
Mikko Pohja
Quality control in a startup software project
Master of Science Thesis

Examiners: Tommi Mikkonen
Examiners and topic approved in
the Information Technology
Department Council meeting on
04.05.2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
Mikko Pohja: Laadunhallinta startup-yrityksen ohjelmistoprojektissa
Diplomityö, 61 sivua
Toukokuu 2016
Pääaine: Ohjelmistotuotanto
Tarkastajat: Tommi Mikkonen
Avainsanat: Startup, Laadunhallinta, QA

Moderni ohjelmistokehitys on tehnyt mahdolliseksi nopeiden prototyyppien kehityk-
sen pienellä budjetilla ja lyhyellä aikataululla. Tästä on seurannut startup-yritysten
nopea yleistyminen. Startup-yritykset voivat kokeilla ja kehittää liikeideaansa no-
pealla aikataululla käyttäen edistyneitä ohjelmistokehyksiä ja noudattaen ketterän
ohjelmistokehityksen periaatteita. Kokenut tiimi kykenee luomaan toimivan proto-
tyypin jo muutamassa viikossa.
Nopea ohjelmistokehitys saattaa johtaa ohjelmiston lähdekoodin ja rakenteen huonoon
laatuun, joka hidastaa ja vaikeuttaa kehitystä tulevaisuudessa. Ohjelmiston laatuun
täytyy alkaa kiinnittää huomiota viimeistään siinä vaiheessa, kun liikeidea tode-
taan menestyväksi ja ohjelmiston kehitystä jatketaan prototyyppivaiheesta eteen-
päin. Lisäksi startup-yrityksissä ohjelmiston laatu riippuu kriittisesti toteutettavan
järjestelmän sopivuudesta kohderyhmälle. Tämän takia järjestelmän sopivuuden
jatkuva validointi kehityksen aikana on tärkeä osa kehitystä.
Tässä diplomityössä on käsitelty perinteisiä menetelmiä laadunvarmistukseen sekä
niiden tehokkuutta. Myös startup-yrityksiä sekä niiden laatukäsitystä on tarkasteltu
yleisellä tasolla. Lisäksi ohjelmistojen laadun parantamiseen käytettyjä tekniikoita
on tarkasteltu startupin näkökulmasta sekä yhdistetty perinteisiä laatumenetelmiä
startupille tyypilliseen laadunvarmistukseen. Lopuksi esitellään startup-yritykselle
toteutettu ohjelmistoprojekti sekä käsitellään sen laadun toteutumista tehtyjen haas-
tattelujen pohjalta.
Työn tuloksena todettiin, että laatukäsitykset eroavat perinteisen ohjelmistokehi-
tyksen ja modernin startup-yrityksen ohjelmistokehityksen välillä. Myös laadun
parantamiseen käytetyt metodit eroavat näiden kehitysmuotojen välillä. Perin-
teiset menetelmät luottavat enemmän teknisiin lähestymistapoihin, joilla löydetään
virheitä, kun taas modernissa laadunparannuksessa keskitytään enemmän ihmisiin ja
kehitysprosessiin. Perinteiseen laadunparannukseen liittyviä teknisiä toimenpiteitä,
kuten katselmointeja ja erilaisia testausmuotoja, voi kuitenkin soveltaa modernin
laadunparannuksen osana.

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
Mikko Pohja : Quality control in a startup software project
Master of Science Thesis, 61 pages
May 2016
Major: Software Engineering
Examiner: Tommi Mikkonen
Keywords: Startup, Quality control, QA

Progress in modern software development has enabled tiny prototypes that can be
implemented with small budget and short schedule. Since proving the business ideas
with fast prototyping has become so easy, the number of startup companies has
begun to grow. A team with sufficient experience can implement a simple working
prototype as fast as in weeks.
Development of these simple prototypes can lead to poor quality of code and struc-
ture of the product, which can complicate the future development. This can become
an issue if the business idea is indeed validated and proven to be successful. Addi-
tionally in startup environment, product quality usually means the value it brings to
the customer. Because of this, continuous validation of quality is required through-
out the life cycle of the product.
This thesis discusses software quality in both traditional software development and
software startup environment. Methods traditionally used for improving quality and
their efficiency are presented. These methods are also joined to the quality methods
recommended for software startup environment. Finally, this thesis presents an
example project done for a software startup.
Conclusions from this thesis include that the definition of quality and methods
improving it vary between traditional software development and modern startup
environment. In traditional software development, methods for improving quality
are focused on technical activities discovering defects. In turn, modern methodolo-
gies concentrate more on people and processes. However, activities from traditional
quality improvement can be applied to the methods recommended for startup envi-
ronment.

III

PREFACE

Writing software is easy. Writing about writing software is hard. This thesis took
more time and resources than it was allowed but here it is. Done and finished.

I would like to thank Professor Tommi Mikkonen for reading and commenting
countless versions of this thesis. His advices and motivational comments helped me
continue to the finish. I could not hoped for a better examiner.

My employer Futurice enabled me to take the time for writing this thesis by
providing support and resources. Most of all I would like to thank John Laukkanen
for guiding me through this journey. And everyone in Tammerforce: MorjestA.

Having a relevant project to reflect all the theory againts was really helpful. So
I would like to thank MukavaIT and specially Petri Järvinen for participating in an
interview and allowing the use of Päikky project as a case study.

Mom and dad, one has to thank mom and dad: thank you.
And finally I would like to thank my wife, who has been pushing me to finish

my studies and helping in it as best as she can. And thank you my children for not
helping me with this thesis but getting it out of my head when needed.

Tampere, May 22, 2016 Mikko Pohja

IV

CONTENTS

1. Introduction . 1
2. Background . 3

2.1 Software Quality . 3
2.1.1 Motivation . 3
2.1.2 Software Quality Defined . 4

2.2 Startup . 5
2.2.1 Lean Startup . 5
2.2.2 Life Cycle in Lean Startup . 6

3. Improving Software Quality . 9
3.1 Quality Improvement Across the Life Cycle 9
3.2 Preventing defects . 10
3.2.1 Formal Inspections . 11
3.2.2 Static Analysis . 11
3.2.3 Test-Driven Development . 12
3.2.4 Agile Approach . 13

3.3 Pretest Defect Removal . 15
3.3.1 Personal Desk Checking . 16
3.3.2 Client Reviews of Specification 17
3.3.3 Peer Reviews . 18
3.3.4 Scrum Sessions . 19

3.4 Testing . 20
3.4.1 Subroutine Testing . 20
3.4.2 Unit Testing . 21
3.4.3 New Function Testing . 21
3.4.4 Regression Testing . 22
3.4.5 Integration Testing . 23
3.4.6 System Testing . 24
3.4.7 Agile Testing . 25

3.5 Post Release . 26
3.5.1 Latent defects . 26
3.5.2 Defect severity levels . 27
3.5.3 Maintainability . 27

4. Improving Quality in Software Startup Project 30
4.1 Quality in a Startup project . 30
4.2 Foundations of high quality . 31
4.2.1 Clean code . 32
4.2.2 Integrity . 32

V

4.3 Aiming at high quality . 33
4.3.1 Build Integrity In . 33
4.3.2 Empower the Team . 36
4.3.3 Activities . 38

4.4 Things To Avoid . 40
4.5 Software Quality in Futurice . 41

5. Case: Päikky . 42
5.1 Project objectives . 42
5.2 Project Execution . 43
5.3 Quality Assurance in the Project . 45
5.4 Achieved Quality in The Project . 46
5.4.1 Development Team . 46
5.4.2 Customer and End Users . 49
5.4.3 Discussion . 51

6. Conclusions . 52

1

1. INTRODUCTION

Recent progress in software industry has made developing new products and ser-
vices in the field of software development increasingly easy. New and improved
programming languages and frameworks are introduced constantly. These frame-
works provide easy to start platforms for new software development removing the
need for excessive planning and understanding of many low-level implementation
details. In addition, the need for expensive hardware setup has come obsolete as
several instances have appeared offering reasonably priced execution environments
as a service.

These changes in the industry along with the progress in development processes
have brought the possibility to create software business closer to every would-be
entrepreneur. Developing software with Agile or Lean methodology with modern
technologies have lowered the lead time and resources required. Experienced soft-
ware developers can implement a prototype as fast as in weeks starting from scratch
and ending in having a working product publicly available. Attempts to create the
next big software product are on a rise as the stories of success spread around the
globe.

Since the number of attempts for success are increasing, so is the number of
companies succeeding. When a product built with minimum effort starts to prosper,
the demand for high quality emerges. As products done by traditional software
development are built with large amounts of effort used to improving the quality of
the product, modern startup entrepreneurs may become confused when considering
the quality of their product. The methods and activities used in traditional software
development may seem separate from the rapid development of modern products.
In addition, modern software development methodologies focus on different aspects
of software quality than in traditional software development.

This thesis presents software quality in a startup environment and suggests the
activities for improving it. Traditional quality improvement methods are presented
and linked to the methods recommended in startup environments. Also a real-life
software project for a Finnish startup is presented for illustration purposes. The
project, executed in a Finnish software company Futurice, is evaluated by using the
data gathered after the project from interviews of the project stakeholders.

The rest of this thesis is organised as follows. Chapter 2 introduces the back-

1. Introduction 2

ground by defining software quality and startup environment. Chapter 3 describes
the methods and activities improving software quality and divides them in phases
of traditional software development. Chapter 4 redefines quality in context of a
software startup and describes the methods of quality improvement applicable in
startup software development. Chapter 5 presents the execution and phases of the
case project and evaluates the quality achieved based on the interviews of the stake-
holders.

3

2. BACKGROUND

This chapter describes software quality and startup environment. Section 2.1 de-
scribes software quality in general and the motivation behind improving quality.
Section 2.2 explains the context of a startup environment and the phases in the life
of a startup.

2.1 Software Quality

Quality is an attribute of the item in question. It is often described as a combina-
tion of qualitative and quantitative attributes. Quality is an ambiguous attribute,
because it is subjective and thus differs when viewed from different perspectives.
The American Society for Quality has two definitions for technical quality: 1. the
product’s ability to satisfy its needs; 2. the product’s lack of deficiencies [19]. Soft-
ware is one of the most used types of product in human history. At the same time
it has one of the highest failure rates of any type of products mainly due to poor
quality. With those facts, it is clear that the total influence of low quality software
is considerable in both money and time. Still it is a known fact that a common
practice to cut costs is reducing the effort used in software quality. Convincing the
payer to allow using effort to achieve good quality can be difficult but crucial. The
topic is widely researched and the results speak on behalf of quality. [11]

2.1.1 Motivation

Phil Crosby has made popular a concept that establishing a quality program will
return in savings more than the program costs and thus "quality is free" [6]. Even
though Crosby’s concept is used mainly in the manufacturing sector, it has some
truth that can be applied to the software business. In addition, the "cost of quality"
is a slightly inappropriate term, considering that quality in itself does not create
costs but the lack of it does.

Studies have shown that software quality has huge impact on project costs and
success. Measurements on 10000 function point projects show that about 31% of
projects of that size come to an end by cancellation. The average cost of these
canceled projects is about $35,000,000. Successful projects of similar size with good
quality have about 40% lower costs. These figures endorse the effort put towards
the software quality and make it clear that at least in large scale projects, quality

2. Background 4

control should not be ignored. [11]
Capers Jones has listed several points that make high quality a major economic

benefit. In the development of large systems, high quality from the beginning can
reduce the probability of cancellations. Software projects can also benefit by achiev-
ing shorter development schedules. Shorter schedules with high quality also lower
the costs of a project. Lower development costs, maintenance costs and warranty
costs can add up to considerable amounts of cost savings. In addition to the quan-
titative benefits, high quality raises the satisfaction of customers, end-users and
developers. [11]

Jones expresses concerns towards the poor measurement of software quality caus-
ing executives and even quality personnel to treat software quality as an expense.
Those participants may also treat quality as an issue that is raising the development
costs and increasing development schedules. On the contrary, Jones summarizes
the benefits of high quality: "However, from an analysis of about 13,000 software
projects between 1973 and today, it is gratifying to observe that high quality lev-
els are invariably associated with shorter-than-average development schedules and
lower-than-average development costs". [11]

2.1.2 Software Quality Defined

The word "quality" has many tones. This complicates defining quality and espe-
cially software quality. It can be understood as elegance or beauty, fitness of use,
satisfaction of user requirements, freedom from defects, high reliability, and ease of
use, among multiple other things. These descriptions appear even more complicated
considering that quality and its attributes are bound to not just the observer but
also the operation context in question. While a software component can have ex-
cellent quality in some context it can still be even dangerous in others. The same
applies to several attributes of quality. A component can be fit for some use, but
defective in different contexts. Some component can satisfy the users requirements
in one environment, but can be useless in others. [11]

International quality standard in software is defined in ISO 25010 [9]. It was
brought up to date in 2011 from ISO 9126 published in 1991 [10]. ISO 25010 intro-
duces a quality model which classifies software quality in a set of characteristics each
having a number of sub-characteristics. In the descriptions of the quality model’s
characteristics, it is assumed that the operation context is known and predeter-
mined. Functional suitability is the degree to which the product provides functions
that meet stated and implied needs. Reliability is the degree to which the product
can perform specified functions for a specific period of time. Operability is the de-
gree to which the product has attributes that enable it to be understood, learned,
used and attractive to the user. Performance efficiency is the amount of resources

