
DEEPAK REVANNA
Design and Implementation of Scalable FFT Processor for Wire-
less Applications
Master of Science Thesis

Examiners:

Prof. Jari Nurmi

M.Sc. Omer Anjum

Examiners and topic were approved in

the Computing and Electrical En-

gineering Faculty Council meeting

15.Aug.2012.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

DEEPAK REVANNA: Design and Implementation of Scalable FFT Processor

for Wireless Applications

Master of Science Thesis, 63 Pages, 5 Appendix Pages

March 2013

Major: Electronics and Communications Engineering

Examiners: Prof. Jari Nurmi, M.Sc. Omer Anjum

Keywords: FFT, FPGA, OFDM, SDR, Processor

In the recent past communication is predominantly becoming wireless which is a

drastic shift from wired communication. Generally, the transmitted radio signal

over a wireless channel is subject to more distortion, more interference and more

noise than a signal over wired channel. In other words, the SNR of received signal

over a wireless channel is comparatively lower compared to received signal over a

wired channel. Hence, to recover original data from received signal, wireless com-

munication systems have to be more robust and e�cient in recovering original data.

Wireless communication systems these days adopt e�cient multi-carrier transmis-

sion technique such as OFDM in their transceivers. And majority of the commercial

wireless standards are OFDM based.

OFDM based wireless standards demand highly e�cient baseband hardware in com-

munication systems. The baseband hardware needs to meet stringent design param-

eters such as high speed, low power, low area, low cost, highly �exible and highly

scalable. Modern wireless systems support multiple standards to meet the demands

of end user application requirements. A wireless system while supporting multiple

standards, should also satisfy performance requirements of those supported stan-

dards. Wireless transceivers based on SDR platform support multiple wireless stan-

dards. Meeting performance requirements of multiple standards is a challenge while

designing baseband hardware. To design an e�cient OFDM baseband hardware,

it is necessary to e�ciently design its performance critical component. FFT com-

putation is one of the most performance critical component in an OFDM system.

Designing FFT hardware to support multiple wireless standards while meeting the

above speci�ed performance requirements is a challenging task.

In this thesis work a N-point scalable novel FFT processor architecture was proposed.

A radix-2 �xed point 16-bit N-point scalable FFT processor was designed and proto-

typed using VHDL on an Altera Stratix V FPGA device 5SGSMD5K2F40C2. The

processor was implemented targeting SDR platforms supporting multiple OFDM

III

based wireless standards. The processor operates at a maximum frequency of

200MHz and uses less than 1% of hardware resources on the FPGA. It meets the per-

formance requirements of OFDM based wireless standards such as IEEE 802.11a/g,

IEEE 802.16e, 3GPP-LTE, DAB and DVB-T. The FFT processor based on pro-

posed novel architecture has a better performance in terms of speed, �exibility and

scalability when compared to existing �xed as well as variable length FFT proces-

sors.

IV

PREFACE

When I wanted to start work on my thesis I approached Prof. Jari Nurmi to give

me an opportunity and to which he positively responded. He provided me with

all the facilities and environment to work in the department. He was a mentor, a

guide and consistently supported my work during bad times as well as good times.

Hence, I would like to express my sincere gratitude towards Prof. Jari Nurmi for

all his support. Mr. Omer Anjum who provided me with the research topic, shared

his knowledge and guided me throughout my thesis work. I thank him for guiding,

supporting and supervising me throughout my work. Mr. Roberto Airoldi was also

my mentor who shared his technical knowledge and helped me during my work. He

also taught me how to write research papers for publishing in international confer-

ences. I would like to thank him for all his guidance, support, sharing knowledge

and I cherish the moments of sharing o�ce space with him. I express my thanks to

Mr. Manuele Cucchi for his technical help and discussions during the course of my

work. I would also like to thank Ms. Leyla Ghazanfari for being a very supportive

and encouraging colleague. My family has loved, cared and supported me during

tough times as well as good times. I am eternally grateful to my father Revanna,

my mother Mangalamma and my brother Nagendra Prasad for showering me with

their unconditional love and support.

Tampere, 22.Mar.2013

Deepak Revanna

V

CONTENTS

1. Introduction . 1

2. Background . 3

2.1 Wireless OFDM Systems . 3

2.2 OFDM . 4

2.3 OFDM Based Wireless Standards . 6

2.4 Fast Fourier Transform . 7

2.5 Research Work On FFT Processors 9

3. Scalable FFT Processor . 11

3.1 Internal Architecture . 13

3.2 Butter�y Unit . 14

3.2.1 Bit Parallel Multiplier . 17

3.3 Data Memory (RAM) . 18

3.4 Twiddle Factor Memory (ROM) . 21

3.5 Interconnect . 23

3.6 Address Generation Unit . 27

3.7 Control Unit . 31

3.8 Data�ow Algorithm . 35

4. Implementation . 37

4.1 Simulation . 37

4.1.1 Pre-simulation . 37

4.1.2 Running Simulation . 38

4.1.3 Post Simulation . 39

4.1.4 VCD File Generation . 39

4.2 Synthesis and Power Analysis . 40

5. Results and Evaluation . 43

6. Conclusions . 47

References . 48

A. Appendix . 50

VI

LIST OF FIGURES

2.1 An OFDM based simplex communication system [8]. 3

2.2 OFDM modulation at transmitter [7]. 5

2.3 OFDM demodulation at receiver [7]. 5

2.4 Radix-2 DIT FFT butter�y diagram [1]. 8

2.5 Single radix-2 DIT butter�y operation. 9

3.1 Scalable FFT processor block diagram. 11

3.2 FFT processor core pin details. 12

3.3 FFT processor pipelined internal architecture. 13

3.4 Pipelined butter�y unit [10]. 14

3.5 Butter�y unit pin details. 16

3.6 Butter�y unit waveform for 16-point FFT. 16

3.7 Data format stored in memory. 18

3.8 Order of input sample at the beginning and the order of �nal output

of 16-point FFT computation. 19

3.9 RAM memory bank pin details. 20

3.10 SetA RAM memory bank (RAM0) waveforms. 20

3.11 SetB RAM memory bank (RAM4) waveforms. 21

3.12 Order of twiddle factors stored in ROM. 22

3.13 ROM memory pin details. 22

3.14 ROM memory waveforms. 23

3.15 Interconnect internal architecture and external interface. 24

3.16 Interconnect pin details. 25

3.17 InterconnectA waveforms. 26

3.18 InterconnectB waveforms. 26

3.19 Address generation unit internal logic. 29

3.20 Address generation unit pin details. 30

3.21 Address generation unit waveforms. 31

3.22 Control unit state diagram. 31

3.23 Control unit pin details. 33

3.24 Control unit waveforms. 34

3.25 16-point data�ow butter�y diagram for FFT processor architecture. . 35

5.1 FFT computation time as a function of N. 44

5.2 FFT total energy consumption as a function of N. 45

A.1 Synthesized FFT core in RTL viewer. 50

A.2 Synthesized butter�y unit in RTL viewer. 50

VII

A.3 Synthesized complex multiplier in RTL viewer. 51

A.4 Synthesized interconnect in RTL viewer. 51

A.5 Synthesized address generation unit in RTL viewer. 52

A.6 Synthesized control unit in RTL viewer. 52

A.7 Location of FFT core on the FPGA chip, courtesy: Chip planner tool. 53

A.8 Partition of FFT core components on the FPGA chip, courtesy: De-

sign partition planner tool. 53

VIII

LIST OF TABLES

2.1 FFT computation time for OFDM based wireless standards. 6

5.1 FFT Core Resource Utilization. 43

5.2 FFT Computation Time. 44

5.3 Power Analysis Summary. 45

5.4 Comparison With Existing FFT Processors. 46

IX

ABBREVIATIONS

ALUT Adaptive Look Up Table

CDM Code Division Multiplexing

CentOS Community ENTerprise Operating System

DAB Digital Audio Broadcasting

DAC Digital to Analog Converter

DFT Discrete Fourier Transform

DIF Decimation In Frequency

DIT Decimation In Time

DSP Digital Signal Processing

DVB-T Digital Video Broadcasting-Terrestrial

EDA Electronic Design Automation

FDM Frequency Division Multiplexing

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

ICI Inter Carrier Interference

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

ISI Inter Symbol Interference

LOS Line Of Sight

LPF Low Pass Filter

OFDM Orthogonal Frequency Division Multiplexing

PSK Phase Shift Keying

QAM Quadrature Amplitude Multiplexing

RAM Random Access Memory

RF Radio Frequency

ROM Read Only Memory

RTL Register Transfer Level

SDC Synopsys Design Constraint

SDR Software De�ned Radio

SNR Signal-to-Noise Ratio

USB Universal Serial Bus

VCD Value Change Dump

VHDL Very high speed integrated circuit Hardware Description Language

3GPP-LTE 3rd Generation Partnership Project-Long Term Evolution

1

1. INTRODUCTION

The wired telecommunication networks o�er low-bit-rate services as well as high-

bit-rate services. Voice services require low-bit-rates while broadband multimedia

services require high-bit-rates. Wireless communication networks also provide the

speci�ed services. However, some of the high-bit-rate services are limited due to

various performance constraints. During the course of time, there has been a grow-

ing demand for high-bit-rate services in wireless communication systems. Providing

services over wireless channels is challenging because the mobile radio channels are

more contaminated compared to wired channels.

The main characteristic of a mobile radio channel is multipath reception of trans-

mitted signal. The received signal not only contains Line-Of-Sight (LOS) signal but

also re�ected signals. The re�ected signals are delayed and distorted versions of

transmitted signal. Transmitted signal undergoes re�ections due to terrain features

like trees, buildings, vehicles, hills, mountains and so on. The delayed signal causes

Inter Symbol Interference (ISI) with LOS signal received at the receiver. ISI causes

performance degradation of the transceiver and it is necessary to adopt suitable

equalization technique in order to improve the performance. A broadband multime-

dia wireless communication system requires high-bit-rate transmission in terms of at

least several megabits per second. Designing wireless transceivers to support such

high data rates with compact and low-cost hardware is a challenging task. In order

to overcome multipath-fading environment and in the meantime achieve high data

rates, Orthogonal Frequency Division Multiplexing (OFDM) transmission scheme is

used.

OFDM is a parallel data transmission technique which minimizes the in�uence of

multipath fading through simpler equalization technique. OFDM is widely adopted

in modern wireless communication systems. It has been adopted by major wire-

less standards such as Institute of Electrical and Electronics Engineers (IEEE)

802.11a/g, IEEE 802.16e, 3rd Generation Partnership Project-Long Term Evolution

(3GPP-LTE), Digital Audio Broadcasting (DAB) and Digital Video Broadcasting-

Terrestrial (DVB-T). A transceiver supporting multiple standards and which is based

on Software De�ned Radio (SDR) platform allows switching between multiple wire-

1. Introduction 2

less standards at run time. Modern wireless transceivers based on SDR platform

may support one or multiple standards. In any case, the transceiver should com-

ply with performance requirements of all the standards it supports. The standards

specify strict performance requirements in terms of high speed, low power, low cost,

�exibility and scalability.

