RAM of the older model B at 256 MB
but with one USB port and no Ethernet port. These first generation computers use
Broadcom SoC, BCM2835, which integrates 700 MHz single-core ARM1176JZF-S
CPU, VideoCore IV GPU and variety of peripherals. While model B can be used in
any applications, the cheaper model A is useful in specific applications that require
light-weight and low power consumption such as robotics or any portable media
services.

In 2014, an upgraded version of the two previous models were launched, given the
name B+ and A+, as shown in Figure 2.2(c) and 2.2(d). Although, the two new

2.1. General Information 5

models have the same CPU, GPU and RAM as their previous releases, several
upgrades and new features have been added such as a micro SD memory socket
replacing an SD Card slot, an upgraded version of GPIO from 26 to 40 pins, a
low noise audio and a 0.5 to 1 W lower power consumption by having a switching
regulator instead of a linear regulator. Additionally, model A+ is approximately 2
cm shorter than its predecessor while model B+ provides four USB ports instead of
two in model B [19][20].

In early 2015, the next generation of Raspberry Pi computer called Raspberry Pi 2
model B was released. The model represents significant upgrade of the Raspberry
Pi capabilities and was enthusiastically welcomed by the community. Raspberry
Pi 2 model B uses a much more powerful BCM2836 which offers 900 MHz quad-
core ARM Cortex-A7 CPU, 1 GB RAM and the same specification of graphics
processor as previously making it run approximately six times faster comparing to
its predecessors at an unchanged price. Moreover, the supports of Windows 10
Internet of Things (IoT) version is available for Raspberry Pi 2 model B for free of
charge providing a great potential for future usage [21][71].

Table 2.1 summarizes major features of the Raspberry Pi models. Further details
are explained in the next section

Table 2.1 Major features of the released models of Raspberry Pi

Raspberry Pi Generation 1 Generation 2
Specifications Model A Model B Model A+ Model B+ Model B

Power 300mA 700mA 200mA 600mA 900mA
Ethernet Port No Yes No Yes Yes
USB Port 1 2 1 4 4
GPIO 26 26 40 40 40

SD Card Slot SD SD microSD microSD microSD
SoC BCM2835 BCM2835 BCM2835 BCM2835 BCM2836
CPU 700MHz 700MHz 700MHz 700MHz 900MHz

ARM11 ARM11 ARM11 ARM11 ARM Cortex-A7
single-core single-core single-core single-core quad-core

RAM 256MB 512MB 256MB 512MB 1GB

Although a newer Raspberry Pi model provides more features, it is better to know
which applications or projects the board is going to be used for in order to select
the most efficient one for both power and cost.

In late 2012, Raspberry Pi’s GPU driver code running on the ARM was released as
open source and available for download [57]. Then later, in 2014, the full register-
level documentation including a graphics driver stack of the chip were released pub-

2.2. Basic Components 6

Figure 2.3 Raspberry Pi’s software architecture

licly [69]. From the diagram shown in Figure 2.3, the part covered with ARM was
the first release followed by the part called VideoCore IV GPU. The parts, colored
in orange, indicate the closed source such that the driver code running on the ARM
was available, however, the graphic libraries provided by outsourced suppliers are
closed source [72]. VideoCore IV GPU was a binary blob, which is a closed source
binary driver, prior the latter announcement making it difficult for users to fully
take advantage of the chip. Although the release from Broadcom was meant for a
mobile SoC called BCM21553, it is compatible with BCM2835, a SoC used in Rasp-
berry Pi. This release allows users to fully understand its internal operation as well
as develop own open source drivers or write codes for General Purpose computing
on Graphic Processing Unit (GPGPU), hence, making it attractive to academics,
engineers and hobbyists who are interested in exploiting the capability of the chip.

2.2 Basic Components

The diagram of Raspberry Pi 2 model B containing the basic components is as
shown in Figure 2.4. The details of the components are explained as the list below
[50][51]. Although the list is based on the second generation of the board, the detail
of the components from the first generation is also explained if they are different.

• Power Connector is to power the board with a 5 V micro USB port. The
need of the power consumption required depends on the peripheral devices

2.2. Basic Components 7

Figure 2.4 Basic components shown on Raspberry Pi 2 model B diagram

attached to the board, for example, model B requires around 700 mA at the
idle state but can consume up to 1000 mA if connects to other devices. In
model A+ and B+, the linear regulator was replaced by a switching regulator
causing lower power consumption at 200 mA and 600 mA for each model
respectively. More power is required for Raspberry Pi 2 model B of at least
900 mA since it has more advanced four core processors. It is recommended
to use a power adapter that can produce at least 1200 mA, however, a normal
mobile phone charger with a micro USB head can be used as a power supply.
Higher power is required for more stable operation [17].

• High-Definition Multimedia Interface (HDMI) Port is a connection for
High Definition (HD) resolution display device such as a computer screen or a
smart television. All models provide a resolution from 640x350 to 1920x1200
including Phase Alternating Line (PAL) and National Television System Com-
mittee (NTSC) standards.

• Camera Serial Interface (CSI) Connector is a connector for a camera
module, as shown in Figure 2.5(a). The camera is specifically designed for
Raspberry Pi and can be connected with a ribbon cable providing a support
for both photography and HD video [2].

• Audio Connector is an audio output through a 3.5 mm headphone jack
which also supports an analogue video output for model A+, B+ and Rasp-
berry Pi 2 model B. For earlier models, A and B, the connector is only for an
audio output.

• Ethernet Port is a network connector providing a speed of 10/100 Mbit/s
through an RJ45 Local Area Network (LAN) cable. Ethernet Port is available
in model B, B+ and Raspberry Pi 2 model B.

2.2. Basic Components 8

(a) Camera Pi (b) PiTFT

Figure 2.5 Camera Pi and PiTFT

• USB Port supports any USB devices such as a keyboard, a mouse, a Wi-Fi
dongle or a webcam. The USB port provided is a 2.0 version. Both model A
and A+ have one USB port while model B has two USB ports. There are four
USB ports in model B+ and Raspberry Pi 2 model B.

• GPIO is a set of universal input and output connector pins for general pur-
poses such as connecting expansion boards or devices in order to control CPU
or checking power consumption. There are 26 pins in model A and B and 40
pins in model A+, B+ and Raspberry Pi 2 model B.

• Light-Emitting Diodes (LEDs) indicate the board status, for example,
when it is powered, the LED appears red and when it connects to the network,
the LED appears yellow. Model A and B provide 5 LEDs in which the first
two are for indicating an SD card status and a power status and the other
three are for a network status. Model A+, B+ and Raspberry Pi 2 model B,
provide only 2 LEDs to indicate SD card and power status. The LEDs for
network status are built-in at Ethernet socket.

• Display Serial Interface (DSI) Connector is for connecting the board
with a display module such as PiTFT, which is a Thin Film Transistor liquid
crystal display shown in Figure 2.5(b). The connection is done with a flexible
flat cable.

• SD Card Slot is for inserting SD memory card to store a desired OS or
programs for the board. Raspberry Pi supports up to 32 GB storage and class
10 speed SD card. An SD card slot has been replaced with a micro SD card
slot in model A+, B+ and Raspberry Pi 2 model B.

• Radio Corporation of America (RCA) Video Connector is for a video
output support through a RCA jack allowing a connection with any general
televisions or monitors. The connector is only available in model A and B since

2.2. Basic Components 9

in model A+, B+ and Raspberry Pi 2 model B, the video output is shared
with a 3.5 mm jack.

• SoC is a Broadcom chip containing CPU, GPU and RAM. The first genera-
tion of Raspberry Pi, namely model A, B, A+ and B+, uses BCM2835 chip
providing 700 MHz ARM1176JZF-S single-core CPU, VideoCore IV GPU and
256 MB or 512 MB RAM depending on the model. For the second generation,
Raspberry Pi 2 model B, the chip was upgraded to BCM2836 which provides
900 MHz ARM Cortex-A7 quad-core CPU and 1 GB RAM with the same
GPU.

One of Raspberry Pi features which hold special attention is its GPIO pins. GPIO
is a generic and reusable pin which can be configured with a logical value, 1 and 0,
to act as an input or output according to a user’s purpose in order to indicate the
status of the chip and control peripheral devices. Typically, a logical value provided
to a pin is a high and low voltage of the chip in which high is a supply voltage
and low is 0 V or ground. To prevent a damage caused to the chip from a voltage
supplied to GPIO pins, the voltage should be in an acceptable range depending on a
specification of each chip. However, it should be considered that supplying a voltage
too high than a supply voltage or too low than 0 V is unacceptable. Additionally,
a voltage that can not be considered as high or low can cause an unreadable result.
GPIO pins are individually configured, however configuring GPIO pins as a group of
typically 8 pins results in a GPIO port allowing to perform the same operations of
individually configured GPIO pins such as reading input and writing output result
[7][8].

Figure 2.6 Raspberry Pi’s GPIO diagram

The diagram of Raspberry Pi GPIO pins is shown in Figure 2.6 where the first 26
pins are common for all models and the remaining 14 pins are available only in model
A+, B+ and Raspberry Pi 2 model B. GPIO pins allow control over functions such as

2.2. Basic Components 10

Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface
(SPI), Inter-Integrated Circuit (I2C), Hardware Attached on Top (HAT) through
Electrically Erasable Programmable Read-Only Memory (EEPROM) as well as 3.3
V and 5 V power [24].

The color of the pin shown in a diagram indicates its functionality which can be
explained in detail as follows.

• Power, colored in orange and red, is provided on 4 pins for 2 levels, namely
3.3 V and 5 V, in which 3.3 V provided on pin number 1 and 17 is considered
as a supply voltage of the board while 5 V provided on pin number 2 and 4 is
for the purpose of interacting with other devices that require 5 V power supply
[52].

• I2C, colored in pink, is provided on pin number 3 and 5 for Serial Data
Line (SDA) and Serial Clock Line (SCL) respectively. I2C allows a short
distance communication between chips on the same board as well as controlling
peripheral devices connected to the board via a cable. I2C communication is
done through either one or more masters and a number of slaves in which a
master generates a clock signal provided on SCL along with initiates a data
transmission with a slave via SDA. The available data transfer modes 100
kbp/s, 400 kbp/s, 1 Mbp/s, 3.4 Mbp/s and 5 Mbp/s. I2C on Raspberry Pi
can be used to control sensors or other interfaces such as SPI [11].

• UART, colored in purple, is provided on pin number 8 and 10 for data trans-
mitting (TxD) and receiving (RxD). UART is a serial connection allowing two
devices to exchange data through their serial interfaces. The connection is
done in such a way that a transmitter of the first device is connected to a re-
ceiver of the second device and vice versa. In addition, their grounds need to
be connected together. UART allows Raspberry Pi to connect to a computer,
a microcontroller or any devices with a serial interface [33].

• SPI, colored in blue, is a communication interface connection realized in a form
of master and slave allowing one master to control one or more slaves through
at least four pins, namely Master Output, Slave Input (MOSI), Master Input,
Slave Output (MISO), Serial Clock (SCLK) and Slave Select (SS) indicated
as Chip Enable (CE) in the diagram. The data is transmitted in a full duplex
mode in which a master sends a data to a slave through MOSI and receives
a data from a slave through MISO corresponding to a clock signal on SCLK
generated by a master. In case of more than one slave available, the slave is
selected with a low bit sent from a master through SS. Raspberry Pi offers

2.3. System on a Chip 11

two sets of SPI connection, namely SPI0 and SPI1. SPI0 is provided on pin
number 19, 21, 23, 24 and 26 allowing the control over two slaves while SPI1
provided on pin number 11, 12, 35, 36, 38 and 40 allows the control over three
slaves [34].

Figure 2.7 An example of an add-on HAT board on Raspberry Pi 2 model B

• HAT, colored in yellow, is provided on pin number 27 and 28 for the purpose of
connecting add-on HAT boards [54] as shown in Figure 2.7, which allows Rasp-
berry Pi to automatically configure GPIO pins and its driver corresponding
to an attached device through I2C EEPROM data and clock, namely ID_SD
and ID_SC respectively. Raspberry Pi foundation allows a freely design of
add-on HAT boards adhering to publicly available specification [26].

By default, all Raspberry Pi GPIO pins act as general purpose input pin except pins
assigned as power, ground and UART. However, the UART pins can be configured
as a general purpose pin as well. In order to perform any operations using GPIO
pins, the pins need to be configured to be either an input or an output, for example,
via a programming language such as python or C or via a software support packages
such as Matlab.

2.3 System on a Chip

Raspberry Pi’s SoC comprises CPU, GPU and RAM. CPU is an ARM based proces-
sor which is a CPU used mostly in mobile phones. The first generation of Raspberry
Pi uses BCM2835 SoC which offers an ARM version 6 architecture. In the second
generation, the board uses BCM2836 ARM version 7 called Cortex-A7 which is
supported by much wider range of software.

