

MIKKO VARTIALA
DESIGN AND IMPLEMENTATION OF AN AGENT-BASED
ARCHITECTURE FOR A PROCESS SUPPORT SYSTEM
Master of Science Thesis

Examiners: professor Kai Koskimies
 assistant professor Jari Peltonen
Examiner and topic approved in the Faculty of
Computing and Electrical Engineering Council
meeting 17.8 2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
VARTIALA, MIKKO: Design and Implementation of an Agent-Based Architec-
ture for a Process Support System
Master of Science Thesis, 50 pages
March 2010
Major: Software engineering
Examiners: Professor Kai Koskimies and assistant professor Jari Peltonen
Keywords: Software process support, software agents, software framework,
agent-based architecture

Tool integration is an important aspect of software development process support. In
such systems it should be possible to integrate tools flexibly and incrementally. In addi-
tion, for performance and usability reasons, it should be possible to use the tools both on
local and remote computers.

To address this problem of flexible tool integration, an agent-based architecture
style was designed. The architecture strives to attain the needed flexibility by few sim-
ple design rules. One of the rules is to divide the functionality to agents and locations.
The locations work as adapters to tools and provide basic infrastructure of the system.
The agents move among the locations and implement the high level business logic of
the system by using the methods of the locations. A general principle is that each agent
implements a single business case. This makes it easy to view, control, and adapt the
high level business logic as the logic is located in one place.

The architecture style is not tied to any specific programming language. However,
for the purposes of this thesis an agent-based software framework was implemented
using C++. A distributed process support system was then implemented by specializing
the agent framework. The process support domain provides a good case study for the
validity of the agent-based architecture as the process support system needs to integrate
various tools supporting the process.

As a result of this thesis, an agent-based architecture style was designed and proto-
typed. The implementation of the process support system was used to evaluate the
agent-based architecture style and to find out the challenges in building systems using
the principles of the agent-based architecture. The architecture could be extended in
many ways, but it was shown to be usable in the domain of tool integration. In addition,
the implemented process support system fulfilled the quality requirements laid out for it.

 ii

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
VARTIALA, MIKKO: Agenttipohjaisen arkkitehtuurin suunnittelu ja toteutus pro-
sessitukijärjestelmälle
Diplomityö, 50 sivua
Maaliskuu 2010
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Kai Koskimies ja yliassistentti Jari Peltonen
Avainsanat: ohjelmistoprosessituki, ohjelmistoagentit, ohjelmistokehys,
agenttipohjainen arkkitehtuuri

Työkaluintegrointi on ohjelmistotuotantoprosessien tukemisen kannalta olennaista.
Työkalut olisi myös hyödyllistä saada integroitua joustavasti ja inkrementaalisesti, työ-
kalu kerrallaan. Esimerkiksi ohjelmistoprosessitukijärjestelmän on tärkeää olla helposti
muokattava ja erilaisiin tilanteisiin mukautuva, jotta ohjelmistokehittäjät eivät kokisi
sen käyttöä taakaksi, vaan omia työtehtäviään helpottavaksi.

Tässä diplomityössä suunniteltiin työkalujen integrointiin hajautusta tukeva agentti-
pohjainen arkkitehtuurityyli. Arkkitehtuurityyli pyrkii saavuttamaan sille asetetut laatu-
tavoitteet muutamalla selkeällä pääperiaatteella, esimerkiksi jakamalla toiminnallisuu-
den agentteihin ja sijainteihin. Sijainnit toimivat muun muassa sovittimina työkaluihin
ja tarjoavat yleistä järjestelmän perustoiminnallisuutta. Agentit liikkuvat sijaintien välil-
lä ja toteuttavat järjestelmän korkean tason liiketoimintalogiikan käyttämällä sijaintien
tarjoamia metodeja hyväkseen. Yleisenä periaatteena on yhden käyttötapauksen sijoit-
taminen yhteen agenttiin, jolloin korkeimman tason liiketoimintalogiikan hallinnasta ja
muokkaamisesta tulee helppoa.

Lähestymistapaa arvioitiin toteuttamalla agenttipohjaisen arkkitehtuurityylin peri-
aatteita noudattava C++ ohjelmistokehys. Lisäksi tätä ohjelmistokehystä erikoistamalla
toteutettiin hajautettu prosessitukijärjestelmä. Prosessitukijärjestelmän kokonaistoimin-
nallisuus saavutettiin integroimalla siihen useita jo olemassa olevia ohjelmistoja.

Työn tuloksena saatiin suunniteltua työkalujen integrointiin tarkoitettu agenttipoh-
jainen arkkitehtuurityyli. Lisäksi luotiin Tampereen teknillisen yliopiston Ohjelmisto-
tuotannon laitoksen käyttöön prototyyppi C++ agenttiarkkitehtuuri-kehyksestä ja pro-
sessitukiympäristöstä. Ohjelmistokehyksen päälle toteutettu prosessitukiympäristö aut-
toi tarkistamaan agenttipohjaisen lähestymistavan toimivuuden tässä kohdeympäristös-
sä. Lisäksi prosessitukiympäristön toteuttaminen havainnollisti agenttilähestymistavan
mukanaan tuomia hyötyjä ja haasteita.

 iii

PREFACE

I would like to thank my colleagues and the participants of the original project group
this work was started with for their professional support. I would also like to thank the
examiners of this thesis, Kai Koskimies and Jari Peltonen, for the invaluable guidance
and comments provided for this work. In addition, I would like to thank my family and
friends for their support and the motivation provided by their constant enquiries about
the status of this work. Finally, I would like to thank Salla for her support and for endur-
ing the time consuming finalizing of this writing work.

Tampere, 18. March 2010

Mikko Vartiala

 iv

CONTENTS
1. INTRODUCTION ... 1

2. SOFTWARE ARCHITECTURES AND AGENTS 3

2.1. SOFTWARE ARCHITECTURE ... 3

2.1.1. Motivation for Software Architectures .. 3

2.1.2. Software Frameworks .. 3

2.2. APPLICATION INTEGRATION... 4

2.2.1. Why Messages in Application Integration? ... 4

2.2.2. Deficiencies of Message-Based Systems .. 5

2.3. AGENT-BASED SYSTEMS ... 6

2.3.1. Definition of an Agent .. 6

2.3.2. Mobility ... 7

2.3.3. Challenges in Developing Agent-Based Systems ... 8

2.4. SOFTWARE ARCHITECTURE RELATED TECHNIQUES AND CONCEPTS 10

2.4.1. Metalevels in Software Design.. 10

2.4.2. Observer Pattern.. 11

3. SOFTWARE PROCESS SUPPORT .. 13

3.1. OVERVIEW OF SOFTWARE PROCESSES .. 13

3.2. SOFTWARE PROCESS SUPPORT IN GENERAL.. 15

3.3. CHALLENGES OF A PROCESS SUPPORT SYSTEM... 16

3.4. REQUIREMENTS FOR A PROCESS SUPPORT SYSTEM ... 16

3.4.1. Rationale for the Requirements .. 17

3.4.2. More Specific Requirements for the Target Process Support System 17

3.5. ARCHITECTURES OF EXISTING PROCESS SUPPORT SYSTEMS .. 18

4. AN AGENT BASED ARCHITECTURE ... 19

4.1. MOTIVATION FOR A GENERAL AGENT BASED ARCHITECTURE .. 19

4.2. AN OVERVIEW OF THE APPROACH ... 20

4.3. SYSTEM AND RUNTIME ARCHITECTURES .. 21

4.4. AN EXAMPLE: OBSERVER-PATTERN... 22

4.5. AGENT CHARACTERISTICS .. 23

5. IMPLEMENTATION OF THE AGENT FRAMEWORK 25

5.1. THE INFRASTRUCTURE SUPPORTED BY THE AGENT FRAMEWORK 25

5.2. THE GENERAL CHARACTERISTIC OF AGENTS IN THE FRAMEWORK 26

5.3. THREADING AND PROCESS BOUNDARIES .. 26

5.4. CORE CLASSES OF THE FRAMEWORK ... 27

5.5. AN EXAMPLE AGENT, REGISTEROBSERVER ... 28

 v

5.6. EXPANDING THE SYSTEM... 30

5.6.1. Adding New Methods to an Old Location .. 30

5.6.2. Adding a New Agent ... 30

5.6.3. Adding a New Location .. 31

5.6.4. Adding a New Area .. 31

5.6.5. Changing the Topology of the System ... 31

6. CASE STUDY: PROST PROCESS SUPPORT TOOL............................... 33

6.1. DECISIONS REGARDING THE ENVIRONMENT ... 33

6.2. EXISTING AND AVAILABLE COMPONENTS .. 33

6.3. AN OVERVIEW AND THE SYSTEM ARCHITECTURE OF THE EXAMPLE SYSTEM 34

6.4. AN EXAMPLE RUN-TIME ARCHITECTURE AND EXPERIENCES .. 35

6.5. USER INTERFACE .. 36

6.6. SPECIALIZED AGENTS.. 37

6.7. USE OF THE SYSTEM .. 37

6.8. EXPANDING THE SYSTEM... 39

6.9. IMPLEMENTATION TECHNIQUES ... 39

6.10. IMPLEMENTATION CLASSES ... 40

6.11. ABOUT AGENT IMPLEMENTATIONS .. 40

6.12. ERROR AND EXCEPTION HANDLING ... 41

7. EVALUATION ... 43

7.1. BENEFITS .. 43

7.2. DRAWBACKS... 44

7.3. COMPARISON TO PITFALLS .. 45

7.4. PROPOSALS FOR IMPROVEMENT AND CRITICISM ... 46

7.5. RELATED WORK ... 47

7.5.1. Integration Domain .. 47

7.5.2. Agent Architectures .. 48

7.5.3. Process Support Systems .. 49

8. CONCLUSIONS ... 50

REFERENCES ... 51

 vi

TERMS AND DEFINITIONS

CASE Tool Computer-Aided Software Engineering tool. CASE tools are tools
that help the development of software products.

MOF Meta-Object Facility. MOF is a standard for model-driven engi-
neering. MOF Is used to define UML.

UML Unified Modeling Language. UML is a modeling language for
software systems.

COM Component Object Model. COM is A technology developed by
Microsoft to enable software components to communicate with
each other in Windows environments.

API Application Programming Interface. An application programming
interface is an interface enabling other applications to interact with
the application providing the interface.

XML Extensible Markup Language. XML is a textual data format de-
signed to be usable over the Internet.

RPC Remote Procedure Call. RPC is an inter-process communication
technology allowing applications to call other applications.

SOA Service Oriented Architecture. SOA is a set of architectural prin-
ciples designed to provide ease of integration of services.

ODBC Open Database Connectivity. ODBC is a way for software pro-
grams to connect to and use database management systems.

COTS Commercial, Off-The-Shelf. A COTS component is a software
component that is readily available for sale to general public. In
some cases COTS can also refer to common, off-the-shelf, i.e. in-
cluding free software.

 1

1. INTRODUCTION

Software process support systems aim at helping the developer to carry out the various
activities in a software process more efficiently. Efficiently can mean, for instance, in
less time, with better quality, or to overall use less money by, for example, using cheap-
er tools. However, the software processes used in different software projects vary great-
ly, and often there is a need to make ad-hoc changes to the process even during a
project. Therefore, a process support system must be flexible and maintainable to be
usable in real world scenarios. Especially it must be possible to integrate new and exist-
ing tools to the process support system easily.

Software process tools and software process support have been a target of research
in many projects in the Software Systems Department of Tampere University of Tech-
nology. At the start of this work there already existed various tools, including a graphi-
cal editor and an engine used to create and run VISIOME scripts [Pel00]. VISIOME
scripts can be used to define various kinds of processes. However, the existing tools
were not integrated together very well, and there was also a need for additional functio-
nality. For example, there was a need for a user interface that could be used to follow
and control the execution of the process. The existing engine running the process was an
executable run on a single computer and therefore did not support distribution. In addi-
tion, there was a need for concepts not supported in the existing application, including
projects, user roles, and guidance for activities. In essence, there was a need for a
process support system that would integrate the existing applications together and add a
project-related information layer on top of them.

The integration of existing applications and tools is a challenge that concerns not
only process support systems, but also many other domains. In many areas of software
development it is possible to use existing applications. Good examples of these are var-
ious open source applications readily available to any developer. However, rarely do
these single applications alone offer the complete needed functionality. In such cases it
is usually a better solution to try to integrate these applications together than to try to
create a whole new application from scratch.

To answer these challenges it is important that the various applications, and in the
case of process support systems, especially the various tools, can be integrated together
in a flexible and maintainable way. For these reasons an agent-based architecture style
for application integration was designed in this thesis. The architecture style is designed
to work primarily in the domain of integrating tools in software development support.

The agent-based architecture was validated by first building a prototype framework
using the design principles of the agent-based architecture and then implementing a
process support system by specializing the framework. The implemented process sup-

 2

port system utilizes the good points of the agent framework to fulfill the growing de-
mands of the software development process, by, for example, providing easy integration
of existing and new tools to the support system.

Chapters two and three introduce the theory and background behind this work.
Chapter two is about the general architectural concepts needed in this thesis, and chapter
three is more specifically about the process support domain. In chapter four the agent
based architecture is described. Chapter five is about the implementation of the agent
framework, which was described in chapter four. Chapter six describes the case study
process support system, which was built using the agent framework. In chapter seven
the pros and cons of the architecture are discussed and related work is presented. Chap-
ter eight presents the conclusions of this thesis.