Meeting stringent performance requirements while supporting multiple wireless stan-

dards is the need of the hour. Since, OFDM based communication system is com-

mercially adopted in major wireless standards, there is a huge amount of research

interest in OFDM baseband digital signal processing. In order to design an e�cient

OFDM baseband hardware, its components require to be e�cient. In an OFDM

baseband hardware, FFT computation is one of the most computationally intensive

operation which in�uences performance of the system. The baseband hardware has

to be e�cient and capable enough to compute FFT within the time constraints

necessary to support multiple wireless standards. Baseband hardware should be

scalable so that it supports multiple wireless standards as well as it should meet the

performance constraints such as high speed, low area and low power consumption.

Hence, the baseband hardware requires a scalable FFT module which meets the

performance constraints required by multiple wireless standards.

Scope of the thesis work was to propose a N-point scalable novel FFT processor archi-

tecture, implement a radix-2 �xed point 16-bit N-point scalable FFT processor based

on the proposed architecture using Very high speed integrated circuit Hardware De-

scription Language (VHDL) and synthesize the processor on a Field Programmable

Gate Array (FPGA). The processor implementation was simulated using ModelSim

simulation tool from Mentor Graphics Corporation to measure its performance in

terms of speed and scalability. Also, the processor was synthesized on an FPGA to

measure the performance parameters such as maximum operating frequency, area

and power consumption. The synthesis tool used was Quartus II version 12.1 from

Altera Corporation and the FPGA was Altera stratix V 5SGSMD5K2F40C2.

The structure of this thesis is as follows: the Chapter 2 explains the background

related to OFDM and research work on FFT processors, the Chapter 3 explains

FFT processor architecture and its components in detail, the Chapter 4 is about

implementation details such as simulation and synthesis, the Chapter 5 discusses

results and its evaluation and �nally the Chapter 6 draws conclusions based on the

results achieved.

3

2. BACKGROUND

OFDM is an e�cient multi-carrier transmission technique which is predominantly

used in wireless transceivers. OFDM technique o�ers better spectral utilization

and better performance compared to other transmission techniques in recovering

original signal from received signal. Since, major wireless standards are based on

OFDM transmission, there is a lot of research interest in this domain. Research in

OFDM baseband hardware of transceiver is a challenging task. One of the major

performance critical module of OFDM transceiver is FFT computation. One of the

steps in creating an e�cient OFDM transceiver is to create an e�cient FFT module.

In this regard, basics of OFDM based communication systems and FFT algorithm

are described in detail below.

2.1 Wireless OFDM Systems

A simplex communication system based on OFDM is shown in Figure 2.1.

Channel

coding/

interleaving

Symbol

mapping

(modulation)

OFDM

modulation

(IFFT)

Guard

interval/

windowing

DAC

Down

conversion

and I/Q

demodulation

ADC
Guard

interval

removal

OFDM

demodulation

(FFT)

Symbol de-

mapping

(detection)

I/Q

modulation

and up-

conversion

Decoding/de-

interleaving

Channel

estimation

Data

source

Data

sink

Multipath

radio

channel

Transmitted

baseband

signal s(t)

Received

signal r(t)

: Digital signals : Analog signals

I/Q I/Q

I/Q

I/Q I/Q

I/Q

RF

RF

N complex data

constellations {xi,k}

Received data constant

{yi,k}

sRF(t)

rRF(t)

Time synch. Carrier synch.

Figure 2.1: An OFDM based simplex communication system [8].

A communication system in general has a transmitter and a receiver which can be

put together to form a transceiver. The transmitter modulates baseband digital sig-

nal, converts it into Radio Frequency (RF) signal using Digital to Analog Converter

(DAC). The transmitted RF signal undergoes multipath fading, it is contaminated

with thermal noise, distortions in radio channel and also undergoes Inter Symbol

Interference (ISI). To recover original transmitted signal, the received signal has to

2. Background 4

undergo equalization. Several equalization techniques are available, but a suitable

technique is chosen based on Signal-to-Noise Ratio (SNR) requirements and other

design constraints.

Inverse Fast Fourier Transform (IFFT) and FFT are used for modulating and de-

modulating the data constellations on orthogonal sub-carriers. These two signal

processing algorithms are used instead of I/Q-modulators and demodulators. The

input of IFFT is xi,k which is an N-point data constellation, where N is the num-

ber of IFFT/FFT points, i is sub-carrier index and k is an OFDM symbol index.

N is chosen as a power of two, this helps in e�cient implementation of IFFT and

FFT algorithms for modulation and demodulation respectively. The described com-

munication system consists of OFDM module which is our area of interest in the

baseband domain. Hence, OFDM, OFDM modulation and demodulation are dis-

cussed in detail below.

2.2 OFDM

OFDM is a multi-carrier transmission technique which is widely popular in most

of the available commercial wireless communication standards. As described in [7]

an OFDM signal is made up of a number of sub-carriers or sub-channels which

are orthogonal to each other. The bandwidth of an OFDM signal includes all the

sub-carriers or in other words each sub-carrier shares the available bandwidth. The

sub-carriers carry data individually and are modulated in amplitude as well as phase.

The sub-carriers can be multiplexed using Frequency Division Multiplexing (FDM)

or Code Division Multiplexing (CDM) technique. Orthogonality property of sub-

carriers increases spectral utilization of the transmitted signal while reducing Inter

Carrier Interference (ICI). The OFDM technique is an improvement over an FDM

technique. Advantage of OFDM is that it requires a single �lter for all the sub-

carriers while FDM requires �lter for each of the sub-carriers. But, disadvantage

of OFDM is that it requires highly accurate frequency synchronization technique

in order to avoid ICI. OFDM technique can be used to modulate a number of sub-

carriers to carry data individually as detailed below.

2. Background 5

Figure 2.2 describes modulation in baseband domain of an OFDM based communi-

cation system. Input data bits are split among di�erent sub-carriers with the help of

serial-to-paraller converter. The sub-carriers are assigned with a range of frequencies

and each of them share the available bandwidth of an OFDM signal.

iFFT

DAC

DAC

X

+

X

90
0

.

.

.

Input data

bits

Mapping

symbols
Re

Im

fc

OFDM

carrier signal

S
er

ia
l-

to
-p

a
ra

ll
el

co
n

v
er

te
r

Figure 2.2: OFDM modulation at transmitter [7].

Each sub-carrier is modulated by data using Phase Shift Keying (PSK) or Quadra-

ture Amplitude Modulation (QAM) technique. IFFT on sub-carriers transforms

them to time domain and combines them together to form an OFDM signal. Re-

sulting digital OFDM signal is converted to analog signal by Digital to Analog

Converter (DAC). To transmit data bearing OFDM signal over radio channel, an

RF carrier is modulated by the OFDM signal. After using OFDM modulation at

transmitter, OFDM demodulation is used at receiver to recover data from radio

signal.

OFDM demodulation at the receiver side is illustrated in Figure 2.3.

.

.

.

Output

data bits

Re

Im

fc

OFDM

carrier signal

P
a
ra

ll
el

-t
o

-s
er

ia
l

co
n

v
er

te
r

ADC

ADC

LPF

LPF

X

X

90
0

Symbols BitsQuantization
Low-pass

filters

FFT

Figure 2.3: OFDM demodulation at receiver [7].

2. Background 6

RF signal received from radio channel is down converted to separate data bearing

OFDM signal from it. OFDM signal is complex valued consisting of real and imag-

inary parts. The resulting baseband OFDM signal is low pass �ltered to eliminate

unwanted harmonics present around baseband signal frequency.

OFDM analog signal is converted into digital signal through Analog to Digital Con-

verters (ADC). Time domain digital OFDM signal is converted into frequency do-

main through FFT operation. Also, FFT operation disintegrates OFDM signal into

its sub-carriers. Individual sub-carriers are demodulated separately to extract data

from them. Symbols from sub-carriers are converted to bit streams using symbol

detectors. The demodulator or symbol detector is in synchronization with the mod-

ulator which maps bit streams to symbols.

OFDM modulators and demodulators are used in wireless transceivers. And wireless

transceivers support multiple wireless standards. OFDM transmission technique is

widely popular and it is adopted commercially by a number of wireless standards.

2.3 OFDM Based Wireless Standards

Most of the wireless standards available are OFDM based. Some of the OFDM

based wireless standards are IEEE 802.11a/g, IEEE 802.16e, 3GPP-LTE, DAB and

DVB-T. Di�erent standards specify time constraints for FFT computation as shown

in Table 2.1.

FFT Size FFT Period [µs]

DAB

2048 1000

1024 500

512 250

256 125

DVB-T
8192 896

2048 224

IEEE 802.11a/g 64 3.2

IEEE 802.16e 256 8

3GPP-LTE

128

66.7

256

512

1024

2048

Table 2.1: FFT computation time for OFDM based wireless standards.

2. Background 7

To support a speci�c standard, a communication system should meet the perfor-

mance constraints set by that standard. FFT computation time is speci�ed in micro

seconds for di�erent sizes of FFT. IEEE 802.11a/g and IEEE 802.16e support only

speci�c size FFT computation while DAB, DVB-T and 3GPP-LTE support di�er-

ent FFT size computations. For DAB and DVB-T, FFT computation time varies in

accordance with FFT size. However, in case of 3GPP-LTE, FFT computation time

is the same irrespective of FFT size.

FFT operation is computationally intensive and is required to be performed within

the time constraints speci�ed by various wireless standards. Hence, FFT is studied

in more detail before its implementation in hardware.

2.4 Fast Fourier Transform

FFT is a faster version of Discrete Fourier Transform (DFT). Computation of

DFT/FFT of a time domain digital signal x(n) results in converting it into a fre-

quency domain signal. Analysis and processing of a discrete signal in frequency

domain is more e�cient than its analysis in time domain. The FFT algorithm was

�rst developed and presented by Cooley and Tukey in [5]. It was developed in order

to reduce number of complex multiplications and additions in DFT. An N-point

DFT is given by,

X(k) =
N−1∑
n=0

x(n)e−(i 2πnk
N

) (2.1)

where k = 0, 1, 2 . . . N − 1.

According to equation 2.1, DFT computation requires N2 − N complex additions

and N2 complex multiplications. An N-point FFT equation is given by,

X(k) =

N
2
−1∑

n=0

x(2n)e
−(i 2πnkN

2

)
+W k

N

N
2
−1∑

n=0

x(2n+ 1)e
−(i 2πnkN

2

)
(2.2)

where W k
N = e−i 2πk

N , k = 0, 1, 2 . . . N − 1.

According to equation 2.2, the number of multiplications and additions are reduced

to N
2
∗ log2(N) and N ∗ log2(N) respectively. Preferring FFT over DFT for hardware

implementation means increased speed, reduced power consumption, reduced area

and reduced cost.