2.3. System on a Chip 12

Figure 2.8 ARM Cortex-A7 system block diagram

ARM Cortex-A7 operates instructions through its Data Processing Unit (DPU)
which also holds processor registers such as general-purpose, status and control
register. The processor consists of two level memory systems, namely L1 and L2,
providing cache subsystem and Snoop Control Unit (SCU) respectively. The cache
subsystem in L1 is divided into instruction cache containing Instruction Cache Unit
(ICU) and Prefetch Unit (PFU) and data cache containing Data Cache Unit (DCU),
Store Buffer (STB) and Bus Interface Unit (BIU). The operation is shown in system
block diagram in Figure 2.8 in which instructions from ICU and external sources
are fetched to DPU for executing via PFU. In the case that the operation requires
data from system memory, DPU operates along with DCU through CP15 which
is a system control coprocessor providing a configuration and control over system
memory and its associated functionality. DCU also holds MOESI protocol which is
a cache coherency protocol stating the shareable data between each processor. After
the operations are complete, they are stored in STB waiting to be written out to
RAM via DCU or to external source via SCU. SCU, located in L2 memory system,
is connected to L1 via BIU which provides SCU interface [56].

Graphic processor provided by Broadcom is a dual-core 3D graphics processing GPU
which has performance corresponding to the Xbox 360 or double the performance
of iPhone 4S. The GPU is capable of encoding and decoding 1080p30 H.264 Blu-
ray quality video and has a speed of 24 GFLOPs for parallelized general purpose
computing operations like matrix multiplication [10].

VideoCore IV GPU [58], as shown in Figure 2.9, consists of twelve special purpose
floating-point shader processors known as a Quad Processing Unit (QPU). Each
QPU is a 4-way single instruction, multiple data (SIMD) processor but it can be

2.3. System on a Chip 13

Figure 2.9 Raspberry Pi’s GPU system block diagram

considered as a 16-way SIMD processor since its four actual vectors of four values
are executed simultaneously under an instruction for 4 clock cycle times in which
each time the results are multiplexed, giving a vector of 16 values after completing
all 4 cycles. In other words, a new instruction can be issued to QPU every 4 clock
cycles, hence, the operation appears to be run under a single cycle which gives a
16-value output.

A slice is a group of up to four QPUs in which they share common resources, namely
Special Function Unit (SFU), Texture Memory Unit (TMU), Varying Interpolation
Unit (VRI) and instruction caches. Common resources are to support QPUs based
on their functions such that SFU provides special mathematical operations such as
reciprocal, reciprocal square root, logarithm and exponential, TMU fetches texture
information as well as general purpose data, VRI stores varying interpolations co-
efficients and instruction caches, known as Uniforms cache (QUC) and Instruction
cache (QIC), stores instructions from system memory.

2.3. System on a Chip 14

Each QPU provides two Arithmetic Logic Units (ALUs) for add and multiply opera-
tion which are capable to work in parallel and support both integer and floating-point
data.

Figure 2.10 Raspberry Pi’s GPU graphics pipeline

A graphics pipeline of VideoCore IV GPU [60], as shown in Figure 2.10, is controlled
by control lists from system memory in which the sequences of primitives and system
state data are fetched to Control List Executor (CLE), situated inside GPU, to
control other units. Since the operations are done mostly through hardware units
inside GPU with less software drivers involved, it can be counted as a hardware
operation. The explanation of each operation is as follows.

• Vertex Processing comprises two individual operations, namely vertex prepa-
ration and shading, where vertex attributes from system memory are collected
into groups at Vertex Cache Manager (VCM) using Direct Memory Access
(DMA), together known as VCD, before being fetched to store at Vertex
Pipeline Memory (VPM) to prepare for shading.

Shading is controlled by QPU scheduler (QPS) which gets a vertex shade
request from VCD. Vertex shading is the calculation process done within a
slice by one of the QPUs on groups of vertex attributes which are arranged
into a matrix of 16 columns. The calculation results are given in a form of
shaded data and coordinates data before being fetched back to store at VPM.

• Primitive Processing is performed on Primitive Tile Binner (PTB) after
VPM fetches the coordinates data of shaded vertices to the unit. PTB is
responsible for building primitives from the received coordinates and find-
ing which pixels or tiles are covered within those primitives. After that, the
list containing primitives information relative to the tiles including the state
change as well as the clipped primitives are transferred to system memory.

2.3. System on a Chip 15

• Rasterization is the parameters calculation process done in Primitive Setup
Engine (PSE) responsible for calculating rasterizer setup parameters and in-
terpolation coefficients from the shaded data being fetched from VPM and the
clipped primitives information sent from system memory. Most of the results
are stored at Front End Pipeline (FEP) while varying interpolation coefficient
is sent to store at VRI memory on the slice.

• Fragment Processing, similar to vertex processing, executes two individual
operations which are fragment preparation and shading. Fragment prepara-
tion involves FEP sending a fragment shade request as well as a vector of
initial parameters to QPS to command QPU to perform fragment shading op-
eration. At the same time, VRI starts calculating for varying interpolation
using coefficients stored in its memory.

Fragment shading is the process to determine the characteristic of each pixel
such as texture and color. The process is done in such a way that TMU passes
texture information to QPU regarding a request and receive First In, First
Out (FIFO) in which QPU sends a request FIFO to TMU, then TMU passes
textured pixels, stored in system memory via L2 cache (L2C), to a receive
FIFO which will be fetched back to process at QPU. Since shading operation
is performed on both groups of vertex attributes and fragment, the operation is
done in turn such that QPU performs shading on groups of vertex attributes
until there are no groups available to process, it then switches to perform
shading on fragments.

• Pixel Processing is a rendering process performed in TB in which the unit
updates color, stencil and depth value to the pixel output of a shaded frag-
ment using pixel coordinates taken from QPU internal registers. Scoreboard,
situated in TB, is to ensure the correct order of pixel rendering and that the
pixel can be accessed by one QPU at a time. After the rendering process is
complete, the color data is written to system memory frame buffer and all
data is cleared from TB in order to prepare for the next rendering.

For general purpose data operation, QPU can access data from system memory ei-
ther through TMU or VPM. Although TMU is meant to process texture information,
it can be used for general purpose data lookups. The data, which is stored in system
memory, can be brought to TMU via L2C before being forwarded to QPU. More-
over, TMU can be configured to use up to 2 units per slice. Although Raspberry
Pi’s GPU is primarily for graphics purpose, general purpose data can be processed
under specific command parameters in which the features of QPU, TMU and VPM

2.3. System on a Chip 16

are exploited. Some examples of such possibility are Fast Fourier transform (FFT)
[68] and Raspberry Pi general matrix multiply (Pi-GEMM) implementations [70].

RAM offered with the SoC depends on the models. The first generation offers two
types of RAM, namely 256 MB for model A and A+ and 512 MB for model B and
B+. In Raspberry Pi 2 model B, the memory has been upgraded to 1 GB and the
memory chip was relocated to the other side of the board instead of stacking on top
of the SoC as in the previous models. RAM is shared between CPU and GPU where
users can configure the amount of RAM provided to GPU in software, the rest will
be given to CPU. The minimum value to be set is 16 MB and the default value is 64
MB. It is advisable to split half of the memory to GPU if the board works heavily
for media tasks such as 3D rendering or if it is going to be connected with a camera
module [3].

17

3. OPERATING SYSTEM AND SETUP

INSTRUCTIONS

In this chapter, the basic OS information and setup of Raspberry Pi computer are
described. The setup steps for Raspberry Pi will go through the preparation of a SD
card in order to install the desired OS, the information of devices and headless con-
nection followed by a brief information of booting process and a configuration after
the board is booted. Useful information, for example, a remote desktop connection
via Virtual Network Computing (VNC), is also presented.

3.1 Operating System

Raspberry Pi runs on special derivatives of Linux OS. These derivatives make possi-
ble selection of the OS best suiting specialized needs. Basic distribution of Raspberry
Pi software is called New Out Of the Box Software (NOOBS) which contains six
OS variants called Raspbian, Pidora, OpenELEC, RaspBMC, RISC OS and Arch
Linux. User can select and quickly install any of them [15].

Raspbian is the OS which is specially and most developed for Raspberry Pi. It was
developed by a group of developers who are interested in the board with the aim
to use Raspberry Pi’s hardware to its best advantage. The OS is based on Debian
Wheezy armhf which is a hard float application binary interface (ABI) port. It uses
floating point registers available in hardware for floating point parameters operation.
This operation is faster than using soft float ABI, armel, where floating points
parameters are operated through software. Since armhf supports ARM version 7
and higher, Raspbian packages for ARM version 6 in the first generation needs to
be recompiled with the different compiler for hard float compatible. There is no issue
in the second generation with ARM version 7. Raspbian contains Debian packages,
additional packages built for Raspberry Pi, for example, camera module software,
Scratch and Wolfram Mathematica and application examples such as GPU FFT
[28][46].

Raspbian directory structure follows Filesystem Hierarchy Standard (FHS) and can

3.2. SD Card Preparation 18

be explained as in Table 3.1 [6].

Table 3.1 Raspbian’s directory structure

Directory Description
/ The root directory containing all directories and files of the system.
/bin Contains executable files to operate the system.
/boot Contains files necessary for booting process such as Linux kernel and

boot loader.
/dev Contains peripheral device files available to the system.
/etc Contains configuration files for system as well as scripts for startup.
/home The home directory for the user. By default, user’s files are collected in

/home/pi directory.
/lib Contains shared libraries for the system.
/opt Contains installed software packages.
/proc A virtual directory containing kernel and process information.
/root The home directory for the superuser.
/sbin Contains executable files used in booting process or rescuing the system.
/sys Contains system files.
/tmp Contains temporary files. The files will be cleared after reboot.
/usr Contains files that support user’s installed programs.
/var Contains files that change especially in size during the operation of the

system.

Apart from Raspbian, the second generation of Raspberry Pi also supports developer
versions of Ubuntu and Windows, namely Snappy Ubuntu Core and Window 10 IoT
but many other OSs supporting ARM version 7 could be compiled for the board.

3.2 SD Card Preparation

Raspberry Pi boots from a SD card of 4 GB minimum size. The available OS
images such as Raspbian and NOOBS can be downloaded from Raspberry Pi’s
official website [5]. Preparation of the SD card is done as follows [31]:

1. Download a desired OS image from Raspberry Pi’s official website. The com-
mand unzip imageName.zip is used to extract the file. The .img file will be
found after extracting .zip file.

2. Run command df -h before and after inserting the SD card into a computer
or a SD card reader connected to the computer to check the name of the SD
card. The name of the SD card can be shown more than one if it has more
than one partition.

3.3. Connection Methods 19

3. To prevent any interruptions while copying the image, unmount all the parti-
tions of the SD card with the command umount /dev/sdName.

4. Run command dd bs=4M if=/path/to/imageName.img of=/dev/sdName to
copy the image onto the SD card. Check the name of the SD card to ensure
that the image is copied onto the whole SD card, not just one partition. The
bs indicates the speed of copying. The if indicates the read input file and of
indicates the written output file.

5. Remove the SD card from the computer after the operating is done. The SD
card is now ready to be used on Raspberry Pi.

Additional information for running the command are shown as the list below.

• In case of using an old SD card, ensure that the card is completely formatted
to FAT32 file system type. Other type of file system will not work.

• The dd command will not show any progress while copying the image. To see
the operating progress, the command pkill -USR1 -n -x dd can be run in
the new terminal. A prefix sudo is needed if a user is not root. The operating
progress is then shown on the terminal which runs the dd command.

• It is advisable to have a backup image of the SD card so that when things go
wrong, there is no need to start from scratch. The dd command can be used to
backup by running dd bs=1M if=/dev/sdName of=/path/to/backupFile.img
where the input file is the SD card name and the output file is path to a di-
rectory on the computer where the backup image file will be saved.

• A micro SD card is used instead of an SD card for model A+, B+ and Rasp-
berry Pi 2 model B.

After the SD card preparation is complete, the next step is to connect Raspberry Pi
either to the peripheral devices or using headless connection to be able to operate
the board as needed.

3.3 Connection Methods

The connection methods for Raspberry Pi can be divided into two methods. In the
first one, there are devices such as a monitor, a keyboard and a mouse which are
connected through their available ports, namely HDMI, RCA connector and a USB

3.3. Connection Methods 20

port. The second method is called a headless connection where the connection is
done by connecting Raspberry Pi to a computer via a LAN cable or a Wi-Fi dongle.

Device and headless connection

The requirements for the devices connection are a monitor, a HDMI and a USB
keyboard and mouse as shown in Figure 3.1(a). After the SD card with a desired
OS is inserted into Raspberry Pi’s card slot and all the required devices are connected
to the board, the board will be automatically booted to the desktop once powering
up with a micro USB power supply. Raspberry Pi is ready to use once every required
devices are connected. Then, the configuration can be done via terminal. If there
are not enough USB ports available to connect to the required devices, for example,
when using model A or A+, a USB hub is needed [18].

(a) Device connection (b) Headless connection

Figure 3.1 Raspberry Pi’s connection methods

The headless connection, shown in Figure 3.1(b), is an alternative connection when
there are no any other devices except Raspberry Pi, a computer and a LAN cable or a
Wi-Fi dongle. The LAN cable connection is suitable for model B, B+ and Raspberry
Pi 2 model B where the Ethernet port is available. The Wi-Fi dongle connection
is suitable for all models. The most important part for the headless connection is
to find the right Internet Protocol (IP) address to establish the connection between
Raspberry Pi and the computer. The connection for either a LAN cable or a Wi-Fi
dongle is done as follows [61].