 3

2. SOFTWARE ARCHITECTURES AND
AGENTS

There are various architectural concepts and techniques used in this thesis. Examples of
these include software frameworks, agents, and observer-pattern. They are introduced
briefly in the following sections.

2.1. Software Architecture

Software architecture is usually understood to mean at least the structure of a system,
including communications between the modules in the structure and the dynamic beha-
vior of the system. In addition, an important purpose of the architecture is to define and
guide how the system should be built and extended over time, i.e. a kind of a constitu-
tion or a philosophy of the implementation of a system [Kos05, Hai06].

Usually a good architecture means that if a developer does not know something
about the design of a system, then she can make an educated guess about it on the basis
of the architecture philosophy. An architecture philosophy known to work well is also
known as architectural pattern. A good example of an architectural pattern is the Model-
View-Controller [Bus96] architecture. [Hai06]

2.1.1. Motivation for Software Architectures

To enable larger projects, faster development, and higher productivity there has always
been the need to raise the abstraction level in software development. Sophisticated ar-
chitecture styles and models have helped to achieve this goal by, for example, making it
possible to better communicate ideas and to allow developers to concentrate more on
the big picture instead of small things.

The rise of the abstraction level has allowed software developers to see the similari-
ties in seemingly different kind of systems, which then allows these similarities to be
implemented in one place, making greater amount of reuse possible. In addition, incre-
mental development and the splitting of software development to reasonable work units
are qualities that can only be enabled by architecture level solutions. [Kos05]

2.1.2. Software Frameworks
Gamma et al. [Gam94] describes a framework to be a set of cooperating classes that
make up a reusable design for a specific class of software. The purpose of a software
framework is to allow large scale software reusability in a specific domain area. The
difference between frameworks and normal reusable class libraries is that a software
framework also reuses architectural design decisions and basic functionality. More spe-

 4

cifically, a framework is usually an almost whole program, where the developer fills the
missing gaps according to her needs. This is called specialization of the framework, and
the missing gaps are called extension points.

A general problem in developing software frameworks is the decision about target
scope. A framework with a too limited scope is in practice a single program, and an all
domains covering framework is also called a programming language. To find a good
and well balanced tradeoff between these two is a job needed to be done before actually
developing a framework.

Benefits of software frameworks include faster development, better quality, and eas-
ier developer migration to new projects. Faster development is achieved by reusing ex-
isting code [Kos05]. Better quality of code is accomplished because the framework has
already been tested in previous products. Possible disadvantages include bloating of
code, possibly poorer efficiency, and added complexity of the resulting system.

The types of frameworks include white-box, black-box, and plug-in frameworks.
White-box framework is a framework that is open for the developer, i.e. the developer
knows the primary structure of the framework and specializes the framework by inherit-
ing classes from the base classes in the framework. A black-box framework is a frame-
work that has already reached such a stage in evolution that the developer does not add
any new code related to the framework. Only some initialization parameters and such
are given, and then the working program is created by configuring the framework with
the wanted set of properties. A plug-in framework is a framework that is mainly ex-
tended by creating new plug-ins that implement a certain plug-in interface. The plug-ins
are usually loaded dynamically from the file system, so that the whole software does not
need to be recompiled each time a plug-in is added. [Kos05]

2.2. Application Integration

Application integration means making different applications to work together. There
can be many different levels of cooperation, for example, the applications can only
share some of their data, or they can be fully cooperating and reacting to the behavior of
each other in real-time. In this section the reasons why messages have been popular in
application integration is discussed, and finally the downsides of message based sys-
tems in integration are looked into with more detail.

2.2.1. Why Messages in Application Integration?

Messages are often seen as the most versatile option for application integration over file
transfer, shared database, and remote procedure calls (RPC) (e.g. [Hoh03]). File transfer
and shared database approaches are solutions for sharing data, but not functionality.
RPC again makes it possible to share functionality, but couples the applications tightly
to each other at the same time. In addition, remote procedure calls are slower and much
more likely to fail than local ones, and due to the synchronous nature of communica-
tion, a failure in one application may break down the whole system. File transfer, as an

 5

integration approach, is asynchronous and decouples applications well, but does not
transmit the data in real time.

Messaging aims at mixing the good attributes of file sharing and RPC by allowing
near to real time data transmission and functionality invocation asynchronously. Asyn-
chronous communication is one of the key points when aiming at loose coupling among
applications. Sending a message does not require all participating systems to be availa-
ble at the same time, and the sender does not have to wait for the response, but it can
continue on doing other things. In addition, any procedure calls a message actuates are
local, which makes the system more reliable.

Architectural styles like Service Oriented Architectures (SOA) [Pap03] and Enter-
prise Service Bus (ESB) [Cha04, Kee04] emphasize loose coupling by relying on indi-
rect asynchronous message based communication. They work conceptually on higher
level than, e.g., traditional client-server architectures, since they do not discuss physical
clients or servers, but logical services and their consumers. This detaches the architec-
tures from physical world, and thus from physical addresses. The service consumers
also tell what services they want, not how they will be performed. Higher level of ab-
straction in dependencies is a favourable solution in application integration since it
makes loose coupling as the central approach in the architecture.

2.2.2. Deficiencies of Message-Based Systems

In a message based system, a close to real time communication is achieved by sending a
lot of small messages and letting the receiver to know immediately when a message is
available. This generates easily a lot of network traffic, which may become a problem in
larger and more complex systems. In addition, not all of the messages are small and
simple, since they are used to transmit all the information in the system. Hence, messag-
ing may put a heavy burden on a communication channel. This is a problem, not only in
environments where the communication channels are thin (like mobile environments),
but in any environment. Basically, due to need to minimize the network traffic, high
granularity in services would be favourable. However, reuse of services would benefit
from lower granularity.

Due to various schemas and data formats in different applications, each message
goes through a transformation chain, where the message is first formulated, translated to
a common format and sent, and in the other end it is received, parsed, interpreted and
actuated. This requires some processing power, as well as causes lag for the communi-
cation. In addition to the minor inconveniences caused by latencies, the total completion
time may grow considerably.

Since the message must be interpreted in the receiver end, both the sender and re-
ceiver must understand the exact semantics of the message. This means that a single
concern in functionality is always divided across the architecture, and the comprehen-
sion, maintenance, and testing of such a concern gets very hard. The problem is even
worse when the needed functionality is complex, and there is a need for several messag-
es to get a single thing completed.

 6

Basically, any sequence of service requests in a message is a sequence of commands
and can hence be considered as a script. The language for specifying a script just does
not have the power of typical scripting languages. There are no other ways in messages
to react dynamically for varying or exceptional situations either. Not very much can be
done, for example, if a service fails during the execution. The service may be able to
send an error message to the service consumer, but again, an amount of messages are
sent to various places. In addition, there must be some code to react to that kind of mes-
sages too – in all the service consumers who might be interested.

As an example, let us consider a situation where a service consumer wants to calcu-
late a trend based on a large amount of information that is divided on several services.
This means that there are several related messages either sent one by one to the services
and then the results are collected and interpreted in the consumer, or there is a chain of
messages where the information from a previous service is forwarded to the next one,
and the following service again interprets the data it gets.

Particularly, if the data divided on the different services depend on each other in the
calculation, or the way of performing the calculation is dynamic (e.g., depending on the
consumer or data provided by the services), there is either a huge amount of network
traffic, or the services become unnecessary complex. Either way, the functionality
needed for performing a single calculation is spread across the architecture, the business
sequence gets hard to comprehend, maintain, and test, and it is hard to get the whole
system robust and fault tolerant.

2.3. Agent-Based Systems

As discussed in section 2.1.1, the rise of abstraction level has allowed significant im-
provements in software development. Such paradigm shifts include moving from proce-
dural programming to object-oriented development. Many argue that the notion of auto-
nomous and goal-oriented entities, agents, and multi-agent systems offer a similar para-
digm shift [Jen01, Zam03]. However, there are many challenges in developing agent
systems [Woo98]. The possible benefits offered by agents answer to some of the defi-
ciencies described in section 2.2.2, but on the other hand they create a handful of new
ones.

In this section, first a look at the basics of agents and mobility is given, and then the
benefits and drawbacks of mobility are discussed in more detail. Finally, the challenges
of building agent systems are discussed.

2.3.1. Definition of an Agent

Stan Franklin and Art Graesser [Fra96] define the essence of being an agent as follows:
“An autonomous agent is a system situated within and a part of an environment that
senses that environment and acts on it, over time, in pursuit of its own agenda and so as
to effect what it senses in the future.” Moreover, they note that this definition of agent
by itself is not very useful, but further classification is needed. Their classification is
listed in Table 1. Additionally, Franklin and Graesser specify that, by their definition,

 7

all agents fulfill the four first listed properties and the five bottom properties are a kind
of bonus properties, which can add more usefulness to an agent.

Another way to distinguish between different types of agents is to classify existing
agents into different categories. This kind of a categorization is done by Nwana
[Hya96]. Nwana classifies agents by whether they are static or mobile, deliberate or
reactive and by several primary attributes the agents should implement. Nwana specifies
that a minimum of three attributes is needed: autonomy, learning, and cooperation.
These three are used in Figure 1 to derive four more specialized agent types. The actual
figure is made by Chua [Chu03]. The specialized agent types are interface agents, colla-
boration agents, collaboration learning agents, and smart agents. It is emphasized that
these definitions are not absolute, but more of a guideline to classify agents according to
their primary attributes. Nwana also notes that agents may be categorized by their roles,
e.g., an Internet agent, and whether they are hybrid agents, i.e. if an agent combines
multiple agent philosophies together. Additionally mobility and deliberation could be
added to the fore mentioned agent types to create an even more specialized list of agent
types.

2.3.2. Mobility

Table 1 defines an agent to be mobile if it can transport from one computer to another.
In general, this means that instead of sending messages or using RPC to communicate
over network, an agent itself is sent over network. Therefore when a need arises, e.g., it
needs new information or has a new task to achieve, it is free to use the network to
transport itself to a new host and continue execution in there. There are several different
ways to achieve mobility. The minimal way is to require the host to have the execution
code in advance and to only transfer the initialization parameters of an agent. On the
other hand the most requiring method is to transfer the execution code and the execution
state of the agent to the new host. Transferring the execution code and the execution

Table 1: Classification of agents

Property Other Names Meaning

Reactive sensing and acting
responds in a timely fashion to changes in the
environment

Autonomous exercises control over its own actions

goal-oriented pro-active, purposeful
does not simply act in response to the environ-
ment

temporally conti-
nuous is a continuously running process

Communicative socially able
communicates with other agents, perhaps includ-
ing people

Learning Adaptive
changes its behavior based on its previous expe-
rience

Mobile
able to transport itself from one machine to anoth-
er

Flexible actions are not scripted
Character believable "personality" and emotional state

 8

state is called strong mobility, and transferring only the code and possible initialization
parameters is called weak mobility.

The primary motivation for using agent mobility should be the benefits it provides,
not the technological finesse of using the technology just because it is possible. Lange
and Oshima [Lan99] lists seven good reasons for mobile agents: they reduce network
load, they overcome network latency, they encapsulate protocols, they execute asyn-
chronously and autonomously, they adapt dynamically, they are naturally heterogene-
ous, and they are robust and fault-tolerant.

Even though network bandwidth is growing continuously, the reduction in network
load is still a needed benefit, as at the same time the amount of data needed to be
processed is growing enormously. Mobile agents can be used to reduce network load
by, instead of moving data to the agent, moving the agent to the data. In addition, mov-
ing the agent to the data helps overcoming network latency. This is critical in real-time
systems, but additionally the execution time of complex data processing can be signifi-
cantly reduced. The reduction is achieved because, instead of having to always wait for
new data after making a decision based on previous data, the agent can immediately
query the host for new data without any network delays. Asynchronous and autonomous
execution provides mobile agents the benefit of being independent from the original
creator. For example, if launched from a laptop to another computer, the agent can
finish its task even if the laptop becomes disconnected from the network. More general-
ly, the robustness of agents is increased as the agents can react dynamically to unex-
pected situations like the fore mentioned disconnection of the laptop.

2.3.3. Challenges in Developing Agent-Based Systems
There are many possible dangers in developing agent-based systems. Wooldridge et al.
[Woo98] divide the pitfalls into seven different categories: political pitfalls, manage-

Figure 1 Typology of agents by Nwana [Chu03]

 9

ment pitfalls, conceptual pitfalls, analysis and design pitfalls, micro (agent) level pit-
falls, macro (agent) level pitfalls and implementation pitfalls. The four last pitfall cate-
gories are more related to the actual development of an agent-based system and are
therefore the most related to the work done in this thesis. The most relevant challenges
in these four categories are summarized and discussed next, excerpted from Wooldridge
et al. The situations described here are not automatically mistakes, but situations where
great care needs to be given to avoid the pitfalls. Chapter 7 includes a section where the
work done in this thesis is reviewed in light of these pitfalls.

Analysis and design pitfalls

One of the pitfalls in designing an agent-based system is trying to do everything your-
self with new agent-styled techniques. This leads to slower development and lower
quality software than exploiting related technology where applicable. For example, ex-
isting platforms for distributed computing and database systems are technologies appli-
cable to many agent systems.