FFT is computed in two di�erent ways, Decimation In Time (DIT) and Decima-

tion In Frequecny (DIF). In DIT algorithm, inputs are in bit reversed order and

the outputs are in natural order. In DIF algorithm, the inputs are in natural order

2. Background 8

and the outputs are in bit reversed order. According to Tran-Thong et al. [12],

the DIT algorithm provides better signal-to-noise ratio when compared to DIF al-

gorithm for a �nite word length. Based on number of FFT inputs, the algorithm

can be radix-2, radix-4, radix-8 or split-radix type. In radix-2 algorithm FFT size

is a power of two, radix-4 FFT size is a power four while radix-8 FFT size is power

of eight. And split-radix type involves mix of any of the speci�ed radix combinations.

A radix-2 DIT FFT algorithm can be depicted as a butter�y diagram as shown in

Figure 2.4. The �gure describes 16-point FFT butter�y diagram where x(n), X(k)

are 16-point complex inputs and outputs respectively.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

X(0)

X(8)

X(1)

X(9)

X(4)

X(12)

X(5)

X(13)

X(2)

X(10)

X(3)

X(11)

X(6)

X(14)

X(7)

X(15)

W
0

W
0

W
0

W
0

W
4

W
4

W
4

W
4

W
0

W
4

W
0

W
4

W
2

W
2

W
6

W
6

W
0

W
2

W
4

W
6

W
1

W
3

W
5

W
7

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

Figure 2.4: Radix-2 DIT FFT butter�y diagram [1].

Since, it is a DIT algorithm, the inputs to butter�y diagram are in bit reversed

order and the outputs are in natural order. The upper half of butter�y diagram is

symmetric with its lower half until the last stage. During the last stage, the upper

half of input samples mingle with lower half before computation. This particular

property of DIT algorithm is the basis of our address generation algorithm, data�ow

algorithm and input data storage described later in this document. Considering an

2. Background 9

N-point FFT, there are log2N number of stages and each stage requires N
2
butter�y

operations.

Butter�y operation is the basic entity of a butter�y diagram. The butter�y operation

is pictorially described as shown in Figure 2.5.

+X

+
W

P

Q

X

Y_

Figure 2.5: Single radix-2 DIT butter�y operation.

Butter�y operation can be illustrated in equation as,

X = P +WQ and Y = P −WQ (2.3)

where P, Q are complex input values, W is an input twiddle factor and X, Y are

complex output values. The output X is the result of addition while Y is the result

of subtraction.

Studying existing research on FFT processors provides us with a information on

their merits and demerits. Knowing demerits of existing research enables us to work

on them and improve them according to our requirements. In the next section,

existing research work on FFT processors is evaluated and summarized.

2.5 Research Work On FFT Processors

In recent times, research on OFDM wireless communication systems is focused ex-

tensively. In particular, research on FFT algorithm and its hardware implementation

is a hot research topic. Focus of research is to optimize FFT algorithm and to �nd

e�cient hardware solutions. Since, SDR platforms based on OFDM technique sup-

port multiple wireless standards, OFDM communication systems need to support

multiple standards. Since, FFT is an integral component of OFDM transceiver,

FFT hardware should be capable of supporting multiple wireless standards. Hence,

we have investigated existing research literature on variable length as well as �xed

length FFT processors.

According to [14], in OFDM based wireless transceivers, FFT is one of the most

power consuming and computationally intensive operation. Since, FFT is power

2. Background 10

hungry and computational module, it is the main motivation behind research on

FFT processor architectures. Fixed length FFT processors are proposed by Deraf-

shi et al. in [2], H.Jiang et al. in [4], S.-N. Tang et al. in [11], K. George et al. in

[3] which focus on speci�c FFT size and speci�c standard. Processor proposed by

Y.-T.Lin et al. in [6] focuses on lower power consumption, the processor presented

by B.Wang et al. in [13] focuses on higher speed and supports only 64-point FFT

computation. The paper presented by Q.Zhang et al. in [15] the main focus is to

reduce area consumption. Hence, some of the speci�ed existing research works are

based on speci�c FFT size targeting speci�c standard and are optimized for speci�c

design parameter. Fixed length FFT processors can support only speci�c wireless

standard. And they won't be scalable across multiple standards but they are opti-

mized in terms of power, area, high speed and low cost. On the other hand, variable

length FFT processors supporting multiple standards have to compromise in terms

of high speed, low power and low area. Finding a reasonable balance between scala-

bility and meanwhile achieving performance constraints is a design challenge. Hence,

we have attempted to �nd a reasonable balance between low power, low area, low

cost, high speed, �exibility and scalability of FFT processor.

Scalable FFT processor designed and implemented as part of the thesis work is

based on a holistic approach adopted to achieve reasonable balance between scal-

ability while meeting strict performance constraints. The processor is design time

con�gurable to support a maximum FFT size Nmax. Since, processor is based on

radix-2 FFT algorithm, Nmax can only be power of two. During runtime, the pro-

cessor can support FFT computation of size varying from 16-point upto Nmax-point.

Hence, proposed processor architecture is con�gurable at design time and scalable

at runtime. The proposed architecture can be extended to radix-4/8 FFT compu-

tations to achieve higher performance. In addition, the FFT processor can be used

in non-OFDM systems where scalability is required.

11

3. SCALABLE FFT PROCESSOR

The scalable FFT processor supports N-point complex value radix-2 �xed point FFT

computation. The processor is con�gurable at design time to required Nmax-point

(radix-2 values only) and after which at runtime it can perform FFT computation

from 16-point to Nmax-point. During design time data memory and twiddle factor

memory are chosen so as to support Nmax-point computation. Following are the

major components of FFT processor and its block diagram representation is shown

in Figure 3.1.

• Butter�y unit

• Data memory (RAM)

• Twiddle factor memory (ROM)

• Interconnect

• Address generation unit

• Control unit

I

N

T

E

R

C

O

N

N

E

C

T

A

I

N

T

E

R

C

O

N

N

E

C

T

B

CONTROL

UNIT

BUTTERFLY

UNIT 0

BUTTERFLY

UNIT 1

ROM
SetA

Memory

SetB

Memory

ADDRESS

GENERATION

UNIT

Figure 3.1: Scalable FFT processor block diagram.

3. Scalable FFT Processor 12

The FFT processor uses two butter�y units which operate in parallel and compute

two outputs per clock cycle. Two sets of data memory were chosen which were

named SetA and SetB, each set contained four memory banks required for simulta-

neous access of four samples. One twiddle factor memory was used for storing Nmax
2

twiddle factors to support Nmax-point FFT computation. Two interconnects called

interconnectA and interconnectB were used to form link between butter�y units

and memory set SetA and SetB respectively. Address generation unit was used to

generate addresses required to read input samples and twiddle factors for butter�y

units. Control unit was required to generate control signals at required timing to

co-ordinate and synchronize activities between rest of the components.

Figure 3.2 shows input/output ports of FFT core.

FFT Core

clk

rst

N_WIDTH

ADDR_WIDTH

N

f_start

f_done

f_wren_A

f_wren_B

f_addr_0

f_data_in_0

f_data_out_0

f_addr_1

f_data_in_1

f_data_out_1

f_addr_2

f_data_in_2

f_data_out_2

f_addr_3

f_data_in_3

f_data_out_3

f_addr_4

f_data_in_4

f_data_out_4

f_addr_5

f_data_in_5

f_data_out_5

f_addr_6

f_data_in_6

f_data_out_6

f_addr_7

f_data_in_7

f_data_out_7

f_addr_8

f_data_in_8

f_addr_9

f_data_in_9

Generics

RAM read-

write

RAM0

ports

RAM1

ports

RAM2

ports

RAM3

ports

RAM4

ports

RAM5

ports

RAM6

ports

RAM7

ports

ROM

ports

Figure 3.2: FFT processor core pin details.

3. Scalable FFT Processor 13

Ports with thin line represent single bit pins while ports with thick line repre-

sent multi-bit pins. Ports named in capital letters are generics which allow design

time con�guration of modules. The address width (ADDR_WIDTH) and N-width

(N_WIDTH) are con�gurable at design time. The core has clk (clk), active low reset

(rst), start port (f_start) to trigger beginning of computation, done port (f_done) to

signal end of computation and a port to specify size of FFT (N). In addition, the core

has address (f_addr_0,. . . ,f_addr_7), data in (f_data_in_0,. . . ,f_data_in_7)

and data out (f_data_out_0,. . . ,f_data_out_7) ports for each of RAM memory

banks. Read-write operation on SetA (f_wren_A) and SetB (f_wren_B) memory

are controlled via write enable signals. And twiddle factor ROM access is through

address (f_addr_8 and f_addr_9) and data in (f_data_in_8 and f_data_in_9)

ports.

3.1 Internal Architecture

When FFT processor is in operation, the overall data�ow through the processor

follows a ping-pong logic. In even numbered stages, input data is read from SetA

and output data is stored in SetB. In odd numbered stages, input data is read

from SetB and output data is stored in SetB. The pipelined internal architecture of

scalable FFT processor is shown in Figure 3.3.

REGISTER

REGISTER

ROM

BUTTERFLY

UNIT 0

BUTTERFLY

UNIT 1

MUX

MUX

RAM4

RAM5

RAM6

RAM7

SetB

RAM0

RAM1

RAM2

RAM3

SetA

M
U

X
M

U
X

M
U

X
M

U
X

R

E

G

I

S

T

E

R

S

M
U

X

R

E

G

I

S

T

E

R

S

M
U

X

R

E

G

I

S

T

E

R

R

E

G

I

S

T

E

R

I

N

T

E

R

C

O

N

N

E

C

T

A

I

N

T

E

R

C

O

N

N

E

C

T

B

ADDRESS

GENERATION

UNIT

CONTROL

UNIT

16

16

16

16

16

16

16

16

32

32

32

32

16

16

1616

161632

32

32

32

Figure 3.3: FFT processor pipelined internal architecture.

3. Scalable FFT Processor 14

There are nine pipeline stages in the FFT core. The pipeline includes address

generate, memory read, datapath from interconnectA to interconnectB and memory

write. The nine pipeline stages include address generation stage, memory read stage,

two stages before butter�y units, two stages inside butter�y units, two stages after

butter�y units and memory write stage. Two pipeline stages of butter�y unit are

shown in Figure 3.4. In the beginning of each stage, initial ten clock cycles are

used up to �ll up the pipeline because memory read/write latency is one clock cycle,

address generation latency is one clock cycle and one extra clock cycle is required at

the beginning of each stage. Hence, ten clock cycles are required to compute initial

output samples in each stage and after which two outputs are computed every clock

cycle. The number of clock cycles required by each stage in a pipelined architecture

for an N-point FFT is given by,

cycles_per_stage = 10 +
N

2
(3.1)

The total number of clock cycles required to compute FFT is given by,

cycles_FFT = (cycles_per_stage ∗ log2(N)) + 2 (3.2)

The FFT processor architecture is described in detail in terms of its components in

the following sections.

3.2 Butter�y Unit

The butter�y unit shown in Figure 3.4 was adopted from [10] which was implemented

by J.Takala et al.

R

R

R

R

R

R

R

X

X

R

R

+

+

_ R

R +

+

+/-

+/-

M

M

PR

PI

YR, XR

YI, XI

QR, PR

QI, PI

WR, WI

Figure 3.4: Pipelined butter�y unit [10].