1. If the connection is done with a LAN cable, plug in one end of a LAN cable to
the Ethernet port of Raspberry Pi and another end to a port in a computer.
If the connection is done with a Wi-Fi dongle, insert a Wi-Fi dongle to a USB
port on Raspberry Pi.

2. After inserting a SD card into Raspberry Pi and powering the board with a
micro USB power supply, the power LED appears in red and the other LEDs

3.3. Connection Methods 21

start blinking in yellow meaning the card has been read and the connection
between Raspberry Pi and a computer has already established. For model
A+, B+ and Raspberry Pi 2 model B, the LEDs at Ethernet socket appear in
yellow and green if a connection is done with a LAN cable.

3. To be able to control Raspberry Pi through a computer, an IP address used
for connection is required. To find an IP address for a LAN cable connection,
a command such as arp-scan -l can be run in terminal. The command will
then scan the local network for an active IP address and show in the terminal.

4. For a Wi-Fi dongle connection, a network information, namely a network
name and a password, is required in the script interfaces in /etc/network/
directory to establish the connection. The information can be added either
after booting Raspberry Pi with an Ethernet cable and edit the script in the
directory or add the information directly onto a SD card from a computer
before using it on the board. Both methods can be done by a command sudo
nano /path/to/etc/network/interfaces and editing the information as in
the example below:

auto lo

iface lo inet loopback
iface eth0 inet dhcp

auto wlan0
allow -hotplug wlan0
iface wlan0 inet dhcp
wpa -ssid "myNetworkName"
wpa -psk "myNetworkPassword"

The auto wlan0 is to automatically start the network interface at boot. A
network name and password are added to wpa-ssid and wpa-psk respectively.

5. After an IP address is acquired, the Secure Shell (SSH) communication, which
is enable by default in Raspberry Pi, is used to login to the board via command
ssh pi@acquiredIPAddress in which pi is a default username. Raspberry Pi
will then ask for a password to allow the connection. The default password is
raspberry [35]. After that, a configuration can be performed.

The headless connection is suitable for those who wants to work with Raspberry
Pi without any additional devices. It allows the remote control over the board
especially if the connection is done with a Wi-Fi dongle, making it useful for portable
applications.

3.3. Connection Methods 22

For a headless connection, there are several useful informations such as sharing an
internet connection, correcting date and time for a Wi-Fi dongle connection, setting
a connection with a static IP address and using a remote desktop via VNC. The
details can be found as follows.

Sharing internet connection

For Raspberry Pi to access the internet in a headless connection, the network needs
to be shared from a computer. There are two cases, in the first case, a computer
connects to a wireless internet and connects to Raspberry Pi with a LAN cable. The
second case is the other way around, where a computer connects to a wired network
and connects to the board with a Wi-Fi dongle.

Figure 3.2 A method to share internet using Network Connections in a Linux computer

For a LAN cable connection, sharing an internet can be done via Network Con-
nections on Ubuntu OS. Under Edit Connections, add a new connection under a
Wired tab. Choose Shared to other computers from a drop-down menu for method
under IPv4 Settings tab as shown in Figure 3.2. The internet is then shared to the
computer’s Ethernet port allowing Raspbery Pi to access the internet once the LAN
cable is plugged.

For a Wi-Fi dongle connection, a computer needs to be made as a hotspot, in
order to share an internet, which can be done in many ways such as using a script
called ap-hotspot [55]. After downloading and installing the script, a command
ap-hotspot start can be run in terminal to start sharing a wireless connection
allowing Raspberry Pi with a Wi-Fi dongle to connect to the network and access
the internet.

Correcting date and time

3.3. Connection Methods 23

The problem of incorrect date and time occurs when Raspberry Pi is connected
to a computer with a Wi-Fi dongle. Raspberry Pi has no real-time clock and uses
Network Time Protocol daemon (ntpd) to synchronize the system time with the time
server when it can access the internet. When Raspberry Pi is off for several hours and
reconnects, the slow connection of the Wi-Fi causes it fail to synchronize, therefore,
the date and time shown on the desktop or terminal is counted from the previous
connection. To set the correct date and time, a command dpkg-reconfigure ntp
[41] can be run in terminal followed by shutdown -r now or reboot. The commands
need to be run with sudo as a prefix if a user is not root. The date and time can
be checked using command date.

In order to correct date and time at boot up process, a script, based on an Init
Script Linux Standard Base (LSB) [43] format, needs to be created and saved in
/etc/init.d directory with a command sudo nano /etc/init.d/myDate where
myDate is the name of the created script. Required information for an Init Script
LSB is add followed by sudo dpkg-reconfigure ntp as shown in an example below
[62]:

#! /bin/sh
BEGIN INIT INFO
Provides: myDate
Required -Start: $all
Required -Stop: $all
Default -Start: 2 3 4 5
Default -Stop: 0 1 6
Short -Description: correct date and time for Wi-Fi
connection
END INIT INFO

sudo dpkg -reconfigure ntp

To make the script executable, the commands below should be run in terminal:
sudo chmod 755 /etc/init.d/myDate
sudo insserv /etc/init.d/myDate

The first command is to make it executable while the second one is to make it run
automatically at startup. It is advisable to reboot Raspberry Pi after finishing all
the steps.

Setting static IP

An IP address is the most important part for a headless connection since it works
as a route between a computer and Raspberry Pi. If there is no IP address or an IP

3.3. Connection Methods 24

address is wrong, Raspberry Pi and a computer can not connect to each other. The
IP address acquisition can be divided into two types in which one is a Dynamic Host
Configuration Protocol (DHCP) IP and another one is a Static IP. The DHCP IP
is allocated dynamically and can be changed any time Raspberry Pi reconnects to a
computer. This is not suitable for running an application that requires a stable IP
address. In addition, it is not favourable to search for the right IP address every time
Raspberry Pi reconnects to a computer. Therefore, a static IP address is needed.

The script interfaces in /etc/network/ directory provides Raspberry Pi’s network
interfaces, namely eth0 and wlan0, for a wired and wireless connection respectively
and can be viewed with a command cat /etc/network/interfaces as shown below
[42]:

auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow -hotplug wlan0
iface wlan0 inet manual
wpa -roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

In the script, a wired connection interface, eth0, is set to use a DHCP IP ad-
dress as iface eth0 inet dhcp by default. To set a static IP address, dhcp
needs to be changed to static. The script can be edited using a command nano
/etc/network/interfaces. A prefix sudo is needed if a user is not root. The
required information, namely address, netmask and gateway needs to be added as
shown in an example below:

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 10.42.0.45
netmask 255.255.255.0
gateway 10.42.0.1

allow -hotplug wlan0
iface wlan0 inet manual
wpa -roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

3.3. Connection Methods 25

The commands ifconfig and netstat -nr can be used to get the information for
address, netmask and gateway of the board. The same method can be applied to
set a static IP address for a wireless connection interface, wlan0.

Another useful script for a wireless connection interface is wpa_supplicant.conf
which is a configuration file in /etc/wpa_supplicant directory containing the in-
formation of the network. In the case the network information, namely wpa-ssid
and wpa-psk, is not directly added to /etc/network/interfaces directory, it can
be added using a command nano /etc/wpa_supplicant/wpa_supplicant.conf.
A prefix sudo is needed if a user is not root. The two most important fields to be
added are ssid and psk which are the name and password of the network respec-
tively, other fields can be left out. It is possible to add more than one network to
the script as shown in an example below:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config =1

network ={
ssid=" myNetworkName_1"
psk=" myNetworkPassword_1"
proto=RSN
key_mgmt=WPA -PSK
pairwise=CCMP
auth_alg=OPEN

}

network ={
ssid=" myNetworkName_2"
psk=" myNetworkPassword_2"
key_mgmt=WPA -PSK

}

Setting a static IP address for Raspberry Pi ensures that the IP address will remain
the same in every connections.

Setting VNC connection

VNC allows users to control Raspberry Pi remotely in a graphical way by showing
a Raspberry Pi desktop on top of computer monitor. To be able to use VNC, the
host server and client software need to be installed in Raspberry Pi and a computer
respectively. There are several software packages to choose for the VNC, for example,
tightvnc, where tightvncserver is chosen to be installed as a host server on Raspberry
Pi and vncviewer as a client on a computer [75].

3.3. Connection Methods 26

After login to Raspberry Pi via ssh and installing the software, running a command
tightvncserver in terminal will ask for a password to be set. The password is an
8-character long and will be used to establish a connection from a client computer.
The software will also tell the port for a virtual desktop as:

New ’X’ desktop is raspberrypi -siri:1

In this case, the port is 1. To start running a virtual desktop, a command vncserver
:1 -geometry 1024x720 -depth 24 is run in the terminal. An option -geometry
and -depth are to set the width and height and the depth color of the virtual
desktop.

(a) IP Address (b) Password

(c) Raspberry Pi’s Desktop

Figure 3.3 A window of IP address, password and Raspberry Pi desktop under vncviewer

On a computer, after a client software is installed, a command vncviewer is run.
A window, as in Figure 3.3(a), will appear asking for an IP address and a port to
establish the connection. The IP address is the address which Raspberry Pi uses
to connect to the computer and the port is as specified by the server. By adding
IPAddress:Port into the box and enter, a new window, shown in Figure 3.3(b), will
appear asking for a password. If everything is correct, a new window of Raspberry
Pi desktop will be shown as in Figure 3.3(c).

To start Raspberry Pi desktop automatically without having to log in via ssh, an
additional script provided by penguintutor [38] needs to be created and called at start
up. The script is based on an Init Script LSB format and saved in /etc/init.d

3.4. Configuration Instructions 27

directory. A command nano /etc/init.d/newScriptName is run to create a new
script. After the content is added and saved to the script, the commands below
should be run in terminal to make the script executable.

sudo chown root:root /etc/init.d/newScriptName
sudo chmod 755 /etc/init.d/newScriptName
sudo chmod +x /etc/init.d/newScriptName
sudo update -rc.d newScriptName defaults

The first command is to change the owner of the script to root, the second command
is to make it executable and the last command is to make it run automatically at
startup. It is advisable to reboot the board after finishing all the steps.

3.4 Configuration Instructions

Raspberry Pi’s boot up process involves its SoC and a software on a SD card. It
boots from GPU. The process can be explained such that a FAT32 boot partition
on a SD card is mounted to the processor through a code programmed onto a SoC
which then calls bootcode.bin to start GPU. Once the GPU starts, RAM is enabled
as well as GPU firmware, start.elf, is loaded to start the settings for CPU such as
setting a shared memory between GPU and CPU and loading a configuration file,
config.txt, as well as a kernel image, kernel.img. After the kernel image is loaded,
an OS starts and the execution is transferred from GPU to CPU [44].

In the case that Raspberry Pi does not boot, it is most likely that start.elf is not
found. The yellow LED will blink for awhile, then stop and remain lid stating that
the SD card is corrupted. Performing a fresh installation of the SD card can solve
this problem. In the normal case where the board boots properly, the yellow LED
will blink in an irregular pattern for about 20 seconds [40].

Once Raspberry Pi boots under a Raspbian OS, a Raspi-config screen, as shown in
Figure 3.4, will automatically appear on the monitor if the connection is done via
a devices connection. For a headless connection, after logging in with a username
and a password through ssh, a command raspi-config can be run in terminal to
perform the first configuration. The same Raspi-config screen will appear.

The raspi-config tool has several options. To select the options, the up and down
arrow keys are used to move the highlight for an option up or down. The right arrow
key is used to choose between Select or Finish option and the left arrow key is
used to go back to the option lists. The enter keys is used for selecting. The options
in Raspi-Config are explained as below [30]:

3.4. Configuration Instructions 28

Figure 3.4 Raspi-config screen for Raspberry Pi configuration

• Expand Filesystem is to ensure that the OS installation takes place for the
whole of an SD card, not only at some partition, making more space available
for any programs or files which will be installed afterwards. When the option
is selected, the system will be expanded and the change will take place after
reboot.

• Change User Password is to change the password of Raspberry Pi. The
default password is raspberry. In terminal, the option will ask to enter a new
password and a confirmation. If they do not match, the password will not be
changed.

• Enable Boot to Desktop/Scratch is to select the boot options for Rasp-
berry Pi. There are three options available which are boot to terminal where a
password is needed for logging in, boot to a Raspberry Pi’s Desktop and boot
to Scratch programming tool which is a tool designed to help young people
to learn programming without having to write programs. A default option is
boot to terminal.

• Internationalization Options has three options available which are change
locale, change timezone and change keyboard layout. Change locale is to set
the region and language Raspberry Pi will be used. The UTF-8 is chosen by
default. Change timezone is to set the time zone used on the board by selecting
the region and city. Change keyboard layout is to match the keyboard layout
with the user’s keyboard layout.

• Enable Camera is to allow Raspberry Pi to work with the camera module
by providing at least 128 MB of RAM for the GPU usage.

• Add to Rastrack is an option to add Raspberry Pi to a Google map based

3.4. Configuration Instructions 29

website named Rastrack which shows the location of Raspberry Pi’s users
around the world. Users can add Raspberry Pi directly to the map through
the website if prefer [74].

• Overclock is to choose the operating speed of the CPU. There are five options
available for Raspberry Pi 2 model B which are 700 MHz, 800 MHz, 900 MHz,
950 MHz and 1000 MHz. The default setting is 700 MHz.

