
ZEINAB ASHJAEI
LINUX KERNEL FUNCTIONS FOR AN EMBEDDED TAR-
GET PLATFORM

Master of Science thesis

Examiners: Prof. Jari Nurmi
Dr.Tech. Tapani Ahonen

Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 1st September 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

ZEINAB ASHJAEI: Linux Kernel Functions for an Embedded Target Platform
Tampere University of Technology
Master of Science thesis, 56 pages
April 2016
Master’s Degree Programme in Information Technology
Major: Software Systems
Keywords: Operating system, Linux, Porting Linux kernel, Embedded systems, Linux
Kernel, COFFEE RISC Core

In the earliest years of computer systems revolution in the 1930-40s, the computers
were extremely expensive and huge, and they were dedicated to performing a single
task or a collection of targeted tasks. Nowadays, the tendency of computer sys-
tems development is towards some small, fast, and very powerful tools, gadgets and
equipment which have become part of our everyday life. These systems are called
embedded systems. Although they were used only to control electromagnetically
telephone switches at the beginning, their capabilities have improved gradually over
the past decade. Obviously, this is a vital requirement for embedded systems to
be able to connect to some networks in order to send and receive data. It could
increase the level of complexity in embedded systems. Hence, they are required to
have more memory and interfaces, as well as the services of an operating system
to do memory management, network management, file systems and etc. Although
there are many different kinds of embedded operating systems, the Linux OS is
chosen in our case. Now the question is how the Linux operating system could be
integrated into the embedded system hardware platform and make it compatible
with the user applications.

If the target platform is one of the platforms already supported by the Linux, the
porting procedures could be accomplished easily by using the codes and files provided
by the Linux kernel. Otherwise, it is required to start coding from scratch. The
target embedded system which is used in this thesis is called COFFEE Core. It is
a RISC-based embedded processor that has been designed at Tampere University
of Technology. COFFEE Core is considered as a general-purpose platform which is
mainly designed for embedded systems. Since the COFFEE Core is not developed
in the Linux kernel tree, it is required to integrate some pieces of code which should
be written exclusively for COFFEE Core in Linux kernel tree. Accordingly, some
modification in the hardware-independent sections is required.

Therefore, the main goal of this thesis is to illustrate what it means to porting Linux
OS to a newly designed architecture. It provides a comprehensive programming

ii

paradigm of the process of porting and explains how and in which order the porting
could be fulfilled. Moreover, the architecture of Linux itself is presented and its
different components will be reviewed.

iii

PREFACE

The research work related to this Master of Science thesis is conducted in the de-
partment of Electronics and Communications Engineering, Tampere University of
Technology, Finland.

I would like to express my great gratitude to my supervisors, Dr.Ahonen and Prof.
Jari Nurmi for the given opportunity and their support, guidance and patience
during my project.

My appreciation also extends to all my friends who were of great help and sup-
port throughout my whole education. Your friendship makes my life a wonderful
experience.

My parents deserve a particular note of thanks: I am honored to have you as my
parents. Thank you for giving me a chance to prove and improve myself through all
my walks of life. I love you.

Finally, I would like to thank my lovely husband for his encouragements to take on
this study and putting up with me for the past two years. If I ever lost interest, he
kept me motivated. Thank you Farshad.

Tampere, 8.2.2016

Zeinab Ashjaei

iv

TABLE OF CONTENTS

1. Introduction . 1

1.1 Motivation: . 1

1.2 Thesis Outline: . 2

2. Linux Operating System, Concepts And Architecture 3

2.1 Components of Linux System . 4

2.2 Architecture of the Linux Operating System 6

2.2.1 Kernel Mode: . 7

2.2.2 User Mode: . 7

2.2.3 Interaction between the user and kernel space 8

2.3 Components of the kernel . 9

2.3.1 File Systems . 10

2.3.2 Process Management . 13

2.3.3 Memory Management . 17

2.3.4 Device Drivers . 20

2.3.5 Networking . 21

3. Platform Architecture . 23

3.1 Coffee RISC Core Overview . 24

3.1.1 Instruction set . 24

3.1.2 Processor Operating Modes . 25

3.1.3 Registers . 27

3.1.4 Interface of the core . 27

4. Embedded Linux Systems . 30

4.1 Basic Concepts . 30

4.2 Generic Architecture of an Embedded Linux System 31

4.3 Software Elements of Embedded Systems 33

v

4.3.1 Cross-development Toolchain . 34

4.3.2 Bootloader: . 38

4.4 Kernel: . 40

5. Porting the Linux Kernel to COFFEE RISC Core 41

5.1 Toolchain: . 41

5.2 Linux Kernel Modification: . 43

5.2.1 The header files: . 45

5.2.2 Boot Procedure: . 46

5.3 Building the kernel Image: . 46

5.4 Starting the kernel: . 47

5.4.1 The first kernel thread: . 48

6. Results and discussion . 49

6.1 Issues: . 49

6.2 Achievements: . 49

7. Conclusions . 51

7.1 Summary: . 51

7.2 Future work: . 52

Bibliography . 53

vi

LIST OF FIGURES

2.1 Why are you interested in embedded Linux[10] 4

2.2 Components of the Linux system [36] 5

2.3 General Architecture of a Linux System [46] 6

2.4 The relationship between application, C library, and the kernel when
calling printf() . 8

2.5 Architectural Perspective of the Linux Kernel 10

2.6 A directory tree in Linux . 11

2.7 The VFS relation with the file systems 13

2.8 State of processes flow chart . 15

2.9 Conversion of virtual and physical memory in Linux memory archi-
tecture . 19

2.10 External Fragmentation and Internal Segmentation 20

2.11 Top level view of Linux Network Sub-system 22

3.1 The programmer’s view of COFFEE Core register sets 28

3.2 Interfacing the COFFEE RISC Core 29

4.1 Embedded Systems Model . 32

4.2 Software Components of a Linux Embedded System 33

4.3 Flow chart of cross-platform development 34

4.4 Types of toolchains . 36

4.5 Cross compilation vs native toolchain 37

vii

4.6 Relation between kernel headers, C library, application and kernel . . 38

4.7 Linux Boot Process . 39

viii

LIST OF TABLES

3.1 COFFEE RISC Core instruction set.[27] 26

5.1 Compatibility between different versions of toolchain components . . 43

ix

LIST OF ABBREVIATIONS AND SYMBOLS

ABI Application Binary Interface
API Application Programming Interface
ASP Application Specific Processor
BIOS Basic Input/Output System
BSP Board Support Package
CCB Core Control Block
CISC Complex Instruction Set Computer
CPU Central Process Unit
CR Condition Register
DSP Digital Signal Processor
FHS File Hierarchy Standard
FIFO First In First Out
FTP File Transfer Protocol
GCC GNU Compiler Collection
GPL General Public License
GPP General Purpose Processor
GPU Graphic Processor Unit
GRUB GRand Unified Bootloader
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IP Internet Protocol
IPC Inter Process Communication
LIFO Last In First Out
MMU Memory Management Unit
NTP Network Time Protocol
OS Operating System
PC Personal Computer
PCB Peripheral Control Block
PFN Page Frame Number
PID Process Identification
POSIX Portable Operating System Interface for Unix
RAM Random Access Memory
RISC Reduced Instruction Set Computing

x

ROM Read Only Memory
RTOS Real Time Operating System
SCI System Call Interface
SJF Shortest Job First
SPR Special Purpose Register
SQL Structured Query Language
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
TUT Tampere University of Technology
URL Uniform Resource Locator
VFS Virtual File System
XFS X File System

1

1. INTRODUCTION

In this chapter, the motivation of the thesis and its outline will be presented.

1.1 Motivation:

Although the modern world has been integrated with the computing power in every
aspect of human life, there has been a new trend from traditional desktop com-
puters towards hidden computing power which are known as embedded systems.
An embedded system can be defined as a kind of computer which is designed for
a specific purpose. They are widely integrated in devices from simple ones such as
mp3 players to complicated systems deployed in process control, defense systems,
telecommunication systems [29].

Despite the fact that there are embedded devices that are built efficiently without
an operating system in the market, it is extremely rare to find an embedded system
working without a real OS. In fact, the embedded systems perform a number of com-
plex functions in complicated devices in medical equipment, industrial applications
and consumer electronics. Therefore, we need to integrate an OS in embedded sys-
tems to organize and handle advanced functionality and make the embedded system
more reliable and secure.

Operating System(OS) is a kind of software that acts as an interface between the
hardware in lower layer of a computer system and the higher one which is related
to user or applications. It is more convenient to use a computer by providing an
interface for the user. The Operating system is responsible to manage the system
resources, memory allocation, controlling input and output devices and so on [24].
In the last few years, by developing lighter operating systems, the usage of them
in embedded systems has increased dramatically. Among various embedded oper-
ating systems, Linux has gained popularity due to its numerous advantages in the
embedded system field. Linux is an open-source OS that makes it possible to be

1.2. Thesis Outline: 2

modified and redistributed by vendors or developers freely. Obviously, the Linux
kernel source tree should be compatible with the underlying hardware for the em-
bedded system design to work properly. Since different platforms are different in
their CPU’s, memory interfaces, I/O buses, and their software binary standard re-
quirements, the Linux OS code needs to be modified and recompiled to be able to
run on every single platform. This procedure is called porting.

Earlier released versions of Linux operating system were extremely unportable and
were written so that could run only on Intel 386 machines. The first attempt to make
Linux portable started in 1993, when Linus Torvalds was offered to port Linux to
Digital Alpha architecture. This project, however, took about one year and made
Alpha architecture the second officially supported architecture in the Linux tree.
This porting project has been performed by re-writing some pieces of the kernel to
make it fundamentally portable. Then, the 1.2 kernel versions supported different
architectures like MIPS, SPARC, and Intel x86. Currently, the number of supported
architectures in the latest version of the Linux kernel, has increased to 20 with
the addition of Motorola, IBM POWER, M32, x86-64, etc. Moreover, each of the
mentioned architectures supports various chip and machine types as well [38].

In early 2000’s, a group of hardware designers has developed a RISC-based multi-core
processor, COFFEE Core, in Tampere University of Technology. Since it could not
be categorized in one of the already supported Linux architectures, the Linux kernel
should be ported exclusively for the COFFEE Core. The present thesis investigates
the modifications needed to port a Linux kernel to make it run on this new platform.

1.2 Thesis Outline:

This thesis is divided into 6 chapters. Chapter 1 is an introduction part in which
the motivation and structure of the thesis are provided. The second chapter focuses
on Linux operating system and explains its components, architecture, and kernel
sub-systems. Chapter 3 includes a short introduction of our target system, COF-
FEE RISC Core. Chapter 4 illustrates details about embedded Linux systems and
their generic architecture. Moreover, Software elements of an embedded system are
described. Chapter 5 is the implementation part of this thesis that clarifies the
required steps to port the Linux kernel to a new architecture. The conclusion of the
thesis is presented in chapter 6.

3

2. LINUX OPERATING SYSTEM, CONCEPTS

AND ARCHITECTURE

Although Linux was targeted to desktop PCs at the beginning of its creation, nowa-
days Linux is the preferred operating system for almost all new embedded device
projects like Internet appliances, telecom routers, switches, and automotive applica-
tions. Providing a robust, flexible kernel and run-time infrastructure, Linux can be
ported to various microprocessors and platforms integrated into embedded systems.

