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ABSTRACT 
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Major: Digital Transmission 
Examiners: Professor Mikko Valkama, Professor Markku Renfors 
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The versatile nature of modern wireless communications and on the other hand the push 

towards cost-efficiency, have created a demand for flexible radio transceivers. In addi-

tion, size and power consumption are critical for mobile solutions, thus setting their own 

demands for the circuitry. Traditionally in such architectures, the analog-to-digital con-

verter has been seen as a performance bottleneck, limiting the possibilities to harness 

the full potential of the available digital signal processing techniques and algorithms. 

Therefore, analog-to-digital conversion based on a quadrature Σ∆ modulator noise shap-

ing has been brought in as a promising possibility. More efficient noise shaping and bet-

ter suitability for modern receivers applying complex signal processing principles al-

ready, compared to real counterpart make the quadrature converter particularly interest-

ing choice. 

This thesis discusses the main principles of quadrature Σ∆ converter and related signal 

modeling. In addition to understanding the basic operation, it is crucial to understand 

the implementation related nonidealities, which can’t be avoided in any true circuit. One 

of the most important phenomena in this field, concerning the in-phase/quadrature 

processing in the transceivers, is the nonideal matching of the components on the two 

rails. Thus, the latter part of the thesis gives a detailed analysis on the mismatch prob-

lem in quadrature Σ∆ converters. Thereafter, the analysis is confirmed by computer si-

mulations. 

Finally, it is shown that the mismatch mentioned above is a real concern, especially un-

der the influence of a mirror frequency blocking signal. This might very well be the case 

in a wideband radio receiver with reduced analog selectivity. On the other hand, the 

analysis shows that educated design of the signal transfer function can be efficiently 

used to mitigate the interference originating from the mirror frequency in case of mis-

match in the complex feedback branch of the modulator. In this way, the generated dis-

tortion can be reduced without any additional electronics, which would compromise 

cost-efficiency and other demands. Additionally, it is pointed out that independent fre-

quency domain mirroring of the noise and the signal component sets challenges for tra-

ditional compensation algorithms. Thus, there is a call for innovative ideas to mitigate 

the mirror frequency distortion in quadrature Σ∆ modulators via digital signal 

processing. In this way the cost-efficiency, power consumption and size requirements 

wouldn’t be jeopardized due to additional electronics. 
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Nykyaikaisen langattoman tiedonsiirron monimuotoisuus, ja toisaalta tarve kustannus-

tehokkuuteen, ovat luoneet tarpeen joustaville radiolähetin-vastaanottimille. Mobiilipää-

telaitteissa myös koko ja virrankulutus ovat tärkeässä asemassa, asettaen näin omat vaa-

timuksensa laitteistolle. Tällaisissa rakenteissa analogia-digitaalimuunninten suoritus-

kykyä on pitkään pidetty pullonkaulana nykyaikaisten digitaalisten signaalinkäsittely-

tekniikoiden tarjoaman potentiaalin hyödyntämiselle. Tämän seurauksena kvadratuuri 

Σ∆-modulaattoriin perustuva analogia-digitaalimuunnos on esitetty lupaavana ratkaisu-

na. Reaaliseen rakenteeseen perustuvaa vastinetta tehokkaampi kohinanmuokkaus ja 

parempi sopivuus moderneihin kvadratuurivastaanottimiin, joissa hyödynnetään komp-

leksista signaalinkäsittelyä jo valmiiksi, tekevät muuntimesta erityisen mielenkiintoisen 

vaihtoehdon. 

Tässä diplomityössä esitellään kvadratuuri-Σ∆-muunnoksen perusperiaatteet ja siihen 

liittyvät signaalimallit. Tämän lisäksi on myös tärkeää, perustoiminnallisuuden ymmär-

tämisen lisäksi, tiedostaa todelliseen piiritoteutukseen liittyvät väistämättömät epäideaa-

lisuudet. I/Q prosessointia hyödyntävissä radiolaitteissa yksi tärkeimmistä tämän tyyp-

pisistä ilmiöistä on kahden haaran välinen epäsovitus. Tästä johtuen sovitusongelma 

kvadratuuri Σ∆ muuntimissa analysoidaan tarkasti ja tietokonesimulaatioilla varmenne-

tut tulokset esitetään tämän diplomityön loppupuolella. 

Työssä osoitetaan, että yllä mainittu epäsovitus on todellinen huolenaihe, erityisesti 

voimakkaan häiritsevän signaalin ollessa läsnä peilitaajuudella. Tällainen tilanne saattaa 

toteutua erityisesti laajakaistaisessa vastaanottimessa, jossa analogista selektiivisyyttä 

on pyritty vähentämään. Toisaalta analyysi osoittaa, että älykkäästi suunniteltu signaali-

siirtofunktio auttaa tehokkaasti poistamaan modulaattorin takaisinkytkentähaarassa si-

jaitsevan epäsovituksen aiheuttamaa häiriötä. Tällä tavoin syntynyttä vääristymää pysty-

tään vähentämään ilman ylimääräistä elektroniikkaa, jolloin kustannustehokkuudesta, 

tai muista vaatimuksista ei tarvitse tinkiä. Tämän lisäksi osoitetaan, että signaali- ja ko-

hinakomponenttien toisistaan riippumaton peilaantuminen taajuuden suhteen luo haas-

teita perinteisille korjausalgoritmeille. Näin ollen kvadratuuri-Σ∆-modulaattoreiden pei-

litaajuushäiriön hallitsemiseksi digitaalisen signaalinkäsittelyn keinoin tarvitaan uuden-

laisia innovaatioita. Tällä tavoin voitaisiin myös välttää analogisen lisäelektroniikan ai-

heuttama kustannustehokkuus-, virrankulutus- ja kokovaatimusten vaarantuminen. 
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1. INTRODUCTION 

The strongly heterogeneous and mobile nature of the modern wireless communications 

calls for flexible radio transceivers. The transmitter and the receiver should be able to 

handle several different cellular systems together with wireless local area networks and 

positioning systems. The biggest challenges are set on the mobile terminals, like cellular 

phones, where the functionalities should be implemented in small size with low power 

consumption and cheap price for the mass-market. Especially the receiver functionali-

ties should be implemented in a flexible way to ensure a smooth cross-system operation. 

These demands have encouraged the drive towards increasing the role of digital signal 

processing (DSP) in the mobile radio receivers. In this way, the analog front-end of the 

receiver could be simplified and made independent of the particular communication 

standard in use. Thus, designing multiple parallel receivers for the numerous systems 

could be avoided. [9], [11], [29], [44], [50] 

In a digital multi-system receiver, the radio frequency (RF) processing should be sim-

ple, flexible and implemented with relatively cheap electronics. The RF front-end would 

then be followed by analog-to-digital (A/D) conversion. Thereafter, rest of the 

processing and selectivity would be implemented in the digital domain. [29] The con-

version has been proposed to be done on either baseband [9], [11], [10], [29], or some 

chosen intermediate frequency (IF) [29], [61] depending on the exact architecture cho-

sen. Also direct RF-sampling based reconfigurable receiver architecture has been de-

scribed in [50]. 

In this composition, the A/D converter (ADC) has been widely considered as a perfor-

mance bottleneck. A wide frequency band, involving multiple information signals, must 

be converted with adequate precision, taking probable large fluctuations in the power 

levels of the inter-system signals into account. [29], [42], [80] These aspects will be 

highlighted in Chapter 2 of the thesis, which will first give an introduction to in-

phase/quadrature (I/Q) processing and then an overview on modern receiver architec-

tures. 



2 

One of the most promising solutions to this problem is low-IF multi-standard receiver 

with a quadrature bandpass Σ∆ ADC. [29], [61] The Σ∆ principle allows shaping the 

quantization noise away from the frequency band of interest, thus making exploitation 

of the whole quantization precision on the desired signal possible [2], [7], [24], [68]. In 

addition, the quadrature version of the converter allows designing complex noise- and 

signal transfer functions (NTF and STF) not being restricted to be symmetric in respect 

of the zero-frequency (DC) [8], [30], [32],[33] [34], [35], [68]. This property can be put 

to use particularly in modern quadrature image rejecting receivers [30], [34]. The basic 

Σ∆ principle will be discussed in Chapter 3, which is expanded to specifics of the qua-

drature converter in Chapter 4. Mostly the discrete-time implementation of the modula-

tor is considered. Main differences between discrete- and continuous-time systems are 

included in Chapter 3. 

However, the push towards cost-efficiency and cheaper electronics gives rise to circuit 

nonidealities, such as nonlinearities [29], [55], [56], mismatch of the I and Q rails [55],  

[75], [76] timing jitter in the sampling circuit [43], [76] and oscillator phase noise [29], 

[56]. This work will concentrate on the I/Q mismatch and resulting mirror frequency 

interference related to the aforementioned quadrature Σ∆ converter [30], [33], [34], 

[84]. The interference mechanism will be discussed in detail in Chapter 5 and then some 

mitigation related aspects will be highlighted. The analysis is confirmed with computer 

simulations in Chapter 6. Thereafter, digital post-processing algorithm [3] is simulated, 

in context of quadrature Σ∆ modulator, to compensate mirror frequency interference. 

Some quadrature Σ∆ specific analog I/Q mismatch mitigation methods [12], [53], [57] 

have been presented in the literature, but digital post-compensation is desirable because 

no alteration, possibly compromising aforementioned demands set for mobile terminals, 

for the original modulator structure is needed. 

Selected parts of this work have been published in IEEE International Microwave 

Workshop Series on “RF Front-ends for Software Defined and Cognitive Radio Solu-

tions” [46]. Additionally, full-length journal article [47] has been submitter to Springer 

Circuits, Systems and Signal Processing Journal and it is under review at this moment. 
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2. RECEIVER ARCHITECTURES  

In modern wireless communications, there are a number of different standards and sys-

tems designed for various purposes. This abundance and heterogeneity combined with 

rapid technical development have led to a few alternative radio transceiver topologies. 

The most remarkable receiver architectures will be introduced in the following. This 

knowledge is essential for the motivation and understanding for the rest of the work. 

As a first step and an introduction to the receiver architectures, the basics of complex – 

or in-phase/quadrature – signal processing will be covered. This will form a basis for 

the topics discussed later in this chapter. 

2.1. I/Q Signal Processing 

Digital communication standards of today have widely adopted complex signals, con-

sisting of the I and Q components, in to use. With I/Q processing it is, e.g., possible to 

use the radio spectrum more efficiently than in former systems exploiting only real sig-

nals. Most of the complex processing is usually done in the digital domain of the trans-

mitter and the receiver, but on the other hand, also analog frequency translation and im-

age signal rejection are of notable significance. 

2.1.1. Complex Signals and Systems 

It is said, that complex representation of the signals and systems is the natural way for 

the researcher or engineer in the field of radio communications. They provide conve-

nient way to describe the functionality of the modern system standards and related tran-

sceivers. Moreover, as Martin states in the title of his well-known article [45] “Complex 

Signal Processing is Not Complex”. 

Complex signals consist of two real signals. Having ( )x t  as a complex signal, it can be 

represented with two separate real signals by ( ) ( ) ( )re imx t x t jx t= + , where ( )rex t  and 

( )imx t  denote the real and imaginary parts (also in-phase and quadrature components), 

respectively [45]. One of the basic examples employing this kind of structure is the 
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complex oscillator producing an exponential tone as an output. There two real tones 

have ideally 90° phase difference, the components being 0sin(2 )f tπ  and 0cos(2 )f tπ . 

Combining these two as was shown above leads to complex tone 

02
0 0cos(2 ) sin(2 ) j f tf t j f t e ππ π+ = . 

The best way to express the benefits of using complex-valued signals is frequency-

domain presentation with Fourier transform ()⋅F . The spectrum of a complex exponen-

tial tone in Figure 2.1 shows that signal energy is no more symmetrically situated 

around zero-frequency. For real signal ( )r t  such symmetry exists, which is mathemati-

cally denoted by 

 *( ) ( ),R f R f− =  (2.1) 

where ( ) [ ( )]R f R t= F  and *()⋅  is complex conjugation [16], [43]. On the other hand, 

there is no such restriction for complex signals in general. Thus, the negative and posi-

tive frequencies can be processed independently when complex signals and systems are 

applied. [75] 

ff0

f0-f0
f

A

A

 
Figure 2.1 Theoretical spectra of a real (up) and a complex (down) oscillator tone at 

the frequency 0f . 

2.1.2. Frequency Translation and Bandpass Signals 

In modulated radio communication systems, originally baseband information signal is 

usually transmitted on certain non-zero center frequency – often referred as radio fre-

quency. A complex information signal ( )x t , or a pair of real signals ( ( ) ( )re imx t jx t+ ), 

can be transmitted as a real bandpass signal 

 2( ) 2Re[ ( ) ] 2 ( )cos(2 ) 2 ( )sin(2 ),Cj f t
re C im Cr t x t e x t f t x t f tπ π π= = −  (2.2) 
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where Cf  is the center frequency of ( )r t  and Re[ ]⋅  denotes the real part of a complex 

value [16], [43]. This real signal ( )r t  has symmetric spectrum according to (2.1). 

Though, carried complex information signal ( )z t  doesn’t need to be symmetric around 

Cf  [43] as is graphically shown in Figure 2.2. Frequency content originally lying 

around DC is transferred to a certain center frequency Cf  by multiplying the informa-

tion signals with oscillator signals, which have 90° phase difference as shown below. 

This operation, usually known as real mixing, produces a frequency translation of Cf± . 

The mentioned 90° difference in the carrier phases guarantees the recoverability of the 

information signals. If this condition is maintained ideally, the peak and zero values of 

the two carriers are coincident and thus don’t interfere each other in the sampling 

process. In addition, (2.2) shows that transmitting two real information signals at the 

same time in complex form doesn’t affect the used overall bandwidth and thus it in-

creases spectral efficiency. [75] 

f fc-fc
f

|R f)|(| ( )|X f

cos(2 )pf tc

sin(2 )pf tc

x tre( )

r t( )

x tim( )

+

-

 
Figure 2.2 Bandpass signal generation and symmetric frequency translation [75]. 

The information signals ( )rex t  and ( )imx t  can be recovered from ( )r t  by applying re-

verse bandpass-to-lowpass transformation. Either one of the symmetric copies in fre-

quency domain around Cf−  or Cf+  can be used for this. Equation (2.2) can be mod-

ified to take a form 

 2 2 * 2( ) 2Re[ ( ) ] ( ) ( ) ,C C Cj f t j f t j f tr t x t e x t e x t eπ π π−= = +  (2.3) 

which confirms that the information content of original ( )z t  exists in both of the mirror-

ing signal components. [75] 

In complex domain, frequency translation can be done also asymmetrically. Mixing the 

baseband information signal with complex exponential 2 Cj f te π  shifts the original signal 

to center frequency Cf . Ideally, in this case mirror image doesn’t appear around Cf−  as 

graphically illustrated in Figure 2.3. Due to this property, complex mixers are often also 

called image rejection or quadrature mixers. Asymmetricity in the output signal spec-
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trum of course indicates the complex nature of the signal at the same time. These kinds 

of signals are usually called analytic signals. Taking real part of analytic signal creates 

the mirror image for the signal components. [48] 

f f0-f0
f

|R f)|(| ( )|X f

cos(2 )pf tc

cos(2 )pf tc

sin(2 )pf tc

x tre( ) r tre( )

r tim( )x tim( ) -

 
Figure 2.3 Analytic bandpass signal and asymmetric frequency translation, modified 

from [48]. 

On the other hand, this kind of asymmetric analytic signals can be obtained with Hilbert 

transformation (HT) [16], [43] as graphically illustrated in Figure 2.4. The Hilbert filter 

has a frequency response 

 

for

for

for

0

( ) sgn( ) 0 0

0.

HT

j f

H f j f f

j f

− >= − = =
 <

 (2.4) 

Thus, the filter has an allpass response, with +90° phase shift for the negative frequen-

cies and −90° for the positive ones. Exciting this filter with ( )r t  of (2.3) gives 

 

2 * 2( ) ( ) ( )

2 ( )sin(2 ) 2 ( )cos(2 ).

C Cj f t j f t

re C im C

r t jz t e jz t e

z t f t z t f t

π π

π π

−= − +

= +

ɵ

 (2.5) 

Now the analytic signal can be formed as ( ) ( )r t jr t+ ɵ  having a Fourier transform 

[1 ( )] ( )HTjH f R f+ , where 

 

for

for

for

2 0

1 ( ) 1 ( sgn( )) 1 0

0 0.

HT

f

jH f j j f f

f

 >+ = + − = =
 <

 (2.6) 

This result shows that the energy on the negative frequencies in original symmetric 

spectrum ( )R f  is nulled. At the same time, signal content on the positive frequencies 
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has gain of 2, thus maintaining the overall energy of the signal on the same level as be-

fore filtering. [75] 

fc f0-fc -f0
f f

|R f)|( |R f)|HT(

( )HTH f

( )r t

( )r t

( )r t^

I

Q
 

Figure 2.4 Spectra of original ( )r t  and analytic ( ) ( ) ( )HTr t r t jr t= + ɵ  with the filter 

structure employing a Hilbert transformer. 

