

VELU VARJORANTA
SOFTWARE SAFETY ISSUES IN MACHINE CONTROL SYSTEM
DESIGN PROCESSES
Master of Science Thesis

Examiner: Prof. Jose Martinez Lastra
Examiner and topic approved at the
Council Meeting of the Faculty of Au-
tomation, Mechanical and materials
Engineering on October 5th 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Automation Technology
VARJORANTA, VELU: Software safety issues in machine control system de-
sign processes
Master of Science Thesis, 75 pages, 2 Appendix pages
March 2012
Major: Factory automation
Examiner: Prof. Jose Martinez Lastra
Keywords: IEC 61508, EN 62061, safety, PLC, control systems, SIL, PL, certifi-
cation

The growth of reliability of PLCs has widened their affordance in different industrial
machinery. In the same time as the amount of automation in various machinery increas-
es, the substance of safety equipment reliability has grown in the absence of human con-
trol. These factors have led to an increase in the demand for safety-related PLCs. The
complexity and size of the software-based control applications grows and so does the
importance to be able to produce safe software code. The requirements for machine
safety posed by the national and international laws are intricate and many industrial
standards have been formed to facilitate designing machinery that meet these require-
ments. This thesis concentrates on these standards and the recommendation and re-
quirements they pose.
 This thesis handles international standards EN 954, EN 50128, EN 62061, IEC
61131, IEC 61508, ISO 12100, ISO 13849 and ISO 14121. Their scopes and differences
are discussed in Chapter 2. Terms and methods for defining various areas and levels of
safety integrity are explained in the third chapter. Chapter 4 handles with the effects of
operating systems as a base for safety-critical applications and introduces two safety-
certified operating systems based on virtualization layers for machine automation con-
trol systems. Communication buses used in many automated machineries and their safe-
ty modifications are discussed briefly in Chapter 5.
 Chapter 6 digs deeper into the effects of the requirements on safety standards on
designing software-based machine automation control systems through process models,
architectural methods and coding rules. In Chapter 7 two safety-certified integrated de-
velopment environments for developing safety-related software are introduced. Process
models and safety requirements handled in the thesis are applied in a theoretical exam-
ple project in Chapter eight.
 Through charting various safety-related requirements it becomes clear that com-
pared to non-safety-related projects, safety-related projects require many times more
documentation on made design choices, analysis and implementations. The require-
ments for this large amount of documentation are based on the need to be able to pro-
vide evidence on sufficient rigour and comprehensiveness of the made safety analyses
and implementation quality. To be able to control all this information this thesis rec-
ommends forming information databases for companies designing such machinery.
These databases would facilitate finding and updating all the relevant information from
safety standards to project-specific documents in one place.

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Automaatiotekniikan koulutusohjelma
VARJORANTA, VELU: Turvallisuus ohjelmistopohjaisten koneautomaatiojär-
jestelmien suunnitteluprosesseissa
Diplomityö, 75 sivua, 2 liitesivua
Maaliskuu 2012
Pääaine: Factory Automation
Tarkastaja: professori Jose Martinez Lastra
Avainsanat: IEC 61508, EN 62061, turvallisuus, PLC, ohjausjärjestelmät, SIL,
PL, sertifiointi

PLC-laitteiden luotettavuuden kasvu on laajentanut niiden käyttömahdollisuuksia erilai-
sissa teollisuuden laitteissa samalla kun automaation määrä tehdasympäristöissä jatkaa
kasvuaan. Ihmisohjauksen puuttuessa on automaattisten turvalaitteistojen luotettavuu-
den merkitys suurentunut, mikä on johtanut turvakriittisten PLC-laitteiden kysynnän
kasvuun. Laitteiden ohjausjärjestelmät monimutkaistuvat ja tarve turvallisen ohjelmis-
tokoodin tuottamiselle kasvattaa merkitystään. Lain vaatimukset koneiden turvallisuu-
delle ovat monisyiset ja niiden saavuttamisen helpottamiseksi on tuotettu teollisia stan-
dardeja, joiden vaatimuksiin ja suosituksiin tämä diplomityö keskittyy.

Tämä diplomityö käsittelee standardeja EN 954, EN 50128, EN 62061, IEC
61131, IEC 61508, ISO 12100, ISO 13849 ja ISO 14121. Niiden aihealueet ja erot kes-
kenään käsitellään kappaleessa kaksi. Standardien käyttämiä eri turvallisuuden alueiden
ja turvallisuustasojen määrittämiseksi käyttämiä termejä ja menetelmiä selitetään kappa-
leessa kolme. Kappale neljä käsittelee käyttöympäristöjen vaikutusta turvakriittisten
ohjelmistojen alustana ja esittelee samalla kaksi virtuaaliympäristöihin perustuvaa tur-
vasertifioitua käyttöjärjestelmää koneautomaatiojärjestelmiin. Koneautomaatiojärjes-
telmissä käytettyjen väyläratkaisuiden erilaisia turvaversioita käsitellään lyhyesti kappa-
leessa viisi.
 Kappale kuusi käsittelee tarkemmin standardien vaatimusten vaikutusta ohjel-
mistopohjaisten koneautomaatiojärjestelmien toteuttamiseen prosessimallien, arkkiteh-
tuuristen menetelmien ja ohjelmointiohjeiden muodossa. Kappaleessa seitsemän esitel-
lään kaksi turvaluokiteltua ohjelmointiympäristöä turvakriittisten ohjelmistojen tuotta-
miseksi koneenohjausjärjestelmiin ja arvioidaan kehityksen suuntaa lähitulevaisuudessa.
Työssä käsiteltyjä prosessimalleja ja turvavaatimuksia sovelletaan pintapuolisesti teo-
reettisessa käytännön esimerkissä kappaleessa kahdeksan.
 Turvavaatimusten kartoittamisesta käy ilmi että verrattuna projekteihin, joissa
turvallisuuteen ei kiinnitetä yhtä suurta huomiota, vaatii turvakriittisen ohjausjärjestel-
män suunnittelu moninkertaisesti erilaista dokumentaatiota tehdyistä analyyseistä,
suunnitelmista ja toteutuksista. Vaatimuksen perustana on varmistaa riittävät todisteet
kattavasta riskianalyysien ja turvatoimintojen toteuttamisen tarkkuudesta ja laajuudesta
erilaisten vaaratilanteiden välttämiseksi. Tämän suuren tietomäärän hallitsemiseksi tämä
diplomityö suosittelee muodostettavaksi yrityksille omia selkeitä tietokantoja tarvittavil-
le ja itse tuotettaville dokumenteille, jotta kaikki projektiin osallistuvien olisi helppo
ylläpitää ja päästä käsiksi kaikkeen tarvittavaan aineistoon standardeista ja toimintaoh-
jeista projektikohtaisiin dokumentteihin asti.

PREFACE

The topic for this thesis was provided by CrossControl Oy. It was done as a part of FI-
MA FAMOUS work package 3 which concentrates on researching safety concepts and
software design and safety concepts. The examiner for this thesis was professor Jose
Martinez Lastra from Tampere University of Technology. Supervisors were M.Sc. Mar-
ko Elo from CrossControl Oy and researcher Jani Jokinen from Tampere University of
Technology.

I would like to thank Marko for providing me this topic and helping me to de-
limit it. This topic has given me new ways of perceiving machine safety and user oper-
ated machinery. The FAMOUS project has increased my knowledge on different indus-
try branches and their needs in the field of system safety. The project has also provided
me with a lot of safety-related material, for which I would like to thank all the project
attendees, especially Timo Malm from VTT. Thanks go also to Jani Jokinen for super-
vising the writing process and helping me with all the bureaucratic issues. I also want to
thank my girlfriend for coping with me working weekdays and writing this thesis all the
weekends. In addition, I want to express my gratitude for my parents for the support
they have provided me during my studies in the university.

Tampere, March 11th, 2012

Velu Varjoranta

CONTENTS

 INTRODUCTION .. 1 1

1.1 Background and problem .. 2
1.2 Research on topic .. 2
1.3 Goal of research .. 3
1.4 Delimitations ... 3

 SAFETY-RELATED STANDARDS AND DIRECTIVES 4 2
2.1 EN 954 .. 4
2.2 EN 50128 .. 5
2.3 EN 62061 .. 5
2.4 IEC 61131 ... 5
2.5 IEC 61508 ... 6
2.6 ISO 12100 ... 7
2.7 ISO 13849 ... 7
2.8 ISO 14121 ... 8

 DETERMINING THE LEVEL OF SAFETY .. 9 3
3.1 Safety according to ISO 13849 ... 11

3.1.1 Mean time to dangerous failure ... 11
3.1.2 Common cause failure ... 12
3.1.3 Diagnostic coverage ... 13
3.1.4 Categories .. 13
3.1.5 Performance levels ... 15

3.2 Safety according to IEC 61508 ... 16
3.2.1 Safety Integrity Levels ... 17

3.3 Risk analysis studies ... 19
3.3.1 HAZOP .. 19
3.3.2 FMEA .. 21
3.3.3 FTA .. 23

3.4 Certification .. 24
 IMPACT OF SOFTWARE ENVIRONMENT ... 26 4
 COMMUNICATION ISSUES ... 30 5

5.1 Selection criteria.. 33
5.2 CAN .. 34
5.3 Ethernet ... 35
5.4 Wireless ... 36

 IMPACT OF SAFETY REQUIREMENTS ON DESIGN PROCESS 38 6
6.1 Hardware safety .. 38
6.2 Software safety .. 41
6.3 Process models .. 43

6.3.1 V-model and design lifecycle model according to IEC 61508 43
6.3.2 Control system design phase diagram according to EN 62061 45

6.3.3 Safety-related part design process model according to ISO 13849 ... 46
6.3.4 Agile models .. 48

6.4 Documentation .. 48
6.5 Change management ... 50
6.6 Failure types .. 51
6.7 Programming languages .. 54
6.8 Architectural methods ... 56
6.9 Coding rules .. 57
6.10 Validation and verification .. 61

 SAFETY-RELATED INTEGRATED DEVELOPMENT ENVIRONMENTS 63 7
7.1 3S CoDeSys Safety ... 63
7.2 KW-Software safety platform ... 64
7.3 Roadmap ... 65

 CASE: SAFETY DESIGN PROCESS IN OIL EXPLORATION MACHINERY 66 8
 CONCLUSION ... 73 9
 FUTURE ... 75 10

References ... 76
APPENDIX A: Software architecture recommendations according to IEC 61508 80
APPENDIX B: Software architecture recommendations according to EN 50128 81

TERMS AND DEFINITIONS

API Application programming interface
CAN Controller Area Network
CCF Common Cause Failure
CPU Central processing unit
CRC Cyclic redundancy check
DC Diagnostic Coverage
E/E/PE Electrical, electronic or programmable electronic
EN European standard adopted by CEN, CENELEC or ETSI
EUC Equipment under control
Failure Termination of the ability of a SRECS, a subsystem, or a

subsystem element to perform a required function
FMEA Failure mode and effect analysis
FTA Failure tree analysis
FVL Full variable language
Hazard Potential source of physical injury or damage to health
HAZOP Hazard and Operability Studies
I/O Input/Output. Inputs are signal received by a system and

outputs present transmitted signals.
IDE Integrated Development Environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
LVL Limited variable language
MTTF Mean time to hazardous failure
PFH Probability of Failure per Hour
PHA Preliminary Hazard Analysis
PL Performance level
PLC Programmable logic controller
OS Operating system.
Redundancy Existence of more than one means for performing a function
RTE Run time environment
RTOS Real time operating system
SDE Software development environment
SIL Safety integrity level
SRECS Safety-related electrical control system
SRS Safety Requirements Specification
SWFMEA Software Failure Mode Analysis
SWSIL Software Safety Integrity Level
TUT Tampere University of Technology
VTT Technical Research Centre of Finland

1

 INTRODUCTION 1

A few decades ago all machine automation systems were relay-based. This kind of con-
trol systems included large amounts of relays which were relatively large, heavy and
easily broken. Modifications required lots of design effort and the sheer size of the relay
groups made mobile machinery heavy and large. Programmable logic controllers (PLC)
changed the automation industry being light and easily reprogrammable units which
were connected to the unit’s sensors and actuators. However the reliability of the first
generations of PLCs hasn’t been found reliable enough for implementing safety applica-
tions. Therefore many of the safety-related functions are still preferably implemented
with special safety certified hardware units external to the PLC control units. During the
recent years safety certified PLC units have become available in the markets. The PLCs
hardware is duplicated for enhanced reliability and the software applications have dif-
ferent requirements compared to applications used in non-safe PLCs. This thesis ap-
proaches the topic of safety-related projects implementing safety certifiable software
through the guides and requirements set by industrial safety-related standards to meet
the requirement of the law.

Some basic terms should be clarified before proceeding further to the topic. The
first term is “safety”. What actually is safety? International safety framework standard
IEC 61508 describes safety as “freedom from unacceptable risk” [34]. The system may
contain several risks, but still be considered safe. Risk is explained by another safety-
related standard ISO 12100-1 as “combination of the probability of occurrence of harm
and the severity of that harm” [29]. The term is further explained in Chapter 3. The risks
are mitigated primarily through mechanical design, secondarily through safety equip-
ment (light curtains, walls and signs) and safety functions executed by safety PLCs.
These safety functions are the methods for the control system to achieve or maintain a
safe state in the system in case of a system failure or dangerous user action. These safe-
ty functions can be for example actions after pressing an emergency stop button or trig-
gering a light beam of a safety curtain, preventing an unexpected engine start, anti-sway
controls on harbour cranes, reducing working speed of robots while a user is detected in
the work area or anti-collision system in autonomous moving machines.

Safety should not be confused with security. Security is concerned when protect-
ing the system from intentional attacks towards its functionality or information confi-
dentiality. Safety is concerned when avoiding inflicting harm to humans directly or indi-
rectly through the environment.

2

1.1 Background and problem

This thesis works as a part of nation-wide research project FIMA FAMOUS. FIMA –
Forum for Intelligent Machines is a network for mobile work machine manufacturers,
specialist companies, system integrators and research institutes. The FAMOUS project
(Future Semi-Autonomous Machines for Safe and Efficient Worksites) concentrates on
safety issues on mobile work machines. The thesis acts as a generic introduction to the
issues related in designing safety-related machine automation systems with safe PLCs
safety certification as a goal. The topic is large and may be hard for a system designer to
quickly get grasp of all the issues related.

1.2 Research on topic

This topic is widely researched in various projects around the world. Following is a few
researches considered in this thesis.

AMOS
Agile Development Approach for Safety and Reliable Systems – AMOS – is a project
launched by pan-European ITEA2 programme. Aim of the project is to reduce cost and
effort in building safety-related and reliable systems through integration of agile meth-
ods with safety methods.

FIMA FAMOUS
As mentioned in Chapter 1.1, FIMA FAMOUS concentrates on different branches of
mobile machinery from the aspects of autonomous, semi-autonomous and remote-
operated machines. Discussed topics have been for example situation awareness and
fleet command.

KOTOTU
Koneiden ohjausjärjestelmien toiminnallinen turvallisuus, KOTOTU, was a project by
VTT in which internet-based process tools were developed for identifying and handling
safety hazards in an early phase of the project. Also a calculation tool for determining
system performance levels was introduced.

OHJELMATURVA
VTT (Technical research Centre of Finland) finished its software safety research project
“Ohjelmaturva” [23] (Safety-critical software in machinery) during the working process
of this thesis. The program concentrated mostly on the same software issues handled in
this thesis.

3

PSAFECER
ARTEMIS is a European research initiative for embedded systems, where one of the
research projects, pSafeCer [43], concentrates on certification of software components
as an aim decrease the cost and effort required to develop safety-related software.

TIKOSU
TIKOSU - Tietokantakeskeinen koneenohjausjärjestelmän suunnittelu (Database Cen-
tric Development of Machine Control Systems) is a FIMA project with a goal evaluat-
ing the efficiency of integrating various development process artefacts in an Integrated
Industrial Documentation and Analysis database (IIDAbase).

1.3 Goal of research

The aim of this research is to gain more understanding on the requirements that various
safety standards pose on developing safety-related applications on PLC equipment.
What requirements are set for the equipment connected to the safety PLC, such as
communication systems, reliable sensors or redundant architecture. The thesis address-
es the most important issues and process models as well takes a look at two virtual envi-
ronment solutions from Green Hills Software and SYSGO AG. Two different approach-
es of safe integrated development environments (IDE) from 3S and KW-software are
also introduced to gain information on how different IDEs aid the implementation pro-
cess of safe logic applications. Also an interview with three large Finnish OEM manu-
facturers were held to gain information on the interest on safety issues on the markets
and how safety issues are taken into account in the industry today.

1.4 Delimitations

The aim is not to go too deep in the details in the standards but handle the most im-
portant issues in a way that gives the reader a picture on the whole process of develop-
ing safe machinery. Researching the IDEs have to be kept on light level because one of
these environments, CoDeSys Safety, isn’t released by the time this thesis is being writ-
ten. The case project is also handled only on a theoretical level, for there is no plans on
implementing a safety certified version of the machinery.

4

 SAFETY-RELATED STANDARDS AND DI-2
RECTIVES

Industrial standards are commonly used to unify certain structures such as electronic
connectors or signalling methods. Safety-related issues are standardized to be able to
control machine safety levels nation-wide and to ensure easy implementation of safe
equipment for manufacturers. Safety-related standards on the European Union area are
based on directives to ensure uniform safety norms and legislation in member countries.
For example in Finland machine manufacturers are obliged to follow at least Konelaki
1016/2004, Koneasetus VNa 400/2008 [17] and Työturvallisuuslaki 738/2002. First two
of the previous are based on EU’s Machinery directive 2006/42/EC [18], which is the
base of most of the machine- and safety-related Finnish acts and decisions. Machine
directive can also be accompanied with other special directives affecting the product
(for example. low voltage directive 2006/95/EC, ATEX directive 94/9/EC and pressure
equipment directive 97/23/EC). Directives describe only the common and higher level
requirements while the standards are set to fulfil the gaps and define the requirements in
a more precise manner. [35]

Standards are considered harmonized if they meet the requirements of the di-
rective completely and are confirmed by European Union authorities. All machines –
such as weapons or chainsaws – can’t however be completely safe. The standards define
the state-of-art of the machine (the best technology that can be implemented at the mo-
ment) so the standard for these dangerous machines can still be harmonized and the ma-
chine can be considered legitimate. Unlike the obligatory directives, the standards (even
the harmonized standards) are actually only guidelines and tools to meet the require-
ments of the directives and thus laws. If the manufacturer wants to use another approach
than the one described in the standard, it has to be shown that the deviant solution meets
the requirements of the directive. [35]

2.1 EN 954

EN 954: Safety of machinery – Safety-related parts of control systems is a safety stand-
ard mainly aimed for machine builders. This standard was taken into use in 1996, and it
considers hydraulic, electromechanical and pneumatic control systems. The introduced
methods are considered quite clear and simple to implement, but for example its risk
graph isn’t demanding enough for modern day safety equipment. [28, 36]

5

Part one (EN 954-1) doesn’t take purely electronic, programmable control sys-
tems or programming into consideration and thus is considered obsolete after
31.12.2011. It was combined with EN ISO 13849-1 by the end of the year 2011 leaving
only the latter operational.