3. Scalable FFT Processor 15

The butter�y unit was designed to support radix-2 DIT butter�y operation. Since,

FFT processor was required to be a �xed point processor, the butter�y unit imple-

mentation was modi�ed to support Q-14 �xed point computation. There are three

input ports, two output ports and they are 16-bit �xed point values. P, Q are

complex input samples, W is twiddle factor and X, Y are complex output samples.

Two out of three input ports are shared between QR (real part), QI (imaginary part)

and PR, PI respectively. The third input port is for twiddle factor and it is shared

betweenWR andWI . In Figure 3.4 the dotted lines indicate imaginary data and the

thick line indicate real data. Inputs and outputs of butter�y unit are registered.

The butter�y unit consists of a complex multiplier and two adders as computational

units. Complex multiplier contains two bit parallel real multipliers and two adders.

Complex multiplication operation is computed in two staged pipeline to reduce

number of real multipliers from four to two. The reduction in number of multipliers

through pipeline operation is a reasonable compromise between high throughput,

area and power e�ciency.

When butter�y unit is in operation Q and P are read every alternate clock cycle

and same is the case with WR and WI . Two clock cycles are required to �ll up the

pipeline in the beginning and thereafter every clock cycle one output (X or Y) of

butter�y operation is produced. Thus, every two clock cycles one butter�y opera-

tion is completed per butter�y unit. The FFT processor employs two such butter�y

units operating in parallel at any given time as shown in Figure 3.3.

The complex multiplier inside butter�y unit forms critical path of the FFT pro-

cessor. The critical path includes a multiplier and an adder. The butter�y unit

operation is controlled by control unit which issues register loads, multiplexer sig-

nals at appropriate time intervals. Two butter�y units operate in parallel in the

FFT processor to compute two output samples per clock cycles which increases the

throughput of the processor.

3. Scalable FFT Processor 16

Figure 3.5 shows input/output pins of a butter�y unit. Butter�y unit has a clock

port clk and an active low reset port rst. Imaginary parts of inputs P, Q are

multiplexd into an input port PQI while real parts of P, Q are multiplexed into

another port PQ_R. Real and imaginary parts of twiddle factor W are multiplexed

into WRI. load_P and and load_P2 are load signals for P input registers, load_Q

is load signal for Q input register and load_W is load signal for W input register.

clk

rst

PQI

add_sub

load

load1

Butterfly

Unit

PQ_R

WRI

load_P

load_P2

load_Q

load_W

sel

imagout

realout

Input ports

Output add/

sub select

Complex

multiplier

register loads

Input

register load

signals

Output

ports

Multiplexers

select

Figure 3.5: Butter�y unit pin details.

The load signals load and load1 are for multiplier output registers and complex

multiplier adder output registers respectively. Multiplexers are controlled via sel

control signal. Addition or subtraction operations which are part of butter�y unit

are controlled using add_sub port. The output ports realout and imgout are real

and imaginary parts of output data respectively.

Waveforms of input/output ports of butter�y unit are shown in Figure 3.6 for 16-

point FFT. The timing of control signals to butter�y unit at di�erent stages of FFT

are shown in the �gure.

Figure 3.6: Butter�y unit waveform for 16-point FFT.

3. Scalable FFT Processor 17

There are four stages in a 16-point FFT and timing of pipelined butter�y unit control

signals follow similar pattern in every stage. The signals c_start, begin_stage and

s_done are not part of butter�y unit. But those signals are shown to clearly describe

waveforms at the beginning of FFT computation, during computation and at the

end of computation. However, c_start indicates start of computation, begin_stage

indicates beginning of a stage and s_done indicates end of FFT computation. Input

data latency is four clock cycles and output data latency is seven clock cycles with

respect to beginning of stage.

In a butter�y unit, multiplication is the most power, time and area consuming

portion. Hence, multiplier operation is explained in more detail below.

3.2.1 Bit Parallel Multiplier

The multiplication of two complex numbers W and Q is given by,

WQ = (WR + jWI)(QR + jQI) = (WRQR −WIQI) + j(WRQI +WIQR) (3.3)

where su�x WR, QR are real parts and WI , QI are imaginary parts. If we try

to implement equation 3.3 straight away and without optimization it requires four

multipliers and two adders. The critical path is decided by multiplier and adder com-

bination. We can optimize complex multiplication to use three multipliers instead

of four by following the equation 3.4 below.

WQ = WI(QR −QI) +QR(WR −WI) + j[WI(QR −QI) +QI(WR +WI)] (3.4)

The area and power consumption can be reduced if two clock cycles are used for

complex multiplication. As shown in Figure 3.4 it is implemented by sharing a com-

mon bus for both input samples P and Q, it means that �rst Q is read followed by P.

The complex multiplication is pipelined by using two clock cycles for computation.

The pipelined multiplication is given by,

A1 = QRWR; B1 = QIWR (cycle#1)

A2 = QRWI ; B2 = QIWI (cycle#2)

WQ = (A1−B2) + j(B1 + A2) (3.5)

This approach uses only two multipliers and two adders. As demonstrated above

it is not necessary to have real and imaginary parts of twiddle factor in the same

clock cycle. Hence, a single bus can be shared to read real and imaginary parts of

twiddle factor in consecutive clock cycles. The outputs of real valued multipliers are

3. Scalable FFT Processor 18

registered thereby reducing critical path of complex multiplier and in turn critical

path of butter�y unit. The outputs of adders of complex multiplier are registered as

well. The butter�y unit is implemented by pairing up complex multiplier along with

adders required for butter�y operation. Inputs of the butter�y unit are registered

and it needs two sets of input registers for operand P since, next P is read while

current W*Q is computed.

3.3 Data Memory (RAM)

The input samples, intermediate samples and the output samples of FFT computa-

tion are stored in data memory. Data memory is RAM based and there are two sets

called SetA and SetB. Butter�y operation is performed by reading input samples

from one set of memory and writing output samples to a di�erent set of memory.

Hence, two sets of memory are used for storing samples at di�erent stages during

computation. SetA memory includes four memory banks RAM0, RAM1, RAM2,

RAM3 while SetB memory includes four memory banks RAM4, RAM5, RAM6 and

RAM7. Since, two butter�y units require four input samples per clock cycle we

chose to use four memory banks to store data samples. The maximum size of each

memory bank is decided by the maximum size of FFT computation Nmax selected

during design time. Maximum size of a memory bank is given by,

ram_bank_size =
Nmax

4
(3.6)

where the size is measured in terms of 32-bit words. The size of a memory bank

decides its address bus width which is expressed as log2(ram_bank_size).

In memory a complex data sample is stored as a 32-bit word, higher 16-bits consti-

tute real part while the lower 16-bits constitute imaginary part. Data format stored

in memory is pictorially described as shown in Figure 3.7.

XR XI

X = XR + jXI

X16X17X31
.X15 X1 X0

XR0
. . . . XR1XR15 XI0XI1XI15

X

Figure 3.7: Data format stored in memory.

In the beginning of FFT computation input samples are always stored in SetA. The

3. Scalable FFT Processor 19

input samples are bit reversed according to DIT FFT and split equally among four

memory banks. Figure 3.8 describes order of input samples stored in memory at the

beginning of FFT computation.

X(0)

X(4)

X(2)

X(6)

X(8)

X(12)

X(10)

X(14)

X(1)

X(5)

X(3)

X(7)

X(9)

X(13)

X(11)

X(15)

RAM0

RAM1

RAM2

RAM3

SetA

Input samples

in bit reversed

order
X(0)

X(4)

X(8)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

RAM0

SetA

RAM1

RAM2

RAM3

Final output of

FFT

computation

X(0)

X(6)

X(13)

X(11)

X(3)

X(5)

X(14)

X(8)

X(1)

X(7)

X(12)

X(10)

X(2)

X(4)

X(15)

X(9)

Figure 3.8: Order of input sample at the beginning and the order of �nal output of 16-point
FFT computation.

The bit reversed input samples are equally split into two halves, the upper half

inputs are stored in RAM0, RAM1 and the lower half in RAM2, RAM3. Order of

input samples are such that it provides con�ict free access for butter�y operation.

Final output of an N-point FFT computation might be available in SetA or SetB de-

pending on number of stages. If number of stages are even, �nal outputs are stored

in SetA and if number of stages are odd, �nal outputs are stored in SetB. Since, for

a 16-point FFT number of stages are even, �nal outputs would be available in SetA

and the order of outputs would be as shown in Figure 3.8. The order of outputs

is decided by data�ow algorithm described in detail in later part of this document.

3. Scalable FFT Processor 20

The memory banks are clocked dual port memories which enable access from within

FFT core as well as from external world. Memory access (read-write) latency is one

clock cycle.

Figure 3.9 shows input/output ports of a RAM memory bank. Generic port

FILE_NAME is to specify memory initialization �le and ADDR_WIDTH is to

specify address port width during design time. RAM bank is a dual port memory

and hence it has two sets of data and address ports.

clk

RAM Memory

Bank

FILE_NAME

ADDR_WIDTH

data_A

addr_A

wren_A

q_A

data_B

addr_B

wren_B

q_B

Generics

External

interface FFT core

Figure 3.9: RAM memory bank pin details.

A RAM memory bank consists of input data ports (data_A, data_B), address ports

(addr_A, addr_B), read-write enable signal (wren_A, wren_B) and output data

ports (q_A, q_B). Ports with su�x `A' are external interface ports and ports with

su�x `B' are FFT core interface ports.

Waveforms of SetA RAM bank (RAM0) ports are shown in Figure 3.10 for 16-point

FFT. Write operation happens when wren_B is `1' and read operation happens

when it is `0'. Memory read-write access latency is single clock cycle.

Figure 3.10: SetA RAM memory bank (RAM0) waveforms.

3. Scalable FFT Processor 21

In the �rst stage data is read from SetA memory and in the next stage data is writ-

ten to SetA memory. Likewise, read-write operations are switched between SetA

and SetB memory in alternate stages.

Waveforms of SetB RAM bank (RAM4) ports are shown in Figure 3.11 for 16-point

FFT.

Figure 3.11: SetB RAM memory bank (RAM4) waveforms.

In the �rst stage data is written to SetB memory and in the next stage data is read

from it. Read-write operations are switched between SetB and SetA memory in

alternate stages.

Data samples are stored in data memory, to store twiddle factors we need twiddle

factor memory which is described in detail in the next section.

3.4 Twiddle Factor Memory (ROM)

The twiddle factor memory is to store twiddle factors required by butter�y unit0 and

butter�y unit1 during FFT computation. Twiddle factor memory is a clocked dual

port ROM which allows reading two twiddle factors per clock cycle simultaneously

as shown in Figure 3.3. For an N-point FFT, a maximum of N
2
twiddle factors are

required for computation. Hence, a maximum of Nmax
2

twiddle factors are stored

in ROM at design time in order to support FFT computation from 16-point upto

Nmax-point. Hence, size of ROM is given by,

rom_size =
Nmax

2
(3.7)

where size is measured in terms of 32-bit words. Since, ROM address bus width de-

pends on maximum size of ROM, address bus width is expressed as log2(rom_size).