2.1.3. Complex Filtering 

A filter having a complex valued impulse response, and thus complex valued transfer 

function coefficients, is called a complex filter. This kind of filter has a benefit of not 

being restricted to a symmetric magnitude response around DC. In other words, the 

poles and zeros of the filter don’t have to appear in complex conjugate pairs. [20], [30], 

[45], [69] 

Now concentrating on discrete-time filters, a general complex impulse response is of a 

form 

 ( ) ( ) ( ),comp re imh k h k jh k= +  (2.7) 

where ( )reh k  and ( )imh k  are real valued functions presenting the real and the imaginary 

part of ( )comph k . If this filter is applied on a complex discrete-time signal 

( ) ( ) ( )re imx k x k jx k= +  the output becomes 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( )),

comp

re re im im re im im re

y k h k x k

h k x k h k x k j h k x k h k x k

= ∗

= ∗ − ∗ + ∗ + ∗
 (2.8) 

where the operations between the terms are convolutions in case of a multi-tap filter and 

reduce to scalar multiplications if the filter length is one. This assumption is carried 

throughout the thesis. The equation (2.8) shows that a real implementation of a complex 

filter can be done with four real-valued filters. Two of them are acting on the I rail car-

rying the real part of the signal and the other two on the Q rail presenting the imaginary 
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part. This is illustrated in Figure 2.5, where in case of ideal matching of the branch 

transfer functions ,1 ,2[ ] [ ]re reH z H z=  and ,1 ,2[ ] [ ]im imH z H z=  in Z-domain. [30] This 

structure reduces to a multiplication of two complex-valued constants in the case of all 

filters having only 1-tap impulse response, thus being scalar. Similar principles can be 

applied for continuous-time filters and signals by replacing the terms in Z-domain equa-

tions by corresponding S-domain functions [45], [69].  

-

x kre( )

x kim( )

y kre( )

y kim( )

H zre,1[ ]

H zim,1[ ]

H zim,2[ ]

H zre,2[ ]
 

Figure 2.5 Complex filter [ ]compH z  with a complex input ( )x k  implemented with 

parallel real signals and real filters. 

A complex bandpass filter can be designed either with a real lowpass prototype, which 

will be then shifted on the desired center frequency, or by a direct method principally 

similar to ones applied for the real filters. [45] In case of finite-impulse-response (FIR) 

filters, the frequency shift can be realized simply by mixing the filter coefficients with a 

complex exponential of desired center frequency, following the same principle that was 

presented for information signals. 

2.1.4. Mismatches in Complex Systems 

Based on the published works, the error between the I and Q branch gains, usually re-

ferred to as a mismatch, causes mirror frequency interference in complex systems [20], 

[30], [33], [34], [45], [55], [72], [75], [76]. In Sub-section 2.1.2, it was noted that the I 

and Q components do not interfere each other, if the ideal 90° phase difference is main-

tained between the carriers. However, if this ideal quadrature separation is lost, e.g., due 

to circuit nonidealities, the components mix into each other causing so-called mirror 

frequency interference. 

The interference is due to a conjugate response from the input to the output of the mis-

matched system [33], [72], [75]. The level of interference is proportional to the differential 

part of the deviation of the I and Q gains from the nominal values. In general, the gains are 

assumed complex-valued, thus having a certain magnitude and phase. So-called common 
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mode error, which includes the parallel part of the error, is only scaling the output signal 

and doesn’t cause harmful interference. These phenomena are graphically demonstrated in 

Figure 2.6, where the nominal-value term [ ]nomH z  is assumed to include also the common-

mode error of the gain. The thicker lines in Figure 2.6 denote complex-valued signals. This 

notation will be used throughout the thesis to separate real and complex paths and opera-

tions. 

H znom[ ]

DH zdiff[ ](  )*

Complex
conjugate

.

X z[ ]

X z
* *[ ]

Y z[ ]

 
Figure 2.6 Complex conjugate response, which generates mirror frequency interference 

due to a differential mismatch between the I and Q branches. 

The principle in the above figure can also be presented as a following equation: 

 * *[ ] [ ] [ ] [ ] [ ].nom diffY z H z X z H z X z= + ∆  (2.9) 

Subsequently, the common-mode term and differential error term can be derived from 

the actual realized values of the four real filters employed in the complex filter struc-

ture. In other words, the assumptions ,1 ,2[ ] [ ]re reH z H z=  and ,1 ,2[ ] [ ]im imH z H z=  do 

not hold anymore. From which follows, that [33] 

 
,1 ,2 ,1 ,2[ ] [ ] [ ] [ ]

[ ]
2 2

re re im im
nom

H z H z H z H z
H z j

+ +
= +  (2.10) 

and 

 
,1 ,2 ,1 ,2[ ] [ ] [ ] [ ]

[ ] .
2 2

re re im im
diff

H z H z H z H z
H z j

− −
∆ = +  (2.11) 

The effect of the conjugate response in the spectrum of a complex exponential is shown 

in Figure 2.7. The extent of the interference is usually measured with image attenuation,  

ff0f0
-f0

f

A A

IRRMismatch

 
Figure 2.7 Effect of I/Q mismatch for complex exponential. 
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also known as a image rejection ratio (IRR), which is defined as a ratio of the powers of 

the original signal component and the mirror interference component [75]. With the 

previous notation, IRR can be defined with substitution 2j ftz e π← , where f  is fre-

quency in hertz, as 

 

22
2

10 2

( )
( ) 10 log ,

( )

S

S

S

j fT
nomj fT

j fT
diff

H e
IRR e

H e

π
π

π
=

∆
 (2.12) 

which generally allows also frequency-dependent variations. 

Numerous methods have been presented to mitigate or compensate the mirror-frequency 

interference and thus improve the IRR on receiver side. Some of the techniques are di-

rected only against frequency-independent interference, see e.g., [3], [73] and [77]. On 

the other hand, also algorithms able to cope with frequency-dependency are presented, 

e.g., in [4], [73], [75] and [84]. 

2.2. Superheterodyne Receiver 

Conventional and widely adopted architecture choice for radio receiver implementations 

for some time has been superheterodyne. The receiver employs an analog radio fre-

quency bandpass (BP) filter for the coarse system selection and removal of out-of-band 

signal energy. After amplifying the signal with a low-noise amplifier, further filtering is 

done to guarantee adequate image band attenuation. Next, this RF signal is frequency-

translated with a real mixer to an intermediate frequency. The real mixing operation 

namely creates the need for strict image-filtering on preceding stages. On the IF, the 

specific channel separation is done with analog bandpass filter (BPF). Tunability of the 

mixer, which is used to select specific channel, enables the use of fixed filter, making 

efficient implementation possible. Final down-conversion is done with a quadrature I/Q 

mixer. The baseband signal, including only the desired channel is then finally converted 

to digital domain. [44], [48], [76] 

Placing the selectivity of the receiver on the analog side eases the requirements for the 

ADC by reducing signal dynamics. In addition, bandwidth of the converted signal is 

limited to the one of the desired channel. Thus, fairly simple traditional Nyquist conver-

ter or lowpass Σ∆ converter can be used. The noise shaping Σ∆ converter allows more 

efficient use of the available precision, but especially in case of wideband information 
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signals, demanded oversampling ratios can set challenging requirements for the sam-

pling rate. [42], [80] 

The main drawbacks in superheterodyne receiver are high number of components, high 

power consumption and heavy RF processing in the front-end limiting the flexibility. 

Thus, architectures with better integration characteristics and more simplified RF parts 

are favored in modern solutions. The main themes in the recent development have been 

exactly high integrability and flexibility with increasing role of digital signal processing. 

[76] 

2.3. Direct-Conversion Receiver 

Direct-conversion, or zero-IF, receiver was proposed [1] to reduce the heavy RF 

processing and the number of discrete components utilized in the superheterodyne. In 

this way, also the integrability of the receiver could be improved. The target is achieved 

by converting the RF signal straight to baseband with quadrature mixer. Coarse pre-

selection filter is used on the RF but most of the selectivity is designed to baseband with 

lowpass channel-selection filter. The choice of the desired channel is done by tuning the 

local oscillator (LO) frequency of the down-conversion mixer. 

Since the IF is effectively zero, the image signal is actually a mirror copy of the desired 

signal itself. This alleviates the image rejection requirements because there is practically 

no risk of a blocking signal with high relative power compared to the desired channel. 

Image rejection ratios of 25 – 40 dB are considered to keep the (self-)image interference 

on tolerable level [1], [55], [56]. However, in a wideband receiver where the final selec-

tivity is realized with digital filters, mirror band signal might have notably larger power 

levels. This is because the interesting signal on the wide converted band might have a 

non-zero center frequency; this case will be discussed further when considering the IF-

sampling receiver (Section 2.4). Wideband receiver also sets demands for the dynamics 

and the sampling rate (depending on the converted bandwidth) of the converter. [76] 

The problem has been addressed especially concerning emerging cognitive [83] and 

software radio [79] implementations. The dynamic range problem is due to the fact that 

the band can contain significantly stronger signals, as mentioned above, compared to 

desired one, and the ADC should be able to stretch the quantization range according to 

them, while still offering enough accuracy for the weak signal. 
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A/D conversion is done on the baseband as in heterodyne receiver and thus the demands 

on the converter are similar to ones addressed in Section 2.2. The more flexible struc-

ture of the direct-conversion receiver eases the transitions between radio standards. This 

is done again by tuning the LO frequency and the lowpass filter (LPF) bandwidth. 

Based on this property flexible software controlled architectures have been proposed for 

multistandard receivers utilizing the direct conversion principle [9], [10], [59], [63]. 

On the other hand, usage of zero-IF introduces also some problems. The most well 

known of them are DC offsets, LO leakage, even-order nonlinearity and flicker noise. 

All these phenomena generate interference on low frequencies. However, several tech-

niques have been proposed to mitigate these issues [48], [55], [76]. Thus, direct-

conversion receivers have been widely adopted to use, e.g., in mobile terminals. 

2.4. IF-Sampling Receiver 

To avoid the issues with direct conversion and baseband A/D conversion, mentioned in 

Section 2.3, the signal digitization has been proposed to be done on non-zero, but low IF 

[19], [20], [30], [34]. In this kind of structure, the final down-conversion is done in digi-

tal domain. Using non-zero IF allows more variation in the architecture but in [48] the 

preferred version employs similar analog front-end compared to direct-conversion re-

ceiver, the only difference being that the frequency shift is done to IF. Because the IF is 

assumed to be low, the filtering can be done with LPF. Usually intermediate frequencies 

in the order of a couple times the channel bandwidth are considered low in this sense. 

Though, the IF can be also higher, e.g. in wideband receivers where broader band is de-

sired for the converted channels [48]. 

On the other hand, with non-zero IF the mirror band of the desired channel is no more 

the self-image of the signal. The image signal being non-controlled, large power fluc-

tuations are possible. In some scenarios, the image band can be tens of decibels stronger 

than the desired information channel. With low IF the image signal often originates 

from the channels of the same system as the desired one, and the system specifications 

limit the power variations to 10 – 25 dB. In case of higher IF the inter-system image 

signals can be even 50 – 100 dB stronger, demanding remarkable image rejection in or-

der to prevent the loss of the desired information content. [76] 
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Extending the converted bandwidth increases the requirements for the ADC, but with 

relatively small IF the sampling rate demands are usually moderate. Extended channel 

filter passband also allows non-desired signals to enter the ADC, thus adding possible 

dynamics of the converted signal. Thus, higher demands are set for the dynamic range 

of the converter and, on the other hand, for the preceding gain control to prevent over-

loading. However, the LPF can be replaced with complex BPF to reduce out-of-band 

energy, if more controlled dynamics are desired [42], [80]. On the other hand, selection 

of relatively high IF sets strict requirements for the sampling properties of the ADCs. In 

wideband IF receiver similar challenges are set for the A/D converter as was discussed 

in case of the wideband direct-conversion receiver (Section 2.3). In addition, more at-

tention should be paid to the speed (the sampling rate) of the converter, depending on 

the choice of the applied IF. 

On the IF, The digitization of the received signal can be done with a Nyquist converter, 

when the whole converted band is available in the digital domain for a selection of the 

desired channel. In that way, the available precision and the quantization noise of the 

converter is divided equally for the Nyquist band. The other possibility is to employ a 

bandpass Σ∆ converter for the digitization. This, in a sense, allows more efficient use of 

the ADC resources because the out-of-band noise levels are not interesting. Thus, the 

precision could be, so to say, concentrated on the desired band. Either a real [35], [54], 

[62] or a complex [6], [30], [34] bandpass modulator can be used, while the complex 

one having some benefits over the real implementation [38]. The receiver structure em-

ploying a complex version of the modulator is shown in Figure 2.8. The specifics of the 

Σ∆ converters will be discussed later in this thesis. 

Decimation
and
DSP

Complex
anti-alias
filter and

amp

Integrated
RF amp
and filter

LO

RF IF Analog Digital

I

Q

ð/2

Quadrature
Bandpass

sigma-delta
converter

 
Figure 2.8 IF receiver employing a quadrature bandpass Σ∆ ADC for signal 

digitization [34]. 
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The IF receiver implementation offers more flexibility compared to traditional superhe-

terodyne. In addition to direct-conversion based multi-mode receivers, similar IF archi-

tectures have been proposed [29], [61] exploiting these features.  

2.5. Direct-Sampling Architecture 

Ultimate solution for the flexibility and simplifying the analog radio front-end would be 

direct RF-sampling. In the direct sampling architecture, the received signal is sampled 

straight from the antenna after some anti-alias filtering. Rest of the receiver processing 

and selectivity is then implemented in either analog discrete-time or digital domain. 

Texas Instruments has proposed and manufactured a discrete-time processor based RF 

sampling receiver utilizing so-called sampling mixer [9], [10], [27], [50]. Similar kind 

of structure has also been proposed in [30]. On the other hand, also an idea of Σ∆ mod-

ulator with RF-sampling inside the modulator loop has been presented [82]. 

The biggest challenge for direct sampling has been the sampling jitter, which easily dis-

torts the signal on high frequencies such as the RF. In addition, noise aliasing should be 

taken into account when designing sub-sampling receivers. [56] In many ways, the di-

rect sampling is the most challenging setup when considering the A/D conversion. 

Drive towards ultra-high speed samplers at the range of 100 GHz has been reported 

[42], but at this point sub-sampling seems to be the only reasonable possibility. At the 

same time, the wider the sampled bandwidth, the higher are the dynamics of the signal 

thus setting strict requirements also for the dynamic range of the converter and the pre-

ceding gain control, as mentioned already when discussing the IF receiver. 
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3. Σ∆ CONVERTER BASICS 

When considering the concept of quadrature Σ∆ modulator, it is essential to understand 

the background of the Σ∆ principle and the modulators. The real Σ∆ modulator has a 

symmetric frequency response – either lowpass or bandpass. In addition, there are sev-

eral different implementation methods presented in the existing scientific literature, e.g., 

[2], [7], [68]. 

In this chapter, the basics of Σ∆ modulation are presented. In addition, some compari-

sons are done and related implementation possibilities are taken into account. The main 

objective is to give an adequate technical background for the reader to understand the 

principles related to the quadrature Σ∆ modulator. Also, the farrago of terms and nota-

tion used in the existing scientific literature – and later in the thesis – will be clarified. 

3.1. Quantization Process 

Quantization is a process where the continuous amplitude values of the (analog) signal 

are represented with a finite set of codewords. This is usually done by choosing the 

nearest possible output code for the input value at hand at any given time instance. In 

digital communications, quantization is needed on the receiver side, when the analog 

input signal is digitized for the following stages. Generally, digital signals are 

represented with bits, thus enabling only finite range of amplitude values. 

Transforming continuous amplitude range to the set of discrete values is always nonli-

near operation. In other words, more than one input values are mapped to the same out-

put code. A typical quantization scheme is demonstrated with the help of an ideal unipo-

lar 3-bit ADC in Figure 3.1. The codewords are designed in such a way, that the quanti-

zation error is zero in the center of each interval. These are marked with dots in Figure 

3.1. The center corresponding to the zero-error leads straightforwardly to the conclusion 

that the error is always between −0.5 LSB and +0.5 LSB, where LSB corresponds to 

equivalent range of the least significant bit. It is also worthwhile to note, that  
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Figure 3.1 Quantization levels of ideal unipolar 3-bit ADC. 

the width of the first code is only 0.5 LSB and correspondingly the last interval is 

1.5 LSB. This is done to make the error zero-mean. Without this 0.5 LSB shift the po-

tential error range would from 0 LSB to +1 LSB. 

With practical waveforms, also the negative voltages need to be quantized. This is why 

bipolar quantizer are widely adopted to use instead of above shown unipolar system [2]. 

The simplest example of a bipolar quantizer is a sign operation, which corresponds to the 

1-bit quantization. The other bit results from a negative input and the other from a positive 

one. Actually, this 1-bit quantizer is used in many Σ∆ solutions, when the quantization 

precision can be enhanced in other ways, as will be discussed in the next section. 