EN 954 consists of the following parts:
Part 1: General design principles
Part 2: Validation

2.2 EN 50128

EN 50128: Railway applications - Communications, signalling and processing systems.
Software for railway control and protection system is an application standard of IEC
61508 for software in railway safety equipment. The term application standard means
that the standard introduces approaches and methods to meet the requirements set by its
framework standard. Standards EN 50126 and EN 50129 specify the required level of
safety and this standard specify the methods for meeting these requirements. EN 50128
specifies five levels for software safety called software safety integrity levels: SWSIL0
– 4. SWSIL0 represents non-safe software and software of SWSIL4 has the highest
safety integrity. The requirements for reaching a specific integrity level are mostly in
accordance with IEC 61508 and as the standard focuses mainly on software it is a good
tool for assessing software safety. [35]

2.3 EN 62061

EN 62061: Safety of machinery – Functional safety of safety-related electrical, electron-
ic and programmable electronic control systems is a harmonized application standard
for IEC 61508. As the name of the standard states, EN 62061 handles functional safety
of electromechanical, electric and programmable control systems. This standard, which
is made for automation and machine designers, uses methods for assessing failure rates
based on calculating the probabilities of possible failures on safety functions thus mak-
ing it ideal for vast and complex systems. It is meant to complement the requirements
stated in IEC 61508 with requirements needed in machine building and ease the inter-
pretations of its framework standard by providing design models and practices made
solely for machine control systems. [32, 36, 40]

2.4 IEC 61131

IEC 61131: Programmable controllers handles programmable logic controllers, their
hardware requirements, wiring, programming languages, communication channels and
user guidelines. From this standard, part 3 has had the most significant effect on soft-
ware machine control industry. The third part, named “Programming languages”, de-
fines five different programming languages used in PLC programming: instruction list,

6

ladder diagram, sequential function chart, function block diagram and structured text. It
also lists data types compatible with logic programming and different variable types.

Part 6: Functional safety is an update to the standard and is to be released in ear-
ly 2012. It addresses functional safety in PLCs and their associated peripherals in the
scope of hardware and software. Process models, safety assessment procedures, docu-
ment production for development processes and end-user and development and verifica-
tion planning for both hardware and software are discussed according to relevant safety-
related framework standards. IEC 61131-6 standard fulfils the product specific require-
ments of IEC 61508-1, -2 and -3, and it also refers to the requirements of IEC 61511,
EN 62061 and ISO 13849. The standard is mainly intended for functional safety PLC
(FS-PLC) manufacturers.

IEC 61131 consists of the following parts:
Part 1: General information
Part 2: Equipment requirements and tests
Part 3: Programming languages
Part 4: User guidelines
Part 5: Communications
Part 6: Functional safety
Part 7: Fuzzy control programming
Part 8: Guidelines for the application and implementation of languages for programma-
ble controllers

2.5 IEC 61508

IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems is an un-harmonized framework safety standard for all kinds of industry
in the European Union. Although the standard isn’t harmonized with the machinery
directive, some harmonized standards, such as EN 62061 and ISO 13849 refer to its part
3 (IEC 61508-3: Software requirements) in an obliging way. EN 62061 has been de-
rived from IEC 61508, and ISO 13849 is a “competing” standard from International
Organization for Standardization ISO [16]. IEC 61508 has been designed to take future
development into account in some extent. However, the software industry develops
hastily and the current, 2nd edition of the standard was released in spring 2010. Many of
the updates considered the third part of the standard. [24, 34]

As the standard considers all kinds of industry on a higher level, the industry-
specific lower level standards have been derived from the IEC 61508 (Figure 2.1). Both
the parent and the industry-specific standards have to be followed during the develop-
ment process as the industry-specific standards may present more precise, adaptive in-
structions to the main standards.

7

The main issues considered in IEC 61508 are Safety Integrity Levels (SIL) and
methods for designing safe machinery. SIL levels are used in determining the level of
safety on safety-related equipment. Safety Integrity Levels are considered in more detail
in Chapter 3.2.1. [34]

IEC 61508 consists of the following parts:
Part 0: Functional safety and IEC 61508
Part 1: General requirements
Part 2: Requirements for electrical/electronic/programmable electronic safety-related
systems
Part 3: Software requirements
Part 4: Definitions and abbreviations
Part 5: Examples of methods for the determination of safety integrity levels
Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
Part 7: Overview of techniques and measures

2.6 ISO 12100

ISO 12100: Safety of machinery - General principles for design - Risk assessment and
risk reduction has been the main risk assessment and mitigation planning standard in
machine automation industry since it was combined with ISO 14121-1 in October 2010.
It includes the same risk assessment methods as described in Section 2.8 and presents
general risk reduction and hazard elimination methods. The methods are based on
knowledge and experience on design, use, common risks in machinery and information
on previous accidents. [29, 40]

2.7 ISO 13849

ISO 13849: Safety of machinery - Safety-related parts of control systems is a harmo-
nized standard for mechanical, hydraulic, pneumatic, electric and electronic control sys-
tems for safety equipment designers (product manufacturers) and for machine builders
in some extent. [21, 22, 40]

Figure 2.1. Industry-specific safety-related standards based on IEC 61508

8

ISO 13849 is a higher level standard which can be applied to design process of
all kinds of machinery [24]. It isn’t however applicable for designing systems requiring
higher performance levels (PL) than PLe (comparable to SIL3, which is described in
Chapter 3.2.1). As its methods are based on approximation of parameters and typically
pre-calculated architecture models the standard cannot be applied to designing compli-
cate and/or electronic systems [22, 32].

Part 1 (ISO 13849-1) describes safety requirements for control systems and
guidance on design and integration principles of safety-related parts of control systems.
Part 2 (ISO 13849-2) concentrates on validation issues including annexes in which con-
trol system safety principles and component and system failure modes are introduced.
However validation of programmable control systems isn’t considered comprehensive
enough and it is advised to use other standards in these cases. [16, 24, 30, 40]

ISO 13849 consists of the following parts:
Part 1: General principles for design
Part 2: Validation

2.8 ISO 14121

EN ISO 14121: Safety of machinery - Risk assessment is a standard that has been used
as a tool for assessing the severity of the dangerous failures and probabilities of danger-
ous events. It presents the main principles and concepts of risk assessment intended to
be used to design the risk mitigation methods of ISO 12100-1. Beginning from October
2010, part one (ISO 14121-1) has been completely replaced by ISO 12100:2010. The
second part (ISO 14121-2) includes practical guidance and examples of risk assessment
and will remain operative under its old name and index. [16]

After a machine has passed a certain level in mechanical design phase, its risk
assessment can be started. Primary risk mitigation should be implemented in the physi-
cal design phase by making dangerous parts and areas unreachable to users. This stand-
ard gives instructions on how to assess residual risks unhandled in the physical design.
It concentrates on the dangerous situations caused by the control system. Appropriate
risk reduction measures are formed based on the assessment made according to ISO
12100.

ISO 14121 consists of the following parts:
Part 1: Principles
Part 2: Practical guidance and examples of methods

9

 DETERMINING THE LEVEL OF SAFETY 3

All the standards introduced in Chapter 2 handle different methods of defining safety of
machinery or methods to increase it. But what actually is safety? How can it defined in
this aspect? IEC 61508-4 defines safety as “freedom from unacceptable risk” [34]. Safe-
ty is a relative concept. The definition states that a safe system might not be completely
risk-free, but the risks are divided into less and more serious risks. Decisions are made
based on the division, according to which the mitigated risks are selected.

Neil Storey defines risk in his book Safety-Critical Computer Systems [39] as
follows: “Risk is a combination of the frequency of probability of a specified hazardous
event, and its consequence”. The magnitude of the risk is thus influenced by the conse-
quences of a possible following accident and how probable this event is. It is useless to
construct an expensive system to prevent an event which consequences might be serious
but which most probably would not happen in thousands of years. A dangerous event
may be an event occurred by normal use of machinery in which an accident may happen
through easy access to a dangerous area for the lack of, or malfunction of safety equip-
ment. Methods for avoiding dangerous events caused by malfunctioning hardware or
design flaws in control systems could be considered the main topic in the safety stand-
ards considered in Chapter 2. Malfunctions can be divided into three types [2]:

 System failure, which is often caused by hardware or control system malfunc-
tion.

 Random fault, when components fail due to environmental issues. Occurring of
random faults is hard to assess.

 Systematic faults are usually hardware or software design flaws.

In Table 3.1 is described a simplified model to assess the magnitude of risk ac-
cording to Koneturvallisuus: Ohjausjärjestelmät ja turvalaitteet [36]. In the leftmost
column the effect of consequences caused by an accident is assessed with a scale from 1
to 100. Scale value one means minimum effect on the user, such as mere contact. Scale
value one hundred means a loss of a limb or death. The second column describes the
probability of occurrence for this event with a scale from 0.1 to 1. In the third column
the consequence and probability columns are multiplied to gain the magnitude of the
risk.

10

Table 3.1. Risk assessment example [36].

The risk magnitudes acquired by this method can now be categorized to different
risk groups. Table 3.2 is a table introduced in Koneturvallisuus, Ohjausjärjestelmät ja
turvalaitteet [36]. Categories for different risk groups have been formed and each of the
group has been set their risk mitigation requirements stated with performance levels and
safety integrity levels.

Table 3.2. Guidelines for selecting proper PL and SIL according to risk magnitude
[36].

MODERATE
RISK

SIGNIFICANT
RISK

INTOLERABLE
RISK

Performance level c Performance level d Performance level e
SIL 1 SIL 2 SIL 3
TOLERABLE
RISK

MODERATE
RISK

SIGNIFICANT
RISK

Performance level b Performance level c Performance level d
SIL 1 SIL 1 SIL 2

MINOR RISK
TOLERABLE
RISK

MODERATE RISK

Performance level a Performance level b Performance level c
SIL 0 SIL 1 SIL 1

Risk assessment is an important phase in project design process. With it the pro-

ject designers are obliged to consider all critical safety-related issues early in the devel-
opment process. With a comprehensive assessment can a clear overall image of differ-
ent risks be formed and it is easier to make an evaluation on which risks should be taken
into account with risk mitigation functions. In some cases it may be wiser to keep the
system simple and easy to maintain in order to enhance safety. The above-mentioned
method is only a simplified method based on information given by ISO 12100 and ISO

Consequence Probability Risk
100 1 100
100 0,5 50
100 0,1 10
50 1 50
50 0,5 25
50 0,1 5
10 1 10
10 0,5 5
10 0,1 1
1 1 1
1 0,5 0,5
1 0,1 0,1

11

14121-2. However it acts as a clear and simple example for understanding the instruc-
tions and options provided by the standards. In the risk assessment process also the in-
dustry-specific C-standards (Chapter 2.5) and the environmental requirements caused by
the machine’s operating environments should be taken into account, for they may pro-
vide further requirements for the assessment.

The reached level of safety integrity through safety functions can be stated in
two different methods: ISO 13849 uses performance levels (PL) and IEC 61508 handles
with safety integrity levels (SIL). The selection criteria between the two main standards
are affected by several issues: the clientele, nationality or the industrial branch may al-
ready be familiar with either one of the standards. Also the type and complexity of the
machine affects the choice. IEC 61508 and its application standards apply well to de-
signing complex software-based control systems for its comprehensive software section
in IEC 61508-3. ISO 13849 is used in designing less complicated systems or machines
requiring a less programmable or electronic control system. A VTT publication Turval-
lisuuteen liittyvät ohjausjärjestelmät konesovelluksissa [21] suggest that the use of ISO
13849 limits to systems that in which:

 Low level of risk reduction is needed (PLa or PLb).

 Hardware failures are well known and they are easy to assess.

 The effect of PLC on safety is low, and needed risk reduction is moderate
(PL=a, b, c, or d).

 Diverse hardware and software are used and the needed risk reduction is moder-
ate (PL=a, b, c, or d).

 Certified software and hardware is used.

In the coming years ISO 13849 and IEC 61508 will be combined into a single
safety main standard to avoid inconsistencies and excess repetition. [36]

3.1 Safety according to ISO 13849

ISO 13849 defines safety on two different methods: performance levels define the safe-
ty functions’ ability to assure safety in case of a dangerous failure. Categories define the
architectural methods to cope with hardware failures. Both the methods are based on the
same failure detection methods and failure frequencies.

3.1.1 Mean time to dangerous failure

Mean time to dangerous failure (MTTFd) defines the average time in years between
failures that disable the safety function considered. This kind of failure cannot be de-
tected by diagnostics, nor does is stop the machinery or lead it into a safe state. Safe
state means a state in which the machine doesn’t pose a threat to the user. This may
mean a stopped saw blade, no traction on the tires or zero voltage on the system. This
kind of failure is a state that couldn’t be anticipated or foreseen. MTTFd can usually be

12

found in the machine’s manual or the manufacturer’s component information docu-
ments. While surveying the system’s failure times, it is recommended to use minimal
amount of different sources of information to ensure congruent calculation methods
between the values of MTTFd [36]. If no information is given for a component, ten years
can be used as a good guess [36]. Mean time to dangerous failure is only an indicative
estimate, so it cannot be given an absolute and precise value.

ISO 13849-1 - Safety-related parts of control systems – Part 1: General princi-
ples for design introduces formulas to determine the average time between failures for
single- and two-channel (see Chapter 6.1) systems. These formulas are based on the
MTTFd-values of individual components in the channel. Formula 1 [30] presents the
calculation method for a single channel in which MTTFd represents the average failure
time for the whole channel and MTTFdi and MTTFdj the average failure times for each
component in the channel. The first sum term in the formula represents each component
considered separately and in the second sum term all similar components are grouped
together. [30]

ଵ

ெ்்ி೏
ൌ ∑ ଵ

ெ்்ி೏೔
ൌே෩

௜ୀଵ ∑ ௡௝

ெ்்ி೏ೕ
ே෩
௝ୀଵ (1)

ௗܨܶܶܯ ൌ
ଶ

ଷ
ቈܨܶܶܯௗ஼ଵ ൅ ௗ஼ଶܨܶܶܯ െ

ଵ
భ

ಾ೅೅ಷ೏಴భ
ା

భ
ಾ೅೅ಷ೏಴మ

቉ (2)

If the channels in a redundant system are identical, can formula 1 be used to cal-

culate MTTFd for both channels. If the channels differ, can the smallest MTTFd-value
be selected according to the worst case scenario or alternatively formula 2 [30] can be
used. Formula 2 balances the common MTTFd formed with two channels MTTFdC1 and
MTTFdC2. For example if MTTFdC1 is 3 years and MTTFdC2 is 100 years, the formula
computes the complete mean time between dangerous failures to 66 years. This is con-
siderably larger than the expected value of MTTFdC1 which is also selected in case if
worst case scenario methods were used.

3.1.2 Common cause failure

Common cause failure (CCF) is another factor used in determining performance level
and thus the level of system safety. CCF stands for failure of multiple components, de-
vices of safety functions due to failure of an interconnected single component, device or
safety function [36]. Factors usually leading to common cause failures are:

 shared processors, memories and other components,

 functional dependence,

 physical proximity with other hardware or

 failure of communication buses.

13

Standards ISO 13849 and EN 62061 include methods for determining CCF. In

these methods performing certain safety functions gives a certain score. The acquired
points are summed up to a total score, which define the amount of common cause fail-
ures (β) as percentage. [36, 37]

3.1.3 Diagnostic coverage

Preventing all the failures in a system requires a great amount of work, and may still
seem impossible. Dangerous events may however be avoided by recognizing the fail-
ures in time and performing certain actions to prevent accidents. Percentage of possible
failures covered is called diagnostic coverage (DC). Different performance levels re-
quire a certain percentage of failures to be covered by diagnostics system. Also failure
of the diagnostic system itself has to be taken into account. International standards ISO
13849 and EN 62061 give guidance on designing a functional diagnostic system. [36,
37]

3.1.4 Categories

Categories describe the architectural design requirements and the system’s resistance to
failures in five levels: B, 1, 2, 3 and 4. These categories are based on the safety catego-
ries of EN 954-1, the predecessor of ISO 13849. Their requirements for different cate-
gories are also almost identical. As EN 954-1 used categories to define safety per se,
ISO 13849 uses them only as a part of safety definition. [28, 30, 36]

The lowest level of safety is needed in categories B and 1. They concentrate
mainly on component choices and basic safety principles. Categories 2 to 4 have higher
requirements with component failure rates and they also require use of failure detection
and methods discussed earlier. Table 3.3 represents a comparison table between differ-
ent categories following a detailed list of the categories.

Table 3.3. Safety categories according to ISO 13849 [36].

Category Basic requirement
MTTFd
(a)

DC (%) Amount of CCF (%)

B
Adaptability to operating and
environmental conditions.

3 – 29 < 60 Not relevant.

1
Well tested safety principles
and components.

30 – 100 < 60 Not relevant.

2 Self‐diagnostics. 3 – 100 60 – 98
CCF must meet the require‐
ments of appendix F.

3 Tolerating a single failure. 3 – 100 60 – 98
CCF must meet the require‐
ments of appendix F.

4
Tolerating a single failure. No
undetected failures.

30 – 100
99 –
100

CCF must meet the require‐
ments of appendix F.

14

Category B The components used in the system have to endure the expected
operating and environmental conditions so that failures are very
unlikely to happen. ISO 13849-2 sets up a list of basic safety
principles that have to be practiced. These principles are actions
which should primarily be used to mitigate risks:

 Using proper materials based on temperature, load, corro-
sion, environment et cetera.

 Limiting force, torque or equivalent.
 Securing component position.
 Preventing unexpected start-ups.
 Simplicity, such as small component count or separating

safety equipment from other equipment.

System MTTFd must be between 3 to 29 years. One fault can eas-
ily lead to a system failure. [30, 36]

Category 1 In addition to practicing basic safety principles, the use of well-

tried safety principles and components is required. Failures are
unlikely to happen and will guide the system to a safe state.
MTTFd must be between 30 to 100 years. The system or subsys-
tem can still fail in case of a single failure. But because of well-
tried safety principles, a failure is less likely than in category B.
[36]

Category 2 In addition to practicing basic safety principles and use of well-

tried safety principles and components, self-diagnostics of safety
functions is run at least on start-up and before a failure. It is rec-
ommended to run diagnostics from time to time during program
run. The standard dictates that the testing frequency should be
100 times greater than the frequency of the need of safety func-
tions themselves. Diagnostics should cover 60 to 98 per cent of
the system. The amount of common cause failures must fulfil the
requirements of appendix F in the standard and MTTFd must be
between 3 to 100 years. [36]

Category 3 In addition to all of the requirements in category 2, category 3

machines should be able to execute safety measures even if there
was a single failure in the system. . This can be achieved by a
multi-channel (redundant) system, which means redundancy on
sensors, actuators and safety equipment. In addition single fail-
ures can be detected with a diagnostics system. [36]

Category 4 Compared to category 3 machines, category 4 machines should

detect all failures in the system. This is accomplished by redun-
dancy and continuous automatic observation of the system. Diag-
nostics should cover 99 to 100 per cent of the system. The
amount of common cause failures must fulfil the requirements of
appendix F in the standard and MTTFd must be between 30 to
100 years. [36]

15

3.1.5 Performance levels

The performance level is a discrete level that specifies the ability of the safety-related
parts of the control system to perform a safety function. They can be seen as description
of ability to recover from failures in expected situations. Levels are between PLa to
PLe, PLa being the least safe and level e being the most safe and the most demanding.