Micro (agent) level pitfalls

Wooldridge et al. lists four relevant pitfalls in this category: building your own agent
architecture, believing your architecture is generic, using too much artificial intelli-
gence, and having agents with no intelligence. They are described briefly in this section
one by one.

Building your own agent architecture has all the same risks as a typical complex
software systems development. In general, developing a distributed system takes time
and effort and is error prone. It is suggested in Wooldridge et al. to first study the exist-
ing agent architectures and see if any of them is sufficient.

Believing your architecture is generic is an easy mistake to do. After developing a
sufficiently good architecture, it can be tempting for the developers to believe that the
architecture is suited for more domains and problems than it actually is. It is suggested
that before trying to apply an existing agent architecture to a new problem, the characte-
ristics of those domains are reviewed in depth to see if the problem domains really are
similar enough.

Having the agents use too much AI is related to the more general software analysis
problem of bloated specifications with a lot of nice to have features. In a similar fa-
shion, it should be analyzed, which AI properties are really necessary for the system to
work, and start with those. After the system has been built successfully, the intelligence
of the agents can be evolved when necessary.

Having no intelligence on the agents is more of a concept related problem than an
actual agent problem. For example, calling any complex distributed system a multi-
agent system confuses the meaning of agent systems and makes it harder for developers
to understand each other.

 10

Macro (agent) level pitfalls

Possible dangers in this category include seeing agents everywhere, having too many or
too few agents, spending all time implementing the infrastructure, and having an anar-
chic system. The first two are related, as seeing agents everywhere can lead to dividing
the system to smaller and smaller pieces, until every piece of computation is an agent,
i.e. having too many agents. Having too many agents leads to systems that are hard to
maintain and whose dynamic behavior is difficult to predict. In addition to reducing the
amount of the agents, another way to reduce the complexity of the system is to constrain
the ways the agents can communicate. This is additionally one of the solutions to the
related pitfall of having an anarchic system, i.e. a system where the agents have just
been thrown in on the assumption that no agent hierarchies or constraints are needed. In
addition to having too many agents, it is also possible to build a system with too few
agents, i.e. having a too monolithic application.

Implementation pitfalls

Two possible pitfalls in this category are listed in Wooldridge et al. The first danger is
thinking that it is necessary to implement the whole system from scratch. The second
danger is the danger of ignoring the de facto standards. The difference between the first
danger, implementing the whole system from scratch, and the danger described under
Analysis and design pitfalls, i.e. trying to do everything yourself with agent technolo-
gies, is that here it is not merely talked about technologies, but, for example, of proprie-
tary components developed over many years. It is unnecessary, and usually impossible
in the timeline of integration projects, to replace such components. A solution offered is
to wrap the legacy components with an agent layer that converts the communication to
and from the agents to the legacy component.

2.4. Software Architecture Related Techniques and
Concepts

In this section two architectural concepts are briefly presented. Both of the concepts are
used in this thesis in relation to the agent-based architecture.

2.4.1. Metalevels in Software Design
In software design the term meta- can be understood to mean the abstraction of con-
cepts. For example, the real world is classified with abstract concepts such as animals,
dogs, mammals, etc. The real, living animals can then be viewed as instances of these
concepts. In a similar way, software architectures can be defined in several different
meta-levels. In such a definition each meta-level is built using the concepts defined in
the more generalized meta-level. For example, the UML language is defined this way.

An example of the meta-levels in a UML model is shown in Figure 2. The figure is
layered in a way that Meta-Object Facility (MOF) [OMG06] is the metametamodel,
which is used to specify the metamodel, i.e. the model of UML language [OMG07].

 11

The UML language is then used to specify the models used in actual systems. The in-
stantiations of the elements of that model are the actual objects that are created in a pro-
gram during run-time.

2.4.2. Observer Pattern
Observer pattern is commonly used in situations where one participant, the observer, is
interested in the changes of data in another participant, called the subject. Buschmann et
al. [Bus96] lists the following forces that should be balanced by the pattern:
 One or more components must be notified about state changes in a particular com-

ponent.
 The number and identities of dependent components is not known a priori, or may

even change over time.
 Explicit polling by dependants for new information is not feasible.
 The information publisher and its dependents should not be tightly coupled when

introducing a change-propagation mechanism.

In simplicity, the solution is that the interested participant registers for the subject,
and afterwards when the data of the subject changes, the subject informs all registered
observers about it. The simplest form of observer pattern with interfaces is presented in
Figure 3 using UML component diagram notation. The ISubject interface provides the
methods for registration and deregistration, and the IUpdate interface provides the Up-
date method, which gets called when the data in subject changes.

Figure 2 Example of metalevels in UML

 12

A downside to observer design pattern is the possibly large amount of unnecessary
update calls. This can happen if the subject has a lot of observable data, but the observer
is only interested in some specified slice of data. Without an additional mechanism to
provide additional information about the changes to the observer, it may be costly for
the observer to find out the exact data that changed.

Figure 3 Observer-pattern

 13

3. SOFTWARE PROCESS SUPPORT

“An effective software development process is essential for economic and physical sur-
vival of society, a society whose dependence on computers increases daily.” [Leh91]

In this chapter first an overview of software processes and software process support is
given. After the overview general requirements and challenges for a process support
system are discussed. Finally, the requirements specific for the process support tool im-
plemented in this thesis are presented.

3.1. Overview of Software Processes

Having tools to support software creation is not a new phenomenon, but the increasing
complexity of software and growing business requirements cause a still greater need for
them. The higher demands and quality requirements for software also cause the need to
improve the development process itself. The first step in improving the process is in
taking into account the notion that software development is a complex process itself. A
part of improving the process is having better tools and environments to support it. For
the support tools to actually be useful in supporting the process, instead of unnecessarily
constraining it, such quality attributes as flexibility and integration of new tools be-
comes vital.

A software process is a set of various kinds of activities used in developing soft-
ware. A process model is an abstraction of such a process. Well known process models
include the waterfall model and evolutionary (a.k.a. iterative) development. There also
exists numerous other different process models, but the following essential activities are
common to all of them: software specification, software design and implementation,
software validation and software evolution [Som07].

Software specification is the activity of describing the requirements of the software.
This includes the functional and non-functional requirements. Software design and im-
plementation is the activity of planning and creating the actual software. Software vali-
dation is the activity of ensuring that the software meets the demands laid out in the
specification. Software evolution is the activity of evolving the software according to
the needs of the customer.

The concrete products of all the activities are called software artifacts. An artifact
can be, for example, executables, code, or documentation. Documentation refers both to
in-house documents such as design documents and project plans, as well as user ma-
nuals etc. documents delivered to the customer.

 14

A more complex definition of a software process is given by Fuggetta [Fug00]: A
software process can be defined as the coherent set of policies, organizational structures,
technologies, procedures, and artifacts that are needed to conceive, develop, deploy and
maintain a software product. From this definition Fuggetta derives that software
processes benefit from the following concepts:

 Software development technology: technological support, i.e. tools, infrastructures,

and environments.
 Software development methods and techniques: guidelines on how to use technolo-

gy and accomplish software development activities.
 Organizational behavior. Software development is carried out by teams of people

that have to be coordinated and managed.
 Marketing and economy. Software must address real customers’ needs in specific

market settings.

As examples of existing process models, the previously mentioned waterfall and

evolutionary development models are given a brief overview in this section. The water-
fall model defines a process, in which the basic process activities are done in phases in a
specified order: requirements definition, design, implementation, integration, testing,
and maintenance. Winston Royce has been generally seen as the original author of the
waterfall model, but similar clearly phased models have been published as early as the
beginning of the 1960s [Vli00]. In the most pure form of waterfall model, the phases are
completed one after another in a completely sequential manner. However, this kind of
inflexible development process has always been more like an idealized concept, than a
widely preferred way of working. Royce already in his original publication criticized it
and suggested various improvements to the model, to make it more usable in real world
scenarios [Roy70].

Evolutionary development is based on the idea of starting from small prototypes and
gradually building the working system towards the full customer needs. The benefit in
this approach is that important issues can be found earlier and therefore it is easier and
cheaper to react to them. Another benefit is the easier gathering of functional require-
ments for the final software product, as the customer can try out prototypes build on
initial requirements and review the requirements using that experience. This method can
also raise the level of customer satisfaction.

In conclusion, there exists several well defined process models according to differ-
ent needs. However, software processes are complex entities and the requirements for
the final software products can be completely distinct between different domains, cus-
tomers, etc. This leads to the fact that the software processes can vary greatly among
different organizations, projects, time (evolve), etc.

 15

3.2. Software Process Support in General

The idea of supporting software processes in its basic form has been around since the
development of first compilers. The idea has since then been evolving and nowadays
processes can be supported in many different ways and levels. There are Computer-
Aided Software Engineering (CASE) tools from specific tasks to multi-purpose envi-
ronments. Examples of case tools include code generation tools, configuration man-
agement tools, UML design tools, debuggers, and tools for supporting the software
process itself.

Fuggetta proposed a classification of CASE tools to three different categories: tools,
workbenches, and environments [Fug93]. He defined a tool to mean a component that
supports a specific task in a software process. Examples of these include compilers and
textual editors. Fuggetta defined workbenches to mean applications that integrate sever-
al tools to support a specific software process activity. Examples include analysis and
design workbenches and configuration management workbenches. Finally, he classified
environments to mean CASE products that integrate a set of tools and workbenches to
support an entire software process. CASE Environments can be subcategorized to sev-
eral subclasses, including toolkits, language-centered, integrated, and process-centered
environments. The concept of a process-centered environment is discussed in more de-
tail in the following section.

Process support tools that offer support for the whole software process are also
known as process support environments or process-centered software engineering envi-
ronments (PSEE). These environments are used to create and run a software process
model, sometimes defined with a process modeling language (PML). Process modeling
languages are used to define the entities used in a process, including activities, artifacts,
roles and tools. In addition to fore mentioned documentation, artifacts in this case in-
clude the guidance created for the process users for proper execution of the process.
This guidance can be, for example, user manuals for the tools in the process. Roles in a
software process can include, for example, process manager, tester, and designer. Bene-
fits of process support environments can be various. For example, the environment can
automate tedious routine tasks and guide to the use of good practices. In addition, the
environment can help the user to find and use artifacts and tools that are related to the
current tasks and to the current state of the process.

Sommerville [Som07] lists two main reasons limiting the improvements gained
from the use of CASE tools. The first reason is that the software designing requires
creative thought. CASE tools can automate routine tasks, but attempts to provide sup-
port for the design itself have not been successful. The second reason is that complex
software engineering requires quite a lot of cooperation and interaction between team
members. CASE tools have not been able to provide much support in that area.

 16

3.3. Challenges of a Process Support System

Process support is in some ways comparable to normal software design. For example,
the output artifacts of normal software design and implementation, i.e. the code, must
not be too monolithic. The same applies to process support. If the process, or the
process support environment, is too rigid and monolithic, then quite similar problems
may arise, for instance, latent process requirements may cause more work than they
should.

Aoyama [Aoy98] found that many PSEEs have too strict requirements on the execu-
tion of the process. Aoyama explains that they have found such constraints to cause
inflexibility and loss of productivity, and they believe that their more people-oriented
philosophy would lead to better results. Conradi et al. [Con02] make the notion that
software process tools: “must adapt to the specific needs of the application; building an
advanced tool for the wrong application is technological overkill”. In addition, the
growing business requirements of, e.g., using less time and money for development and
maintenance, lead to higher demands from the software development process in general.
One of the key matters is greater flexibility of the process itself. Other requirements
include better overall management of the process, and integration of new tools to the
process. Fuggetta [Fug00] lists several key challenges in software process support in-
cluding:
 Process modeling languages (PML) must be tolerant and allow for incomplete, in-

formal and partial specification
 Process-centered software engineering environment (PSEE) must be non-intrusive.

It must be possible to deploy them incrementally.
 PSEE must tolerate inconsistencies and deviations.
 PSEE must provide the software engineer with a clear state of the software devel-

opment process (from many different viewpoints).

With these general challenges in mind, the next section discusses the requirements in
more detail, and also introduces several requirement scenarios for a process support
system.

3.4. Requirements for a Process Support System

The work presented in this thesis was done as a part of a research project in Software
Systems Department in Tampere University of Technology. The research project pre-
sented two main requirements to the process support system described in this thesis.
The main requirements were maintainability and flexibility. Some of the rationale for
these requirements was presented in the previous section, for example, it was discussed
that process support systems in general should be adaptable. In addition, especially in
research environments it is important to be able to experiment with how various things

 17

work with different configurations. This subsection discusses the rationale behind the
two main requirements a little more profoundly.

When assessing the requirements for the target process support system, in the scope
of this thesis, the point is to review the applicability of the agent based approach in im-
plementing a process support system. Therefore the most weight is given to the re-
quirements that are specific to the process support domain.

3.4.1. Rationale for the Requirements

The requirements for a software process system stem from some distinctive properties
of process support systems. For example, there are different interest groups involved in
the software process, and these groups are primarily interested in different kinds of in-
formation from different viewpoints. In addition, it is possible that some information in
the process must not be available to all roles and groups involved in the process. For
instance, an organization can have sub-contractors that simultaneously work for the
competitors of the organization. In such cases it is important that the organization is
able to hide the core competence parts of the process and reveal only the minimal
needed information to the sub-contractors.