Linux is a full featured open source UNIX system that has been developed for
80386 processor—the first true 32-bit processor in Intel’s range of PC-compatible
CPUs—by a Finnish student, Linus Torvalds in 1991 at the University of Helsinki.
Since then, many open source communities contributed to the development of Linux
voluntarily over the Internet to improve its features gradually. On the other hand, it
has been extended by hardware vendors to support new processors, buses, devices,
and protocols [36].

While choosing a proper OS running on a desktop computer, there are few options:
Windows, Mac, or Linux. However, the matter is much more complicated for an
embedded system because of the wide diversity of embedded applications. Some of
the popular operating systems in Embedded field are QNX, VxWorks, Symbian and
Embedded Linux [37].

Despite the real variety in the use of these operating systems, Linux gained market
share among them and became the most popular OS in embedded system projects.
A statistical analysis performed by UBM Tech Electronics shows that Linux is being
used in more than 50 percent of embedded projects [10]. Also, this study identifies
the main factors that influenced on Linux embedded developers’ decision to use
Linux in their projects. Although Linux is distributed under the GNU General
Public License (GPL), according to the data in the figure 2.1, it is apparent that
the key to the success of Linux is the availability of its source code and build tools

2.1. Components of Linux System 4

0 10 20 30 40 50 60 70 80

Career Development

Memory requirments

Avoid Commercial

Control of Features

Performance

Built-in Drivers / Network

Adaptability/extensibility

Low Cost

Percent

2013

2012

2011

Figure 2.1 Why are you interested in embedded Linux[10]

which are accessible without any restriction.

Besides those mentioned items, Linux is famous for its exceptional networking capa-
bilities which are an essential factor in embedded systems. Also, due to the modular
nature of Linux kernel, it allows developers to remove utilities and system services
that are not fundamentally in an embedded environment. However, the most in-
teresting feature of Linux is its portability that provides the possibility to compile
Linux and run it on a huge number of processors and platforms [29].

The next section, describes components of Linux systems and the structure of the
Linux kernel in more details.

2.1 Components of Linux System

The Linux operating system is based on a layering structure that is comprised of
three primary components:[36, 43]

1. Kernel: Is a piece of software written in C language that is considered as the
central part of the Linux operating system. Technically speaking, it consists
of different modules providing an abstraction layer so that it hides underlying
hardware details from the system or running application programs. There-
fore, the kernel itself is responsible for interacting with the hardware directly.
Moreover, it contains many critical processes needed for the operating system
to accomplish.

2.1. Components of Linux System 5

Kernel Modules

Linux Kernel

System Shared Libraries

System

management

Programs

User Processes
User Utility

Programs
Compilers

Figure 2.2 Components of the Linux system [36]

2. System shared Library: Is a standard set of functions through which ap-
plication programs access the kernel’s features. System libraries implement
most of the functionality of the operating system and do not require kernel
code privileges. C library, for example, is one of the most important system
libraries available.

3. System Utility To be able to manipulate a Linux system, the kernel and
system libraries are not sufficient. Rather then some utilities are required
to access the commands or input given to the system that gets interpreted
and executed. These vital utilities are called system utility that is defined
as programs responsible for doing specialized, user level tasks. Some system
utilities, for example, handle initialization and configuration of the systems or
accept login requests from terminals and update log files, some others respond
to incoming network connections or privilege related tasks and so on. Various
Linux distributions use similar system utilities with the same features but
different in their implementations.

Figure 2.2 illustrates the structure of a full Linux system consisting of various com-
ponents discussed above. There are loadable kernel modules at the lowest layer of
the hierarchy so that the Linux kernel can load them dynamically at run time. The
Linux kernel is situated on the upper layer that includes all the necessary features
of an operating system. The next layer belongs to the system libraries providing
different types of functionality such as kernel system calls that will be discussed
further in the next chapter. User mode or system mode programs that are called
utilities are settled in the top layer of this hierarchy.

2.2. Architecture of the Linux Operating System 6

System Call Interface

Kernel

Arch-dependent Kernel Code

User Applications

GNU C Library

Hardware Platform

User

Space

Kernel

Space

Figure 2.3 General Architecture of a Linux System [46]

2.2 Architecture of the Linux Operating System

A Linux-based operating system structure is in much the same way as other oper-
ating systems. It consists of different layers which have their own functionality and
special mechanism to make them communicate with each other. Fundamentally,
when Linux is running, it could be divided into two parts. Indeed, Linux can run
either in User Mode or Kernel Mode. User mode and kernel mode occur in the user
space and kernel space respectively, and represent two distinct address spaces [3].

Figure 2.3 represents the overall architecture of a generic Linux system. As can be
seen, on the top of hardware platform there is the kernel space comprising architec-
ture dependent kernel code. It enables Linux to operate on a vast array of hardware
platforms. Furthermore, the kernel itself and system call interfaces are located in
the kernel space too. The user space, belonging to user applications, resides above
the kernel space. There is also the GNU C Library that acts as an interface between
the user space applications and the kernel. Also, the lowest level refers to the hard-
ware platform. This layer includes system physical equipment from visible ones like
the monitor, keyboard, mouse, graphic or network card to non-obvious parts such
as the CPU or RAM in the system.

In this section, user and kernel mode and also the work-flow between them will be
discussed briefly.

2.2. Architecture of the Linux Operating System 7

2.2.1 Kernel Mode:

All the kernel code is executed in a privileged mode with full access to physical
resources of the system. It is called as Kernel Mode. In this mode, the kernel
provides protected access to processes and invoke their required system services to
accomplish their procedures.

Each kind of CPU defines a special mechanism that allows processes to switch from
user mode to kernel mode and vice versa. Before discussing their interaction pro-
cedures, it is necessary to describe system calls. Linux has implemented a set
of interfaces for user programs so that they could access hardware layer resources
and also other operating system services. These interfaces are called system calls.
System calls range from the familiar functions such as read() and write(), to the
exotic, like sigaltstack() or getresuid().[3]

The system calls fulfill two main purposes:[22]

• System calls allow user space applications to interact with the hardware with-
out concerning about the different types of low-level devices by providing an
abstract hardware interface. For instance, when reading or writing to a file,
the user space application does not care about the type of underlying disk,
media or file system, rather invokes the related system calls instead, and they
perform the reading or writing tasks.

• System calls enhance system security and stability. As long as the kernel
resides between the hardware resources and user space applications, it can
inspect processes based on their permission, the kind of user or other criteria.
Hence, the kernel could prevent any harm to the system.

2.2.2 User Mode:

The user mode is defined as the protected space in the memory where the user
applications or system programs are executed. In this mode, direct accesses to
system hardware, kernel programs or kernel data structures are prohibited. Instead,
they use system libraries to access kernel functions which are reside in lower levels
of operating system.

2.2. Architecture of the Linux Operating System 8

#include<stdio.h>
Int main(){
.
.
Printf(“greetings”)
.
.
Return 0;

}

Standard C Library

User

Mode

Kernel

Mode

Write()

System CallWrite ()

Figure 2.4 The relationship between application, C library, and the kernel when calling
printf()

Generally speaking, a user space application uses an Application Programming Inter-
face (API) instead of calling system calls directly. In a simple term, Linux provides
a standard API around the system calls to make them convenient to use. The caller
does not have to know how the system call has been implemented internally. What
are important for the caller to work correctly are the format of the API and the
return value of the system call. In Linux world, APIs follows the POSIX standards
which are composed of a set of IEEE standards. APIs in a Linux system are imple-
mented based on the C library, including standard C library functions and system
calls.[2, 22]. Figure 2.4 depicts the role of a C Library and the relationship between
the user space application, C library, and system call when calling printf () function
in user space. The printf () invokes its counterpart in C library that is printed.
Then the C library converts it to write () function. finally, the write function of the
system call is called to fulfill the print () command received from the user space.

2.2.3 Interaction between the user and kernel space

In Linux operating system mechanism, the procedure of executing system calls com-
prises of 4 stages:[48]

2.3. Components of the kernel 9

1. While a user application invokes a system call; an interruption is produced to
inform the kernel about the related system call. Each system call is associated
with a number. All the assigned numbers are maintained in an indexed table to
retrieve more easily. The user space program puts the number of the respective
system call in a special register called eax before context switching to kernel
mode.

2. The system switches to kernel mode and control is taken over by the ker-
nel. The specified system call is obtained from the eax register by using
sys call table. Then, the related entrance address is loaded.

3. The kernel jumps to the system call entry, and it executes the hardware-
dependent CPU instruction on behalf of the user space program.

4. Finally, the system call ends and the system returns to user space to resume
the running program.

In the next section, the kernel will be explored from the functional point of view,
and some of the most critical subsystems of the Linux will be reviewed briefly.

2.3 Components of the kernel

As explained earlier, the kernel is considered as the heart of the operating system
whose responsibility is shortened as a resource manager. Whether the resource is
a CPU, memory, or Input/Output devices, it manages and mediates access to the
resources of the system between multiple user applications that are competing to
consume resources.

The Linux kernel provides major services for all parts of the operating system that
are required by either other parts of the OS or the user applications. These services
are process management, memory management, device management, handling file
systems and networking. The kernel also provides methods for synchronization and
communication between processes called inter-process communication or IPC [45].

Figure 2.5 shows the internal architecture of the Linux kernel. As can be seen, the
kernel could be divided into five different subsystems. Each of them performs a
defined functionality and offers it to other subsystems. This configuration is also
evident in the kernel source code, where each of these subsystems is written in their
sub-trees.

2.3. Components of the kernel 10

Application Programs

CPU RAM Disc Serial Ports
Network

Interfaces

Process

management

Memory

management
File Systems

Device

Control
Networking

Platform

Dependent Code
Virtual Memory

Block Drivers

Character

Drivers
NIC Drivers

User Space

Kernel Space

File Systems
Network

Subsystem

Hardware

Level

Figure 2.5 Architectural Perspective of the Linux Kernel

2.3.1 File Systems

The Linux operating system has a unique integrated approach to its design that
is based on files. It is worth to know that in Linux, everything is configured as a
file. The concept covers not only text files, images or compiled programs, but also
directories, partitions or hardware device drivers [7].

File:

As illustrated above, everything is treated as a file. Conceptually, files are nothing
more than a data container structured as an ordered string of bytes. To be more
accurate ,"A file is a named collection of related data that appears to the user as a
single, contiguous block of information and that is retained in storage"[16]. To the
user, files could be seen in a tree-structured name-space, as shown in Figure 2.6.
Each file is distinguished by a name that is unique within the directory in which the
file is located.

Unlike in the structure of Windows that has separate starting points for each file or
device, there is just one source for everything in Linux. As can be seen in the figure
above, this is the top-level directory of the tree which is called the root or Slash (/).

2.3. Components of the kernel 11

/

dev home bin usr

fd0 hda ls cp

. . .

.

. . .

. . .

. . .

. . .