2. Background 5

the product uses under certain conditions. Security is degree of protection of in-
formation and data from unauthorized persons or systems trying to read, modify
or access them. Compatibility is the degree to which two or more systems or com-
ponents can exchange information, including, but not limited to, performing their
required functions while sharing the same hardware or software environment. Main-
tainability is the degree of effectiveness and efficiency with which the product can be
modified. Transferability is the degree to which a system or component can be effec-
tively and efficiently transferred from one hardware, software or other environment
to another. [17]

In addition to the quality model, the 25010 standard defines the model of software
quality in use. This model consists of five main characteristics. Effectiveness is the
accuracy and completeness with which users achieve specified goals. Efficiency is
the amount of consumed resources in relation to accuracy and completeness with
which users achieve goals. Satisfaction is the degree to which users are satisfied with
the experience of using the product.Safety is the degree to which a product does not
lead to a state in which life, health, property, or the environment is endangered.
Usability is the extent to which product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction. [17]

2.2 Startup

The term became popular during the dotcom bubble, when a great number of com-
panies were founded to do business on the Internet. Steve Blank lists some principles
of a startup in his blog post "What’s A Startup? First Principles.". Blank defines a
startup as "an organization formed to search for a repeatable and scalable business
model". The first goal for a business model can be revenue, profits, users or click-
throughs. The business model must be quickly and constantly tested and iterated
by using Agile approach. Blank also claims that the business model of most startups
is changed multiple times. [3]

2.2.1 Lean Startup

Lean Startup is a movement pioneered by Eric Ries, which brings the principles of
lean manufacturing to the context of entrepreneurship. Like the lean manufacturing
is measuring progress also the lean startup measures its progress for discovering and
eliminating the sources of waste. Lean manufacturing measures the progress by the
production of high-quality goods, whereas in lean startup, the unit of progress is
something Ries calls validated learning. This section is based on the book Lean
Startup by Eric Ries [18].

Ries’ definition of a startup is "a human institution designed to create a new

2. Background 6

product or service under conditions of extreme uncertainty". This definition omits
the size of the institution and thus implies that a startup can be ranging from an
individual or a small group of people to a team or division inside a large company.
The most important aspect of the definition is the extreme uncertainty, which needs
constant measurement and steering of the process.

There are five principles in Lean Startup
1. Entrepreneurs are everywhere. Entrepreneurship involves everyone work-

ing inside a human institution in where new products and services are created under
uncertain conditions. This means that Lean Startup approach can be applied in any
size company from a single person working in a garage to even a large enterprise,
leaving no industry out.

2. Entrepreneurship is management. Treating a startup as just a product
is not a valid approach. A startup is an institution having constant uncertainty
present, so it requires new kind of management.

3. Validated learning. Startups exist primarily for learning how to build a
sustainable business. This learning can be validated using frequent experiments for
testing the vision.

4. Build-Measure-Learn. The main function of a startup is to turn ideas into
products, measure the customer response and then learn whether to pivot or per-
severe. All successful startup processes should be aimed to accelerate the feedback
loop shown in Figure 2.1

5. Innovation accounting. Improving the outcome of entrepreneurs and hold-
ing innovators accountable means focusing on measuring the progress, setting mile-
stones and prioritizing work. This requires new kind of accounting designed for
startups.

2.2.2 Life Cycle in Lean Startup

The life cycle in a Lean startup software development does not match to the tradi-
tional life cycle of a software product. In building a successive product for a software
startup, there are usually multiple short iterations surveying the context in which
the product will be used. Building a software startup can be started without know-
ing what the customers want or even who the customers are, so the life cycle of the
product has to be built from multiple consecutive version with significant and rapid
changes for conforming to the customers demands.

The basic repeating process of development in Lean Startup begins from an idea.
This idea contains usually several hypotheses about the customer behavior or the
context of usage. Some of these are called leap of faith assumptions, which are the
riskiest hypotheses of the plan. Using these hypotheses for validated learning, allows
avoiding much of the waste usually present in startups. To utilize the validated

2. Background 7

Figure 2.1: Build-Measure-Learn feedback loop

learning as a scientific method, there needs to be a selected group of hypotheses to
test. The leap of faith assumptions should be the first ones to be tested, because
they are the foundation on which the business is to be built. Testing the first
hypotheses can be sometimes done with virtually nothing built. This has been done
for example by the founder of the online shoe store Zappos, who sold the first pairs
of shoes without having any inventory of his own but only some pictures of shoes
taken in local shops.

When the first hypotheses have been proved true, hopefully with only a small
effort, the Build phase can be initiated and the first minimum viable product (MVP)
can be built. This product is a version which enables a full turn of the Build-
Measure-Learn loop with minimum effort. This MVP is usually missing most of the
features that will be proven essential later. The purpose of this version is that it
must be able to measure its impact. The target audience of this product is not the
development team or some business heads, but the potential customers, so it can
evaluate the reactions of the market.

After the MVP is released, the startup enters the Measure phase. In this phase,
the most important topic to get answer for is whether the product development ef-
forts are leading to real progress. In other words: is the product something someone
wants. If building something that nobody wants, there is no sense in using time and
money on the development. Ries suggests doing the measuring with a method called
innovation accounting. It is a quantitative approach for testing if the tuning is suc-
cessful. It allows creating learning milestones, which are useful for the entrepreneurs
for evaluating their progress accurately.

2. Background 8

Once the entrepreneurs have learned from the measurements done, it is time for
the most important step in the cycle. In this step, the entrepreneurs must assess the
success of the hypotheses and based on these assessments, they must decide whether
to pivot the original strategy or persevere. If any of the hypotheses proved to be
false, it is time for pivot: to make a major change to a new strategic hypothesis.
One of the most important objective of the Lean Startup is to allow the recognition
of the time to pivot soon, wasting less time and money.

Even though this cycle is called Build-Measure-Learn according to the order of
execution, the planning of the cycle is done backwards. The first thing to plan is
what is needed to learn. Then using innovation accounting, the things needed to
measure are figured out. The last thing is to design the product able to run the
experiment returning the measurements.

Eric Ries reveals multiple success stories using Lean Startup, in where there are
many similarities. One of the success stories is about a collaboration portal for
voters. The first released version of the portal was achieved with 1200$ and three
months of work. With that version, some of the assumptions could be tested in the
real operating environment and the product could be developed further. After the
partial success of the first version, there were five other version of the portal and
the business model developed. After each of the launches, the leaps of faith were
tested and the necessary changes were made for steering the product to the right
direction. After 16 months of development the product had reached a sufficient state
for a sustainable business. During these months, there had been several pivots and
changes, which cannot be seen as a traditional product life cycle.

9

3. IMPROVING SOFTWARE QUALITY

In this chapter, the basic methodology and activities for improving quality are in-
troduced. Section 3.1 divides the life cycle of a software into separate periods from
the perspective of quality improvement. Section 3.2 introduces the defect preven-
tion and related activities. Section 3.3 describes the period and activities prior to
testing phase. Section 3.4 explains the testing phase and different methods involved.
Section 3.5 describes software quality after the release. Unless stated otherwise, the
content of this chapter is based on the work of Capers Jones presented in the book
The Economics of Software Quality [11].

3.1 Quality Improvement Across the Life Cycle

Quality of a software product can be influenced throughout its life cycle with mul-
tiple approaches. Pursuing high quality means having methods in use for both
decreasing the amount of defects and maintaining good structural quality. In ad-
dition to these technical approaches, projects should have methods to assure high
quality of specification and implementation process.

The life cycle of a traditional software project can be divided to periods targeting
different quality aspects. The life cycle includes periods concentrating on defect
prevention, pretest defect removal, testing and post-release quality improvement
as presented in Figure 3.1. Preventive and pretest periods contain actions such
as reviews, inspections and audits. Testing includes various types of testing the
functionality. Post-release methods focus on maintainability, defect discovery and
defect repairing.

Solid foundation for high quality is built with good specification, requirements
and planning in the beginning of a project. When development begins, there should
be ways to prevent as much defects as possible. As defects appear anyway, they
should be detected and fixed as early as possible. Detecting the defects early lowers
the effort needed to fix them.

The hardest defects to remove are found in the requirements and design because
testing and static analysis cannot find them. This is because these defects tend to
be deficiency of features and errors of logic rather than errors in code. These defects
are usually situated in the beginning of the life-cycle and thus require great effort
to be removed.

3. Improving Software Quality 10

Figure 3.1: Phases of software quality improvement in the software life cycle

At some point, the project can initiate testing phase. Testing is used to system-
atically find defects in the software. Tests can be aimed to different areas of the
software and the range of different tests used is dependent of the project. Big and
critical projects should use comprehensive testing whereas smaller projects can get
along with smaller amount of tests and lesser coverage.

Quality cannot be forgotten when the software is released. Because defect removal
efficiency can never reach 100%, there are always defects after the release. Some
of those defects may have been found in the previous phases, but not removed,
and other defects were unknown to the project team at the time of the release.
Quality methods after the release should include detecting and removing defects
and increasing the design for increasing the maintainability. With this range of
methods divided to the software life-cycle, every project should choose the most
appropriate methods to be used in the project in question.

3.2 Preventing defects

Defect prevention is a set of methods used to lower the amount of defects coming
from one or many of the defect origins. Software defects are originated from differ-
ent parts of the project. Defect origins can be technical and nontechnical. Some
nontechnical origins of defects include requirements and documentation. Technical
origins include architecture, design and code. Because defects are originated from
multiple sources, there is no single method for covering them all. Most methods are
not effective against all sources. Usually, 1-4 defect prevention methods are used.

Most of the defect prevention methods are not primarily used for preventing de-
fects, but for some other purpose. Preventing the defects is usually a secondary effect
and can be sometimes incidental. These methods do not affect structural quality,
but the defects of the software. For achieving high total quality of software, defect
prevention should be combined with other types of quality improvement methods.

Defect prevention is one of the most difficult topics of software quality. It is hard
to measure, improve and prove the economic value. The difficulty originates from

3. Improving Software Quality 11

the fact that defect prevention is a negative factor that reduces defect potentials.
This means that reliable measurement of the efficiency needs multiple points of
reference for both using the method and not using it. Despite this, a number of big
companies has studied the topic with significant amounts of projects. IBM, for one
example, has been studying this topic since its first studies in 1970s.

3.2.1 Formal Inspections

Formal inspections were inspected as a one line of research by IBM in the 1970s. The
inspections were targeted at requirements, design documents, source code and other
deliverables. In a short time they discovered that the defect removal efficiency with
formal inspections could reach levels beyond 85%. At that time that was higher than
any form of testing could achieve. In addition, the inspections seemed to affect the
accuracy and completeness of the requirements and specification documents, which
lead to raising the defect removal efficiency of testing by 5%. Combining formal
inspections with formal testing could raise the efficiency even further to levels as
high as 97%.

With these improvements in efficiency, the amount of defects in the beginning of
testing was reduced significantly. The schedules and budgets of the testing could be
cut to half and in some cases even more than half. That lead to about 15% decrease
in combined schedule and cumulative effort compared to similar applications without
inspections.

Another result from the studies was that using the formal inspections for a longer
time, the project teams unconsciously started avoiding the kind of errors found in
the inspections. This meant that the inspections not only removed defects but also
prevented them from occurring.

3.2.2 Static Analysis

Static analysis is used to detecting syntactic and structural defects in source code
without compiling or executing it. It is used in all sizes of software projects and
with every type of applications. The concept is originally from the compilers, which
performed syntax checking. Later in the 1970s, the features for detecting defects
were improved in a tool called Lint. Static analysis has been further developed over
time and nowadays it can comprehensively analyze system-level structure and even
security vulnerabilities. Modern tools for static analysis can have defect removal
efficiency of over 85%.

Static analysis tools are based on a library of rules defining the conditions to be
examined. Some of the modern commercial tools contain over 1500 rules and allow
the users to define their own rules for special conditions. Static analysis is effective in

3. Improving Software Quality 12

defect removal for using the rules to seek out and eliminate syntactic and structural
defects. There are two reasons static analysis is also useful in preventing defects:
the rule libraries are also useful for preventing defects and the tools can suggest
corrections for defects to the developers. The latter enables the developers to see
the effective solutions to the defects while examining the results of the analysis.

Automated static analysis of source code is used in both defect prevention and
pretest defect removal. Statistics by Capers Jones show that the usage of automated
static analysis exceeds 75% in most types of software projects. The first mentions
of automated static analysis are from 1979 from the first release of Lint. In current
modern software development, static source code analysis is automatically done by
most of the Integrated Development Environments (IDE). IDEs, such as Eclipse and
IntelliJ Idea, perform automatic analysis immediately after every minor change.

Static analysis tools are not only very quick and effective but also fairly inexpen-
sive. Because of this, static code analysis has become one of the most used quality
methods in software industry. There are tens or even more tools for source code
static analysis in the market, both open source and commercial. For such an inex-
pensive and effective method, one could imagine the market penetration being close
to 100%. Jones suggests that the reason for this not being true is that humans have
a natural resistance for new ideas even though the turn out to be valuable.