The information level in process support systems can be divided to two: the meta-
level where the software process itself is designed, and the instantiation of the process.
Most of the used tools and methods are specified at the meta-level. Some of the more
common variances could be defined directly at the meta-level, for instance, it could be
left to the developer to decide the specific tools used in some design activity. However,
not all variances can be anticipated and therefore the instance level needs to be flexible
enough to support dynamic deviations from the specified process.

3.4.2. More Specific Requirements for the Target Process Support
System
In this subsection the primary requirements for the target process support system are
presented briefly. It is essential that existing tools used by the developers can be inte-
grated to the environment. It must to be possible to define the process used and the user
must be able to see the state of the process and control it. The state of the process must
be persistent and the artefacts produced and used by the process need to be saved. Be-
cause of several developers, the process needs to be synchronized among all of them.
The inherent nature of software development is such that the process, tools, and envi-
ronment may change for every project. Additionally, for performance, usability, etc.
reasons, it must be possible to execute process activities and use tools both on local and
remote computers.

To address the specific requirement of flexibility, a set of specific architecture re-
quirements is used. They are not a complete requirement set, but they give a way to ela-
borate the general requirements. The flexibility requirements can be divided into several
different branches. These include development time flexibility, configuration time flex-
ibility, and runtime flexibility. More specifically, runtime flexibility can still be divided

 18

to two distinct branches: the variance a normal user can achieve in the workflow, and
the variance an administrator can achieve. To open up these requirements, at least one
scenario is given for each in the following paragraph.

Important requirements for development time flexibility include that it must be
possible to add new tools used by the developers to the workflow in reasonable time;
and it must be possible to adapt the system to the chosen workflow, and not the other
way around. Configuration time flexibility means, for example, that it must be possible
to change the toolset used in a workstation easily. The variance a normal user can
achieve in the workflow includes adapting the normal process to changing requirements
easily. This can mean, for example, skipping a task that is not applicable to the current
project anymore. It should be possible to make any such variation easily if not otherwise
constrained. The administrator should be able to change things like the amount of in-
formation certain people or roles in a project can view, for example, if a sub-contractor
is also using the same process support system.

3.5. Architectures of Existing Process Support Sys-
tems

Several PSEEs are reviewed and the commonalities in the architecture of those systems
are discussed in a publication by Fuggetta in 1996 [Fug96]. This section summarizes the
findings made in that publication.

Three types of components are described to be found in all of the considered PSEEs:
a user interface facility, a process engine, and a repository. The user interface facility
projects a view to the state of the process for the user, allows the user to control the
process, and allows the user to view the results of the process activities. A process en-
gine executes the process, invokes tools, and uses process artefacts. Repository is used
to store the process data, including the process artefacts. A typical interaction between
the components is that the tools and user interfaces interact with the process engine, and
the process engine interacts with the repository. In addition, some tools may interact
directly with the repository, but a more common approach is that the tools only use the
file system directly.

In some of the PSEEs reviewed the user interface was distributed. This led to a typi-
cal client-server architecture, where the server constituted from the process engine and
the repository, and the client from the user interface. One of the PSEEs also attempted
to distribute the repository to achieve a more distributed functionality.

In conclusion, the architecture must support the integration of at least these three
types of components. In addition, for reasons described in the previous section, it must
be possible to distribute the integrated components in a reasonable way.

 19

4. AN AGENT BASED ARCHITECTURE

In this chapter first the rationale behind the need for an agent based architecture is dis-
cussed. In addition, it is described how the specific process support system requirements
have shaped the formation of a more general agent based architecture. After the ratio-
nale, the agent based architecture is presented. The rationale and the architecture have
also been discussed in Peltonen et al. [Pel09] and Vartiala et al. [Var07].

The presented agent based architecture is not constrained to any single implementa-
tion style or platform. Therefore first a general architecture is presented and only in the
later chapters the details of an example implementation are described.

4.1. Motivation for a General Agent Based Architec-
ture

The main quality attributes for the process support system, i.e. flexibility and maintai-
nability, are also valid for the more general agent based architecture presented in this
thesis. More specifically, as the architecture is first of all an integration architecture, the
flexibility requirements mean it must be possible to integrate various components to-
gether. Often these components are COTS-components that cannot be modified. In the
case of a process support system the way these components interact can vary in multi-
tude of ways. As all the possible ways these components interact cannot be predefined,
the architecture should not unnecessarily constrain the developer in the ways the com-
ponents can be used. The architecture should also support easy implementation of new
use cases in how the existing components are used.

Maintainability in the case of the architecture means first of all the simplicity and
understandability of the architecture, as a too complex architecture can lead to various
maintainability problems. For example, Haikala et al. [Hai06] describe that even if a
design solution is excellent in theory, in practice the solution can be too complex. For
example, the solution can be too hard to explain to all people, or understanding the de-
sign concepts can simply require too much effort and time. This can lead to many prob-
lems, for instance, if the follow-up developers misunderstand the design concepts then
the architecture becomes rapidly unusable [Hai06].

To answer these challenges an agent based approach was chosen. Agents enable the
creation of a simple, loosely coupled and easy to understand architecture by making it
possible to divide the architecture to agents and infrastructure in a beneficial way. Such
a division makes the architecture more flexible and easy to extend. In addition, using
the agent based approach allows relocating each business logic case to single place - an

 20

agent. Having the business logic in one place makes it easy to maintain the existing
business logic and to flexibly add new business logic functionality.

4.2. An Overview of the Approach

The general idea of the agent based architecture style is that there is an infrastructure
offering services for agents, which use the infrastructure to move around and to achieve
their goals. It is notable that typical agents are not very complex; on the contrary, most
often they are simple task based agents with a predefined behaviour. Additionally, one
agent should only be related to a single task for simplicity.

To make a clear distinction between the entities on different abstraction levels, the
approach is presented in three meta-levels, where a higher level architecture defines the
possible instances of lower level architectures. As seen in the vertical axis in Figure 4
the levels are from the most abstract to the most concrete: meta-architecture, system
architecture and runtime architecture. The meta-architecture, i.e. the architecture meta-
model, describes the entities that can be used to define new system architectures. Basi-

Agent2, ...

Agent1

Area

Transporter

Location

+Method1()
Location1

Transporter1

Method
1

*

+Method2()

Location2

A3 : Area2A2 : Area1 A1 : Area1

T2 : Transporter1 T1 : Transporter1

L1 : Location1

L2 : Location2

L3 : Location2

L4 : Location2

T3 : Transporter1<< network >> << network >>

<< network >>

InfrastructureAgents

Agent

A1 : Agent1
A2 : Agent1

uses

creates, notifies

1. <<create>>

2. <<travel>>

3. Method1()

L5 : Location1

1. <<create>>

3. Method1()

System
A

rchitecture
Runtim

e
A

rchitecture
M

eta
A

rchitecture

Area1

Area2

2. <<travel>>

inherits

*

inherits

*

inherits

*

creates

0..1

*

* *

*

Agent1

A location or agent Location1

Create

Method1()

An Area

"Give me a Location of type Location1"

1

*

Figure 4 The three metalevels describing the agent based architecture model

 21

cally, a meta-architecture is an architectural style defining a language for specifying
possible architectures according to that style.

System architecture is the logical architecture definition of a concrete system and
runtime architecture is a possible, physical, runtime instantiation of the system architec-
ture. There is also fourth level, meta-meta level, which defines a language for specifying
meta-architectures. In this case OMG Meta Object Facility (MOF) is used as such lan-
guage [OMG02]. Besides that the architecture is divided vertically to meta-levels, it is
also divided horizontally to infrastructure and agents as seen in Figure 4. That is, the
business logic is separated from the underlying infrastructure.

The meta-architecture of the infrastructure, as shown in the upper right corner of Fi-
gure 4, consists of areas, locations, methods of locations and transporters. An area
represents one group of locations typically located in one computer. Locations offer
different kinds of services to agents through their methods and they can also create new
agents when something needs to be done. Typical locations include user interfaces, as
well as interfaces to databases and various other applications.

Transporters are special kind of locations connected to each other. They are used for
transporting agents to remote areas. The architecture style allows three different forms
of travelling: Agent tells the infrastructure 1) only the type of the location, 2) the type of
the location and the type of the area or 3) the type of the location and the ID of the area.
The locations, areas, etc. are meant to be built in a way that they do not know anything
about the functionality provided by other entities in the infrastructure.

The agents, seen on the left side in Figure 4, use the functionality offered by the in-
frastructure to achieve their predefined tasks. More specifically, the agents move among
different locations, possibly located in different areas, and use the methods of the loca-
tions to achieve tasks. The agents do not need to know anything about the runtime ar-
chitecture, but they can rely on their knowledge of the description of the system archi-
tecture. More specifically, they typically only need to know directly the types of the
locations they want to use. The only things that get transferred between areas are agents.

The architecture does not limit the amount or type of the above-mentioned entities
in any way. On the contrary, one of the key points is that it should be made as easy as
possible to expand any system using this architecture by adding new agents, locations,
areas and transporters to it. This helps to achieve the needed flexibility, customizability,
and incremental development requirements. For the same reason, the maintenance of the
system is straightforward.

4.3. System and Runtime Architectures

System architecture is the description of the architecture of a concrete system. It is
achieved by instantiating the meta-architecture in any way the architect desires. A poss-
ible example of system architecture can be seen in the middle part of the Figure 4. The
example consists of two agents, two areas, two locations and a transporter, named ac-
cording to their types. Notable in the example is that both areas have Transporter1 and

 22

Location2, but Area1 has additionally Location1. A reason for this might be that Loca-
tion1 requires some special resource or processing power not available in a normal
workstation, thus a more efficient server is required to run Area1.

What cannot be seen from the figure is what kinds of connections are allowed by
Transporter1. Generally, the type and number of possible connections depends entirely
on what kind of transporters there are in an area. For example, Transporter1 could allow
connecting to an unrestricted number of other transporters, or it could only allow one
connection to a transporter of type Transporter1. In this case there can be an unrestricted
number of connections.

Runtime architecture consists of all entities and their states of a system in one mo-
ment during runtime. It is possible to have an unlimited number of different runtime
architectures using the same system architecture, because typically the amount of enti-
ties is not constrained in any way. An example of a possible runtime structure is seen in
the bottom level of Figure 4. This runtime structure consists of three areas, and as de-
fined in the system architecture, each area has an instance of Transporter1 and either
one or two locations. All of the transporters are connected to each other over the net-
work, and hence they form a kind of a peer-to-peer network in this case. The situation in
the example, three areas and two agents, is not caused by any restrictions; an equally
possible case would be a runtime situation with, say, tens of areas and hundreds of
agents.

The dashed lines in the bottom level of Figure 4 show the behaviour of two different
instances of Agent1. The leftmost dashed lines show the runtime behaviour of an agent
of type Agent1 when invoked in Area1. First the Location2 wants something to be done;
hence it creates an agent of type Agent1 and possibly gives some parameters to it. Then
the agent starts the execution and comes to a situation where it needs to use Method1.
Thus, the agent indicates to the infrastructure that it needs to use a location of type Lo-
cation1. Since a location of that type is located in the same area, the agent is moved
there. After the short travel the agent calls Method1 and decides that it has done every-
thing it needed and thus the agent stops there.

The rightmost dashed lines show the behaviour of Agent1 when it is created in
Area2. As a distinction from the previous example, there is no Location1 in the area
where the agent is created. Thus, when the agent wants to use Method1 of Location1,
the infrastructure transports it to an area, which has a location of type Location1, in this
case to Area A1 is chosen. The second line is a composition of all the events that occur
during that travel. After the traveling the agent uses Method1 of the location L1 and
stops.

4.4. An Example: Observer-Pattern

The simplest complete system architecture to support observer pattern [Bus96] can be
created with five entities in the system level as seen in Figure 5. The meta-level is not
described anymore as it is same for all system architectures. On the infrastructure side

 23

there is one area, Simple Area, which consists of two locations, Simple Transporter and
Simple Location. Simple Location works as both the observer and the subject, and it
offers methods Register and Update. To achieve the functionality needed in the pattern
two agents are needed. RegisterObserverAgent-agent registers an observer to a subject
and UpdateObserver-agent is then used to update the registered observer.

In the bottom level of Figure 5 there is the runtime architecture with two instances
of Simple Area. The Simple Location in the leftmost area works as an observer and the
Simple Location in the rightmost area works as a subject. The dashed lines in Figure 5
show the sequence of events during the lifetime of a RegisterObserver-agent. The se-
quence starts when the leftmost Simple Location wants to register itself to the Subject
and creates an agent for this purpose. The needed parameters are also given to the agent
at this point. These parameters include at least the type of the subject-location and the
ID of Area2, because the agent needs to know exactly who to register and to whom.
Additionally the initialization data could include, for example, the type of events that
the observer is interested in. The second line is a composition of all the events that oc-
cur during the travel from the observer to the subject. Line 3 shows the actual registra-
tion of the Observer-location. After that the agent stops and is destroyed.

4.5. Agent Characteristics

The general idea is that an agent usually implements a single business logic case. The
idea is that agents would be quite simple and there would not be much overhead confus-
ing the developer, but instead letting her write the business case in a straightforward
manner.

There is no direct support for agents to communicate with each other, but specified
locations can be created to provide similar functionality. An agent can use other agents
to achieve its goals, for example, by creating other agent and if needed, then possibly
getting the other agents output through a location.