Figure 2.6 A directory tree in Linux

Everything else in the file tree is considered as the sub-directory of the root that
each of them, in turn, comprises further sub-directories. This file system structure
is called the Filesystem Hierarchy Standard (FHS). The major directories of FHS
are:

• /bin, command binaries for all users

• /boot, boot loader files such as the kernel

• /home, users home directories

• /mnt, for mounting disk storage

• /root, home directory for the root user

• /sbin, executables used only by the root user

• /usr, where most application programs get installed

File Descriptor and Inode:

From the kernel point of view, the FHS is flat and files are identified based on a
unique number rather than their name or location in directories. In fact, the kernel
uses inodes to represent each file. An inode is an entry in a list of inodes that
contains the information required to access the file including:[12, 7]

• The inode number which is associated with a specific file

2.3. Components of the kernel 12

• The owner of the file which is a user or a group of users

• The type of the file (directory, device, pipe, ...)

• The file creation, access and modification times

• The size of the file

• The pointer to data blocks that store the file’s content

FileSystem

A file system is a collection of methods and data structures that are used to organize
files on a disk drive (hard disk, floppy disk, CDROM, etc.) In other words, the
operating system uses file systems to keep track of files on a disk or partition. The
responsibility of the file system is to store, retrieve or update data on a disk. The
file system is a very critical part of the kernel since it must hold data safely and
securely to avoid lost data and files.

Nowadays, Linux supports various file systems usable in different architectures such
as ext, ext2, ext3, ext4, hpfs, iso9660, JFS, minix, msdos, ncpfs nfs, ntfs, proc,
Reiserfs, smb, sysv, umsdos, vfat, and XFS [20].

Virtual File Systems

The Virtual File System (VFS) is a software abstraction layer between the user
applications and the supported file systems in the Linux operating system. VFS is
one of the most interesting features of Linux that makes it flexible, so that it allows
Linux to support many, often very different file systems simultaneously. The user
applications can access different file systems on various devices without any worry
concerning their structure or detail. It could be achieved by using a set of Linux
file systems [14]. Figure 2.7 depicts a simple diagram of VFS and the associated file
systems in a kernel architecture.

A user application request such as open, close, read or write manipulates the data
stored in different devices that may use various file systems. The system call interface
(SCI) obtains those commands and dispatches them to the VFS layer. Each of the
file systems has defined the implementation of the upper-layer functions exclusively.
Below the file systems, there is the buffer cache layer that includes a common set of
functions that are applicable to all kinds of file systems. They are independent of any

2.3. Components of the kernel 13

Physical Devices

Device Drivers

Virtual File Systems (VFS)

Buffer Cache

ext3 reiser /proc. . .

Figure 2.7 The VFS relation with the file systems

single file system and help the OS to optimize access to the physical devices through
storing data for a limited time. Finally, device drivers operate as an interface to the
physical devices layer.

2.3.2 Process Management

Process management is the most crucial part of the operating system whose respon-
sibility could be classified into three sections. First, it creates and destroys processes
and handles their interaction with I/O peripherals. Besides, the communication be-
tween various processes is performed by the process manager. Finally, it divides the
processor time between various processes on the system. This functionality is called
process scheduling [8].

This section introduces the concept of processes and examines the mentioned three
responsibilities of the process management.

Process:

A process can be defined as an instance of a running program in memory. A program,
however, is an executable file including a collection of machine code instructions
and their allocated data structures. While running a program, those instructions

2.3. Components of the kernel 14

are copied into the memory, and the required space is allocated for the program’s
variables. Since processes run in their individual address spaces, processes could not
interfere with each other and cause other’s processes to crash [23].

Process’s system calls

The kernel provides system call interfaces to create, execute or stop a process and
manipulate them. The act of creating a new process is called forking which is
performed by fork() system call. It duplicates the current running process. After
creating a new process, it is desirable to execute a new program. It could be ac-
complished by exec() family of system calls that is responsible for creating a new
address space and loads a new process into it.

A process is terminated through invoking exit() system call. It closes the process
and frees all its allocated resources [23].

Task_Struct

The Linux process management unit is responsible not only to observe process’s
activity during their lifetime, but also controls system resources used by processes
effectively. Indeed, a process uses the CPU and physical memory to execute its
instructions and store data respectively. Also, it interacts with files within a file
system and physical devices on the system. Therefore, there is a significant amount
of data regarding each process that should be recorded precisely to enhance the
performance of the system when retrieving information of processes. The name and
owner of the process, the address of the memory allocated to the process, the list of
files or other I/O streams that it has opened during execution, and the state of the
process are some of the categories that are organized in task_struct data structure
[13, 23].

Each process is designated by a task_struct data structure whose fields describe all
information about a particular process. Its main fields are as below:

• State:

This item determined the execution state of the process and illustrates what
is happening to a process at the moment. As can be seen from figure 2.8,
each process state is one of 5 different states as follows:

– Running: As its name implies, a running process corresponds to two

2.3. Components of the kernel 15

Ready

Zombie

Running

New

Waiting

Process
Created

Admitted

Interupted

I/O
Completed

Dispatched

I/O
requested

Exit

Figure 2.8 State of processes flow chart

states. It is either executing as the current process of the system or is
in the run queue waiting to run. A running process is the only possible
process that can be executed in user space.

– Waiting: A process is in waiting state if it waits for a condition to
be reached, or a resource to be available. The waiting state could be
divided into two sub-states; Interruptible and Uninterruptible. In the
latter state, the waiting condition is related to the hardware condition
directly, whereas interruptable processes could be interrupted by other
process’s signals.

– Stopped: The process execution has been stopped and it is not running
anymore. A process goes to this state usually by receiving a signal. In
addition, a process that is being debugged can be put into the Stopped
state.

– Zombie: A zombie process is a dead process whose task structure, for
some reason, is still remaining in the task vector.

• Process ID:

While creating a process, a unique numerical value is assigned to it referred to
as a process identification (PID). It is used by the operating system to refer
to that process. The PID of 1 is dedicated to the init process that is always
the very first running process when booting the operating system.

• Links: In the Linux system the processes are not independent of other pro-
cesses, rather there is a distinct hierarchy between them so that each process
could spawn (give birth to) other processes by creating an identical copy of

2.3. Components of the kernel 16

itself. The new process, in turn, could produce another process, thereby result-
ing in multiple levels of processes. Therefore, it is sensible that each process
has one parent and one or more children. Obviously, if a process dies, all its
children dies respectively. The Link field keeps a pointer to each process’s
parent, siblings and its children. Consequently, given the current process, it
is possible to obtain the process descriptor of its parent or children by using
pointers.

• File system:

As described earlier, processes may interact with the files and try to open or
close them. The file system field holds pointers to each open file, also pointers
to the root and current directories for the process. In this way, it is not allowed
to delete the directory that a process is referring as its current directory or
sub-directories.

• Address space: Defines the virtual address space assigned to this process.

Inter Processes Communication:

Although processes are non-sharing entities, we sometimes need to make them com-
municate with each other, especially in a multi-programmed and network environ-
ments. Inter-Process Communication (IPC) is a provided operating system mech-
anism that allows exchanging data between two or more independent processes.
The Linux kernel supports uni-directional, bi-directional or multi-directional pro-
cess communication [5]. IPC mechanism can be implemented in some different ways
that are chosen based on system requirements or its flexibility. Some of them are
listed as below:

• Pipe: Allows the data flow only in one direction between processes

• Message queues: message passing using queues

• Shared Memory: Allows data flow between processes by defining a section of
memory as shared memory

The IPC is typically conducted by message passing mechanism in which a process
(sender) would request to send a message to another one (receiver). In this way,

2.3. Components of the kernel 17

that message is stored in a special message queue, and then the receiver could access
it by invoking a particular system call.

Scheduler:

Since the current version of Linux kernel supports multi-tasking concept, multiple
processes could exist simultaneously in the system. Therefore, it is vital to share the
processor time between them as fairly as possible. The process scheduler, however,
is integrated into the Linux kernel to divide resources among all running processes
so that they are given the illusion that they are the only processes in the system.
Moreover, the scheduler determines the next process to run by considering kernel
scheduling policies and assigns a time slice to be executed at a particular time [44].

Basically, scheduling procedure in Linux is based on the time sharing technique in
which the processor time is divided into time slices called quanta. Each process is
given a quanta for accomplishing its task so that the length of quanta is calculated
according to the importance level of processes. However, if the running process
could not terminate throughout its time slice, it waits and the processor switches to
another process which is nominated as the next process in the processor run queue.
In fact, the CPU applies a suitable scheduling algorithm for selecting subsequent
processes to run. Some of the famous scheduling algorithms are: [30, 22]

• First-In-First-Out (FIFO)

• Shortest-Job-First (SJF)

• Last-In-First-Out (LIFO)

• Multilevel queue scheduling

• Real Time Scheduler

• Round Robin Scheduler

2.3.3 Memory Management

Since the memory is the most valuable resources within a computer system, it is
necessary to review Linux memory management layout briefly. Although the size
of memory devices has increased drastically in recent years, so has the size of the

2.3. Components of the kernel 18

application and data to be processed. Memory allocation should be managed to
prevent unexpected faults regarding memory in the system. Memory management
subsystem observes each memory location in the system, whether they are allocated
to the processes or they are free. Moreover, it decides the amount of required
memory that should be provided for each process to use in a determined time [11].

In this section, a short overview of the most important aspects of memory manage-
ment is given; physical and virtual memory, swapping, fragmentation, and paging.

Physical Memory vs Virtual Memory

Traditionally, physical memory is a block of memory that exists in the system phys-
ically. It records data with low latency in the RAM of the system. DRAM, SD
memory card, video cards, network cards, are examples of a physical storage hard-
ware that are frequently used. A Physical memory address is a binary number across
a memory bus that corresponds to a memory cell within a storage device. In con-
trast, there is the virtual memory that has emerged in modern operating systems
to overcome physical memory limitations. Implemented in both the hardware and
software, virtual memory helps the operating system to run processes that need
more memory space than actually available. The virtual address space is provided
for each process so that each process thinks it is the only running one in the sys-
tem and the whole memory space is belongs to it. The virtual and physical address
spaces are divided into fixed length slots called pages that are defined as the smallest
addressable unit of memory management unit. Pages in virtual address space are
called virtual pages, whereas, in physical memory, they are known as page frames
that are referred to by page frame numbers (PFN). Indeed, a frame is a place where
a page is placed physically [9].

Using a special data structure called page tables, the memory management unit
(MMU) maps the virtual address ranges to their associated physical addresses. Note
that only the kernel accesses physical memory addresses directly. On the other hand,
the user-space applications use virtual addresses exclusively [4].

Figure 2.9 shows the translation procedure between virtual and physical addresses
via page tables. Linux OS prepares a set of page tables for each process that contains
a process’s list of memory mappings and tracks the associated resources.

Swapping

2.3. Components of the kernel 19

VP 0

VP 1

VP 2

. .

. .

. .

. .

. .

VP n

PFN0

. .

. .

PFNn

PFN1

Virtual memory (Per

Process)
Physical MemoryPage Tables

Figure 2.9 Conversion of virtual and physical memory in Linux memory architecture

In some situation, the physical memory overflows due to a large number of active
processes or unexpected growing of a process in the system memory. In fact, a
needed page frame should be settled in physical memory, but there is no free space.
Linux provides a mechanism to release space in memory called swapping [4].

Swapping transfers those pages that are not immediately needed from physical mem-
ory to secondary storage temporarily. Then they might be brought back into the
memory to continue execution whenever a process requires them. Therefore, when
all of the physical memory is being used, swapping mechanism increases the total
memory effectively.