On the other hand, the intervals of the codewords don’t need to be uniform. A few non-

uniform structures, such as logarithmic [25] and floating point [52] ADCs, are give in 

the literature. These are also adopted to use in certain applications, but are rare in com-

munication systems. 

The quantization error introduces always some loss of information, which is usually re-

ferred as quantization noise. This is the case even in the ideal converter as seen above. 

The effect of the noise is traditionally presented in proportion to the original signal 

power by the signal-to-noise ratio (SNR). In case of an ideal quantizer the SNR in deci-

bels is defined as [36] 
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V
=  (3.1) 

where Vin(rms) is the root-mean-square value of the original input signal and VQ(rms) is the 

corresponding value of the quantization error. In the special case of a sinusoidal input, 

(3.1) can be simplified to the well-known form of 

 6.02 1.76,SNR b= +  (3.2) 

where b is the number of the available quantization bits. [36] Thus, it can be given as a 

rule of thumb, that 1-bit increase to the used bits gives 6 dB higher SNR. 

Next, if we take oversampling and post-quantization filtering into account, the SNR can 

usually be improved. This is because the quantization noise is spread on a wider fre-

quency band than the interesting signal and the out-of-band noise can be attenuated 

without loss of information. Using higher sampling rate means that the noise is spread 

on even wider band and therefore a greater part of it can be filtered out. This gain can be 

included in the SNR as 

 106.02 1.76 10 log ,
2
S

B

f
SNR b

f

 = + +   
 (3.3) 

where, Sf  is the sampling frequency and Bf  is useful signal bandwidth. This shows that 

increasing the sampling frequency improves the SNR. However, it should be noted that 

in real-life converters there is a tradeoff between the speed and the resolution. The fast 

ADCs tend to have lower resolution, and vice versa. 

3.2. Σ∆ Principle 

The principle of oversampling ADC with negative feedback has been invented decades 

ago and is still being developed further by scientists all over the world. Today's state-of-

the-art converters have come a long way from the first ADCs employing Σ∆ principle in 

the 1960s. There is quite broad selection of Σ∆ oriented publications in literature since 

1960s and early development phases have also been documented in a comprehensive 

manner, e.g., in [2], [7] and [68]. The discussion in this section is based on [2]. 

The origin of modern Σ∆ modulation is in delta modulation and differential pulse-code 

modulation (PCM). Delta modulation was invented in ITT laboratories in France in 
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1946, as was also the classical version of the PCM. Differential PCM system was pa-

tented in 1950 by Bell Telephone Labs. 

In delta modulation, the term delta refers to transmitting only the changes between the 

consecutive samples. The delta modulator employs a 1-bit ADC and the feedback signal 

is fed through 1-bit digital-to-analog converter (DAC), whereafter it is subtracted from 

the input after an integrator as shown in Figure 3.2. In this kind of system output “1” 

means that input signal amplitude is raising and “0” indicates negative direction. Diffe-

rential PCM uses same kind of structure as delta modulation, only difference being that 

single-bit ADC and DAC have been replaced with their multi-bit flash counterparts. 

∫

-

+ Sampling 
clock K*fs

Analog input

Digital output

1-bit 
DAC

 
Figure 3.2 Delta modulator block diagram [2]. 

Since the output of the modulator depends only on the direction of change in the input 

signal, clipping effect can be avoided with a big enough step size and sampling rate. For 

that reason delta and differential PCM modulators usually demand sampling rates as 

high as 20 times the bandwidth of the interesting signal. 

In the modern Σ∆ modulator, the integrator block does not operate on the feedback loop, 

but is transferred to the forward branch and thus operates on the error signal. Block dia-

gram of Σ∆ modulator is shown in Figure 3.3. The publications of Inose and Yasuda 

[28] and van de Plassche [78] can be mentioned as examples of the earlier work on the 

topic. 

In this kind of structure the integrator shapes quantization noise away from the band of 

interest by processing the error of the ADC and the DAC compared to the input. In this 

part the oversampling becomes significant, because in traditional Nyquist rate converter 

there is no extra frequency band where the noise could be pushed. With oversampling 

used in Σ∆ modulators there is always more band available than the one of the desired 
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signal. This extra band can be used for the noise spectrum shaping and thus the noise 

can be filtered out in digital domain after the conversion. Thus, it is possible to cope 

even with simple 1-bit quantization, if there is enough oversampling. The exact sam-

pling speed requirements are of course application specific. After the filtering, the out-

put signal can be decimated to lower rate or even down to the Nyquist rate, depending 

on the forthcoming signal processing stages. 

 
Figure 3.3 Block diagram of Σ∆ converter (first-order structure with 1-bit quantization) 

[2]. 

There’s also been significant amount of discussion about the name of the described 

technique, whether it should be delta-sigma or sigma-delta. Original naming from 1962 

is delta-sigma, because it was based on delta modulation. In 1970s AT&T adopted the 

term sigma-delta to use, though, term sigma being used as an adjective specifying the 

variant of delta modulation in question. Since that, both the terms have been used, 

sometimes even in confusing manner. Dan Sheingold reasons in [2] that in functional 

hierarchy the term sigma-delta describes the actions of the modulator, which computes 

the integral or summation of the difference signal as shown in Figure 3.4. The author’s 

opinion is that this term describes the system best and so sigma-delta is adopted to use 

throughout this thesis. 

Another point worth clarifying at this stage is that term Σ∆ modulator refers only to the 

actual feedback structure performing the quantization. At the same time Σ∆ converter 

 
Figure 3.4 Sigma-delta means an integral of the difference [2]. 
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consists of a Σ∆ modulator, a digital filter removing excess out-of-band noise and a de-

cimator. 

Bryant describes quantization noise of Σ∆ converter in [14] in such a manner that it can 

be understood without going to detailed mathematics. If oversampling would be the on-

ly way to reduce quantization noise, we would have to oversample the signal with a fac-

tor of 22 N to obtain N-bit increase in resolution. In Σ∆ principle noise shaping proper-

ties fortunately ease the situation. The error signal, which is the difference of original 

input and the output of the feedback DAC, is fed to the forward integrator. In the inte-

grator output, the noise is pushed towards the high end of Nyquist band, when consider-

ing lowpass type of Σ∆ modulator. The noise spectra of traditional Nyquist ADC, over-

sampling traditional ADC and oversampling Σ∆ ADC are compared in Figure 3.5. 
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Figure 3.5 Noise spectra of a) a Nyquist ADC, b) an oversampling traditional ADC and 

c) an oversampling Σ∆ ADC [2]. 

Often the transfer function of the modulator is expressed in two parts. The noise shaping 

is described in noise transfer function (NTF), usually having one or more zeros on the 

band of interest. The behavior of desired signal itself depends on the signal transfer 
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function (STF), usually having unity gain. With these definitions the z -domain output 

of the converter can be described as 

 [ ] [ ] [ ] [ ] [ ],V z STF zU z NTF z E z= +  (3.4) 

where [ ]U z , [ ]E z , [ ]V z , [ ]STF z  and [ ]NTF z  refer to the input, the quantization error, 

the output, the signal transfer function and the noise transfer function, respectively. [7] 

3.3. Lowpass Σ∆ Modulator 

A discrete-time block diagram for first-order feedback lowpass Σ∆ modulator is pre-

sented in Figure 3.6 to clarify the main principle. The quantizer is replaced with an ad-

ditive noise source and the DAC is assumed ideal and thus replaced by a unity gain. For 

analysis purposes, the quantization error inside the modulator loop is assumed to be ad-

ditive white Gaussian noise (AWGN) and to be uncorrelated with the input [68]. The 

assumption is not exactly accurate, as Gray found in [23] that the error actually is corre-

lated with the input, but the uncorrelatedness offers a valid enough base for the analysis 

to be adopted in use. 

u k( )
z-1

v k( )
e k( )

-

additive quantization noise

 
Figure 3.6 Discrete-time linearized model of the first-order lowpass Σ∆ modulator [7]. 

Based on the model the transfer function can be derived giving 

 1 1[ ] [ ] (1 ) [ ].V z z U z z E z− −= + −  (3.5) 

It can be seen from the transfer function that for discussed structure 1[ ]STF z z−=  and 

1[ ] 1NTF z z−= − . Thus, the desired signal is only delayed on the way from input to 

output and some filtered noise is added to the signal. [7] NTF amplitude response is 

plotted on the left in Figure 3.7 and the related positions of the modulator zero and pole 

are given in the following zero-pole plot on the right side in Figure 3.7. 

From the amplitude response, it is clear that the noise signal has attenuation at level of 

−60 dB on the zero-frequency. The zero-gain level, which would correspond to 

nonshaped noise is roughly at frequencies ± 0.166 relative to Sf . Thus, the band of 0.33  
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Figure 3.7 Amplitude response (left) and zero-pole plot (right) of the NTF for a first-

order lowpass Σ∆ modulator. 

relative to Sf  has only attenuated noise present. The zero-pole plot confirms that the 

modulator zero lies at DC on the unit circle and the pole is in origin. 

For a more detailed mathematical perspective, interested reader is advised to consult 

[24]. Therein, Gray gives a precise walk through the effects of quantization in single 

loop, two-stage and second-order Σ∆ converters. He also expands the discussion to the 

effects of dithering, higher-order modulation, leaky integration and multi-bit ADCs, in 

respective order.  

In [7] Aziz et. al. have given the formulas for inband noise power and signal-to-noise 

ratio in case of single-bit quantizer and single-bit DAC assuming high enough oversam-

pling ratio (OSR) to shape noise effectively. Reproducing their findings, the output in-

band noise power of first-order lowpass Σ∆ modulator becomes 
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where 2
eσ  corresponds to the whole band quantization noise power, Bf  and Sf  are signal 

band and the sampling frequencies, respectively. This leads to the inband signal-to-

noise ratio of 
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π
σ σ

    = − − +      
 (3.7) 

in decibels, where 2
xσ  is desired signal power. If we still denote the oversampling ratio 

with /2 2rS Bf f = the equation becomes 
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which in addition to analysis by Aziz et al. can be simplified to 

 
2

106.02 4.76 10 log 9.03
3dBSNR b CF r
π = + − − +  

 (3.9) 

by defining quantization noise power with a number of used bits b  and crest factor 

dBCF in decibels. Crest factor defines how much of the quantizer full-scale range can be 

utilized. As an example, the crest value for a sinusoidal signal is 3 dBdBCF = . From 

(3.8) and (3.9) it can be seen that for every doubling of oversampling ratio, correspond-

ing to increment of r  by one, the SNR improves by 9 dB, which means 1.5 bits of ef-

fective resolution. 

The effect of the NTF is confirmed by simulation with a single sine-wave input in Fig-

ure 3.8. The STF is assumed frequency-flat with unity response. In simulations, the 

quantization error is modeled as AWGN, as was the assumption deriving the linear 

model for the modulator. Variance of the noise is equivalent to the one of the theoretical 

quantization error produced by a 1-bit quantization. Thus, it is corresponding to the full-

band SNR according to (3.2) of 6.02 1 1.76 7.76 dB× + = . The plots clearly show the 

shaped noise spectrum. Highlighted 20 dB and 40 dB per decade slopes are consistent 

with the theoretical NTFs for first and second-order [68]. Noise floor is limited to 

−80 dB due to limited simulation precision and FFT properties. 
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Figure 3.8 Simulated output spectrum for the first- (left) and the second-order (right) 

lowpass Σ∆ modulators with a sine-wave input and an AWGN modeled quantization 

error. 
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3.4. Real Bandpass Σ∆ Modulator 

In a lowpass type Σ∆ modulator the quantization noise is pushed away from the low 

frequencies towards the high end of Nyquist band. Correspondingly, a bandpass conver-

ter shapes the noise towards Nyquist frequency and the DC, and thus away from the 

band of interest in the middle of Nyquist band. [2] This can be particularly useful in 

case of a low IF or an IF receiver. 

The most well-known method to design a bandpass Σ∆ modulator is to transform a low-

pass prototype to a nonzero center frequency. This can be done, e.g., with 1 2z z− −→ −  

transformation. In other words, an additional delay is added to the integrator inside the 

modulator loop and the sign of the feedback is inversed. The resulting bandpass struc-

ture is presented in Figure 3.9. With described method the center frequency of the noise 

notch becomes /4Sf . [62], [67] 

u k( )
z

-2

e k( )

- -

v k( )

 
Figure 3.9 Discrete-time linearized model of a first-order BP Σ∆ modulator [62]. 

If the noise shaping characteristics are desired to be such that the notch frequency of the 

bandpass modulator differs from the quarter of the sampling frequency, more sophisti-

cated transformation method has to be used. Tunable bandpass modulator based on 

switched-capacitor resonator was presented in [15]. The basic structure of the modulator 

is similar to one presented in Figure 3.9, but additional summation and tuning parameter 

is included in order to make arbitrary notch frequency possible. This is shown in Figure 

3.10. 

Bandpass transformation doubles the modulator order, which can be seen also from the 

zero-pole plot in the right-hand plot of Figure 3.11 as a doubled number of zeros and 

u k( )
z

-1
z-1

v k( )

e k( )

-
abp

abp

-

 
Figure 3.10 Discrete-time linearized model of a first-order tunable BP Σ∆ modulator 

[15]. 
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poles. The corresponding NTF response is given on the left in Figure 3.11. The two ze-

ros can be straightforwardly seen as two frequency-symmetric NTF notches in the am-

plitude response. The zeros – and the notches – are placed at a frequency 0.35±  rela-

tive to the sampling frequency. Thus, in principle the number of active components is 

also doubled. However, in practice extra components compared to the lowpass receiver 

can be avoided by simplifying the overall receiver structure when utilizing a bandpass 

modulator. [62] 
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Figure 3.11 Amplitude response (left) and zero-pole plot (right) of the NTF for a 

second-order real BP Σ∆ modulator. 

Doubling the modulator order also means that, when considering asymmetric complex 

bandpass signal to be converted, only half of the modulator zeros are on the desired 

band. This affects the expected SNR values on given modulator order when compared 

to the lowpass case. For lowpass modulator increasing the oversampling ratio by an oc-

tave gives 6 3 dBL + better SNR, L being the modulator order. In case of bandpass Σ∆ 

modulator the corresponding value is 3 3 dBL + , from where can be confirmed that 

double-order modulator is indeed needed in order to get similar enhancement in SNR. 

[35], [67] 

As in the case of lowpass modulator, the noise shaping effect was confirmed by a simu-

lation. The full-band signal-to-noise-ratio, and thus the noise variance, is again equiva-

lent to the theoretical full-band SNR of 7.76 dB. The NTF applied in the simulation cor-

responds to the one demonstrated in Figure 3.11. Based on this, an output spectrum of 

the real bandpass modulator excited with sine-wave in Figure 3.12 verifies the NTF be-

havior. 
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Figure 3.12 Simulated output spectrum for a BP Σ∆ modulator with a sine-wave input 

and an AWGN modeled quantization error. 

3.5. Quadrature Bandpass Σ∆ Modulator 

The basic principle of quadrature Σ∆ conversion was presented in [8] and [32]. Analysis 

of [32] was extended in [34] and circuit implementation was discussed therein. Consid-

erations and results presented in [34] were complemented with the mismatch analysis of 

[33] and more thorough background theory in [30]. Schreier et al., working with Analog 

Devices Inc., have also issued a patent on the topic [66]. A conventional quadrature Σ∆ 

converter consists of an input branch, a loop filter(s) and a feedback branch. The main 

difference between the real and quadrature, or complex, modulator is that the quadrature 

modulator operates on complex input samples and similarly the output is given in com-

plex form. 

This complex processing enables asymmetric noise shaping around DC for the quadra-

ture modulators. This of course implies also that the poles and the zeros of the modula-

tor can be asymmetric about the real axis – and thus don’t need to be complex conju-

gates. [68] These characteristics are demonstrated with zero-pole plot and amplitude 

response in Figure 3.13. Zero-pole plot on the right shows that the modulator zero is 

situated on positive frequency around 0.375 relative to the sampling frequency and lies 

on unit circle. The pole is in origin. 

The zero seen in the below zero-pole plot makes the NTF amplitude response notch on 

that frequency. This single zero results in a single frequency-asymmetric notch in con-

trast to the symmetric twin-notches in the case of real bandpass modulation. If the de- 

sired complex signal is situated solely at the frequency of the notch, it is in a sense 
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Figure 3.13 Amplitude response (left) and zero-pole plot (right) of the NTF, where the 

noise notch is at a frequency 0.35 relative to Sf . 

more efficient to have notch only on that frequency. Twin quadrature modulators were 

found to have performance advantage over real bandpass modulator also in case of real 

inputs due to, e.g., not suffering from inband noise shaping degradation because of con-

jugate band zeros [38]. 