• Advanced Options has ten options available as explained in the list below:

1. Overscan is an option to adjust the displaying area in a monitor to either
show a full screen image or with a border in case a monitor connected
to Raspberry Pi is an old cathode ray tube (CRT) screen. The CRT
screen has a problem in showing images whose edges will be cropped
to avoid displaying any visible edge problem after image processing prior
displaying on the screen. New monitors do not have this problem. Disable
overscan allows showing a full screen in the monitor.

2. Hostname is to set a name for Raspberry Pi to be visible in the network.
It allows only ASCII letters from a to z with no case sensitive, a number
from 0 to 9 and a hyphen to form a name.

3. Memory Split is to adjust the memory used between CPU and GPU
depending on user’s preference. If Raspberry Pi will be used mostly for
media related work, it is advisable to split half of the memory for GPU
usage, for example, GPU can get at most 500 MB of RAM on Raspberry
Pi 2 model B.

4. SSH is an option to enable or disable a remote access to Raspberry Pi
from any computers in the same network. The default setting is enable.

5. Device Tree, associated with HAT, is an option to enable or disable a
kernel for device tree which is a data structure describing the hardware
such as names and properties. The hardware information is passed to
Raspberry Pi OS during boot allowing the automatically configuration
over the devices attached to Raspberry Pi GPIO pins. Device tree is
OS-neutral meaning it is compatible with any OSs. The option is enable
by default [4].

6. SPI allows Raspberry Pi to communicate in a full-duplex mode with any
peripheral devices, such as a PiFace, over a short distance. This option
is to enable or disable an automatic loading of its kernel module. It is
disable by default.

3.4. Configuration Instructions 30

7. I2C is an option to enable or disable an automatic loading of I2C kernel
module which is a module that allows Raspberry Pi to connect to any
peripheral devices, such as sensors, through GPIO pins. The option is
disable by default.

8. Serial is an option to enable or disable a log in through a serial connec-
tion between Raspberry Pi and a computer it connects to. The option is
enable by default. However, if Raspberry Pi needs to connect to any mi-
crocontrollers such as Arduino, the serial connection needs to be disable.

9. Audio has three options available which are auto, force 3.5 mm head-
phone jack and force HDMI. It is an option to set an audio output port
to either a 3.5 mm headphone jack or a HDMI port which are two avail-
able audio output ports for Raspberry Pi. If a user has no preferences in
choosing any options, Raspberry Pi will automatically select an output
port by itself.

10. Update is to update Raspi-config tool to the latest version.

The advanced option is mostly to enable and disable kernels or to adjust the
user’s preferred options for Raspberry Pi’s features.

• About raspi-config shows a short description of raspi-config.

The raspi-config tool can be run any time with the command raspi-config in
terminal if there is need of any reconfiguration. Command sudo is needed if a user
is not root. In addition, the commands that should be run during the first boot
are apt-get update followed by apt-get upgrade to ensure that Raspberry Pi has
the latest version of software [39]. It is advisable to run the commands once in a
while to get the latest updates or run before installing any new packages or scripts.

Raspberry Pi can be properly turned off by running a command shutdown -h now
where -h is an option for halt and now tells the system to turn off immediately.

In summary, setting up Raspberry pi requires a Raspberry Pi board, a working SD
card and a micro USB power supply that provides enough power. Other peripheral
devices needed depend on a connection type such that a devices connection requires
a monitor, a keyboard and a mouse while a headless connection requires a computer
and a LAN cable or a Wi-Fi dongle. Setting an IP address can be useful not only
for a headless connection but also for the board to access the internet. Raspberry
Pi under Raspbian OS has a default username and password as pi and raspberry,
respectively, which can be used for a remote login through ssh, however, if a graphical
login is more preferable, VNC can be an option.

3.4. Configuration Instructions 31

Raspberry Pi offers a configuration tool under a command raspi-config, which
can be run any time a configuration is needed. To get the latest version of the
software, two commands apt-get update followed by apt-get upgrade can be
run to update and upgrade the board. Raspberry Pi has no switch to turn off,
thus, a command shutdown -h now should be run to properly shutdown the board
in order to prevent a corruption of an SD card. A command reboot, as well as
shutdown -r now where -r is an option for reboot is for rebooting the board after
serious changes, such as expanding file system, have been made. All commands need
a root privilege, otherwise a prefix sudo is needed.

32

4. MATLAB AND SIMULINK SUPPORT

PACKAGE FOR RASPBERRY PI

Matlab, integrated with Simulink, is a programming language software developed by
MathWorks. It provides numerical computation tools and models used by academics
and engineers for various systems design and development [48]. It is also widely used
in university education.

Matlab and Simulink support package for Raspberry Pi is composed of two parts of
which one is for Matlab and another one is for Simulink. Matlab support enables
development software for algorithms which can run in Raspberry Pi. It also allows
to control peripheral devices connected to the board through its GPIO interfaces,
namely serial, I2C and SPI as well as a camera module via command functions in
Matlab command window [22]. Simulink support package allows users to create
Simulink models in various fields such as audio, image or embedded system using
general and support package toolboxes. Additionally, users can create standalone
applications by deploying Simulink model onto Raspberry Pi [23].

This chapter explains the installation and connection instructions for Matlab and
Simulink support package on Raspberry Pi 2 model B followed by the list and
description of command functions and toolboxes.

4.1 Installation Instructions

Setting Raspberry Pi to work with Matlab and Simulink software requires a support
package to be installed onto both a computer and the board. Command functions
and special toolboxes are installed in the connected computer and a modified Rasp-
bian OS with Matlab and Simulink compatibility is installed in Raspberry Pi.

To enable Matlab and Simulink support package for Raspberry Pi, Matlab has to be
started in the administrator mode to allow complete control of all operations. The
installation instruction is explained as the steps below [9].

1. Download Matlab and Simulink support package either from Matlab’s official

4.1. Installation Instructions 33

website or from Get Hardware Support Packages in Add-Ons tab of Matlab
software, as shown in Figure 4.1. This can also be used to check for a new
version and to install an update of the support package.

Figure 4.1 Download support packages in Matlab

If the support package is downloaded from the website, an installation window
starts right away after clicking the support package installation software. In
Get Hardware Support Packages option, select Raspberry Pi to install the
support package.

2. A MathWorks account is needed to begin the installation process. After log in,
read and agree to the license agreement, the installation process starts with
downloading the relevant software including Matlab and Simulink support
packages as well as Raspbian OS, then, installing the packages onto the selected
folder.

Figure 4.2 Select Raspberry Pi board

3. After the installation process is complete, the set up process for Raspberry Pi
starts. A desired Raspberry Pi board either Raspberry Pi model B, B+ or
Raspberry Pi 2 model B can be selected from a drop-down menu as shown in
Figure 4.2. The process will prepare a suitable support package image for the
board to be installed onto a memory card.

4.1. Installation Instructions 34

4. To use Matlab and Simulink support package with Raspberry Pi, the board
needs to be connected to a host computer with a correct IP address which
can be set via a network configuration. There are three options available,
namely local area or home network, direct connection to host computer and
manually enter network settings as shown in Figure 4.3. The first two options
will automatically set a suitable IP address for Raspberry Pi while in the last
option, users can select to obtain an IP address automatically or manually set
it.

(a) Local area network and home network (b) Direct connection

(c) Network settings

Figure 4.3 Network configuration for Matlab and Simulink support package

For manually setting an IP address, a host name is a specific name for Rasp-
berry Pi. Users can decide to keep a program generated name or change it
if they prefer. IP address, network mask and default gateway can be set as
Raspberry Pi’s static IP address. The IP settings can be changed later after
Raspberry Pi boots in /etc/network/interfaces.

5. After setting a correct IP address for Raspberry Pi, a support package image
is ready to be written onto a memory card. Insert an SD card or a micro SD
card with an adaptor into an SD card slot on a computer then start writing
an image.

6. After completing the image writing process, a screen as shown in Figure 4.4
appears. Follow an instruction to confirm the connection between Raspberry
Pi and a computer.

4.1. Installation Instructions 35

Figure 4.4 A connection instruction for Matlab and Simulink support package

7. An installation process is complete with a confirm board configuration screen
informing a host name, a username and a password where a host name is
set during connection configuration step and a username and password is pi
and raspberry respectively. Raspberry Pi with Matlab and Simulink support
package is ready to start.

Additional information for Matlab and Simulink support package installation on
Raspberry Pi can be found below.

• It is important that Matlab is started in the administrator mode, otherwise,
the installation program will not be able to find a memory card drive. To start
Matlab in the administrator mode, right click on Matlab icon on Windows
desktop and select run as administrator.

• An SD or a micro SD card used in an installation should be a newly formatted
FAT32 file system type SD card. The installation will also install Raspbian
OS onto the card.

• For the first time installation, both Matlab and Simulink support packages
are available to be selected for installation at the same time. However, for an
update of a new version, only one of the support packages can be selected to
be installed. Users can also choose a preferred folder to install the package.

• In case the support packages are already downloaded and saved into a folder
in a computer, a command targetupdater can be run in Matlab command
window to start installation process.

• If choosing to obtain an IP address automatically, the IP address can be edited
later once Raspberry Pi boots at /etc/network/interfaces.

4.2. Connection Instructions 36

The installation steps are based on Matlab and Simulink release 2015a version in
which the support package are available for a 32 and 64 bit Windows version and a
64 bit MAC OS X.

4.2 Connection Instructions

The connection and configuration for Raspberry Pi with a modified Raspbian OS
to support Matlab and Simulink can be done in the same way as a normal setup
step such that the board is connected to a computer via either a LAN cable or
a Wi-Fi dongle through an assigned IP address. The configuration, for example,
expanding the file system through an option in raspi-config or setting a static
IP address in /etc/network/interfaces can be done by logging in to the board
through ssh in terminal prior the connection with Matlab and Simulink software.
Upon completion of the configuration, the connection between Raspberry Pi and
Matlab software can be explained in two ways in which the first one is for Matlab
and the second one is for Simulink. Both methods require a correct IP address
to establish the connection, however, the connection manners are different. To
connect Raspberry Pi with Matlab, the connection is established with a command
function raspi provided by the support package. As for Simulink, the connection is
established through Run on Target Hardware option in a Simulink model. Once the
connection is established, Raspberry Pi can be operated through command functions
and toolboxes. Matlab and Simulink connection instructions can be explained as
follows.

Raspberry Pi and Matlab software is connected via a command function raspi
provided by a support package [29]. The connection is done in such a way that
the command function creates Raspberry Pi object which will be used as an input
parameter for other command functions to access and control the board as well as
its connected devices. The usage examples are shown below.

mypi = raspi
mypi = raspi(’ipAddress ’,’userName ’,’password ’)
mypi = raspi(’hostname ’)

Parameters such as an IP address, a user name and password or a host name should
be provided to the function if there are any changes in connection, for example, a
changed password or a connection to a different board. In addition, Raspberry Pi
object holds the board’s properties which can be used as a reference parameter for
the configuration. An example of the properties are shown below.

mypi =

4.2. Connection Instructions 37

raspi with properties:
DeviceAddress: ’192.168.150.5 ’
Port: 18726
BoardName: ’Raspberry Pi 2 Model B’
AvailableLEDs: {’led0 ’}
AvailableDigitalPins: [4 5 6 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27]
AvailableSPIChannels: {’CE0 ’ ’CE1 ’}
AvailableI2CBuses: {’i2c -1’}
I2CBusSpeed: 100000

Apart from the information of an IP address, Transmission Control Protocol (TCP)
port and model version, the properties display the information of a controllable
LED and GPIO pins as well as additional information for SPI and I2C interfaces.
A command function clear is used to disconnect Raspberry Pi from the software.

The connection between Raspberry Pi and Simulink is established in two ways. The
first is for running a model in external mode on the board for a simulation purpose
[25] and the latter one is for deploying the model onto the board for a standalone
application [32]. The connection steps can be explained as follows:

1. After Raspberry Pi is powered and connects to the same network as a com-
puter, the command function raspberrypi can be used to check the status of
the board. The command will display a host name, a user name, password and
the board’s default folder on Matlab command window. In addition, users can
run a command as shown in an example below in Matlab command window
to ensure the connection:

>> h = raspberrypi
h =
LinuxServices with properties:
HostName: ’192.168.150.5 ’
UserName: ’pi’
Password: ’raspberry ’
BuildDir: ’/home/pi’

>> h.connect
ans =
Connection successful

The command raspberrypi creates Raspberry Pi object, h, with properties
in which its status can be checked using a parameter connect.

2. Upon completion of a Simulink model, users can make an interaction between

4.2. Connection Instructions 38

Raspberry Pi and the model through an option by selecting Tools followed by
Run on Target Hardware and options as shown in Figure 4.5.

Figure 4.5 Prepare a connection between Raspberry Pi and Simulink model

3. Confirm the information of a target hardware, in this case, Raspberry Pi, in a
configuration window shown in Figure 4.6. Ensure that an IP address, a user
name and password are correct since these parameters are used to establish
the connection.

Figure 4.6 Run on target hardware configuration window

4. For running a Simulink model in external mode, External mode is selected
from a drop-down menu as shown in Figure 4.7(a). Input a desired running
time onto a space next to the mode option. The default is 10. In this case, it is
set as inf to indicate the infinity running time. The simulation process starts
by clicking a run button shown in Figure 4.7(b). The software will prepare a
model to run and display a result on a computer’s screen if it is connected.