Fragmentation and Paging

Fragmentation is a kind of a problem that occurs in a memory allocation procedure.
Figure 2.10 illustrates the two variants of fragmentation; external and internal frag-
mentation [31].

• Internal: Occurs when a memory block that is larger than necessary space
is granted to a process. Therefore, a portion of the memory block remains
unused; also it is not usable by other processes.

2.3. Components of the kernel 20

External

Fragmentation

Internal

Fragmentation

 B 26 K

A 18 K

 B 26 K

A 18 K

Figure 2.10 External Fragmentation and Internal Segmentation

• External: Although the enough memory may be free overall, memory allo-
cation is not satisfied. Because the free space is not contiguous to reside a
process on it.

Paging is a technique through which external fragmentation is avoided. As explained
earlier, physical memory is divided into page frames whose size depends on the
system architecture. While executing a process, its corresponding pages are loaded
into any available page frames. In this way, virtual address space of a process can
be non-consecutive; in turn, the allocated physical memory space is wherever the
free memory frame is available. The Linux kernel keeps track of all allocated spaces
by the specific process [21].

2.3.4 Device Drivers

The majority of Linux source code exists in device driver source tree. Also, all
system processes map to a physical device eventually. Therefore, the correctness of
device drivers is essential to the usability of the whole operating system [26].

A computer system consists of many kinds of devices from CPU as the brain of
the system to general types such as storage devices, network devices, and human-
interface ones like mouse, keyboard, and screen. The Linux source tree provides a

2.3. Components of the kernel 21

sub-directory for all devices that are supported by the kernel. Generally speaking,
the device driver is defined as an abstract layer between the software concept and
the hardware device that provides a standard interface to higher level applications,
so that it hides the details of how the device operates. In this way, standard calls are
independent of the specific hardware device and device driver sub-system maps them
to their respective device-specific operations. Every device in a system supports 6
basic operations within the VFS; Open, Close, Read, Write, Seek, and Tell. It is
interesting to note that device drivers can be developed separately from the kernel
and plugged in run-time whenever needed [8, 42].

2.3.5 Networking

Linux is considered as a child of the internet since Linux developers have been using
the web to spread their ideas and exchanging information through Linux communi-
ties. So, networking is an intensive Linux sub-system that offers all the necessary
networking tools and features to integrate with all kinds of network infrastructure.

The network sub-system is an abstract layer whose role is to provide a mechanism
for network connectivity between Linux systems and other machines. It supports
many hardware devices, also network protocols such as TCP/IP. Network layer, like
other abstract layers in Linux, hides the implementation details of existing devices
and protocols so that processes or other kernel subsystems interact with the network
layer without knowing about the underlying physical device or protocol that is being
used [45, 49].

The network design in Linux obeys a layered architecture model consisting of three
layers as shown in figure 2.11: [34]

1. The top most layer is SOCKET interface layer that is a standard API invoked
through system call interfaces. The socket layer determines the appropriate
network protocol and sends the system call to that corresponding protocol
implementation.

2. The middle layer is called the protocol layer that consists of transport and
network layer protocols. The Internet Protocol(IP), however, is the core net-
work layer protocol. Similarly, the Transmission Control Protocol(TCP) is the
main transport protocol family inside the protocol layer. Besides, it is possible

2.3. Components of the kernel 22

Socket Layer

Low Level network Device Driver

Network layer Protocols (IP)

TCP UDP ICMP
New

Protocol

Figure 2.11 Top level view of Linux Network Sub-system

to plug in a new protocol family as a separate module and make the system
compatible with it.

3. The lowest level belongs to the network device driver that provides access to
the physical devices.

23

3. PLATFORM ARCHITECTURE

The target platform that is used in this thesis is an open source embedded processor
called COFFEE RISC Core. COFFEE is developed at the Department of Computer
Systems in Tampere University of Technology in Finland. The COFFEE Core user
manual is accessible on the official web page1 of this processor.

Since a processor in a computer system is responsible for performing all the comput-
ing processes (calculation, comparison, and logical decision), it is referred to as the
brain of the computer system. Accordingly, the processor forms the most important
part of an embedded system. Therefore, choosing the appropriate embedded pro-
cessor is critical to perform the expected operations to guarantee the success of the
whole system. But which kind of processor is suitable for our embedded system?
The most important types of an embedded system processor can be divided into
following items: [19]

1. General-Purpose Processor (GPP)

• GPPs are designed to execute multiple applications and perform multiple
tasks so that the end-user can program them to perform a broad range
of different applications.

• Usable in personal computers, workstations, mainframes or servers

• They have the low prices, short design time but low performance and
high energy consumption

2. Application-Specific Processor (ASP)

• ASPs are designed to perform a particular set of on-demand applications
and cannot be efficiently operational for other applications than the one
they are designed for.

1http://www.coffee.tut.fi/documents.html

3.1. Coffee RISC Core Overview 24

• Usable in home appliances, consumer electronic devices, networking, and
communications, etc.

• They have good performance, small and less energy consumption, but
more delicate design, more expensive and less flexible

Besides power consumption, computing performance and flexibility that are the
main categories that should be considered when developing embedded systems; the
final cost has to be evaluated too. Hence, adding additional resources with no value
is not desired. Consequently, when designing an embedded system, a critical issue
is to get a good match between the application demands and hardware resources
[41, 27].

3.1 Coffee RISC Core Overview

As described in the previous section, according to our requirements, we can use many
kinds of processors in embedded systems such as general-purpose or Application-
specific. Although application-specific ones fulfill the lower power consumption and
higher performance rate, they have the drawback of being less flexible for future new
applications. Nowadays, the new trend is towards integrating several processors,
also different kinds, in the embedded systems. There could be a general-purpose
main processor and, for example, a GPU for graphics processing, application-specific
core(s) or a DSP for signal processing, etc. The central processor handles controlling
the whole system and off-loads a process to a suitable type of processor when needed.

The COFFEE RISC core is a general-purpose embedded processor core that has
been designed mainly for telecommunication and multimedia applications so that
coprocessors could be accelerated in computationally intensive tasks if needed. In
this chapter, some of the most important specifications of COFFEE RISC Core
regarding software and hardware will be introduced in more details.

3.1.1 Instruction set

While introducing IBM 360 in 1964, instruction set was defined as “the structure of a
computer that a machine language programmer must understand to write a correct
program for that machine“. Instruction set acts as the interface between hardware

3.1. Coffee RISC Core Overview 25

and software so that it provides a structure by which the software could communicate
with the hardware to tell what should be done. Instruction set operations could be
classified as arithmetic and logical, data transfer, control, system, floating point,
decimal, string, multimedia or vector.

There would be three kinds of instruction sets in computer systems:

• Reduced instruction set computer or RISC

• Complex Instruction set computer or CISC

• Digital Signal Processing instruction set or DSP

The first two ones are suitable for general- purpose and the third one for application-
specific processing. In COFFEE RISC core, the philosophy of RISC instruction sets
has been adopted in order to drive a right processing engine for embedded systems.
Although the minimum set of instructions has been implemented in COFFEE Core,
the assembly language interface can be extended with pseudo instructions [1].

COFFEE has 66 instructions in its implementation, including, fourteen arithmetic
instructions, ten bit-field manipulation instructions, six boolean instructions, eight
conditional jumps and so on. The complete list of COFFEE instructions has been
illustrated in table 3.1. In addition, instructions that process the data operate on
two register operands, or, one register operand and one immediate operand and
write the produced data to any general-purpose register.

3.1.2 Processor Operating Modes

Forasmuch as one of the particular specifications of COFFEE Core is to support
real-time operating systems (RTOS), two modes of accessibility have been designed
with COFFEE RISC Core; Supervisor mode and User mode. In Supervisor mode,
the whole memory space and both register banks are accessible, whereas in user
mode, access to protected memory areas is denied, and only the first register bank
is available. Furthermore, designers of COFFEE have provided the possibility to
switch from supervisor mode to user mode, also from user mode to supervisor with
the help of system calls and trap instructions that are responsible for transferring
the control to the supervisor mode that is the operating system in most cases.

3.1. Coffee RISC Core Overview 26

Table 3.1 COFFEE RISC Core instruction set.[27]

scon Save condition in GP-register nop No operation, idle

Mnemonic Meaning Mnemonic Meaning

rcon Restore condition from GP-register trap software exception (programmed interupt)

swm Switch decoding mode

Miscellaneous

di Disable interupts retu Return to user mode

ei Enable interupts scall System call

Mnemonic Meaning Mnemonic Meaning

chrs Change register set reti Return from interupt

movfc Move data from coprocessor

Mode changing instructions

Mnemonic Meaning Mnemonic Meaning

cop Coprocessor instruction movtc Move data to coprocessor

st Store word

Coprocessor instructions

Mnemonic Meaning Mnemonic Meaning

ld Load word mov register-to-register move

sra Arithmetic shift right srli Logical shift right base on immediate

Memory load, Store, Move

sll Logical shift left srai Arithmetic shift right based on immediate

slli Logical shift left based on immediate srl Logical shift right

Shifts

Mnemonic Meaning Mnemonic Meaning

Mnemonic Meaning Mnemonic Meaning

cmp Compare registers (set flags) cmpi Compare register to immediate (set flags)

jalr Jump (on register) and link jmpr Jump (on register)

Integer comparison

Mnemonic Meaning Mnemonic Meaning

jal Jump (based on immediate offset) and link jmp Jump (based on immediate offset)

beq Branch if equal bne Branch if not equal

Other jumps

begt Branch if equal or greater than blt Branch if less than

belt Branch if equal or less than bnc Branch if not carry

Mnemonic Meaning Mnemonic Meaning

bc Branch if carry bgt Branch if greater than

not Bitwise NOT for a 32-bit register value xor Bitwise XOR two 32-bit register values

Conditional jumps (branches)

and AND two 32-bit register values or OR two 32-bit register values

andi And 32-bit register with 16-bit immediate ori OR 32-bit register with 16-bit immediate

Boolean bitwise operations

Mnemonic Meaning Mnemonic Meaning

lli Load lower halfword from immediate muls_16 Multiply signed 16-bit integer (in registers)

exbfi Extract bitfield from word(immediate mask) mulus Multiply unsigned 32-bit integers(in registers)

exh Extract halfword from word mulus Mixed unsigned-signed multiplication

exb Extract(immediate-specified)byte from word muli Multiply 32-bit register with 16-bit immediate

exbf Extract bitfield from word(register mask) muls Multiply signed 32-bit integer (in registers)

Byte and bitfield manipulation

Mnemonic Meaning Mnemonic Meaning

Integer Arthmatic

Mnemonic Meaning Mnemonic Meaning

mulhi

Add 32-bit integer in registers

Add 32-bit integer with 16-bit immediate

Unsigned version of Addi

Unsigned version of Add

Subtract 32-bit integers

Unsigned version of Sub

Get upper 32 bits of 64-bit multiply result

add

addi

addiu

addu

sub

subu

mulus_16

Multiply 32-bit register with 16-bit immediate

Multiply signed 32-bit integer (in registers)

Multiply unsigned 32-bit integers(in registers)

Mixed unsigned-signed multiplication

Multiply signed 16-bit integer (in registers)

Multiply unsigned 16-bit integers(in registers)

Mixed unsigned-signed 16-bit multiplication

muli

muls

mulus

mulus

muls_16

mulu_16

3.1. Coffee RISC Core Overview 27

16 and 32-bit decoding modes: The COFFEE RISC Core operates on 16 and 32-bit
decoding mode that refers to the length of the instruction word. Although switching
between these two modes could be done by using swm instruction, there is some
limitation in 16-bit mode that should be considered. For instance, the conditional
execution, instructions lui, lli, exbfi, and cop are not available. Moreover, immediate
constants are shorter, and only eight registers in each set are accessible.