Figure 5 Using observer-pattern in the agent-based architecture

System
A

rchitecture
R

untim
e

A
rchitecture

 24

In some cases there can be a need for many similar agents, which could be catego-
rized into group of agents. The architecture does not constrain the developers from
creating such groups of agents. They could be created, for example, by creating a gener-
al base agent for all similar agents to specialize.

In conclusion, the framework makes it possible for an agent to achieve the proper-
ties listed in Table 1, but the framework does not require that the agents to support all of
these. This also summarizes the design philosophy of the agent architecture well, as the
intention has been to keep the architecture simple and easy to understand. In this case
this means that, for instance, it is not required that the agent developers learn complex
agent technologies and AI-concepts. As a downside, if some complex operations are
needed, then additional support from the architecture could make implementation
process easier for the developers

 25

5. IMPLEMENTATION OF THE AGENT
FRAMEWORK

In this thesis a prototype agent framework has been implemented to validate the ap-
proach presented in the previous chapter. In this chapter first the implementation of the
agent framework is presented, and then the extensibility possibilities of applications
using the framework are looked at.

5.1. The Infrastructure Supported by the Agent
Framework

The framework implements all described entities in the meta-level (location, area, agent,
and transporter) of the architecture and makes it possible to specialize system level ar-
chitectures from it. The framework also implements several other helpful entities to
make the implementation of a working system easier. There are also some implementa-
tion specific details not part of the architecture model itself. These details are described
in the following paragraphs.

All locations in the infrastructure offer some basic functionality to agents. They al-
low the agents to travel to other locations and they can redirect an agent to a transporter
if a wanted location is in another area. They also allow asking the current area and the
type of the current location. The type of the location is important information, since the
agents typically navigate in the infrastructure using them. Areas only know the types of
their locations and have no other knowledge of them or other areas, i.e. areas are auto-
nomous and running an area does not directly require the presence of any other areas.
All areas have a type and an ID; these can also be used by agents to move among them.
Each area also has at least one transporter.

Agents are transported by first serializing the state and data of an agent in a trans-
porter, then creating a similar agent at another transporter in a remote location and dese-
rializing the state and data for this new agent. One transporter can have multiple con-
nections to other transporters. All transporters support the operation of asking all the
areas currently connected to that transporter. An agent can be transported to any such
connected area through the transporter.

There are several common features to the whole framework. For instance, the
framework takes care of concurrency, network communication, and all other things that
are not related to the business logic. By providing these common features, the frame-
work allows the agents to focus on implementing the functional requirements of the
system.

 26

5.2. The General Characteristic of Agents in the
Framework

An agent has current location, current state and a home area. The home area tells where
an agent originates from, and where it should navigate if it wishes to come back from a
remote location. Current state is used to determine what the agent has done, and what it
should do next. There is no predefined state behaviour or other constraints for the states
of the agents, but it is hard coded to them, i.e. it is left to the creator of an agent to use
the agents any way she prefers.

Agents can create other agents and in some cases even interact with them, but they
can only coordinate their movement according to locations and have no knowledge of
other running agents unless a location provides this information. Agents cannot create
themselves, but otherwise their lifespan is completely handled by themselves. Agents
can duplicate themselves at will and in normal situations they are only destroyed from
their own initiative.

Agents do not directly need to handle lower level things like concurrency in any
way, but the framework takes care of them. Of course there can be many agents under
execution at the same time, but agents should not have to care about this. Still, they
might have to wait before the execution of any called method of any location. The order
of the queued agents may also change in some cases; therefore it is not always guaran-
teed that a preceding agent can use a location before a later arrived agent. Also it is
completely possible that when calling two non-related methods in the same location
another agent comes and calls the same location in between the two calls. If the ordering
of methods or something similar is a problem, then the location can offer this kind of a
quality of service. For example, a location could give each agent a unique transaction id
that would be used to handle a series of operations made by an agent as a transaction.

The whole execution path of an agent should typically not be considered a transac-
tion since the framework does not currently offer any means to recover an agent, which
is in a disconnected area or to detect the loss of an agent. Agents can of course try to
offer quality of service, but it is usually easier to just try to notify the user about an error
and then leave the rest to her.

5.3. Threading and Process Boundaries

Threading is mainly handled by the framework, only some concurrency related locking
needs to be done in the implemented locations. In normal situations agents do not need
to handle things related to concurrency in any way. Small exception to this rule is the
usage of the main thread. For instance, some UI-operations can require that they are
launched from the main UI-thread. In such situations the agents can indicate to the
framework that they need to be executed in the main thread.

In this implementation a single area is a single executable, i.e. one process. In this
implementation there was no need to go over process boundaries. However, there are at

 27

least two ways to do it. There could be two separate areas started in a single computer,
and the agents could normally transport between these areas. Possibly the other area
could be a main area and the other area a sub area which is directly visible only to the
main area. Another possible solution could be that a location would work as an adapter
over the process boundary. Depending on the situation either of these can be the better
solution.

5.4. Core Classes of the Framework

The system is implemented with C++. Figure 6 shows a more complete structure of the
implemented system. ExecuteActivity agent has been added to the figure as an example
agent. ExecuteActivity-agent will be described in more detail in Chapter 6. The figure
shows the big picture of the system regarding class inheritance and dependencies. In
addition, the helper classes for agent implementation, creation and threading can be seen
in the figure. Note that abstract classes in the figure do not mean only interfaces, but
the C++ version of abstract, i.e. a base class that cannot be instantiated by itself. The
new classes in the figure are described in the following subsections.

SerializableI

SerializableI is a base class for all serializable classes in the system. It provides functio-
nality for serialization and deserialization of the object.

AgentI

AgentI is a base class for all agents. All agents need to implement it. It provides many

Figure 6 The core classes in the framework implementation

 28

kinds of basic functionality, for example, for initialization and for automatic serializa-
tion and deserialization.

PropertyHolderI

PropertyHolderI is a base class for all objects with automatic properties. These proper-
ties are used in, for example, serialization. All agents must implement this class either
by implementing class BaseAgentImplementation, or by implementing this class direct-
ly. The reason AgentI does not derive directly from this class is because of implementa-
tion reasons, more specifically because of the language constraints of template classes
in C++.

BaseAgentImplementation

BaseAgentImplementation class has functionality that most of the agents have in com-
mon. For example, it has common properties used in most of the agents. It is not manda-
tory for an agent to implement this class if it does not need this functionality.

AgentFactory

AgentFactory is a singleton class responsible for agent creation. Each supported agent
type is registered to the AgentFactory at the initialization of the program. The code of
the agent factory does not need to be changed to support new agents. All locations, in-
cluding transporters have access to AgentFactory and can use it to create new agents.

AgentThread

Each AgentThread is responsible for the execution of a single agent. AgentThread han-
dles, for example, the stopping, pausing, and resuming of the execution of an agent ac-
cording to the wishes of the agent.

AgentThreadManager

AgentThreadManager handles the creation and management of threads in the system.
AgentThreadManager allocates free threads to new agents and handles the cleanup of
old threads.

5.5. An Example Agent, RegisterObserver

In this section a possible implementation of the RegisterObserver-agent presented in the
previous chapter in section 4.4 is given as an example. The RegisterObserver-agent is
inherited from AgentI and BaseAgentImplementation. The agent implements a con-
structor and one method: ContinueExecution. The method ContinueExecution is over-
written from AgentI. ContinueExecution is the main method of all agents; it handles the
actual business logic situated in the agent. Methods for initialization, starting, etc. are
provided by the framework, i.e. the AgentI class. A simplified ContinueExecution me-
thod of the RegisterObserver-agent can be seen in Program 1. The method tries to be as

 29

complete as it would be in the real application, but, for example, error handling has been
left out for simplicity.

In addition to the code in ContinueExecution-method, the agent needs the ID of the
area where subject location is. This ID is called subjectAreaID_ in the algorithm and is
given to the agent at initialization. In the RegisterObserver-agent implementation it is
defined that the variable subjectAreaID_ is a persistent variable, i.e. a variable that is
always kept with the agent when moving among areas. For language specific reasons, in
this implementation the definition of persistent variables is in the constructor of a spe-
cialized agent. These definitions are executed and converted into internal data structures
once per each agent type. This is always done the first time an agent of a new type is
created in the current execution of the application. Nothing else is done in the construc-
tor of the ContinueExecution-agent.

The agent assumes that the subject area has a location of type Simple Location that
provides the Register-method. All calls to this-pointer in the algorithm are calls to the
AgentI-abstract parent class. After initialization, the ContinueExecution method of the
agent is called by the framework automatically. In the method, the agent first travels to
the right area and to the right location, and then it registers the home area to the subject.
In this example, only the observer area ID is enough, as the subject assumes that the
registered area also has a location of type Simple Location that wants to listen to the
changes.

The ContinueExecution method can be called multiple times during the traveling to
the right area and location. For example, after transporting from the observer area to the

AgentResult RegisterObserverAgent::ContinueExecution()
{
 if(currentAgentState_ == REGISTERING_TO_SUBJECT)
 {
 AgentResult currentTravelState = this->GoToLocation(subjectAreaID_,
 SIMPLE_LOCATION); // travels to the right location until arrives
 if(currentTravelState == ARRIVED)
 {
 SimpleLocation* subject = dynamic_cast<SimpleLocation*>
 this->GetCurrentLocation();
 subject->Register(this->GetHomeAreaID());
 currentAgentState_ = READY;
 return DELETE_AGENT; // registration complete, agent can be deleted
 }
 return currentTravelState; // agent is still traveling to the subject
 }
}

Program 1 ContinueExecution method of RegisterObserver-agent

 30

subject area, the ContinueExecution-method is just called again after the framework has
done the required initializations, including the deserialization of the state of the agent.
The agent could decide to change its behavior at any time during the calls to the Conti-
nueExecution, but here the agent just calls the GoToLocation-method until the frame-
work indicates that the agent has arrived to its destination location.

The agent continues its execution until it signals to the framework that it wants to be
destroyed. This happens by returning the DELETE_AGENT value from the Conti-
nueExecution-method. The RegisterObserver-agent only had one execution state,
REGISTERING_TO_SUBJECT, after which it was destroyed. If the agent would have
had more states, then the functionality for all of them would still have been located in
the ContinueExecution-method.

5.6. Expanding the System

One of the most important reasons for choosing the agent based system is the simplicity
of adding new elements to the system. These elements include new agents, new me-
thods to old locations, new locations, and in the case of a bigger design change also
whole new types of areas can be added. All of the former changes can be done without
losing the old functionality of the system. Existing methods in the location interfaces
must only be changed with the utmost care, as all agents must be checked to be sure that
the method can be changed. Another important feature of the system is the flexibility of
the configuration. There is nothing that constrains the structure of the framework. All of
the examples mentioned later in this section refer to the Observer-example given in sec-
tion 4.4.

5.6.1. Adding New Methods to an Old Location

Adding a new method to an old location does not require any other changes than the
actual implementation of the method and adding it to the interface of the location in
question. However, it does not benefit anything before an agent uses it. For example,
adding a SetValue-method to the Simple Location in the fore mentioned Observer-
example would not change anything else.

5.6.2. Adding a New Agent
Adding a new type of an agent does not change any interface in the system. The only
thing that needs to be done is to create it and register it to AgentFactory. Of course the
actual agent instance also needs to be created somewhere.

For example, a new ChangeValue-agent that would go to a given area and use the
previously added SetValue-method of the Simple Location could be created. Adding
such an agent to the Observer-environment would require the following things. The
agent must be inherited at least from the AgentI abstract class. The functionality of the
SetValue-agent itself must be implemented, including the registration of the agent to the
AgentFactory. To be useful, some location needs to create the agent. For instance, Sim-

 31

ple Location could create the agent and at initialization give the agent a target area ID
where the agent would transport to use the Simple Location.

5.6.3. Adding a New Location

To add a new location to an area an ID for the location needs to be created so that the
agents can navigate to it, and then the location must be registered to the wanted areas,
i.e. let them know the id of the location and the ids of the interfaces that it offers. If the
locations increase a lot in the future then the possibility of creating them in a factory
similarly to the agents should be considered.

For example, adding a Calculate Average Location to the Observer-example would
mean the following things: a new location inheriting from the LocationI would need to
implemented, an ID would be created for the new location, and the creation of the loca-
tion would be added to the initialization routine of the Simple Area. At this point any
agents that know the ID of the location could transport to it and start using the location.

5.6.4. Adding a New Area
The most important aspect of adding new areas is that the structure of how areas are
connected to each other is not limited in any way. Again, adding such new functionality
to the system does not influence the old functionality in any way. Nevertheless, adding
a new area is a more complex operation than the other adding operations. For example,
it has no locations or transporters until it is properly configured.

As an example of adding a new area, a Calculator Area could be added to the Ob-
server-example. The Calculator Area could be configured to consist of the locations
Calculate Average Location and Simple Transporter. No changes are needed to the ex-
isting areas, but the Calculator Area can immediately connect to the existing areas.
There are no limitations why the existing agents could not transport to the new Calcula-
tor-area, but in the implementation done in this thesis there were no agents that would
have dynamically used new types of areas. Therefore, in practice, for the new area to be
useful, a new agent would need to be created that would transport to the Calculator Area
and, for example, use the Calculate Average Location.