Realizing this kind of behavior can be done with a complex transfer function. Therefore, 

quadrature Σ∆ modulators are designed with complex loop filters as is presented in Fig-

ure 3.14. A complex modulator has two inputs, which describe the real and the imagi-

nary part of complex signal. Correspondingly, output is composed of two real signals, 

which together form a complex one. [23] 

u kI( ) vI( )k

v kQ( )u kQ( )

Complex
loop
filter

 
Figure 3.14 Quadrature Σ∆ modulator structure with a complex loop filter [23]. 

In principle, the noise shaping of a quadrature Σ∆ modulator can be thought as a low-

pass Σ∆ response with complex frequency shift to some nonzero center frequency. First-

order quadrature modulator has just as steep and wide noise transfer function notch as a 

corresponding lowpass modulator has on DC. This also means that the SNR equations 

(3.7)–(3.9) derived for the lowpass modulator can be applied also in case of quadrature 

modulator. 
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Modeling of the quadrature Σ∆ modulator will be discussed in more detail in Chapter 4. 

Simulation results verifying the concept presented above will also be given therein.  

3.6. Discrete-Time vs. Continuous-Time 

In [21] a comparison between switched-capacitor (SC) and continuous-time (CT) Σ∆ 

modulators is presented. The main difference between the two architectures is in loop 

filter, which can be, for example, an integrator. SC modulators use switched-capacitor 

filters with several nonidealities for integration. SC integrator limits for example the 

maximum bandwidth of the converted signal because of the settling time of the circuit. 

In continuous-time architecture, the integration is done with high-order op-amp filter, 

which has purely resistive input. One of the major effects is that there is no acquisition 

phase and thus no need for sample-and-hold stage in the amplifier. The CT converters 

have been considered difficult to design and one drawback is that the characteristics of 

the integrator are not directly related to sample clock but depend on conventional rules 

of active filter design. So if the sampling frequency is changed to match new signal 

bandwidth the filter must be tuned again. [21] One clear advantage in CT modulator is 

that also the sampling jitter noise is shaped inside the modulator loop but, on the other 

hand, feedback DAC jitter may cause some problems [74]. 

CT Σ∆ modulators have not been widely available in commercial use. A long step for-

ward was taken when National Semiconductor published [51] industry’s first CT Σ∆ 

converter. It was claimed, that the converter offers 25 MHz alias-free sample bandwidth 

with 30 % less power consumption than competing devices with pipeline (discrete-time) 

architecture. 

Generally, CT implementations have been considered faster than SC and thus fit for wi-

deband applications. CT converter sampling rates have been increasing steadily and 

seem to be approaching a gigasample per second range [49], [71]. At the same time, 

highest SC modulator speeds have usually been in order of tens of megasamples [60], 

[62]. 
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3.7. Single-bit vs. Multi-bit 

Either a 1-bit or a multi-bit quantizer can be employed in the Σ∆ architecture. [1], [7], 

[24] The number of the bits is effectively changed in the forward line ADC and the 

feedback DAC. The 1-bit converter has an inherent linearity but a limited resolution, 

which demands high oversampling ratios in order to gain resolution of numerous effec-

tive bits. The multi-bit quantization can be seen as an attractive solution especially for 

wideband information signals when the achievable sampling rates limit the possible 

oversampling ratios [60]. 

On the other hand, multi-bit converter has better resolution, but the feedback DAC li-

nearity limits the linearity of the whole converter. Element mismatches in the DAC 

cause a nonideal transfer function and nonlinear behavior. [39], [68] A few methods 

have been presented in the literature to compensate element mismatches in DAC, e.g., 

[22], [64] and [81]. 

3.8. Considerations on Modulator Order 

The effects of the feedback order variations on a lowpass modulator have been docu-

mented quite extensively and analysis fit for purpose can be found from, e.g., [2] and 

[7]. The following analysis is based on [7]. In the basic Σ∆ principle, the negative feed-

back signal is fed straight back to single integrator on forward branch. At the same time, 

noise shaping characteristics of the modulator can be enhanced by increasing the order 

of the feedback. The second-order structure introduces another integrator with feedback 

of its own as shown in Figure 3.15. 

 
Figure 3.15 Second-order Σ∆ converter [2]. 

Following again the analysis of [7] for second-order feedback the inband SNR becomes 
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and again substituting /2 2rS Bf f =  it can be found, that 
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Based on (3.11) it is clear, that now every doubling of OSR increases SNR with approx-

imately 15dB. So there is obvious improvement when compared to the findings for the 

first-order modulator in (3.7) and (3.8). 

A higher-order feedback generates an even more aggressive NTF and steeper ascent of 

the SNR as a function of the OSR as is shown in Figure 3.16 for the first three orders. 

 
Figure 3.16 SNR as a function of OSR for the first three orders of a Σ∆ modulator [2]. 

The generalized version of SNR for Lth-order modulator in [4] is given by 
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which can again be simplified by defining quantization noise power as a function of 

used bits b  and crest factor dBCF  



31 

 

2

10

10

6.02 4.76 10 log
2 1

(20 10)log .
2

L

dB

S

B

SNR b CF
L

f
L

f

π = + − −   + 

 + +   

 (3.13) 

In [2] some stability issues with higher than second-order architecture are reported, but 

[7] and particularly [26] give more thorough analysis on stability problems caused by 

raised feedback order. In brief, input values greater than certain limit can cause the 

quantizer to overload and thus risk the stability. On the other hand, the limit cycle oscil-

lations may also cause the quantizer to overload [7]. 

3.9. Single-Stage vs. Multi-Stage 

A higher-order noise transfer function and thus better noise shaping characteristics can 

be obtained also by employing cascaded modulators on a single input. The main prin-

ciple is that the following stage extracts and digitizes the remaining error of the preced-

ing stage(s). After the conversion, this error signal is subtracted from the previous out-

put. If the latter stages operate also on Σ∆ principle, which isn’t obligatory, also the 

noise of these stages is shaped. [68] 

On the other hand, also a traditional Nyquist ADC, e.g., a flash converter, can be used 

as a following stage to simplify the system. This kind of structure, where the second 

stage converter has zero-order noise shaping, is usually noted as L-0 cascade, where L 

denotes the order of the first stage Σ∆ modulator. The L-0 cascade system is also called 

Leslie-Singh. In case of subsequent nonzero-order noise shaping stages, the structure is 

named MASH, which stands for Multi-stAge noise SHaping. [68] The principle can be 

extended to contain more than two stages, e.g., three stage MASH is proposed in [68]. 

These kinds of structures have been proposed particularly for wideband systems with 

limited oversampling possibilities. In addition, reconfigurable multi-stage converters for 

software defined radio receivers have been studied recently. Reconfigurability means 

that some parts or stages can be digitally tuned or turned on and off depending on the 

demands of the communication standard being received at each moment. [11], [59], [63]  
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The examples in following Sub-sections consider lowpass Σ∆ modulators for the sake 

of simplicity. However, multi-stage concept can be utilized also in case of real [17] or 

complex [13] bandpass modulators.  

3.9.1. Leslie-Singh 

An example of a Leslie-Singh structure consisting of a first-order Σ∆ modulator as a 

first stage is shown in Figure 3.17. Thus, this setup represents 1-0 cascade. The quanti-

zation noise of the first stage 1( )e k  is extracted by subtracting nonquantized signal 

1( )y k  from the output of the first stage 1( )v k . Now this error signal is converted in order 

to obtain the digital version of the error as an output of the second stage 2( )v k . 
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v k1( ) v k( )

y k1( )

v k2( )

e k1( )

e k1( )

e k2( )
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H2( )z

H z1( )

 
Figure 3.17 Discrete-time linearized model for the 1-0 cascade (Leslie-Singh) multi-

stage Σ∆ structure [68]. 

To match the outputs of the stages, the output of the first stage must be delayed equally 

to the latency of the second stage. This is done with choosing 1[ ] kH z z−= . On the oth-

er hand, also the digitized error signal must be made to match the shaped version of the 

first stage quantization noise in order to successfully remove it from the output signal. 

This is done digitally with selection of 2 1[ ] [ ]H z NTF z= . Now subtracting the filtered 

output of the second stage from the delayed output of the first stage gives the final out-

put 
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Now, it can be seen that error in the output signal is the quantization noise of the second 

stage shaped by the NTF of the first stage. This can be assumed smaller than the origi-

nal error because second stage ADC can easily have more resolution (e.g., multi-bit 

pipeline converter). [68] 

3.9.2. Multi-Stage Noise Shaping (MASH) 

If the second stage quantization error 2( )e k  is also shaped with a Σ∆ modulator, the 

structure is known as MASH, which is graphically demonstrated in Figure 3.18. This 

leaves the desired signal band relatively clean of the second stage noise also. The price 

is increased system complexity with the loop filter and the feedback. On the other hand, 

due to the noise shaping now also the second quantizer resolution can be possibly lo-

wered. 
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Figure 3.18 Discrete-time linearized model for 1-1 MASH Σ∆ structure [68]. 

The overall noise shaping done in the stages is of the order of summed orders of the 

stages. This can be shown, e.g., by assuming purely delaying signal transfer functions 

with 1
1 2[ ] [ ]STF z STF z z−= =  and lowpass noise shaping modulators with 

1
1 2[ ] [ ] 1NTF z NTF z z−= = − . With this setup, deriving the output of the whole sys-

tem gives 
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if the condition 

 1 1 2 2[ ] [ ] [ ] [ ] 0H z NTF z H z STF z− =  (3.16) 

holds. Thus, the noise shaping performance of the 1-1 MASH is similar to the second-

order modulator, but the stability is of the first-order, because both the stages have only 

one feedback. 

One practical solution for satisfying (3.16) is 1 2[ ] [ ]H z STF z=  and 2 1[ ] [ ]H z NTF z= , 

2[ ]STF z  being often only a delay. This leads again to a matching of the digital 2[ ]H z  

and the analog 1[ ]NTF z . Mismatches between the mentioned two transfer functions 

have been analyzed to cause noise leakage. Several methods have been developed to 

prevent this, e.g., adaptive filtering. [40], [41], [64], [81] 

3.10. Modulator Stability 

In case of first-order lowpass Σ∆ modulator, described in 3.3, employing real integrator 

as a loop filter the stability of the modulator depends on the input ( )u k . For example, 

with 1-bit quantization and DC input 1.3u =  (or any input with continuous 1u > ), 

the loop becomes unstable. Feedback DAC will give 1 with every step, but still a net of 

1.3 1 0.3− =  will enter the integrator. This will increase the integrator output without 

a bound and the loop becomes unstable. [68] 

Schreier and Temes state in [68] also that the stable input range of the modulator is such 

the loop filter remains linear and the quantizer isn’t heavily overloaded. This leads to a 

conclusion that the input range should be less or equal to the feedback DAC full-scale 

or, in case of a multi-stage noise shaping configuration, to the one of the first feedback 

DAC. A value in order of a few dB’s below this full-scale is given as a rule of thumb, 

particularly for higher-order modulators. 

Another factor affecting the loop stability is the amplitude response of the signal trans-

fer function. For single-bit modulators, rule of thumb max ( ) 2jSTF e ω
ω

<  (where ω  is 

the angular frequency) was given as stability criteria in [18] and tuned to 

max ( ) 1.5jSTF e ω
ω

<  in [68]. It should be also noted that the STF and the NTF de-

signs should be such that the poles of the transfer functions lie inside the unit circle [7]. 
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The FIR transfer functions of course fulfill this criterion due to inherent stability proper-

ty [32]. Inside the unit circle, the pole positions can be used to shape the response. 

Comprehensive stability theory of the Σ∆ modulators is quite complicated, especially in 

case of multi-bit quantization, and interested reader is advised to see, e.g., [5], [26], 

[58], [68]. In [68] Schreier and Temes also note that even very detailed model can’t 

predict stability with absolute reliability and they suggest extensive simulations to en-

sure the properties, particularly in case of a high-order modulator.  
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4. MODELING OF QUADRATURE Σ∆ ADC 

To understand more thoroughly the behavior of quadrature Σ∆ modulator, it is essential 

to know in detail, how the quantization noise and, on the other hand, the input signal are 

processed inside the modulator. The base for more detailed analysis is the derivation of 

the noise transfer function and the signal transfer function. With the help of these func-

tions, the role of separate blocks can be analyzed from the viewpoint of the whole sys-

tem. Transfer functions can also be used to simulate the input-output relationship of the 

modulator. The results of this analysis have been utilized also in [46] and [47]. 

This chapter will give an analytical model for the first and the second-order converters. 

In the last section, a model for Σ∆ modulator of an arbitrary-order will be discussed. 

The signal transfer function and the noise transfer function are derived for these three 

set-ups. 

4.1. General Aspects 

A quadrature Σ∆ modulator can be implemented with a complex input, loop filter, feed-

back and output as was discussed in 3.5. In this subchapter, the implementation of the 

loop filter is studied and further characteristics of the modulator are discussed. 

A complex loop filter, employed in the quadrature modulator, can be realized as a com-

plex integrator when considering the first-order modulator. Higher-order systems usual-

ly have multiple integrators included. Basic block diagram of a complex integrator is 

shown in Figure 4.1. The main principle is similar as in a real integrator used in lowpass 

Σ∆ modulators. Input samples are integrated over a unit delay, the difference to a real 

system being that the samples are complex valued, as is the loop gain. 

The basics of complex signal processing were discussed in Chapter 3. Building on that 

base, the complex integrator is graphically presented using complex-valued signals and 

complex multiplier M  on the left side in Figure 4.1. In addition, the same structure is 
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given with real signals and real multiplications to demonstrate the actual implementa-

tion of the integrator. 

M
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Figure 4.1 Realization of complex integrator with a) complex signals and complex 

multiplication and b) real signals and real multiplications [23]. 

The pole of such complex filter is determined by the feedback multiplier. The structure 

presented above leads to a transfer function [ ]H z  given by 

 
1 1

[ ] ,
( )re im

H z
z M z m jm

= =
− − +

 (4.1) 

where the terms M , rem  and imm  correspond to the illustration in Figure 4.1 denoting 

the complex multiplier and it’s real and imaginary parts, respectively. The delaying na-

ture of the integrator can be highlighted by expanding (4.1) to take the following form 

 
1 1

1 1[ ] ,
1 1 ( )re im

z z
H z

Mz m jm z

− −

− −= =
− − +

 (4.2) 

where the term 1z−  in the numerator clearly presents unit delay of the system. The pole 

of the complex integrator defines the zero of the noise transfer function of the whole 

modulator as will be seen later in Sub-section 4.2.2. 

4.2. First-Order Quadrature Modulator 

The principle of quadrature Σ∆ conversion is demonstrated with analysis of first-order 

system. In addition, analytical equations will be derived for the NTF and the STF. By 

definition, the first-order system has one noise shaping stage, which enables placing one 

NTF zero at the frequency band in use. In addition, the STF may have a notch on cho-

sen frequency as will be shown.  
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The output spectra of a first-order quadrature modulator with an exponential excitation 

are given in Figure 4.2. The left side plot is with 1-bit quantization. The right one has 

quantization replaced with AWGN corresponding to 1-bit theoretical full-band SNR of 

7.76 dB. The signal transfer function is frequency flat with unity gain in both cases. The 

interference peaks visible at the left side plot around the relative frequency −0.125 

match to the aliased third-order nonlinear distortion from the second Nyquist zone with 

the relative center frequency of 3 3 0.375 0.125rd S S SF f f f= − × + = − . 
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Figure 4.2 Modulator output spectra with exponential input and the NTF notch at 0.375 

relative to Sf , simulated with 1-bit quantization (left) and AWGN (right). 

The basic structure of the first-order Σ∆ modulator is presented in Figure 4.3, where 

( )u k , ( )e k  and ( )v k  are the complex input, the linearized complex quantization error 

and the complex output signals, respectively. The multipliers A , B  and G  are complex 

valued and affect the input signal fed straight to quantizer, the input signal fed to the 

loop filter [ ]H z  and the feedback signal from the output of the modulator, respectively. 

u k( )

A

G

B

H z( )
v k( )

e k( )

additive
quantization

noise

 
Figure 4.3 First-order quadrature Σ∆ modulator with the loop filter [ ]H z . 

Based on this kind of structure, the Z-domain transfer function of the modulator can be 

derived. Thus, the output [ ]V z  of the modulator can be expressed with the input [ ]U z  

and the quantization error [ ]E z  as 
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[ ] ( [ ]) [ ] [ ] ( [ ]) [ ]

[ ] 1
[ ] [ ],

1 [ ] 1 [ ]

V z A BH z U z E z GH z V z

A BH z
U z E z

GH z GH z

= + + +

+
= +

− −

 (4.3) 

where A , B , G  and [ ]H z  are as mentioned before and defined in Figure 4.3.  