The required performance level (PLr) is result of risk assessment, which means
the amount of risk mitigation that the safety functions should carry out. The greater the
effect of risk mitigation must be, the higher the performance level should be. Annex A
in the first part of the standard (ISO 13849-1) introduces a method for defining the re-
quired performance level (Figure 3.1). Each risk acts as a starting point for this method.
The first step in assessing the PLr for a risk addresses consequences of the risks induced
by failures. The second step addresses the frequency and exposure time of such failures
and the last step addresses if the failure can be identified or avoided before an accident
could happen. As a result of this method a required performance level is acquired.

Severity of injury
S1 = Mild injury
S2 = Serious injury, including death

Frequency and/or exposure to a hazard
F1 = Seldom to less often and/or the exposure time is short
F2 = Frequent to continuous and/or the exposure time is long

Possibility of avoiding the hazard
P1 = Possible under specific conditions
P2 = Scarcely possible

Figure 3.1. Determining the required performance level (PLr) of a safety function [25,
30].

16

The performance level of components or safety functions can be defined using
all the techniques described in Chapters 3.1.1 - 3.1.4 with a method shown in Figure
3.2. The categories and the level of diagnostic coverage are on the horizontal axis and
reachable performance level is on the vertical axis. MTTFd is portrayed with different
shades of grey bars. This figure introduced by ISO 13849-1 doesn’t cover all the com-
binations of categories, DCs and MTTFds, and it is only an indicative figure which rep-
resents how different combinations and properties affect the PL. In the annex K of ISO
13849 is a table on which the Figure 3.2 is formed upon. The table in the annex includes
more precise values for determining PL based on average probabilities of dangerous
failures per hour.

Figure 3.2. Determination of performance level graphically [30].

3.2 Safety according to IEC 61508

The safety framework standard IEC 61508 handles safety issues from a functional safe-
ty point of view. Functional safety is determined by the standard as “part of the overall

safety relating to the equipment under control and the control system that depends on
the correct functioning of the electronic/electric/programmable electronic safety-related
systems and other risk reduction measures” [34]. Practically this means that the system
and equipment should work as intended according to its inputs even in case of a failure.
In more precise this concerns the control system of the system.

17

3.2.1 Safety Integrity Levels

IEC 61508 uses safety integrity levels (SIL) as a measure of safety. There are four lev-
els of integrity: SIL1 to SIL4. SIL1 is the least safe and demanding, and SIL4 is the
most demanding on the safety requirements thus making it the safest level. Expenditures
rise drastically towards the safer levels due to redundant and special hardware, more
comprehensive software testing and increased requirements on design processes. Ac-
cording to interviews made for local mobile machinery manufacturers the expenses and
requirements for a SIL4-level system are so high that it is used less in the industry and
is considered too demanding for machine automation. The application standard for ma-
chine automation addresses only levels SIL1 to SIL3.

The calculation methods for determining the safety integrity level for automation
systems are quite the same as for performance levels in ISO 13849. The failures fre-
quencies for components and subsystems are calculated, and the required amount of risk
reduction for the function is evaluated. The unit for a failure frequency is called the
probability of dangerous failure per hour (PFHd). As for the MTTFd, the component and
system manufacturers may announce the values of PFHd in their product documents.
Evaluating the failure frequency requires quite complex calculus which should take the
intended usage time (TM) into account to ensure also long term reliability. [34, 36]

Table 3.4. Comparison between SIL and PL [36].

SIL level
Performance
level

Probability of
dangerous failure
PFHD

Years of use before
failure (approx.)

‐ a 10‐5 … 10‐4 1 … 10

1 b 3 ∙ 10‐6.... 10‐5 10 … 40

1 c 10‐6 … 3 ∙ 10‐5 40 … 100

2 d 10‐7 … 10‐6 100 … 1000

3 e 10‐8 … 10‐7 1 000 … 1 0000

4 ‐ 10‐9 … 10‐8 10 000 … 100 000

 As it is for performance levels, the process or a complete system cannot be as-
signed a safety integrity level. SIL is a measure for safety functions. It can be used to
determine the level of reliability in case of a system failure. If a product is equipped
with a component labelled as SIL# it might not mean that the complete system and its
safety equipment meet the requirements of SIL#. Therefore it is suggested to use terms
like SIL claim limit and SIL capability introduced in EN 62061 to distinguish between
meanings of different types of SIL. [8]

18

SIL claim limit Main hardware parts such as input (sensors), control system (PLC
or relays) and output (actuators) on safety functions are usually
interconnected in serial. A claim limit for a safety function means
that the SIL definition is limited to the level of the component or
subsystem of the lowest SIL [8]. A chain is as strong as its weak-
est link. Figure 3.3 depicts a chain of hardware which consists of
SIL2 components and it reaches SIL level two. However if a sin-
gle component for example sensor A2 or actuator B would be
SIL1 and the other components remained the same, would the ar-
chitecture reach only SIL1 according to the lowest level rating.
[32]

Figure 3.3. Hardware architecture for a safety function with two inputs and one output
implemented with redundant SIL2 -compliant system [32].

SIL capability Maximum SIL for a system which can be reached in relation to

architectural constraints and systematic safety integrity [23]. A
component rated with a certain SIL capability is capable of form-
ing a safety function reaching at most the same safety integrity
level as the components SIL capability. For example a component
certified to SIL2 can be used in forming a safety function mitigat-
ing risk worth of SIL1 or SIL2. The second edition of IEC 61508
states however that two redundant lower level components can
form a higher integrity level component. For example two SIL2
devices connected in parallel form a SIL3 component. [32]

19

To reach a certain safety integrity level, the design process must take into con-
sideration all the aspects and influences of system design, process design, mechanical
design, component selection, safety principles, architecture, operations and control sys-
tem design. Overall safety consists of many issues and requires collaboration between
several departments. [8]

3.3 Risk analysis studies

A risk analysis is required in an early phase of safety-related hardware and software
projects. Analyses are run to identify as many hazardous events in the system as possi-
ble and to form each event a risk mitigating safety function. Analysis methods can be
based on documenting and mitigating already known risks or to reveal new risks
through analysing the whole system one part at a time. The risk assessments can be di-
vided roughly into four steps according to ISO 14121 [31, 40]:

 Define the machine’s limits.

 Identify the hazards, dangerous situations and events.

 Assess the severity of dangerous event (mere bruises - need for sick leave - loss
of limb or death).

 Assess the probability of an accident due to a dangerous event.

Table 3.5. Software assessment techniques according to EN 50128 [33].

Technique/measure SWSIL0 SWSIL1 SWSIL2 SWSIL3 SWSIL4

Cause consequence diagrams R R R R R

Event tree analysis ‐ R R R R

Fault tree analysis R R R HR HR

Software error effect analysis ‐ R R HR HR

Common cause failure analysis ‐ R R HR HR

Table 3.5 presents requirements set by EN 50128 to its five software safety in-

tegrity levels (SWSIL0-4). ‘R’ stands for “recommended” and ‘HR’ for “highly recom-
mended”. IEC 61508-3 has a similar list of recommendations, but it doesn’t prefer any
method to other within its different safety integrity levels. In the following subchapters
three different risk analysis methods based on different basic analysis principles are
introduced. These methods represent typical risk analysis method types, but are only a
few among many other methods.

3.3.1 HAZOP

Hazard and Operability Studies (HAZOP) is an analysis method for identifying hazard-
ous events based on the expertise of analysis attendees. The method, described in inter-
national standard IEC 61882, tries to identify all the relevant and possible hazardous
events and their causes, assess the severity of those events and plan the risk mitigation

20

or elimination methods. A group of five to seven people attend meetings in which the
system is being analysed. The group should consist of people from different back-
grounds: safety experts, software and machinery engineers, end-users and other person-
nel who may have something to contribute to the subject. It is suggested in United
Kingdom Ministry of Defence standard 00-58 [44] that the attending personnel at least
partly changes from meeting to meeting to give a wider perspective to the assessment.
Up to 20 different actors can attend the meeting during the analysis process, but the
number of attendees for a single meeting shouldn’t surpass ten people to maintain effi-
ciency. HAZOP can thus be described as a brainstorming technique.

The system under inspection is analysed according to bottom-up procedure,
which means that the process is started from single blocks or components. Each compo-
nent or factor is being analysed for all possible failures or deviances from its normal
functionality. Types of these deviances are determined with specific guide words. Table
3.6 list all the HAZOP guide words and their descriptions. All of the deviances are col-
lected into a single tabular analysis in which the causes, their consequences, safeguards
that reduce deviation likelihood or severity and the required measures for preventing
these deviances are listed. A single deviance can have multiple causes and measure sug-
gestions, so the analysis can get quite large and laborious when executed in great detail.

Table 3.6. HAZOP guide words [44].
No / not This is the complete negation of the design intention. No part of

the intention is achieved and nothing else happens.
More This is a quantitative increase.

Less This is a quantitative decrease.

As well as All the design intention is achieved together with additions.

Part of Only some of the design intention is achieved.

Reverse The logical opposite of the intention is achieved.

Other than Complete substitution, where no part of the original intention is
achieved but something quite different happens.

Early Something happens earlier than expected relative to clock time.

Late Something happens later than expected relative to clock time.

Before Something happens before it is expected, relating to order or se-
quence.

After Something happens after it is expected, relating to order or se-
quence.

21

It is worth carrying out a HAZOP analysis in the early phases of the project to
avoid unnecessary operations and repairs. United Kingdom Ministry of Defence stand-
ard 00-58 suggests that analysis is carried out on different phases and multiple times
during the design process [44]. Analysis can also be performed on multiple levels.
High-to-low level analysing can be useful while testing large systems. The system is
first analysed on a higher level, when the most detailed levels are subsystems. Each sub-
system is analysed further with more detailed analyses if considered necessary. Limited
by the risks of hazardous events it is worth balancing between laboriousness and detail.
It is not worth analysing irrelevant and lower severity events in too much detail. Also
the use of other analyses, such as use of top-down principle method FTA described in
Chapter 3.3.3 is suggested to be used with HAZOP to achieve a wide perspective on the
system. [44]

3.3.2 FMEA

Failure Mode and Effect Analysis (FMEA) is an analysis method described in three
standards: IEC 60812, MIL-STD-1629A and SAE J-1739. This method assesses the
effects of component based failures on system safety and functionality on a bottom-up
based technique. The primary system type for analysis is non-programmable systems
[20], but software-based systems have been developed their own version of the method
named Software Failure Mode and Effect analysis (SWFMEA).

The analysis process starts by selecting a component which failure types and ef-
fects of a failure on the system are assessed. The component is come up with two to
three different ways it can fail. Each of these failures is added two to three consequenc-
es or effects on the system. Also methods for avoiding the failures, their probabilities,
severities and other relevant information are listed. All of this information is collected
into a tabular report, which usually consists of sixteen columns. Eleven of these address
the FMEA process and five addresses action results. Table 3.7 list the fields of the re-
port.

Table 3.7. FMEA worksheet column headings [6].

FMEA process Action results

Item and Function Action Taken
Potential Failure Mode Severity
Potential Effect(s) of Failure Occurrence
Severity Detection
Potential Cause(s) of Failure Risk Priority Number
Occurrence
Current Controls
Detection
Risk Priority Number
Recommended Action
Responsibility and Target Completion
Date

22

With this systematic method it is easier to detect random failures and more fail-

ures altogether than with top-down methods. On the other hand, the analysis can get
quite laborious due to all the relevant components in the system have to be analysed.
Large systems should consider modules or subsystems as the lowest level components
to mitigate the analysis workload needed. Also balancing between the more critical and
non-critical components (according to the scope selected) will enhance the efficiency of
the analysis and save time. [15, 20]

FMEA has also its weaknesses: it doesn’t detect human errors, sequential errors
or design failures. Because the analysis is based on analysing a single component, it
cannot either detect common cause failures. Therefore it is worth using the method with
other analysis methods, making it possible to analyse the system with multiple points of
view. [15, 20]

FMEA-based SWFMEA addresses analysing possible software failures that can
lead into a system failure. The main phases in the analysis process are to define the crit-
icality of the failure and define the measures to avoid it. For example the failure can be
detected with diagnostics or tests or the failure cannot occur due to program structure.
Hardware based failure analysis is easier to implement than a software based analysis.
Component failure rates, for example for resistors of relays are well known, the parts
fail due to aging and wear and failure data is available based on experience, manufac-
turer information and reliability tests are publicly available. Software modules on the
other hand do not literally fail, they only display incorrect behaviour and depend on the
dynamic behaviour of the application. The hardest part in SWFMEA is to define differ-
ent failure modes. Literature describes different definitions, but no well-established
modes are settled on. Ristord and Esmenjaud suggest following failure modes [27]:

 the operating system stops

 the program stops with a clear message

 the program stops without clear message

 the program runs, producing obviously wrong results

 the program runs, producing apparently correct but in fact wrong results.

Goddard states that two types of SWFMEA can be defined [6]. System software
FMEA concentrates on the system on a higher level. It is executed on an early phase to
analyse the efficiency of the architecture. Detailed software FMEA could be compared
to component level based FMEA. It is quite laborious and the results can be attained in
a late state of the project. This type of analysis is often cost effective only for systems
with limited hardware integrity. Goddard states that function block level analysis would
be a proper level for inspection, but report Failure mode and effects analysis of soft-
ware-based automation systems from Finnish radiation and nuclear safety authority
STUK [6] finds this unfeasible for it creates extensive and complicated analysis and

23

function block failure modes are not known. Ristord and Esmenjaud however suggest
that only application (function) level should be analysed [27].

According to the STUK report [6] SWFMEA method is hard to implement, but
is useful in the early phases of the project, because it reveals weaknesses and saves from
further development or repair needs. The analyses require knowledge of the software
from the analysers so the analysis group might also be harder to select in case only a
few people take part in implementing the code. As with normal FMEA, also the use of
other analysis methods is suggested to reveal other types of failures and consequences.

3.3.3 FTA

Failure tree analysis (FTA) is a hazard analysis method described in IEC 61025 – Fault
Tree Analysis. It is based on analysing failures and causes that lead to known hazardous
events. The method differs from the pre-mentioned methods with its execution order.
The analysis begins from the known hazardous event or undesired event and proceeds
according to top-down principles towards the causes or failed components which caused
the event. This method is less laborious than bottom-up methods for it analyses only
undesired events that are already known. Therefore it is useful for complex systems and
systems comprising of great amount of components [20]. Top-down methods can also
be easily implemented with V-model based process models.

As HAZOP and FMEA base their analysis on failure of single components, fail-
ure tree analysis works on a higher level taking also human factors, common cause fail-
ures, non-functional errors and sequences that may lead to an undesired event into ac-
count. It however analyses only known failures and it may not detect all previously
known failures as bottom-up method would. This method is thus suggested to be used
with other methods, such as FMEA or preliminary hazard analysis (PHA), in order to
increase the amount of found hazardous events or failures.

As a result from failure tree analysis tree-like diagrams are created. The analysis
process starts from selecting an undesired or hazardous event such as user injuring his
fingers between moving paper mill rolls that should be at a standstill. Only one event
can be appointed to a diagram. Inspection resolution and the scope in which the system
is analysed are chosen. These selections affect the step sizes and the type of events that
are recorded into the diagram. The selected event is divided into sub-events that are the
causes that lead to the main event. These events are connected to the main event with
logic gates such as AND, OR or XOR. Each of these events is divided into sub-events
in a similar manner. This is repeated until the lowest level events cannot be divided an-
ymore within the scope and resolution of the analysis. This formed diagram can be used
to assess the effect of single events or failures on the undesired event and prioritize risk
mitigation methods based on the severity of the events. Each event can be appointed
severity and a probability of occurrence. These sub-probabilities can be used to calcu-
late probability for leading to the undesired or hazardous event due to a precise sub-
event. [15, 20]

24

3.4 Certification

Certification is a way to prove that the functionality of a device, service or process is in
correspondence with some national requirement or law or that these services reach a
certain level of quality. Certification is generally carried out by an independent, national
body against usually national or international standards [34]. In Europe these organiza-
tions are for example TÜV - Technischer Überwachungs-Verein (Technical Inspection
Association) and EASA - European Aviation Safety Agency.

Considering safety, a system can be verified to different levels of safety integrity
defined by to ISO 13849 and IEC 61508. A device can however be certified also to an
application standard according to its type. The certification process ensures that differ-
ent process phases have been executed according to requirements presented by law,
either by strictly following the guidance given by safety standards or otherwise meeting
the requirements. In case of possible deficiencies found by the certification body, should
these be corrected and re-inspected with all other affected parts. VTT recommends co-
operation with a certification body throughout all project phases to gain useful guidance
before even making deficiencies that may lead to extra certification inspections. This
kind of co-operation will cost more on the project implementation phase, but will pay
itself back during the certification and possible modification phases.

For a system to reach a certain SIL- or PL certificate, all its safety functions
should reach an appropriate safety integrity or performance level. For a safety function
to reach that level, all its components should have an appropriate SIL claim limit ac-
cording to the desirable safety integrity level (taking redundancy principles into ac-
count) [38]. This concerns all sensors, actuators, communication and energy transmis-
sion channels, drivers and software. A separate software application doesn’t have a safe-
ty integrity level itself, but integrating it into a system makes it a part of a safety func-
tion thus making it possible to define it a SIL. The reachable safety integrity level is
affected by the conditions of design, implementation and verification phases, its soft-
ware characteristics and other properties defined by safety standards.

The significance of researching certification of software modules and compo-
nents has increased with the growth of automation software applications. If some gener-
ic application modules implementing safety functions could be certified for common
use, the cost of certificating a complete system would decrease and the value of re-
usable software components increase significantly. PSafeCer-project has been research-
ing on differences between traditional top-down de-compositional approaches forming
modules and bottom-up compositional approaches with pre-certified components [43].
By forming the base of safety-related software application from certified modules
would enable great savings in software development expenses.

Even if the software application could be formed with certified software mod-
ules, it still needs to be validated according to safety standards. This demand arises from
the requirement that the certified module can only be used in precisely the same func-
tion it is certified to. The linking of different blocks and the validity of their parameters

25

need to be verified even if the inner implementation of the module was already certified.
International standards ISO 13849-1 and EN 62061 give guidance on validation of
software modules. [30, 32]

On top of the used software and hardware IEC 61508-7 recommends that the
tools used in programming, simulation and design processes should also be certified.
Tools should be certified in order to have some level of confidence regarding the cor-
rectness of their outputs. Translators are usually certified according to the programming
language standards, not so much according to their safety functionalities. [34]

An interview held for three large Finnish OEM manufacturers of automated mo-
bile machinery brought up that safety certificates on this branch have mostly only sales
promotional value. The customers don’t require a safety certificate given by an official
body and often mere declaration of conformity given by the manufacturer is sufficient.
On top of this the high requirements of safety standards increase significantly the design
expenses and thus the product price. The present economic state has led to a situation
that the lowest grade units have the greatest sales making it too expensive for manufac-
turers to produce or develop more expensive models. However the interest in research-
ing safety issues has risen and the situation may change in coming years.