3. Scalable FFT Processor 22

Twiddle factors stored in ROM are in natural order and it is illustrated for a 16-

point FFT in Figure 3.12. Twiddle factor is a complex value in which 16-bit real

and imaginary parts are packed into a 32-bit word as shown in Figure 3.7.

W0
16

W1
16

.

.

.

W5
16

W6
16

W7
16

W2
16

Twiddle factor memory

(ROM)

Figure 3.12: Order of twiddle factors stored in ROM.

The 32-bit twiddle factor is read from memory and it is unpacked into real and

imaginary parts before feeding them to butter�y units as shown in Figure 3.3. The

real and imaginary parts are fed through a common input port to butter�y unit in

alternative clock cycles as shown in Figure 3.4.

Figure 3.13 shows input/output ports of a ROM memory.

clk

ROM Memory

FILE_NAME

ADDR_WIDTH

addr_A

wren_A

q_A

addr_B

wren_B

q_B

Generics

FFT core

interface:

twiddle factor0

FFT core

interface:

twiddle factor1

Figure 3.13: ROM memory pin details.

Generic port FILE_NAME is to specify memory initialization �le andADDR_WIDTH

3. Scalable FFT Processor 23

is to specify address port width during design time. ROM bank is a dual port mem-

ory and hence it has two sets of data and address ports. A ROM memory consists of

input data ports (data_A, data_B), address ports (addr_A, addr_B), read enable

signal (wren_A, wren_B) and output data ports (q_A, q_B). The address, data

and read enable ports interface with FFT core. Ports with su�x `A' are meant for

butte�y unit0 (twiddle factor0) while ports with su�x `B' are meant for butter�y

unit1 (twiddle factor1) inside FFT core.

Waveforms of ROM memory ports are shown in Figure 3.14 for 16-point FFT.

Figure 3.14: ROM memory waveforms.

Since, two twiddle factors are required for computation, dual port ROM is used to

store twiddle factors. Read operation happens when wren_A, wren_B are set to `0'.

We understood how twiddle factors are stored in ROM and how data samples are

stored in data memory. Now, it is necessary to understand how data samples are

guided to butter�y units after they are read from data memory and it is explained

in following section.

3.5 Interconnect

The function of interconnect is to route data between memory and butter�y units

as well as route address between memory and address generation unit as shown in

Figure 3.3. An interconnect consists a number of multiplexers whose outputs are

registered. The multiplexers act a switches linking inputs to appropriate outputs

based on select signals from control unit.

3. Scalable FFT Processor 24

An interconnect is described as in Figure 3.15.

M

U

L

T

I

P

L

E

X

E

R

S

R

E

G

I

S

T

E

R

S

INTERCONNECT

CONTROL SIGNALS

ADDRESS

DATA IN: FROM

MEMORY

DATA OUT: TO

MEMORY

DATA IN: FROM

BUTTERFLY

ADDRESS OUT: TO

MEMORY

DATA OUT: TO

BUTTERFLY

Figure 3.15: Interconnect internal architecture and external interface.

The address generation unit sends read/write addresses to interconnect which are

routed to appropriate memory banks based on control signals from control unit.

Interconnect also receives data samples from memory banks which are routed to

appropriate butter�y units depending on control signals. After butter�y operation,

data received from butter�y units are routed to memory for storage. Two such in-

terconnects are used in FFT processor architecture and they are interconnectA and

interconnectB shown in Figure 3.3. The interconnectA forms a connection between

butter�y units and memory SetA while interconnectB forms a connection between

butter�y units and memory SetB. Both the interconnects form link between address

generation unit and memory sets SetA and SetB.

3. Scalable FFT Processor 25

Figure 3.16 shows pin details of an interconnect module. Generic port N_WIDTH

allows scalable value for N while ADDR_WIDTH is to scale address corresponding

to N. Interconnect has clock (clk) and active low reset (rst) ports. The port i_RW

indicates read/write operation for SetA or SetB memory. Last stage of computa-

tion is indicated by i_last_stage port. Whether data read from memory has to

be �ipped or not is indicated by i_input_�ip port. Memory read address input

ports are i_read_data and i_read_data1 which are received from address genera-

tion unit. The read_data1 is nine clock cycles delayed version of read_data because

write operation begins after nine cycles from beginning of each stage. Memory store

addresses are i_store_add and i_store_sub received from address generation unit.

The output memory addresses are i_addr_RAM0,. . . ,i_addr_RAM3, these are

RAM bank addresses. Ports i_bfy0_in_�rst, i_bfy0_in_second, i_bfy1_in_�rst,

i_bfy1_in_second are outputs of butter�y units and inputs to interconnect.

clk

rst

N_WIDTH

ADDR_WIDTH

Interconnect

i_RW

i_last_stage

i_input_flip

i_read_data

i_read_data1

i_store_add

i_store_sub

i_bfy0_in_first

i_bfy0_in_second

i_bfy1_in_first

i_bfy1_in_second

i_bfy0_out_first

i_bfy0_out_second

i_bfy1_out_first

i_bfy1_out_second

i_data_in_RAM0

i_data_in_RAM1

i_data_in_RAM2

i_data_in_RAM3

i_data_out_RAM0

i_data_out_RAM1

i_data_out_RAM2

i_data_out_RAM3

i_addr_RAM0

i_addr_RAM1

i_addr_RAM2

i_addr_RAM3

Generics

Input read

addresses

Output store

addresses

Butterfly

outputs

Butterfly

inputs

Input data read

from memory

Memory read-

write addresses

Output data to be

stored in memory

Figure 3.16: Interconnect pin details.

Ports i_bfy0_out_�rst, i_bfy0_out_second, i_bfy1_out_�rst, i_bfy1_out_second

are outputs of interconnect and inputs to butter�y units. Data input from RAM

banks are received through ports i_data_in_RAM0,. . . ,i_data_in_RAM3. And

data outputs to RAM banks are sent through i_data_out_RAM0,

. . . ,i_data_out_RAM3.

3. Scalable FFT Processor 26

Figure 3.17 shows waveforms for interconnectA for 16-point FFT computation.

Figure 3.17: InterconnectA waveforms.

Since, it is linked to SetA memory, memory read occurs every even numbered stage.

And memory write occurs every odd numbered stage as shown in the waveforms.

Figure 3.18 shows waveforms for interconnectB for 16-point FFT computation.

Figure 3.18: InterconnectB waveforms.

3. Scalable FFT Processor 27

Since, it is linked to SetB memory, memory read occurs every odd numbered stage.

And memory write occurs every even numbered stage as shown in the waveforms.

Interconnects form link between data memory and address generation unit, the data

memory was dealt in detail in previous sections. Hence, following section deals with

address generation unit in detail.

3.6 Address Generation Unit

The address generation unit is required to generate addresses for butter�y inputs,

twiddle factors and butter�y outputs. And it should be capable of supporting N-

point FFT computation in order to support scalable architecture. A novel address

generation algorithm was developed to generate addresses for inputs, twiddle factors

and outputs. The algorithm is also capable of supporting N-point FFT computa-

tion and provides con�ict free access of data samples during computation. The

address generation algorithm requires two m-bit counters, where m = log2(
N
4
). The

algorithm is described in detail below.

1. Address to read inputs from memory:

A simple m-bit counter is used to generate read address.

read_data = [am−1am−2......a1a0] (3.8)

2. Address to store outputs to memory:

Another simple m-bit counter is used to generate store address.

store_add = [bm−1bm−2.......b1b0] (3.9)

store_sub = [b
′

m−1b
′

m−2........b
′

1b
′

0] (3.10)

3. Address to read twiddle factors from ROM:

For an N-point FFT there are log2N number of stages, we assume stage index

as s which is incremented at the end of each stage. Hence, s can take values

s = 0, 1, 2,log2(N)-1.

* Twiddle factor addresses for stages except last stage (s = 0, 1, ...log2(N)-2):

Following steps are executed in sequence to generate twiddle factor addresses

in the current stage.

(i) [dm−1..d0] = [am−1...a0] XOR [0am−1...a1]

(ii) count_gray = [0dm−1dm−2.....d1d0]

3. Scalable FFT Processor 28

= [emem−1..e1e0]

(iii) coefx = [em....em−s0m−s0m−s−1...0100]

= [fm+1fm...f1f0]

(iv) Coef0Addr = [fmfm−1...f1f0]

(v) Coef1Addr = Coef0Addr

* Twiddle factor addresses for last stage (s = log2(N)-1):

Following steps are executed in sequence to generate twiddle factor addresses

for last stage. Note: coefy = [0m+10m...011] at the beginning of the stage.

(i) coefy = [fm+1fm...f1f0]

(ii) sum = [am−1am−2..a1a0] + [fmfm−1..f2f1]

= [gm−1gm−2...g1g0]

(iii) coefy = [0gm−1gm−2...g1g0f
′

0]

= [fm+1fm...f0]

fm = ‘0' for �rst
N

4
butter�y computations.

fm = ‘1' for next
N

4
butter�y computations.

(iv) Coef0Addr = [fmfm−1...f1f0]

(v) Coef1Addr = [fmfm−1...f1f
′

0]

To read inputs from SetA or SetB memory, read_data address from step 1 is re-

quired. The read_data is generated using an m-bit counter. To store outputs

of butter�y units store addresses from step 2 are required. Two store addresses

store_add, store_sub are required for storing output data. There are two butter�y

outputs wherein one is result of addition and the other is result of subtraction. Out-

puts of butter�y units have to be stored such that there are no access con�icts while

storing as well as when they are read in next stage. Hence, store_add is required to

store result of addition and store_sub is required to store result of subtraction. The

store_add is generated using an m-bit counter while store_sub is one's complement

of store_add. Twiddle factor addresses are generated in step 3 wherein Coef0Addr

corresponds to butter�y unit0 and Coef1Addr corresponds to butter�y unit1. The

logic is di�erent for last stage and rest of the stages. To generate twiddle factor

addresses, the steps have to be followed in the speci�ed order. For stages except

last stage, using read_data a gray code value is generated which is appended with

3. Scalable FFT Processor 29

suitable number of zeros. The number of zeros appended to form address depends

on stage index s. Both the twiddle factor addresses are same for stages except the

last stage. The last stage twiddle factor address is generated by adding read_data

with previous value of Coef0Addr and the last bit of result address is set to `0' for

�rst half of stage and set to `1' for second half of the stage. The Coef1Addr is formed

by inverting the least signi�cant bit of Coef0Addr.

Address generation unit internal logic is pictorially presented in Figure 3.19. It

consists of two m-bit counters one each for generating read_data and store_add.

Reset

a0

:

:

am-2

am-1

Reset

b0

:

:

bm-2

bm-1

store_add

store_sub

read_data

Counter

Counter

>> 1

Zero

value

+

>> 1

lsb

msb0

m

m+1

lsb

msb
s+1

m-s+1
lsb

msb
m+2

msb

lsb

m+1

msb

lsb

0
m

lsb

msb

1

0

1

msb

lsb

m+2

half_stage

lsb

msb

m

1

m+1

lsb

msb

lsbmsb

1

m m+1

M

M

M

0

1

0
1

1
0

last_stage

last_stage

Coef0Addr

Coef1Addr

count_gray coefx

coefy

sum

Figure 3.19: Address generation unit internal logic.