The loop filter [ ]H z  is a complex filter, which can be realized in either discrete-time 

switched-capacitor or continuous-time technique. Here we concentrate on SC realization 

of the filter. The main differences between SC and CT structures were discussed in Sec-

tion 3.6. Integrator’s feedback branch has complex multiplier M , which defines the 

pole – and thus the transfer function – of the integrator. [23] 

Based on the complex structure presented in Figure 4.4, time domain behavior of the 

modulator can be analyzed. The system results in the discrete output ( )v k , which can be 

expressed with help of the input ( )u k  and the quantization error ( )e k . The output is de-

scribed by equation 

 
( ) ( ) ( ) ( 1) ( ) ( 1)

( ) ( 1).

v k Au k B MA u k e k Me k

G M v k

= + − − + − −

+ + −
 (4.4) 

Transforming Equation (4.4) to the Z-domain results in the transfer function of the 

modulator. Output is thus given by an equation 

 

1 1 1

1 1

1 1

[ ] [ ( ) ] [ ] [1 ] [ ] ( ) [ ]

( ) 1
[ ] [ ],

1 ( ) 1 ( )

V z A B MA z U z Mz E z G M z V z

A B MA z Mz
U z E z

G M z G M z

− − −

− −

− −

= + − + − + +

+ − −
= +

− + − +

 (4.5) 

This result pronounces the significance of the specified coefficients. On the other hand, 

it corresponds to Equation (4.3), where the Z-domain output was derived with the loop 

filter marked with [ ]H z , being now [ ] 1/( )H z z M= −  as given in (4.1). 

u k( )

A

G

z
-1

M

B

v k( )

e k( )

additive
quantization

noise

 
Figure 4.4 First-order quadrature Σ∆ modulator with a complex integrator. 
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More detailed analysis of the overall transfer function will be given in the following 

Sections, where the STF and the NTF are treated separately. However, already from 

(4.5) it can be noted that both transfer functions have common denominator, which af-

fects the pole of the modulator giving the same pole for the STF and the NTF. 

Placement of the NTF zero on the unit circle, in other words the angle of the zero, af-

fects the frequency in which the notch is set. If the zero is pulled inwards from the unit 

circle, the notch flattens gradually. 

At the same time the pole placement doesn’t affect the frequency of the actual noise 

notch, but the shape of the frequency responses. This effect is demonstrated for the STF 

in Figure 4.5 with an amplitude response and a zero-pole plot. For the NTF similar plots 

are presented in Figure 4.6. When the pole is at the frequency of the zero and just inside 

the unit circle, amplitude response is flat except the notch, which is steep and relatively 

narrow. Pulling the pole towards the origin makes the notch wider. Anyway, if the STF 

and the NTF notches are placed on separate frequencies, there is always a tradeoff be-

tween the characteristics of the functions. 

On the other hand, a flat STF passband would be desirable but at the same time placing 

the pole to the STF notch frequency gives rise to the noise gain at the NTF notch fre-

quency. Ideally, this out-of-band noise gain would not drastically affect the system per-

formance, but, e.g., under branch mismatch and resulting imbalance between in-phase 

and quadrature components this should be taken into account as will be seen later. 
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Figure 4.5 On the left an amplitude response of the STF, where the zero is located at a 

frequency −0.35 relative to Sf , and on the right a corresponding zero-pole plot. The 

zero and the pole position(s) are marked with z  and p , respectively. 
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Figure 4.6 On the left an amplitude response of the NTF, where the zero is located at a 

frequency 0.35 relative to Sf , and on the right a corresponding zero-pole plot. The zero 

and the pole position(s) are marked with z  and p , respectively. 

Implementationwise, the complex structure of Figure 4.4, which was described by Eq-

uation (4.5), can be realized with two real inputs and outputs. Complex multipliers do 

also have two separate parts – real and imaginary. Thus, the real structure of a first order 

quadrature Σ∆ modulator is as presented in Figure 4.7 in time-domain. 
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Figure 4.7 First-order quadrature Σ∆ modulator with real coefficients and parallel real 

signals. 

The above figure depicts the coefficients of the structure in case of ideal matching be-

tween the I and Q branches. The effects of the inevitable mismatches in actual circuit 

implementation will be discussed in Chapter 5. 
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4.2.1. First-Order Signal Transfer Function 

Signal transfer function shapes the input of the modulator, as already mentioned when 

discussing the basic principles of the Σ∆ modulation (Section 3.2). Thus, the output of 

the modulator – excluding quantization error at this point – is a filtered version of the 

input. The STF of the first-order modulator presented above in Figure 4.4 is given by 

the multiplier of the input [ ]U z  in Equation (4.5). Thus, resulting in a form 

 
1

1

( )
[ ] .

1 ( )

A B MA z
STF z

G M z

−

−

+ −
=

− +
 (4.6) 

From the above equation it can be seen, that in case of the first-order modulator one STF 

zero can be placed on the converted frequency band. The zero of the numerator, given by 

 ,STF

B MA
z

A

−
= −  (4.7) 

defines the notch in amplitude response of the STF at a certain frequency. On the other 

hand, if the zero is placed in the origin, the resulting STF has a unity response and is thus 

frequency flat. The coefficients A  and B  can be used to tune the STF response indepen-

dent of the NTF (as can be seen from (4.5)). Thus, these complex values define the actual 

STF zero 2 intj f
STFz e π= , where intf  is the notch frequency relative to the Sf . 

On the other hand, the denominator of the STF, defining the pole, affects the shape of 

the STF, as was shown in Section 4.2. The common pole of the NTF and the STF 

( commonp ) can be solved from (4.6) straightforwardly and is thus defined by 

 .commonp G M= +  (4.8) 

The parameter M , which is the pole of the complex integrator, is dominated by the de-

sired noise shaping characteristics and the notch frequency, but the coefficient G can be 

chosen based on the desired signal transfer function characteristics. 

The STF design example in Figure 4.8 highlights the filtering possibilities related to the 

zero placement. The tone on positive frequency is assumed to be the desired signal and 

the tone on the negative side of the spectrum is a noninteresting signal with interference 

potential. In case of I/Q imbalance some mirror-frequency interference would appear 

close to the frequency of the desired tone, originating from the opposite one. 
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Figure 4.8 Output spectra of the first order quadrature Σ∆ modulator with the unity 

STF (left) and with the STF zero on the negative side of the spectrum (right), the 

quantization noise modeled with AWGN of theoretical 1-bit variance. 

On the left side plot, the output spectrum is shown in case of the unity STF. Both the 

tones appear with similar amplitudes at the output. Right hand plot shows the case when 

STF zero is placed at the frequency of the tone on the negative side of the spectrum. The 

output spectrum clearly shows that this noninteresting signal and possible interference 

source is filtered efficiently enough to push the tone to the level of the noise floor. 

4.2.2. First-Order Noise Transfer Function 

The noise transfer function describes how the quantization error is shaped inside the 

modulator. Thereby it can be separated from the overall transfer function (4.5) as the 

multiplier of quantization error [ ]E z , resulting in an equation 

 
1

1

1
[ ] .

1 ( )

Mz
NTF z

G M z

−

−

−
=

− +
 (4.9) 

This shows that the NTF design is independent of the input coefficients A  and B  in the 

modulator structure described earlier. In the first-order modulator, the feedback branch 

and loop filter define the noise shaping characteristics. The NTF zero location is domi-

nated by the integrator pole. The numerator zero of (4.9) confirms this giving 

 .NTFz M=  (4.10) 

This observation also confirms that the STF zeros can be set regardless of the NTF de-

sign with decent selection of the parameters A  and B . This also gives freedom to the 

NTF zero design because the loop filter pole M  can be selected solely on the noise 

shaping basis, to give 
2 passj f

NTFz e
π

= , where passf  is the NTF notch frequency rela-
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tive to the Sf . On the other hand, the STF and the NTF share the same pole as was giv-

en in (4.8), which is defined by G  and M . This common pole between the STF and the 

NTF gives rise to some optimization tradeoffs as was discussed in Section 4.2. 

Simulation example of the first-order NTF is given in Figure 4.9. An exponential tone is 

used as an exciting input signal. The quantization error of the 1-bit ADC is modeled 

again as AWGN for simplicity and to highlight the phenomenon at hand. The left side 

plot shows the output spectrum without the noise shaping, so the NTF can be said to 

have a unity response. At the same time on the right side, a spectrum in case of the first-

order complex NTF is given. 
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Figure 4.9 Output spectra of the 1-bit ADC without noise shaping (left) and with the 

first-order quadrature NTF (right), the quantization noise modeled as AWGN of the 

theoretical 1-bit variance. 

The difference made by the noise shaping can be clearly seen from the above plots. The 

noise floor has dropped roughly 20 dB on the notch frequency. In modern digital com-

munications, this makes a notable difference. On the other hand the noise between rela-

tive frequencies −0.25 and 0 has slightly risen, due to the amplifying NTF response on 

that frequency interval. Of course, in more sophisticated higher-order systems noise 

shaping can be designed to have more pronounced effect. 

4.3. Second-Order Quadrature Modulator 

In this chapter, the analysis is extended to deal with a second-order quadrature Σ∆ mod-

ulator. With this setup, the NTF and the STF can be built in more sophisticated way 

than in the first-order modulator. Raising the order by one enables placement of two ze-

ros in the design of the NTF and the STF. 
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A block diagram of the second-order Σ∆ modulator is presented in Figure 4.10. From 

the figure, it is clear that the extension is realized by adding another integrator 2[ ]H z  to 

the structure. The input and the feedback signals are fed to this integrator via complex 

coefficients C  and F , respectively. 

u k( )

B

F

C

v k( )

A

G

e k( )

H z1( )H z2( )
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noise

 
Figure 4.10 Second-order quadrature Σ∆ modulator with the loop filters 1[ ]H z  and 

2[ ]H z . 

Based on the structure in Figure 4.10, Z-domain transfer function can be derived for the 

second-order modulator. The analysis results in the equation 

 1 1 2

1 1 2 1 1 2

[ ] [ ] [ ] 1
[ ] [ ] [ ].

1 ( [ ] [ ] [ ]) 1 ( [ ] [ ] [ ])

A BH z CH z H z
V z U z E z

GH z FH z H z GH z FH z H z

+ +
= +

− + − +
 (4.11) 

From (4.11), it can be seen that the feedback coefficients and the responses of the com-

plex integrators are defining the poles of the transfer function and also the zeros of the 

NTF as in the first-order case. The input coefficients A , B  and C  are seen in the nu-

merator of the STF and thus define the zeros of the signal response. When the complex 

integrators 1[ ]H z and 2[ ]H z  of Figure 4.10 are implemented with a delay and a complex 

feedback multiplier, the block diagram takes the form presented in Figure 4.11.  

In the below figure, the complex multipliers M  and N  represent the poles of the com-

plex integrators. Based on the block diagram, time domain behavior of the modulator 

can be solved. Modulator output ( )v k  can be given as a function of the present and 
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Figure 4.11 Second-order quadrature Σ∆ modulator with two complex integrators. 



46 

the previous versions of the input, the output and the quantization error with the equa-

tion 

 

( ) ( ) ( ) ( 1) ( ) ( 2)

( ) ( ) ( 1) ( ) ( 2) ( ) ( 1)

( ) ( 2).

v k Au k B NA MA u k C NB MNA u k

e k M N e k MN e k M N G v k

MN NG F v k

= + − − − + − + −

+ − + − + − + + + −

+ − − + −

 (4.12) 

After applying the Z-transform for (4.12) and some reformation, the output of the 

second-order Σ∆ modulator can be presented as 

 

1 2

1 2

1 2

1 2

( ) ( )
[ ] [ ]

1 ( ) ( )

1 ( ) ( )
[ ].

1 ( ) ( )

A B NA MA z C NB MNA z
V z U z

M N G z MN NG F z

M N z MN z
E z

M N G z MN NG F z

− −

− −

− −

− −

+ − − + − +
=

− + + + + −

− + +
+

− + + + + −

 (4.13) 

Equation (4.13) shows, that poles of the transfer functions are determined by both inte-

grator poles and by both feedback complex multipliers.  

4.3.1. Second-Order Signal Transfer Function 

In case of a second-order quadrature Σ∆ modulator, the signal transfer function has two 

zeros and two poles. From Equation (4.13), it can be seen that the input [ ]U z  is shaped 

with the STF given by  

 
1 2

1 2

( ) ( )
[ ] .

1 ( ) ( )

A B NA MA z C NB MNA z
STF z

M N G z MN NG F z

− −

− −

+ − − + − +
=

− + + + + −
 (4.14) 

The STF zeros can be solved based on the numerator of (4.14) and are thus given in a 

form 

(1)

2 2 2

(2)

2 2 2

2 2 2

2 2 2 4

2 2 2
.

2 2 2 4

STF

STF

C BN MN
z

M B N B M N BM BN MN C

C BN MN
z

B M N B M N BM BN MN C

− +
=

− + + + + − + − −

− +
= −

− − + + + − + − −

 (4.15) 

From (4.15), it is clear that the complexity of the STF zero placement is clearly higher 

than in the first-order case discussed in Sub-section 4.2.1. Poles of the transfer functions 

– common to the STF and the NTF – are correspondingly given in form 
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2 2 2
(1)

2 2 2
(2)

2 6 2 4

2

2 6 2 4
.

2

common

common

G M N G GM GN M MN N F
p

G M N G GM GN M MN N F
p

+ + + + + + − + +
=

+ + − + + + − + +
=

 (4.16) 

The above equation shows that also the complexity of the pole placement is notably in-

creased when compared to the first-order case in 4.2.1. 

The STF design in Figure 4.12 shows how the second-order STF gives more freedom 

when compared to the first-order case presented in 4.2.1. Left hand plot shows again the 

output spectrum in case of the unity STF. From there, it can be seen that there are two 

exponential tones on the negative frequencies. In the right plot, the STF is attenuating 

most of the negative frequencies. In addition, the assumed desired signal has a magni-

tude gain of 20 dB due to pole placement on surrounding frequencies. The tones on the 

negative frequencies have been clearly attenuated. The other one lying directly on the 

STF notch frequency has been pushed down to the noise floor and the other one has al-

most 40 dB of relative attenuation when compared to the desired positive-frequency 

tone. More detailed discussion on STF design possibilities can be found from [37]. 
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Figure 4.12 Output spectra of the second-order quadrature Σ∆ modulator with a unity 

STF (left) and with the STF zeros on the negative side of the spectrum and on DC 

(right), quantization noise modeled as AWGN of the theoretical 1-bit variance. 

4.3.2. Second-Order Noise Transfer Function 

The second-order modulator structure gives possibilities to more efficient noise shaping. 

Noise transfer function is in this case 

 
1 2

1 2

1 ( ) ( )
[ ] .

1 ( ) ( )

M N z MN z
NTF z

M N G z MN NG F z

− −

− −

− + +
=

− + + + + −
 (4.17) 



48 

As a follow-up from (4.17) the NTF zeros can be solved and are given by 

 

(1)

(2) .

NTF

NTF

z M

z N

=

=
 (4.18) 

which is truly an expected result and confirms that the poles of the loop filters define the 

notch frequencies in the NTF. The exact shape of the NTF depends also on the common 

poles given in (4.16).  

Schreier found in [65] that in case of a second-order modulator, optimal placement of 

the zeros gives 3.5 dB advantage when compared to coincident zeros. For third-order 

modulator the difference would be already 8 dB. Figure 4.13 demonstrates this principle 

with simulation example. Left side plot shows the output spectrum with two coincident 

zeros. On the right side the zeros have been spread symmetrically around the tone fre-

quency. Close inspection of the noise floor shows that the spread zeros shape the noise 

more efficiently away from the notch. Close to the frequencies of the spread zeros the 

difference in the noise floor level is around 3 dB and no observable additional noise can 

be seen between the zeros when compared to coincident zeros. Thus, the simulated re-

sponse presented below agrees nicely with the literature. 
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Figure 4.13 Output spectra of the 1-bit ADC with second-order noise shaping in case of 

the coincident NTF zeros (left) and the symmetrically spread NTF zeros (right), 

quantization noise modeled as AWGN of the theoretical 1-bit variance. 

4.4. Higher-Order Quadrature Modulator 

A general model for a quadrature Σ∆ modulator of an arbitrary-order can be derived by 

adding N loop filters from 1[ ]H z  to [ ]NH z  and corresponding input (from 0A  to NA ) 
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and feedback (from 1G  to NG ) branches to the structure. This is illustrated in Figure 

4.14. With Nth-order modulator, N zeros and poles can be used to shape the STF and the 

NTF.  
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Figure 4.14 Nth-order quadrature Σ∆ modulator. 

Next, the overall transfer function is derived for an the above Nth order structure. The 

analysis of the modulator output ( )v k  and Z-domain version [ ]V z  results in the follow-

ing Z-domain equation: 
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 (4.19) 

Based on the above formula, the STF and the NTF of the Nth-order modulator are given 

by 
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and 
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respectively. 
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As mentioned above, this kind of structure allows theoretically N separate zeros for the 

NTF and the STF. However, practical order of the modulator is limited, e.g., by the sta-

bility of the whole structure (see Section 3.8). Highest well-accepted order in true cir-

cuit implementation proposed in the literature has been four [30], [34]. Considerations 

on optimal zero placements were given earlier in Section 4.3 with examples on the 

second-order modulator. 
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5. I/Q IMBALANCE ON QUADRATURE Σ∆ ADC 

The main effects of I/Q mismatch in radio receivers are quite extensively documented in 

scientific literature [45], [48], [55], [56], [75], [76], [84] and were discussed earlier in 

Sub-section 2.1.4 at preliminary level. In this chapter, the main objective is to obtain an 

analytical model for the imbalance effects in case of a quadrature Σ∆ modulator. The 

effects will be studied based on the model of the first-order system derived in 4.2. Both 

the input signal and quantization noise components are taken into account and consider-

ations are given separately from the STF and the NTF point of view. Selected results of 

this analysis have been published in [46]. In addition, more thorough full-length journal 

article [47] is submitted and under review at this moment. 