26

 IMPACT OF SOFTWARE ENVIRONMENT 4

Software environment in this aspect is the environment in which the machine control
application is running. It can be Linux or Windows-based operating system, hardware-
specific bare-bone or the system may comprise of all of these in the same time in a col-
lection of virtual operating systems. The most important issue in selecting an operating
system for machine control application is to ensure the stability of the system. Crashing
operating system may leave the system in an unsafe state unless the control is designed
in a way that the loss of control directs the system to a safe state or performs a safe run-
down. This is why all the safety features should be run on as safe a system as possible.

The most significant negative effect of an unsafe operating system is that it rep-
resents a great potential CCF source. A single malfunctioning operating or management
system may disable machine control and safety systems simultaneously if they are not
running on separate independent systems. IEC 61508-3 annex F lists different methods
for achieving independence between different modules on a single hardware. The tech-
niques can be implemented to elements with difference between systematic capability,
elements which contribute to the same safety function and software and elements con-
tributing to safety function and non-safety-related software on same hardware. [34]

IEC 61508 requires that independence between safety-related elements should
be achieved and be demonstrable in spatial and temporal domains. Spatial independence
means that each element is responsible only for its own data. An element should not be
able to change data in another element. Especially non-safety-related elements should
not be able to interfere with safety elements. Methods for reaching spatial independence
are as follows [34]:

 Use of hardware memory protection between different elements.

 Use of an operating system which reserves each element its own virtual memory
space which is supported by hardware memory protection.

 Use of design, code and analysis methods which can demonstrate that elements
do not use common memory banks, which could lead to unintended overwriting
of data.

 Data hierarchy which protects data of a higher integrity element to be overwrit-
ten by a lower integrity element.

Ideally spatial independence means that elements shouldn’t communicate with

each other. Unidirectional interfaces such as messages and pipes should be preferred to
use of shared memory. Temporal independence requires that an element should not
cause another element to function incorrectly by taking too much available processor

27

time or locking another common resource of some kind. Temporal independence can be
reached by [34]:

 Use of deterministic scheduling methods such as cyclic scheduling algorithms or
time triggered architectures.

 Use of priority based scheduling implemented by a real-time executive with a
means of avoiding priority inversion.

 Time fences which will terminate the execution of a non-safety element if it
over-runs its allotted execution time or deadline.

 An operating system which guarantees that no process can be starved of proces-
sor time, for example by means of time slicing. However hard real time cannot
be implemented.

 Different operating systems implementing virtualization layers exist on the mar-
ket. The main principle in these systems is the restriction of operating systems (OS),
application programming interfaces (API) or runtime environments (RTE) on separate
spatially independent virtual memory areas. Virtualization layers can also enable tem-
poral independence by for example reserving a specific amount of processor time for
each layer. This enables running several independent operating systems or run time ap-
plications simultaneously on single hardware. In systems implementing only one operat-
ing system and no virtualization properties the system need to be certified according to a
single safety integrity level including parts that don’t need to implement any safety fea-
tures. This may be quite time consuming and laborious due to complex monolithic ker-
nels that support all the properties required by the used components. Through virtualiza-
tion the amount of certification work can be reduced by using smaller and simpler ker-
nels tailored for different virtualization layers. Now only the modules implementing
safety-related functionality need to be certified. [7, 42]

One manufacturer of virtualization solutions is Green Hills Software, which de-
velops real time operating systems and embedded development tools. Green Hills’
product INTEGRITY RTOS is a real-time operating system (RTOS) which enables use
of multiple operating systems on single processor and peripheral hardware. INTEGRI-
TY RTOS can separate main program from secondary functions as video, audio, inter-
net connection, duplicated control applications or safety critical applications. Separating
functionally different elements completely from each other clarifies the design process
by eliminating unintended use of common memory banks for different elements. [7]

Memory areas and devices can be fixed or dynamically adjusted during runtime
to different layers which can be used to reserve memory areas for different functions.
Each layer is monitored by the main software for malfunction and changes in perfor-
mance. These diagnostics enable restarting a failed operating system without affecting
the other layers; however use of safety certified operating systems are required as the
base of safety-critical applications. Temporal independence can be reached by binding
different cores or multiple cores simultaneously to a single layer. INTEGRITY RTOS

28

supports multicore processors and hyper threading which ensures that each element can
have full processor time every time needed. [7]

Another manufacturer in the virtualization RTOS business is SYSGO AG with
its PikeOS concept. It combines real-time operating system, virtualization platform, and
Eclipse-based integrated development environment (IDE) for embedded systems
[42].The concept is validated according to safety standards such as DO-178B, EN
50128, IEC 62304, IEC 61508, ISO 26262 and IEC 61513 and allows security certifica-
tion according to the Common Criteria (CC) standard up to EAL level 7. The virtualiza-
tion architecture is similar to the architecture used by the Green Hills solution. The par-
titioning concept (Figure 4.1) is described in the system partitioning and scheduling
specification ARINC 653 commonly required in safety-critical systems in the avionics
industry. [42]

Figure 4.1. PikeOS partition according to ARINC 653 [42].

 Each partition can have its own OS, API or RTE controlled by its own micro-
kernel provided by PikeOS. These micro-kernels provide only basic functionalities
making the partitions (virtualization layers) easily customizable and easy to certify ac-
cording to safety standards. Each virtualization layer receives its own system resources
such as memory, I/O devices, CPU-time and such. These resources can also be divided
into several subsets to completely separate the layers from each other making it impos-
sible for the layers to affect each other. The concept includes a health monitoring sys-
tem which can be used to detect address violations, timing violations and illegal instruc-
tions and handle these according to system configuration. PikeOS comes with its own
Eclipse-based integrated development environment CODEO, which can be used for
system configuration, target monitoring and timing analyses. [42]

These virtualization solutions present different software-based redundant sys-
tems, but they also have their weak spots. As they may utilize multicore processors and
can divide memory banks for different applications, they still will be using the same
physical hardware. The hardware can use a single memory element and power source,

29

same motherboard and other components which can fail the complete system if mal-
functioned. At the moment bare-bone safety PLCs have all their components duplicated
for survival over a failure of a single component. These virtualization layer solutions are
however SIL3 capable as a component.

30

 COMMUNICATION ISSUES 5

Communication technology in machine automation has moved from multiple separated
analogous channels to single or double channel bus and Ethernet systems. In the older
analogous communication systems the messages were transmitted in separate cables as
voltage or current messages, which requires great amounts of wiring even in relatively
simple devices. Bus and Ethernet communication systems are based on digital technolo-
gy in which the system signals are implemented into standard message frames defined
by a certain communication protocol. These message frames are transmitted into a net-
work which single transmission channel can include messages from multiple devices.
With this kind of communication network can great savings be reached in the amount of
required cabling, device weight and in larger devices also in communication system
costs. Also the risk of cable breaks diminishes and the serviceability of the communica-
tion cables gets easier. [40]

The amount of different bus- and Ethernet protocols is vast, and no single tech-
nology has been standardized for common industrial use. This is due to the fact that in
the early days of digital industrial communication methods several big companies start-
ed to develop their own standards and competition has led to a great variety of different
techniques. Beside different companies, also different industrial branches have their
own protocols. [40]

Compared to old analogue technologies, digital network traffic can however lose
individual messages or even the complete connection after a certain failure threshold
due to different communication failures or disturbances if poorly implemented. Differ-
ent failure types are presented in IEC 61508-2, IEC 62280-2, IEC 61784-3 and EN
61000-series standards. In book Sichere Bussysteme in der Automation [26] authors
Reinert and Schäfer divide typical network failure modes into three classes: failures
independent on human actions (failures 1 to 7 in Table 5.1), failures dependent on hu-
man actions (failures 8 and 9 in Table 5.1) and failures directly or indirectly dependent
on human actions (failure 10 in Table 5.1). [26]

 31

Table 5.1. Typical network faults [26].

1. crosstalk 6. aging
2. broken cable 7. temperature
3. EMC failure 8. human failure
4. Stochastic failure 9. wiring failure by human
5. Stuck at failure 10. transmission of non-authorized messages

Likelihood of failures dependent on human actions can be affected by proper

training and instructions, and transmission of non-authorized messages into the network
can partly be prevented with use of security principles like user identification. Failures 1
to 7 can be affected with proper shielding of devices and cabling, for which EU di-
rective 2004/108/EY: Sähkömagneettinen yhteensopivuus (Electromagnetic Compatibil-
ity) lays Europe Union -wide requirements. When the network-based failures have been
mitigated to an acceptable level, the network traffic itself can inflict different failure
modes. To mitigate the risks of these failures the methods provided by safety communi-
cation protocols are presented.

Tapio Siirilä states in his book Koneturvallisuuden perusteet [37] that if safety-
related information is to be transmitted on a bus, the bus technology needs to be a certi-
fied safety bus, a normal bus isn’t reliable enough [37]. Matti Sundqvist mentions in his
training material [41] that SIL3 is a satisfactory safety integrity level for communica-
tion. The safety inducing effect of safety communication protocols is based on ensuring
the receiving of messages and verifying the message information. These methods are
used to avoid systematic, continuous and thus easily detectable errors and detect sto-
chastic, random errors [15].

Safety bus technology can be an independent network consisting only of safety-
related messages or a safety add-on implemented on top of a normal communication
protocol [40, 41]. Safety protocols based on add-ons work as a “white channel” imple-
mentation on ISO OSI level 7 on top of standard bus protocol and thus do not require
separate cabling or affect the standard protocol. White channel implementation means
software implementable solution, and black channel symbolizes the communication
equipment hardware. White channel solutions are compatible with standard bus tech-
nologies and many protocols also allow simultaneous transmission of non-safe and safe-
ty-related messages in the same network [15]. To enable simultaneous transmission,
different types of messages are diversified from each other to enable different message
handling procedures.

Figure 5.1. Generic safety-related message format [15].

 32

Safety-related messages and all their verification method fields are embedded into the
data payload field of standard bus messages. Figure 5.1 depicts a generic safety-related
message format in which the message is duplicated into two messages. Embedded data
is inverted in the second message and the messages are crosschecked in the receiving
end. This type of messaging is implemented in for example CANopen Safety. Listed
below are the most common verification methods used in safety-related messages in bus
protocols [15]:

ID ID identifies each message with a unique number. It is

used to detect insertion of message from a faulty node and
identify corresponding redundant messages.

Safe address A special sender address is used to identify messages sent

from a known and safe message producer to prevent
transmission of non-authorized messages. Safe address
must be known by the consumer; otherwise the data will
not be processed.

Timestamp A message can be delayed and therefore outdated if the

time between sending and receiving the message gets too
long. Adding a timestamp to the safety-related message
can be used to detect delay caused by congestion, storing
of messages by routers or wrong routing. It can also be
used to detect wrong sequence and repetition of messages.
Successful use of timestamps requires synchronization
among the involved nodes.

Safety-related data Data field includes the embedded safety-related sensor,

actuator or other data.

Cyclic redundancy check Before transmission, the messages are given a verification

value which is calculated from the polynomial division of
the message’s contents. The check value is compared in
the receiving end with the data to ensure data is uncor-
rupted. Cyclic redundancy check (CRC) can be used to
detect stochastic faults like a bit fault leading to a corrup-
tion of the message.

Redundancy (Chapter 6.1) is featured also in the communication systems. It can

be realized with a single safety-related controller implementing digital redundancy, or
with dual controllers implementing physical redundancy. The communication medium

 33

can also be single- or dual channel implementing MooN-architecture (Chapter 6.1) for
example two bus cables or two wireless frequencies.

Digital redundancy Duplicating each message, verifying their CRCs and

comparing their data together enables digital redundancy.
This reduces the risk of message corruption to a mini-
mum. [40]

Physical redundancy Physical redundancy is reached by processing duplicated

messages by two safe controllers. Each field is verified
and cross-compared between the controllers. Only if both
controllers get the same positive result, the message is
processed. Physical redundancy is used to avoid hard-
ware-based systematic communication failures. [40]

If the amount of information to be transmitted through these safety messages is

large, may the small size of message capacity lead to increased traffic on the channel.
Because some safety protocols duplicate messages on a single channel, the risk of chan-
nel congestion rises [40]. This may lead to problems on systems requiring real time
properties unless the state of the bus is monitored or the channel bandwidth is scaled big
enough in the first place. This aspect needs to be taken into consideration especially if
an old system is to be retrofitted with a safety bus.

Guidance on designing and using safety-related communication protocols can be
found on IEC 62513: Safety of machinery - Guidelines for the use of communication
systems in safety-related applications. Safety bus architecture, its failure types and
methods for detecting and removing communication errors can be found on IEC 62280-
1: Railway applications - Communication, signalling and processing systems - Part 1:
Safety-related communication in closed transmission systems and IEC 50159-2: Rail-
way applications - Communication, signalling and processing systems - Part 2: Safety
related communication in open transmission systems.

5.1 Selection criteria

IEC 62513: Safety of machinery - Guidelines for the use of communication systems in
safety-related applications guides system designer in choosing and defining a safe
communication system. Before digging deeper into different communication protocols it
is worth getting to know your own device and its requirements for communication.

The used equipment states requirements for the bus with the amount of connect-
able nodes. While scaling the system the present needs should be taken into account, but
also consider possible future changes on the assembly. Also operating environment is-
sues, such as environment and device temperatures, vibrations, shocks and possible

 34

electromagnetic interferences from nearby cabling affect the physical requirements on
the bus to be selected. [40]

Bus speed can be critical for the system to work safely. Equipment requiring real
time properties or fast reaction may require time triggered protocols, which all bus tech-
nologies do not support. The bus may also overload because of too much traffic on the
channel, when even the most critical messages can be received too late and thus cause a
hazardous event. In this case buses with higher bandwidth, different network topologies
or protocols that support prioritizing critical messages at non-critical messages’ expense
should be considered. [40]

When setting requirements for bus reliability it should be determined should the
bus be able to survive losing a single message. Reliability can be increased by duplicat-
ing equipment or by using two or more channels. Reliability is also inversely propor-
tional to communication cable width. This can be influenced by shortening the transfer
lines or lowering the bus bandwidth thus diminishing the effect of disturbances on the
quality of the transmission. [40]

Some safety buses permit standard communication messages to be sent simulta-
neously on the same channel. Restricting safety-related messages from non-safety-
related messages decreases risk of channel overload and some safety-related bus proto-
cols use separate channels to ensure sufficient bandwidth for critical messages. It is also
advisable to consider security issues if unauthorized personnel or equipment may con-
nect to the bus intentionally or accidentally to listen or modify its traffic. This is espe-
cially important on wireless protocols. [40]

5.2 CAN

Controller Area Network (CAN) protocols feature a few different safety extensions.
They differ in their relation to normal communication, redundancy and restrictions in
compatible hardware.

CANopen Safety is a safety add-on for CANopen networks from CAN in Auto-
mation (CiA) for the use of mobile machinery. It is based on using a new message type:
SRDO (safety-related data object), which consists of two CAN-messages that are sent
periodically. One of the messages is inverted and timestamp and CRC are used to de-
termine the correctness of the messages. The framework allows using non-safety-related
messages in the same network. [40]

Another approach for CANopen is used in SafetyBUS p developed by Safety
Network International e.V. It sends messages only when their state has changed thus
decreasing bus traffic. The protocol is open for different hardware but limits the amount
of different connection to 64 nodes. The messages aren’t duplicated and the channel
isn’t redundant but the bus is physically and logically redundant from normal communi-
cation traffic. [40]

 35

A third approach is presented by EsaLAN. The protocol based on CAN bus is re-
stricted to only one manufacturer equipment and limits the amount of connections to 7
nodes. The protocol is mainly used in machine control and robotics. Safety is reached
by limited communication traffic and redundant and divergent structure and internal
cross-reference. The protocol is also applicable with wireless systems.

5.3 Ethernet

One might think Ethernet solutions aren’t suitable for machine and real time process
control systems due to their nondeterministic nature. It is true that traffic through stand-
ard-Ethernet and TCP/IP connections isn’t deterministic. One can determine an address,
but not the time of arrival or route of the message. Therefore it is not reliable per se as a
fast and reliable communication channel [36]. The response times can be up to 100ms
[40]. Table 5.3 presented in Teollisuusautomaation tiedonsiirtoliikenne: Turvaväylät
defines suitable reaction time requirements for machine control and other control con-
nections. These requirements are significantly smaller than the response time reachable
with standard Ethernet solutions.

Table 5.2. Reaction time requirements [40].

Movement
control

Process
control HMI

Production
management

Delay or update interval < 1 ms 100 ms < 1 s 1s

delay variation 1 μs 5 ms (predictable)

One of the most important requirements to meet using safety versions of com-

mon industrial grade Ethernet solutions is to reach these response time requirements.
The safety protocols are mainly built on top of industrial Ethernet solutions. The im-
plementations are white channel solutions, which mean that standard industrial hard-
ware can be used and only the software layer realizes the safety functionalities. Howev-
er a widely standardized hardware base and easy connectivity to internet may raise seri-
ous security issues, which also have to be dealt with. The protocols may feature follow-
ing properties to enable deterministic behaviour [40]:

 Transmission timing limits.

 Detection of wrong message arrival time.

 Detection of wrong message addresses.

 Watchdog.

 More precise self-diagnostics.

 Starting safety functions after detecting failures.

Different real time implementations usually divide the usable bandwidth for ma-
chine control and other traffic such as diagnostics, data logging or internet connectivity.

 36

Teollisuusautomaation tiedonsiirtoliikenne: Turvaväylät by Matti Sundquist list four
different methods for diminishing system response times [40]:

1. Using smaller networks with less equipment decreases the response time up to
20ms. 90-100% of the complete bandwidth is available for other traffic.

2. Using UDP instead of TCP connection enables response times of approximately
10ms. 90-100% of the complete bandwidth is available for other traffic.

3. Using mac addresses instead of IP-addresses enables response time of 1ms. 90-
100% of the complete bandwidth is available for other traffic.

4. A special OSI model 2nd layer implementation on each of the equipment enables
machine control eligible 0,2ms response time, but only 1% of bandwidth can be
used for normal TCP/IP traffic thus slowing additional logging or monitoring
capabilities.

As the amount protocols on top of industrial Ethernet is vast, so is the availabil-

ity of different safety protocols. EtherCAT protocol has SIL3 certified Safety-over-
EtherCAT, white channel –based CIP Safety has been SIL3 certified for Ethernet/IP and
Sercos III protocols and PROFIsafe is a SIL3 option for safety PLCs or normal PLCs
with combined safety features running PROFInet.