3. Scalable FFT Processor 30

The twiddle factor address generation involves logic for last stage and for rest of

the stages. For rest of the stages gray code is generated from read_data and ap-

pended with zeros supplied by zero value module. And Coef0Addr and Coef1Addr

are the same for rest of the stages as described before. For the last stage, previous

Coef0Addr value is added with read_data. The last bit of resulting address is set

to `0' for �rst half of the stage and it is set `1' for next half of the last stage. The

Coef1Addr is formed by inverting the leas signi�cant bit of Coef0Addr. The select

signal last_stage di�erentiates last stage from rest of the stages. And half_stage

select signal di�erentiates �rst half of last stage from its second half.

Figure 3.20 shows pin details of address generation unit.

clk

ADDR_WIDTH

N_WIDTH

rst

N

a_start

a_read_data

a_read_data1

a_begin_stage

a_store_add

a_store_sub

a_Coef0Addr

a_Coef1Addr

Generics

Address

Generation Unit

Input read

addresses

Output store

addresses

Twiddle factor

addresses

Figure 3.20: Address generation unit pin details.

Address generation unit has generic ports for specifying address width

(ADDR_WIDTH) and for specifying N width (N_WIDTH). The clock port is

clk, active low reset port is rst and FFT size port is N. The port a_start is a

start signal to start computation while port a_begin_stage is to indicate the begin-

ning of each FFT stage. Read address ports are a_read_data and a_read_data1.

a_read_data1 is nine clock cycle delayed with respect to beginning of each stage.

And it is required by interconnects in routing data to memory. Store address

ports are a_store_add and a_store_sub. The twiddle factor address ports are

a_Coef0Addr and a_Coef1Addr.

3. Scalable FFT Processor 31

Figure 3.21 shows waveforms address generation unit for 16-point FFT.

Figure 3.21: Address generation unit waveforms.

Address generation starts immediately after begin stage signal is received from con-

trol unit. And for every two clock cycles a new address is generated.

As we saw earlier, address unit generates addresses but there needs to be a module

which co-ordinates activities of all the components in the processor. And such a

module is called control unit which is discussed in detail in the following section.

3.7 Control Unit

The control unit controls, co-ordinates and synchronizes activities of rest of the

components as shown in Figure 3.3. The timing of control signals issued have to

be accurate in order to synchronize activities of di�erent components. Moore state

machine was applied to implement control unit and it is shown in Figure 3.22.

S0

S2

S3 S1

CONTROL

UNIT

Initial

state

SetA read

&

SetB write

SetB read

&

SetA write

Transition

state

Current stage

is complete

Current stage

is complete

Last stage

is complete

Last stage

is complete

Figure 3.22: Control unit state diagram.

3. Scalable FFT Processor 32

Control unit begins with initial state S0 also called as reset state. In initial state,

all the signals and variables are initialized to appropriate values. After initializing

required signals and variables it changes state to S1. In S1, it generates timing

for control signals related to following activities: address generation, SetA memory

read, route inputs via interconnectA to butter�y units, butter�y operation, route

outputs to SetB memory via interconnectB and store outputs to SetB memory. It

moves to transition state S2 if S1 does not correspond to last stage of FFT. Other-

wise, it moves to initial state S0 indicating that it is end of FFT computation. In

transition state S2, necessary control signals are re-initialized so as to prepare for

generating control signals for next stage of FFT.

After re-initializing required signals and variables in transition state S2, it moves

to S3. In S3, it generates timing for control signals related to following activities:

address generation, SetB memory read, route inputs via interconnectB to butter�y

units, butter�y operation, route outputs to SetA memory via interconnectA and

store outputs to SetA memory. It moves to transition state S2 if S1 does not cor-

respond to last stage of FFT. Otherwise, it moves to initial state S0 indicating

that it is end of FFT computation. In transition state S2, necessary control signals

are re-initialized so as to prepare for generating control signals for next stage of FFT.

Likewise, the state transitions S1 → S2 → S3 and S3 → S2 → S1 are iterated in

alternative FFT stages until completion of FFT computation. It begins with state

S0 and after completion of all stages it returns to S0. It is important to note that

state S1 generates control signals for even numbered stages, while state S3 gener-

ates control signals for odd numbered stages.

3. Scalable FFT Processor 33

Figure 3.23 shows pin details of control unit.

Control

Unit

clk

rst

N_WIDTH

N

c_start

c_done

c_begin_stage

c_input_flip

c_add_sub

c_load

c_load1

c_loadP

c_loadP2

c_loadQ

c_loadW

c_sel

c_SetA_RW

c_SetB_RW

c_wren_A

c_wren_B

c_bfy0_ip0_reg_load

c_bfy0_ip1_reg_load

c_bfy0_mux_sel

c_bfy0_tw_reg_load

c_bfy0_tw_sel

c_bfy0_add_op_reg_load

c_bfy0_sub_op_reg_load

c_bfy0_tw_addr_reg_load

c_bfy1_ip0_reg_load

c_bfy1_ip1_reg_load

c_bfy1_mux_sel

c_bfy1_tw_reg_load

c_bfy1_tw_sel

c_bfy1_add_op_reg_load

c_bfy1_sub_op_reg_load

c_bfy1_tw_addr_reg_load

Generic

Address generation

unit port

c_last_stage

Butterfly unit ports

Interconnect ports

RAM ports

Butterfly0 input/

output register/mux

control ports

Butterfly1 input/

output register/mux

control ports

Figure 3.23: Control unit pin details.

Control unit signals, co-ordinate and synchronize activities of rest of the components

of the processor. Generic port to con�gure size of FFT is N, there is clk port clk,

reset port rst and c_start port to trigger beginning of computation. Beginning of

each stage is synchronized with address generation unit through port c_begin_stage.

Ports corresponding to butter�y unit are: c_add_sub to choose addition/subtraction

at the butter�y output, ports c_load and c_load1 for complex multiplier registers

load signals, ports c_loadP, c_loadP2, c_loadQ, c_loadW for input register loads,

port c_sel for multiplexer select signal.

Ports corresponding to interconnects are: ports c_SetA_RW, c_SetB_RW for sig-

naling read-write operation for di�erent sets in each stage,port c_input_�ip to indi-

cate whether �ip is required for current inputs read from memory, port c_last_stage

to signal last stage of FFT.

Ports speci�c to RAM memory banks are: port c_wren_A is SetA read-write signal,

3. Scalable FFT Processor 34

port c_wren_B is SetB read-write signal.

Butter�y unit0 register/multiplexer control ports are: input register load ports are

c_bfy0_ip0_reg_load and c_bfy0_ip1_reg_load, input mux select port is

c_bfy0_mux_sel, twiddle factor input register load port is c_bfy0_tw_reg_load,

input twiddle factor select port is c_bfy0_tw_sel, twiddle factor address register

load port is c_bfy0_tw_addr_reg_load, butter�y output register load ports are

c_bfy0_add_op_reg_load and c_bfy0_sub_op_reg_load.

Butter�y unit1 register/multiplexer control ports are: input register load ports are

c_bfy1_ip0_reg_load and c_bfy1_ip1_reg_load, input mux select port is

c_bfy1_mux_sel, twiddle factor input register load port is c_bfy1_tw_reg_load,

input twiddle factor select port is c_bfy1_tw_sel, twiddle factor address register

load port is c_bfy1_tw_addr_reg_load, butter�y output register load ports are

c_bfy1_add_op_reg_load and c_bfy1_sub_op_reg_load.

Figure 3.24 shows waveforms of control unit for a 16-point FFT computation.

Figure 3.24: Control unit waveforms.

State transition throughout di�erent FFT stages is evident in the waveforms and is

in accordance with earlier description. And butter�y unit control signals are sym-

metric across FFT stages.

3. Scalable FFT Processor 35

After understanding each component of FFT processor in detail, its functionality is

better understood through understanding the data�ow through various components

during computation. In this regard, a novel data�ow algorithm is described in the

following section.

3.8 Data�ow Algorithm

The �ow of data across various components of processor is the basis of FFT processor

architecture. The data�ow algorithm describes data�ow through memory, intercon-

nects and butter�y units. It also describes order of reading inputs from memory,

storing outputs to memory, routing inputs to butter�y units, order of twiddle factor

access and routing butter�y outputs to memory. A novel data�ow algorithm is pic-

torially described in Figure 3.25, the thick line describes butter�y unit0 and dotted

line describes butter�y unit1.

X(0)

X(4)

X(2)

X(6)

X(8)

X(12)

X(10)

X(14)

X(1)

X(5)

X(3)

X(7)

X(9)

X(13)

X(11)

X(15)

RAM0

RAM1

RAM2

RAM3

W
0

X(0)

X(8)

W
0

X(1)

X(9)

X(4)

X(12)

X(5)

X(13)

X(2)

X(10)

X(3)

X(11)

X(6)

X(14)

X(7)

X(15)

Y(0)

Y(1)

Y(8)

Y(9)

Y(2)

Y(3)

Y(10)

Y(11)

Y(4)

Y(5)

Y(12)

Y(13)

Y(6)

Y(7)

Y(14)

Y(15)

STAGE 0:

W
0

W
0

W
0

W
0

W
0

W
0

SETA

RAM4

RAM5

RAM6

RAM7

W
0

W
0

STAGE 1:

W
0

W
0

W
4

W
4

W
4

W
4

Y(0)

Y(4)

Y(7)

Y(3)

Y(2)

Y(6)

Y(5)

Y(1)

Y(8)

Y(12)

Y(15)

Y(11)

Y(10)

Y(14)

Y(13)

Y(9)

SETB

Y(0)

Y(2)

Y(8)

Y(10)

Y(4)

Y(6)

Y(12)

Y(14)

Y(5)

Y(7)

Y(13)

Y(15)

Y(1)

Y(3)

Y(9)

Y(11)

Z(0)

Z(2)

Z(8)

Z(10)

Z(4)

Z(6)

Z(12)

Z(14)

Z(5)

Z(7)

Z(13)

Z(15)

Z(1)

Z(3)

Z(9)

Z(11)

RAM0

RAM1

RAM2

RAM3

W
0

W
0

STAGE 2:

W
2

W
2

W
6

W
6

W
4

W
4

SETA

Z(0)

Z(5)

Z(3)

Z(6)

Z(4)

Z(1)

Z(7)

Z(2)

Z(8)

Z(13)

Z(11)

Z(14)

Z(12)

Z(9)

Z(15)

Z(10)

Z(0)

Z(4)

Z(8)

Z(12)

Z(1)

Z(5)

Z(9)

Z(13)

Z(3)

Z(7)

Z(11)

Z(15)

Z(2)

Z(6)

Z(10)

Z(14)

U(0)

U(4)

U(8)

U(12)

U(1)

U(5)

U(9)

U(13)

U(3)

U(7)

U(11)

U(15)

U(2)

U(6)

U(10)

U(14)

RAM4

RAM5

RAM6

RAM7

W
0

W
1

STAGE 3:

W
3

W
2

W
6

W
7

W
5

W
4

SETB

U(0)

U(3)

U(6)

U(5)

U(1)

U(2)

U(7)

U(4)

U(8)

U(11)

U(14)

U(13)

U(9)

U(10)

U(15)

U(12)

U(0)

U(8)

U(1)

U(9)

U(3)

U(11)

U(2)

U(10)

U(6)

U(14)

U(7)

U(15)

U(5)

U(13)

U(4)

U(12)

X(0)

X(8)

X(1)

X(9)

X(3)

X(11)

X(2)

X(10)

X(6)

X(14)

X(7)

X(15)

X(5)

X(13)

X(4)

X(12)

RAM0

SETA

RAM1

RAM2

RAM3

X(0)

X(6)

X(13)

X(11)

X(3)

X(5)

X(14)

X(8)

X(1)

X(7)

X(12)

X(10)

X(2)

X(4)

X(15)

X(9)

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 3.25: 16-point data�ow butter�y diagram for FFT processor architecture.