(a) External mode option (b) Run button

Figure 4.7 Run a Simulink model in external mode

For deploying a Simulink model onto Raspberry Pi, after having confirm the
information on a configuration window, a model can be deployed onto the

4.3. Command Functions 39

board by clicking a deploy to hardware button shown in Figure 4.8. The
Simulink model will be uploaded onto the default folder of the board.

Figure 4.8 Deploy a Simulink model onto Raspberry Pi

To disconnect Raspberry Pi with a Simulink model for an external mode, click a stop
button next to a run button on a model window or apply a parameter stop with
Raspberry Pi object, h, along with the name of the model as h.stop(’modelName’).
While the first option is only for an external mode, the second option can be used
to stop a standalone application running on Raspberry Pi.

4.3 Command Functions

Matlab support package allows users to operate Raspberry Pi and its attached de-
vices through command functions [12]. The board’s interfaces such as serial, I2C
and SPI as well as LED and a camera module can be controlled by command func-
tions through Matlab command window. This section provides the list of command
functions and their descriptions separated by their categories in the following tables.
Table 4.1 provides information including existing examples for Matlab and Simulink
support package and connection command functions for Raspberry Pi.

Table 4.1 Information and connection command function

Command Function Description
Information
rasberrypi Display host name, user name, password and build directory of

the successfully connected board.
raspi_examples Display Matlab and Simulink support package examples for

Raspberry Pi in a pop-up window.
Connection
raspi Create a connection between Raspberry Pi and Matlab software

with or without specifying an IP address, user name and pass-
word or a host name. Return board’s properties (address, port,
model and interfaces information) in Matlab command window.

The command function raspi creates Raspberry Pi object which allows Matlab
software to control an on-board or attached device such as LEDs or a camera mod-
ule with command functions shown in Table 4.2. Raspberry Pi allows only one

4.3. Command Functions 40

controllable LED in which users can turn it on or off to indicate the operation’s
condition as needed. LED is back to its original state after restarting the board.
For a camera operation, a camera module is connected to the board through the
CSI connector via its ribbon cable in which the connection is established with the
command cameraboard. The camera’s properties can be shown in Matlab command
window after the connection is complete. Additionally, users can configure the prop-
erties by providing Name-Value Pair Arguments [14] parameters to the cameraboard
command. The new setting will take effect after 5 frames. The camera command
functions allows users to capture a still image as well as to record and stop recording
a video. An image output is directly saved onto a Matlab current folder but a video
output is saved into Raspberry Pi default folder, namely /home/pi which can be
accessed using a Linux command function.

Table 4.2 LEDs and camera operation command function

Command Function Description
LEDs
writeLED Turn an available LED on or off by setting a value 1 or true

for on and 0 or false for off.
showLEDs Display an information (location, name and color) of available

LEDs through Matlab figure.
Camera Board
cameraboard Create a connection between a camera module and Raspberry

Pi. Arguments such as name and value are optionally added.
snapshot Return an RGB format still image.
record Return a video file with user’s specified name and record dura-

tion. The video file is saved onto Raspberry Pi.
stop Stop recording a video.

Apart from LED and a camera module, Raspberry Pi GPIO interfaces are also
supported by the support package’s command functions listed in Table 4.3.

Raspberry Pi GPIO pins can be used to operate serial, I2C and SPI interfaces. The
list of available pins can be found in the Raspberry Pi object properties while the in-
formation and location of the pins are shown in a Matlab figure using the command
showPins. The pins are allowed to be configured as an input or an output by the
user. To change the state of the configured pin, the command configureDigitalPin
is required to prevent unintentional damage to the board, however, for an unconfig-
ured pin, reading and writing commands configure it to be an input and an output
respectively. For serial, I2C and SPI interface, the command function to create the
interface object is needed to established the connection in order to operate the pe-
ripheral devices. The command functions, read and write, are available for serial

4.3. Command Functions 41

Table 4.3 Interfaces operation command function

Command Function Description
GPIO Pins
configureDigitalPin Configure a GPIO pin to act as an input or output using a pin

number provided by the board’s properties.
readDigitalPin Return a logical value (0 or 1) from an input GPIO pin using

a pin number. If a pin is an output or is in used by another
interfaces (serial, I2C or SPI), the function returns an error
message.

writeDigitalPin Set a logical value (0 or 1) to an output GPIO pin using a pin
number. If a pin is an input or is in used by another interfaces
(serial, I2C or SPI), the function returns an error message.

showPins Display a diagram of GPIO pins through Matlab figure.
Serial Port
serialdev Create a serial device object through GPIO pins available for

serial connection using parameters (port, baud rate, data bits,
parity bit and stop bits).

I2C Interface
scanI2CBus Return addresses of I2C available bus.
i2cdev Create an I2C device object through GPIO pins available for

I2C connection using available bus and address.
readRegister Return a scalar value of I2C device’s register number. Data

precision is optionally added.
writeRegister Write a hexadecimal value to I2C device’s register number.

Data precision is optionally added.
enableI2C Enable GPIO pins for I2C connection with or without specifying

bus speed. The default bus speed is 100000.
disableI2C Disable GPIO pins for I2C connection.
SPI Interface
spidev Create an SPI device through GPIO pins available for SPI con-

nection using its channel. Mode and speed are optionally added.
The default mode is 0.

writeRead Return a written data of an SPI device as a row vector. The
written data is specified as a vector of hexadecimal values. Data
precision is optionally added.

enableSPI Enable GPIO pins for SPI connection.
disableSPI Disable GPIO pins for SPI connection.
Common Function
read Return data from a serial device or an I2C device.
write Write data to a serial devcie or an I2C device. The written

data is specified as a vector or a vector of hexadecimal values
for serial and I2C respectively.

4.4. Block Library 42

and I2C interfaces to read and write data while in SPI, due to its full duplex commu-
nication mode, the command writeRead provides the same result. Since GPIO pins
are shared among three other interfaces, namely serial, I2C and SPI, the command
function will provide an error message if the pins are already occupied. To free
the pins for usage, enable and disable command functions concerning the specific
interfaces are used. By default, I2C is enabled while serial and SPI are disabled.

Table 4.4 Linux command function

Command Function Description
Linux
system Allow to run Linux command. Return the result in Matlab

command window. A prefix sudo is needed for a superuser
privilege command.

openShell Open an SSH terminal. The default user name and password
for login are pi and raspberry respectively.

getFile Download a file from Raspberry Pi to a computer with or with-
out specifying a destination folder. The default destination
folder is a Matlab current folder.

putFile Upload a file from a computer to Raspberry Pi with or without
specifying a destination folder. The default destination folder
is /home/pi folder.

deleteFile Delete a specified file from Raspberry Pi.

Regarding the access to Raspberry Pi, the support package provides command func-
tions to manage files saved in Raspberry Pi’s folders by specifying the name and
folder’s path of the file as parameters of the command functions. The available op-
erations, based on Secure copy (SCP) and SSH protocols, are getFile, putFile and
deleteFile for download, upload and delete the file respectively. The default folder
in a computer is a Matlab current folder while in Raspberry Pi, the default folder
is specified as /home/pi. The command operations based on a Linux command line
manner can also be done in the Matlab command window and through an SSH ter-
minal window with a command function system and openShell respectively. The
available command functions for Linux are as shown in Table 4.4. The command
functions provided by Matlab and Simulink support package allows a convenient way
to operate Raspberry Pi interfaces and peripheral devices through Matlab command
window as well as access the board using Linux command line making it easier for
users to create any desired projects on the board.

4.4 Block Library

Simulink support package for Raspberry Pi offers a block library to operate the
board in various fields such as audio, image and network as well as blocks to control

4.4. Block Library 43

LED and GPIO input and output port [13]. The block library can be shown by
running a command function raspberrypilib or simulink then search for Simulink
Support Package for Raspberry Pi. Window containing Raspberry Pi block library
will be shown as in Figure 4.9. The detail of each block separated by its category
is explained below.

Figure 4.9 Simulink block library for Raspberry Pi

Audio blocks are supported by Advanced Linux Sound Architecture (ALSA) driver
framework which provides a kernel driver to operate sound under Linux OS. Rasp-
berry Pi audio input can be accessed through GPIO Integrated Interchip Sound
(I2S) pins [59] or a USB sound card attached to one of the available USB ports
while audio output are provided through a HDMI port and a 3.5 mm headphone
jack.

• ALSA Audio Capture captures a 2-channel audio input given an output as
an N-by-2 frame of int16 values where N is a frame size and 2 determines left
and right channels. The device name, sampling frequency and frame size can
be configured in a block parameter window. The default device name is set to
’hw:1,0’ in which 1 and 0 are card and device number of the hardware used
for capturing audio input respectively. The sample rate can be calculated by
dividing frame size with a sampling frequency.

• ALSA Audio Playback plays a 2-channel audio output in which an input
to the block is an N-by-2 frame of int16 values corresponding to the output
from ALSA Audio Capture. The device name and sampling frequency can be
configured in a block parameter window. The default device name is set to
’hw:0,0’.

• eSpeak Text to Speech converts a uint8 array containing ASCII text to
speech then plays an output speech through Raspberry Pi’s audio output port.

4.4. Block Library 44

Raspberry Pi provides an image and video input through a CSI connector for a
camera module but a compatible USB camera [53] can also be connected. Image
and video blocks are supported by Video for Linux Two (V4L2) driver framework
and Simple DirectMedia Layer (SDL) library for capturing and displaying video
respectively.

• V4L2 Video Capture captures a video input from a camera module or a
compatible USB camera. A block parameter window allows a device name,
image size, pixel format and sample time to be configured. The default device
name is set to ’/dev/video0’ in which video0 is automatically created by a
Linux kernel driver once a compatible USB camera is connected to the board,
however, the driver needs to be installed if using a camera module.

• SDL Video Display displays a video output through SDL video display in
which a display window will be shown on a computer screen for an external
mode and on a monitor for a standalone mode. Display window is not shown
if running a standalone mode through VNC connection. Block parameter
allows only one parameter to be configured, namely a pixel format which can
be configured between YCbCr 4:2:2 and RGB. The default format is YCbCr
4:2:2. Only one SDL Video Display block can be added to a Simulink model.

For a camera module to work with Simulink image and video blocks, a kernel driver
bcm2835-v4l2 [27] needs to be installed onto Raspberry Pi. The installation steps
are as follows [45].

1. Log in to Raspberry Pi via ssh and prepare the board to its latest version
then reboot the board by running the commands below.

sudo apt -get update
sudo apt -get dist -upgrade
sudo rpi -update
sudo shutdown -r now

2. After reboot, load a kernel driver bcm2835-v4l2 onto Raspberry Pi with the
command.

sudo modprobe bcm2835 -v4l2

The driver will add video0 onto /dev directory of Raspberry Pi, however, it
will be deleted every time the board reboots. To automatically load the driver
when the board starts, the command can be added to the script /etc/rc.local

4.4. Block Library 45

by running sudo nano /etc/rc.local and add the command before exit 0
line.

Network blocks for Raspberry Pi supports sending and receiving data using User
Datagram Protocol (UDP) as well as publishing data from the board to a web service.
UDP allows a connectionless communication between a transmitter and a receiver
where a guarantee of the transmitted data is unnecessary and fast communication
is preferable.

• UDP Send gets an input data from source and sends the data using UDP
packets to a remote device by specifying its IP address and port in a block
parameter. The default values are ’255.255.255.255’ and 25000 for an IP
address and port respectively.

• UDP Receive receives UDP packets from a network and produces two out-
puts, namely data in a one-dimensional vector format and its size. A block
parameter allows IP port, data type and its size as well as sample time to be
configured in which data type and size need to match those of the input data.

• ThingSpeak Write allows to publish data to ThingSpeak web service for IoT
applications. The block establishes a communication between Raspberry Pi
and the web service though Uniform Resource Locator (URL) and Application
Programming Interface (API) key which can be obtained from ThingSpeak
website [37].

Raspberry Pi’s LED and GPIO pins can be controlled via a Simulink block in which
the block allows to turn a user-controllable LED on or off as well as read and write a
logical value of GPIO pin. GPIO pins need to be operated with care when connecting
to a voltage source since an exceeding voltage can cause a damage to the board. The
maximum input voltage for a pin is 1.8 V.

• LED receives a boolean value as an input to turn a user-controllable LED on
or off where 1 is on and 0 is off.

• GPIO Read reads a logical value of an input GPIO pin and produces the
value as an output. A pin number to be read and sample time can be configured
in a block parameter.

• GPIO Write receives a boolean value as an input to write to a GPIO pin
configured as an output by specifying a pin number to be written in a block
parameter.

4.4. Block Library 46

Apart from a block library for Raspberry Pi, a command function raspberrypi
along with other command functions listed in Table 4.5 can be run on Matlab
command window to control a Simulink model for an external and a standalone
mode.

Table 4.5 Simulink command functions for Raspberry Pi

Command Function Description
Simulink
raspberrypi Display host name, user name, password and build directory of

the successfully connected board.
connect Display a message on Matlab command window to ensure the

connection between Raspberry Pi and Simulink is established.
run Run a Simulink model by specifying a model name.
stop Stop a running Simulink model by specifying a model name.
execute Allows executing a Linux command line on Matlab command

window.