5.6.5. Changing the Topology of the System
Topology of the system in this thesis means how the areas are logically connected to
each other. The topology of the system is controlled by the types and configurations of
the transporters. For instance, if all transporters in a system could be connected to any
other transporter, then the topology during runtime could be anything. Another example
of a topology is a client-server topology, i.e. in the system there would be two types of
transporters: client transporters that can only connect to a server transporter, and server
transporters that only wait for connections from a client transporter.

There are no constraints regarding changing the transporter configuration, i.e. if
needed, the transporter configuration could be changed runtime. This could be done, for
instance, according to some information received from an agent. If the transporter types
are flexible enough, then there is no restriction on the creation of an arbitrary topology.

 32

In the case of insufficient support from transporters, then a new transporter type could
be added to the system. This kind of change does not need to cause any changes to other
parts of the system. Especially it would not cause a need to change the existing agent
implementations, as long as the remote locations needed by the agents would still be
achievable.

 33

6. CASE STUDY: PROST PROCESS SUPPORT
TOOL

The agent based architecture style was used to implement a process support environ-
ment. The environment is used to execute a software development process, where there
are several tools and developers.

6.1. Decisions Regarding the Environment

Several architectural decisions regarding the environment were made. These include
that the process is defined as a Visiome script [Pel00], which is run in a Visiome En-
gine. On top of Visiome Engine runs a model processing platform called xUMLi
[Air02, Pel04]. Both of them will be part of the architecture and existing modeling tools
(like Rational Rose) are integrated through xUMLi. The existing tools could of course
be also integrated directly to the architecture, but since there is an existing implementa-
tion, which fulfils the requirements for the system, it was deemed unnecessary.

A frontend is needed for following and controlling the state of the process. It was
decided that the persistency is handled by saving the state of the process to a database
and the artefacts to a version control system. A process backend is used to make it sim-
ple to synchronize the process among different frontends and to allow remote
processing at the backend.

6.2. Existing and Available Components

The system is used to execute a process defined in a Visiome Script. A process mainly
consists of activities, but it also defines the order, in which the activities should be ex-
ecuted. These activities are COM-components, therefore they can, in general, be trans-
ferred to remote computers and executed in there. An activity may require user interac-
tion and communication with Rational Rose when under execution. The execution of
activities is handled using a specialized version of Visiome Engine over COM. The size
of the output of an activity is not constrained in any way; therefore it must be prepared
that the size is usually many megabytes. Visiome Engine also keeps track of the current
state of the process. Under these circumstances multiple server/client configurations
were considered. Three of these configurations were considered more thoroughly:

1. A system with only one Visiome Engine, located at the server.
2. A system with a VENG located at each client, no VENG at the server.
3. A system with a VENG at each computer, a master VENG at the server.

 34

The first one was discarded because of the following problem: What to do with the

activities requiring user interaction when they can only be ran from server. The second
one was discarded mainly because it would be harder to keep the states of the Visiome
Engines in synchronization. A specific problem in this configuration is the execution of
fully automatic activities. Using a master engine at the server means a simpler approach
as the server always has all current data about the process. In this approach the server
can execute all automatic activities. The last approach also makes it simple to take
backups and version snapshots of the whole state of the process.

The existing version of the Visiome Engine did not support dynamically changing
the process in run time. This was not consistent with the need for greater flexibility. The
problem was solved by making it possible to add new activities, which are not added to
the Visiome Engine, during the process. The dynamically added new activities are han-
dled by a layer on top of the Visiome Engine.

An example of a software process is presented in Figure 7. The activities, roles, arte-
facts and guidance parts of the figure are marked with light blue text. The process is
read from left to right, the icon on the right top of an activity indicating the status of the
activity. Even though not directly seen from the figure, activities are hierarchical items,
which can consist of many sub activities. For example, Component Specification is not
a single task, but a high-level task consisting of many subtasks.

6.3. An Overview and the System Architecture of the
Example System

The prototype framework was used to implement the example system, i.e. all the used
locations, areas, transporters and agents were inherited from their corresponding base
classes. These inherited entities can be seen in the upper part of Figure 8. The current
instantiation of the architecture can basically be seen as a kind of client-server architec-
ture. The system infrastructure consists of two different kinds of areas, Backend and

Figure 7 OMT++ process in a Visiome Script style.

 35

Frontend. Both of these have their own transporter. The frontend transporter can only
connect to one backend transporter at a time, and the backend transporter can only re-
ceive connections from frontend transporters. To add support for multiple backend areas
either the backend transporter should offer functionality to connect to a backend trans-
porter or a frontend transporter would have to be added to the backend area.

Common locations for both of the areas are Database and VersionController. Data-
base-location offers an interface to the shared database of the system and VersionCon-
troller-location offers an interface to use the shared version control of the system. Fron-
tendEngine and UI are only located at Frontend area. FrontendEngine handles the com-
munication to a Visiome Engine at the Frontend area. UI is the main user interface.
Project-Handler is only located at Backend area. It manages the relations between users
and projects and creates new Visiome engines. There are several different kinds of
agents in the architecture; these include a StartProject-agent and an ExecuteActivity-
agent. Most of the agents in the architecture are typically started by a software develop-
er who uses the UI in a frontend.

6.4. An Example Run-Time Architecture and Expe-
riences

Example runtime architecture with one Frontend area and one Backend area is presented
in the bottom of Figure 8. The dashed lines show the sequence of events during the life-
time of an ExecuteActivity-agent. ExecuteActivity-agent is one of the most complicated
agents in the implemented system. ExecuteActivity-agent executes an activity at the
area it was created in. The travelling between the areas and locations has been omitted
for simplicity.

Figure 8 Specialized Architecture and the sequence of an ExecuteActivity-agent

 36

The sequence starts when a user implies her wish to execute an activity. Then an
agent is created, and it uses the locations in the order shown by the numbers. First it
must travel to the backend and use ProjectHandler to lock the activity so that no other
user can execute it at the same time. At this point the agent fetches the needed input
files of the activity from the VersionController and starts to execute the activity at the
Visiome Engine of the frontend. The activity itself can be of several different types,
including an automatic activity with no user intervention or an interactive activity that
requires interaction during the execution. After the execution the output is saved to Ver-
sionController at the frontend and synchronization is done at the backend using the out-
puts.

The framework and the complete system were implemented quite painlessly and
successfully in reasonable time; therefore the case study can be considered a success. In
addition, if the user interface is left out of the row count of the code, then the imple-
mented system architecture has only a little more code lines than the implemented meta-
architecture, i.e. the framework.

The division to the framework and to the system itself was quite viable and the
framework implements several functionalities in their entirety. These include the trans-
porting of the agents; including the moving over network; handling of the concurrency
and general structures for managing locations and agents. Additionally there was only a
minimal need to put non-requirements related things in the implementation of the sys-
tem architecture. In the example system the methods of the locations are individual in
the sense that there is no session between locations and agents using them, i.e. the loca-
tions do not provide methods, which require that a specific agent calls them one after
the other.

6.5. User Interface

Main user interface of the system is located at the UI location. The user interface in an
example situation can be seen in Figure 9. The idea behind the small UI is that if the
user feels she needs, for example, guidance during the performing of an activity, she can
keep the Prost UI and the current working tool both visible at the same time. The parts
of the UI from left to right are: topic bar, menu bar, activity tree, HTML item selector,
and HTML browser. The menu bar can be used to open different kinds of menus and

Figure 9 Prost Main User Interface

 37

dialogs, for example, to add new activities, and to control the roles of a user.
The symbols on the left side of activity tree indicate the type of the activity. For ex-

ample, the currently selected activity has a hand symbol on it, meaning that the activity
is a manual activity. Other types of activities include fully automatic, automatic, and
computer assisted. The activity types are explained more fully in section 6.7. The sym-
bols on the right side of the activity tree indicate the status of the activities. Possible
statuses include past, current, future, will not be done, and under execution. The HTML
item selector is used to control what information is shown about the current activity in
the HTML-browser. These include, for example, the guidance for performing the cur-
rently selected activity.

6.6. Specialized Agents

This section lists the most common agents implemented and used in the project. Logi-
nUser agent is used to log a user in to the system. LoginProject agent is used to log an
already logged in user to a project. StartProject agent is used to handle all tasks related
to the starting of a project. ExecuteActivity is used to execute a single activity. Activi-
tyStateChange is used to change the state of activities without actually executing them.
AddActivity is used to create new activities to an existing process instance already un-
der execution. ConnectionObserver agent is used to listen and deliver the connection
status of the different areas to interested parties. ActivityTreeChange agent is used to
notify interested parties about changes in the activity tree, for example, if another user
executed an activity in the same project. In addition, there are agents, for example, for
handling version controlling, i.e., for saving and getting files from version control.

As an example of agent states, the possible states of ExecuteActivity agent are
shown in Figure 10. Even though not marked to the figure, Error and Cancel states can
be reached from any state; the connections to them have just been omitted for clarity
reasons. The needed current area of the agent in that state is marked with the dashed
rectangle. The agent in this case starts from Frontend area, but there is no reason why
the agent could not be started from any other area. There just has been no situation in
the current implementation where this kind of functionality would have been needed.
The cancel state has been added to the figure for design reasons; there is currently no
implementation for canceling the execution of an agent. In practice, the user can achieve
the cancel functionality by just changing the state of the executed activity back to the
previous state.

6.7. Use of the System

A general usage pattern of the system is that a user starts the program, logs in to a
project. The default setting is that the user can now see all the activities assigned to her
roles in the activity tree. The user now sees the current status of her work, and can now
decide what activity she should currently work on. The user selects the wanted activity,

 38

possibly reads the related guidance in the HTML-browser, and then starts to execute the
activity from the activity tree. In the case of a manual activity, this just means that the
user indicates that the activity has been done, and the artefacts created by the user, for
example, a class diagram, are saved to the version control.

In the case of computer assisted activities, the user is guided through the activity,
possibly inside the current tool. For example, the user could be asked to select the
classes needed as a source of transformation. In case of an automatic activity, the user
just verifies that it is acceptable to execute an activity and after that the computer does
all the related processing. Fully automatic activities do not require user intervention, but
are automatically executed on the server when possible. The state and output of the fully
automatic activities can be viewed by users from the activity tree similarly to all other
activities.

Even though the system guides to work on the activities that are in the current state,
there are no general restrictions to keep the user from reviewing or working with pre-

Figure 10 Possible states of the ExecuteActivity-agent.

Executing

 Backend Area

 Frontend Area

Result files saved to version control

Source files fetched to Frontend,
ready to execute

Execution propagated to backend

Result files fetched to Backend

Execution allowed

Running

Ready to stop

Not Started

Execution ok

Error Cancel

 39

vious or future activities. However, there are some activities that require a specific in-
put. For example, the transformation of a sequence diagram to a class diagram requires
the sequence diagram as in input. Activities requiring such an input cannot be executed
before their input is available.

 In addition, executing an already executed activity with a specified output again
may cause some unwanted consequences. For example, it is currently not possible to
have different versions of the same process instance running concurrently. The default
functionality in case of activities that have been executed multiple times is to use the
latest versions of the inputs and outputs of all activities.

6.8. Expanding the System

As an example of useful functionality, which could be added to the system, is a way to
add tasks to a running project from other tools. For example, activities from a project
management tool could be imported to the system. This could be achieved by adding a
new location and an agent to Frontend area. The new location would prove the core
functionality to import tasks from that specific tool. The new agent would provide the
information about what to import, where, and other information that needs to be decided
before importing. In addition, the agent would be used to trigger the functionality when
needed. The location would then import the needed information from the wanted tool
and the agent would then get the information from it, possibly transform it to the right
form and then add the activities to the process using the proper locations. In the case of
missing or invalid information, for example, an activity with no roles assigned, the
agent could notify the user about the situation and possibly ask how to react to the situa-
tion.

Scaling the system up in new instances of existing area types is a normal situation
for the architecture. This kind of change does not require any changes to the existing
architecture.

6.9. Implementation Techniques

The system is implemented with C++. The UI of the system is located in the Frontend
area and is implemented using wxWidgets [Wxw09]. The browser in UI is implemented
using Gecko [Gec08]. Gecko is an open source layout engine used in many applications
including the Mozilla Firefox web browser. Frontend and Backend communicate with
Visiome Engine through COM [Mic10]. Frontend and Backend communicate over net-
work using the socket library in wxWidgets. The communication between Frontend and
Backend consists mostly of agents. Frontend and Backend communicate with the Sub-
version server using a Subversion client and with the database using ODBC. The physi-
cal architecture of the system and the communication methods of the components can
be seen from Figure 11. Backend, Database and Subversion can all be located on differ-

 40

ent servers, but it is recommended that they remain on the same server as this helps
maintenance and allows the server to perform faster.

Figure 11 Physical architecture of the system

Backend only has a basic UI for observing the status of the backend. Backend only
stores temporary data not directly related to the performing of the process, for example,
the clients currently connected to it. All permanent data related to the process is saved to
the database. All files are saved to the Subversion. Concurrency in file handling is au-
tomatically handled by Subversion. Concurrency in internal execution is handled by
using specific libraries of wxWidgets.

6.10. Implementation Classes

The classes specialized from the framework are presented in Figure 12. The connections
between the classes have been left out for simplicity. For example, several locations use
many agents and showing all of these connections would make the figure unreadable.

Some of the classes in the figure are quite simple, including most of the agents. On
the other hand, for instance, the UI location consists of tens of self implemented classes
and brings with it the whole Gecko [Gec08] engine.