The modulator structure with possible mismatches between the I and Q branches is pre-

sented in Figure 5.1, where subscripts 1 and 2 separate the possibly mismatched realiza-

tions of the ideally symmetric coefficients in each branch. The structure shows that 

mismatches are possible in either of the inputs, in the feedback of the loop filter or in 

the feedback of the modulator. The feasible IRR range in practical quadrature receivers  
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Figure 5.1  First-order quadrature Σ∆ modulator with mismatched real coefficients. 
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as a whole is typically reported to be around 20–40 dB [1], [20], [77], which consider 

ing a gain mismatch between the real coefficients of the branches means values in 

theorder of 0.1–10 %. Because the IRR of a single receiver component should be higher 

than that of the whole receiver with multiple mirror-frequency interference sources, 

mismatches from 10
-1

 to 10
-5

 will be considered to cover the realistic range. 

In Section 4.2 it was concluded that a mismatch in complex multiplication causes mirror 

frequency interference due to a conjugate response for the input signal. This is the case also 

for the Σ∆ modulator. On the other hand, the quantization noise, generated inside the mod-

ulator loop has also an image response in case of the mismatch. This results, in addition to 

the STF and the NTF, in two additional transfer functions, which are called an image signal 

transfer function (ISTF) and an image noise transfer function (INTF). [30], [33], [72] 

It should also be emphasized that only the differential error is causing the mirroring ef-

fect. This means that the deviation from nominal value is opposite in the two channels. 

If the error is common and parallel between the branches, the desired response is af-

fected but no mirror frequency interference is present (for more detailed presentation, 

see Sub-section 2.1.4). [33]  

Taking the possible mismatch into account the real outputs of the modulator ( )Iv k  and 

( )Qv k  can be derived, resulting in equations 
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and 
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which define the in-phase and the quadrature components of the complex output signal, 

respectively. 

5.1. General Imbalance Model 

Based on the model presented in Figure 5.1 and the I and Q outputs defined in (5.1) and 

(5.2), the transfer functions of a mismatched modulator will be derived. The output of 

the analysis will be the four transfer functions (STF, ISTF, NTF and ISTF), which de-

fine the characteristics of the modulator. Output of the modulator is formed by the trans-

fer functions according to the equation 

 * * * *[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ],V z STF zU z ISTF zU z NTF z E z INTF z E z= + + +  (5.3) 

where * *[ ]U z  denotes the Z-transform of the input signal conjugate *( )u k  and * *[ ]E z  

denotes the Z-transform of the quantization noise conjugate *( )e k . 

After the Z-transformation for (5.1) and (5.2), the output of the I-branch is given by  
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 (5.4) 

To simplify the presentation, the numerators and the denumerators, defining the zeros 

and the poles of each component of the above equation, respectively, are represented 

according to the following equalities: 
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Above [ ]I zα , [ ]I zβ , [ ]I zε , [ ]I zη , and [ ]I zρ  define the zeros of the multipliers of the I 

branch input, the Q branch input, the I branch quantization noise, the Q branch quanti-

zation noise and the Q branch output, respectively. These together form the signal in the 

I branch output. The coefficient [ ]I zγ  presents the pole and is common to all the terms 

of (5.4). When combining (5.4) and (5.5) the equation for the I branch output [ ]IV z  is 

reduced to the form 
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At the same time, the Z-domain output for the Q-branch can be derived, resulting in  
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 (5.7) 

Again new notation is introduced to simplify the presentation, similarly as for the I 

branch output. Later following notations are used: 
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 (5.8) 

Above [ ]Q zα , [ ]Q zβ , [ ]Q zε , [ ]Q zη , and [ ]Q zρ  define the zeros of the multipliers of the 

Q branch input, the I branch input, the Q branch quantization noise, the I branch quanti-

zation noise and the I branch output, respectively, which altogether form the signal in 

the Q branch output. Coefficient [ ]Q zγ  presents the pole and is common to all the terms 
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of (5.7). Again when combining (5.7) and (5.8) the equation for Q-branch output [ ]QV z  

is simplified to a form 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ].
[ ] [ ] [ ] [ ] [ ]

Q Q Q Q Q
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Now both the outputs, [ ]IV z  and [ ]QV z , depend on the previous values of each other. In 

order to modify the equations to a usable form some more substitutions are needed. 

When replacing the [ ]QV z  term in (5.7) with (5.9) we end up to a following equation for 

the I branch output: 
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which describes the dependency of I branch output [ ]IV z  on I branch input [ ]IU z , Q 

branch input [ ]QU z , I branch quantization error [ ]IE z  and Q branch quantization error 

[ ]QE z . 

On the other hand, substituting [ ]IV z  of (5.6) to (5.9) gives a following form for 

[ ]QV z : 
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Above the Q branch output [ ]QV z  is given similarly as [ ]IV z  was in (5.10). 

Now the complex output signal [ ]V z  of the modulator can be formed by having [ ]IV z  

as the real part and [ ]QV z  as the imaginary part. Output of the modulator is thus given 

by  

 [ ] [ ] [ ].I QV z V z jV z= +  (5.12) 

Now, Combining (5.10) and (5.11) as shown in (5.12) results in the following equation 

for the complex-valued output of the modulator: 
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Taking the conjugation effect due to the nonideal matching of the branches into account 

according to (2.9), (5.13) can be further modified to 
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Now it is straightforward to distinguish the original non-conjugate ( [ ]U z , [ ]E z ) and 

conjugate ( * *[ ]U z , * *[ ]E z ) terms in (5.14). These * *[ ]U z  and * *[ ]E z  are the possible 

interference components, whose power should reduce to zero in case of perfect I/Q bal-

ance.  

Still, the above equation can be simplified by denoting the differential error between the 

zeros and poles of the branches with a subscript diff. At the same time, the nominal value 

and the common-mode error are then combined to a multiplier of the non-conjugated 

terms with a subscript nom. Thus, based on (2.10) and (2.11) the equation takes the form 
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where ( )nom⋅⋅  and ( )diff⋅⋅  denote the nominal value (including the common-mode error) 

and the differential error of the product of the terms inside the brackets, respectively. 

Now it can be seen that the lines of (5.15) correspond to the transfer functions of the 

modulator, namely STF, ISTF, NTF and INTF, respectively. It is also worth noting that 

ISTF and INTF, given by 
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reduce to zero in case of perfect matching between the branches. This is obviously indi-

cated by the numerators of the image transfer functions, which consist of the differential 

error terms only. 

Image rejection ratio of the modulator can be now found based on the four transfer 

functions. Input signal and quantization noise IRR are given by 
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and 
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respectively. 
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More detailed analysis, based on (5.18) and (5.19), will be given in the following sub-

chapters separately for the flat STF and an experimental mirror frequency rejecting STF 

design, respectively. The effect of the latter design is studied as a mirror-frequency in-

terference mitigation method. 

5.2. IRR Analysis and Interpretations with Flat STF De-
sign 

In this Section, STF, ISTF, NTF and INTF will be illustrated in different mismatch sce-

narios based on the analysis in Section 5.1. These functions are derived for the modula-

tor having ideally a unity STF and NTF notch at a frequency 0.375passf = relative to 

the sampling frequency. The unity STF is achieved with following complex gain values: 

1A = , B MA=  and G M= − , based on (4.6). At the same time, M  is selected to 

tune the notch of the NTF (now 
2 passj f

M e
π

= ). Mismatch effects will be considered 

both from the noise shaping effectiveness and signal distortion point of view. IRR val-

ues are given for the STF and the NTF when appropriate. 

The STF and the NTF affecting the original non-conjugated version of the input and the 

quantization noise are marked with the solid lines in the following transfer function fig-

ures. The dashed lines present the ISTF and the INTF, if such are non-zero in a certain 

mismatch scenario. Based on the transfer functions for the original and the conjugated 

signal, the IRRs are calculated and presented in the separate figures for the respective 

case. In the figures, the assumed desired signal band is marked with solid black line. 

5.2.1. Effects of Input Coefficient Mismatches 

A mismatch between the gains and the phases of the I and Q rails in the modulator input 

branches results in a conjugate response of the original input signal in the modulator 

output. These mismatches don’t affect the noise shaping properties, because quantiza-

tion noise is not processed in these parts.  

First, the phenomenon is studied in a case, where the mismatch is in the gains of the 

branches feeding the input straight to the quantizer. This gain has been previously 

marked with A . In case of the frequency flat STF, this coefficient is all real and ideally 

unity. With mismatch A∆ , the realized gains are ,1 (1 )re A rea a= + ∆  and 

,2 (1 )re A rea a= − ∆ , where rea  is the ideal real part and ,1rea  and ,2rea  are the mis-
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matched implementation values in the I and Q branches, respectively. Resulting STF, 

ISTF and NTF with 10 % mismatch, to emphasize the effects, are presented in Figure 

5.2. As seen on the left in the figure below, the ISTF notch is rejecting the conjugate 

signal energy at specified desired signal band (marked with black lines). This behavior 

is thus diminishing mirror frequency interference from the negative frequencies, emerg-

ing from the image band. As a result, this shape can also be seen in the IRR presented in 

Figure 5.3. It should also be noted that no INTF response is visible in Figure 5.2. This is 

because the quantization noise isn’t processed in the input branches of the modulator. 
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Figure 5.2 The modulator STF and ISTF (left) and the modulator NTF (right) with 

10 % mismatch in the input branch feeding the signal to the quantizer (A ). The INTF 

doesn’t exist because the mismatch in question doesn’t affect the noise shaping. 

The frequency flat STF and the ISTF with a notch shape the IRR to give high values ex-

actly on the NTF notch band, which is considered to include the desired signal. Thus, it 

can be said that the considered modulator structure itself is mitigating imbalance effects 

from the desired signal point of view in case of mismatch in the quantizer-feeding branch. 
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Figure 5.3 Signal IRR as a function of frequency relative to Sf  with mismatch in the 

input branch feeding the signal to the quantizer (A ). 
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The following case highlights the effects of the mismatch between the rails in the 

branch feeding the signal to the loop filter. Ideally, the complex gain value B  in the 

branch is the same as M  in the feedback of the complex loop integrator. In case of the 

quadrature modulator the integrator feedback gain and thus also the input gain B , are 

both complex valued, when considering non-zero NTF notch frequencies. With mis-

match B∆  the implementation values are as follows: ,1 (1 )re B reb b= + ∆ , 

,2 (1 )re B reb b= − ∆ ,  ,1 (1 )im B imb b= + ∆  and ,2 (1 )im B imb b= − ∆ . Symmetric mis-

matches in both real and imaginary parts were chosen for simplicity of analysis. How-

ever, it was confirmed in simulations that no significant differences appear between the 

mirroring effects with symmetric and asymmetric mismatches. Thus, the choice of 

symmetricity is considered just. This applies also in the forthcoming scenarios. 

Based on the plots presented in Figure 5.4 it can be concluded that the mismatch in this 

branch does cause mirror interference for the input signal with 20 dB attenuation per 

matching decade. No conjugate version of quantization noise is present in this case ei-

ther. 
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Figure 5.4 The modulator STF and ISTF (left) and the modulator NTF (right) with 

10 % mismatch in the input branch feeding the signal to the loop filter (B ). The INTF 

doesn’t exist, because the mismatch in question doesn’t affect the noise shaping. 

The STF and the ISTF given above result in the IRR presented in Figure 5.5. With 10 % 

mismatch the IRR is frequency flat 20 dB and while the matching gets more precise, 

IRR values increase with a constant 20 dB per decade rate. Based on these results it can 

be said, that mismatch in the branch feeding the loop filter is causing frequency flat mir-

ror frequency distortion when considering the input signal. The attenuation of the con-

jugate signal is straightforwardly dependent on the matching of the gain values. No con- 
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Figure 5.5 Signal IRR as a function of frequency relative to Sf  with mismatch in the 

input branch feeding the signal to the loop filter (B ). 

jugate noise is present due to this phenomenon as was the case in both the input 

branches. 

5.2.2. Effect of Loop Filter Mismatch 

The main difference in case of loop filter coefficient mismatch compared to the two 

cases of the input mismatches presented in Sub-section 5.2.1 is that no conjugate re-

sponse of the input signal is generated. This holds for the unity STF structure when the 

circuitry is considered otherwise ideal but for the mismatch in question. Now, with the 

mismatch M∆  the nonideal real and imaginary parts result in the following: 

,1 (1 )re M rem m= + ∆ , ,2 (1 )re M rem m= − ∆ ,  ,1 (1 )im M imm m= + ∆  and 

,2 (1 )im M imm m= − ∆ . 

Image transfer function exists only for the quantization noise and is presented on the 

right in Figure 5.6 in case of 10 % mismatch between the real coefficients of the I and Q 

rails. The resulting INTF is frequency flat as can be seen from the below plot. This 

means that the conjugated version of the noise is seen in the output of the modulator 

without any selectivity. Thus, with relatively high values of mismatch the conjugate 

noise can be more significant on the desired signal band than the original non-

conjugated noise, which is shaped by the noise transfer function. As a practical exam-

ple, assume 60 dB of noise attenuation for the original NTF notch and −20 dB noise 

IRR at the desired band, thus the conjugated quantization noise signal is attenuated by 

only 60−20=40 dB defining the overall noise floor level in this case. In addition, it 

should be noted that 0 dB NTF IRR at the desired band indicates that the levels of the  
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Figure 5.6 The modulator STF (left) and the modulator NTF and INTF (right) with 

10 % mismatch in the loop filter (M ). The ISTF doesn’t exist in this case, because the 

signal isn’t fed through the loop filter. 

original noise and the mirrored noise are similar, which, in case of efficient noise shap-

ing, means that both are well attenuated.  

One thing to note also is that the frequency of the NTF notch is slightly transformed 

from the original 0.375 normalized frequency to around 0.377. This, of course, degrades 

the noise shaping characteristics, when compared to ideal case. With extreme case of 

50 % mismatch the notch frequency exceeds 0.4 and the notch is lowered to give only 

20 dB of attenuation.  

In the absence of the image signal transfer function, the IRR for quantization error can 

be evaluated based on the noise transfer functions, or on the other hand the attenuation 

can be assumed to be infinite. This is given in Figure 5.7. The negative IRR values on 

the NTF notch frequency present the situation where the response of the INTF is larger 

than NTF’s and thus conjugated noise has less attenuation, as stated also above. 
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Figure 5.7 Quantization noise IRR as a function of the frequency relative to Sf  with a 

mismatch in the loop filter (M ). 
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5.2.3. Effect of Feedback Coefficient Mismatch 

In case of modulator feedback branch I/Q imbalance, both the input signal and the quan-

tization noise are causing mirror frequency interference. Here the mismatch source is 

assumed to be the complex multiplier G , wherein the mismatch G∆  in the implementa-

tion results in the following values: ,1 (1 )re G reg g= + ∆ , ,2 (1 )re G reg g= − ∆ ,  

,1 (1 )im G img g= + ∆  and ,2 (1 )im G img g= − ∆ . 

While having a frequency flat STF, also the ISTF appears frequency flat, as demonstrat-

ed on the left side of Figure 5.8. Attenuation for the ISTF is increasing 20 dB per dec-

ade when matching between the branches improves. On the right side of Figure 5.8 the 

modulator NTF and INTF are given. The shape of the INTF is following the complex 

conjugate of the original NTF with some attenuation. The level of this attenuation is 

similar to the one seen in the case of STF and ISTF. Thus, it increases 20 dB per match-

ing decade. 
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Figure 5.8 The modulator STF and ISTF (left) and the modulator NTF and INTF (right) 

with a 10 % mismatch in the modulator feedback branch (G ). 

As in the previous cases, the IRR values are calculated based on the transfer- and the 

image transfer functions. With modulator feedback mismatch both the STF and the NTF 

IRR values are affected and thus presented in Figure 5.9. From the below figure, it can 

be seen that IRR is flat in case of the input signal mirror interference, which is easily 

explained by the flat shape of the STF and the ISTF. The IRR is increasing with better 

matching of the branches and is following nicely the aforementioned 20 dB per decade 

rule. 
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Figure 5.9 Signal (left) and quantization noise (right) IRRs as a function of frequency 

relative to Sf  with mismatch in the modulator feedback branch (G ). 

The quantization noise IRR has high values on the mirror frequencies of the considered 

desired signal around 0.35 relative to Sf . This is because of the original NTF 

notch,which is shaping the noise away from the desired band. After this shaped noise is 

conjugated, there is significantly less noise power and thus less mirror interference on 

that frequency band. Similarly, the notch in IRR values on the desired band is explained 

by the relationship of original quantization noise power and the power of conjugate 

noise signal. There is hardly any original noise present and the conjugate signal has only 

attenuation of roughly 20 dB. Neither is the NTF attenuating the noise on the mirror 

frequencies. With high mismatch values this can lead to a situation where the conjugate 

noise is more severe threat to the signal quality than the original non-conjugated quanti-

zation noise. 