The command function raspberrypi for Simulink model operates in the same way
as Matlab command function raspi by creating Raspberry Pi object to be used as
an input for other command functions. The difference between the two command
functions is that raspberrypi does not allows input parameters such as an IP
address or a host name to establish the connection between the board and the
software. Instead, it passes the connection information, namely an IP address or a
host name, a user name, password and a default folder, of a successfully connected
board to Raspberry Pi object which can be used as an input parameter for other
command functions or link with other command functions to perform an action.
Usage examples are shown in Table 4.6.

Table 4.6 Usage Examples of Simulink command functions for Raspberry Pi

Use as Input Parameter Link with Command Function
h = raspberrypi h = raspberrypi
connect(h) h.connect
run(h,’modelName’) h.run(’modelName’)
stop(h,’modelName’) h.stop(’modelName’)
execute(h,’linuxCommand’) h.execute(’linuxCommand’)

The left side of the table shows Raspberry Pi object as an input parameter for
other command functions while the right side shows the object linking with other
command functions. Despite the different manner in issuing the command functions,
they operate in the same way and accept the same input parameter such as Simulink
model name or Linux command.

4.4. Block Library 47

Simulink block library for Raspberry Pi consists of eleven blocks which can be cat-
egorized into four groups, namely audio, image and video, network and on-board
device and interface. The blocks allow an operation over Raspberry Pi’s input and
output connectors such as a USB port or a 3.5 mm headphone jack to create Simulink
models for simulation as well as building standalone applications. Matlab command
functions allow an operation over GPIO pins. The combination of block library
and command functions allows total control of Raspberry Pi making Matlab and
Simulink support package a convenient tool to create various projects for the board.

48

5. SIGNAL AND IMAGE PROCESSING

EXAMPLES

This chapter shows some examples from signal and image processing running on
Raspberry Pi. The examples are taken from exercise classes held in Tampere Uni-
versity of Technology and the available toolbox examples from Matlab. The Matlab
scripts are implemented in Simulink model using appropriate toolboxes then run
on Raspberry Pi in external mode. The parameters which are collected are code
generation time and, in some cases, the simulation time as well as code running
time.

5.1 Signal Processing Examples

In signal processing examples, Raspberry Pi performs calculation of FFT, inverse
FFT, FFT convolution and digital filter. The Simulink models are implemented
using appropriate toolboxes from Simulink to generate signal and perform the oper-
ation. The collected parameters are simulation time, clock time and code generation
time. The settings for the functions can be explained as follows.

Figure 5.1 Simulink model general structure for signal input

The functions use a Sine Wave block to generate 8 N-length samples of length being
a power of 2, starting from 32 to 4096. The block is set to use sample based with
amplitude 1 and sample time 0.0001. The FFT and inverse FFT are calculated
using FFT and IFFT block respectively while the FFT convolution, each N-length
FFT sequences are multiplied with a sample of length 16 in frequency domain and
then inverse FFT is performed. In the digital filter example, a sequence of length

5.1. Signal Processing Examples 49

4096 with a uniform noise is filtered by 8 N-length samples using CONV block. The
output results for all models are observed using Scope block to view the output signal
and To Workspace block to save the results in structure with time format providing
simulation time and N-length sample results. The Simulink model general structure
is as shown in Figure 5.1 in which each function is set to run for 0.5 Simulink time
unit. The timing results, shown in Table 5.1 and 5.2, are simulation time, clock
time and code generation time indicated as t_sim, t_clock and t_code respectively
where clock time and generation time can be observed by Diagnostic Viewer window.

Table 5.1 FFT and inverse FFT timing results

Sample FFT Inverse FFT
N-length t_sim t_clock t_code t_sim t_clock t_code

32 0.0031 54 37 0.0031 46 32
64 0.0063 49 32 0.0063 49 32
128 0.0127 49 32 0.0127 46 30
256 0.0256 48 31 0.0256 47 30
512 0.0511 49 32 0.0511 48 31
1024 0.1023 45 31 0.1023 51 32
2048 0.2045 48 32 0.2045 49 31
4096 0.4095 48 30 0.4095 48 33

Table 5.2 FFT convolution and digital filter timing results

Sample FFT Convolution Digital Filter
N-length t_sim t_clock t_code t_sim t_clock t_code

32 0.0031 55 36 0.0031 44 29
64 0.0063 47 31 0.0063 44 29
128 0.0127 47 32 0.0127 41 28
256 0.0256 49 33 0.0256 44 30
512 0.0511 44 29 0.0511 44 29
1024 0.1023 43 28 0.1023 43 29
2048 0.2045 49 30 0.2045 43 29
4096 0.4095 45 30 0.4095 44 29

The simulation time, t_sim, is obtained from To Workspace block output file. The
result is according to a number of sample and sample time parameter set in Sine
Wave block such that the model produces one sample per 0.0001 second. Hence,
the output signal for 32 samples are produced within 0.0031 seconds and so on
for any sequence of length N. Clock time and code generation time, t_clock and
t_code, are obtained from Diagnostic Viewer window in which clock time is the
total running time of the function in Raspberry Pi and code generation time is the
total time Matlab used to generate and deploy the code onto the board.

5.2. Image Processing Examples 50

5.2 Image Processing Examples

The image processing examples are performed on both an image and a video input
fed to Raspberry Pi through a specific toolbox and a camera module respectively.
Both options can provide the result through a SDL video display. A user-defined
code is needed as an aid to adjust the input from a camera module as well as when
showing the result.

(a) Simulink model for image input

(b) Simulink model for video input

Figure 5.2 Simulink model general structure for image and video input

Figure 5.2 shows a general structure of two Simulink models for the image and
video input. For the image input, the image is fed to Raspberry Pi using Image
From File block. Scripts for the operation and preparing the result are written
to two MATLAB Function blocks, in which one is referred as toRGB, then the result
is displayed through SDL Video Display block. The structure for a video input is
generally the same as for an image input with an additional MATLAB Function block,
referred as fromRGB, added before performing an operation in order to prepare an
input to a suitable type.

The V4L2 Video Capture block provides a sequence of RGB images in contrast to
the SDL Video Display block which accepts separated R, G and B input. Hence,
the codes on fromRGB and toRGB are written in such a way that they concatenate
and separate the object respectively. The examples of the codes are as shown below.

function img = fromRGB(Rin , Gin , Bin)
% prepare image
in = cat(3, Rin , Gin , Bin);
img = double(rgb2gray(in));

function [R, G, B] = toRGB(img)
% convert to RGB
img = img .*255;
imgRGB = cat(3, img , img , img);
r = uint8(imgRGB(:, :, 1));

5.2. Image Processing Examples 51

g = uint8(imgRGB(:, :, 2));
b = uint8(imgRGB(:, :, 3));
% rotate 90 then flip
R = flipud(rot90(r));
G = flipud(rot90(g));
B = flipud(rot90(b));

For fromRGB, the code connects each R, G and B input together then convert into
grayscale and double type in order to prepare for an operation. For toRGB, the input
is multiplied with 255 to prepare for a uint8 type before being separated for R, G
and B as an input for a SDL Video Display block. In case, the output displayed
on a SDL Video Display block is an image or a graph, it needs to be rotate and
flip to provide the correct position of the result. This, however, is not needed if the
display output is video.

(a) cameraman.tif (b) DIP.jpg (c) frame_28.png (d) frame_29.png

(e) church.png (f) corel.png (g) pattern.png

Figure 5.3 Images used in Image Processing Functions

The image and video examples are performed for histogram, histogram equalization,
edge detection, images difference, Butterworth filter and motion blurred filter. Each
function is set to run for infinity, inf, of Simulink time unit in which the model keeps
producing the result until users decide to stop by pressing stop button on a Simulink
model or running a command h.stop(’modelName’) on Matlab command window.
Hence, the collected parameter is code generation time only. The images used for
the operation is as shown in Figure 5.3.

5.2. Image Processing Examples 52

The specific settings for each function are explained as follows.

• Histogram calculates histogram of an input through its pixel value. The
value is rounded to be maximum as 256 in order to fit the size of the display
window at 256 by 256 for width and height created with a user-defined code
[63].

• Histogram equalization performs histograms equalization on an image us-
ing another image histogram. This function is performed only on an image
input [65].

• Edge detection uses Edge Detection block to detect the edge of an image
and in video input. The results are shown in two types for only edge detection
and edge detection masked on a grayscale and colored input.

• Images difference calculates the difference between 2 images. This function
also performs only on an image input as same as histogram equalization [64].

• Butterworth filter performs Butterworth lowpass and highpass filter on an
image and a video input. The code provided through MATLAB Function block
uses fft2, ifft2 and fftshift for Butterworth calculation which requires
the input to be the size of a power of 2. Hence, Image Pad block is used to
get the correct input size [66].

• Motion blurred filter performs motion blurred and its inverse filter on an
image and a video input. The motion blurred filter code is written on MATLAB
Function block using fft2 and fftshift. This function is similar to But-
terworth filter in which it requires Image Pad block to get the input size in a
power of 2. The result is displayed in an image or a video and a mean square
error (mse) value through a Display block [67].

Table 5.3 shows code generation time for each function on an image and a video
input as well as image size and name. For the video input, a camera module is
connected to Raspberry Pi and captures the same scene for all functions. According
to the information shown in the table, the code generation time is affected by two
factors in which one is the size of the input, especially for an image, and another one
is the complexity of the code. The size of an image shows that the total greater size
requires longer code generating time than the smaller one while the complexity of
the code depends on the Matlab functions used to perform the result which can be
explained in such a way that Matlab needs more time to generate the input object
and the code then deploy onto Raspberry Pi, in contrast to a video input, where
the input is fed directly from a camera module attached to the board.

5.3. Toolbox Examples 53

Table 5.3 Image processing examples timing result

Code Generation Time Image Video
Function Name Size Time Size Time
Histogram DIP.jpg 256x256 56 sec 256x256 37 sec
Histogram equalization corel.png 384x256 1.07 min N/A N/A

church.png 412x663
Edge detection pattern.png 320x240 44 sec 320x240 54 sec
Edge detection: grayscale pattern.png 320x240 1.01 min 320x240 44 sec
Edge detection: color pattern.png 320x240 52 sec 320x240 56 sec
Images difference frame_28.png 640x480 2.05 min N/A N/A

frame_29.png 640x480
Butterworth: lowpass cameraman.tif 256x256 42 sec 256x256 46 sec
Butterworth: highpass cameraman.tif 256x256 43 sec 256x256 58 sec
Motion blurred DIP.jpg 256x256 1.33 min 256x256 49 sec
Inverse motion blurred DIP.jpg 256x256 1.12 min 256x256 45 sec

5.3 Toolbox Examples

Examples in this section are taken from Computer Vision system toolbox examples
provided by Matlab. Two examples include barcode recognition and pattern match-
ing. Input provided to Raspberry Pi is taken from a camera module and result is
displayed as a video output. Similar to image processing examples, a user-defined
code is needed as an aid to adjust the input from a camera module as well as when
showing the result. The model is set to run as infinity, inf, of Simulink time unit,
therefore, the only collected parameter is code generation time. Simulink model
general structure for toolbox examples is as shown in Figure 5.4.

Figure 5.4 Simulink model general structure for toolbox examples

Generally, toolbox examples take a video file as an input through From Multimedia
File block and display a result through Video Viewer or To Video Display block.
To port toolbox examples to Raspberry Pi, a camera module is used to provide an
input instead since the board does not accept an input from From Multimedia File
block and result is displayed through SDL Video Display block. The user-defined
codes, fromRGB and toRGB, are added in the model to help preparing the image. The
specific settings and result for barcode recognition and pattern matching example
are explained as follows.

5.3. Toolbox Examples 54

Barcode recognition [1] detects a European Article Number (EAN)-13 barcode. The
input is provided through a V4L2 Video Capture block and the result is displayed
using a SDL Video Display block. The algorithm can be explained such that a
barcode’s scanline is interpreted into a vector sequence containing values between
1 and -1 where 1 is black and -1 is white. Unclassified color is valued in between.
After feature extraction and transformation, the vector sequence is then compared
with a codebook to provide the result as shown in Figure 5.5.

(a) Original Display (b) Adjusted Display

Figure 5.5 Barcode recognition result

The output display has a dimension as 240x320 and code generation result takes 1.31
minutes. The display output needs to be rotated then flipped in order to provide a
correct position of the result. The script for rotate and flip is similar to that provided
in toRGB function shown in image processing example. This model example requires
the barcode used for recognition to be in a clear and large size figure due to the
limitation of a camera module’s focal length. In this case, a barcode is printed on a
A4 paper size.

The second toolbox example is pattern matching [16]. Pattern matching matches
a target image with an input from a camera module using 2-D normalized cross-
correlation. The model allows adjusting a target image, number of target to be
detected, Gaussian pyramid, threshold value and correlation method. The InitFcn
in Model Properties initializes parameters for the model. In order to port a model
to Raspberry Pi, those parameters need to be adjusted. The adjusted parameters
are explained in Table 5.4.