3.1.3 Registers

By considering the fact that the COFFEE Core is a load-store machine, the precise
explanation of the register’s structure becomes more important. As COFFEE Core
follows the RISC instruction set architecture, a large bank of registers is designed in
order to avoid excessive memory traffic. The COFFEE Core programmer’s view of
the register set can be in Figure 3.1. This register bank is divided into two separate
general purpose register sets so that the first one is dedicated to user mode programs,
whereas, the second one is specific to the privileged or supervisor mode applications
such as an operating system. This system of classification was developed for the
purpose of implementing user mode and supervisor mode in real-time operating
systems (RTOS) and enable context switching between them as well.

Each of the register set contains 32 registers including general purpose registers
(GPR) and specific purpose registers (SPRs). Furthermore, eight condition registers
(CRs) have been provided in COFFEE that are usable by conditional branches.
Beside these registers, there are two more blocks called Core Configurable Block
(CCB) and Peripheral Configurable Block (PCB) which are provided to enable the
desired software configure ability and controlling the processor operation.

3.1.4 Interface of the core

The type of COFFEE Core memory interface is Harvard in which program instruc-
tions are stored in different memory from data. In this case, each type of memory is
accessed via a separate bus, allowing instructions and data to be fetched in parallel.

An example of the COFFEE Core interface can be seen in figure 3.2. There would
also be other possibilities to connect to the core as well. From the figure, we can
see that up to four coprocessors could be situated in COFFEE Core so that their

3.1. Coffee RISC Core Overview 28

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

R26

R27

R28

R29

R30

R31 = LR

PR0

PR1

PR2

PR3

PR4

PR5

PR6

PR7

PR8

PR9

PR10

PR11

PR12

PR13

PR14

PR15

PR16

PR17

PR18

PR19

PR20

PR21

PR22

PR23

PR24

PR25

PR26

PR27

PR28

PR29 = PSR

PR30 = SPSR

PR31 = LR

U
se

r
re

g
is

te
r

se
t

S
u

p
er

v
is

o
r

re
g

is
te

r
se

t

31 … 0 31 … 0 31 … 0

PC

2 … 0

CR1

CR2

CR3

CR4

CR5

CR6

CR7

CR0

C
o

n
d

it
io

n

re
g

is
te

r
s

31 … 0

CCB

(memory

mapped)

PCB

(memory

mapped)

Figure 3.1 The programmer’s view of COFFEE Core register sets

maximum register bank size is 32. Acting as a memory interface, coprocessors
addressing is limited to 7 bits including two bits for coprocessor identification and 5
five bits for coprocessor register indexing. On the other hand, the PCB register block
is also connected to COFFEE Core’s data bus interface. While data memory accesses
assert the general write (wr) and read (rd) signals, peripherals would assert PCB
signals that are pcb_wr (Peripheral Control Block write) and pcb_rd (Peripheral
Control Block read) instead of data memory.

Moreover, coprocessors are designed so that could interrupt core by asserting an ex-

3.1. Coffee RISC Core Overview 29

COFFEE

Core

COPROCESSOR_

0

COPROCESSOR_

1

COPROCESSOR_

2

COPROCESSOR_

3

cop_exc : (3:0)

INST_CACHE

INT_HANDLER

DATA_CACHE

PCB

BOOT_CNTRL

BUS_CONTROL

i_word : (31:0)

i_cache_miss

offset : (7:0)

ext_handler

ext_interrupt : (7:0)

core_clock

rd

wr

pcb_rd

pcb_wr

reset_x_out

i_addr : (31:0)

i_word : (31:0)

i_cache_miss

cop_exc : (3:0)

ext_interrupt : (7:0)

ext_handler

offset : (7:0)

int_done

int_ack

core_clock

pcb_rd

pcb_wr

cop_port : (40:0)

rd

wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

stall

reset_x_out

rst_x

boot_sel

bus_ack

bus_req

Figure 3.2 Interfacing the COFFEE RISC Core

ception signal. However, eight external interrupt sources is supported by COFFEE
Core directly, it might be possible to use disconnected coprocessors exception signal-
ing as interrupt request lines. As a result, it is potential to connect twelve interrupt
sources to the core. Note that priority for coprocessor exceptions or interrupts is
always set by software.

30

4. EMBEDDED LINUX SYSTEMS

Typically, an embedded system is referred to as a special-purpose computer system
to perform a specific application or a set of activities. Nowadays, embedded systems
are broadly used in various target systems from household appliances or consumer
equipment to more complicated devices in the field of network or flight control. In
this chapter, an overview of embedded systems is given. Then, its hardware and
software elements will be described in more details.

4.1 Basic Concepts

Although recent advances in technology have made the definition of embedded sys-
tems somehow fluid, it follows some fundamental features that distinguish an em-
bedded system from desktop computers. Embedded systems, for example, are often
restricted in resources such as RAM, ROM, or other I/O devices compared to the
typical desktop PCs. Besides, they might require power resource such as batteries.
Most of them are provided with a simple user interface to interact with the user of
the system, if needed. From the software perspective, they have built-in application
software that users are prohibited to manipulate. Also, debugging is performed by
built-in circuitry [18, 29].

In the early days of emerging embedded systems, they were produced with no op-
erating system. Indeed, a piece of the assembly language program which is stored
in memory could accomplish all of the operations of an embedded system. In recent
years, customers need embedded systems with higher quality and reliability require-
ments. Therefore, an embedded operating system has been integrated in embedded
system design to provide more complicated services such as multitasking, process
and memory management, inter process communication, timers and so on.

Among various kinds of embedded operating systems in the market, Linux dis-
tributions have gained popularity as the primary embedded operating system [10].

4.2. Generic Architecture of an Embedded Linux System 31

Embedded Linux is defined as the usage of the Linux kernel and various open-source
components in embedded systems. Beside low-cost and availability of Linux source
code, there would be some advantages of using Linux as an embedded operating
system that convince developers to apply it in their projects. One of the major
benefits of Linux that makes it flexible is its modularity. This feature allows de-
velopers to eliminate utility programs, tools or other services that are not usable
in their embedded system environment. Some other advantages of Linux embedded
operating systems are as below:

• A vast array of development options: Linux kernel supports every devel-
opment tools such as C,C++, Java, Fortran and etc.

• A vast array of free applications: Hopefully many of free-software ap-
plications such as web servers, FTP, Telnet, NTP, SSL, SQL and email exist
which are compatible with Linux distributions.

• Hardware support: Linux supports many kinds of different hardware plat-
forms and devices. On the other hand, Linux runs on almost all general-
purpose 32 or 64 bit architectures like Intel X86, MIPS, PowerPC, IBM and
so on [46].

• Better support for networking: Linux has integrated the latest network
technologies into its kernel so that could support IPv6, IP masquerading, Net-
work Address Translation and so on.

• The Source code is freely available: Excluding the payment of license
fees, it could reduce the total cost for embedded system and the final product.
In addition, it provides the ability to modify, debugging or optimization of the
source code for an unlimited period according to system’s requirements.

• Community support: There are numerous communities and mail lists around
the internet that provide the possibility for Linux developers to communicate
with each other directly. In fact, they obey the Linux philosophy to share their
knowledge to improve the Linux and its features.

4.2 Generic Architecture of an Embedded Linux System

By definition, all embedded systems, as shown in figure 4.1, have a common system
model, that is, they have three layers consist of hardware, system software, and

4.2. Generic Architecture of an Embedded Linux System 32

Application Software
Layer

Hardware Layer

System Software Layer

Figure 4.1 Embedded Systems Model

application layer. The hardware layer that is an obligation layer in this model
contains all the physical devices of an embedded system. In contrast, the two other
layers, software and application, are optional. They consist of all of the system
software located on the embedded system.

Coming to the hardware details of the embedded system, it is including the following
components:

• Central Processing Unit(CPU)

• RAM and ROM

• I/O devices like sensors, keypad, switches,...

• Communication Interfaces such as USB, Serial or parallel port, Ethernet,...

• Power supply like batteries

The software component of an embedded system is concentrated on accessing the
hardware resources suitably. This layer consists of both operating system and ap-
plication software. It is notable that the operating system is not needed in some

4.3. Software Elements of Embedded Systems 33

Bootloader

C Library

Linux Kernel

LibraryLibraryLibrary

ApplicationApplication

Target SystemHost

System

Tools,

Compilers,

Debuggers

,

...

Figure 4.2 Software Components of a Linux Embedded System

embedded systems that have restrictions in their design. Indeed, a software routine
is written to access system hardware instead of a real OS. On the other hand, a
collection of distinct software tools which are settled in a separate computer system
is needed to develop the embedded system. These systems are known as host sys-
tems which holds all of the running development tools such as editors, compilers,
assemblers, and debuggers. In this context, the embedded system is called the tar-
get system. The software components of the host and target systems can be seen in
figure 4.2.

4.3 Software Elements of Embedded Systems

As mentioned earlier, software elements required for an embedded system are divided
into two sections. First, a collection of development tools in the host system which
is called a cross-compilation toolchain. The second collection refers to software
elements in the target or embedded system [33]. The flow chart for the cross-
compilation is shown in figure 4.3. In this model, the source code is developed on
the host machine and this code is compiled and linked using the host tools. Then,
the code is ported to target system and debugged. If it works properly, it will burn
on a flash and will run on the target system, otherwise, it returns to development
stage to be corrected.

In the following sections, those software components in host and target systems will
be reviewed.

4.3. Software Elements of Embedded Systems 34

Write code on Host system

Compile and Link the code

Download to the Target

Debug on the Target

Is the Code

working?

Burn or copy to Flash

Run on the Target

Yes

No

Figure 4.3 Flow chart of cross-platform development

4.3.1 Cross-development Toolchain

Toolchain definition: Basically, a toolchain is a set of various software develop-
ment tools that are linked together with a bunch of libraries that produces the final
executable application and provides additional support to build computer software
[47]. This process involves cross-compilation, assembly and linking of the generated
code.

Why we need Toolchain in Linux: By considering the fact that Linux is an
open source operating system, and everybody can access or manipulate it, various
teams or projects apply their own requirements and needs to the Linux kernel in
order to create a specific application or even a new Linux-based operating system.
Therefore, there is no compatibility between variant Linux distributions and devel-
opment tools in the field of Linux. By contrast, Microsoft designs and develops
its own tools with high compatibility with its operating system features and up-
dates them whenever the infrastructure of the Windows operating system changes.
Microsoft Visual Studio or .NET platform, for example, are the official software de-
velopment environment for Windows. But there are no such proper tools for Linux
users. Consequently, Linux developers will need to evaluate carefully their required

4.3. Software Elements of Embedded Systems 35

components and integrate them together in order to have a functional set of tools
like the compiler, assembler, linker and so on [50].