3.2.3 Test-Driven Development

Test-driven development (TDD) is a development process where the development
consists of short repetitious cycles of development. A cycle comprises an initially
failing test case, minimum amount of code to pass that test and refactoring of the
code. The development process embraces the phrase "clean code that works" by Ron
Jeffries. Kent Beck analyses the benefits of that statement in his book Test-driven
Development: By Example. [1]

Writing clean code that works can help developers by allowing a predictable flow
of development. Using tests to define the finished state of a task helps developers
know when the task is finished. This is contrary to a common way of development,
where developers may be uncertain whether the task is finished or is there still some
trail of bugs to fix. Another benefit is that when the developers aims to clean code,
instead of building the first thing they think of, they can learn different sides of
the problem thinking about another solutions. These benefits lead to enhancing the
lives of the users and developers and the whole team. The project team can achieve
better trust between the developers and the individual developers can feel better
when writing clean code. [1]

Writing clean code that works is not such an easy task. Anyone working in the
software development can admit that there are many forces driving the development

3. Improving Software Quality 13

further from clean code and even from code that works. One solution is using
automated tests as the driving force of the development. This is called Test-Driven
Development. There are two cornerstones in TDD: new code is written only if an
automated test has failed and duplication is eliminated. These rules seem simple
enough, but they can actually produce complex behavior for individuals and the
whole team. The team must be able to choose between decisions by getting feedback
from the running code. Every developer must write his own tests in opposite to
waiting for someone else to write the tests. The development environment must
be quick enough to provide instant feedback on small changes. The design of the
software must allow easy testing by using simple, loosely coupled components. [1]

These complex requirements imply a specific order of activities in development.
TDD defines the steps of development and the order of executing them as Red, Green
and Refactor. Red and green are the colors of the test success. First a simple test is
written so that it will not succeed. The test will not sometimes even compile. Then
the test is made green, successful, by not avoiding any means necessary. After the
green is achieved, the code is refactored to eliminate all of the duplication created
while still keeping the test green. [1]

3.2.4 Agile Approach

Agile approach is a set of guidelines based on a publication made by 17 software
developers. The developers had gathered to discuss about lightweight development
methods and the result was the published in The Agile Manifesto. The people in
the signature of the manifest formed the Agile Software Development Alliance.

The Agile Manifesto reads as follows:

"Seventeen anarchists agree:

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

That is, while we value the items on the right, we value the items on the
left more.

We follow the following principles:

3. Improving Software Quality 14

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

• Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Business people and developers work together daily throughout the
project.

• Build projects around motivated individuals. Give them the en-
vironment and support they need, and trust them to get the job
done.

• The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors,
developers and users should be able to maintain a constant pace
indefinitely.

• Continuous attention to technical excellence and good design en-
hances agility.

• Simplicity—the art of maximizing the amount of work not done—is
essential.

• The best architectures, requirements and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more ef-
fective, then tunes and adjusts its behavior accordingly."

These methods are based on the actual methods present in the work done by
the 17 developers in that time. The purpose of the manifest is not to give definite
answers but some guidelines of how to prefer the aspects of software development.
It is not trying to tell how things are done but help developers with agile approach.
When listing the things to value, the purpose is not to underrate the aspects with
lower priority but give some hints about what brings the most value to the project. [2]

Embedded users. Embedded users is an Agile method where one or more
user representatives are embedded into the project team. The purpose of the user
representative is to work in cooperation with the developers creating the critical
requirements which are then implemented in short sprints. The idea is to build
the specific business critical features and get those running as quickly as possible.

3. Improving Software Quality 15

The embedded customer representatives are also used to give support in reviewing
the features and requirements. The main purpose of this method is to improve the
requirements definition.

This method is proven to be useful in small software projects under 2500 function
points and effective in projects with under 100 users and size below 1000 function
points. In larger scale applications, over 10000 function points or more than 1000
user, a single representative cannot effectively provide enough requirements. This
method can however be scaled up by using multiple user representatives, but like
usually with Agile approach, this is most effective in smaller projects.

3.3 Pretest Defect Removal

Capers Jones suggests that in every software project there should be multiple pretest
QA methods used. Jones lists a combination of methods for both small and large
projects. A small software project, in this context, is described to have a maximum
amount of 1000 function points or 50 000 source code statements. These small
projects are generally executed by a team with less than 6 software developers.
These teams usually have no specialists for any quality methods, but the developers
are generalists handling requirements, design, coding and testing. In many cases
with Agile approach, there is a users representative embedded in the team providing
requirements and customers viewpoint in real time. Jones reminds that removing
defects with high efficiency requires trained and technically skilled software engineers
instead of generalists. However, this is not as necessary in small projects, since
fortunately these projects have usually low defect potentials.

The origins of defects in small studied projects are split into five categories. Source
code is the most common origin of defects. About 1.75 defects per function point
are found in source code and this leads to 1750 defects in whole projects. Software
design is the second most common source of defects. Design is the origin of 1.00
defects per function point. Requirements are causing 0.75 defects per function point
and documentation nearly as much with 0.65 defects. Poorly executed fixes are
the origin of 0.27 defects per function point. All together these five are the source
for 4420 defects in a whole 1000 function point software project. These figures
represent the approximate averages and the actual values can be as much as 25%
lower or higher for every source.

Jones presents a suite of pretest defect removal activities and their efficiencies for
small projects. This suite includes:

1. personal desk checking (subsection 3.3.1)

2. Scrum sessions(subsection 3.3.4)

3. Improving Software Quality 16

3. client reviews of specifications(subsection 3.3.2)

4. informal peer reviews(subsection 3.3.3)

Each of these forms of defect removal activities are targeted towards a specific type
of defects, but other types of defects can be found during the activities. Jones gives
several figures for the efficiency of each activity. These figures can only be created
by companies that have complete accurate defect measurement programs. Because
of this, these figures can vary from context to other and thus are indicative. These
figures still illustrate two major problems in the software industry: the removal
efficiency levels are comparatively low for most of the removal activities and the
defect removal is much harder for requirements and design. The first one leads
to a need for numerous kinds of defect removal activities. The latter means that
a significant amount of effort must be used to assure the quality of requirements
and design. Defects in requirements and design must be removed prior to testing,
because the testing cannot find them. Also static analysis is incapable to finding
them, because the defects are not bugs found in the code.

3.3.1 Personal Desk Checking

Personal desk checking is a manual operation in where the logic of an algorithm is
checked by the creator of the algorithm . The logic used in the desk checking is
presented as a pseudo-code rather than the implemented actual program code. The
algorithm is executed by a person acting as a computer. The person performing the
desk checking carefully follows the algorithm while filling a table of notes with pen
and paper.

The notes form a table which include columns for: line number, variables in
use, conditions, input and output. Line number is necessary to identify the line
being executed. All variables have a column in alphabetical order. As the value
of the variable changes, the appropriate column is filled up. Conditions columns
include a column for every condition in the algorithm which shows the result of the
condition in either true (T) or false (F). The condition column is updated whenever
the condition is evaluated. Input and output columns are used for the inputs got
from the user and the output from the program. [14]

Desk checking is the oldest form of software defect removal. It has been in use
since the beginning of the history of computers. In the early days of computing,
testing the programs was difficult because of the limited numbers of computers.
The computers worked on production work in the daytime and often the testing
had to be done at night. In those days, testing had only an efficiency of 70% in
finding bugs, because of the primitive test case design and limited time available for
testing. Therefore the desk checking were a necessary addition to testing. Nowadays

3. Improving Software Quality 17

the desk checking is still a common activity for removing defects prior to testing.
Desk checking today can be enhanced by using static analysis for program code and
spell checkers and complexity tools for text documents.

Personal desk checking is used mainly in low-level code. Approximately over 75%
of low-level code and under 30% of high-level code in projects are checked using
personal desk checking. Additionally, personal desk checking is used for over 75%
of text documents, such as requirements. The execution time of desk checking is
around 80% of normal reading speed of text. This leads to about 5 logical statements
per minute for source code.

The efficiency of defect removal for personal desk checking is between 25% and
50% averaging 35%. The reason for these relatively low figures can be found in
human nature. Humans have a natural tendency to ignore their own mistakes.
A developer making an error usually does the error thinking that the action was
correct. Therefore when the developer checks the code for defects, the train of
thought can remain the same and the defect is not found. This could be avoided by
using proofreaders or copy editors, which is a rare habit, but could be profitable for
software projects. Another solution for avoiding the blindness to own mistakes is to
use peer reviews.

3.3.2 Client Reviews of Specification

Client reviews of specification is as well among the oldest of defect removal methods.
It is still not enough used in average software projects. One of the authors of "The
Economy of Software Quality" has got experience in lawsuits for canceled or defective
projects. In most of the lawsuits the supplier of the software accuses the customer
for failing to review the designs and other documents of not making a remark about
any problems during the reviews. In some cases the customer has even accepted the
materials quoted in the trial.

The products reviewed by customers usually do not include inner workings of
software applications, like source code, test cases or detailed design. Capers Jones
presents a list of 12 major items in directly funded software projects, which usually
are reviewed:

1. Requirements.

2. Requirements changes.

3. Architecture.

4. High-level design, user stories, use cases.

5. Data flow and data structure design.

3. Improving Software Quality 18

6. Development plans.

7. Development cost estimates.

8. Development quality estimates.

9. Training materials.

10. Help text and help screens.

11. Features of COTS packages.

12. High-severity bug or defect repairs.

Client reviews are an important practice as the clients are paying for the soft-
ware. There are many clients being active participants in reviews and paying serious
attention to the deliverables of software project. Simultaneously some clients are
overlooking the reviews and falsely assuming that the software teams know what
they are doing. The lawsuits speak on behalf of the reviews, having passive or
partial reviews as a worrying feature.

The statistics show that the usage of client reviews of specifications are used
in under 50% of U.S. software applications. The defect removal efficiency varies
greatly being at lowest under 15% and sometimes reaching over 45%. The average
efficiency is around 25%, which Jones calls "marginally adequate". The effort taken
by client reviews is over 2 hours per participant for preparation and over 4 hours
per participant for execution. Client reviews work best when the client is directly
available, and the applications having indirect clients cannot take full advantage of
it.

3.3.3 Peer Reviews

Peer reviews are almost as old as desk checking. The idea of peer reviews is close to
the idea of desk checking. The essential difference is that in peer reviews, the code,
documentation or other product under review is checked by another person. This
prevents the defects from being hidden by the human tendency to ignore their own
mistakes. Peer reviews are best suited in small projects with under five developers.

In larger projects, because of the informal nature of peer reviews, the efficiency
of defect removal is better with formal inspections. This leads to informal peer
reviews to being the secondary method of defect removal in large projects. In large
projects using Agile approach without formal inspections, peer reviews can be highly
important.

3. Improving Software Quality 19

Peer reviews are targeted to find technical, structural and logical defects. This
means that peer reviews are not to be thought as the same as proofreading or
copyediting. However, the findings from these can partially overlap each other.

In addition to removing defects in the pretest phase of projects, peer reviews can
benefit projects other ways. Peer reviews can achieve the same effect as formal in-
spections: the participants of the review tend to unconsciously avoid the problems
found in the review. Reviews can also be useful for learning. Novice developers
can learn while reviewing the work of more experienced developers. Furthermore,
experienced developers can remark the problems the novice members need to under-
stand. Even beginner reviewing other beginners work can be better than nothing.
Reviews done by expert for the work of expert can be highly efficient, but these
cases can sometimes lead to social problems with big egos colliding when mistakes
are being pointed out.

Informal peer reviews are used in under a half of software applications. The
achieved defect removal efficiency is usually between 35% and 65% and the average
removal efficiency is 45%. Reviews can take up to 30 minutes to prepare and the
execution pace is around 70% of the normal reading speed for text, and around 3
logical code statements per minute for source code. Best results for peer reviews
can be achieved with small projects using Agile approach.

3.3.4 Scrum Sessions

The development teams in Scrum are usually formed by a Scrum master, embedded
user representative or stakeholder, possible specialists and three to five developers.
In average software development, the team usually has around five software engineers
plus one or more specialists as needed. Specialists may include technical writers,
business analysts or database specialists. As defined in Agile and Scrum, teams
should be self-organized and consist of generalists. Thought in many cases having
specialized requirements, some specialists are needed.

Projects using Agile and Scrum guidelines are split into small units of work. These
units are called "sprints" and the development work needed to complete the unit
can be achieved in two-week period. The embedded user in the team is responsible
to provide the requirements for each sprint. The end result of a sprint should be the
source code and supporting documentation ready to be published in production.

One of the principles of Scrum is to have daily Scrum meetings or "stand ups".
The latter name comes from the idea that the people attending the meeting should
be standing up so the meeting can stay within the time limit of 15 minutes. During
these meetings, every member of the team should describe three things: what was
done yesterday, what will be done today and are there any problems that will slow
things down. The most interesting topic in the context of defect removal, is listing

3. Improving Software Quality 20

the issues, bugs and problems there is and simultaneously sharing the knowledge
among the team.

Agile and Scrum methods are popular and successfully applied in the relatively
small, up to 2000 function point in size, projects. In larger software projects, the
need for personnel and time raise and the work is more difficult to split in two-week
long units. While Agile does have methods for scaling up to larger projects, there
are also alternative approaches available.