The target image used in the model is a uint8 type image which can be taken by
capturing the scene using a camera module. User can add the image to the model by
initializing it as target_img in Matlab Workspace. Gaussian pyramid needs to be
set to a proper value for a target image to match with an input. In this case, value a
for Coefficient source parameter in Gaussian Pyramid block is set as 0 instead

5.3. Toolbox Examples 55

Table 5.4 Pattern Matching Parameters in InitFcn

Parameter Description
param_path =
’modelName/Parameters’;

Set path to the model.

fmmf_path = ’modelName/V4L2 Video
Capture’;

Set source block as V4L2 Video Capture
for a video input from a camera module.

iut_dim = ceil([W H]/2(̂pfactor)); Set dimension for Gaussian pyramid where
W and H are width and height of a video
input.

of a default value at 0.375. The higher value a, the more intensity cross-correlation
image. If cross-correlation image is too dark, the algorithm can not differentiate the
object from background resulting in unable to match a target image with an input.
Target image, cross-correlation image and matching results are as shown in Figure
5.6.

(a) Target im-
age

(b) Cross-
correlation
image

(c) Target image = 2 (d) Target image = 4

Figure 5.6 Pattern matching results and cross-correlation image

The captured scene is a scene of four black squares and two gray squares on a white
background. The target image is a black square as shown in Figure 5.6(a). The cross-
correlation image, shown in Figure 5.6(b), shows four red squares corresponding to
the position of the target images. The number of target image to be matched can be
added up to 4. The output display has a dimension as 320x240 and code generation
result takes 1.07 and 1.08 minutes for number of target image 2 and 4 respectively.

Table 5.5 shows a display output size corresponding to code generation time of
barcode recognition and pattern matching. The results show that the display output
size does not affect the code generation time for both models. It also shows that
code generation times for barcode recognition take longer than those of pattern
matching. This is due to the difference in the organization of the models. Barcode
recognition comprises many scripts from MATLAB Function blocks, in contrast to

5.3. Toolbox Examples 56

Table 5.5 Output Size and Code Generation Time Result

Toolbox Example Barcode Recognition Pattern Matching
Output Size Time Time
160x120 1.22 mins 1.05 mins
320x240 1.31 mins 1.08 mins
640x480 1.13 mins 1.06 mins
800x600 1.13 mins 1.10 mins

pattern matching, which is constructed purely on Simulink blocks.

Matlab’s signal and image processing examples provide an insight to Raspberry
Pi’s operation under a specific condition. The examples show that time taken to
generate the code to run on Raspberry Pi depends on the complexity and model
construction. This can be explained in such a way that code generation takes more
time if the model is more complex and constructed with mostly Matlab scripts. Since
Matlab software provides code porting tool for target hardware through Simulink
model, the Simulink blocks are more convenient to transform into codes than Matlab
scripts which need to be adjusted to a proper format. Input’s size also affects code
generation time but not its source. Matlab software takes more time to generate
codes for larger image input than smaller one. But the size does not hold important
characteristic if the input is fed directly as a video.

57

6. CONCLUSIONS

In this thesis, Raspberry Pi 2 model B is studied and evaluated using Matlab soft-
ware. In the beginning, the background information including setup steps for the
board and Matlab software support package are presented. The background infor-
mation shows that the board is capable of computer substitution with its powerful
SoC, various connectors and GPIO pins to support peripheral devices. The avail-
ability of its graphic processor driver documentation also draws attention for parallel
computing. This provides the relevant knowledge to start any implementations on
the board.

Matlab software provides support package for Matlab and Simulink to generate and
port codes to Raspberry Pi to run as a standalone application as well as running
the code in an external mode. The implementation is done with Simulink model on
signal and image processing examples taken from courses held in Tampere University
of Technology and Computer Vision toolbox provided in Matlab. The model is
constructed using general and Raspberry Pi special Simulink blocks as well as Matlab
scripts. The evaluation is emphasised on code generation time and Simulink model
complexity. The result shows the correlation between time and model complexity
in which the more complex a model, the longer time Matlab use to generate the
code. In this case, the complexity includes the need to create Matlab scripts for
Simulink block. The other affected factor is the independence of an input such
that Matlab software requires less time to compile code from an independent input
source such as a camera pi. Concerning the results from signal and image processing
examples, the time used to generate and port the code to run on Raspberry Pi is in
an acceptable range. Therefore, the board can be used as a learning tool providing
hands-on experience for students in practical Matlab education.

There are many possibilities for future work on Raspberry Pi platform. One interest-
ing topic would be implementing Matlab and Simulink applications which exploits
its graphic processor capability. The implementation could take advantage of an
availability of Raspberry Pi’s GPU driver documentation from Broadcom and vari-
ous GPU tutorial examples such as GPU FFT which is provided in Raspbian OS. To
be able to run Matlab and Simulink applications using the graphic processor instead

6. Conclusions 58

of its central processor, the Matlab scripts need to call the processor with param-
eters provided in the driver documentation. Then, it is compiled with available
Matlab code generation methods before porting to Raspberry Pi. However, there
is a limitation to determine the code generation method that successfully compiles
the adjusted scripts. More research and work can be done in such topic.

59

REFERENCES

[1] “Barcode recognition,” [online], Available: http://se.mathworks.com/help/
vision/examples/barcode-recognition.html [accessed on May 3, 2015].

[2] “Camera module,” [online], Available: https://www.raspberrypi.org/products/
camera-module/ [accessed on Feb 17, 2015].

[3] “Config.txt,” [online], Available: https://www.raspberrypi.org/documentation/
configuration/config-txt.md [accessed on Apr 9, 2015].

[4] “Device trees, overlays and parameters,” [online], Available: https://github.
com/raspberrypi/documentation/blob/master/configuration/device-tree.md
[accessed on Feb 19, 2015].

[5] “Downloads,” [online], Available: http://www.raspberrypi.org/downloads/ [ac-
cessed on Feb 17, 2015].

[6] “Filesystem,” [online], Available: https://www.raspberrypi.org/forums/
viewtopic.php?f=27&t=6170&p=80639#p80639 [accessed on May 8, 2015].

[7] “Gpio (general purpose input/output) inputs,” [online], Available: http://www.
scriptoriumdesigns.com/embedded/gpio_in.php [accessed on Mar 26, 2015].

[8] “Gpio interfaces,” [online], Available: https://www.kernel.org/doc/
Documentation/gpio/gpio.txt [accessed on Mar 19, 2015].

[9] “Guide for updating firmware and troubleshooting connection issues,” [online],
Available: http://www.mathworks.com/matlabcentral/answers/uploaded_
files/5422/Raspberry%20Pi%20Firmware%20Upgrade%20Guide.pdf [accessed
on Feb 14, 2015].

[10] “How powerful is it?” [online], Available: https://www.raspberrypi.org/help/
faqs/#performanceSpeed [accessed on Feb 22, 2015].

[11] “I2c,” [online], Available: https://learn.sparkfun.com/tutorials/i2c [accessed on
Apr 5, 2015].

[12] “Matlab support package for raspberry pi hardware,” [online], Available: http://
se.mathworks.com/help/supportpkg/raspberrypiio/ [accessed on Mar 15, 2015].

[13] “Modeling,” [online], Available: http://se.mathworks.com/help/supportpkg/
raspberrypi/model-preparation.html [accessed on Mar 18, 2015].

http://se.mathworks.com/help/vision/examples/barcode-recognition.html
http://se.mathworks.com/help/vision/examples/barcode-recognition.html
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://github.com/raspberrypi/documentation/blob/master/configuration/device-tree.md
https://github.com/raspberrypi/documentation/blob/master/configuration/device-tree.md
http://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/forums/viewtopic.php?f=27&t=6170&p=80639#p80639
https://www.raspberrypi.org/forums/viewtopic.php?f=27&t=6170&p=80639#p80639
http://www.scriptoriumdesigns.com/embedded/gpio_in.php
http://www.scriptoriumdesigns.com/embedded/gpio_in.php
https://www.kernel.org/doc/Documentation/gpio/gpio.txt
https://www.kernel.org/doc/Documentation/gpio/gpio.txt
http://www.mathworks.com/matlabcentral/answers/uploaded_files/5422/Raspberry%20Pi%20Firmware%20Upgrade%20Guide.pdf
http://www.mathworks.com/matlabcentral/answers/uploaded_files/5422/Raspberry%20Pi%20Firmware%20Upgrade%20Guide.pdf
https://www.raspberrypi.org/help/faqs/#performanceSpeed
https://www.raspberrypi.org/help/faqs/#performanceSpeed
https://learn.sparkfun.com/tutorials/i2c
http://se.mathworks.com/help/supportpkg/raspberrypiio/
http://se.mathworks.com/help/supportpkg/raspberrypiio/
http://se.mathworks.com/help/supportpkg/raspberrypi/model-preparation.html
http://se.mathworks.com/help/supportpkg/raspberrypi/model-preparation.html

REFERENCES 60

[14] “Name-value pair arguments,” [online], Available: http://se.mathworks.
com/help/supportpkg/raspberrypiio/ref/cameraboard.html#namevaluepairs
[accessed on Mar 15, 2015].

[15] “Noobs,” [online], Available: https://www.raspberrypi.org/documentation/
installation/noobs.md [accessed on May 8, 2015].

[16] “Pattern matching,” [online], Available: http://se.mathworks.com/help/vision/
examples/pattern-matching-1.html [accessed on Apr 20, 2015].

[17] “Power,” [online], Available: https://www.raspberrypi.org/help/faqs/#power
[accessed on Feb 17, 2015].

[18] “Quick start guide,” [online], Available: https://www.raspberrypi.org/help/
quick-start-guide/ [accessed on Feb 17, 2015].

[19] “Raspberry pi 1 model a+,” [online], Available: https://www.raspberrypi.org/
products/model-a-plus/ [accessed on Feb 16, 2015].

[20] “Raspberry pi 1 model b+,” [online], Available: https://www.raspberrypi.org/
products/model-b-plus/ [accessed on Feb 16, 2015].

[21] “Raspberry pi 2 model b,” [online], Available: https://www.raspberrypi.org/
products/raspberry-pi-2-model-b/ [accessed on Feb 16, 2015].

[22] “Raspberry pi support from matlab,” [online], Available: http://se.mathworks.
com/hardware-support/raspberry-pi-matlab.html [accessed on Feb 14, 2015].

[23] “Raspberry pi support from simulink,” [online], Available: http://se.mathworks.
com/hardware-support/raspberry-pi-simulink.html [accessed on Feb 14, 2015].

[24] “Raspberry pinout,” [online], Available: http://pi.gadgetoid.com/pinout [ac-
cessed on Mar 26, 2015].

[25] “raspberrypi,” [online], Available: http://se.mathworks.com/help/supportpkg/
raspberrypi/ref/raspberrypi.html [accessed on Mar 11, 2015].

[26] “raspberrypi/hats,” [online], Available: https://github.com/raspberrypi/hats
[accessed on Apr 25, 2015].

[27] “raspberrypi/linux,” [online], Available: https://github.com/raspberrypi/
linux/blob/rpi-3.10.y/Documentation/video4linux/bcm2835-v4l2.txt [accessed
on Mar 15, 2015].

[28] “Raspbian faq,” [online], Available: http://www.raspbian.org/RaspbianFAQ
[accessed on May 8, 2015].

http://se.mathworks.com/help/supportpkg/raspberrypiio/ref/cameraboard.html#namevaluepairs
http://se.mathworks.com/help/supportpkg/raspberrypiio/ref/cameraboard.html#namevaluepairs
https://www.raspberrypi.org/documentation/installation/noobs.md
https://www.raspberrypi.org/documentation/installation/noobs.md
http://se.mathworks.com/help/vision/examples/pattern-matching-1.html
http://se.mathworks.com/help/vision/examples/pattern-matching-1.html
https://www.raspberrypi.org/help/faqs/#power
https://www.raspberrypi.org/help/quick-start-guide/
https://www.raspberrypi.org/help/quick-start-guide/
https://www.raspberrypi.org/products/model-a-plus/
https://www.raspberrypi.org/products/model-a-plus/
https://www.raspberrypi.org/products/model-b-plus/
https://www.raspberrypi.org/products/model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://se.mathworks.com/hardware-support/raspberry-pi-matlab.html
http://se.mathworks.com/hardware-support/raspberry-pi-matlab.html
http://se.mathworks.com/hardware-support/raspberry-pi-simulink.html
http://se.mathworks.com/hardware-support/raspberry-pi-simulink.html
http://pi.gadgetoid.com/pinout
http://se.mathworks.com/help/supportpkg/raspberrypi/ref/raspberrypi.html
http://se.mathworks.com/help/supportpkg/raspberrypi/ref/raspberrypi.html
https://github.com/raspberrypi/hats
https://github.com/raspberrypi/linux/blob/rpi-3.10.y/Documentation/video4linux/bcm2835-v4l2.txt
https://github.com/raspberrypi/linux/blob/rpi-3.10.y/Documentation/video4linux/bcm2835-v4l2.txt
http://www.raspbian.org/RaspbianFAQ

REFERENCES 61

[29] “raspi,” [online], Available: http://se.mathworks.com/help/supportpkg/
raspberrypiio/ref/raspi.html [accessed on Mar 11, 2015].

[30] “raspi-config,” [online], Available: https://github.com/raspberrypi/
documentation/blob/master/configuration/raspi-config.md [accessed on
Feb 19, 2015].