The data�ow algorithm presented below is in accordance with Figure 3.25.

In even numbered stages, the inputs are read from SetA memory and they are

routed to butter�y units via interconnectA. The twiddle factors are read from ROM

and sent to butter�y units. After butter�y operation, the outputs are routed via

interconnectB and stored in SetB memory.

In odd numbered stages, the inputs are read from SetB memory, they are routed to

butter�y units via interconnectB. The twiddle factors are read from ROM and sent

3. Scalable FFT Processor 36

to butter�y units. After butter�y operation, the outputs are routed via intercon-

nectA and stored in SetA memory.

Data�ow with respect to butter�y unit0:

Even numbered stages:

• During stages except last stage:

Read inputs from RAM0, RAM1. After butter�y computation, the result of

addition and subtraction are stored in RAM4,RAM5.

• During last stage:

Read inputs from RAM0, RAM2. After butter�y computation, the result of

addition and subtraction are stored in RAM4,RAM5.

Odd numbered stages:

• During stages except last stage:

Read inputs from RAM4, RAM5. After butter�y computation, the result of

addition and subtraction are stored in RAM0,RAM1.

• During last stage:

Read inputs from RAM4, RAM6. After butter�y computation, the result of

addition and subtraction are stored in RAM0,RAM1.

Data�ow involving butter�y unit1:

Even numbered stages:

• During stages except last stage:

Read inputs from RAM2, RAM3. After butter�y computation, the result of

addition and subtraction are stored in RAM6,RAM7.

• During last stage:

Read inputs from RAM1, RAM3. After butter�y computation, the result of

addition and subtraction are stored in RAM6,RAM7.

Odd numbered stages:

• During stages except last stage:

Read inputs from RAM6, RAM7. After butter�y computation, the result of

addition and subtraction are stored in RAM2,RAM3.

• During last stage:

Read inputs from RAM5, RAM7. After butter�y computation, the result of

addition and subtraction are stored in RAM2,RAM3.

The FFT processor implementation details in terms of simulation and synthesis are

described in detail in the following chapter.

37

4. IMPLEMENTATION

FFT processor was implemented using VHDL written in a Linux (CentOS) environ-

ment using emacs editor. Once FFT processor architecture was designed, its com-

ponents were implemented separately. The functionality of individual components

were veri�ed by running test benches in ModelSim (simulation tool from Mentor

Graphics Inc.). After individual modules were functionally veri�ed, they were in-

tegrated to form the complete system. The FFT processor as a complete system

was functionally veri�ed using a system level test bench simulated using ModelSim

tool. Initially, 16-point FFT computation was veri�ed. Later, the processor was

con�gured for di�erent radix-2 sizes to verify their functionality. The simulation

results were analyzed to determine the time taken by computation of di�erent FFT

sizes.

Following the simulation, synthesizable version of FFT processor was created from

its simulation version. Later, the processor was synthesized on an Altera Stratix V

FPGA device 5SGSMD5K2F40C2 using Quartus II version 12.1 tool. The synthesis

results were analyzed to determine area, maximum frequency of operation and power

consumption. The implementation details are discussed in detail in the following

sections.

4.1 Simulation

The FFT processor was simulated before synthesizing it on an FPGA device. Sim-

ulation was carried out in order to verify the functionality of the processor and to

validate the results. The RTL simulation was also performed to capture signal ac-

tivities of di�erent ports and signals in a Value Change Dump (VCD) �le. The VCD

�le was used to carry out power analysis using post �t netlist data obtained after

synthesis. The simulation phase is described in detail below.

4.1.1 Pre-simulation

Before simulating FFT processor necessary environment had to be set up. Simula-

tion of FFT processor operation required RAM and ROM inputs. RAM and ROM

data were provided in text �les as inputs to simulation. RAM stores data samples

whereas ROM stores twiddle factors required for FFT computation. Data samples

4. Implementation 38

and twiddle factor values were represented in �xed point format. Q-14 �xed point

format was used to represent �oating point values. Since, datapath of the processor

is 16-bit, lower fourteen bits were used to represent fraction part while upper two bits

were used for integer part and sign. A test application was written in C to generate

RAM and ROM text �les containing input samples and twiddle factors respectively.

For an N-point FFT, the test application generated Q-14 complex data, it packed

real and imaginary parts of complex data into 32-bit value and stored them among

four SetA memory text �les. In addition, the test application generated N
2
twiddle

factors, it packed real and imaginary parts of complex data into 32-bit value and

stored them in ROM text �le. The RAM and ROM text �les were used in simulation

to initialize the FFT processor RAM and ROM memories respectively.

All the VHDL �les along with RAM and ROM text �les were grouped inside a user

de�ned project directory. For simulation, the tool used was ModelSim version 6.5c

from Mentor Graphics Inc.. The simulation tool was used in a Linux (CentOS)

environment. To launch ModelSim from command line, following command was

executed from the project directory.

• vsim &

Before the �rst simulation run, a work folder was created inside project directory

by executing the following command inside it.

• vlib work

4.1.2 Running Simulation

To run a simulation, the VHDL code �les needed to be compiled. Since, there were

many VHDL �les to compile, a script �le was created to compile all the �les at once

and save time while compiling frequently. Following command was used to compile

VHDL �les for simulation.

• vcom �le_name1.vhd �le_name2.vhd ... �le_nameN.vhd

The following steps were followed in sequence to run simulation.

1. Compile VHDL �les.

The script �le is executed using following command to compile VHDL �les.

• sh script_�le_name.sh

2. Load the design.

After compilation, design �le was created with the name of top level entity

inside the work directory. Before running simulation, the design was loaded

using the following command.

4. Implementation 39

• vsim work.top_level_entity_name

3. Add ports and signals to wave window.

To observe the state and values of various ports and signals, they were loaded

onto the wave window by executing the following command.

• add wave signal1 signal2 .. signalN port1 port2 ... port N

4. Run simulation.

The simulation was run for a �nite time using the following command.

• run time_in_nano_seconds

4.1.3 Post Simulation

A �xed point FFT algorithm was implemented in C and in matlab to calculate N-

point FFT. The results from matlab are considered to be accurate when compared

to C implementation results. Hence, C implementation results were veri�ed with

matlab results for an N-point FFT. FFT computation by the processor is comparable

to C implementation. Hence, the results of simulation were validated against the C

implementation results. The simulation results were analyzed further to determine

FFT computation time taken by di�erent FFT sizes.

4.1.4 VCD File Generation

To perform power analysis using PowerPlay power analyzer, it was required generate

VCD �le containing signal activities of the processor. Hence, VCD �les for di�erent

FFT sizes were generated during RTL functional simulation. The following steps

were executed in sequence to generate VCD �les.

1. Compile VHDL �les.

The script �le was executed using following command to compile VHDL �les.

• sh script_�le.sh

2. Load the design.

After compilation, design �le was created with the name of top level entity

inside work directory. The design was loaded for simulation using the following

command.

• vsim work.top_level_entity_name

3. Add ports and signals to wave window.

To observe state and values of various ports and signals, they were loaded onto

the wave window by executing the following command.

4. Implementation 40

• add wave signal1 signal2 ... signalN port1 port2 ... portN

4. Create VCD �le.

During simulation, signal activities were captured in a VCD �le by using fol-

lowing command.

• vcd add -�le �le_name.vcd -internal -ports -r comp_instance_name/*

The command recursively captures signal activities of ports and internal sig-

nals of all the hierarchical components. The �internal� switch enables capturing

internal signal activities while �ports� switch enables capturing input/output

port activities of components.

5. Run simulation.

The simulation was run for a �nite time using the following command.

• run time_in_nano_seconds

6. Dump signal activities.

Following command dumps all the signal activities and their value changes

into VCD �le.

• vcd checkpoint

7. Exit simulation.

Writing to VCD �le �nishes only when simulation is exited. Following com-

mand is used to exit simulation.

• quit -f

4.2 Synthesis and Power Analysis

Synthesis required Quartus II version 12.1 from Altera Corp. which was installed

on a Windows 8 machine. Altera Stratix V FPGA device 5SGSMD5K2F40C2 was

used to synthesize FFT processor core. The following procedure was followed step

by step to carry out synthesis on FPGA.

1. Create project.

Created a new Quartus project for compiling VHDL �les of FFT processor.

And while creating the project added all the VHDL �les to the project.

2. Set top level entity.

A top level entity for the project which was an entry point to begin the com-

pilation was speci�ed.

4. Implementation 41

3. Compile.

Started compiling the project and �xed the compilation errors and warnings

encountered. Compilation process goes through analysis and synthesis, fol-

lowed by placement and routing, followed by timing analysis, followed by EDA

netlist write operation.

4. Program FPGA.

Programmed the FPGA device via USB port after the compilation was suc-

cessful.

5. Analyze results.

Analyzed the synthesis results, �tter summary and timing analyzer summary

to obtain design parameters such as area, timing and maximum operating

frequency.

After the synthesis was complete, power consumption was analyzed with the help

of PowerPlay Power Analyzer tool available in Quartus II software. The PowerPlay

Power Analyzer tool needed VCD �le containing signal activities as an input to

estimate the power consumption. The tool also required Synopsys Design Constraint

(SDC) �le to set up frequency at which power analysis was carried out. The following

were the sequence of steps followed to carry out power analysis.

1. Launch PowerPlay Power Analyzer.

Launched PowerPlay Power Analyzer tool in Quartus II software after compi-

lation was successful.

2. Input (SDC) File.

Speci�ed the frequency of operation for power analysis using SDC �le.

3. Input VCD �le.

The VCD �le generated during RTL functional simulation was provided as an

input to the PowerPlay Power Analyzer tool.

4. Set default toggle rate.

Default toggle rates were set suitably depending on frequency at which power

analysis was done. Generally, the toggle rates for a design module varies

between 8-12% and hence, default toggle rate was chosen as 12% of frequency.

5. Start power analysis.

Started the power analysis after setting up the environment and �xed the

errors or warnings encountered during the same.