The statistics by Capers Jones show that Scrum sessions are used in over 90%
of Agile applications and up to 20% in non-Agile applications. The sessions take
under 15 minutes per participant to prepare and optimally not much longer than the
limit of 15 minutes per participant to execute. The defect removal efficiency ranges
from under 35% to over 70% averaging 55% statistically. However, the statistical
efficiency can be somewhat lower than the actual efficiency achieved . This is because
the Agile and Scrum teams are usually not very strict on collecting the data for defect
removal.

3.4 Testing

Testing is one of the oldest forms of software defect removal. It has been the most
important category of defect removal since the beginning of the software industry,
and in many cases even today, it is the only defect removal activity used. Several as-
pects of testing is covered widely in literature such as testing itself, test case design,
test libraries and others. There are also a variety of standards and certifications
offered by several companies and groups. Considering the penetration and impor-
tance of testing, there is surprisingly low amounts of quantitative data available on
testing and test results. Quantitative data in this context means information about
numbers of test cases used, numbers of defects found and other information that can
be presented in numbers. In addition to the amount of data, the variety of business
sizes is not as wide as it could be. The reason for this is that small companies rarely
evaluate or benchmark let alone document the results with sufficient precision.

3.4.1 Subroutine Testing

Subroutine is a small piece of code that may have only a few lines of code. Testing
subroutines is the lowest level of testing introduced by Capers Jones. It is a very
informal way of testing and is performed almost spontaneously by compiling and
executing a subroutine just created. The goal of testing the subroutines immediately
after creating them is to verify the correct behavior of the algorithm before the
integration of the algorithm to the larger module or application.

Subroutine testing is a glass box form of testing. It is used in almost every

3. Improving Software Quality 21

custom-coded software and over 90% of defect repairs. The defect removal efficiency
is between 25% and 75% and in average 55%. Because subroutine testing is such a
natural process and is such an efficient way to prevent defects, it is often omitted in
testing literature.

3.4.2 Unit Testing

Unit testing is aimed at small code modules ranging from around 100 to 1000 source
code statements. Units are tested by executing the new or repaired code. In case
of developing new features, also the surrounding modules can be unit tested. The
testing is usually run by the developer who wrote the module. This leads to poor
data collection lowering the amount of data available for unit testing.

Unit testing contains often bad test cases which are either false positives or not
finding defects. When using unit testing, a significant amount of bad fixes and new
bugs are introduced while repairing defects.

The unit testing is often measured by code coverage, the degree of code a certain
test suite covers. Aiming for high code coverage is usually a natural objective for
test suites, but sometimes a high cyclomatic complexity of the module under test
can prevent achieving high coverage. Modules with complexity under 10 can be
tested thoroughly but when complexity raises over 20, the removal efficiency of the
unit testing will decrease.

Unit tests can be executed manually but also automatically using a test runner
connected to triggers actuating the testing sequence. The usage of automatized unit
tests is becoming more common, while the popularity of Continuous Integration
systems increase. These systems can be bound to version control systems allowing
the automatic execution of tests whenever the source code changes.

Unit testing is considered as glass box testing. It is used in over 85% of projects
using waterfall and in over 80% of defect repairs. Unit testing removes from under
25% to over 55% and in average cases around 35% of defects. Unit testing can
benefit from the usage of static analysis, which is in most cases performed before
the unit testing. In development of complex systems, unit testing can also benefit
from code inspections.

3.4.3 New Function Testing

New function testing is a way of testing in where tests are written for evaluating
the correct functionality of new features. These features can be introduced from
modification or updating of an existing application. New function testing is often
combined with regression testing.

In an entirely new software project, the new function testing is also known as

3. Improving Software Quality 22

"component testing". This is because usually the subject under test is a work
of a group of developers, combining multiple code blocks into a one functioning
component in a large system.

Because of the multiple contributors, the testing is frequently executed by sepa-
rate testing specialists. Major new functions can exceed 10000 statements of source
code, or 100 function points, when added to an existing system. Usually the new
function testing is aided by a formal testing plan, planned test cases and a full config-
uration control. New function testing can be both black box and glass box testing.
One of the main targets of new function testing are the errors in the interfaces
between modules and in the movement of data through the application.

Like with many other testing method, a high complexity of the code can have a
negative impact on new function testing. Both the defect removal efficiency and test
coverage tend to decrease as the complexity raises. By using mathematical models
for designing the test cases, the efficiency level of the testing can be improved without
the need for infinite amount of test cases.

New function testing can take advantage of static analysis and formal code in-
spections. A usual flow with these three begins from the static analysis of the
source code, followed by formal code inspections of the most critical parts and fi-
nally performing the new function testing. This combination can reach over 99% in
defect removal efficiency, omitting the defects in requirements. Also using regression
testing with new function testing can be beneficial to each other.

New function testing is used in over 99% of new software projects and also in
over 99% of enhancements to legacy applications. The defect removal efficiency is
in average 40% and ranging from under 30% to over 55%.

3.4.4 Regression Testing

Regression testing is a method of testing targeting the opposite of new function
testing. In regression testing, the subjects under tests are old functionalities and
features. The word "regression", in the context of software development, means an
unintentional damage done to existing features while introducing new functionality.
Regression testing also aims to make sure the known defects, repaired before the
implementation of the new features, do not reappear.

Regression testing can be initiated during the development, when a sufficient
amount of modules have been implemented. It continues through the whole devel-
opment phase and further over to the post-release phase. Preventing the regression
damage is very important in the systems already in maintenance phase.

Testing the regression damage is one of the most extensive forms of testing. This
is because the evolution of a software application usually consists of multiple releases
taking place over the years. With regression testing, the library of available tests

3. Improving Software Quality 23

continues to grow over the releases. These libraries involve the whole code base. In
large systems the code base can even exceed a million lines of code.

Test libraries concerning a big amount of source code are at times problematic.
They can have both useless test cases and test cases containing errors in themselves.
Studies about these kind of libraries are rare, but an IBM study of a regression test
library found both of the aforementioned. These erroneous test cases can raise the
testing costs and lower the defect removal efficiency.

Regression testing is usually done in an application under full configuration con-
trol. It can be performed by programmers themselves, testing specialists or quality
assurance personnel. Regression testing can be black box of glass box testing. Re-
gression testing can benefit from the usage of static analysis tools on the legacy code
under change before implementing the changes or refactoring.

High cyclomatic complexity can be harmful to regression testing. Cyclomatic
complexity over 20 can lower the test coverage and defect removal efficiency.

Over 95% of new application development use regression testing. It is used also
in over 97% of legacy application enhancements and in over 85% of software defect
repairs. The defect removal efficiencies can vary from under 25% to over 45%.
Average defect removal efficiency of regression testing is 45%.

3.4.5 Integration Testing

Integration testing is method normally used in relatively large applications having
several modules connected to each other. Generally these large applications are over
1000 function points of size. As the name implies, integration testing is testing a
number of modules assembled together to form a single software system.

The pace of integration testing is usually more or less steady as the integration
tests usually target a single release or build. These builds can come in different
cycles depending on the organization and the development practice. The interval
between the builds can be for example a month or a week. As an example, Microsoft
integrates the software projects in daily basis and thus performs daily integration
tests.

Since the number of modules under test can be significant, the test suites can
contain significant amounts of test cases. This leads to high amounts of work needed
to design the test cases. However, using mathematical test case design methods can
produce high test coverages and high defect removal efficiency with relatively small
amount of test cases.

With integration testing, there are in most cases other supportive tools and prac-
tices used. Testing is usually done to an application under formal configuration
control. Formal defect reporting procedures and test plans, planned test suites and
test library support tools are also commonly used with integration testing.

3. Improving Software Quality 24

Integration testing can occur as black box or glass box testing. The execution
of the testing is the most effective when it is performed by professional testing
personnel. Still, in addition to testing specialists, the testing can be performed by
the programmers or quality assurance personnel.

Integration testing can benefit from static analysis, formal inspections and for-
mal development practices. High cyclomatic complexity of over 20 can reduce the
efficiency of integration testing.

Integration testing is rarely used in small, under 100 function point, projects. In
these projects only under 10% of projects use integration testing. In medium size
projects, over 1000 function points, integration testing is used in 85% of projects.
Development of large, over 10000 function point systems use integration testing in
over 99% of projects. The defect removal efficiency of integration testing can be
from under 35% to over 65% averaging 50%.

3.4.6 System Testing

System testing is in most cases the last form of internal testing. After the system
testing, the system is usually tested with real customers in field testing or beta
testing.

Formal system testing for large systems is a critical testing stage and can require
large teams of professional testing personnel and programmers involved in the devel-
opment. This kind of large formal system testing can take several months, consisting
of repairing the discovered defects and re-testing. The expression "system testing"
dates back to large applications in the 10000 function point range. Since then, the
term is widely used to describe the final stage of testing of applications any size.

System testing requires a formal configuration control of the application and
usually a formal defect tracking is used. System testing is generally executed using
the principles of black box testing, but sometimes there is also glass box type of
testing. Testing can be performed by the developers, professional testing specialists
or quality assurance personnel. However, when the testing is performed in large
companies or for large systems, professional testing specialists performing the tests
is the most common case.

If the system under test contains controls over physical devices, the term system
testing can include simultaneous testing of the hardware devices. In these cases
the group performing the tests can involve other engineering and quality assurance
personnel dealing with the hardware.

System testing can become degraded if the system under test contains error-prone
modules. These are modules, that encompasses the majority of the existing defects
of the system. Error-prone modules can be extremely harmful for large systems and
there is a need for continuously analyzing the existence of these. It is often necessary

3. Improving Software Quality 25

to precisely remove the error-prone modules and rewrite them with better methods.
IBM did a frequency distribution research in the 1970s for customer-reported

defects. For several large applications, the distribution of defects was extremely
uneven. With one product, there were 425 modules in the application. In this
product, 57% of all reported defects were found in 35 of these modules. No reported
defects at all were found for around 300 modules. All of the 35 error-prone modules
had no inspections done and the testing was truncated due to schedule pressures.
In addition to highly skewed distribution, bad-fix injections for these error-prone
modules was higher than 35%, so fixing every third bug would generate one new
bug.

Error-prone modules has been researched by other companies as well and these
analyses confirm that these modules are alarmingly common in large applications.
These modules have typically a high cyclomatic complexity and thus have reduced
test coverage and defect removal efficiency. Repairing these existing modules is dif-
ficult and expensive, but preventing creation of new error-prone modules is possible
with a combination of formal inspections with pretest static analysis. In the IBM
study, inspections were 100% effective in preventing new error-prone modules.

System testing can benefit from static analysis and code inspections. IBM stud-
ies show that when error-prone modules were removed and inspections were used,
the testing costs and schedules decreased by 65%. Also the customer satisfaction
increased by 75% and development schedules were shortened by 15%.

System testing is used in over 99% of systems over 10000 function points. 75% of
projects over 1000 function points and 50% of projects over 100 function points are
using system testing. The defect removal efficiency ranges from under 25% to over
95% averaging 55%.

3.4.7 Agile Testing

Agile testing is a special form of testing and among the newest forms of testing. As
Agile development contains embedded users, these users can define the requirements
for a sprint or iteration. Embedded users can also define the proper test cases for an
iteration. These test cases are primarily black box test cases, where the embedded
user defines the functionality under test and the expected behavior.

In the development of larger applications that might have thousands of users, no
single user can produce adequate information for gathering the requirements or spec-
ification of test cases. In the testing of normal Agile projects, under 1000 function
points, the embedded users can provide effective assistance for the specification of
test cases. Also the validation of test results can be usually aided by the embedded
users.

In a certain type of Agile development, extreme programming, the test cases are

3. Improving Software Quality 26

developed prior to the implementation of the features. However, this procedure is
not present in all Agile development.

Agile testing is used in over 90% of Agile application development. Defect removal
efficiency is in range of under 40% to over 65% and in average 50%. Agile testing
can benefit from static analysis and extreme programming testing.

3.5 Post Release

After a software product has been released to the market, it practically always still
has defects in it. IBM calls these defects latent defects, because before the release,
these defects have not yet been found as problems to customers. The existence of
these defects is due to the imperfect effectiveness of the defect removal. Usually the
defect removal efficiency is around 85% and virtually never reaches 100%.

3.5.1 Latent defects

Some latent defects can be defects found during the development or testing but ones
that have not been repaired before the release of the software. Other defects were
present in the application, but not discovered by the developers or test personnel.
Furthermore, some defects can be originated from new development or other defect
repairs in the form of bad fixes. The last two weeks before the release can bring in
from about 1% to even 5% of delivered defects.

In a traditional development of commercial software, most of the latent defects
found in after the release were those that had not been found and removed in the
development and testing phase. In the more recent history, some vendors have
started to release software with remarkable amounts of known, but not removed,
defects. In small applications, below 1000 function points, there might be a handful
of latent defects present. In larger systems, hundreds of latent defects can be released
with the software. Moreover, in massive applications, like Windows 7 or SAP, the
amount of known latent defects can sometimes be counted in thousands.

The motivation behind releasing a software with known latent defects appears
to be compiled from three factors: first, the aspiration for achieving earlier release
dates. Second, an assumption that a quick subsequent release will fix the defects.
Third, the utilization of the skills of the customers for finding and repairing de-
fects. The latest of the three can include a strategic offer for customers to get a
compensation for repairing or identifying flaws.