Toolchain types: To clarifying various kinds of toolchains, three different machines
should be distinguished:

• The build platform: where the toolchain is built

• The host platform: where the toolchain will be executed

• The target platform: where the binary created by the toolchain is executed

For the above three kinds of machines, we can mention four different types of
toolchain building processes: [40]

• Native toolchain

– All three machines- build, host, and target- are the same.

– This toolchain runs on a workstation and generates code for this work-
station too.

– It is available on a GNU/Linux workstation

• Cross-compilation toolchain

– The build and host machine are the same, but the target is different.

– It is used to build a toolchain that runs on a workstation, but generates
code for the target.

– It is largely used for embedded systems.

• Cross native-toolchain

– The host and target machine are the same, but the build machine is
different.

– It is used to build a toolchain that runs on the target and generate code
for the target as well.

• Canadian build Toolchain

– All the three machines are different from each other.

4.3. Software Elements of Embedded Systems 36

Build TargetHOST Build HOST Target

Build HOST Target Build HOST Target

Native Toolchain Cross Toolchain

Cross-native Toolchain Canadian Toolchain

Figure 4.4 Types of toolchains

– It is used to build on workstation 1, run on workstation 2 and generate
code for workstation 3.

Figure 4.4 distinguishes those Toolchains by colorizing boxes that represent the
build, host or target machines.

Cross-compilation toolchain for embedded systems: Since embedded sys-
tems are getting gradually smaller, they have restrictions in terms of storage and/or
memory that influence their speed and performance. Therefore, it is not a good idea
to use a native toolchain for these embedded systems. Instead, developers tend to
create cross compilers for their projects so that the limited storage in target ma-
chines remains for generated codes and binaries. Figure 4.5 compares the operation
of native and cross compiler together in compilation machine and execution one.
However, our target machine does not have a primary set of compilation tools; cross
compilation uses development tools of the host machine and generates binary for
the target architecture.

In the next chapter, the principal components of the cross compilation toolchain
will be described in details.

Components of Cross-compilation toolchain

The components of a Linux-based toolchain are GNU Binary Utilities or Binutils,
the GNU Compiler Collection(GCC), a C library, and a set of Linux kernel headers
for userspace development.

4.3. Software Elements of Embedded Systems 37

Figure 4.5 Cross compilation vs native toolchain

Binutils: The most important component of a toolchain is Binutils which is binary
utilities for short. It includes a collection of binary tools used to generate and
manipulate binary object files for a given architecture. Although there are lots of
useful and practical utilities in this component, the main ones are:[47]

• As: the assembler, that generates binary code from assembler source code

• Ld: the linker

• ar: to create .a archives, used for libraries

• readelf, nm, size, string, objdump, to inspect binaries

• strip, to remove useless parts of binaries in order to reduce their sizes

Compiler: The compiler is the second major component of a toolchain. The GNU
Compiler Collection (GCC) is a modern compiler set used by most Linux systems
that let you build all kinds of compilers such as multithreading, multilib, shared
libraries and so on. GCC comprises a sequence of compilers that enable it to compile
different programming languages such as C, C++, Java, FORTRAN, and Ada. It
all depends on how you configure the compiler before building it [28, 25].

C library: Is another essential component of a toolchain. It acts as an interface
between the applications and the kernel. There are several C libraries like uClibc,
gLibc, and eglibC that have their own specifications. Whereas the GCC compiler
is compiled against a specific C library, that should be chosen by developers at the
time of cross compilation environment. It is not possible to change the C Library
component after building the toolchain [32].

4.3. Software Elements of Embedded Systems 38

Application

GNU C

Library

Kernel Headers

Kernel

Figure 4.6 Relation between kernel headers, C library, application and kernel

Kernel Headers: Kernel headers in the Linux kernel are used for two purposes:
[47]

• As an interface between the C library and other applications in user space so
that they could interact with the kernel

• As an interface between the components of the kernel

Also, we need kernel headers to compile C library. System calls and their numbers,
constant definition, and data structure are examples of kernel headers. Figure 4.6
shows the relation between kernel, Kernel headers, C library, and application.

4.3.2 Bootloader:

Forasmuch as the environmental setting and the underlying hardware are different
in desktop computers and embedded systems, their boot process is accordingly dif-
ferent. A desktop computer, for instance, has a hard disk and BIOS. In contrast,
an embedded system has flash memory and startup system.

4.3. Software Elements of Embedded Systems 39

Figure 4.7 Linux Boot Process

Generally speaking, the Linux boot process compromised from 3 stages. Figure 4.7
shows high-level view of Linux boot. The first event after powering on the system
is executing the BootMonitor system, then the bootloader continues the system
boot procedure. Finally, the Linux startup system completes it and the user space
applications are ready to be executed.

System Startup:

An embedded system startup is similar to BIOS in a desktop computer that is stored
in a fixed location in flash memory. Since it has limited functionalities, it could not
load a kernel image. Therefore, a bootloader is needed to complete the process of
booting. Although system startup initializes the memory controller and configure
hardware peripherals, whose main responsibility is searching, loading, and executing
the bootloader program. In the final step, the system startup delivered the control
of booting to bootloader while it is loaded into the memory.

Bootloader:

In an embedded system, the very first step to making an operating system running
is to boot the system. In a simple word, booting refers to loading the kernel and
its infrastructure into memory to starting its execution. This process is performed
by the system bootloader. The bootloader is a piece of software code that will be
loaded into memory by the system startup. The bootloader usually resides in flash
memory and has two main roles: hardware initialization and loading kernel image
into memory space. The initialization process differs for each kind of processor,
architecture and hardware manufacture. So, it is required to develop a bootloader
suited for every platform.

In recent embedded systems, the responsibilities of embedded system bootloaders
have divided into two parts as primary and the secondary bootloaders. This pos-
sibility makes the bootloader more reliable and provides portability as well. This
kind of bootloaders is called multi-stage in contrast with single stage ones [17, 6].
In the following, the roles of these stages is described:

4.4. Kernel: 40

1. The primary bootloader:

It initializes hardware components and allocates memory for the second stage
bootloader. Then, it copies the second bootloader into memory space and
jumps to the entry point of it. Now the boot process continues in the secondary
bootloader.

2. The secondary bootloader:

It initializes other hardware components that are involved in this stage. For
instance, it sets CPU speed and clock rate, initializes RAM, disables CPU
internal instructions or data cache, configures page sizes and memory man-
agement registers and so on. Then the bootloader loads the compressed Linux
kernel image into RAM with its proper arguments. The bootloader passes the
arguments in the form of tags to the kernel. These tags provide data for the
kernel about the situation of the system, for example, size and shape of the
memory, also some other architecture-specific structures. Then, bootloader
places the root file system image into memory which is used by the kernel
in order to load necessary drivers to boot the system. Now the bootloader
delivers the control of the boot process to the kernel.

Nowadays, there are many open source or commercial bootloaders like (Das) U-
Boot, RedBoot, Lilo and GRUB that are frequently used in embedded systems to
facilitate the procedure of boot-up and porting the bootloader to target platforms
[17].

4.4 Kernel:

The kernel is responsible for initializing the environment for running C code. There-
fore, it executes architecture independent start_kernel function, initializes kernel
subsystems and loads all user applications [39].

41

5. PORTING THE LINUX KERNEL TO

COFFEE RISC CORE

This section emphasizes on instruction to port the Linux kernel to COFFEE RISC
Core that has been introduced in earlier chapters. Basically, the word "porting"
could be defined for three different situations: [35]

• Porting to a new board with an already supported processor on it.

• Porting to a new processor from an existing, supported processor family.

• The last one is to port to a completely new architecture.

Since COFFEE RISC Core is designed as a new architecture, the latest case which
is porting to an entirely new architecture has been considered. In the following,
building the Linux Kernel, toolchain and bootloader is described in more details.

5.1 Toolchain:

As it has been illustrated, the toolchain is the basic component in embedded system
development to cross compile the kernel towards the target platform. Therefore,
the first step of porting process is creating the suitable toolchain that meets all
requirements.

Obtaining a toolchain: There are several ways to get a toolchain: [47, 15]

• Pre-built toolchains:

– In some cases, there are pre-built ones in the Board Support Package
(BSP), which is prepared with the hardware platform by the vendor. As
the toolchain is already built and tested by the supplier, it is the simplest
and most convenient solution for the developer.

5.1. Toolchain: 42

– The only downside is that you are not able to modify toolchain features
such as the type of the C library or ABI.

– Sourcery CodeBench and Linaro are examples of pre-built toolchains.

• Build a toolchain on your own:

– Configuring and building an appropriate GNU toolchain by oneself is a
complicated process that might take up to several weeks. A person who
wants to build a customized toolchain should have a deep understanding
of different software packages, their dependencies and the status of their
version and needs to investigate errors arising from version dependencies.
Therefore, it is a tedious and time-consuming work.

– Figure 5.1 represents some ideas from the cross tool matrix provided by
Kegel website1.It shows whether the given combination of GCC, gLibc,
Binutils and Linux kernel headers can be used to build a cross-compilation
toolchain and to compile a kernel for the given CPUs or not.

• Build a toolchain using an automated tool:

– Due to the discussed shortcomings of the first two methods, the most
common solution for building a toolchain is to use utilities that ease the
process of building a toolchain with the help of ready made scripts or
elaborate systems.

– These utilities provide shared recipes and patches needed to build a
toolchain of desired versions of various software components.

– They have some built-in shell scripts or makefiles to download, extract,
configure, compile and install the components from existing repositories
automatically.

– Moreover, they usually contain several patches that fix issues with the
different elements on some architectures. Therefore, they could offer more
flexibility not only concerning toolchain configuration, but also in the
version component selection that help Linux programmers to omit details
of the build process.

– Crosstool-ng, buildroot, PTXdist, OpenEmbedded, Yocto are the most
popular automated tools [15].

1http://kegel.com/crosstool/crosstool-0.43/buildlogs/

5.2. Linux Kernel Modification: 43

Table 5.1 Compatibility between different versions of toolchain components

 gcc 2.95.3

cgcc 2.95.3

glibc 2.1.3

binutils 2.15

linux 2.4.26

gcc 2.95.3

cgcc 2.95.3

glibc 2.2.2

binutils2.15

linux 2.4.26

gcc 2.95.3

cgcc 2.95.3

glibc 2.2.5

binutils2.15

linux 2.4.26

gcc 3.2.3

cgcc 3.2.3

glibc 2.2.5

binutils2.15

linux 2.4.26

gcc 3.2.3

cgcc 3.2.3

glibc 2.3.2

binutils2.15

linux 2.4.26

gcc 3.2.3

cgcc 3.2.3

glibc 2.3.2

binutils2.15

linux 2.6.9

alpha FAIL Fail

gdb fail

Ok

gdb ok

Ok

gdb ok

Ok

gdb ok

Fail

gdb fail

arm Kernel fail Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

arm9tdmi Fail Fail

gdb fail

Fail

gdb fail

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

arm-iwmmxt Fail Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

arm-softfloat Kernel fail Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

arm-xscale Fail Fail

gdb fail

Fail

gdb fail

Kernel fail

gdb ok

Kernel fail

gdb ok

Kernel fail

gdb ok

armeb Fail Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

armv5b-softfloat Fail Fail

gdb Fail

Fail

gdb Fail

Fail

gdb Fail

Fail

gdb Fail

Fail

gdb Fail

i686 OK Ok

gdb ok

Ok

gdb ok

Ok

gdb ok

Ok

gdb ok

fail

gdb fail

ia64 Fail Fail

gdb fail

Fail

gdb fail

Fail

gdb fail

Kernel fail

gdb ok

Ok

gdb ok

After building the development cross-compiler, the target name to be used in later
steps is in the form of coffee-linux. Moreover, the Linux environment variables need
to be modified to include an entry for the cross compiler. For this purpose, we need
to define a variable that refers to the executable file of cross compiler and exports
it as follows :

• CROSS_COMPILE = "/CrossCompilerDirectory/bin/coffee-linux"

• export CROSS_COMPILE

Now, the Linux kernel and bootloader can be compiled by the generated toolchain.