5.4 Wireless

Wireless control of machinery can be implemented with various methods: radio signal,
infrared signal, micro waves, ultrasound et cetera. However the most common medium,
radio link is also the most prone to bit errors according to Tapio Siirilä in Figure 5.2.
These errors may be due to bad weather, strong electromagnetic disturbances, steel
structures interfering signal transmission or other devices transmitting on the same fre-
quency. These disturbances decrease device availability, induce delay in transmission,
limit the transmission range or can overload the whole channel if multiple devices use
the same channel. [36, 40]

 37

Figure 5.2. Probabilities of bit errors depending on the communication medium [36].

Most of these issues relate mainly to availability, but can also be connected to
system safety and security. Safety features are mainly realised using the same methods
as in wired safety protocols, but the system has to be more aware of its connectivity to
the external controller unit. It has to react to signal loss or failure to receive a message
in a safe way. As the communication medium is as prone to bit errors as it is, proper
methods for detecting faulty messages and messages with faulty addresses have to be
implemented [10].

System security features should be taken into account to prevent illegal connec-
tions to the machine. These connections may come from intentional intrusion to system
or from other devices communicating on the same frequency. Wireless machines with-
out any user identification can accidentally receive messages meant for other machinery
which may lead to unforeseen consequences. User identification can be realised by al-
lowing connections only from previously listed safe addresses. [10]

International standards give some guidance on safety issues related to wireless
applications. EN 50159 describes different failure types and defensive methods to pre-
vent these failures, IEC 61508 can be used to determine the required SIL level of the
planned connection type. EN 60204 includes methods for revealing different connection
failures.

 38

 IMPACT OF SAFETY REQUIREMENTS ON 6
DESIGN PROCESS

This chapter handles various issues related to the development process of safe software
applications. Different redundant architectures, lifecycle and process models, program-
ming languages and coding rules are introduced and explained.

6.1 Hardware safety

Most of the failures in machine automation systems come from components which have
moving parts, or are interconnected with the moving parts of the machinery. Table
6.1states that up to 78% of total amount of failures occur in sensors and actuators, and
the rest occur in stationary equipment such as wiring or processing units.

Table 6.1. Division of failures on machine automation components [36].

Component
Share of all safety-
related failures (%)

 sensors 48

 actuators 30

 I/O 15

 wiring 5

 CPU 2

While selecting safety equipment for a safety-related system, components of
small failure frequency and a reliable manufacturer should be favoured. It is however
important to take the aimed level of safety into consideration. The SIL claim limit is
determined by the lowest level component as stated in Chapter 3.2. Because of the high-
er price of higher level components rise according to their SIL capability there’s no
point in using a component if it doesn’t contribute to the overall safety. As it is stated in
ISO 13849, the requirements of category B functions should take the operating envi-
ronment and conditions into account in component selection process. The components
should function reliably in all the temperatures and moisture levels the machine is
meant to function in. The positioning of the components in regard to heat, vibration,
serviceability, cleanliness and physical contacts affects crucially to the reliability of a
component. Because the previous factors affect the wear and tear of the components, the
mission time (TM) should be considered in the hardware and service design phases.

 39

If the functionality of a safety function depends only on one component should it
be a sensor, cabling, control logic code, actuator or such, could a single failure or incor-
rect functionality lead to a loss of the complete safety function. The architectural re-
quirements on the higher performance levels and safety integrity levels require redun-
dancy in all safety-critical components. Figure 6.1 clarifies which SIL levels can be
reached with different redundancy-, architectural and diagnostic coverage combinations.

Figure 6.1. Effect of redundancy and architecture categories on safety integrity levels.
[36].

Two main types of redundancy can be named: serial redundancy and parallel re-
dundancy. These structures are based on the idea that a single signal or functionality is
processed on separately in two or more occasions. It is recommended that the function-
alities of these operations are based on different basic ideas and are implemented with
different techniques and separate people. These procedures are to mitigate the risk of
systematic design-based failures and bugs. However this multiplies the amount of work
and number of people required for the design process and to ensure independence be-
tween the blocks.

Figure 6.2 depicts serial redundancy with blocks A and B. Serial redundancy oc-
curs when two or more blocks are connected one after another (in serial). In the pictured
structure block A processes the signal first, after which the same signal proceeds to
block B where the signal is processed and the result of block A and B are compared. If
the results differ, one of the blocks is working incorrectly and the whole result is reject-
ed. Serial redundancy can be understood as a logical AND-gate. It is used to ensure the

 40

correctness of information, but even the failure of a single block cripples the whole
structure.

Blocks C and D in Figure 6.2 are redundant in parallel. The signal is processed
in both blocks simultaneously, so failure in one block doesn’t cripple the whole struc-
ture. Parallel redundancy can be seen as a logical OR-gate. Parallel redundancy reduces
the risk of a dangerous failure in the system. For example if each block in Figure 6.2 has
a failure frequency of 1/100, has the parallel redundant system a complete failure fre-
quency of 1/10000 and the serial redundant system still the same 1/100.

Figure 6.2. Serial redundancy (left). Parallel redundancy (right).

These architectures can also be combined, when the parallel redundant system
has serially connected blocks in both its branches. Verified processing results and relia-
bility in case of failures are both reached through this structure. This quadruple system
is however very expensive and possibly too heavy architecture for use in mobile ma-
chinery.

Two ways of recognizing the failed device are presented by IEC 61131-6. If the
used devices don’t include failure detection features such as self-diagnostics, incorrect
behaviour can be revealed by voting. These architectural methods are designated with
an abbreviation MooN, M out of N. It describes a function consisting of N number of
channels which requires at least M functional channels for normal functionality. Com-
parisons are carried out in the control device such as a PLC. If M channels do not agree
on the result, the fault tolerance limit has been passed and the function will not be exe-
cuted. The fault tolerance can be computed with a formula N-M+1. [13]

 41

Figure 6.3. 1oo2D system for a Category 3 system [30].

Faulty sensors and actuators can also be detected and isolated from the function

with proper diagnostics. This method is designated with an abbreviation MooND, where
‘D’ stands for diagnostics. Figure 6.3 depicts a function which achieves the require-
ments of category 3 of ISO 13849. This function conforms to 1oo2D architecture which
outputs are monitored and a faulty branch can be isolated from the function leaving the
functional branch operational. [13]

6.2 Software safety

Centralizing control system of machinery or automated system from multiple relays to a
single physical device such as a PLC will mitigate the complexity of such machinery
significantly. It also facilitates service and lowers service expenses due to smaller
amount of components and hardware. Centralization also reduces the size and weight of
the control system reducing the operating costs and energy consumption of for example
mobile machinery. Making updates and changes to a control system are easier in soft-
ware based control systems than in hardware-based systems. Software changes can be
made in minutes even remotely, while hardware changes require specific tools and
components.

On the other hand software-based control systems pose other types of threats.
Making changes to software-based systems may be easier to execute, but side-effects
from these changes may be hard to detect. Therefore proper effect analysis and version
control are required by design process models. Large software-based control systems
may also be harder to troubleshoot if documentation isn’t comprehensive enough. All
failures in software are inherently systematic in nature. They are caused by the way the
software is conceived, written or compiled, not by its use or wear. Therefore the time
consumed by system design and testing must be greater than in hardware-based design
processes.

Centralization sets great safety requirements for the control system. Failure of
control system or only a part of it would lead to the loss of all safety-related and non-
safety-related functions. The greater the amount of safety is based on the control sys-

 42

tem, the greater the requirements are set for the safety of the control system as depicted
in Figure 6.4. In practice it means that performance level e, category 4 or SIL3 control
systems are required [37].

Option A Most of the safety functions are realized with solid shielding and

other methods. Only few functions are realized by the control
system.

Option B Most of the safety functions are realized with the control system.

Figure 6.4. Composition of risk reduction methods [35]. The greater the percentage of
control system affecting system level safety is, the greater the requirements for control
system performance level or safety integrity level.

All software modules and elements or tools may not necessarily have a critical
effect on system safety and therefore do not need as precise safety analysis as safety-
related elements or tools. IEC 61131-6 determines software criticality on three levels:
C1 - Interference free, C2 – Safety relevant and C3 – Safety critical. [13]

C1 – Interference free Software has only read-only interfaces with elements of

criticality 2 or 3. For example debuggers and verification
and test tools which are verified by the user only.

C2 – Safety relevant Combination of a deviation from normal functionality and

a failure of another element may cause an unsafe situa-
tion. For example elements that are required to achieve a
SIL-level and implement self-tests, compilers, software
engineering tools with automatic executable code genera-
tion and verification and test tools without output verifica-
tion can be rated C2.

B

A

risk increases →
Other risk reduction Control system Risk reduction with shielding

 43

C3 – Safety critical A single deviation from normal functionality can cause an

unsafe situation. Such elements are those that are required
to achieve a SIL-level and implement self-tests.

Literature presents multiple ways of handling with software integrity. Methods

can be divided into two segments: avoiding failures and defensive design and program-
ming. Avoiding failures includes methods of validation and verification, structural man-
agement and comprehensive documentation, quality control and applicable software
change management. Defensive design and programming focuses on defining and using
applicable tools and programming languages, modular and structural programming and
use of pre-verified program modules, use of coding rules and detecting external failures.
These aspects will be considered in the following chapters.

6.3 Process models

Safety-related standards describe different process models to aid with development pro-
cess of safety-related machinery. Each process model has some differences between
each other, but the main concept remains the same as with non-safety-related process
models in which the process is run on basic sequence: specify-design-implement-test.
This chapter will handle the process models presented by IEC 61508, EN 62061 and
ISO 13849.

6.3.1 V-model and design lifecycle model according to IEC 61508

IEC 61508 sets out a generic approach for a few safety process models for developing
systems comprised of electrical, electronic or programmable electronic elements. V-
model (Figure 6.5) is a process management tool for software engineering. It is used as
a design and verification tool in programmable system projects. The main idea in the
model is to specify the software first on higher levels and then proceed to lower levels
and module designs. Each state will be verified with the previous state after completion
to ensure all the requirements are met. After finishing and verifying the lowest level
descriptions, coding process is started.

The main advantage in the V-model is the systematic testing procedures. The
process will execute testing of each module in reverse order comparing each state with
corresponding design state. Development lifecycle ends with validating the product with
its safety requirements. The model presented by IEC 61508 is only a framework for a
V-model tool, and the model can be tailored to the needs of the company using it. [21]

 44

Figure 6.5. Software development lifecycle (V-model) [34].

Another lifecycle mode presented by IEC 61508-1:2010 is a 16-part lifecycle
model for designing and operating safety-related systems. This model can be divided
into three main parts: analysis, realization and operation. Life cycle model is presented
in Figure 6.6.

Figure 6.6. Overall safety design life cycle model according to IEC 61508-1 [34].

 45

Figure 6.7. Software safety lifecycle in realization phase (step 10) of Figure 3.10 [34].

The analysis part consists of five steps in which risks are identified and corre-

sponding safety requirements are developed. The next eight steps comprise the realiza-
tion part. Here the safety requirements are used to create risk mitigation methods, which
are used as a base for the system realization phase in step 10. The complete system is
installed and commissioned, after which it is validated using various tests and analyses.
IEC 61508-1 includes two separate implementations for realization phase in step 10:
system safety and software safety lifecycle model which is presented in Figure 6.7. The
system safety lifecycle forms the technical framework for IEC 61508-2, which handles
mainly electric, electronic or programmable electronic (E/E/PE) based systems. The
software safety lifecycle model forms the technical framework for IEC 61508-3 concen-
trating on software safety. Both of these models will be used in case a complete E/E/PE
safety-related system is built.

The third and last part of overall safety lifecycle model consists of three steps
which consider the operations that are carried out after the system has been taken into
use. Such are maintenance and repair, modifications and decommissioning. [5, 21]

6.3.2 Control system design phase diagram according to EN 62061

Figure 6.8 presents a design process diagram introduced by the standard. This diagram
can be used to mitigate system risks and design a safe control system using subsystems
and modular function blocks. It uses the identified risks acquired from risk assessment
as a base for the process, produces according safety functions, defines safety integrity
levels for each safety-related control function and provides documentation during the
design process.

 46

Figure 6.8. Control system design phase diagram according to EN 62061 [36].

In step 1 risk assessment results are used to recognize the control system’s parts
that will be addressed by safety functions. In steps 2-6 these control system parts will be
designed safety functions with proper documentation according to the risk assessment.
Safety functions will follow modular design principles using specific function blocks.
Modular design principles will also be used to construct a clear structure/architecture for
the whole safety-related control system using these safety functions. After verifying the
structure and safety functions in step 6 other system subsystems and diagnostic func-
tions will be designed in steps 7-9. In step ten will all the safety-related control func-
tions be defined a safety integrity level. In the last two steps will the whole control sys-
tem structure be documented and the design phase can be completed. [36]

6.3.3 Safety-related part design process model according to ISO 13849

The safety design process model presented by ISO 13849-1 is bound together with risk
analysis standards ISO 12100-1 and ISO 14121. At first it analyses the system accord-
ing to the analysis standards after which the risks are handled with primarily on the
hardware side. If the remaining risks cannot be handled with hardware, they are ana-
lysed and processed further with a separate process model meant for control systems
(Figure 6.9). The safety design process model is iterative, so after all identified safety
functions are processed, an another analysis on the system is made to detect any remain-
ing risks or if new risks have been generated on the system. [30]

 47

Figure 6.9. Iterative safety-related part design process model according to ISO 13849-
1 [30].

The process model for designing safety-related parts of control systems starts
with identifying all unsafe situations connected to the control system. Each situation is
defined its safety requirements to mitigate their risk to a tolerable level. In the iterative
phase of the model each of these functions will be defined a required performance level
(PLr) according to the risk it mean to mitigate. Level ‘a’ has a low impact from the con-
trol system; Level ‘e’ has a high impact. A method for defining PLr is described in Fig-
ure 3.1. Each safety requirement will be designed a proper safety feature with technical
implementation plan considering all the relevant parts which carry out the safety func-
tion. The formed safety function is evaluated taking all the methods described in Chap-
ter 3.1 accompanied with software development rules describer later in Chapter 6. Per-
formance levels of the safety-related functions are verified according to the defined PLr
and validated with the safety requirements specified during the process. After all the
safety functions have been handled, is the whole system re-analysed for newly generat-
ed hazards. [30]

 48

6.3.4 Agile models

Up until recent days, safety-related software projects have been quite small and projects
have been able to be implemented through traditional process models. However, pro-
jects grow and the need for agile methods rise as does the need for standardized meth-
ods for agile processes. These methods facilitate gradual development in case of the
specifications are updated during process and continuous assessment of risks. These
methods emphasize verbal and literal communication between different quarters which
may become crucial with projects of multiple technology areas. As normal “traditional”
safety-related process methods require great amounts of documentation in the form of
change authorizations, extensive specifications and test reports, agile methods signifi-
cantly increase the amount of required documents.
 Jani Paalijärvi states in his Thesis Development of Safety-Critical Software using
Agile Methods [24] that the large amount of produced documentation doesn’t prevent
the use of agile methods. One only has to select a suitable process model according to
existing company models and policies. Factors that affect the selection process accord-
ing to Paalijärvi are the amount of personnel, severity of possible failures, company
size, culture and the dynamicity of the project. Agile methods are suitable for designing
safety-related software, only orderliness, care, documentation, clearness of architecture
and implementation and traceability need to be given more attention. [24]

According to VTT research Ohjelmaturva released in late 2011 [37], the main
requirement of produced documentation is its evidential value. This means that some-
where, somehow there needs to be evidence that some safety- or non-safety feature was
planned, assessed and authorized according to the appropriate safety standards. Certifi-
cation bureaus accept all kinds of evidence of these documents; they can be formal writ-
ten documents, photographs, videos, meeting minutes, hand-written notes and such.
Safety standards do not give much information on how to implement agile methods with
safety-related projects, so this field of research has grown its interest globally.

6.4 Documentation

Comprehensive documentation is an important part of developing manageable and ser-
viceable safety-related software. Thoroughly implemented documentation enables effec-
tive backward and forward traceability, creates a solid base for service and user manuals
and enables safe modification of software. Documentation may easily be left on a lower
priority on projects with tight schedules, and it may not be kept up-to-date all the time,
but projects with safety features need comprehensive documentation during its whole
lifespan.

Safety standards provide information on issues that should be handled on project
documentation. No formal format is required, and important information can be pre-
sented in text, diagrams, figures or even meeting minutes. The importance of proper
documentation comes from the evidential value of the documented information. It re-

 49

veals the motivations and reasons for made decisions, gives comprehensible information
on system properties and gives evidence in certification process that all risk sources
have been handled properly. An unambiguous specification restricts different interpreta-
tions of system breakdown. A comprehensive specification doesn’t leave any unspeci-
fied aspects in the system that could lead to safety black areas and unhandled risks. [30]

An important part of documentation on safety-related projects is risk assessment
documentation. ISO 13849 require that it should include all identified risk factors and
all dangerous situations they could lead to. Chosen measures to remove or diminish
probabilities of identified risks and goals that are aimed with these measures need to be
determined. If the risk cannot be completely removed, residual risks need to be docu-
mented. The risk assessment made may not give a positive result on all use environ-
ments and tasks, and such deviations from original plan and original intended use need
to be reported and documented. Different sources of information considering for exam-
ple failure probabilities for components may give different information, so either the
used sources need to be reported or more preferably one should use only one source of
information for failure data. ISO 13849-2 also presents a table for different document
types that are required by safety categories (Table 6.2). The amount of different docu-
ments required rise according to the aimed safety integrity level. The work needed to
produce the required amount of documents in the higher safety integrity level projects is
a major factor that leads to higher project costs. [30]

Table 6.2. Documentation requirements for categories [30].

Documentation requirement Required in cat.
 B 1 2 3 4

Basic safety principles x x x x x

Expected operating stresses x x x x x

Influences of processed material x x x x x

Performance during other relevant external influences x x x x x

Well-tried components ‐ x ‐ ‐ ‐

Well-tried safety principles ‐ x x x x

The check procedure of the safety function(s) ‐ ‐ x ‐ ‐

Checking intervals, when specified ‐ ‐ x ‐ ‐

Foreseeable single faults considered in design and the detection
method used,

‐ ‐ x x x

The common mode failures identified and how prevented ‐ ‐ ‐ x x

The foreseeable, single faults excluded ‐ ‐ ‐ x x

The faults to be detected ‐ ‐ x x x

The variety of accumulations of faults considered in the design ‐ ‐ ‐ ‐ x

How the safety function is maintained in the case of each fault(s) ‐ ‐ ‐ x x

How the safety function is maintained for each combination(s) of
faults

‐ ‐ ‐ ‐ x

 50

EN 62061 appendix C states that on top of normal requirements on the system
requirements specification, safety-related project’s specifications should include infor-
mation concerning safety-related hardware such as sensors, actuators and other equip-
ment. Performance capabilities such as memory capacity, response time requirements
and other time-related restrictions and their uncertainties for the control system and
safety functions need to be specified to ensure that the system meets the performance
requirements. Description of self-diagnostics such as watchdog, I/O monitoring and
memory error correction methods are also required by EN 62061. [32]

As the amount of required documentation grows according to the desired safety
integrity level, a common information management system will come handy to keep all
documents updated and available for all personnel involved. Some interviewed local
companies had taken to use or were planning to take use a common safety knowledge
base or a database in which all common and project-related documents will be added.
These knowledge bases or databases could be based on common information (for exam-
ple standards) and company experience and they should include at least:

 Design guidelines and rules

 Generic checklists for testing, implementation and verification

 Coding rules and standards

 Common company practices

 Document templates and manuals

 Project specific areas for documents

 Change management is a project phase which creates a lot of different types of
documents. Project specifications are seldom completed when the system design and
implementation phases are started, so an efficient change management system is im-
portant to any company. Therefore requirements stated by safety standards for change
management are handled in a separate chapter.