This trend of releasing a software knowingly with defects has made customers
skeptical about buying or installing the first release of a new software. Some cus-
tomers prefer to wait for a second release, assuming the latter versions have many
of the latent defects removed.

3. Improving Software Quality 27

3.5.2 Defect severity levels

Because of the potential high amount of defects combined with limited amount of
resources for removing them, some system for categorizing the defects on the basis
of seriousness is needed. One of the oldest methods for assigning severity levels to
defects is the IBM severity scale, which dates back to 1950s. It is still probably the
most used severity scale.

The IBM severity scale contains four levels of severities and four other categories
of defects. The defects in the first severity level cause that the software does not
operate at all. Level 2 defects are disruptions or errors in major features. Level 3
contains minor disruptions, with which the software is still usable. Severity level 4
defects cause cosmetic errors that does not impact the operation of the software.

The other categories in the IBM severity scale consist of four levels existing for
convenience. Invalid defect level contains problems that are caused by hardware
or other software. Duplicate defect is a category for additional reports of a known
defect. Abeyant defect contains defects that cannot be reproduced. Improvement
category is for reported defects which are actually suggested improvements.

The usage of the severity scale is for arranging the defects to an order in which
they are repaired. Defects in the higher levels are more important to customers
than the low-severity defects. Because of this, the group responsible for removing
post-release defects use more effort to the higher level defects. The defects in the
highest levels may even require temporary fixes to allow the continued usage of the
software.

3.5.3 Maintainability

The maintainability of software can be evaluated with several different metrics.
According to Capers Jones, this is researched by IBM by interviewing a wide range
of maintenance programmers about what makes the software maintainability better
or worse. The three most useful metrics are introduced below.

Maintenance assignment scope is the amount of source code or functionality
that a single programmer can handle for one year. The range of the maintenance
assignment scope indicated by the interviews is from 300 function points to about
3000 function points. Measured in source code statements of java-like language, the
range is from a low 15000 statements to a high 150000 code statements. These figures
are assembled from the sizes of applications under maintenance and the sizes of the
maintenance teams. These ranges seem to work well for maintenance programmers,
but the same idea can be applied to other kinds of maintenance specialists.

Cyclomatic complexity can be measured automatically with both commercial
and open source tools. For easier maintenance, the cyclomatic complexity levels

3. Improving Software Quality 28

should be under 10. With levels over 25, the maintenance is getting increasingly
harder. Furthermore, higher levels than 25 are virtually never necessary, so high
levels can indicate reckless programming practices.

Rate of structural decay is the velocity in which the small changes to the
software raise the cyclomatic complexity levels and degrade the original software
structure. The velocity can be lowered by running complexity analysis tools fre-
quently. The average velocity of entropy or structural complexity seems to be a
little more than 1% per year. This means that applications with long periods of use
become increasingly harder to maintain or change safely.

The interviews by IBM revealed several topics that were mentioned by the dedi-
cated maintenance personnel, which have a positive impact on the maintainability.

Training. Training of the maintenance personnel can improve the maintenance
effort. In many cases, the maintenance personnel getting the maintenance respon-
sibility are not properly trained for the application. For large applications, the
training should include the general functionality and also the specifics of the com-
ponents assigned to a single maintenance person. One cost-efficient way of training
the maintenance personnel into the application is to include the personnel in inspec-
tions during the development.

Structural diagrams. Diagrams can support the understanding of the appli-
cation structure in large systems. These diagrams can visualize the control flow,
branches and other paths through the application. Structural diagrams can be cre-
ated prior to the development of the system, which makes a requirement for keeping
the diagrams up to date. If the diagrams do not exist, they can be generated using
a variety of tools that analyzes and visualizes the code.

Comments clarity. The clarity of the comments can affect both positively or
negatively on the maintainability. Good comments are clear, accurate and complete.
Having too much comments can degrade the understanding of the code and can be
almost as bad as too few. Comments should include the purpose of the module and
explanation of the calls, branches and error messages.

No error-prone modules. Error-prone modules are one of the biggest topic
degrading maintainability. These modules have usually high levels of cyclomatic
complexity, are difficult to understand and can contain opaque dependencies to
other modules. Perhaps the biggest problem with error-prone modules is that ex-
isting error-prone modules can be almost impossible to fix. Because of this, the
main defense against error-prone modules is to prevent them from forming in the
development phase by using static analysis and inspections.

Maintenance tools and workbenches. Software maintenance can be assisted
by several kinds of maintenance tools. Actual maintenance workbenches can assist
in analyzing code structure; Static analysis tools can analyze the code continuously;

3. Improving Software Quality 29

Visualizing tools can automatically generate diagrams from the code structure; Test-
ing tools can execute automated tests; and code refactoring tools can aid with fixing
the code structure.

Programming languages. The choice of programming language can be made
for business or technical reasons, but maintenance in mind, the readability and ease
of understanding can affect positively. Some languages, like Assembly and API, are
hard to understand and therefore hard to maintain. Other languages such as java-
like languages are readable and straightforward and can be maintained more easily
than the harder ones. With several thousand programming languages, sorting them
into categories based on their easiness is not easy.

Considering these topics, the worst case scenario would include a long-time run-
ning software with high levels of cyclomatic complexity and several error-prone mod-
ules. There would be only messy comments or no comments at all and the software
would be written in a hard or even dead language. The maintenance would be done
by a novice untrained maintenance personnel with no aiding tools. In these circum-
stances, the maintenance assignment scope would be under 300 function points or
under 15000 statements of code.

Mutually, the best case would have a fresh, low complexity software with well
commented source code in easy language. In this case the maintenance personnel
would consist of well trained maintenance professionals having good tools for main-
taining the software. In this situation, the maintenance assignment scope could be
over 3000 function points or over 150000 source code statements.

30

4. IMPROVING QUALITY IN SOFTWARE

STARTUP PROJECT

This chapter describes the differences between quality improvement in traditional
software development and modern software startup. Section 4.1 redefines the mean-
ing of software quality in a startup environment. Section 4.2 describes the basis
of quality. Section 4.3 introduces the methods for improving quality in a startup
environment and combines the activities from traditional and modern software de-
velopment. Section 4.4 introduces common things to avoid in quality improvement.
Finally, section 4.5 describes the practices used in the company responsible for case
project described in the next chapter.

4.1 Quality in a Startup project

Improving quality in a startup environment differs from the QA activities in tradi-
tional software development. This is because the requirements and goals of a startup
project are usually considerably different from a traditional software projects. Fur-
thermore, even the term software quality can be partially redefined for a better fit
in a software startup. Eric Ries describes that the development of Minimum Viable
Products questions the traditional notions of quality and this is the most vexing
aspects of the development. [18]

In the beginning of the chapter about role of quality, Eric Ries states that "The
best professionals and craftpersons alike aspire to build quality products; it is a point
of pride". This is a good summary about the attitude towards software quality in
many movements about modern software development. Measuring and defining
quality in modern software projects with constant changes and uncertainty can be
difficult, but the development personnel should have the pursuit for high quality. [18]

Ries claims that modern production processes seek to boost efficiency by relying
to high quality. The belief that the customer is the most important part of the
production process means that all effort should be focused to producing results that
the customer finds valuable. This view can be beneficial in an environment where
the company knows the opinions of customers. However, in a startup development,
assuming the opinions of customers is a risky thing to do. Often in the startup, it
is not even sure who the customer is. Thus, Ries introduces a quality principle for
startups: "If we do not know who the customer is, we do not know what quality

4. Improving Quality in Software Startup Project 31

is". [18]
In a startup developing an MVP, the quality of the product can be a fluid concept.

Even if the quality of MVP is low for customers, it can bring great value in building
a high-quality product. If the customers find the product low on quality, this can be
used as an opportunity to learn what customers care about. This is infinitely better
than mere speculation, because it provides empirical information on which to build
future products. [18]

When working with a 3D chat software called IMVU, Ries and his colleagues
decided to leave a critical sophisticated feature done with only minimum effort.
They were embarrassed to release the moving of the avatars without any animations
or other modern visualizations. The avatars just reappeared to another location.
The response of the customers was surprising as the customers were thrilled from
the new feature, which allowed an immediate change of location without waiting.
From the customers point of view, the released feature was more appropriate than
the option which would take more time and money to implement. In the end, the
quality of the released feature was probably higher than the one planned. The lesson
behind the story is that customers do not care how much time something takes to
build. [18]

Lean Startup method is aiming for the goal of winning over customers and not
opposed to building high-quality products. Thus, it is necessary to set aside some
professional standards to enable the validated learning as soon as possible. This
is not supposed to allow operating in an undisciplined manner. This is important
as there are some quality problems that can slow down the Build-Measure-Learn
feedback loop. In addition, defects complicate the evolution of the product and
interfere with the ability to learn. Helping the development of the MVP means
removing any feature, process or effort that does not lead directly to the learning
sought. [18]

4.2 Foundations of high quality

In a startup environment, it is particularly important that the quality of the soft-
ware is sufficient to allow the further development. Compared to a company running
a successful business already, a startup company usually cannot afford many mis-
takes in the product life cycle. Implementing high quality software starts from the
beginning of the project. The foundations of high quality have to be solid for the
overall high quality to emerge. These foundations are at the structure of the code
and other deliverables.

4. Improving Quality in Software Startup Project 32

4.2.1 Clean code

Every programmer with experience for more than two or three years have probably
been slowed down by messy code. Over a couple of years of development, teams that
were moving fast at the beginning of the project can be slowed down to a really slow
pace. Development begins to include more and more non-trivial changes, which are
about resolving the existing knots and tangles and adding new. Eventually, the mess
can become so big that it can not be cleaned up at all. The total cost of owning a
mess is being pondered by Robert C. Martin in his book Clean Code: A Handbook
of Agile Software Craftmanship. [12]

Martin reminds that "code is really the language in which we ultimately express
the requirements" and thus code is in the very foundations of every software project.
A common mistake done in software projects is to increase the measure of developers
in the team. This is usually done when the code has already reached a too messy
state and the pace of development has slowed down. Adding new staff to the devel-
opment does not improve the situation, but underlines the meaning of messy code.
This new staff is not familiar with the existing system, so they easily complicate the
system even further, driving the productivity even worse. [12]

A bitter fact for the developers is that usually the cause of messy code is the fault
of the developers. While the management and sales staff are defending schedules
and requirements, the developers should be defending the code. Many developers
previously slowed down by messy code still feel the pressure of deadlines and the
temptation to make messes to achieve them. Martin says that true professionals
know that the only way to go fast is to keep the code as clean as possible at all
times. A programmer able to write clean code is an artist, who can use all the little
techniques in a disciplined manner through the sense of cleanliness. [12]

4.2.2 Integrity

One of the principles of Lean Software Development (LSD) is "Build Integrity In",
which has its premises in high-performing automotive companies in 1980s. A study
"Product Development Performance" by Kim Clark found out that the product
integrity was a key difference between average and high-performing companies in
developing superior products. Clark found out that integrity has two dimensions:
external integrity and internal integrity. [4]

LSD renames these two types of integrities as perceived integrity and conceptual
integrity. Perceived integrity is a balance of function, usability, reliability and econ-
omy observed by the customer. It is affected by the whole experience of the system
beginning from advertising and delivery to intuitiveness and the ability to solve the
problem. An analogy to the measure of perceived integrity comes from the question:

4. Improving Quality in Software Startup Project 33

which ones of the bookmarks of your browser would you add back immediately, if
you wiped out them all? These are the products with perceived integrity. [16]

Conceptual integrity is smoothness and uniformity of the whole system’s central
concepts. The architecture of the system has an effective balance between flexibility,
maintainability, efficiency and responsiveness. Conceptual integrity is a prerequisite
to perceived integrity. To be able to achieve perceived integrity, the system must
have a consistent design. As the system evolves and matures, conceptual integrity
emerges. Although conceptual integrity is needed for perceived integrity, the ex-
istence of the former does not ensure the existence of the latter. This is because
conceptual integrity is not sufficient for a successful customer experience, if the
system does not meet the users’ need. [16]

4.3 Aiming at high quality

Achieving high quality requires discipline in both team work and individual develop-
ment. A team of motivated experts with solid leadership is able to make the required
decisions and keep the pace of development high. This kind of team can execute the
development in a way that enables the emerging of integrity in the product.