5.2 Linux Kernel Modification:

The various versions of Linux kernel source tree are freely available on its official
website which is www.kernel.org. The latest stable version of the kernel at the time

5.2. Linux Kernel Modification: 44

of writing this document is 4.3.3. Also, there are various patches that are used to
fix a specific version’s bug. However, it is more reliable to get the desired version by
using wget command in Linux terminal. The first line downloads the Linux kernel,
then tar command will extract it.

• wget http://www.kernel.org/pub/linux/kernel/v4.3/linux-4.3.3.tar.gz

• tar zxvf linux-2.4.19.tar.gz

The Linux kernel source tree supports various architectures like MIPS, ARM, Pow-
erPC, X86 and so on. In fact, there is a separate directory for each of them, includ-
ing all hardware-dependent codes regarding that specific architecture. Therefore,
we need to have another directory for COFFEE Core too. It would be beneficial for
developers to take into account the general structure of one of supported architec-
tures and try to map their own platform with the current ones. In the following,
this general rule will be described to make it clear.

In this step of porting Linux, a new directory will be created inside /arch at the
root of the kernel tree. Therefor, it should be Linux/arch/coffee in our case. Inside
this new directory, the layout is standardized and comprises these sub-directories:

• boot/: handling boot process

• include/asm/: headers dedicated to internal use, like Linux source code

• include/uapi/asm/: headers to be exported to user space, like libc

• Kernel/: general kernel management

• lib: optimized utility routines, like memcpy(), memset()

• mm: memory management

• configs: default configurations for supported systems

• Kconfig: the main configuration file for the new architecture, it contains
arch-specific and arch-independent configuration options

5.2. Linux Kernel Modification: 45

5.2.1 The header files:

The architecture-specific and architecture-independent header files required by Linux
are located in coffee/include/ directory. In the recent version of Linux kernel, the
header files are divided into two sub-directories, asm/ and uapi/asm/. The first one
includes header files that will be used by the kernel interface, and the second header
files are invoked by the user interface.

Constituting an enormous number of header files, include directory implementa-
tion is a tough task in the procedure of porting to a new processor. For this rea-
son, the structure of header files has been changed slightly in the recent years so
that the portion of header files that are common between many processor archi-
tectures, has moved to the generic layer of Linux header files that are located in
linux/include/asm-generic/ and linux/include/uapi/asm-generic/. In this way, the
required generic header files could be referred and accessible through some modifi-
cation in kbuild file in linux/arch/coffee/include/asm/. For example, in the kbuild
of coffee directory two header files trap.h and io.h are referred as follow:

• include include/asm-generic/kbuild.asm

• headers-y + trap.h

• headers-y += io.h

In this step, a set of already implemented header files could be used as a template
to make a list of required header files. Then, each of them should be examined
precisely to make a decision whether they need to be customized or not. If there
are some items that are architecture-specific in a header file, it needs to be modified
and settled in include directory of the specific architecture. However, some of the
main headers that describe a specific architecture are:

• asm/cache.h: defines cash size

• asm/tlbflush.h: translation lookaside buffer(TLB) management,

• asm/elf.h, defines elf format

• asm/irqflags.h, interrupt enabling or disabling

5.3. Building the kernel Image: 46

• asm/page.h, asm/pgalloc.h, asm/pgtable.h, related to page table management

• asm/mmucontext.h, asm/ptrace.h, related to context switching

5.2.2 Boot Procedure:

Another part of Linux architecture-specific code that needs to be developed is the
functions of the boot process. As explained in the previous chapter, the bootloader
responsibility is initializing hardware and loading Linux kernel image in memory.
The configuration of the boot process could be manipulated from Makefile located in
linux/arch/coffee/boot/makefile. In this file, we can define the name and the format
of the output built kernel. The vmlinux, for example, is the raw format kernel which
is usable for debugging. Moreover, other variables like ZTEXTADDR, ZRELADDR,
PARAMS_PHYS, INITRD_PHYS and ZBSSADDR would be set that determine different
address spaces that the kernel needs to know to operate correctly.

The next step after boot configuration is to write a function in assembly code to de-
fine the main entry point of the kernel image. This function is called start_kernel
that is located in linux/arch/coffee/kernel/head.S. Indeed, it determines the boot-
loader where to jump after loading the kernel image in memory.

5.3 Building the kernel Image:

After kernel code modifications, it is time to build the kernel image in order to load it
in the target architecture. For this purpose, we need to enable CROSS_COMPILE
entry in the Makefile in (TOPDIR)/COFFEE/boot directory of the Linux tree as
follows:

• CROSS_COMPILE = /DIR to the cross compiler

• AS = $(CROSS_COMPILE)as

• LD = $(CROSS_COMPILE)ld

• CC = $(CROSS_COMPILE)gcc

In addition, the LOADADDR variable that contains the address in which the kernel
image would be loaded, should be specified in the makefile of the boot directory.

5.4. Starting the kernel: 47

Moreover, the makefile of the top directory of COFFEE architecture, arch/COF-
FEE/makefile, defines the specifications of the platform, the board and its model
that needs to be exported to the Linux kernel:

• platform-$(CONFIG_COFFEE) := COFFEE

• board-$(CONFIG_ALTERA_STRATIX) := altera_stratix

• model-$(CONFIG_RAMKERNEL) := ram

• export PLATFORM BOARD MODEL

After doing all modifications, the kernel has to be configured with make config
command. Then, the following command would be executed to build the Linux
kernel image for COFFEE:

make ARCH=coffee vmlinux

In our case, that target is vmlinux which is the Linux kernel image. It is worth
to know that the linker script under arch/coffee/kernel/vmlinux.lds.S defines the
layout of the kernel image that could be modified according to the hardware imple-
mentation. This script, for example, instructs the linker how to place the various
sections of code and data in the final kernel image.

5.4 Starting the kernel:

The boot sequence always initiates with a small function which is written in assembly
language. It is considered as the main entry point of the kernel image and is stored
in arch/COFFEE/kernel/head.S. This function indicates to the bootloader where
to jump after loading the Linux image in memory. It could be written as follows:

_start:

ldra r1,init_thread_union //set stack at top of the task union
addi sp,r1,THREAD_SIZE_ASM
ldra r2,_current_thread //Remember current thread
st r1, r2, 0
ldra r1, machine_early_init //save args r4-r7 passed from boot-

5.4. Starting the kernel: 48

loader
jalr r1
nop

ldra r1,start_kernel //call main as a subroutine
jalr r1
nop

As can be seen in the above assembly code, the start_kernel() function which is
located in linux/init/main.c has been invoked. Basically, start_kernel() is where
subsystems like virtual file systems(VFS), cash, security framework to time man-
agement, the console layer and many others are initialized. In fact, it is the first
architecture-independent C function that Linux provides. start_kernel() never re-
turns to its caller, since it ends by calling the rest_init() function.

5.4.1 The first kernel thread:

As it is described above, the rest_init() is the last function call which is performed
by the start_kernel() function. In this state, the memory management subsystem is
completely operational. The rest_init() creates init() threads which obtains PID 1
as the very first kernel thread. The init() thread which is located in /sbin directory,
locks the kernel, then it calls do_basic_setup() in order to perform device or bus
initialization. After completing kernel initialization, free_initmem() will free any
memory that was specified as being for initialization processes.

Once the porting procedure is done successfully, the init process is able to run and
give access to a shell. But like other software based projects, the port needs to
be maintained or improved. For example, adding support for multiprocessor or
implementing more device drivers are the ways to enhance and reinforce the Linux-
based system.

49

6. RESULTS AND DISCUSSION

6.1 Issues:

As the Linux kernel is developed by the Linux communities around the world, there
is not much documentation available describing the steps of the porting process on
the web. Indeed, lack of valuable documents and materials about Linux program-
ming and the tested solutions for raised unknown errors is hurting Linux developers
in their projects. On the other hand, a simple process of porting Linux OS, an
MMU-less operating system, may count as little as 4000 lines of code. The code is
spread out in different modules of the Linux kernel from device drivers to networking
sections. Therefore, getting the Linux kernel running on a new processor is a tough
and time-consuming process.

6.2 Achievements:

The present thesis was intended to find a possible procedure that could be followed
step by step when porting the Linux kernel to COFFEE Core. Spending count-
less hours investigating the already supported architectures in the Linux tree, it is
discovered that there exists a standard skeleton which is shared by the majority of
ports. This skeleton could be divided into two parts logically: architecture-specific
code that is executed from the moment the kernel takes over the bootloader until
init is executed. Then, the second part of the procedure is regularly executed when
the kernel is running normally. In this state, new threads are created, and the OS
deals with hardware interrupt or software exceptions, serving system calls, sending
or receiving data to user applications, and so on.

In this study, the first part of the porting procedure is covered properly, and the
tricks of the implementing process have been described. Also, a customized toolchain
software which is a fundamental element of the porting procedure has been im-
plemented. As the COFFEE is not supported by the different components of a

6.2. Achievements: 50

toolchain, it was not possible to use pre-built toolchain softwares which are avail-
able on the market. Therefore, the process of building the toolchain has been done
from scratch. As this toolchain provides cross-build functionality, the kernel image
is built for COFFEE Core too.

51

7. CONCLUSIONS

7.1 Summary:

This research will serve as a base for future studies on the steps that need to be
followed sequentially by the Linux developer in order to make necessary modification
in the Linux kernel code so that it could run on the specific hardware platform.
The thesis, however, explains the necessary background needed for porting Linux
to the aforementioned new platform, COFFEE RISC Core. In the early chapters
of the thesis, Linux operating system, and its fundamental components have been
investigated briefly. Since the Linux kernel is complicated when it comes to details,
the author had a high-level view on this OS and its subsystems. In addition, this
thesis provides an overview of embedded systems concepts and components which
are vital to know before any implementation.

The worthiness of an OS is evaluated based on how well it could support user
processes on one hand, and how well it can implement the services it provides
on the hardware. Generally speaking, there are concerns in both software and
hardware sides of the kernel while porting Linux to a new architecture that should
be taken into account. On the hardware side, however, the concerns are related to
the architecture of the new CPU subsystems such as memory management, cashes,
and the multiprocessing details. Moreover, other peripheral and I/O systems that
will connect to the system needs to be implemented separately. On the other hand,
the software concerns are with regard to the compatibility of the user and system
software interfaces with the Linux kernel that should be solved as well.

Finally, it is also worth noting that the original version of the Linux kernel is in-
cluding all modules of a real operating system which in most cases some of them is
unusable. In fact, a good design of the kernel subsystems can improve the perfor-
mance of the whole operating system.