5.3. IRR Analysis and Interpretations with Mirror Band 
Rejecting STF Design 

In this Section the STF, ISTF, NTF and ISTF behavior will be examined in case of se-

lective STF. The STF is designed in such a way, that there is a notch at a frequency 

0.361intf = −  relative to the sampling frequency with an assumption of a known 

strong blocking signal there. The chosen frequency is intentionally shifted away from 

the exact mirror band ( 0.375passf− = − ) of the desired signal for illustration purposes. 

In this way, the conjugate of the blocking signal and the original desired signal can be 

separated, and vice versa. This transfer function design is realized with following choic-
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es of the parameters: 1A = , 2 (0.5 )intj fB M e π −= +  and 
2

/2passj f
G M e

π−
= − + . At 

the same time 
2 passj f

M e
π

=  is again the placement of the NTF zero. 

The purpose of the study is to demonstrate that the mirror frequency rejecting STF can 

be used to mitigate the I/Q imbalance effects in a quadrature Σ∆ modulator. The result-

ing transfer functions and IRRs are presented in similar manner as in the flat STF case 

in Section 5.2. In addition, the modulator mismatches are defined similarly as was done 

for the flat STF design above. 

5.3.1. Effects of Input Coefficient Mismatches 

When considering the mismatch in the input branch feeding the signal to the quantizer, 

the main characteristics of the ISTF remain the same with the selective STF as in the 

case of a frequency flat STF. This can be seen in Figure 5.10 when compared to Figure 

5.2. The shape of the ISTF is slightly altered but the notch frequency remains the same. 

Thus, the only feature clearly affecting the IRR from input signal point of view is the 

STF notch, which is rejecting input power on that frequency band. The NTF is similar 

as in the previous cases and the INTF has infinite attenuation in this case too, because 

quantization noise doesn’t suffer from the mismatch in question. 

The STF notch effect in the IRR can be seen in Figure 5.11. The modest IRR values on 

the STF notch frequency band are due to the high attenuation of the input signal and the 

relatively low rejection of the conjugate signal. However, the frequencies being mostly  
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Figure 5.10 The modulator STF and ISTF (left) and the modulator NTF (right) with a 

10 % mismatch in the input branch feeding the signal to the quantizer (A ). The INTF 

doesn’t exist in this case, because the mismatch in question doesn’t affect the noise 

shaping. 
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Figure 5.11 Signal IRR as a function of the frequency relative to Sf  with a mismatch in 

the input branch feeding the signal to the quantizer (A ). 

interesting have high IRR values because of the ISTF notch on the desired band. Even 

with as severe as 10 % mismatch the IRR peaks at the level of 60 dB, which is usually 

considered adequate. From this point of view, the mismatch behavior is remarkably sim-

ilar as was in the case of the flat STF, discussed in Sub-section 5.2.1. 

In case of mismatch in the branch feeding the input to the loop filter and the frequency 

flat STF, the ISTF was similarly frequency flat as stated above. Now in the case of the 

notched STF, the ISTF shape is slightly altered but the main characteristics remain the 

same. The ISTF has the highest attenuation in the middle of the STF passband, in this 

case around frequencies 0.1 relative to the sampling frequency. Anyway, variations do 

not exceed 10 dB range even over the whole Nyquist band as can be seen from the left 

plot in Figure 5.12. 
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Figure 5.12 The modulator STF and ISTF (left) and the modulator NTF (right) with a 

10 % mismatch in the input branch feeding the signal to the loop filter (B ). The INTF 

doesn’t exist in this case, because the mismatch in question doesn’t affect noise shaping. 
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Figure 5.13 Signal IRR as a function of the frequency relative to Sf  with mismatch in 

the input branch feeding the signal to the loop filter (B ). 

The resulting IRR curves are presented in Figure 5.13. The lower IRR values on the 

mirror band are due to the STF notch, which is rejecting the original input, and the rela-

tively flat ISTF. Though, this can be seen irrelevant from the desired signal point of 

view, which is again assumed to be located around 0.375 relative to the sampling fre-

quency. At that frequency band, the image rejection ratios seem to follow the 20 dB per 

decade rule of thumb quite nicely. 

5.3.2. Effect of Loop Filter Mismatch 

Designing the signal transfer function to reject the mirror frequencies affects the IRR 

behavior significantly in case of mismatch in the loop filter of the modulator. With the 

frequency flat STF in Sub-section 5.2.2, the input signal didn’t suffer from mirror inter-

ference because the modulator feedback cancelled the input to the loop filter. When 

considering the mirror-frequency rejecting STF design this is not the case and thus the 

mismatch in the filter is adding a conjugate response for the input signal as well. This 

will be demonstrated in the following. 

On the other hand, nonideal matching of the integrator coefficients is also affecting the 

effectiveness of the original STF and NTF. When compared to the previous cases with 

input branch mismatches, given above, both the notches have become lower. Attenua-

tion in the middle of the STF notch has reduced more than 20 dB, as can be seen when 

comparing Figure 5.14 to the frequency flat case in Figure 5.6. The effect isn’t pro-

nounced in the same scale in the NTF, but however the alteration is notable. In addition, 

the frequency of the STF notch has been altered as was the case also with the flat STF in 

Sub-section 5.2.2. 
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Both the ISTF and the INTF are relatively flat as a function of the frequency in Figure 5.14, 

having slightly more attenuation close to the baseband. Because of the gently sloping beha-

vior, most of the IRR characteristics are defined by the STF and the NTF, as shown in Fig-

ure 5.15. The IRR curves have notches on the frequencies of the original transfer function 

notches. The notches describe the rejection of the desired band quantization noise and the 

image band input signal power. Similarly to the previous case of the mismatch in the loop 

filter-feeding branch, STFIRR  is behaving quite smoothly on the desired signal band and 

giving image attenuation in the order of 20 dB per matching decade. 
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Figure 5.14 The Modulator STF and ISTF (left) and the modulator NTF and INTF 

(right) with the 10 % mismatch in the loop filter (M ). 
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Figure 5.15 Signal (left) and quantization noise (right) IRRs as a function of the 

frequency relative to Sf  with mismatch in the loop filter (M ). 

5.3.3. Effect of Feedback Coefficient Mismatch 

The mirror frequency rejecting STF has the most effect on the generated mirror fre-

quency distortion when considering the case of mismatched modulator feedback branch. 

The resulting ISTF has a notch directly on the mirror frequency of the specified STF 
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notch (in this case close the NTF notch). Thus, this kind of design is effectively reject-

ing the input based mirror interference from the opposite band of the original STF 

notch. This is shown in Figure 5.16 along with the noise transfer functions. 

In case of mismatch in the input branch feeding the quantizer, there was similar kind of 

notch in the observed ISTF. The difference between these two cases is that, when consi-

dering the above input mismatch scenario the notch is directly on the desired signal 

band (specified by the NTF notch) whereas in this case, the ISTF notch is located at the 

mirror frequency of the STF notch. However, if the STF notch is designed to be on the 

image band of the desired signal, these two cases notch the ISTF at the same frequen-

cies. 
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Figure 5.16 The modulator STF and ISTF (left) and the modulator NTF and INTF 

(right) with the 10 % mismatch in the modulator feedback branch (G ). 

The shape of the STF and the ISTF result in the input signal IRR presented in Figure 

5.17. IRR peaks on the positive frequencies are due to the ISTF notch. This notch, and 

thus also peak IRR frequencies, can be tuned with the selection of the original STF 

notch frequency. This is because STF and ISTF notches are on the opposite frequencies, 

symmetrically around DC. From the quantization noise point of view, the situation is 

quite similar. The INTF notch in Figure 5.16 is on the opposite frequency when com-

pared to the NTF notch. This results in the IRR curves plotted on the right side of Fig-

ure 5.17. The IRR values are modest on the desired band, which has been seen also in 

several previous cases. 
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Figure 5.17 Signal (left) and quantization noise (right) IRRs as a function of the 

frequency relative to Sf  with the mismatch in the modulator feedback branch (G ). 
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6. SIMULATION EXAMPLES AND RESULTS 

The purpose of this chapter is to confirm and further illustrate the previous analysis by 

the means of computer simulations. In this way, the validity of the derived models can 

be confirmed. The main emphasis is exactly on the I/Q imbalance modeling and the re-

sults are divided into Sub-sections based on the location of mismatched values. The ef-

fects of the mismatch in a first-order quadrature Σ∆ modulator are simulated based on 

the transfer functions derived in Chapter 5. The mismatch is modeled as an imbalance in 

the real gains on the I and Q rails. 

In Section 6.1 the NTF simulation results are given based on the simulations on the con-

jugate response of the quantization noise. After that, the mirror frequency interference 

originating from the modulator input is reviewed in Section 6.2. Finally, in Section 6.3 

the mitigation of the mirror frequency interference in quadrature Σ∆ converters is consi-

dered. 

The length of the FFT employed for the spectral analysis, as well as the signal length 

itself, is 162 262144=  samples. The signal is windowed with a Hann-window, whose 

length matches the signal length, when calculating the FFTs for the spectrum figures. 

The STF related IRR values given in the following are obtained based on spectral analy-

sis and the power margin between the mirror components in question. 

6.1. NTF and Quantization Noise Mirroring Study 

First, the correspondence of the analytic noise transfer functions and the simulated out-

put of the modulator is studied. The behavior of the modulator is examined with a zero-

input and AWGN modeled quantization error. Thus, the noise shaping characteristics 

can be examined in more detail without distraction of the input signal related phenome-

na. The input branch mismatches don’t affect the noise shaping and thus only two cases 

are considered: the loop filter and the feedback coefficient mismatches. The NTF and 

the INTF don’t depend on the STF selection and thus only a flat STF is simulated. The 

results are averaged over 50 independent realizations of the random noise signal. The 
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spectra of the output noise signals in mismatched scenarios are compared to the corres-

ponding ideal spectra. At the same time, the mismatched spectra are compared to the 

analytic NTFs and INTFs to examine the analogies. 

With nonideal matching, depending of the INTF shape, it is possible that the conjugate 

response of the quantization noise becomes dominant on the desired signal band when 

compared to the non-conjugated noise shaped by the NTF. If the INTF is, e.g., frequen-

cy flat and additional interference is to avoided, the matching of the component values 

must be precise enough to give equally good attenuation for the INTF as the NTF notch 

has. 

6.1.1. Effect of Loop Filter Mismatch 

Mismatch in the feedback of the loop filter, i.e. complex integrator, produces mirror 

frequency interference by introducing the INTF besides the designed NTF. In addition, 

the described mismatch distorts the original NTF shape and transfers the notch frequen-

cy slightly off the original value. 

The right side magnification on the NTF notch in Figure 6.1 shows the situation with an 

emphasized 10 % mismatch. The black and green spectra represent the ideal and the 

mismatched modulator outputs, respectively. The NTF and the INTF, the solid and the 

dashed blue lines, are both evaluated for the mismatched scenario based on the analysis 

in Chapter 5. The ideal NTF is presented with a dotted blue line for reference. 
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Figure 6.1 Simulated output noise spectrum and the NTFs with  10 % mismatch in the 

loop filter (M ). The right hand plot zoomed to the assumed desired signal band. 
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From the above figure, it can be seen, that on the desired signal band, which is again 

assumed to be on the frequencies of the original NTF notch, the noise level is following 

the INTF in the mismatched case. Outside the ideal notch frequencies, the NTF is domi-

nant and the noise level is following it neatly. 

When decreasing the mismatch by a decade, the noise level clearly drops on the notch-

frequencies, as is shown in Figure 6.2. In this case, the NTF is practically ideal and the 

continuous and dotted blue lines can hardly be separated. The figure below shows that 

with a 1 % mismatch the analytical NTF and INTF match with reasonable precision to 

the simulated noise spectrum, similarly as in the 10 % case. With this more precise 

matching, the INTF response has dropped 20 dB when compared to the previous case. 

However, the conjugate noise is still dominant inside the NTF notch. 
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Figure 6.2 Simulated output noise spectrum and the NTFs with 1 % mismatch in the 

loop filter(M ). The right hand plot zoomed to the assumed desired signal band. 

Based on these observations, it can be concluded that analytical model for the NTF and 

the INTF holds for the case of the loop filter mismatch. The simulated noise spectra and 

the predicted noise transfer functions are giving coincident results. 

6.1.2. Effect of Feedback Coefficient Mismatch 

The main difference in the case of a mismatch in the modulator feedback branch, when 

compared to the loop filter mismatch discussed above, is that the NTF notch frequency 

remains intact. The INTF shape differs also, but when considering phenomena related to 

the band of the interesting signal, the findings are relatively similar. 
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Figure 6.3 presents the simulation results and related analytical noise transfer functions 

in the case of the emphasized mismatch of 10 %. The ideal output drawn with black is 

seen to fit well with the NTF shape. With the mismatch present, the NTF remains intact 

and the blue dotted line cannot be separated from the continuous one. Anyway, the 

mismatch generates the INTF response, which affects the output in the nonideal setup. 

The output noise level is dominated by the conjugate response on the interesting band, 

as can be seen from the magnification on the right side in the Figure 6.3. 

Again, when decreasing the mismatch to 1 %, the basic phenomena remain the same. 

The significant change is the INTF attenuation improvement of 20 dB, which can be 

seen from Figure 6.4. In this case, the magnification shows the mismatched noise spec- 
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Figure 6.3 Simulated output noise spectrum and the NTFs with 10 % mismatch in the 

feedback branch (G ). The right hand plot zoomed to the assumed desired signal band. 
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Figure 6.4 Simulated output noise spectrum and the NTFs with 1 % mismatch in the 

feedback branch (G ). The right hand plot zoomed to the assumed desired signal band. 
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trum crossing the INTF response level on the sides of the notch due to the increasing 

gain of the NTF. Thus, the INTF is the most dominant in the middle of the NTF notch. 

Based on the simulation results presented above, it can be said that analytical deriva-

tions considering the noise shaping characteristics, i.e. NTF and INTF response, are va-

lid. As the main finding, the possible dominance of the conjugated version of the quan-

tization error on the desired signal band should be highlighted. 

6.2. STF and Input Signal Mirroring Study 

The complex input signal used in the STF simulations consists of two exponential tones 

approximately at the normalized frequencies 0.375passf =  and 0.361intf = − . Spec-

trum of the input signal is shown in Figure 6.5.  
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Figure 6.5 Spectrum of the input signal used in the I/Q imbalance STF simulations, 

exponential tones at 0.375 and −0.361 relative to the sampling frequency. 

The NTF notch of the first-order modulator is located exactly at the frequency of the 

positive frequency exponential. Thus, the IRR can be estimated by measuring the differ-

ence of the frequency components at 0.375 and 0.361, which represent the original tone 

at the NTF passband and the mirror interference component from the negative frequen-

cy tone, respectively. The simulations were done with an ignorable level of additive 

noise modeling quantization error to highlight the STF related phenomena.  

The IRR plots presented in the following Sub-sections represent the averaged IRR val-

ues over random phases of the exponential tones in the input signal. The data for each 

plot consists of 50 independent phase realizations to smoothen random variations in the 

acquired IRR results and thus provides more reliable data. For comparison, a spectrum 
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of the output with the 10 % mismatch in the input branch feeding the quantizer hig-

hlighting the phenomenon is presented in Figure 6.6. In addition, the calculated STF and 

ISTF are plotted.  
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Figure 6.6 Output spectrum of the described simulation setup with a 10 % mismatch in 

the input branch feedin the quantizer (A ). 

From the above figure, it can be seen, that the predicted transfer functions are matching 

nicely with the output components. The mirror-frequency interference component is at-

tenuated by the ISTF and the original input by the STF.  

The IRR values calculated based on the analytical model are plotted in the figures in the 

following Sub-sections with circles and crosses for the flat and the selective case, re-

spectively. These calculations are done at one-decade intervals. The analytical results 

are compared to the simulated values to find out the reliability of the analysis. The 

Fourier transform accuracy and the available word length are limiting perceivable image 

attenuation values to roughly 80 dB level. This is the level when mirror interference 

component is pushed to the noise level and thus cannot be observed anymore. The fol-

lowing simulation ranges are tuned considering this limitation. 

6.2.1. Effects of Input Coefficient Mismatches 

A mismatch between the coefficients on the input branches of the I and Q rails results in 

a conjugate response for the input signal. The image rejection ratios of the modulator 

with different values of the mismatch in the branch feeding the input signal to the loop 

filter are presented in Figure 6.7. The IRR was simulated with the all-flat STF and with 

the STF notch at the frequency of the interfering mirror frequency signal. These results 

are given with blue and red lines, respectively. 
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The analytical predictions of the corresponding IRR values are given with intervals of 

one mismatch decade. The calculated results are drawn with circles and crosses, for the 

flat and the mirror frequency rejecting signal transfer functions, respectively. The 

curves show that the results obey the traditional 20 dB per matching decade attenuation 

increase. Also the correspondence between the simulated and calculated values is good. 
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Figure 6.7 Output IRR as a function of the mismatch in the input branch feeding the 

signal to the quantizer (A ). 