4. Implementation 42

6. Analyze results.

The dynamic power dissipation, static power dissipation and routing dynamic

power dissipation were noted down and analyzed for di�erent FFT points.

43

5. RESULTS AND EVALUATION

The FFT processor was functionally veri�ed through RTL simulation using Model-

Sim version 6.5c. During simulation, FFT computation time for di�erent FFT sizes

are analyzed which are tabulated below. Before carrying out synthesis, the FFT

core was con�gured to support maximum FFT size of Nmax = 2048. The resulting

FFT core (excluding memory components) was synthesized on an Altera Stratix V

FPGA device 5SGSMD5K2F40C2 using Quartus II version 12.1 synthesis tool. The

FFT core area consumption details are tabulated and discussed as below.

Resource usage for each of the FFT components and for FFT core as a whole are

given in TABLE 5.1.

Table 5.1: FFT Core Resource Utilization.

Components Combinational

ALUTs

Registers DSP Blocks

Butter�y Units 136 352 4

Interconnect 170 752 0

Address Generation Unit 482 199 0

Control Unit 291 111 0

FFT Core 1143 1754 4

The FFT core utilizes 1143 ALUTs out of 345200 available (<1%) and 4 DSP blocks

out of 1590 available (<1%) on the FPGA device.

5. Results and Evaluation 44

FFT processor was simulated in ModelSim for functional veri�cation and to measure

computation time. FFT computation time for di�erent FFT sizes are given in

TABLE 5.2. The simulation was carried out at a frequency fmax = 200MHz.

Table 5.2: FFT Computation Time.

N Clock Cycles Total Time[µs]

16 74 0.37

32 132 0.66

64 254 1.27

128 520 2.6

256 1106 5.53

512 2396 11.98

1024 5222 26.11

2048 11376 56.88

The plot of computation time against FFT size is given in Figure 5.1.

16 32 64 128 256 512 1024 2048
0

20

40

60

N-point

T
im

e
[u
s]

FFT computation time [us]

Figure 5.1: FFT computation time as a function of N.

Increase in FFT size results in almost linear increase in computation time till 256

points. But after 256 points, there is exponential increase in computation time.

According to TABLE 5.2, computation time (in micro seconds) for speci�ed FFT size

meets the timing constraints of various wireless standards such as IEEE 802.11a/g,

IEEE 802.16e, 3GPP-LTE, DAB and DVB.

Power dissipation of FFT core was determined using PowerPlay Power Analyzer tool

available in Quartus II synthesis tool. PowerPlay tool performs power analysis on

post-�t netlist data obtained after synthesis. The tool requires VCD �le containing

signal activities of FFT core. As explained earlier, signal activities at RTL were

captured during simulation in ModelSim. In addition, frequency at which power

analysis to be done was speci�ed through SDC �le. Default toggle rate was set

5. Results and Evaluation 45

at 12% of frequency for those signals which didn't have signal activity in VCD

�le. Operating voltage was set at 0.9V and the ambient temperature was set at

25 degree celsius. The power analysis results are presented in TABLE 5.3. Total

dynamic power dissipation (in milliWatts) consists of dynamic power, static power

and routing dynamic power dissipation of FFT core. Energy consumption expressed

in micro Joules was calculated as Energy = power ∗ time.

Table 5.3: Power Analysis Summary.

N Total Power Dissipation[mW] Energy[µJ]

16 399.05 0.147

32 412.46 0.271

64 423.46 0.537

128 407.83 1.06

256 434.20 2.4

512 428.57 5.1

1024 432.01 11.279

2048 434.44 24.71

According to TABLE 5.3, power dissipation varies slightly about an average value of

approximately 420mW for di�erent FFT size. Variation of power dissipation against

FFT size is illustrated in Figure 5.2.

16 32 64 128 256 512 1024 2048
0

10

20

30

N-point

E
n
er
gy

[u
J
]

FFT Total energy consumption [uJ]

Figure 5.2: FFT total energy consumption as a function of N.

The dynamic power dissipation increases with increase in FFT size because of in-

creased signal activities and increase in area. The energy consumption increases

drastically with N whereas power consumption varies slightly around an average

value.

5. Results and Evaluation 46

The proposed FFT processor was compared in terms of computation time and scal-

ability with the existing research work. Comparison information is provided in

TABLE 5.4.

Table 5.4: Comparison With Existing FFT Processors.

64

[µs]

128

[µs]

256

[µs]

512

[µs]

1024

[µs]

2048

[µs]

f

[MHz]

Scalable

[13] 2.1 - - - - - 31.69 No

[2] - - - - 26 - 100 No

[3] - 40.34 47.30 52.30 61.14 - 470 Yes

[6] - - - - 57 17.86 Yes

Proposed 1.27 2.6 5.53 11.98 26.11 56.88 200 Yes

The FFT processor based on our novel architecture outshines �xed length as well

as variable length FFT processors.

47

6. CONCLUSIONS

A scalable FFT processor architecture was proposed. In order to realize it, a radix-

2 �xed point 16-bit N-point FFT processor was implemented using VHDL. The

FFT processor was simulated in ModelSim verify its functionality and to determine

computation time. The FFT core was synthesized on an Altera Stratix V FPGA

device 5SGSMD5K2F40C2 to determine area, maximum operating frequency and

power consumption. Based on simulation and synthesis results proposed architec-

ture meets the timing constraints of wide range of wireless standards such as IEEE

802.11a/g, IEEE 802.16e, 3GPP-LTE, DAB and DVB. Hence, the proposed architec-

ture can be adopted in SDR platforms supporting above speci�ed wireless standards.

According to [9], higher radix FFT computation is faster than lower radix FFT for

large number of FFT points. Hence, the proposed architecture can be extended to

implement radix-4, radix-8 or split radix FFT processors with additional modi�ca-

tions. In order to extend the architecture to higher radix: suitable radix butter�y

should be used, address generation algorithm should be extended to support re-

quired data access during computation, additional control signals should be added

to control unit and the interconnect should be extended to accommodate additional

data/address signals. In addition, the processor architecture can be adopted by any

other non-OFDM based applications where a reasonable balance between speci�ed

design parameter is required.

48

REFERENCES

[1] C. Sydney Burrus. Signal Flow Graphs of Cooley-Tukey FFTs. http: // cnx.

org/ content/ m16352/ latest/ . Accessed: 21-Mar-2013.

[2] Z.H. Derafshi, J. Frounchi, and H. Taghipour. A high speed FPGA imple-

mentation of a 1024-point complex FFT processor. In Second International

Conference on Computer and Network Technology (ICCNT), 2010, pages 312

�315, april 2010.

[3] K. George and C.-I.H. Chen. Con�gurable and expandable FFT processor for

wideband communication. In IEEE Instrumentation and Measurement Tech-

nology Conference Proceedings, 2007. IMTC 2007., pages 1 �6, may 2007.

[4] Haining Jiang, Hanwen Luo, Jifeng Tian, and Wentao Song. Design of an

e�cient FFT processor for OFDM systems. IEEE Transactions on Consumer

Electronics, 51(4):1099�1103, nov. 2005.

[5] J.W.Cooley and J.W.Tukey. An algorithm for the machine calculation of the

complex fourier series. Mathematics of Computation, 19(90):297�301, 1965.

[6] Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh. Low-power variable-length fast fourier

transform processor. IEEE Proceedings - Computers and Digital Techniques,

152(4):499 � 506, july 2005.

[7] Marcus Majo. Design and implementation of an OFDM-based communica-

tion system for the GNU radio platform. Master's thesis, IKR, University of

Stuttgart, 2009.

[8] Ramjee Prasad. OFDM for Wireless Communications Systems. Artech House,

31 Mar 2004.

[9] K.L.S. Swee and Lo Hai Hiung. Performance comparison review of radix-based

multiplier designs. In 4th International Conference on Intelligent and Advanced

Systems (ICIAS), 2012, volume 2, pages 854�859, June.

[10] J. Takala and K. Punkka. Butter�y unit supporting radix-4 and radix-2 FFT.

In Proc. Int. Workshop Spectral Methods and Multirate Signal Process., Riga,

Latvia, pages 47�53, June 20-22 2005.

[11] Song-Nien Tang, Chi-Hsiang Liao, and Tsin-Yuan Chang. An area- and energy-

e�cient multimode FFT processor for WPAN/WLAN/WMAN systems. IEEE

Journal of Solid-State Circuits, 47(6):1419�1435, june 2012.

REFERENCES 49

[12] Tran-Thong and Bede Liu. Fixed-point fast fourier transform error analysis.

IEEE Transactions on Acoustics, Speech and Signal Processing, 24(6):563�573,

dec 1976.

[13] Bingrui Wang, Qihui Zhang, Tianyong Ao, and Mingju Huang. Design of

pipelined FFT processor based on FPGA. In Second International Conference

on Computer Modeling and Simulation, 2010. ICCMS '10., volume 4, pages

432�435, jan. 2010.

[14] Ning Zhang and R.W. Brodersen. Architectural evaluation of �exible digital sig-

nal processing for wireless receivers. In Conference Record of the Thirty-Fourth

Asilomar Conference on Signals, Systems and Computers, 2000., volume 1,

pages 78�83 vol.1, 29 2000-nov. 1 2000.

[15] Qihui Zhang and Nan Meng. A low area pipelined FFT processor for OFDM-

based systems. In WiCom '09. 5th International Conference on Wireless Com-

munications, Networking and Mobile Computing, 2009., pages 1�4, sept. 2009.

50

A. APPENDIX

FFT core was synthesized on an Altera Stratix V FPGA 5SGSMD5K2F40C2 using

Quartus II software. Post synthesis, synthesized FFT core and its components can

be viewed using Quartus II RTL viewer tool shown in the screen shots below.

Figure A.1: Synthesized FFT core in RTL viewer.

Figure A.2: Synthesized butter�y unit in RTL viewer.

A. Appendix 51

Figure A.3: Synthesized complex multiplier in RTL viewer.

Figure A.4: Synthesized interconnect in RTL viewer.

A. Appendix 52

Figure A.5: Synthesized address generation unit in RTL viewer.

Figure A.6: Synthesized control unit in RTL viewer.

The chip planner tool in Quartus II software provides a pictorial view of synthesized

FFT core location on the FPGA chip. Dark blue region in Figure A.7 is the location

of FFT core on FPGA chip. The core was placed in a localized region which indicates

e�cient placement and routing of FFT core.

A. Appendix 53

Figure A.7: Location of FFT core on the FPGA chip, courtesy: Chip planner tool.

Placement of synthesized design over a localized region is e�cient in a sense that

it reduces static and dynamic power consumption, reduces clock skew issues and

allows economic usage of available FPGA chip area.

Design partition planner tool in Quartus II enables us to view the design partition

of FFT core components as shown in Figure A.8.

Figure A.8: Partition of FFT core components on the FPGA chip, courtesy: Design par-
tition planner tool.

Major design partitions are mapped as mentioned below.

U8: Address Generation Unit

U1: Control Unit

U6: Butter�y Unit0

U7: Butter�y Unit1

A. Appendix 54

INTER_CONNECT_A: InterconnectA

INTER_CONNECT_B: InterconnectB