6.11. About Agent Implementations

All implemented agents are quite small in code size, most of them varying between 100
and 200 lines of code. The largest agent is ExecuteActivity agent with little over 300
lines. Most of the agent code is very straightforward and the sequence of the business
case can be easily seen from the code. The functionality regarding agent transfer was
implemented in a way that the agent implementer is not required to code anything extra
for situations when an agent transports to another area. All that is required is that the
agents define a default set of their state that they want to always carry with them. This

 41

set is automatically serialized and deserialized when the agent transports to a different
area.

A minor downside with current agent implementation is that adding a new agent
type is not completely dynamic, but the parts of the system that use the new agent type
need to be recompiled after adding the code of the new agent. This was not a problem in
the current system, as there was no real need to add agent types dynamically. This
would be a problem, if, for example, it would be wanted that the users could create new
agents to do specific tasks for them. One way to address this challenge would be to
make it possible to specify some agent functionality with Python or some other inter-
preted language.

6.12. Error and Exception Handling

All agents handle the errors occurred during their execution independently. More specif-
ically, this means that the framework does not force, nor guide, the agent to handle er-
rors in any specific way. In the Prost system it was decided that the implemented system
would offer two kinds of procedures for error handling in agents. There are general log-
ging capabilities that can be used by any agent, and then the UI location offers the pos-

Figure 12 Specialized classes in the case study implementation

 42

sibility to display errors and warnings to the user. In addition, the agents can implement
their own error handling procedures for specific error cases.

One important matter to consider is the behavior of an agent when an area is prema-
turely disconnected. For example, the previously discussed ExecuteActivity agent at the
time it has reached the state execution allowed in Backend Area can be considered. Now
the state of the activity has already been changed to under execution and the next thing
the agent would do is to go back to home area and start the execution, but if the home
area has been disconnected, then what should it do? Obviously the first requirement is
that it must not crash the system or anything like that. There are several possibilities it
could try to do. It could try to cancel the reservation of the activity so that somebody
else could do it, i.e. change the state of the activity back to, for example, current. It
could wait for the area to connect again or it could simply die out without doing any-
thing. The latter is currently used. This simple behavior can be used because all opera-
tions of the highest abstraction level are designed so that they do not unnecessarily con-
strain the system and can be redone if necessary. In the case of the ExecuteActivity the
user should first (after reconnecting) change the state of the activity to something else
than under execution (this unlocks all reservation made to the activity) and then try to
execute it again.

 43

7. EVALUATION

The most important requirements for the system can be summarized into two: the over-
all requirement of flexibility, and the maintainability of the system. A big part of the
maintainability and flexibility requirements is that it must be possible to incrementally
develop the system. For example, it must be possible to integrate new tools easily to the
existing system.

The requirement of maintainability of the system was addressed by transferring the
business logic to agents, more specifically a single business case to a single agent. The
flexibility requirement was tackled by making it possible to easily add new areas, loca-
tions and agents to the system. In this chapter, first the benefits and drawbacks of this
work are considered, and then related work is discussed.

7.1. Benefits

The transferring of business logic to agents worked out well. The agents are quite sim-
ple and easy to understand and implement. When a certain business logic case is re-
quired the responsibility of the business case is given to an agent, instead of implement-
ing it on the spot or sending a message to somebody who may be listening. The agent
can then choose the proper methods to execute the task according to the current situa-
tion. The code that uses agents is also in some ways simplified, as after delegating the
task to an agent, no regard for, e.g., error situations needs to be given any more. The
overall division into agents and locations made the system simpler to work with and
understand, creating a kind of a layered architecture automatically, the locations being
the lower layer and providing the core and resource related functionality, and the agents
using them to offer the higher level services.

The addition of a new agent type proved to be a simple procedure and did not clutter
the code base as all the functionality was constrained to the agent. Moreover, maintain-
ing the business logic code was easy, as all the related code was easy to find from that
single agent. Adding new location turned out to be a little more complex operation than
adding a new agent, but still relatively easy. Incremental development, for example,
integrating new tools to the system, is supported by the fact that new location types can
be added to the areas independently and without causing changes to old functionality.
The customizability of areas, i.e. to use existing types of agents and locations, also al-
lows the reuse of architectural patterns like the observer pattern with relative ease.

In conclusion, the easiness of adding new types of any of the main entities to the
system and the clear division of the responsibilities to the agents, locations, transporters
and areas, all helped to achieve the requirements of flexibility, maintainability and cus-

 44

tomizability. With some other environment or in some other domain than the process
support domain, there may be some constraints that hinder these required quality
attributes, but from the point of view of the case study, the architecture proved to fill all
of these requirements satisfactorily.

7.2. Drawbacks

There are some drawbacks in the concept of keeping only the higher level business logic
in agents and having the locations to implement the lower level functionality. In es-
sence, this means that the agents become directly dependent on the interfaces of the
locations. Therefore the ability to change the interfaces of the locations may become the
bottleneck of maintenance. This can become a problem if the amount of agents becomes
too great, especially if a large proportion of the agents use the same methods. The ef-
fects of this drawback can be tried to minimize by keeping the locations well defined,
by composing the agents to use other agents, and by giving the location design an extra
effort to avoid too frequent refactoring of the interfaces.

Agent and location versioning has mostly been left out of the scope of this thesis.
Having two versions of an agent or a location in different computers in the system si-
multaneously could cause some serious errors if that kind of a situation has not been
prepared for. For example, an agent could use some information, which exists in both
versions, but whose meaning has been changed. This would cause the agent to execute
without errors, but the result of the execution would be something completely wrong.
These kinds of situations would be very hard to detect. The current system was used in a
way that all the computers connected to the system had the latest version running. In the
case of more users and a more distributed working environment this could not be guar-
anteed. There are several ways to address this problem. Version numbering could be an
automatic and immutable part of the agent state and the transporters would then check
the version number correctness at some point before the agent is given execution time
on the new area. In centrally maintained agent framework environments it would also be
possible to have a top level version numbering on the areas. Then the version number of
any connecting areas could immediately be checked and notified if they need to update
to a newer version.

The presented architecture may not be proper for low level hardware with real time
performance needs as the multithreading and agent serialization may cause too much of
an overhead in such environments. On the other hand, a more reasonable comparison
target for the presented architecture could be, for example, integration systems with
constant transformation or interpreting of large XML-files. In such cases the architec-
ture should fare reasonably well, because the agents use direct method calls to locations
instead of, for example, sending XML-messages.

In the current implementation, all areas are compiled into their own programs. This
includes the needed locations, agents, etc. as there is no dynamic addition of any new
types in the current implementation. Therefore when an agent code changes, all the area

 45

types that need the agent need to be recompiled with the new agent code, and all the
areas need to be updated to the newer version, even though that specific part of the code
would never be needed in that area. For example, if a minor change is done to the way
an agent uses a single location in a very specific location, then in principle all the areas
needing that agent still should be updated for version consistency reasons, even though
the changed code would not be used in those areas. On the other hand, a system with no
dynamic addition of new agent types is also inherently more secure, as there is no risk
of any security flaws that could lead to unwanted users having access to add new dan-
gerous agents to the system.

7.3. Comparison to Pitfalls

In this section the design and implementation of the agent architecture is reviewed on
the basis of the pitfalls described in section 2.3.3.

Trying to do everything yourself with agent-techniques

In this thesis various related technologies and COTS-components were used in the de-
velopment of the system. These include wxWidgets and database systems. For example,
wxWidgets sockets were used in transporting agents to other areas.

Deciding you want your own agent architecture

A proprietary agent architecture was obviously built in this work. However, we believe
we have managed to avoid the most serious problems regarding this pitfall. The actual
time spent in developing the architecture framework was relatively small overall. The
relative ease in development effort was achieved by keeping the framework simple and
well-defined. The end result satisfied the requirements for this work, but for some other
systems the property of having no direct communication between agents may prove to
be a too great drawback.

Thinking your architecture is generic

We do not consider the architecture presented in this thesis to suit to all distributed sys-
tems and domains. However, we do consider the concept of the agent based architecture
to suit relatively well to the application integration domain, and especially to process
support systems and tool integration systems. This is supported by the generality of the
main concepts of the architecture and the independence to any programming languages.
We do admit that the current C++ implementation of the agent framework is only a case
study and a lot of useful features could be added to it. As such the current C++ frame-
work may not be generic enough to suit very diverse needs even in the process support
area.

 46

Having the agents use too much AI

Extensive AI techniques were not used in the framework or in the implemented case
study. However, agent developers are not constrained from using any techniques they
wish to in implementing specialized agents.

Having agents with no intelligence

This pitfall could be rephrased to calling entities with no agent-like behavior as agents.
We consider this not to be the case with the agents in this thesis. Depending on the clas-
sifications, the agents are at least mobile, autonomous and goal-oriented. In addition,
the architecture framework does not constrain the agents from having, for example,
learning behavior.

Seeing agents everywhere, having too many or too few agents

In general, an agent in this thesis implements a single business case, for example, ex-
ecuting an activity. We feel this division was proper for the case study, and see no ap-
parent reason why it would not work on other similar systems. We feel this kind of divi-
sion made the architecture of the process support system easy to understand and clear to
work with.

Spending all time implementing the infrastructure

See the answer to the pitfall deciding you want your own agent architecture.

Having an anarchic system

The complexity of the system was reduced by not providing any means of direct com-
munication between the agents, but making them communicate with the locations in-
stead. This reduces the amount of possible communication channels considerably, as
there are usually a lot more agents in a system than there are locations.

Thinking it is necessary to implement the whole system from scratch

Existing components were used in implementing the presented system. For example,
Visiome Engine and Subversion were used. The way to use existing components pre-
sented in this thesis is to wrap the component with a location. This was done to both
fore mentioned components, i.e. Visiome Engine and Subversion, in the implementation
of the case study. The legacy component wrapped by the location can then be used by
agents through the location, and the location can listen to changes in the component,
and create new agents to react the changes in needed situations.

7.4. Proposals for Improvement and Criticism

In the implementation done in this thesis there is automatic support for only a simple
agent execution state, which gets transferred between areas. This approach is quite li-

 47

mited, and a more versatile solution could be to offer automatic support, for example,
for more complex state machine based agent states.

There is currently a thread for each agent in execution. The threading in general can
cause some problems if, for instance, an agent crashes in the middle of executing some-
thing in a location. There could be some error recovery methods, so that the whole loca-
tion or possibly the program itself would not crash or jam. One solution could be that
the locations would always keep their state saved to the disk, and the locations could be
restarted with that state if an agent caused them to crash.

The framework itself provides no way for the agents to communicate with each oth-
er in this implementation. This can in some cases be a serious shortcoming. This could
be solved with, for example, providing an AgentMeeting-location that could be used to
send messages or to leave notes for other agents.

There is currently no automatic support for defining the locations as a composition
of role interfaces. This could be supported in some uniform way. For example, the fore
mentioned AgentMeeting-location could then be only a role interface that any location
could implement.

The agents need to be compiled with the main areas in this implementation. A plug-
in system could be used to allow new agents and locations to be added independently of
other software changes. In the case of agents this could be added easily. Locations
would be a little bit more problematic, but there should be no big problems in that ei-
ther. Adding locations dynamically would mean that areas with the same type could
hold different locations. This would cause that the area type would not be enough to
make conclusions about the services that area offers anymore. For example, if an agent
would need such information, then it would have to ask the locations of all areas in the
system, instead of just using the types of the areas.

7.5. Related Work

Related work is categorized to two different viewpoints: work in the integration domain
in general and agent architectures. The viewed agent architectures are not only from the
integration domain, but from various different areas. The integration domain is consi-
dered first and the agent architectures after that.

7.5.1. Integration Domain

Service-oriented architecture (SOA) [Pap03] is a set of design principles targeting at
flexible development of new systems and solving the problem of integration of existing
applications. SOA promotes loose coupling of services and the use of high-level lan-
guages to orchestrate the use of these services into higher level business logic. Service-
oriented architecture has been successfully used at several integration projects, includ-
ing [Zim04] and [Zim05]. To integrate a system using the agent based architecture with
an external SOA system is, at least in theory, relatively easy. It could, for example, be
done by creating a location, which accepts external SOA-messages and converts them to

 48

the right agents. Also the same location could convert method calls made by agents to
SOA-messages and send them to the right service providers.

In a way, the design principles presented in this thesis are not very far from SOA.
The locations could be compared to the service providers of SOA, and the agents to the
orchestration of these services. The architectures tackle the same problems, but the im-
plementation of the solutions quite different. In this work it was wanted to avoid the
transformation of data to XML and to give the developer of the business logic full con-
trol, i.e. the freedom to use the whole expressiveness of the used programming lan-
guage. Some benefits were gained from this approach, but then again SOA is a more
robust solution to some domains. For example, SOA might suite better to inter-
organization data and services exchange where the cooperators do not necessarily have
a complete trust for each other. The approach presented in this thesis is more suitable
for use in a more limited environment with only a single, or possibly a couple of organi-
zations.

7.5.2. Agent Architectures

There exists a lot of research in a multitude of areas involving agents directly or indi-
rectly. For instance, [Man04] gives an overview of agent concepts and applications of
agent technology. Baumann et al. [Bau98], Lange and Oshima [Lan99], and Gray et al.
[Gra02] have found similar benefits of using agents as were pointed out in this thesis.
The experiences with first- and second-year undergraduates successfully developing
D'Agent applications [Gra02] also suggested that agents are easier to understand than
message- or RPC-based techniques.