6.5 Change management

An effective change management system gets more and more important as the software
ages. If the application and machine has a long lifespan it is quite probable that it’s
working environment, materials processed, its components or actual use changes in
some part of its lifetime. As the machines lifespan be tens of years, the original design-
ers’ employment in the manufacturer company may not be as long. Therefore an up-to-
date documentation and a detailed change management process are in its place. Chang-
ing the code on-site without any kind of impact analysis of the change produces easily
new bugs or design flaws. Software is so easy to alter, that wider effects of the change
are not given enough thought and modifications may cause critical failures in unintend-
ed parts of the system. [36]

 51

Each time a change needs to be done on safety-related software a change plan
needs to be done. The plan includes reasons why the change is needed, and impact anal-
ysis on all the parts that this change may have influenced and decision and authoriza-
tions for doing each change. Authorizations need to become from a person responsible
of the system safety. Implementing the changes can only start after the authorization has
been received. [32, 34]

After the change has been implemented all the functions that the change has af-
fected according to the effect analysis need to be validated and verified and meeting the
safety requirements has to be checked. The code made for the change itself need to fulfil
the same safety requirements than the rest of the software. Also the need to redo some
lifecycle states needs to be analysed. After the change all the documents that may have
been affected by the change need to be updated. [32, 34]

A change report is made based on the change plan. According to EN 62061 the
report shall include at least:

 Risk factors that this change can have an effect on.

 Description of the change request.

 Motivations for the request.

 Decisions and authorizations for doing each change.

 Impact analysis of the change.

 List of all of the actions done during the change process.

 All responsible personnel or organizations involved.

Change analysis process need to be implemented every time safety-related ma-
chinery is affected by [32]:

 Change of safety requirements.

 Conditions of actual use.

 Incident or accident experience.

 Change of material handled.

 Physical or use case changes.

In the time of agile development methods a functional and fluent change man-
agement system will come handy. Agile software development produces great amounts
of documentation every time a development cycle is run. Therefore systems depicted in
chapter 6.4 are especially useful while following an agile process model.

6.6 Failure types

Figure 6.10 depicts the proportions between different types of failure sources on ma-
chine automation devices according to VTT research [35]. More than half of the amount
of detected failures derives from malfunctioning hardware such as broken sensors or
actuators. One quarter derives from design and implementation flaws and the rest from
external factors or user activity failures.

 52

Figure 6.10. Failure composition according to VTT research [35].

Program code itself hardly ever fails (however a powerful shortwave radiation
can inflict bit-level changes in the hardware), and usually in case of a software-based
failure it derives from a human error, and in more precise, a design or implementation-
based failure. In software engineering projects most of the bugs remaining in the final
and released product are due to requirement and design phase deficiencies or errors.
Bugs are created also during the programming phase, but these kinds of failures are easy
to detect and fix before customer delivery. [23, 37]

It can be said that the expenses of repairing a malfunctioning program code in-
creases as the project proceeds. In requirement specification phase fixing a single erro-
neous requirement doesn’t require much work, but fixing a near complete program code
to meet this same requirement change might need many times more time to fix and may
affect other software components as well. It may also require re-designing the whole
software architecture and if not thoroughly analysed, it may lead to severe safety risks
through new bugs or inconsistencies.

Incorrectly executed software changes are a great source of failures. Implement-
ing changes is required every time an old error needs to be fixed or new functionality is
to be added to an application already released or being late in its development process.
All changes affecting safety-related components need to be analysed according to ap-
propriate safety standard and properly documented as depicted in chapter 6.5.

Another failure type that is hard to detect are common cause failures. CCF can
be caused by application or function using the same malfunctioning software or hard-
ware components, erroneous compilers, defective requirement specification or pro-
grammers with the same programming technique. Ohjelmaturva final report [23] states
different methods for avoiding common cause failures:

Failure composition (N=110)

Mechanical design and
component failure
Software design and code
failure
External factors

Human activity failure

 53

 Separating physically different critical components.

 Using diversified components.

 Use of well-known design- and operating experiences.

 Use of analyses and reviews.

 Assuring good competence and education for designers and implementers.

 Taking operating environment into account (operating systems and hardware).

Software failures are usually of systematic nature, which means that with the
same starting values the application leads in the same way to the same erroneous state.
The inverse of a systematic failure is a random failure which is a single erroneous event
in a series of functions executed with the same starting values. EN 62061 and ISO
13849-1 list different methods for avoiding systematic failures [30, 32, 37]:

 Use of a systematic implementation process, such as a lifecycle model.

 Ensuring compatibility between different modules and elements.

 Modularization and limiting the module size.

 Limiting the amount of different structures to:

 sequences,

 loops,

 choices and

 subroutine calls.

 Using small design diagrams in design phase.

 Use of common coding, naming and documentation rules.

 Using manufacturer information and guides.

 Use of computer aided design tools and simulation.

 Limiting the amount of iterations used or the depth of recursion. Iteration can
simplify the program code or lock the system up if misused [2].

Some undetected failures may still be left in the released application, so its func-

tionality needs to be monitored during use. Among others ISO 13849-1 lists a few
methods for handling systematic failures during runtime [30, 37]:

 Monitoring program execution sequence in case of incorrect execution order.

 Detecting defective system clock.

 Preparing for communication disturbances.

 Proper actions during power distribution problems:

 Voltage (over-, under-, variation of voltage and voltage interruption).

 Hydraulic fluid, air pressure or other power distribution problems to ac-
tuators.

 System reaction to hazardous events before they occur.

 Use of self-diagnostics.

 Oriented mode of failure in case of jamming, loss of energy or other.

 54

Bus-based communication systems have various failure types, induced by exter-

nal interference, message collisions and timing errors, but they are not handled in this
thesis’ scope. Different failure types in various communication protocols can be found
on Teollisuusautomaation tiedonsiirtoliikenne: Turvaväylät by M. Sundqvist [40].

6.7 Programming languages

Used programming language and compiler affect software safety and easiness of gener-
ating safe applications. The languages defined by IEC 61131-3 can be roughly divided
into two groups: graphical and textual languages. Structured text (ST) and instruction
list (IL) can be considered textual as sequential function chart (SFC), ladder diagram
(LAD) and function block diagram (FBD) as graphical languages. IEC 61131-3 prefers
use of graphical languages to textual due to easier visual diagnostics and monitoring
capabilities [2].

Standards IEC 61508-3 and EN 62061 define two main classes of languages for
safety-related applications: full variable language (FVL) and limited variable language
(LVL). FVLs are used in “normal”, non-safety-related applications when LVLs can be
used in developing safety-related applications. Limited variable languages are actually
FVLs with their instruction set reduced by unsafe and hard to analyse structures and
variables [2, 34].

When selecting a suitable programming language for a project, the selection
should be based on the application policy or how the program could be diagnosed and
serviced the easiest more than based on the hardware used. The lower level languages
like Assembly belong to the latter group being hardware dependent. This makes porting
the software to different hardware more difficult or even impossible. IEC 61508-7 rec-
ommends use of LVL languages due to their portability to different types of hardware
and ability to restrict generating unsafe program code.

EN 62061 recommends that the language to be used should have features that
facilitate use of abstraction, modularity and other complexity mitigating structures. The
language should be able to illustrate its functionality and sequence, data flow between
different modular elements and functionality of time-related functions. It should also
support time limitations and information integrity checking. IEC 61508-7 states recom-
mendations for the ability of use of exceptions and interruptions in real time systems.
Object oriented languages are making their way to safety-critical software, but IEC
61508-7 doesn’t yet make a statement considering which of these languages are recom-
mended in its second edition. [32, 34]

Table 6.3 is a table about recommended programming languages for different
safety integrity level systems according to IEC 61508-7. Abbreviation ‘NR’ stands for
not recommended and these languages should not be used for implementing safety-
related applications for the appropriate safety integrity. ‘R’ stands for “recommended”
and ‘HR’ for “highly recommended”. R-classified programming languages can be used

 55

in programming safety-related applications, but their use requires stricter monitoring
and validation that HR-classified languages. [34]

Table 6.3. Preferred programming languages according to IEC 61508-7 [34].

Programming language SIL1 SIL2 SIL3 SIL4

1 ADA HR HR R R

2 ADA with subset HR HR HR HR

3 Java NR NR NR NR

4 Java with subset R R NR NR

5 PASCAL HR HR R R

6 PASCAL with subset HR HR HR HR

7 FORTRAN 77 R R R R

8 FORTRAN 77 with subset HR HR HR HR

9 C R – NR NR

10 C with subset and coding standard, and use of static
analysis tools

HR HR HR HR

11 C++ R – NR NR

12 C++ with subset and coding standard, and use of static
analysis tools

HR HR HR HR

13 Assembler R R – –

14 Assembler with subset and coding standard R R R R

15 Ladder diagrams R R R R

16 Ladder diagram with defined subset of language HR HR HR HR

17 Function block diagram R R R R

18 Function block diagram with defined subset of language HR HR HR HR

19 Structured text R R R R

20 Structured text with defined subset of language HR HR HR HR

21 Sequential function chart R R R R

22 Sequential function chart with defined subset of lan-
guage

HR HR HR HR

23 Instruction list R – NR NR

24 Instruction list with defined subset of language HR R R R

IEC 61508-7 sets requirements also for the used compilers. An incorrectly work-

ing compiler inflicts systematic errors into the software which are impossible to detect
from the source code. Because of this, compilers which functionality is not well known,
or which are known to produce certain errors should be avoided. Small compiling errors
can be allowed if they are identified and documented and can be avoided during use.
Only well-tried compilers can be recommended for use with safety-critical software.
[34]

 56

6.8 Architectural methods

The final report of VTT’s Ohjelmaturva-project emphasizes simplicity on the develop-
ment process of safety-critical software. It highlights the significance of modularity,
structural programming and the use of object oriented programming if applicable. Fa-
vouring the use of small software components can easily be justified; smaller software
modules are easier to understand and test. Their functionality is easier to anticipate, and
their re-usability grows as their area of functionality is restricted. Figure 6.11 shown
also in the report depicts the amount of errors per function points in software as a func-
tion of function points. This figure shows how the testability and maintenance of a large
application gets harder as the program size grows. [23]

Figure 6.11. Number of defects to the amount of function points [23].

ISO 13849 recommends that a clear program structure is designed, in which all
the different functional blocks and their functionality can easily be identified. This can
be done for example by dividing the application structure to at least three parts: input,
process and output. Each module should handle only the functions its name depicts and
they should be set in a logical order according to the working sequence of the applica-
tion. Each module and sub-module should be properly documented for its functionality.
All the used functions and function blocks should be described whenever called. The
program sequence need to be easy to follow and should not depend on jump instructions
calculated on run-time. [12, 30]

It is recommended to use manufacturer verified and checked function blocks in
controlling safety-critical devices to ensure their correct functionality. When using own
safety-critical functions and function blocks it is worth noting a few suggestions stated

0

0,5

1

1,5

2

2,5

3

1 10 100 1000 10000 100000

D
e
fe
ct
s/
fu
n
ct
io
n
 p
o
in
t

Program size (function points)

 57

by ISO 13849 and Ohjelmaturva final report to keep the blocks simple and manageable:
[12, 23, 30]:

 Use at maximum eight digital and two integer inputs and one output.

 Functional code should include maximum 10 local variables and maximum 20
Boolean equations.

 Function blocks shouldn’t change global variables.

 Function blocks should be able to detect variable inconsistency.

 Error codes and proper descriptions should be used to distinguish different error
states (also relevant for other parts of the program).

 Interfaces between modules should be kept as small and simple as possible.

Features and restrictions between function block and PLC interfaces have to be
properly documented to ensure proper use and functionality of the given software. Used
communication protocols, input and output frequencies, input and output voltage and
current areas, I/O formats and use of reverse logic (is the signal normally high or nor-
mally low) should be clearly indicated in the project documents. [32, 37]

The final report of Ohjelmaturva-project and IEC 61508-7 recommend also oth-
er architectural methods to develop safety-related software: [23, 34]:

 Use stateless design: input always results in the same associated output.

 Avoid difficult structures such as recursion and dynamic objects.

 Backward recovery, which enables return to previous safe state or well-defined
checkpoint in case of a failure.

 Use of graceful degradation: safety-critical functions are given priorities over
normal functions in case of a failure to maintain safety.

 Utilize error detecting software (parity bits, CRC and others).

 In appendix A of this thesis a table presented in IEC 61508-3 lists different ar-
chitectural methods recommended for different SIL. Appendix B represents a similar
table presented in EN 50128 for SWSIL.

6.9 Coding rules

Certain coding rules should be followed every time safety-related code is to be imple-
mented. An agreed company-level set of rules not only make the code easier to read for
everyone in the company, but it also standardises code structure and facilitates verifica-
tion and validation processes. Common non-safety coding rules are widely available for
different languages, but they aren’t sufficient for generating safety-related code. Safety
standards do not take non-safety-related software coding rules into account and specify
only rules applicable for safety-related software. Therefore it is possible for companies
to append these safety-related suggestions into their existing set of rules. There are also
commercial coding rules available that include also safety-related requirements. One

 58

example for C-languages is MISRA C, which was originally developed for automotive
industry.

ISO 13849-1 ANNEX J, IEC 61508-7 and EN 62061 list different suggestions
for a set of safety-related coding rules. Below is a set of rules selected from these stand-
ards and own observations on how to simplify and unify program code.

Defensive programming:

 The effects of output signals should be checked in the actuator end [34].

 Existence and accessibility to the expected hardware is to be checked [34].

 Completeness of software should be analysed (especially after maintenance)
[34].

Modular approach:

 Structuration should be implemented in a way that facilitates centralized variable
updating [12, 30].

 Information hiding and encapsulation methods should be used [34]:
o Preventing accidental or incorrect modification of critical or complex

software.
o Allow modification of hidden module without affecting the remaining

software.
o Use clear and simple interfaces.

 Data verification of parameters with assertions [34].

 Compose control flow: sequences, iterations and selection [34].

 Small amount of possible paths through the software [34].

 Simple relations between input and output signals [34].

 One entry and exit point in subroutines and functions [34].

 Avoid complicated branching and unconditional jumps (goto) [34].

 Avoid using complex calculations as the basis of branching and loop decisions
[34].

 Well defined tasks for modules [34].

 Limited use of side effects not obvious from function name and its documents
[34].

 Use of several levels of modules [34].

 Modules should be well documented (functionality and use) [34].

 Safety-oriented blocks should be separated from normal blocks.

 Safety-oriented blocks should be identified through a prefix (for example
S_xxx).

 Call of non-safety blocks from safety-oriented blocks is prohibited.

 Call of safety-oriented blocks from non-safety blocks is limited to standard func-
tions.

 59

 Write access to safety-oriented variables from non-safety blocks is not permit-
ted.

 Write access to non-safety variables from safety-oriented blocks is not permit-
ted.

 Main program code should have only functions/function block calls in it. Plain
logic code is not allowed.

 Same global function block should be called from only in one place

 Access to global variables from function blocks is prohibited.
o Function block should only change the state of its own instance.

Code understandability and readability:

 Each variable should have an explicit mnemonic name and a description com-
mented to it [12, 30].

 Unambiguous and meaningful naming conventions [34].

 The amount of common variables should be kept to a minimum [32].

 Limited number of rows per block (500).

 Limited number of characters per row (150).

 Use of symbolic names for numerals [34].

 Document why something was done instead of what was done [34].

 Document caveats and possible side effects [34].

Variables and I/O

 Activation or de-activation of any output should take place only once [12, 30].

 Use prefixes for I/O- & global variables.

 Safety-oriented global variables should be separated from normal global varia-
bles and identified through a prefix (for example S_xxx).

 I/O-addresses of safety oriented application parts and non-safety parts are sepa-
rated into different ranges. Safety-oriented addresses come first to the lower ad-
dresses to facilitate use of smaller address values.

 The value of a global variables change only in one place.

 No address declarations or references in program code. Use variables.

 Only one purpose per variable. No re-use even if the previous purpose is no
longer important.

 Prefer local variables to global variables.

 Favour simple data types (Table 6.4).

 60

Table 6.4. Suggested data types for safety-related code.

Simple data types

Keyword Suitable for safety programming

BOOL Yes

BYTE, SINT, USINT Yes

WORD, INT, UINT Yes

DWORD, DINT, UDINT Yes

TIME, TOD, DATE, DT Yes

STRING Yes, in case a safety-oriented interface is used

LREAL, REAL To a limited extent (prone to errors due to rounding errors)

Complex data types

Keyword Suitable for safety programming

ARRAY
To a limited extent (only with explicit range check before
write access to fields)

STRUCT Yes

Listing types Yes

Subrange types Yes

POINTER
To a limited range (no pointer arithmetic, use range check,
new pointer value allocation at the start of each cycle)

Verifiability, testability and structure
Where the application software is to contain both non-safety and safety-related func-
tions, the whole code will be treated as a safety-related code, unless independence be-
tween the functions can be demonstrated [32].

 Avoid use of dynamic variables and dynamic memory allocation [34].
o Memory use cannot be verified by compilers or other off-line tools and it

cannot be guaranteed that there is free memory or nothing is overwritten.
o Failures can possibly be avoided with on-line checking during creation of

dynamic variables or objects and checking if the memory is free before
allocation. Memory should also be freed after the variable or object has
been used.

 Limit the use of recursion and other forms of circular dependencies [34].

 Limited the number of iterations [34].

 Interrupts should not interfere with critical software parts [34].

 Limited use of states.
o Favour stateless design.
o State variable should be described only once per cycle.
o State transitions should be encapsulated into a function block.

 Allow no compiler warnings.

 61

Language subsets:

 Limited use of pointers [34].
o Data type and value range to be checked.

 Limited use of C-like unions [34].

 Limited use of Ada or C++-like exceptions [34].

 No unstructured control flow in higher level languages [34].

 No automatic/implicit type conversion which may lead to loss of information
[34].

 Limited or only documented use of compiler-specific features [34].
o If these features are used nonetheless, rules should be applied and docu-

mented.

Good programming practice:

 Floating point comparisons use only inequalities instead of equality [34].

 Bracketing if operator precedence is not obvious [34].

 Catching of all situations (default in switches, else in if-clauses) [34].

 Coding guidelines should comply with known compiler errors [34].