4.3.1 Build Integrity In

In the study by Kim Clark, a primary claim is that integrity is achieved through
superior information flow. Perceived integrity is a projection of the integrity of the
information flow between users and developers. In turn, conceptual integrity is a
projection of the integrity of the upstream and downstream of technical information
flow. When reaching a system with high perceived and conceptual integrity, an
excellent information flow is necessary both between customer and development
team and between the upstream and downstream processes of the development team.
Information flows must take into account both the current and potential uses of the
system. [16]

Perceived integrity. In traditional software development, perceived integrity is
transmitted to programmers through a multistage process. In this process, require-
ments are collected and processed through analysis and design. Then the design
is transfered to the programmers implementing the code. These multiple hand-offs
will cause the loss of considerable amount of information, key details and future
perspectives. Fortunately, an alternative for this multistage process is to estab-
lish a superior customer-developer information flow by other means. With smaller
systems, the development should be done by a single team having direct access to
the people capable of judging the systems integrity. This team should use short
iterations in where the system is demonstrated to a wide range of people giving

4. Improving Quality in Software Startup Project 34

feedback about the integrity. This way the feedback can be used for a rapid steering
of course. Another technique is to use customer tests purposely created for getting
feedback. [16]

Conceptual integrity. Conceptual integrity in automotive manufacturing is
pursued by using existing parts and integrated problem solving. In integrated prob-
lem solving, understanding and solving the problem happen simultaneously, instead
of sequentially. The initial information is released early and not only after complete
information is available. Information flow happens in two directions instead of one
and it contains multiple small batches of information instead of a single large batch.
The preferred communication style is face to face instead of documents. This kind
of problem-solving is ideal for achieving conceptual product integrity, particularly
in development of complex systems such as automobiles or software systems. [16]

In software development, using integrated problem solving means that the de-
velopment must be started before the design is finalized. In addition, the devel-
opers should be able to access customers or customer representatives for getting
the answers as soon as possible for any questions raised. Customer tests should be
developed and ran along the iterations and not just at the end. [16]

Finally, using experienced developers in their own areas of expertise can help in
achieving conceptual integrity. Not all of the developers have to be with plenty
of experience, but for the complex areas, experience brings understanding of the
technical details and patterns widely used to manage with the complexities. One of
these experienced developers should be a master developer facilitating the effort over
multiple teams. For example, integrating the decisions and trade-offs among multiple
developers and customers would be the responsibility of the master developer. [16]

Refactoring. When the integrity of a product is building, the iterative de-
velopment brings continuous improvement as the product is evolving. In software
development, the system must be continuously improved by the developers. Other-
wise the internal structures of the software will become calcified and fragile. In time,
the system will even stop working. Refactoring is done to prevent this disintegration
of the software structures over the development. [16]

The need for refactoring comes when new features are added to the system one at
a time and the architecture and requirements of the system change gradually. Often
it would be better to think of new related features as a set and build an architectural
capability to support them. If the features are added in multiple different locations
of the code, the system will lose conceptual integrity. Refactoring regularly keeps
the system healthy. [16]

Testing. In a traditional software development where implementation is done
single module at a time, there are numerous types of testing used. There are for ex-
ample unit testing, system testing, integration testing and acceptance testing used.

4. Improving Quality in Software Startup Project 35

The purpose of testing is to check that the intention behind the design is achieved
and the system does what the customers want it to. In LSD, the development is
done by implementing entire features instead of single modules, so the distinction
between the different kinds of testing is more artificial. Instead, testing is divided
into two parts: developer tests and customer tests. Developer tests are testing that
the implemented features work as intended and that all the pieces work together.
Customer tests are developed to verify that the system does what customers ex-
pect. [16]

Tests act in several different roles in the development process. First, they present
the exact functioning that the features are supposed to have. Second, they also sup-
ply information on whether the features actually work as supposed. Third, tests act
as a scaffolding which provides support for tools such as refactoring. This allows the
developers to make changes during the development. Fourth, after the development
is done, the tests provide a representation of how the system was built. Finally,
developing sufficient tests for all systems in production, making changes to these
systems can be verified by running the tests for all related applications. [16]

Tests can also work as a tool for communication. Customer tests can be written
within the conversation with the customer about details of desired functionality.
This way the tests can give the most accurate description of how the features should
work for a customer. Likewise, developers can document the planned design by
writing tests testing exactly what the design should do. There are other tools
allowing the communication before the code is written, but there is no substitute
for testing whether the system does what it is supposed to do. With this in mind,
using tests for both tasks can be beneficial. [16]

Receiving immediate feedback about the correct operation of code is important to
a developer. The developer usually somehow tests the code as soon as its written, so
the test could be captured as a written test allowing the reuse. Another opportunity
to catch necessary experiments as tests is the review to customer within an iteration.
Demonstrating the current system to a customer can be done with a set of demos
or scripts, which can be captured as customer tests. These captured tests should be
run as often as possible, so the team should ensure that the tests will not take too
much time and are automated as much as possible. [16]

Using automated testing with extensive test suites for both developer testing and
customer testing can be an efficient way to implement scaffolding to support the
development. The scaffolding is a structure supporting the developers when they
are making major changes to the system. While developing software in iterations,
refactoring and other tools will include changes, which tend to have unintended
effects. Having these effects in the system without the scaffolding provided by
automatic tests can be an unsustainable situation. Often it may seem that writing

4. Improving Quality in Software Startup Project 36

tests slows down the development, but it pays back both during development and
over the systems life cycle. [16]

4.3.2 Empower the Team

Lean thinking emphasized the importance of intelligent, disciplined and motivated
frontline workers. In LSD, it is believed that the critical factor in motivation is
empowerment. This means moving the decisions to the lowest possible level in the
organization while assuring that those people have the ability and resources to decide
wisely. [16]

Motivation. 3M is a company which is regularly meeting its goal that 30% of
each divisions sales is generated by products introduced in the last 4 years. This
stream of new products has been keeping the company continually renewed for over
75 years. In the core of the company is a formula that allows the entrepreneurial
spirit prosper. This vision includes that the heart of the company consists of small,
self-organizing groups who are passionate about a possibility and are allowed to
realize the possibility. This kind of invention forms a company which evolves from
the creativity of the individual employees rather than from the planning of man-
agers. [16]

In the book Lean Software Development, roots of motivation are described as
follows: "Insintric motivation comes from the work we do, from pride in workman-
ship and a sens of helping a customer." Intrinsic motivation is specifically strong
in a team which has a commitment for reaching towards a purpose the team cares
about. [16]

The sense of purpose can be achieved with several ways. In the beginning, there
should be a clear and compelling purpose. This compelling purpose brings commit-
ment and passion for bringing out the product. The purpose should be achievable.
It should be made sure that the team has the capability and resources required for
accomplishing the goal within itself. The team should be able to access the cus-
tomers. Communicating with real customers can help understanding the purpose
and also give insight into their individual work. [16]

The team should make its own commitments. The amount of work fitting into
the iteration should be a call made by the team. Commitment in a team is a
commitment to each other. Managements role is to remove interference. A leader
does not need to tell a motivated team what to do, but listen for how the team could
advise the leader. This helps the leader to remove obstacles and thus maintaining
the momentum of the team. The team should not have skeptics around, because
people who know plenty of reasons why things cannot be done, can kill the purpose
really fast. [16]

There are four building blocks of motivation. First, a feeling of belonging can

4. Improving Quality in Software Startup Project 37

be achieved in a team where members are equal and respect each other. Having
winners and losers created in the team can seriously harm the feeling of belonging.
Second, feeling of safety is about the atmosphere of making mistakes. Tolerating no
mistakes will kill all initiative as in creative processes tolerance of mistakes cannot
be zero. Third, a sense of competence comes from success in challenges, positive
feedback, knowledge and skill. In addition, a good leader must justify that the team
is on a right track and having the resources needed to be successful. Finally, sense
of progress will be maintained when the team has the feeling of accomplishment.
Developing software in iterations is supporting this feeling as in every iteration the
team gets to put its work in front of the customer for feedback. [16]

There are some downsides in passionate attitude towards a purpose. First, long
working days and nights can be productive for a some time, but they are not a
part of sustainable working culture. Second, different levels of passion are to be
found inside teams. This means that there is a risk that the members of a team are
expected to work long days. It is not fair for those not choosing them voluntarily
and this can affect the spirit inside the team. [16]

Leadership. Innovative teams at 3M are led by a passionate leader called "prod-
uct champion". This leader is usually the person behind the initial product concept.
Getting support from the management and forming the team are also in most cases
done by this leader. The leader is supposed to represent the customer by interpreting
the product vision to the team. In Toyota, there is a similar position called "chief
engineer". He has complete responsibility for the vehicle and the power to make all
the decisions. It is common in these positions that the product is named after the
bearer of this position. Another similarity between these companies is that these
leaders do not have direct authority over the people working in the team. They are
the leaders of their teams, not managers. In LSD, these respected leaders are called
"master developers". [16]

The position of a master developer is not usually designated, but it is emerged. It
is not necessary that there is a known master developer in the beginning of a project.
A person with deep experience and understanding on both technical and customer
issues usually rises to this position. Master developer is part of the team working
towards the purpose and empowering the team. Architects and other advisory roles
are not likely in a role of master developer, because they are not a part of the
team. [16]

Expertise. In software development, there are two major areas of expertise:
technical knowledge and domain knowledge. Technical knowledge creates experts
in areas such as database administration, user interface design and embedded code.
Domain knowledge includes understanding of the domain of the business, for exam-
ple health-care or security. [16]

4. Improving Quality in Software Startup Project 38

Expertise in different areas evolves best in communities of expertise, where people
responsible for same kind of activities meet. A traditional method of developing
these communities inside a company is to divide the company into functions by
core competence. These functions can include program leaders guiding the teams in
product development. This structure is called a matrix organization. [16]

In a successful matrix organization the two managers each person has, view their
jobs correctly. Functional managers should act as mentors and teachers. They
should supply the inexperienced members of the team with support and coaching
through progressive series of assignments. Value adding managers should view their
jobs as enablers and motivators who remove impediments and supply resources to
the team. [16]

Companies not using matrix organization should also preserve communities of
expertise. These communities can be gathered by identifying the areas of compe-
tence in both technical and domain knowledge. The members in formed communi-
ties should be available for communication and information sharing using repetitive
meetings or other media reaching everyone in the community. If the amount of
experts in a critical area is not sufficient for forming internal community, external
communities are usually available for support in the expertise. [16]

4.3.3 Activities

The Lean Software Development focuses on building integrity in and doing the
development in short iterations with continuous validation. These guidelines try
to assure high quality more as preventing the defects from incurring than finding
and repairing the defects after their occurrence. Traditional quality assurance does
not fit to startup environment as is, but the principles behind the activities can be
applied.

Defect prevention. Traditional defect prevention activities can be applied in
Lean Software Development. Agile approach and embedded users can support the
iterative development and observing of the customers. Test Driven Development can
help in achieving integrity, using tools such as refactoring and testing as a whole.
Static analysis can prevent defects in the code and it should be used in modern
software development where ever possible.

Pretest. Activities used in pretest defect removal were studied and presented by
Capers Jones in The Economics of Software Quality. The study was done to small
software projects, which were defined as an application below 1000 function points
or 50000 statements in a Java-like language. This applications were developed by a
team of under six developers. The results of the study divided the defects found by
the origin of defect and the activity it was found with. Defect origins distinguished
were requirements, design, code and documentation. Used activities were personal

4. Improving Quality in Software Startup Project 39

Figure 4.1: Efficiency of pretest defect prevention

desk checking, Scrum sessions, client reviews of specifications, informal peer reviews
and static analysis of source code. The results show that over half of the defects
were found from the code. The most effective activity for finding the defects prior
to testing was static analysis. Considering the almost automatic nature of static
analysis, it can be seen as a predictable result. The results presented in Figure 4.1
can aid in choosing the pretest defect removal activities.[11]

Using these pretest defect removal methods can be beneficial also when doing
LSD. Personal Desk Checking can help when trying to write clean code and when
reaching for conceptual integrity. Informal Peer Reviews can be a powerful tool
supporting things such as clean code, conceptual integrity and refactoring. Also
empowering the team can be done with peer reviews, because the reviews can in-
clude elements raising motivation, strengthening leadership and improving expertise.
Client reviews of specifications can support in achieving perceived integrity and get-
ting overall understanding of the customer’s needs. Scrum sessions are a natural
part of iterative development.

Testing. Using traditional testing methods in startup environment is a topic
which has to be planned per project. As LSD divides testing in developer and
customer tests, each project has to decide which of the traditional methods of testing
have the best result when applied. Plain unit testing and subroutine testing can
be relevant in some situations, but the use of excessive unit testing in pursuit for
full test coverage can be waste of time and resources. In startup environment,
the development is usually done as a cross-application development covering full
features. In this kind of development the testing should be focused on testing the

4. Improving Quality in Software Startup Project 40

application as a whole. Though, testing single parts of the application can be useful
and even necessary depending on the software.