[31] “Rpi easy sd card setup,” [online], Available: http://elinux.org/RPi_Easy_
SD_Card_Setup [accessed on Feb 17, 2015].

[32] “Run model on raspberry pi hardware,” [online], Avail-
able: http://se.mathworks.com/help/supportpkg/raspberrypi/ug/
create-and-run-an-application-on-raspberry_pi-hardware.html [accessed
on Mar 11, 2015].

[33] “Serial communication,” [online], Available: https://learn.sparkfun.com/
tutorials/serial-communication [accessed on Apr 6, 2015].

[34] “Serial peripheral interface (spi),” [online], Available: https://learn.sparkfun.
com/tutorials/serial-peripheral-interface-spi [accessed on Apr 6, 2015].

[35] “Ssh using linux or mac os,” [online], Available: https://www.raspberrypi.org/
documentation/remote-access/ssh/unix.md [accessed on Feb 18, 2015].

[36] “The making of pi,” [online], Available: https://www.raspberrypi.org/about/
[accessed on Jan 31, 2015].

[37] “Thingspeak,” [online], Available: https://thingspeak.com/ [accessed on Mar
15, 2015].

[38] “tightvncserver,” [online], Available: http://www.penguintutor.com/otherfiles/
tightvncserver-init.txt [accessed on Feb 17, 2015].

[39] “Updating and upgrading raspbian,” [online], Available: https://www.
raspberrypi.org/documentation/raspbian/updating.md [accessed on Feb 19,
2015].

[40] “Not booting?! read this boot problem sticky (also for pi2b),” [online],
2013, Available: https://www.raspberrypi.org/forums/viewtopic.php?t=58151
[accessed on Apr 9, 2015].

[41] “Time sync with wifi,” [online], 2013, Available: http://raspberrypi.
stackexchange.com/questions/8732/time-sync-with-wifi [accessed on Feb 7,
2015].

http://se.mathworks.com/help/supportpkg/raspberrypiio/ref/raspi.html
http://se.mathworks.com/help/supportpkg/raspberrypiio/ref/raspi.html
https://github.com/raspberrypi/documentation/blob/master/configuration/raspi-config.md
https://github.com/raspberrypi/documentation/blob/master/configuration/raspi-config.md
http://elinux.org/RPi_Easy_SD_Card_Setup
http://elinux.org/RPi_Easy_SD_Card_Setup
http://se.mathworks.com/help/supportpkg/raspberrypi/ug/create-and-run-an-application-on-raspberry_pi-hardware.html
http://se.mathworks.com/help/supportpkg/raspberrypi/ug/create-and-run-an-application-on-raspberry_pi-hardware.html
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://www.raspberrypi.org/documentation/remote-access/ssh/unix.md
https://www.raspberrypi.org/about/
https://thingspeak.com/
http://www.penguintutor.com/otherfiles/tightvncserver-init.txt
http://www.penguintutor.com/otherfiles/tightvncserver-init.txt
https://www.raspberrypi.org/documentation/raspbian/updating.md
https://www.raspberrypi.org/documentation/raspbian/updating.md
https://www.raspberrypi.org/forums/viewtopic.php?t=58151
http://raspberrypi.stackexchange.com/questions/8732/time-sync-with-wifi
http://raspberrypi.stackexchange.com/questions/8732/time-sync-with-wifi

REFERENCES 62

[42] “Tutorial - how to give your raspberry pi a static ip address,”
[online], Jul 19 2013, Available: https://www.modmypi.com/blog/
tutorial-how-to-give-your-raspberry-pi-a-static-ip-address [accessed on Feb 18,
2015].

[43] “Lsbinitscripts,” [online], Jul 15 2014, Available: https://wiki.debian.org/
LSBInitScripts [accessed on Feb 17, 2015].

[44] “Rpi software,” [online], Mar 18 2014, Available: http://elinux.org/RPi_
Software [accessed on Apr 9, 2015].

[45] “Simulink with raspberry pi camera capture,” [online], Mar 19
2014, Available: http://www.mathworks.com/matlabcentral/answers/
122199-simulink-with-raspberry-pi-camera-capture [accessed on Mar 18,
2015].

[46] “Can i put debian on my raspberry pi?” [online], Mar 20 (modified) 2015,
Available: https://wiki.debian.org/RaspberryPi [accessed on May 8, 2015].

[47] “Computer,” [online], 2015, Available: http://en.wikipedia.org/wiki/Computer
[accessed on Jan 28, 2015].

[48] “Matlab,” [online], May 13 (modified) 2015, Available: http://en.wikipedia.org/
wiki/MATLAB [accessed on Feb 12, 2015].

[49] “Moore’s law,” [online], 2015, Available: http://en.wikipedia.org/wiki/Moore%
27s_law [accessed on Jan 26, 2015].

[50] “Raspberry pi,” [online], May 14 (modified) 2015, Available: http://en.
wikipedia.org/wiki/Raspberry_Pi [accessed on Feb 16, 2015].

[51] “Rpi hardware,” [online], Mar 30 (modified) 2015, Available: http://elinux.org/
RPi_Hardware [accessed on Feb 17, 2015].

[52] “Rpi low-level peripherals,” [online], May 8 (modified) 2015, Available: http:
//elinux.org/RPi_Low-level_peripherals [accessed on Mar 19, 2015].

[53] “Rpi usb webcams,” [online], Apr 2 (modified) 2015, Available: http://elinux.
org/RPi_USB_Webcams [accessed on Mar 15, 2015].

[54] J. Adams, “Introducing raspberry pi hats,” [online], Jul 31 2014, Available:
https://www.raspberrypi.org/introducing-raspberry-pi-hats/ [accessed on Apr
25, 2015].

https://www.modmypi.com/blog/tutorial-how-to-give-your-raspberry-pi-a-static-ip-address
https://www.modmypi.com/blog/tutorial-how-to-give-your-raspberry-pi-a-static-ip-address
https://wiki.debian.org/LSBInitScripts
https://wiki.debian.org/LSBInitScripts
http://elinux.org/RPi_Software
http://elinux.org/RPi_Software
http://www.mathworks.com/matlabcentral/answers/122199-simulink-with-raspberry-pi-camera-capture
http://www.mathworks.com/matlabcentral/answers/122199-simulink-with-raspberry-pi-camera-capture
https://wiki.debian.org/RaspberryPi
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Raspberry_Pi
http://en.wikipedia.org/wiki/Raspberry_Pi
http://elinux.org/RPi_Hardware
http://elinux.org/RPi_Hardware
http://elinux.org/RPi_Low-level_peripherals
http://elinux.org/RPi_Low-level_peripherals
http://elinux.org/RPi_USB_Webcams
http://elinux.org/RPi_USB_Webcams
https://www.raspberrypi.org/introducing-raspberry-pi-hats/

REFERENCES 63

[55] Andrew, “How to set up a wireless hotspot (access point mode) that supports
android in ubuntu,” [online], June 17 2013, Available: http://www.webupd8.
org/2013/06/how-to-set-up-wireless-hotspot-access.html [accessed on Feb 18,
2015].

[56] Cortex-A7 MPCore Technical Reference Manual, ARM, Apr 11 (revision: r0p5)
2013, Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/
DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf [accessed on Apr 8, 2015].

[57] A. Bradbury, “Open source arm userland,” [online], Oct 24 2012, Available:
https://www.raspberrypi.org/open-source-arm-userspace/ [accessed on Feb 22,
2015].

[58] VideoCore R© IV 3D Architecture Reference Guide, BROADCOM CORPORA-
TION, 5300 California Avenue, Irvine, CA 92617, Sep 16 2013, Available: http:
//www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
[accessed on Apr 8, 2015].

[59] BCM2835 ARM Peripherals, Broadcom Europe Ltd., 406 Science Park Milton
Road Cambridge CB4 0WW, Feb 6 2012, Available: https://www.raspberrypi.
org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf [accessed
on May 18, 2015].

[60] K. Fatahalian and M. Houston, “Gpus: A closer look,” Queue, vol. 6, no. 2,
pp. 18–28, March/April 2008, Available: http://queue.acm.org/detail.cfm?id=
1365498 [accessed on Feb 28, 2015].

[61] S. Monk, “Adafruit’s raspberry pi lesson 3. network setup,” [on-
line], Nov 16 2013, Available: https://learn.adafruit.com/downloads/pdf/
adafruits-raspberry-pi-lesson-3-network-setup.pdf [accessed on Feb 18, 2015].

[62] M. O’Hanlon, “Raspberry pi - run program at start-up,” [online],
Jun 10 2012, Available: http://www.stuffaboutcode.com/2012/06/
raspberry-pi-run-program-at-start-up.html [accessed on Feb 7, 2015].

[63] SGN-3016 Digital Image Processing I Exercise 5 Image Histogram, Tampere
University of Technology, 2011.

[64] SGN-3106 Digital Video Processing Exercise 6 Compute Mean Squared Error
(MSE) values, Tampere University of Technology, 2012.

[65] SGN-12006 Basic Course in Image and Video Processing Exercise 4 Histogram
Equalization, Tampere University of Technology, 2013.

http://www.webupd8.org/2013/06/how-to-set-up-wireless-hotspot-access.html
http://www.webupd8.org/2013/06/how-to-set-up-wireless-hotspot-access.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0464f/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
https://www.raspberrypi.org/open-source-arm-userspace/
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
http://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://queue.acm.org/detail.cfm?id=1365498
http://queue.acm.org/detail.cfm?id=1365498
https://learn.adafruit.com/downloads/pdf/adafruits-raspberry-pi-lesson-3-network-setup.pdf
https://learn.adafruit.com/downloads/pdf/adafruits-raspberry-pi-lesson-3-network-setup.pdf
http://www.stuffaboutcode.com/2012/06/raspberry-pi-run-program-at-start-up.html
http://www.stuffaboutcode.com/2012/06/raspberry-pi-run-program-at-start-up.html

References 64

[66] SGN-12006 Basic Course in Image and Video Processing Exercise 6 Filtering
in the Frequency Domain, Tampere University of Technology, 2013.

[67] SGN-12006 Basic Course in Image and Video Processing Exercise 9 Image
Restoration, Tampere University of Technology, 2013.

[68] E. Upton, “Accelerating fourier transforms using the gpu,” [on-
line], Jan 30 2014, Available: https://www.raspberrypi.org/
accelerating-fourier-transforms-using-the-gpu/ [accessed on Feb 23, 2015].

[69] ——, “Android for all: Broadcom gives developers keys to the videocore R© king-
dom,” [online], Feb 28 2014, Available: http://blog.broadcom.com/chip-design/
android-for-all-broadcom-gives-developers-keys-to-the-videocore-kingdom/
[accessed on Feb 22, 2015].

[70] ——, “More qpu magic from pete warden,” [online], Aug 8 2014, Avail-
able: https://www.raspberrypi.org/more-qpu-magic-from-pete-warden/ [ac-
cessed on Feb 24, 2015].

[71] ——, “Raspberry pi 2 on sale now at 35,” [online], Feb 2 2015, Available: https:
//www.raspberrypi.org/raspberry-pi-2-on-sale/ [accessed on Feb 2, 2015].

[72] L. Upton, “Libraries, codecs, oss,” [online], Jan 31 2012, Available: https://
www.raspberrypi.org/libraries-codecs-oss/ [accessed on Feb 22, 2015].

[73] ——, “Five million sold!” [online], Feb 18 2015, Available: https://www.
raspberrypi.org/five-million-sold/ [accessed on Apr 26, 2015].

[74] R. Walmsley, “Rastrack,” [online], Available: http://rastrack.co.uk/t [accessed
on Feb 19, 2015].

[75] S. Watkiss, “Remote gui access to a linux computer using tightvnc,” [online],
Available: http://penguintutor.com/linux/tightvnc [accessed on Feb 18, 2015].

https://www.raspberrypi.org/accelerating-fourier-transforms-using-the-gpu/
https://www.raspberrypi.org/accelerating-fourier-transforms-using-the-gpu/
http://blog.broadcom.com/chip-design/android-for-all-broadcom-gives-developers-keys-to-the-videocore-kingdom/
http://blog.broadcom.com/chip-design/android-for-all-broadcom-gives-developers-keys-to-the-videocore-kingdom/
https://www.raspberrypi.org/more-qpu-magic-from-pete-warden/
https://www.raspberrypi.org/raspberry-pi-2-on-sale/
https://www.raspberrypi.org/raspberry-pi-2-on-sale/
https://www.raspberrypi.org/libraries-codecs-oss/
https://www.raspberrypi.org/libraries-codecs-oss/
https://www.raspberrypi.org/five-million-sold/
https://www.raspberrypi.org/five-million-sold/
http://rastrack.co.uk/t
http://penguintutor.com/linux/tightvnc

	Introduction
	Raspberry Pi Platform
	General Information
	Basic Components
	System on a Chip

	Operating System and Setup Instructions
	Operating System
	SD Card Preparation
	Connection Methods
	Configuration Instructions

	Matlab and Simulink Support Package for Raspberry Pi
	Installation Instructions
	Connection Instructions
	Command Functions
	Block Library

	Signal and Image Processing Examples
	Signal Processing Examples
	Image Processing Examples
	Toolbox Examples

	Conclusions
	References