7.2. Future work: 52

7.2 Future work:

As with all research studies, the analysis and methods presented in this thesis can
be extended and improved to give Linux developers a comprehensive guideline. The
rest of implementation part of the project could be in the bootloader field that
needs to be developed precisely. The kernel image is loaded to COFFEE Core if the
bootloader works properly. In this case, the user applications could interact with
the kernel by calling system calls. On the other hand, external devices, if they exist,
could be integrated into the system by adding their implemented modules in the
device driver file of the Linux kernel tree. Each of these mentioned enhancements
would enrich this research study.

53

BIBLIOGRAPHY

[1] COFFEE RISC Core. [Online]. Available: http://www.coffee.tut.fi/documents.
html

[2] Z. Bin, J. Q. Chao, Y. L. Xiao, and C. X. Guang, “Research and limitation of
system call based on linux platform,” in Electric Information and Control En-
gineering (ICEICE), 2011 International Conference on, April 2011, pp. 1592–
1595.

[3] D. Bovet and M. Cesati, “Basic operating system concepts,” in Understanding
the Linux Kernel, 3rd ed. O’Reilly Media, 2005, ch. 1.

[4] ——, “Memory management,” in Understanding the Linux Kernel, 3rd ed.
O’Reilly Media, 2005, ch. 8.

[5] ——, “Process communication,” in Understanding the Linux Kernel, 3rd ed.
O’Reilly Media, 2005, ch. 19.

[6] ——, “System Startup,” in Understanding the Linux Kernel, 3rd ed. O’Reilly
Media, 2005, ch. Appendix A.

[7] ——, “The virtual filesystems,” in Understanding the Linux Kernel, 3rd ed.
O’Reilly Media, 2005, ch. 12.

[8] J. Corbet, A. Rubini, and G. Kroah-Hartman, “Memory Mapping and DMA,”
in Linux Device Drivers. O’Reilly Media, 2005, ch. 15.

[9] P. J. Denning, “Virtual memory,” ACM Comput. Surv., vol. 2, no. 3, pp. 153–
189, Sept. 1970. [Online]. Available: http://doi.acm.org/10.1145/356571.356573

[10] U. T. Electronics, “2013 embedded market study,” 2013. [Online]. Available:
http://www.iuma.ulpgc.es/~nunez/UBM2013EmbeddedMarketStudyb.pdf

[11] B. Forouzan and F. Mosharraf, Foundations of Computer Science, ser. Intro-
duction to CS Series. Cengage Learning, 2008.

[12] R. Fox, “The linux file system.” Taylor & Francis, 2014, ch. 10.

[13] ——, “Managing Processes.” Taylor & Francis, 2014, ch. 4.

http://www.coffee.tut.fi/documents.html
http://www.coffee.tut.fi/documents.html
http://doi.acm.org/10.1145/356571.356573
http://www.iuma.ulpgc.es/~nunez/UBM2013EmbeddedMarketStudyb.pdf

BIBLIOGRAPHY 54

[14] B. Gerofii, “MINIX VFS Design and implementation of the MINIX Virtual File
system,” Master’s thesis, vrije Universiteit amsterdam, 2006.

[15] A. González, “Application development,” in Embedded Linux Projects Using
Yocto Project Cookbook, ser. EBL-Schweitzer. Packt Publishing, 2015, ch. 4.

[16] B. L. U. Group, “Files: A brief introduction,” 2006, accessed: 2015-11-29.
[Online]. Available: http://www.linfo.org/file.html

[17] C. Hallinan, “Bootloaders,” in Embedded Linux Primer: A Practical Real-World
Approach, 2nd ed., ser. Prentice Hall Open Source Software Development Series.
Pearson Education, 2010, ch. 7.

[18] ——, “The first embedded experience,” in Embedded Linux Primer: A Prac-
tical Real-World Approach, 2nd ed., ser. Prentice Hall Open Source Software
Development Series. Pearson Education, 2010, ch. 1.

[19] R. KAMAL, EMBEDDED SYSTEMS 2E. Tata McGraw-Hill Education.

[20] M. Kerrisk, “filesystems(5) - linux manual page,” accessed: 2015-11-15. [Online].
Available: http://man7.org/linux/man-pages/man5/filesystems.5.html

[21] R. Love, “Memory management,” in Linux Kernel Development, 3rd ed. Pear-
son Education, 2010, ch. 12.

[22] ——, “System calls,” in Linux Kernel Development, 3rd ed. Pearson Education,
2010, ch. 5.

[23] ——, “Process Management,” in Linux System Programming, 2nd ed. O’Reilly
Media, 2013, ch. 5.

[24] J. Mamcenko, “Lecture notes on operating systems.” Vilnius Gediminas Tech-
nical University, 2010, ch. 2.

[25] T. Noergaard, “Know your standards,” in Embedded Systems Architecture: A
Comprehensive Guide for Engineers and Programmers. Elsevier/Newnes, 2005,
ch. 2.

[26] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting and au-
tomating collateral evolutions in linux device drivers,” SIGOPS Oper. Syst.
Rev., vol. 42, no. 4, pp. 247–260, Apr. 2008.

http://www.linfo.org/file.html
http://man7.org/linux/man-pages/man5/filesystems.5.html

BIBLIOGRAPHY 55

[27] J. P.Kylliainen, T. Ahonen, and J. Nurmi, “General-purpose embedded proces-
sor cores the coffee risc example,” in Processor design:system-on-chip computing
for ASICs and FPGAs, 2007, ch. 5, pp. 83–100.

[28] J. Preshing. How to Build a GCC Cross-Compiler. Ac-
cessed: 19-11-2015. [Online]. Available: http://preshing.com/20141119/
how-to-build-a-gcc-cross-compiler/

[29] P. Raghavan, A. Lad, and S. Neelakandan, “Introduction to embedded systems,”
in Embedded Linux System Design and Development. CRC Press, 2006, ch. 1.

[30] ——, “Real-time linux,” in Embedded Linux System Design and Development.
CRC Press, 2006, ch. 7.

[31] B. Randell, “A note on storage fragmentation and program segmentation,”
Commun. ACM, vol. 12, no. 7, pp. 365–ff., July 1969. [Online]. Available:
http://doi.acm.org/10.1145/363156.363158

[32] R. Rehman and C. Paul, “Compilers and assemblers,” ser. Bruce Perens’ open
sources series. Prentice Hall PTR, 2003, ch. 3.

[33] ——, “Cross-platform and embedded systems development,” ser. Bruce Perens’
open sources series. Prentice Hall PTR, 2003, ch. 8.

[34] D. A. Rusling, “Networks,” in The Linux Kernel, 1998, ch. 10. [Online].
Available: http://www.tldp.org/LDP/tlk

[35] M. Rybczynska, “Porting linux to a new architecture.” Presented at Embedded
Linux Conference (ELC), San Jose, CA, 2014.

[36] A. Silberschatz, P. Galvin, and G. Gagne, “The linux system,” in Operating
System Concepts, 9th ed. Wiley Global Education, 2012, ch. 18, pp. 781–826.

[37] A. S. Tanenbaum and H. Bos, “The operating system zoo,” inModern Operating
Systems, 4th ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2014,
ch. 1.

[38] L. Torvalds, “Linux: a Portable Operating System,” Master’s thesis, UNIVER-
SITY OF HELSINKI, 1997.

[39] A. Vaduva, “Bootloaders,” in Learning Embedded Linux Using the Yocto Project.
Packt Publishing, 2015, ch. 3.

http://preshing.com/20141119/how-to-build-a-gcc-cross-compiler/
http://preshing.com/20141119/how-to-build-a-gcc-cross-compiler/
http://doi.acm.org/10.1145/363156.363158
http://www.tldp.org/LDP/tlk

Bibliography 56

[40] ——, “Cross compiling,” in Learning Embedded Linux Using the Yocto Project.
Packt Publishing, 2015, ch. 2.

[41] F. Vahid, “Embedded systems overview,” in EMBEDDED SYSTEM DESIGN:
A UNIFIED HARDWARE/SOFTWARE INTRODUCTION. Wiley India Pvt.
Limited, 2006, ch. 1.

[42] S. Venkateswaran, “Getting started with device drivers,” in Essential Linux
Device Drivers. Pearson Education, 2008, ch. 3.

[43] S. Vermeulen, Linux Sea, 1st ed., Sep 2015. [Online]. Available: [http:
//swift.siphos.be/linux_sea/linux_sea.pdf]

[44] Y.-C. Wang and K.-J. Lin, “Implementing a general real-time scheduling frame-
work in the red-linux real-time kernel,” in Real-Time Systems Symposium, 1999.
Proceedings. The 20th IEEE, 1999, pp. 246–255.

[45] K. Wehrle, The Linux Networking Architecture: Design and Implementation
of Network Protocols in the Linux Kernel, ser. Alan R. Apt book. Pearson
Prentice Hall, 2004.

[46] K. Yaghmour, J. Masters, G. Ben-Yossef, and P. Gerum, “Basic concepts,” in
Building Embedded Linux Systems. O’Reilly Media, 2008, ch. 2.

[47] ——, “Development tools,” in Building Embedded Linux Systems. O’Reilly
Media, 2008, ch. 4.

[48] Y. Yang, M. Ma, and B. Liu, Information Computing and Applications: 4th
International Conference, ICICA 2013, Singapore, August 16-18, 2013. Revised
Selected Papers, ser. Communications in Computer and Information Science.
Springer Berlin Heidelberg, 2013, no. pt. 2.

[49] Z. Yi and J. Peter P. Waskiewicz, “Enabling linux* network support of
hardware multiqueue devices,” in Proceedings of the Linux Symposium, vol. 2,
2007, pp. 305–310. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.111.798&rep=rep1&type=pdf#page=305

[50] A. Zeichick, “getting started with a linux software development toolchain,” May
2012, accessed: 2015-12-24. [Online]. Available: https://software.intel.com/
en-us/articles/getting-started-with-a-linux-software-development-toolchain

[http://swift.siphos.be/linux_sea/linux_sea.pdf]
[http://swift.siphos.be/linux_sea/linux_sea.pdf]
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.798&rep=rep1&type=pdf#page=305
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.798&rep=rep1&type=pdf#page=305
https://software.intel.com/en-us/articles/getting-started-with-a-linux-software-development-toolchain
https://software.intel.com/en-us/articles/getting-started-with-a-linux-software-development-toolchain

	Introduction
	Motivation:
	Thesis Outline:

	Linux Operating System, Concepts And Architecture
	Components of Linux System
	Architecture of the Linux Operating System
	Kernel Mode:
	User Mode:
	Interaction between the user and kernel space

	Components of the kernel
	File Systems
	Process Management
	Memory Management
	Device Drivers
	Networking

	Platform Architecture
	Coffee RISC Core Overview
	Instruction set
	Processor Operating Modes
	Registers
	Interface of the core

	Embedded Linux Systems
	Basic Concepts
	Generic Architecture of an Embedded Linux System
	Software Elements of Embedded Systems
	Cross-development Toolchain
	Bootloader:

	Kernel:

	Porting the Linux Kernel to COFFEE RISC Core
	Toolchain:
	Linux Kernel Modification:
	The header files:
	Boot Procedure:

	Building the kernel Image:
	Starting the kernel:
	The first kernel thread:

	Results and discussion
	Issues:
	Achievements:

	Conclusions
	Summary:
	Future work:

	Bibliography