4.4 Things To Avoid

When aiming for satisfactory quality, one common mistake is to put the effort avail-
able on wrong target. Lean methodology appoints this as waste and seeks to elim-
inate it. Mary and Tom Poppendieck have interpreted waste in LSD as anything
that does not add value or "anything that interferes with giving customers what
they value at the time". Some main forms of waste highlighted in their book are
partially done work, "churn" and extra features. Partially done work can get ob-
solete, hide quality problems and ties up money. Churn means excessive amounts
of unproductive work. Churn can include requirements churn, churn in testing long
after coding or churn created by delayed integration. These software development
churns are usually associated to large inventories of partially done work. Finally,
extra features are a major factor in increasing the cost of development. In the book
there is an estimate that two-thirds of all features and functions of typical software
are only rarely used. These features just increase the complexity of the code. [15]

A typical activity in quality assurance is the use of defect tracking system. Found
defects are reported in this system, where they are stored until a developer takes
them under work. The use of these trackers assumes that the time of discovering the
defect is prior to the repair of the defect. Tom And Mary Poppendieck mention that
Shigeo Shingo has divided inspections in two: inspections after defects occur and
inspections to prevent defects. Reaching for quality means controlling the conditions
to not allow the emerging of defects. Thus the usage of defect tracking systems can
be seen as a source of waste consisting of partially done work. [15]

Lisa Crispin considers the topic of using defect tracking systems in agile devel-
opment in her article based on her presentation in STAREAST conference. She
introduces a well-tried practice for handling with defects: immediately after a bug
is identified, an automated test is written, the bug is fixed, and both the fix and the
test are pushed to repository. With this approach, the tests are instantly written
so that they catch the defects if they reappear later and the tests also document
the bug. Also when this "fix and forget" approach is used, there should be no need
for tracking the defects. Crispin also reminds that using a defect tracking system is
not a good way to communicate the defects and it can even get in the way of direct
communication. Defects recorded in the tracking system can often suffer from poor
and inadequate descriptions. Also the tracking system can be polluted with invalid
defects which are never going to be repaired because of their low priorities or their
location inside a module waiting for rewrite. [5]

4. Improving Quality in Software Startup Project 41

4.5 Software Quality in Futurice

Futurice is a lean service creation company founded in Finland. There are currently
around 200 employees in four offices located in three countries. The employees of the
company are passionate multi-talents in areas from technology, business consultancy
and service design. [7]

Futurice does not have strict processes or common practices in quality assurance.
The main idea present in all activities in the company is that smart people make
smart decisions. With software quality, this means that the developers and other
members of the project teams are able to decide their own approach to software
quality. This freedom of choice leads to experimentation of multiple activities and
practices, from which the good and bad experiences can be shared with others. Some
practices of course become more common than others, but the use of those is not
forced in any way. A common way of executing projects is to use methodologies
from Lean and Agile software development.

In the core of Futurice, is communication and transparency. All the decisions
and experiences are available for everyone and this brings the possibility to make
decisions to every employee in the company. There are also informal communities
built for areas of interests, such as mobile development and web development. These
communities have recurring events where experiences are shared.

For the longer-term projects there is a separate team named Life Cycle Manage-
ment team. Members from this team are present in a project from the beginning
and they live through the product’s life cycle participating in the development and
maintenance of the product. This ensures that there is a solid amount of experience
present in the team from the beginning of the project to the post-release phases.

42

5. CASE: PÄIKKY

This chapter presents phases from a project done before the writing of this thesis.
The execution of the project was done with no intention of it being a part of a
thesis work. All the data shown here are gathered afterwards and thus do not meet
the requirements of a proper scientific study. The project is presented here as an
example project of a small budget startup. Section 5.1 describes the objectives and
starting point of the project. Section 5.2 introduces the execution of the phases in
detail. Section 5.3 describes the methods used for improving quality in the project.
Section 5.4 evaluates the quality achieved in the project based on the interviews of
the project team and customer.

5.1 Project objectives

The project was built on an idea from MukavaIT. The big picture and the goals
of the project were specified in advance and introduced to the developing team.
Lower level specifications and implementation details were designed in cooperation
between MukavaIT and the development team [13].

The objective of the project was to create a new kind of recording system for
kindergartens. The system would allow the tracking of the arrival, departure and
absences of the children in the groups. The main goal was to make a user-friendly
system which connects parents, employees of the kindergartens and the administra-
tive personnel in the municipality. The connection between the stakeholders would
enable the planning of the need for day care and the real-time tracking of the nurses
and children. Eventual goal of the system would be dynamic hour-based billing
models. In addition to this, the system would produce several types of reports for
administrative personnel for optimizing the daycare system.

The most important functionality of the system would be that nurses are able
to record the presences of the children with mobile devices. The records will be
collected to a database serving different services for nurses, parents and administra-
tive personnel in the kindergartens. The services would include a mobile client for
nurses, a desktop client for parents and another desktop client for administrative
personnel. A common goal in which these clients are aimed at, is to bring the day-
care system towards a genuinely transparent process, which encourages the parents
to participate more in the early childhood education.

5. Case: Päikky 43

During the development, a better understanding of the market was achieved. It
was learned that reaching towards the hour-based billing models and the report
generation was not as necessary as it first seemed. The stakeholders became in-
terested already as the first version of the system was released into pilot use. The
features that allowed the parents to communicate with the nurses were something
the parents were excited of. In addition, the recording and checking the presences,
communicating with the parents and storing the information about the children all
in the same system were inspirational for the nurses.

This understanding of the market was not present when deciding the priorities
of the upcoming features, so some of the effort put to reporting and other features
could have been allocated to more appealing features.

5.2 Project Execution

The project was divided into multiple phases. In the scope of this thesis, five phases
are observed. Each of the phases had predefined objectives and a time frame. The
project was executed using agile practices, so the phases were divided in sprints
lasting usually a week. A weekly session, with both the development team and the
customers present, was arranged in where the previous sprint was reviewed and the
next sprint was planned. The contents of the sprints and the backlog were managed
with Pivotal Tracker, a tool for agile project management.

The development team consisted of a few developers, a user experience and design
specialist and a project manager. The size and structure of the development team
stayed rather consistent, but the individuals belonging to the team were changed
several times during the project. Also the pace of the development varied somewhat
between the phases.

In the description of each of the phases, the amount of functionality is approx-
imated by using a conversion from the amount of source code lines to function
points [8]. The user interface is implemented with web technologies, so the amount
of Javascript code is used. For the backend, the implementation language is Groovy,
which is assumed to be close to Java in function points.

Phase one. The feature content of the first phase included the implementation
of the mobile client and administration interface. The mobile client was for recording
the presences of the children and the nurses. The administration interface included
the principal editing of kindergartens, care groups, children and nurses.

The phase lasted 87 calendar days and the team in the first phase consisted of
three developers, a UX specialist and a project manager. Budget of the phase was
26% of the total budget of the five stages presented here. The phase included 101
new features registered in the Pivotal Tracker. 17 bugs were found during this phase.
New source code were introduced worth of 130 function points.

5. Case: Päikky 44

In the first phase, the project quality was affected by the introduction of the
continuous integration environment and a user interface testing framework. The
continuous integration was handled with a product called Bamboo. It was config-
ured to track the changes in the repositories of both the mobile client and the desktop
client. Whenever a change was pushed into the repository, the continuous integra-
tion system would run the tests and update the testing environment. In addition,
Bamboo could update the production server by running the job manually. Testing
of the mobile client was started with a small set of tests running with CasperJS.

Phases two and three. These two phases shared some goals so they are merged
in the project records. During these phases, the development targets were in the
communication, planning and administration. Communication between the kinder-
garten and children’s home was implemented to the mobile client and the desktop
client for the parents. For the parents, a tool for planning the future presences of
the children was implemented. These presences were intended to help the personnel
of the kindergarten plan the future shifts of the nurses. The last big feature for
these phases was a desktop client for the administrative personnel of the munici-
pality. This manager client for the kindergarten management included features for
browsing and editing the kindergarten information, including the information about
the children and the nurses. In addition, this manager client could generate reports
describing the recent history of the kindergarten.

Phases two and three took 105 calendar days in total. At the beginning of the
phase two, the team consisted of two developers, a UX specialist and a project
manager. After a one third of the period, a third developer was included in the
team. These two phases took approximately 56% of the total budget. According
to the Pivotal Tracker, 69 new features were implemented and 2 bugs were fixed.
New source code was introduced worth of 285 function points, totaling 415 function
points for the project so far.

During these phases, the quality of the project shifted in different directions. A
staging server environment identical to the production server was created. The stag-
ing server was integrated with the continuous integration server. The staging server
had two purposes: the customer could demonstrate the application to potential
customers and some system testing could be done in the staging server.

In addition to the introduction of the staging server, the quality of the project
was affected by problems with testing. Testing the user interfaces of the application
became an issue, which eventually lead to total disabling of the user interface tests.
The issues were related to gradually degrading tests, which in the end impeded the
usage of the continuous integration environment.

Phase four. In the fourth phase the main goal was to implement the support
for the features and APIs for family daycare. These included several exceptions to

5. Case: Päikky 45

the ordinary kindergarten operation, for example calculating the compensation of
expenses for the care provider.

The time frame for the fourth phase was 40 calendar days. The team included
two full-time developers, one part-time developer, a UX specialist available when
needed and a project manager. The budget of the fourth phase took only 6% of the
total budget. The history data from Pivotal Tracker reveals 8 features and 3 bugs
for this phase. The amount of source code raised by 50 function points to a total of
475 function points.

No major changes to the quality aspects of the project in the fourth phase. User
interface tests were kept disabled and testing of the new features was handled man-
ually.

Phase five. In the fifth phase, the main focus was in refactoring some critical
parts of the application. The most important targets for this was the implementation
of presence markings and handling of time zones. In addition, some refactoring was
done to others parts and some new features were implemented.

The fifth phase lasted 32 calendar days. The budget for this phase was around
12% of the total budget. Three developers, an on-demand UX specialist and a part-
time project manager aggregated the team for this phase. Pivotal Tracker contains
5 features and one bug allocated for this phase. The veracity of these numbers can
be questioned and it is possible that the usage of the tracker was neglected with the
work done in refactoring the existing implementations. A total of 25 function points
were implemented as new source code and after this phase the total function points
reached an even 500 function points.

Some major refactoring tasks of the application were done in this phase, so the
structure of the application was improved. Thus the overall quality of the application
should have became higher.

5.3 Quality Assurance in the Project

Quality assurance in the Päikky project was not formally specified or planned be-
forehand. Methods and processes were selected primarily by individual developers
and talked through with the whole team. Methods and tools were taken to use when
necessary.

Agile development. The project was executed with agile approach. The de-
velopment was done in a week long sprints, which included a weekly review and
planning session. The customer representatives were present in the weekly meet-
ings. This enabled that the implementation of the features in the finished sprint
could be assessed against the understanding of the customer.

Static analysis. The development of the application was mostly done by using
some integrated development environment (IDE), although some of the developers

5. Case: Päikky 46

involved in the development used only a source code editor without any intelligent
features. These modern IDEs provide automatic tools for running continuous static
analysis of source code. Using this kind of static analysis tool can prevent some
defects from getting into the application.

Peer reviews. With some parts of the application, ad hoc informal peer re-
view sessions were used. These reviews were done in situations where the developer
responsible for the implementation of a component had questions about the imple-
mentation details. In these brief discussions, parts of the code and thoughts about
the implementation were reviewed by another developer. The end result of these
session would usually be either an actual decision about the implementation or a
joint decision that these details must be discussed with the whole development team
or with the customer.

Testing. During the project, testing was one of the most problematic forms
of quality assurance. In the beginning of the project, all the testing was done
manually by using the system via the user interface. The effort for implementing the
automatic tests were postponed in favor of the development of new features. Some
critical features in the backend were tested with integration tests and a set of user
interface tests were implemented during the first two phases of the project. However,
in later phases the user interface tests were disabled because of the problems with
the test runner. Alternative options for test runner were investigated, but no good
enough solution was found with the effort put into the studies. Also the amount of
integration tests did not increase at the same pace as the number of critical features.
The attitude towards testing was not neglecting, but the amount of new features to
implement did depress the allocation of effort on the testing.

5.4 Achieved Quality in The Project

The quality achieved in the project was evaluated by interpreting the views and
opinions of the product stakeholders. A separate informal interview sessions were
arranged with the development team, project manager and the customer represen-
tatives. In addition, notes from a retrospective session after the fifth phase were
considered.

5.4.1 Development Team

The overall feeling of the development team was that there should have been more
effort put into the quality assurance during the project. The actual development
suffered from the lack of effort put into the quality aspects. The shortage of testing
and other methods of quality assurance seemed to affect negatively more and more
as the project advanced.

5. Case: Päikky 47

Testing. Testing was one of the most important themes brought up in the
interviews with the development team. In the beginning of the project, testing was
taken into consideration and some effort was put into bringing testing tools in use.
Testing tools for testing both the backend and frontend were studied and selected.
Some tests for testing the most critical features in the backend were written through
the whole project. For the frontend, only a few tests were written and the execution
of those tests were unstable from the day one. The final setback for the frontend
tests was got when the chosen test runner began to freeze during the execution of
the tests.

Biggest problems with testing was that there were no common practices or clear
allocation of effort to the writing of the test cases. According to the understanding
of the development team, there were defects present that could have been prevented
with proper tests. The general feeling was that putting more effort to testing would
have helped save time and money.

Proposals for improving testing suggest that in the first place, the infrastructure
for the testing should be repaired. The test runners should execute the tests reliably
and the tests should be run in the CI environment. In addition to fixing the tools,
the team and the customer should agree on a common practice for systematically
testing both frontend and the backend of the system.

Effort distribution. Another wider issue mentioned by the development team
was the distribution of effort between the quality assurance, bug fixes and new fea-
ture development. From the developers point of view, new features were prioritized
too high and the velocity was kept too fast. In this constant hurry, some of the im-
plementation details had to include shortcuts. These shortcuts led easily to taking
technical debt and even to defects.

Another problematic topic with effort distribution was the lack of separation
between further development of features and the maintenance of the system in pro-
duction. Most of the time, at least in later phases, the discovery of a defect could
lead to an interruption for one or more of the developers. This affected the perfor-
mance of the developers, because the simultaneous work on the new features and the
running system meant that the developers faced multiple context switches during
the ordinary work.