Use of trusted/verified software elements:

 If previously used software library functions are to be used as part of the new
design, their suitability for the design should be justified by evidence of satisfac-
tory operation on similar environments and applications. Otherwise the function
has to go through the same validation and verification procedures as the other
new software functions do [32].

 Requirements for use of proven-in-use elements [34]:
o The specification of the element has to stay unchanged.
o The element has to have at least one year of service history.
o The element should also work in current application.

 The formed coding rules should be made commonly available throughout the
company and make sure that all employees follow the rules. The document database
depicted in Chapter 6.4 could again come handy in keeping all safety-related documents
in one place.

6.10 Validation and verification

The amount of work required for validating and verifying of a safety-related application
is relative to the coverage of the formed documentation. In the development process of
safety-related software the significance of documentation is emphasized even more than
in non-safety-related software. It is crucial in achieving a reliable and accurate verifica-
tion and also in order to create plausible evidence for certification inspections.

Validation and verification are made based on the documents formed in previous
process phases. Each function in the safety requirement specification needs to be veri-

 62

fied, for which information and guidance can be found in EN 62061. To get a reliable
and impartial result, the inspection should be performed by a person independent from
the project. The method used for verification can have an effect on the verification re-
sult. Auditions and readings usually follow the programmers’ way of thinking, thus
finding errors may be hard. On the other hand, quality assurance assures correct project
management, but finding errors is not guaranteed. [21, 32]

 63

 SAFETY-RELATED INTEGRATED DEVEL-7
OPMENT ENVIRONMENTS

Software developers have noticed the need for safety-related software development en-
vironments for PLCs. As many logic programmers might not be specialised in software
safety issues and as the requirements presented by the law and safety standards are vast,
comprehensive and spread around many standards and documents, all aid from software
environments is well welcomed. Developing a safety certified development environ-
ment is a time-consuming process not only as the development process, but also in certi-
fication processes. Therefore the availability of different safety-related development
environments is quite low and is focused on the biggest developers and most common
communication protocols.

This chapter will handle CoDeSys Safety from 3S – Smart Software Solutions
and SAFEPROG with its safety runtime components from KW-Software. These solu-
tions differ from each other with their requirements on the hardware, but on the soft-
ware side the main principles are quite similar. Safety-related components and variables
are visually and structurally separated from non-safety-related components and varia-
bles, compilers are well tested and certified, easily debuggable languages are used and
user actions are restricted in a way that the user can implement code only in a con-
trolled, safe way. These considered applications can be used to produce software up to
SIL3 and PLe, but both manufacturers have also less restricted SIL2/PLd solutions.

IEC 61508 has some requirements for the programming environments. The pro-
gramming environments to be chosen should facilitate modular programming, have
translation verification and runtime parameter type- and overflow checks. It should en-
courage use of small and easily manageable modules, enable user access restriction to
some program components, allow definition of variable sub-ranges and also include
other error mitigating structures. All of these requirements were met by both of the con-
sidered development environments. [34]

7.1 3S CoDeSys Safety

3S CoDeSys Safety is a programming system extension for editing safety-oriented ap-
plications and configuring safety I/O-modules in the runtime system. The application is
an integrated development environment (IDE) based on CoDeSys V3, and allows inte-
gration of safety- and non-safety control applications and I/O configuring in one project,
unlike the KW-software SAFEPROG approach, which has separate applications for
example control application and I/O configuration. Another major difference with

 64

SAFEPROG is its ability to run on any manufacturer’s central processing units (CPU)
or OS that can run the normal CoDeSys runtime system making it suitable for manufac-
turers who have their own safety-PLCs, I/Os, drives or other hardware.

CoDeSys Safety can be used to produce control applications for systems up to
SIL3 or PLe, which means that redundant hardware as dual CPU and 1oo2 dual channel
architecture are required. The system supports shared safe communication buses which
can include safety- and non-safety messages and can exchange data between safety
PLCs and non-safety PLCs. At the moment supported communication protocols are
PROFIsafe over PROFIbus, FSoE (FailSafe over EtherCAT) over EtherCAT and CIP-
Safety over SercosIII. As the development environment is still new, the company states
that other protocols may also become supported upon request [1].

The software approaches safe application coding with reduced functionality by
disabling dynamic memory allocation and coding language selection. Only PLCopen
defined subset of function block diagram (FBD) with basic and extended level is sup-
ported. This enables easy graphical debugging of safety-related code and lowers the
learning curve with the need to understand only one coding language. The delivered
pre-certified function blocks and user-defined safety blocks and -variables are separated
visually from non-safety blocks and variables with different colours. Certified safety-
libraries, -guides and -manuals are delivered to aid with the coding process.

Software architecture methods influence greatly on system safety, and in
CoDeSys Safety these methods are used to reduce application functionality thus ensur-
ing safe operation between safety- and non-safety-related modules. Safety-related func-
tion blocks are separated from global variables and other function blocks, which allows
making changes on non-safety software without affecting safety-related part thus lower-
ing the risk for common cause failures and unnoticed relations between different mod-
ules. The parameter and variable range and type checking is possible to detect incorrect
function block inputs and variable assignments. Program and block size limiting
through number of variables, number of FBD-networks and network size is optional and
can be configured through application options. Unauthorized application altering can be
prevented with password protection on project and function block levels.

CoDeSys Safety features a concept for system integration, testing and certifica-
tion to aid with the verification process. Also debug-mode and project comparison fea-
tures are included. The used compiler and runtime are certified for safety use.

7.2 KW-Software safety platform

KW-software safety platform is a collection of IEC 61508 –certified applications for
developing and testing safety-related software and configuring safety equipment. The
platform consists of six applications: SAFEPROG, SafeOS, SAFECONF, SAFEGRID
and SAFEBtest. SAFEPROG creates a diversified software architecture which is con-
tinued in SafeOS, which is a 2-channel diversified safe runtime system on the safety

 65

PLC. This 2-channel realises a SIL3 and PLe safety system, and one channel solutions
for SIL2 and PLd systems can also be implemented. SafeOS requires specific type of
processors for operation: ARM (Instruction Set V4.0), Intel X86, PowerPC. Other pro-
cessor types are also available on request. PROFIsafe V2 over PROFInet is the only
communication protocol supported by KW-software safety platform.

SAFEPROG is a safe software development environment for large and complex
programs with communication systems. It supports graphical ladder diagram (LD) and
function block diagram (FBD) languages for normal logic code and C-language for
complex function blocks. It includes pre-certified PLCopen safety function blocks as
does CoDeSys Safety. These safety function blocks and specific safety variables are
separated from normal code with different colour. User actions and unauthorized modi-
fications can be managed with user management, user action logging and access rights.
Project and the PLC can also be locked with a password to prevent unauthorized access
to the code altogether.

SafeOS is a diversified, 2-channel safe runtime that realises safe control system
with SAFEPROG or SAFECONF. It supports integration of both safe and unsafe sig-
nals. It has memory error detection methods and diagnostic possibilities. SAFECONF is
a SIL3 and PLe certified configuration application for medium number I/O devices
without communication systems. It can be used to implement simple logic and certified
function block to configure safety controls and drives. SAFEGRID is the smallest level
configuration application. It is used to configure multifunctional safety relays, control-
lers or integrated safety functions on drives. No logic code can be implemented in
SAFEGRID. SAFEBtest is an automated testing tool for testing function block made
with SAFEPROG or SAFECONF. It generates test case steps using user given require-
ments thus reducing test effort and error sources. KW-software’s SafeOS and
SAFEPROG have been integrated and validated with the INTEGRITY RTOS and they
can be used with virtualization environment [7]. [38]

7.3 Roadmap

During the writing process of this thesis CoDeSys Safety haven’t been released and is
still under TÜV (German technical supervisory agency) testing and may still change
before release. 3S is going to release also a SIL3 and PLd runtime. It will run on a sin-
gle CPU hardware and will feature full functionality. The runtime is a standard
CoDeSys Control embedded runtime with additional safety features such as: diagnostics
and memory error detection methods.

Applications for this runtime will be implemented with all language features en-
abled. Only a few restrictions will be presented by provided safety programming manu-
al. Implemented code will be compiled with the standard compiler which is validated by
TÜV and well-tried in extensive tests according to 3S. The system will require certified
hardware and safe I/O-system and the system need to be completely validated.

 66

 CASE: SAFETY DESIGN PROCESS IN OIL 8
EXPLORATION MACHINERY

Project to consider as an example project of safety-related design process is a mobile
electro-hydraulic oil exploration machinery used in test-drilling promising oil wells.
The machinery consists of three mobile units; a loading unit, a drilling unit and a control
unit. The loading unit provides the drilling unit with drilling extension rods. Its func-
tionality is limited to handling these rods and levelling the unit on rough terrain. The
drilling unit has drilling, various winching and extension rod connecting functionalities.
The machine doesn’t have much automation in it, and its functions are controlled by
two system operators from a two-desk control panel in the control unit.

Figure 8.1. Oil exploration machinery PLC and I/O-module architecture

The machinery is controlled by ten different PLC and I/O-modules. Drilling unit
includes two ifm electronics CR0232 PLC-modules [14] which control analogue and
digital output signals. The ifm units are connected to other PLC and I/O-modules via
CANopen bus indicated with BUS 1 in Figure 8.1. The unit also includes an engine con-
trol unit, which sends engine information via secondary bus implementing J1939 proto-
col (BUS 2 in Figure 8.1). The loading unit includes one ifm CR0232 module which
controls drill rod loading functions with its analogue and digital outputs. The control
unit includes all the input controls and three touch screens system control. One ifm
CR0232 controls analogue joysticks with two CrossControl CrossFire CX modules [4].

 67

The control unit include also three CrossControl CCpilot XM display computers [3]
with touch screen capabilities which are used to display pressure gauges, certain valve
states, system diagnostics and can be used to change system parameters.
 At the moment the machinery is designed as a normal mobile machine automa-
tion system with some EX-certified sensors, and no safety standards considered in this
thesis were used in the design process. The only feature implemented that could be con-
sidered either safety or reliability-related is that the controls are distributed throughout
all the modules when normally all the controls are centralized on a single CCpilot XM
display computer for its performance. However, if CCpilot XM were to be used as the
centre of all controls and as the CANopen master which controls the bus communica-
tion single handed, crashing of the operating system on the display computer could
paralyze the complete system and possibly leave the controlled valves in a position that
could lead to a hazardous situation. Now when all the controls are distributed all over
the system, the severity of a single module failure is restricted to its own area of control.

Distribution of control isn’t however enough if one wants to make the machinery
safe enough for any safety integrity level. The design process needs to be restarted and
executed according to either the framework standard IEC 61508 or the application
standard for safety of machinery EN 62061. The according process model diagrams are
presented in Figures 6.6 and 6.7 for IEC 61508 and in Figure 6.8 for EN 62061. This
case project will use the process model presented by IEC 61508 for overall design pro-
cess and the model from EN 62061 in designing software modules in this chapter to
describe the required approaches for a safety design process.

The latter part of this chapter will handle the different parts of the previously
mentioned lifecycle models considering the oil exploration machinery. The analysis is
carried out with the information that has been gathered without any safety analyses and
knowledge of parts of the system mechanics that can inflict a risk of a hazardous situa-
tion. The following 16 steps are related to IEC 61508 lifecycle model depicted in Figure
6.6:

Step 1 – Concept
The first step of the process model presented by IEC 61508 is described in the standard
as: “To develop a level of understanding of the EUC and its environment (physical, leg-

islative etc.) sufficient to enable the other safety lifecycle activities to be satisfactorily
carried out” [34]. EUC stands for “equipment under control”. In this phase it is required
from the designer(s) to find out in what environments the device is to be used and what
legislation it is required to follow. In our case the environments are various rough out-
door areas and weather conditions vary from rainy weather to dusty winds. Many people
work around the machinery while it is operated and it is required to follow explosive
material and oil drilling laws and IEC 61508 and/or EN 62061 standards on safety is-
sues.

 68

Step 2 – Overall scope definition
The second phase defines the scope of safety issues handles, or as it is defined in IEC
61508: “To determine the boundary of the EUC and the EUC control system; to specify
the scope of the hazard and risk analysis” [34]. In our project the scope will be ensuring
that the actuators will not pose a threat to the people working near the drilling equip-
ment even in a case of component failure. This includes wrong system state recognition
through sensor failure and unexpected system start-ups in case of for example system
service.

Step 3 – Hazard and risk analysis
This phase will produce as its output at least one risk analysis document which deter-
mines as many possible event sequences or component failures that can lead to a haz-
ardous event as possible. Risks need to be specified associated to these hazardous
events. IEC 61508 describes this phase as follows: “To determine the hazards, hazard-

ous events and hazardous situations relating to the EUC and the EUC control system
(in all modes of operation)…” [34]. Analysis could consist of FMEA (Chapter 3.3.2)
and FTA (Chapter 3.3.3) for component and mechanics based events and software
FMEA (Chapter 3.3.2) for software based risks. This state requires failure type and fail-
ure rate information on every component which failure could lead to a hazardous event.
Also information on the system mechanics considering safe states of hydraulic cylinders
and the need for EX-certified components near sources of flammable gases are needed.
It is known that connecting the drilling extension rods is the most dangerous procedure
in the machinery. Different rod connecting failure types need to be analysed thoroughly.
The results of these analyses are collected to documents according to the used analysis
methods. These documents will include all possible risks and risk mitigation methods
related.

Step 4 – Overall safety requirements
The information gathered from the hazard and risk analysis studies in part three and
other related safety information and requirements are gathered to an overall safety re-
quirements specification. It will determine different hazardous events, their risks and
different methods for risk reduction in order to achieve a required level of functional
safety.

Step 5 – Overall safety requirements allocation
IEC 61508: “To allocate the safety functions, contained in the specification for the

overall safety requirements (both the safety functions requirements and the safety integ-
rity requirements), to the designated E/E/PE safety-related systems and other risk re-
duction measures; To allocate a safety integrity level to each safety function to be car-
ried out by an E/E/PE safety-related system.” [34]. The allocation consists of dividing
the safety measures to shielding measures, safety functions and restriction of reachabil-
ity to dangerous areas and allocating required SIL for each method. The safety integrity

 69

levels required for different risk reduction methods depend on the amount of risk they
pose which can be determined according to the principle depicted by Figure 3.1.

Step 6 – Overall operation and maintenance planning
Step 7 – Overall safety validation planning
Step 8 – Overall installation and commissioning planning
Steps 6 to 8 consider overall planning of operation, maintenance, installation and com-
missioning. These steps produce documents to enable safe and controlled procedures of
the mentioned processes phases. These plans can be company specific procedures deriv-
ing from previous practises and other process models accustomed to. The maintenance
plan is especially important considering any future changes in the software. It could
possible include instructions on successfully implementing changes according to Chap-
ter 6.5 in this thesis.

Step 9 – E/E/PE system safety requirement specification
This safety requirement specification (SRS) includes the safety requirements for the
control system equipment and software when the SRS made in step 4 handled the sys-
tem as a whole. Safety requirements for different functions executed by the control sys-
tem and all the requirements on hardware and software related issues are listed in this
specification. In this oil exploration machinery project possible requirements on the
hardware come from the use of safety PLC modules whenever safety functions are to be
implemented with them. Also some modifications to the drilling extension rod connec-
tion device may be appropriate. As all the control signals from joysticks and switches
come from dedicated modules (one ifm CR0232 and two CrossControl CrossFire CX –
modules), also those modules and the communication protocol between the modules
need to be safety certified. As the present system uses CANopen protocol, least changes
in the hardware is required by using CANopen Safety -protocol to transmit safety-
related messages on the bus without changing the hardware for communication system.
For the control application code to be safe, it should be implemented with a safety certi-
fied software development environment such as 3S CoDeSys Safety, which is compati-
ble with the used 3S CoDeSys V3. Some safety features may require redundant archi-
tecture sensors or actuators. These types of changes need to be planned and analysed for
risk mitigation methods in this step.

Step 10 – E/E/PE Safety-related systems realisation
In step 10 the specified system is to be realized in both hardware (sensor and actuator
architecture) and software (application programming). The software part will be consid-
ered in more detail by the EN 62061 process model after step 16 of IEC 61508 lifecycle
model.

 70

Step 11 – Other risk reduction measures
If other risk reduction methods outside the scope defined in step 2 of the IEC 61508
process model need to be specified, they can be defined in this step. This step is howev-
er optional.

Step 12 – Overall installation and commissioning
Step 12 realises the E/E/PE system installation and commissioning according to the plan
specified in step 8. In this step the implemented applications are downloaded into the
according safety PLC modules and the designed hardware configuration is built and
connected to the system.

Step 13 – Overall safety validation
The implemented system is validated to the overall safety requirements specified in step
4 taking into account the safety requirement allocations made in step. Validation is
made according to the validation plans defined in step 7. According to ISO 14121 exist-
ing residual risks can be mitigated using shielding, user restrictions or instructions [31].

The following three steps of the IEC 61508 lifecycle model are considered after
the machinery has been taken into use by the end-user. The system safety integrity
needs to be maintained during the machine’s lifespan, which requires certain rules and
user and maintenance manuals.

Step 14 – Overall operation, maintenance and repair
Step 15 – Overall modification and retrofit
During the lifespan of the machinery it is crucial that the achieved level of safety isn’t
affected by machine use, maintenance and modifications. Therefore the operation and
maintenance plans are to be followed and provided to responsible personnel in this
phase of the project lifespan. In case of a modification of the machinery is required,
safety impact analyses and implementation may require returning to a previous step in
the lifecycle model.

Step 16 – Decommissioning or disposal
Decommissioning or disposal may require certain procedures if the unit contains haz-
ardous materials for the user. This oil exploration machinery contains only hydraulic oil
and fuel and lubrication for its diesel engine, so no special safety procedures are re-
quired other than following environmental regulations.

The following steps can be considered as sub-steps for the IEC 61508 lifecycle
model step 10. The model has its own sub-steps for software development as depicted in
Figure 6.7, but this case project will use the process model described by EN 62061 for it
is more detailed than the model of IEC 61508 and thus is more useful as an informative
example of safety-related software development process model. The following steps are

 71

related to EN 62061 process model depicted in Figure 6.8 and are denoted as sub-steps
to step 10 of the IEC 61508 lifecycle model:

Step 10.1 – Recognize the control system part suggested for safety-related function
The first step in application design and implementation process is to select one of the
safety features listed in the safety requirement specification defined in step 9 of the IEC
61508 lifecycle model. In this step one has to identify the control system part that is to
implement these safety functions.

Step 10.2 – Divide the safety-related control function to function blocks
The selected safety function is divided into function blocks that are later allocated into
the related control system parts. This step and step 10.3 can be used in our case project
to identify which I/O- and PLC-modules should be affected by the safety function at
hand.

Step 10.3 – Create structure for the safety-related control system
In this phase the initial concept of the application architecture is created considering the
safety function at hand. In the case of our oil exploration machinery this step would
consist of specifying the possible control trails from joysticks to joystick control mod-
ules up to output modules. If redundant controls are needed, they are to be designed in
this step. Also designing a safe CAN communication scheme between the modules is
done here. This communication design process requires designing safety-related mes-
sage scheme for all the safety-related information to be sent on the bus.