Similarly, the IRR is simulated based on the mismatch in the branch feeding the input 

signal straight to the quantizer, bypassing the loop filter. These results are shown in 

Figure 6.8. The IRR level is roughly 20 dB lower than in the previous case, but the 

slope remains on the 20 dB per decade level. Just as in the previous scenario, the analyt-

ical and simulated results are coherent. 

Based on the results it can be said that designing the STF notch on the mirror interfe-

rence frequency doesn’t decrease the experienced interference in cases of the input 

branch mismatches. In addition, it should be noted that the mismatch in the branch feed-

ing the input to the loop filter is causing more rapid degradation in the IRR values when 

compared to mismatch in the quantizer-feeding branch. This results from the fact that 

parameter A  is purely real gain in the simulation setup in case of both the STF de- 
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Figure 6.8 Output IRR as a function of the mismatch in input branch feeding the signal 

to the loop filter (B ). 

signs. Mismatch in the complex parameter B  is causing more severe imbalance effects 

because the I and Q rails are also cross-connected, resulting in two real multiplications 

instead of two. This behavior was visible also in the IRR plots in Sub-sections 5.2.1 and 

5.3.1. 

6.2.2. Effect of Loop Filter Mismatch 

The I/Q imbalance in the complex loop filter of the quadrature Σ∆ modulator results in a 

conjugate response in the modulator output. The mismatch is simulated as a differential 

error in the coefficients of the feedback gain of the complex integrator. The resulting 

IRR values are presented in Figure 6.9.  

The below figure clearly shows that in case of selective STF the IRR slope is again 

20 dB per mismatch decade. The analytic calculations marked with circles clearly agree 

with this. In the case of flat STF, the analytic results are in the order of hundreds of de-

cibels. Theoretically, image attenuation should be infinite due to the reasons described 

earlier in Sub-section 5.2.2. Anyway, because of the limited word length effects, some 

high but finite values are observed. From the simulation point of view, the 80 dB floor 

of the IRR is resulting from, among others, the properties of the FFT. 

Thus, the analytical IRR results being on such a high level and the simulation results 

giving values close to the maximum achievable level with used precision, the analysis 

can be assumed coherent. In this way, the simulations confirm the conclusion that in the  
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Figure 6.9 Output IRR as a function of the mismatch in the loop filter (M ). 

case of the all-flat STF, the mismatch in the feedback of the complex integrator doesn’t 

produce conjugate interference from the input signal point of view. 

6.2.3. Effect of Feedback Coefficient Mismatch 

When the feedback branch of the quadrature Σ∆ modulator contains mismatch between 

the I and Q branches, the conjugates of both the input signal and the quantization noise 

are present at the output. In addition to previous analytic derivations in Sub-sections 5.2.3 

and 5.3.3 for the flat and the mirror frequency rejecting STF, respectively, the mirror 

interference due to the input conjugation is simulated. 

In the case of image-band rejecting STF, the IRR is significantly increased, as can be 

seen from Figure 6.10. This is because the frequency components causing the mirror 

interference are filtered from the signal before it is fed to the mismatched feedback 

branch. 

With the flat STF, simulation results are clearly coherent with the analytic calculations 

marked with crosses in the below figure. The figure shows that in case of the feedback 

mismatch the IRR is significantly increased with the mirror frequency rejecting STF 

design. Even with 10 % mismatch the IRR remains above the 70 dB level. 

The analytic IRR values for the mirror frequency rejecting STF range from slightly 

above 90 dB to around 150 dB with the mismatch decreasing from 10 % to 0.01 % (as 

was shown in Sub-section 5.3.3) and are therefore off the figure scale. The flat STF re- 
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Figure 6.10 Output IRR as a function of the mismatch in the modulator feedback 

branch (G ). 

sults match the previous analysis considerably well, and in the case of the selective STF, 

the difference results from the limited simulation precision. Thus, the analytic model 

can be assumed valid also in this case. 

6.3. Interpretations on Mirror Interference Post-
Compensation 

The purpose of this section is to highlight some characteristics of quadrature Σ∆ conver-

sion related to the I/Q imbalance compensation. The imbalance is assumed to appear 

inside the quadrature Σ∆ modulator or in the preceding quadrature mixer applied to the 

down-conversion of the RF signal. Three different mismatch scenarios will be discussed 

below. These include a mixer mismatch with an ideal traditional A/D-conversion, a 

mixer mismatch with an ideal quadrature Σ∆ converter and an ideal mixer with a mis-

matched quadrature Σ∆ converter. The mismatch of the quadrature mixer is modeled 

with a gain and a phase error resulting in a 20 dB image-rejection in order to highlight 

the phenomenon. Similarly, the quadrature Σ∆ converter is assumed to give 20 dB IRR 

for the input signal, which results from the 10 % mismatch in the modulator feedback 

loop.  

A complex exponential on a negative frequency of roughly −0.375 relative to the sam-

pling frequency Sf  is modeling a strong blocking signal on the mirror frequency of the 
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desired signal. Thus, the desired band is assumed to be located around +0.375 relative to 

Sf . In case of the quadrature Σ∆ conversion, the noise notch is located on this frequency. 

The method used to compensate the mirror frequency interference is proposed in [3]. In 

the literature, some Σ∆ specific analog mitigation methods are proposed, but they usual-

ly include implementing additional analog electronics [12], [57] or time-sharing of the 

components [53]. The former affects the receiver size and power dissipation and the lat-

ter one the sampling characteristics. A digital post processing method, such as in [3], 

would be a desirable way to compensate possible interference, because no alteration of 

the original modulator structure would be needed. In this way, the characteristics of the 

converter wouldn’t be degraded and, on the other hand, the size, the power consumption 

and the integrability would remain intact.  

Now a block-based estimation algorithm is applied to compensate the frequency-

independent interference, which is the case in the following examples. The basic principle 

in this algorithm is to sum a weighted version of the conjugate signal to the original signal 

in order to remove the interference. Anttila et al. showed this to be effective in a case of 

the frequency-independent mixer mismatch. The calculation of the optimum compensa-

tion factor OPTω  is based on expected values of the squared signal and the squared abso-

lute values of the signal over the chosen block of samples. Thus, OPTω  is given by 
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 (6.1) 

where ( )x k  is the quantized complex-valued discrete-time signal. Thereafter, OPTω  is 

used in the compensation structure illustrated in Figure 6.11. For further details and the 

related derivations, interested reader is advised to the original publication [3]. 
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Figure 6.11 Basic principle of the mirror frequency interference compensator in [3]. 
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6.3.1. Mismatched Quadrature Mixer with Traditional ADCs 

The I/Q imbalance in a quadrature mixer structure results in a nonideal frequency trans-

lation. Optimally, the frequency shift is truly asymmetric with a local-oscillator fre-

quency LOf . However, the imbalance creates an attenuated mirror image, which will be 

transferred in the opposite direction LOf−  in frequency. This phenomenon leads to the 

mirror frequency interference. For example, if we assume an IF receiver with the de-

sired signal around the RF frequency LO IFf f+ , the ideal IF for the desired signal will 

be LO IF LO IFf f f f+ − = . Now we can see that the mismatched mixer creates also an 

interfering image from the negative frequencies with the frequency shift 

LO IF LO IFf f f f− + + = , resulting in mirror image at IFf  from original LO IFf f− + . 

This is shown graphically in Figure 6.12 

F

A blocker
desired
signal

F

A

FLO+FIFFLO FIF-

FIF-FIF

IRR

 
Figure 6.12 The principle of mismatched quadrature mixing, where the mismatch-

originated reverse frequency shift by LOf−  is depicted with a dashed line. 

In the following simulations, the desired signal IF IFf  is assumed to be around 0.375 

relative to the sampling frequency Sf  and then the amount of generated interference on 

that frequency is studied. The interference source is expected to be a complex blocking 

tone at the frequency LO IFf f− + , thus creating a mirror image on IFf  in the down-

conversion. The setup corresponds to the simplified situation where an exponential tone 

is situated on the mirror frequency 0.375IF Sf f− = −  and the desired signal is omitted 

to simplify illustration. Now the imbalance effects of this complex tone are examined to 

evaluate the IRR levels before and after the compensation. A principal block diagram of 

the simulation setup is given in Figure 6.13. Gain and phase mismatches resulting in 

20 dB IRR are assumed in the simulations. 
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Figure 6.13 Principal block diagram of the simulation setup in case of mismatched 

quadrature mixer and traditional ADCs. 

The simulation results are shown in Figure 6.14. The noise is assumed AWGN whose 

level is scaled to match the level of the first-order Σ∆ modulator noise shaping to match 

full band noise power. The expected 20 dB IRR before compensation is visible in the 

left hand figure. On the other hand, from the right side figure it can be seen that the 

compensation algorithm is clearly able to mitigate the distortion and the mirror compo-

nent is pushed to the noise floor. Thus, the IRR after compensation is more than 80 dB, 

giving over 60 dB of improvement. 

−0.5 −0.25 0 0.25 0.5
−120

−100

−80

−60

−40

−20

0

20

Frequency Relative to f
s

R
e

la
ti
v
e

 P
o

w
e

r 
[d

B
]

−0.5 −0.25 0 0.25 0.5
−120

−100

−80

−60

−40

−20

0

20

R
e

la
ti
v
e

 P
o

w
e

r 
[d

B
]

Frequency Relative to f
s  

Figure 6.14 Spectrum of the signal before (left) and after (right) the I/Q imbalance 

compensation in case of mixer mismatch and ideal traditional ADCs. 

6.3.2. Mismatched Quadrature Mixer with Ideal Quadrature Σ∆ ADC 

The following scenario presents a similar mismatch source as in Sub-section 6.3.1 with 

a quadrature Σ∆ converter employed to digitize the signal. The noise transfer function 

notch is placed on the assumed desired signal band around 0.375 relative to Sf  and the 

signal transfer function of the modulator has a unity response. Principal block diagram 

of the simulation setup is given in Figure 6.15. Similar 20 dB pre-compensation signal 

IRR is assumed as in Sub-section 6.3.1. 
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Figure 6.15 Principal block diagram of the simulation setup in case of mixer mismatch 

and ideal quadrature Σ∆ ADC. 

The simulation results in Figure 6.16 show that in case of quadrature Σ∆ conversion the 

compensation algorithm doesn’t mitigate the imbalance effects as well as in the case 

with traditional ADCs. The compensation increases the IRR of the tone to around 30 dB 

giving only 10 dB of improvement. In addition, when applying the compensation, more 

noise is pushed to the notch frequency, which also degrades the SNR of the desired sig-

nal on that frequency. The noise rise in the notch is in the order of 10 dB. 
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Figure 6.16 Spectrum of the signal before (left) and after (right) the I/Q imbalance 

compensation in case of mixer mismatch and ideal quadrature Σ∆ ADC. 

The degradation of the compensation performance is due to the shaped and non-

conjugated quantization noise. The algorithm handles the signal as a one entity and isn’t 

able to separate the noise and the input signal. Thus, the quantization noise on the nega-

tive frequencies is disturbing the compensation of the mirror signal component, because 

there is no mirror correspondence for the noise part. The resulting compensated signal 

can be said to be a kind of compromise between the mirror interference compensation 

and degrading the noise shaping characteristics. 
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6.3.3. Ideal Quadrature Mixer with Mismatched Quadrature Σ∆ ADC 

In this Sub-section, the mismatch in the quadrature Σ∆ converter feedback branch is 

considered. In order to highlight the related phenomena, a 10 % gain mismatch between 

the I and Q rails is applied and the preceding quadrature mixer is expected to be ideal. 

Thus, the input signal of the Σ∆ modulator is an ideal complex exponential. The corres-

ponding principal block diagram is given in Figure 6.17. 

The resulting modulator output spectrum on the left in Figure 6.18 shows that from the 

input signal point of view the IRR is again at the level of 20 dB. The clear difference 

when compared to the results of Sub-section 6.3.2 is however, that also the noise has 

been distorted. Comparing Figure 6.16 and Figure 6.18 shows more than 10 dB differ-

ence in the noise level at the center of the NTF notch. This is because the mixer mis-

match didn’t affect the noise part in any way, but the mismatch in the modulator feed-

back adds also the image noise transfer function response for the conjugated version of 

the noise, as was seen in Sub-section 5.2.3. 
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Figure 6.17 Principal block diagram of the simulation setup in case of quadrature Σ∆ 

ADC feedback mismatch. 

The results after applying the compensation are quite similar as in Sub-section 6.3.2 

when considering the overall performance. The algorithm pushes the mirror tone down 

by some 10 dB. Additionally, in this case, the noise floor is lowered due to the conju-

gated nature of the pre-compensation noise spectrum, as seen in the right plot of Figure 

6.18. The main reason for sub-optimal compensation result is the different mirroring 

occurrences of the signal and noise components. The image signal and the image noise 

transfer functions were presented in Sub-section 5.2.3. The ISTF is frequency flat whe-

reas the INTF has a notch on the negative frequencies making the combined compensa-

tion challenging. 
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Figure 6.18 The spectrum of the signal before (left) and after (right) the I/Q imbalance 

compensation in the case of the quadrature Σ∆ ADC feedback mismatch. 

Only feedback coefficient mismatch is considered here. The reasoning for this choice is 

based on the previous mismatch analysis and obtained results (in Chapter 5). There, it 

was found that mismatch in the input branches of the modulator correspond – from the 

post-compensation point of view – mismatched input for the whole modulator structure, 

which was considered above in Sub-section 6.3.2. On the other hand, the mirror interfe-

rence effects in cases of mismatched loop filter and mismatched feedback are relatively 

similar, again from the post-compensation viewpoint. 
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7. CONCLUSIONS 

The main purpose of this thesis was to clarify the design aspects and the possibilities of 

a quadrature Σ∆ modulator in radio receiver concept and to study the effects of I/Q im-

balance in the modulator structure. The quadrature modulator provides an efficient pos-

sibility for analog-to-digital conversion in radio receivers employing the IF sampling 

architecture. So-called STF filtering seems to offer also possibilities to relax the re-

quirements for the preceding analog filtering stages. The benefits over the real modula-

tor have been shown in the literature, but some additional challenges still exist. Main-

taining adequate I/Q separation is one example of the possible threats and has been cho-

sen for the main theme of this study. 

The basic theory related to the Σ∆ modulation was presented in Chapter 3 and analytic 

models for the first, the second and an arbitrary-order modulator were given (in Chapter 

4). After this, the first-order case was expanded to include mismatches of the I and Q 

branches. An analytical model for the imbalanced modulator output was derived in 

Chapter 5, which was then utilized to determine the image rejection ratios for the input 

signal and the quantization error. The results were confirmed with simulations in Chap-

ter 6. The derived models and the simulations were concluded to be consistent. 

One of the main findings in the thesis was the different mirroring properties of the input 

signal carrying the information and the quantization error shaped inside the Σ∆ loop. 

The analysis revealed that depending on the exact location of the mismatch the amount 

of experienced mirror frequency interference varies notably. In addition, the effects are 

dependent on the choice of the modulator transfer function (the signal and the noise 

transfer functions) design. One practical example of this is that when considering the 

mismatched modulator feedback, the mirror frequency rejecting STF gives clear im-

provement in the IRR of the complex input signal. 

Considering the simulated mismatch values and the dynamic range of the modern wide-

band receivers, the component mismatches and the resulting I/Q imbalance can be said 

to be a noteworthy problem in quadrature Σ∆ modulators. At the presence of a strong 
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blocking signal on the mirror frequency band, even slight mismatches, which could be 

practically ignored in a narrowband receiver, can cause severe distortion on the desired 

signal with weaker power level. 

The I/Q imbalance mitigation algorithms proposed in literature are able to compensate 

efficiently the mirror frequency interference originating, e.g., from a non-ideal quadra-

ture mixer. However, different mirroring effects on the input signal and the quantization 

error make the situation noticeably more complicated. Some examples of the simulated 

mitigation performance were given in Chapter 6 and it can be concluded that the used 

digital post-processing algorithm results in a sub-optimal compromise-like solution be-

tween the input signal and the quantization error mirroring. Thus, employing a quadra-

ture Σ∆ modulator for the A/D conversion makes also the compensation of the quadra-

ture mixer imbalance more challenging as was seen in Chapter 6. 

When considering a wideband receiver with reduced analog filtering and a quadrature 

Σ∆ converter, novel mismatch compensation ideas should be developed, in addition to 

the one presented in this thesis, to guarantee reliable operation under the risk of strong 

blocking signals. In addition, the stability of the modulator in case of rapid and large 

input power fluctuations due to the out-of-band blocking signals should be studied fur-

ther. However, these points are left for the future work together with expanding the 

mismatch analysis to cover the higher-order modulators and the continuous-time im-

plementations of the structure. 
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