Opinions for improving the situation included using more effort to quality related
activities, including planning, documenting, implementing and testing the features.
Allocating more effort to these topics would have first led into a slower pace of
delivery with new features. In the long run though, it could have helped keep up the
average delivery times of new features. Moreover, with this approach the structural
quality could have been better. With better structural quality, the amount of defects
and the work required to repair defects could have been lower.

5. Case: Päikky 48

The maintenance of the running system could have also been done better. Us-
ing dedicated personnel for the defect repairs would have disengaged the developers
implementing the new features, so the focus could have been kept in the implemen-
tation. Also a more flexible prioritization of the defect repairs may have had allowed
more efficiency in working while still keeping the defect repair schedules sufficient.

Shortcuts. Taking shortcuts and making compromises in planning and imple-
menting the features was seen somewhat necessary in this kind of project. There
was a constant uncertainty of the requirements and expectations of the end users,
which caused a need for experimenting with the features.

A problem with these shortcuts was that the causes and existence of these were
easily forgotten. As a consequence, the estimates of the tasks were easily skewed
and the expectations from the features often lacked the facts caused from these
compromises. In most cases there would have been a clear demand on refactoring
the implementation, but frequently the refactoring was forgotten or left out because
of the need for quick delivery of new features.

There were no clear opinions on how to improve this, but there seemed to be a
shared concern on the lack of refactoring the structure. The general feeling was that
using more time on planning and implementing the features would have prevented
many problems from occurring. Also the pace of implementing the features seemed
to slow down in time, which was seen as an outcome of the poor structure. Proper
restructuring could have solved this slowdown.

Common practices. There were virtually no forced processes in the develop-
ment used. The development team found that this partially led to careless behavior
in the project. In particular, mutually agreed ground rules about coding practices
were wanted. Ideally these rules would act as guidelines for the development and
not as a bureaucratic burden.

These practices could include things like a proper definition of done, guidelines for
code style and other practices now having differentiated styles among the developers.
In addition to helping keep the code uniform, these guidelines would help new and
inexperienced developers to become familiar of the practices used by others.

Also one practice in particular was mentioned several times: informal reviews
or inspections of each others code. There was some concern about giving negative
feedback to other developers. As an improvement to this, there was a suggestion
that a mutual agreement would be required that every member of the team would
agree to receive both positive and negative feedback, without finding it offensive.
Reviews could be done with pull requests or other lightweight tool for automatic
reviews.

Communication. In the beginning of the project, good communication helped
to achieve good quality of the specifications and delivered features. As the project

5. Case: Päikky 49

progressed, communication between the development team and customer was gradu-
ally degraded. Later on, communication inside the team was also weakened because
a few of the developers were part-time employees with separate working days.

There were no actual proposals for improving the communication between the
team and customer. Also no solutions were presented for solving the communica-
tional challenges when working with part-time employees.

5.4.2 Customer and End Users

The main tone in the interview with the customer representative was that the real-
ized quality in the project was close to what the customer had expected. Although
there were no clear problems with the quality mentioned, the need for improving
the application quality in the future was acknowledged.

Overall quality. The customer was generally quite satisfied with the achieved
quality in the phases one to five. It was evident that some problems were present in
the project, but the approach had been in emphasizing the effort put to the delivery
of new features. The customers viewpoint was that implementing and delivering
new features would open opportunities for obtaining new end customers for their
product. Using less effort on testing and other quality assurance, the team would
produce new features more quickly and that in turn would eventually lead to more
revenue.

The success of using this approach was proven by the feedback from the end users:
the end users expressed interest in the system and were excited of the possibilities it
could provide. The end users were satisfied with the system regardless of the quality
issues which reached the end users. There was an assumption that, for the end users,
the main interests regarding quality would be simplicity, logic and usability of the
user interfaces. This seemed to be correct.

Causes of problems. It was seen that the fast pace of development and the low
focus on quality aspects in the earlier phases were boomeranging to the later phases.
Many of the large problems being fixed in the later phases could be traced back to
the shortcuts done before. These were partially caused by the loose specification of
the features and the regression formed by the new feature implementation. Some
gaps in the specifications were partially consciously taken risks, as all the time spent
specifying features and having meetings cost money.

Some reference was given towards the changes in the team personnel. Some de-
fects caused by regression could have been avoided if the developers implementing
new features would have been familiar with the implementation of the existing fea-
tures. The customers view on this lack of sufficient specification was that a constant
communication about these ambiguities should have corrected most of the issues
with understanding.

5. Case: Päikky 50

Some mistakes were made during the project, which could have been done differ-
ently. In the manager client meant for the kindergarten management, not enough
attention was put into the things the end users cared the most: simplicity, logic and
usability. The manager client was implemented quickly without a proper knowledge
of the actual usage it was going to.

Another clear mistake was the effort put to generating automatic reports for the
kindergarten personnel. After the feature was delivered, the end users expressed
that they preferred to export the data to an external spreadsheet software. The
effort put to this feature could have been saved and put into more efficient use.
Eventually these generated reports are going to be implemented more properly, so
the effort was not entirely wasted.

Practices. Some practices the customer was satisfied with were in the area of
communication. The weekly meetings were mentioned as an important part of the
development. Most importantly, in these meetings the whole team should agree on
what tasks are to be done in the following sprint. Also the tasks would be discussed
through to assure that everyone in the team would understand the principles of the
features.

In addition to the weekly meetings, communication through the digital channels
were mentioned as a good practice. However, the customers view was that there
could have been even more communication. The customers thoughts on this were
that the development team probably would not want any more interruptions on
their daily work, so the situation could have been in balance after all.

Areas in need for improvement. There were three topics the customer men-
tions that probably had room for improvement. First, more testing should have been
executed using the data from production environment. Some testing had successive
results when executed in either development or testing environment, but still some
issues were found in production environment. The data from the production should
have been duplicated to the environments the test were executed in.

Second, the migrations to the database should have been tested more thoroughly.
There were some issues caused by the multiple migrations done to the production
database. The customers opinion was that these issues could have been avoided by
using the actual production data for testing the migration.

Third, the customer thinks there could have been more testing in cooperation
with the development team. By testing together with the customer, the development
team could have acquired deeper understanding on the requirements of the customer
and end users.

5. Case: Päikky 51

5.4.3 Discussion

The opinions of the developers differed clearly from the views of the customer and
end users. It appears that the attitude towards software quality differs between these
groups of stakeholders. Achieving a good balance between assuring good quality and
implementing new features can be crucial in building a new product. The customer
was confident that in this project, the balance was quite good.

In spite of having many negative observations about the quality of the project,
the success of the application so far has been good. The customer has gotten several
new clients with pleased end users, which matters more than the perceived quality
in the project. As there was no single big issue impairing the quality of the project,
fixing multiple issues would have taken significant effort. With this effort, the pace
of delivering new features could have been compromised. Using more effort on
testing could have prevented some defects, but as some of the defects were caused
by incomplete specifications, there would have been defects present after proper
testing. In any case, some of the problems with quality were caused by the lack of
time of the customer, so perfect quality could not be reached.

An estimate about the sufficient quality achieved in the project was that having
a team of developers with high motivation and a desire of being proud of their own
work will produce decent quality for the resources in use.

52

6. CONCLUSIONS

In this thesis, quality improvement in a software startup environment was studied.
Startup environment was examined from the viewpoint of Lean Startup method-
ology. Software quality was described both in traditional sense and in a software
startup context. Thesis defined and evaluated software improvement methods and
activities that were then linked into the startup environment and its view of software
quality.

A case project was also presented by describing its execution and phases in detail.
Also the quality improvement methods used in the project were described. Quality
achieved in the project was assessed with the data from interviews with both the
development team and customers. These opinions were summarized for a view to
overall quality. Some suggestions were also made for improving the quality and the
development processes in the future.

Improving quality in a software startup development emphasizes the importance
of defect prevention over defect removal. This is common with traditional software
development. In traditional software development though, the effort put to defect
removal activities and testing has larger share of total effort than in startup environ-
ment. Another difference between these two environments is that in modern startup
environment, the development is usually done in short iterations. The patterns in
traditional development are not applicable in this kind of development as such, but
the activities can be applied by adjusting them for use in short iterations. These
patterns also usually require too much effort for a startup environment.

When traditional quality improvement has more focus on the technical aspects,
methodologies of modern software development quality focus on the people and
processes of development. Both the team and individuals are considered important
and the emphasis is on the motivation, expertise and leadership of the personnel.
The development should include plenty of communication and the team should have
all the resources and authority to make all the important decisions. The technical
aspects to consider in software startups are the integrity of the product and the
iterative development containing constant improvement.

In the future, topics regarding the human aspects of the development could be
further researched. Building a motivating environment which embraces expertise
and leadership seem to improve the efficiency of the team and eventually raise the

6. Conclusions 53

quality of the software developed. In the further work the effect of these human
factors could be examined in real projects. This examination could include good
practices used in successful projects and pitfalls found in lower quality projects.

In addition, individual activities used in modern software development could be
inspected. Peer reviews and other means improving communication are widely used.
In an experienced team with skilled professionals, communication acts an important
part in achieving high quality. In addition, consistently more automatic tools aiding
the development are used, which should make reaching high quality easier. The
usage of these activities and processes in a successful startup environment could be
an interesting topic for a research.

54

REFERENCES

[1] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,
2003.

[2] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mel-
lor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for
agile software development. [WWW]. [accessed at .1].2014. Available at:
http://www.agilemanifesto.org/, 2001.

[3] Steve Blank. What’s a startup? First principles. [WWW]. [accessed at
26.12.2013]. Available at: http://steveblank.com/2010/01/25/whats-a-startup-
first-principles/.

[4] K.B. Clark and T. Fujimoto. Product Development Performance: Strategy,
Organization, and Management in the World Auto Industry. Harvard Business
School Press, 1991.

[5] Lisa Crispin. Stareast: Agile testing and defect track-
ing. [WWW]. [accessed at 29.3.2014]. Available at:
http://searchsoftwarequality.techtarget.com/tip/STAREAST-Agile-testing-
and-defect-tracking.

[6] P.B. Crosby. Quality is free: the art of making quality certain. Mentor executive
library. New American Library, 1980.

[7] Futurice. Futurice - Fact sheet. [WWW]. [accessed at 28.3.2014]. Avail-
able at: http://www.futurice.com/wp-content/uploads/2014/02/Fact-Sheet-
English2.pdf.

[8] Quantitative Software Management Inc. Function point lan-
guages table. [WWW]. [accessed at 12.3.2014]. Available at:
http://www.qsm.com/resources/function-point-languages-table.

[9] ISO 25010. Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models.
ISO, Geneva, Switzerland, 2011.

[10] ISO 9126. Software engineering – Product quality – Part 1: Quality model. ISO,
Geneva, Switzerland, 2001.

REFERENCES 55

[11] C. Jones, O. Bonsignour, and J. Subramanyam. The Economics of Software
Quality. Addison-Wesley, 2011.

[12] R.C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pear-
son Education, 2008.

[13] mukavaIT Oy. mukavait - mukavaa päivää. [WWW]. [accessed at 20.5.2016].
Available at: http://www.mukavait.fi/.

[14] Campion College O’Neil Hibbert. Desk check guide.

[15] M. Poppendieck and T. Poppendieck. Implementing Lean Software Develop-
ment: From Concept to Cash. Addison-Wesley Signature Series (Beck). Pearson
Education, 2006.

[16] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An
Agile Toolkit. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[17] Roelof Reitsma. Software has a new quality standard:
ISO 25010. [WWW]. [accessed at 27.11.2013]. Available at:
http://ryreitsma.blogspot.fi/2011/07/software-has-new-quality-model-
iso.html.

[18] E. Ries. The Lean Startup: How Today’s Entrepreneurs Use Continuous In-
novation to Create Radically Successful Businesses. The Lean Startup: How
Today’s Entrepreneurs Use Continuous Innovation to Create Radically Success-
ful Businesses. Crown Business, 2011.

[19] American society for quality. Quality glossary. [WWW]. [accessed at
23].11.2013. Available at: http://asq.org/glossary/q.html.

	Introduction
	Background
	Software Quality
	Motivation
	Software Quality Defined

	Startup
	Lean Startup
	Life Cycle in Lean Startup

	Improving Software Quality
	Quality Improvement Across the Life Cycle
	Preventing defects
	Formal Inspections
	Static Analysis
	Test-Driven Development
	Agile Approach

	Pretest Defect Removal
	Personal Desk Checking
	Client Reviews of Specification
	Peer Reviews
	Scrum Sessions

	Testing
	Subroutine Testing
	Unit Testing
	New Function Testing
	Regression Testing
	Integration Testing
	System Testing
	Agile Testing

	Post Release
	Latent defects
	Defect severity levels
	Maintainability

	Improving Quality in Software Startup Project
	Quality in a Startup project
	Foundations of high quality
	Clean code
	Integrity

	Aiming at high quality
	Build Integrity In
	Empower the Team
	Activities

	Things To Avoid
	Software Quality in Futurice

	Case: Päikky
	Project objectives
	Project Execution
	Quality Assurance in the Project
	Achieved Quality in The Project
	Development Team
	Customer and End Users
	Discussion

	Conclusions