Step 10.4 – Define the safety requirement details for each function block
Each function block is defined in more detail in this step. Their inputs and outputs are
specified and documented according to the knowledge acquired in Chapter 6 of this
thesis. The modules should be kept simple and generic enough to be able to re-use them
later during the handling of other safety functions.

Step 10.5 – Allocate the function blocks to the safety-related subsystems
The designed function blocks are allocated to subsystems, which could be a part of a
larger network of subsystems or a device, such as a sensor, actuator or safety PLC. The
subsystem in this step is more like an abstract device. The final devices are selected in
step 10.7 and 10.9. The safety requirements for the subsystem are the same as the ones
set on the function block(s) allocated to it. In this phase it is possible to return to a pre-
vious step in the process model to handle all the unhandled safety functions.

Step 10.6 – Verification
In step 10.6 the designed safety functions are verified to SRS.

 72

Step 10.7 – Select subsystem device
In step 10.7 a proper device for the subsystem formed in step 10.5 is selected. The se-
lected device must meet the requirements set to it in step 10.5. In practise this means
that components of proper SILCL are selected for implementing the safety function.

Step 10.8 – Design and develop a subsystem
In step 10.8 a subsystem is developed to meet the requirement set to it by the subsys-
tems allocated to it in step 10.5. This subsystem is one step lower than the subsystems
handled in step 10.5 and is software-based. This structure can however be allocated to a
device afterwards. Steps 10.7 and 10.8 are optional.

Step 10.9 – Design diagnostic functions
If the system requires diagnostic functions they can be designed in step 10.9. In our case
project, diagnostic functions would consist of monitoring the CAN traffic for lost mod-
ules or transmission errors. These errors may lead to disabling certain functions and
such behaviour can be designed in either this step of during the safety function phase in
step 10.3. Wiring problems such as shortcuts and wire breaks need also be detected.
Other safety function specific monitoring may also be required depending on the im-
plemented safety functions.

Step 10.10 – Define the achieved SIL of the assumed structure for each safety-
related control function
The designed structure is analysed and validated to SRS. If the requirements aren’t met,
returning to relevant step is required.

Step 10.11 – Document the designed system structure
After the system has been successfully validated and all the safety functions have been
determined a SIL the system structure will be documented.

Step 10.12 – Implementation of the designed safety-related control system
Finally the designed control system can be implemented. This last step of EN 62061
process model can be considered as the step 12 of IEC 61508 lifecycle model and the
last part in the design process of safety-related machinery.

 73

 CONCLUSION 9

Compared to “traditional” non-safe machine automation projects, safety-related projects
require large amounts of documentation and supervision. If the project aims for a one of
the SIL or PL safety certifications, all the required characteristics need be fulfilled with
proper evidence of integrity. This might become a problem with projects requiring agile
methods of project management. The safety standards state a precise process for change
management which includes re-analysing all the affected parts of the system, which
may multiply the amount of work needed compared to a project which specification
remains unchanged during its whole design phase. The standards evolve and follow the
trends in the industry and its system development methods, so a guide for safety-related
system development with agile methods can be anticipated in the future.

An important and time consuming part of the development process is the risk
analysis phase. It requires a lot of experience on system safety and knowledge on the
mechanics of the machinery to be developed. It also requires preferably various analys-
ers and at least two different approaches on the system to become comprehensive and
reliable. Common cause failures should be appointed special attention for they may not
be as easily detected as single source failures but may cause major sources of system
failures. Therefore redundancy should be favoured in the most critical system parts and
all the relevant parts connected to them, such as power sources or processors.

The amount of information to be adopted to be able to develop safety-related
machinery and software is great. Therefore it is worth generating a common information
source within the company from where all relevant information can easily be found.
This source should include all the relevant safety standards for a more detailed infor-
mation source and also simplified versions of the most important topics for the company
for a lighter and more readable source of information. Many companies have their own
coding rules for non-safe programming, but these rules enhanced with the safety-related
coding rules should be made available perhaps with some agreed companywide coding
conventions.

As the amount of required documents in different phases of the project is large,
document templates of all the required document types should be made available with
proper use manuals to ensure all required information is filled. All project material in-
cluding document and meeting minutes should be made available to all personnel in-
volved in the development process to ensure that all relevant information can be taken
into account in the development process. It is really important to keep the generated
documentation up to date to enable traceability, which is one of the most important is-
sues in the certification process.

 74

As the amount of different requirements on all the separate safety integrity level

differs greatly, should all the requirements be made available according to the integrity
level aimed for. The standards present the data based on its topic, but browsing through
all of these standards looking for the requirements only for a single integrity level may
become quite laborious. Therefore the company-based information centre should also
include sections for each of the safety integrity levels (or performance levels is follow-
ing ISO 13849), which would include information concerning only the relevant integrity
level.

The amount of work required to produce safety-related project may seem really
laborious compared to “traditional” non-safe projects, but if the requirements and in-
formation concerning the process is made easily available and the documents easy to
produce, will the process become easier to implement. Also working alongside a certifi-
cation body and/or any other safety specialist body during the whole project design pro-
cess makes it faster and easier to go through successfully.

 75

 FUTURE 10

The oil exploration machinery used as the case chapter may not be implemented as a
safe project in the near future as the markets don’t require safety certification from the
equipment. Also the economic situation around the globe is developing in a direction
that may not favour these more expensive products over cheaper and non-certified
products. However, as the amount of automation in mobile and process machinery and
the use of autonomous vehicles in for example harbours and warehouses increases, so
will the demand for safety certified hardware.

At the moment the development processes presented by safety standards may be
quite unfamiliar to developers and the amount of different standards is quite vast and
colourful. The requirements presented by law on safety of machinery may differ from
country to country. European Union is unifying these requirements within its member
countries and parallel standards are being unified for example ISO 13849 and IEC
61508. Unified practises and requirements will simplify and reduce the amount of work
required to follow all the different sources of requirements and guides. The standards
are going to develop as their use becomes more common and more guidance is required
from them. For example at the moment they still lack precise rules for agile process
methods and use of object oriented coding languages.

The increased call for safety certified equipment boosts the market for different
types of certified hardware, increasing the competition and decreases the cost of such
equipment. Perhaps at some point more than half of the equipment on the market has at
least some safety capabilities. At the moment CrossControl Oy has a SIL2-capable dis-
play computer available and in use in railway applications and a compatible I/O-module
is coming.

The final report of VTT research project Ohjelmaturva made an assumption that
multicore processors may overcome the need to use multiple separate processors in
safety-certified PLCs. It also predicted that automatic safety code generation from de-
sign models may become available in the future. New safety functions for autonomous
vehicles in the areas of situation and environment awareness, collision prediction and
fleet management may become available as the usage experience on these areas in-
crease. There are several projects running at the moment that research these topics, one
of which was FIMA FAMOUS for which this thesis was made for.

 76

REFERENCES

[1] 3S-Smart Software Solutions GmbH. CoDeSys Safety - Integrated Safety solutions
for all areas of application. [WWW]. Available: http://www.3s-
software.com/index.shtml?en_CoDeSysSafety_e

[2] Anttila, R. 2006. Master of Science Thesis. The Application of a PLC-based Safety-
related System. Tampere. 88 p.

[3] CrossControl Oy. CCpilot XM. [WWW]. Referenced: 5.2.2012. Available:
http://www.crosscontrol.com/en-US/Products/Display-computers/CCpilot-XM.aspx

[4] CrossControl Oy. CrossFire CX. [WWW]. Referenced: 5.2.2012. Available:
http://www.crosscontrol.com/en-US/Products/I/O-controllers-and-devices/CrossFire-
CX.aspx

[5] CrossControl Oy. Internal educational material: SP 61508 kurs 2.

[6] Goddard, P.L., Software FMEA techniques, Proceedings Annual Reliability and
Maintainability Symposium, 2000, 118–123 p.

[7] GreenHills Software. INTEGRITY Multivisor. [WWW]. Available:
http://www.ghs.com/products/rtos/integrity_virtualization.html

[8] Gruhn, P., Cheddie, H., Safety Instrumented Systems: Design, Analysis, and Justifi-
cation, 2nd Edition. ISA. 2006.

[9] Haapanen, P., Helminen A., Failure mode and effects analysis of software-based
automation systems, STUK, Dark Oy, Vantaa, 2002, 37 p.

[10] Hietikko, M. 2003. Turvallisen tekniikan seminaari: Langattoman ohjauksen ja
etäohjauksen turvallisuus. [WWW]. Available: http://koti.mbnet.fi/asaf/05_hietikko.pdf
(in finnish)

[11] Hietikko, M., Malm T., Alanen J. 2009. KOTOTU. Koneiden ohjausjärjestelmien
toiminnallinen turvallisuus – Ohjeita ja työkaluja standardien mukaisen turvallisuuspro-
sessin luomiseen. VVT Tiedotteita 2485. Espoo. 99p. (in finnish)

[12] Huelke, M., BGIA. Lubineau, P., Renault D., CETIM. Lyhyt yhteenveto ohjelmis-
tovaatimuksissa standardissa ISO 13849-1. 2005. Translation: Sundquist, M. [WWW].
Available: http://koti.mbnet.fi/asaf/OhjelmistotMS.pdf. (in finnish)

 77

[13] IEC 61131-6. 2010. Programmable Controllers – Part 6: Functional Safety. 91p.

[14] Ifm electronic. CR0232 Extended Controller. [WWW]. Referenced: 5.2.2012.
Available: http://www.ifm.com/ifmus/web/dsfs!CR0232.html

[15] Irwin, J.D. 2011. The Industrial Electronics Handbook: Industrial Communication
Systems. Taylor and Francis Group. Available:
http://www.crcnetbase.com/doi/abs/10.1201/b10603-
23?prevSearch=%255BFulltext%253A%2Bbus%2Bsafety%255D&searchHistoryKey=

[16] ISO - International Organization for Standardization. [WWW]. Available:
http://www.iso.org/iso/home.htm

[17] Koneasetus. Valtioneuvoston asetus koneiden turvallisuudesta 12.6.2008/400.
[WWW]. Available: http://www.finlex.fi/fi/laki/ajantasa/2008/20080400. (in finnish)

[18] Konedirektiivi. Euroopan parlamentin ja neuvoston direktiivi 2006/42/EY. Eu-
roopan unionin virallinen lehti. 2006. 63p. (in finnish)

[19] KW-Software. Safe software solutions according to IEC 61508 (SIL2 up to SIL3).
[WWW]. Available: http://www.kw-software.com/com/iec-61508-safety/2990.jsp

[20] Malm, T., Kivipuro, M. 2000. Safety validation of complex components – Valida-
tion by analysis. VTT Research notes 2022. Espoo. 46 p. Available:
http://www.vtt.fi/inf/pdf/tiedotteet/2000/T2022.pdf. (in finnish)

[21] Malm, T., Kivipuro, M. 2004. Turvallisuuteen liittyvät ohjausjärjestelmät koneso-
velluksissa - Esimerkkejä. VTT Research notes 2264. Espoo. 99 p. Available:
http://www.vtt.fi/inf/pdf/tiedotteet/2004/T2264.pdf. (in finnish)

[22] METSTA - Metalliteollisuuden Standardisointiyhdistys ry. Standardien EN 954-1
ja ISO 13849-1 vertailu. [WWW]. Available:
http://www.metsta.fi/ipubs/docs/machinery/news/2009/Vertailu_954_vs_13849.pdf (in
finnish)

[23] Ohjelmaturva. 2011. Ohjelmaturva: final report. 109p. (in finnish)

[24] Paalijärvi, Jani. 2010. Master of Science Thesis. Development of Safety-Critical
Software using Agile Methods. Tampere.

 78

[25] Pilz GmbH & Co. KG. 2011. Toiminnallista turvallisuutta käsittelevät standardit.
[WWW]. Referenced 30.5.2011. Available:
http://www.pilz.com/knowhow/standards/standards/functional_safety/articles/00242/ind
ex.fi.jsp (in finnish)

[26] Reinert, D., Schaefer, M., Sichere Bussysteme in der Automation, Hüthig Verlag,
Heidelberg, Germany. 2001, 32 p.

[27] Ristord, L., Esmenjaud, C., FMEA Per-oredon the SPINLINE3 Operational System
Software as part of the TIHANGE 1 NIS Refurbishment Safety Case. CNRA/CNSI
Workshop 2001–Licensing and Operating Experience of Computer Based I&C Systems.
Ceské Budejovice. 2001.

[28] SFS-EN 954-1. 1997. Koneturvallisuus. Turvallisuuteen liittyvät ohjausjärjestelmi-
en osat. Osa 1: Yleiset suunnitteluperiaatteet. 1st Edition. Helsinki. Suomen standardi-
soimisliitto SFS. 68 p. (in finnish)

[29] SFS-EN ISO 12100. 2003. Koneturvallisuus, perusteet ja yleiset suunnitteluperiaat-
teet. 1st edition. Helsinki. Suomen standardisoimisliitto SFS. (in finnish)

[30] SFS-EN ISO 13849. 2008. Koneturvallisuus. Turvallisuuteen liittyvät ohjausjärjes-
telmien osat. 2nd edition. Helsinki. Suomen standardisoimisliitto SFS. (in finnish)

[31] SFS-EN ISO 14121. 2007. Koneturvallisuus. Riskin arviointi. Osa 1: Periaatteet.
1st edition. Helsinki. Suomen standardisoimisliitto SFS. 67 p. (in finnish)

[32] SFS-EN EN 62061. 2009. Koneturvallisuus. Turvallisuuteen liittyvien sähköisten,
elektronisten ja ohjelmoitavien elektronisten ohjausjärjestelmien toiminnallinen turvalli-
suus. Helsinki. Suomen standardisoimisliitto SFS. 201 p. (in finnish)

[33] SS-EN 50128. 2009. Railway applications – Communications, signalling and pro-
cessing systems – Software for railway control and protection systems. Stockholm. SIS
Förlag AB. 106 p.

[34] SS-EN IEC 61508. 2010. Functional safety of electrical/electronic/programmable
electronic safety-related systems. 2nd edition. Stockholm. SIS Förlag AB.

[35] Siirilä, T. 2008. Koneturvallisuus, EU:n direktiivien ja standardien soveltaminen
käytännössä. 2nd revised edition. Keuruu. Otavan Kirjapaino Oy. 462 p. (in finnish)

[36] Siirilä, T. 2008. Koneturvallisuus, Ohjausjärjestelmät ja turvalaitteet. 2nd revised
edition. Keuruu. Otavan Kirjapaino Oy. 472 p. (in finnish)

 79

[37] Siirilä, T., Kerttula T. 2009. Koneturvallisuuden perusteet. 2nd revised edition.
Keuruu. Otavan Kirjapaino Oy. 206 p. (in finnish)

[38] SKS Automaatio Oy. SIL-turvallisuustasot. [WWW]. Available:
http://www.sks.fi/inet/sks/flow.nsf/docs/sil_turvallisuustasot?OpenDocument&ExpandS
ection=1%2C3%2C2#_Section1 (in finnish)

[39] Storey, N. Safety-Critical Computer Systems. Addison Wesley, 1996.

[40] Sundqvist, M (toim.); Hietikko, M; Seppälä, J; Nieminen, J. 2008. Teollisuusauto-
maation tiedonsiirtoliikenne. Turvaväylät. Espoo. Inspecta Koulutus Oy. 159 p. (in fin-
nish)

[41] Sundqvist, M. 2008. Sundcon-training slides. 05_verkottuminen.ppt. (in finnish)

[42] SYSGO AG. PikeOS ROS and virtualization concept. [WWW]. Referenced:
5.2.2012. Available: http://www.sysgo.com/products/pikeos-rtos-and-virtualization-
concept/

[43] The SafeCer Consortium. 2011. State-of-practice and state-of-the-art agreed over
workgroup. Version 1.1. [WWW]. Available:
http://www.safecer.eu/documents/pSafeCer_Deliverable_D1_0_1_StateOfThePracticeA
ndTheArt_v1.1.pdf

[44] United Kingdom Ministry of Defence. Defence Standard 00-58 - HAZOP Studies
on Systems Containing Programmable Electronics - Part 1 Requirements. Issue 2. 2000.
24 p.

 80

APPENDIX A: SOFTWARE ARCHITECTURE
RECOMMENDATIONS ACCORDING TO IEC 61508

Technique/measure SIL1 SIL2 SIL3 SIL4

Fault Detection ‐ R HR HR

Error detecting codes R R R HR

Failure assertion programming R R R HR

Diverse monitor techniques (with independence between the
monitor and the monitored function in the same computer)

‐ R R ‐

Diverse monitor techniques (with separation between the
monitor computer and the monitored computer)

‐ R R HR

Diverse redundancy, implementing the same software safety
requirements specification

‐ ‐ ‐ R

Functionally diverse redundancy, implementing different
software safety requirements specification

‐ ‐ R HR

Backward recovery R R ‐ NR

Stateless software design (or limited state design) ‐ ‐ R NR

Re‐try fault recovery mechanisms R R ‐ ‐

Graceful degradation R R HR HR

Artificial intelligence ‐ fault correction ‐ NR NR NR

Dynamic reconfiguration ‐ NR NR NR

Modular approach HR HR HR HR

Use of trusted/verified software elements (if available) R HR HR HR

Forward traceability between the software safety require‐
ments specification and software architecture

R R HR HR

Backward traceability between the software safety require‐
ments specification and software architecture

R R HR HR

Structured diagrammatic methods HR HR HR HR

Semi‐formal methods R R HR HR

Formal design and refinement methods ‐ R R HR

Automatic software generation R R R R

Computer‐aided specification and design tools R R HR HR

Cyclic behaviour, with guaranteed maximum cycle time R HR HR HR

Time‐triggered architecture R HR HR HR

Event‐driven, with guaranteed maximum response time R HR HR ‐

Static resource allocation ‐ R HR HR

Static synchronisation of access to shared resources ‐ ‐ R HR

R = recommended, NR = not recommended, HR = highly recommended

 81

APPENDIX B: SOFTWARE ARCHITECTURE
RECOMMENDATIONS ACCORDING TO EN 50128

Technique/measure SWSIL0 SWSIL1 SWSIL2 SWSIL3 SWSIL4

Defensive programming ‐ R R HR HR

Fault detection & diagnosis ‐ R R HR HR

Error correcting codes ‐ ‐ ‐ ‐ ‐

Error detecting codes ‐ R R HR HR

Failure assertion programming ‐ R R HR HR

Safety bag techniques ‐ R R R R

Diverse programming ‐ R R HR HR

Recovery block ‐ R R R R

Backward recovery ‐ NR NR NR NR

Forward recovery ‐ NR NR NR NR

Re‐try fault recovery mechanisms ‐ R R R R

Memorising executed cases ‐ R R HR HR

Artificial intelligence ‐ fault correction ‐ NR NR NR NR

Dynamic reconfiguration of software ‐ NR NR NR NR

Software error effect analysis ‐ R R HR HR

Fault tree analysis R R R HR HR

R = recommended, NR = not recommended, HR = highly recommended