There are also numerous agent-based architectures, infrastructures and middlewares,
including Mole [Bau98], the Aglet API [Lan98], Open Agent Architecture (OAA)
[Mar99], D’Agents [Gra02], RETSINA [Syc03] and Hermes [Cor05]. The middleware
presented in Hermes has been successfully used to design an agent-based tool integra-
tion system [Cor04]. A summary of several projects using agent technology for enter-
prise integration and supply chain management is presented in [She99]. Existing agent
architectures are discussed and an architectural model for mobile agent systems is de-
scribed in [Sch03]. Additionally, [Mül02] considers the use of agents in electronic busi-
ness, including complex integration of existing infrastructures.

A common difference with approach in this thesis and many of the mobile agent
systems is that in this approach focus lies in simplicity, which is achieved by restricting
the mutual communication of agents to be between agents and locations. This allows the
architecture to support flexibility in a controlled manner while still keeping the system
easily maintainable. A more specific difference with other agent-based architectures is
that there is a special entity called location that provides local services. The decision to
call the service provider a location, instead of service agent or static agent, comes from
the fundamental differences between agents and locations in the presented architecture.
The most relevant differences being that locations are not mobile or goal-oriented and
they are permanent.

 49

Architectures containing this kind of an entity are typically the most similar ones to
the approach in this thesis. These include EMAA [Len98], which has servers providing
services, as well as Hermes and Mole [Bau98] with ServiceAgents. Also docks in
EMAA have some similarities with the transporters presented in this thesis, but distinc-
tively the transporters only handle things related to the communication over network.
This makes the architecture clearer and reusable, since if many communication proto-
cols are needed, an area can contain several transporters of different types. In addition,
the approach presented in this thesis does not rely on the need for each node or transpor-
ter to be able to connect to all other areas or to a centralized naming directory or re-
source server. On the contrary, the architecture model can be built in a way that the
transporters work like routers and only know the next destination while asked for a cer-
tain type of a service. This is beneficial in several cases, for example, if communicating
through several firewalls.

7.5.3. Process Support Systems

There are several resemblances and differences between the case study implemented in
this thesis and the architectural commonalities of existing PSEEs presented in section
3.5. The common components in those existing PSEEs were a user interface facility, a
process engine, and a repository [Fug96].

The implemented case study has similar components. However, the interaction of
the components is different. For example, the state of the process is at all times saved to
the repository, and the user interface can then use the repository to show the state to the
user. In addition, the process engine does not use the repository directly, and therefore is
not tightly coupled with it. Finally, the case study implementation is inherently distri-
buted by the use of the agent-based architecture.

 50

8. CONCLUSIONS

In this thesis, an agent based architecture style was presented and specified in three me-
ta-levels. It was also shown how higher level of abstraction in dependencies, and agent
based communication are feasible solutions in application integration. The approach
was validated by implementing a framework for agents and by using it to create the ar-
chitecture for a process support environment. In addition, an example showed how the
way of specifying the architecture can be used also in specifying reusable architectural
patterns (observer pattern example).

The presented architecture style attains a relatively good level of flexibility, custo-
mizability, and maintainability, as well as provides means for incremental development.
These qualities are attained, for example, because of the easiness of adding new entities
to the system and keeping each business logic case in a single place. The architecture
style is also simple, concrete, and well defined. There are some similarities to existing
architectures, including other agent-based architectures and SOA.

The architecture model and the implementation of the case study could be improved
and extended in many ways. For example, graphical specification of architecture meta-
model combined with code generation facilities, as well as simple mechanisms for de-
fining at least the simplest agents, like in BPEL (Business Process Execution Language)
for Web services [IBM06], might be useful. More extensive practical tests about per-
formance, suitability, etc. would help to understand all the benefits and disadvantages
concerning the architecture model.

There were two reasons to create a framework instead of just a single process sup-
port application specific to the requirements presented in this thesis. First of all, the
concepts presented in this thesis are not only more reusable, but also easier to under-
stand when presented in two distinct parts. In addition, there was a real general need for
an integration architecture, and the agent based architecture presented in this thesis ad-
dresses this need. More general arguments for the architecture are presented in Peltonen
et al. [Pel09]. The architecture has already proved itself useful and applicable to other
environments. A working first version of a repository based modeling environment has
already been implemented using the concepts presented in this thesis. The repository
based modeling environment is implemented in c# and Java. The modeling environment
is still a work in progress, but currently the concepts have fit into that domain without
great difficulties.

 51

REFERENCES

[Air02] Airaksinen J., Koskimies K., Koskinen J., Peltonen J., Selonen P., Siikarla
M. and Systä T., xUMLi, towards a tool-independent UML processing plat-
form. In Proceedings of 10th Nordic Workshop on Programming and Soft-
ware Development Tools and Techniques (NWPER’2002), Copenhagen,
Denmark, August 2002.

[Aoy98] Aoyama M., Agile Software Process and Its Experience, Proceedings of the
20th international conference on Software engineering, IEEE Computer So-
ciety, 1998, pages 3-12.

[Bau98] Baumann J., Hohl F., Rothermel K., Straßer M., Mole – Concepts of a mo-
bile agent system, World Wide Web 1 (1998) 123–137.

[Bus96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M., Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, 1996, pp.
339-343.

[Cha04] Chappell D., Enterprise Service Bus, O’Reilly, 2004.

[Chu03] Idea from Hyacinth S. Nwana, Divine T. Ndumu: An Introduction to Agent
Technology, Re-Drawn by Mobile Computing, Dept. of IECS, Feng Chua
University, R.O.C., 2003., WWW-Document,
http://upload.wikimedia.org/wikipedia/en/2/2e/Ch1-Nwanna.gif, referenced
2.2.2010

[Con02] Conradi R., Fuggetta A., Improving Software Process Improvement. IEEE
Computer Society Press, Vol. 19, Issue 4, July 2002, pages 92-99.

[Cor04] Corradini F., Mariani L., Merelli E., An agent-based approach to tool inte-
gration, International Journal on Software Tools for Technology Transfer
(STTT), Volume 6, Issue 3, Aug 2004, Pages 231 – 244.

[Cor05] Corradini F., Merelli E., Hermes: Agent-Based Middleware for Mobile
Computing, Lecture Notes in Computer Science, Volume 3465, Jan 2005,
Pages 234 – 270.

[Fra96] Franklin S., Graesser A., Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents, Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages, Springer-Verlag, 1996.

[Fug00] Fuggetta A., 2000. Software process: a roadmap. In Proceedings of the Con-
ference on the Future of Software Engineering (Limerick, Ireland, June 04 -
11, 2000). ICSE '00. ACM, New York, NY, 25-34. DOI=
http://doi.acm.org/10.1145/336512.336521

[Fug93] Fuggetta A., A Classification of CASE Technology, Computer, pp. 25-38,
December, 1993

 52

[Fug96] Fuggetta A., Functionality and architecture of PSEEs, Information and
Software Technology, 38 (4 SPEC. ISS.), pp. 289-293, 1996

[Gam94] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns: Elements of
Reusable Object-Oriented Software, pp. 26, Addison-Wesley Processional,
1994

[Gec08] Project homepage, Developer center for Gecko, WWW-document, 2008,
https://developer.mozilla.org/en/Gecko, referenced 20.8.2008

[Gra02] Gray R., Cybenko G., Kotz D., Peterson R., Rus D., D’Agents: Applications
and performance of a mobile-agent system, Softw. Pract. Exper. 2002;
32:543–573002E.

[Hai06] Haikala I., Märijärvi J., Ohjelmistotuotanto, 11th edition, Talentum, 2006,
pp. 318-319.

[Hoh03] Hohpe G., Woolf B., Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, Addison-Wesley, 2003.

[Hya96] Hyacinth S. Nwana, Software Agents: An Overview, Knowledge Engineer-
ing Review, Vol. 11, No 3, pp.1-40, Sept 1996.

[IBM06] Specification homepage, Business Process Execution Language for Web
Services Version 1.1, WWW-document, 2006, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/, referenced
30.6.2006

[Jen01] Jennings, N.R., An agent-based approach for building complex software
system, Communications of the ACM 44 (4), pp. 35–41, 2001.

[Kee04] Keen M., Acharya A., et al., Patterns: Implementing an SOA using an En-
terprise Service Bus, IBM Redbooks, 2004,
http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf

[Kos05] Koskimies K, Mikkonen T., Ohjelmistoarkkitehtuurit. Talentum, 2005.
[Lan98] Lange D., Oshima M., Mobile agents with Java: The Aglet API, World

Wide Web 1 (1998) 111–121.
[Lan99] Lange D., Oshima M., Seven Good Reasons for Mobile Agents, Communi-

cations of the ACM, March 1999/Vol. 42, No. 3.
[Leh91] Lehman M., Software engineering, the software process and their support,

Software Engineering Journal, Vol 6., Issue 5., 1991, pages 243-258.
[Len98] Lentini R., Rao G., Thies J., Kay J., EMAA: An Extendable Mobile Agent

Architecture - AAAI Workshop on Software Tools for Developing Agents,
1998.

[Man04] Manvi S., Venkataram P., Applications of agent technology in communica-
tions: a review, Computer Communications 27 (2004) 1493–1508.

[Mar99] Martin D., The Open Agent Architecture: A Framework for Building Distri-
buted Software Systems, Applied Artificial Intelligence, 1999.

[Mic10] Microsoft Corporation, Component Object Model, WWW-document, 2010,
http://msdn.microsoft.com/en-us/library/ms694363.aspx, referenced
31.1.2010

 53

[Mül02] Müller J., Bauer B. and Berger M., Software Agents for Electronic Busi-
ness: Opportunities and Challenges, Lecture Notes in Computer Science,
Volume 2322, Jan 2002, Page 61.

[OMG02] Object Management Group, OMG-Meta Object Facility, version 1.4,
WWW-document, 2002, http://www.omg.org/cgi-bin/doc?formal/2002-04-
03, referenced 18.2.2010

[OMG06] Object Management Group, Meta-Object Facility, version 2.0, WWW-
document, 2006, http://www.omg.org/spec/MOF/2.0/, referenced 2.2.2010

[OMG07] Object Management Group, Unified Modeling Language, version 2.2,
WWW-document, 2007, http://www.omg.org/cgi-bin/doc?formal/09-02-02,
referenced 2.2.2010

[Pap03] Papazoglou M, Service-oriented computing: concepts, characteristics and
directions, Web Information Systems Engineering, 2003.

[Pel00] J. Peltonen, "Visual Scripting for UML-Based Tools", In Proceedings of
ICSSEA 2000, Paris, France, December 2000.

[Pel04] Peltonen J., Selonen P., An Approach and a Platform for Building UML
Model Processing Tools, Proc. Workshop on Directions of Software Engi-
neering Environments (WoDiSEE04), IEE Publications, Edinburgh, 2004,
pages 51-57.

[Pel09] Peltonen J., Vartiala M., An agent based architecture style for application
integration, Annales Univ. Sci. Budapest., Sect. Comp., vol. 31, pp. 3–22,
2009.

[Roy70] Winston W. Royce, Managing the development of large software systems,
In Proceedings IEEE WESCON, 1970, pages 1-9.

[Sch03] Schoeman M., Cloete E., Architectural components for the efficient design
of mobile agent systems, In proc. of SAICSIT, 2003.

[She99] Shen, W., Norrie, D.H., Agent-Based Systems for Intelligent Manufactur-
ing: A State-of-the-Art Survey. Knowledge and Information Systems, an In-
ternational Journal, 1(2), pp. 129-156, 1999.

[Som07] Sommerville, I. Software Engineering, Eigth Edition, Addison-Wesley,
2007.

[Syc03] Sycara K., Paolucci M., Velsen M., Giampapa J., The RETSINA MAS In-
frastructure, Autonomous Agents and Multi-Agent Systems, Volume 7, Is-
sue 1 - 2, Jul 2003, Pages 29 – 48.

[Var07] Vartiala M., Peltonen J., An agent based architecture style for application
integration, In proceedings of the 10th SPLST, 2007, pages 214-228.

[Vli00] Hans van Vliet. Software Engineering: Principles and Practice, 2nd Edition,
Wiley, Sept 2000

[Woo98] Wooldridge M. Jennings, N., Pitfalls of agent-oriented development,
AGENTS '98: Proceedings of the second international conference on Auto-
nomous agents, ACM, pp. 385--391, 1998.

[Wxw09] Project homepage, wxWidgets Cross-Platform GUI Library, WWW-
document, 2009, http://www.wxwidgets.org/, referenced 25.6.2009

 54

[Zam03] Zambonelli, F., Wooldridge, M., Jennings, N.R., Developing multiagent
systems: the Gaia methodology. ACM Transaction on Software Engineering
and Methodology 12 (3), pp. 417–470, 2003.

[Zim04] Zimmerman O., Milinski S., Craes M., Oellermann F., Second generation
web services-oriented architecture in production in the finance industry,
OOPSLA, 2004.

[Zim05] Zimmerman O. et al. Service-Oriented Architecture and Business Process
Choreography in an Order Management Scenario: Rationale, Concepts, Les-
sons Learned. OOPSLA, 2005.

