
Markus Mulkahainen

TEST CASE SELECTION AND
PRIORITIZATION IN CONTINUOS

INTEGRATION ENVIRONMENT

Faculty of Information Technology and Communication Sciences (ITC)
Master of Science Thesis

March 2019

i

ABSTRACT

MARKUS MULKAHAINEN: Test case selection and prioritization in continuous
integration environment
Tampere University
Master of Science Thesis, 60 pages, 4 Appendix pages
March 2019
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiners: Professor Kari Systä and professor Hannu-Matti Järvinen

Keywords: test case selection, test case prioritization, machine learning, incremen-
tal learning, regression testing, continuous integration, coverage, instrumentation

It is beneficial for continuous integration (CI), that building and testing a software happens
as quickly as possible. Sometimes, when a test suite grows large during the lifecycle of the
software, testing becomes slow and inefficient. It is a good idea to parallelize test execu-
tions to speed up testing, but in addition to that, test case selection and prioritization can be
used. In this case study, we use incremental machine learning techniques to predict failing
and passing tests in the test suite of existing software from the space industry and execute
only test cases that are predicted failing. We apply such test case selection techniques to
35 source code modifying commits of the software and compare their performances to
traditional coverage based selection techniques and other heuristics. Secondly, we apply
different incremental machine learning techniques in test case prioritization and compare
their performances to traditional coverage based prioritization techniques. We combine
features that have been used successfully in previous studies, such as code coverage, test
history, test durations and text similarity to separate passing and failing tests with machine
learning. The results suggest, that certain test case selection and prioritization techniques
can enhance testing remarkably, providing significantly better results compared to random
selection and prioritization. Additionally, incremental machine learning techniques require
a learning period of approximately 20 source code modifying commits to produce equal or
better results than the comparison techniques in test case selection. Test case prioritiza-
tion techniques with incremental machine learning perform significantly better than the
traditional coverage based techniques, and they can outweigh the traditional techniques in
the weighted average of faults detected (APFD) values immediately after initial training.
We show that machine learning does not need a rigorous amount of training to outperform
traditional approaches in test case selection and prioritization. Therefore, incremental
machine learning suits test case selection and prioritization well, when initial training data
does not exist.

ii

TIIVISTELMÄ

MARKUS MULKAHAINEN: Testien valinta ja priorisointi jatkuvassa integraatiossa
Tampereen yliopisto
Diplomityö, 60 sivua, 4 liitesivua
Maaliskuu 2019
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Ohjelmistotuotanto
Tarkastajat: professori Kari Systä ja professori Hannu-Matti Järvinen

Avainsanat: testien valinta, testien priorisointi, koneoppiminen, regressiotestaus,
jatkuva integraatio, koodikattavuus, instrumentointi

Jatkuvan integraation toimivuuden edellytyksenä on, että ohjelmiston kääntäminen ja
testaaminen tapahtuu mahdollisimman nopeasti. Ohjelmiston kehitystyön edetessä auto-
maattisesti ajettavien testien määrä voi kasvaa suureksi. Tällöin on olemassa riski, että
testaaminen hidastuu ja jatkuva integraatio kärsii sen seurauksena. Testejä voidaan no-
peuttaa esimerkiksi rinnakkaistamalla testiajoja, mutta sen lisäksi testejä voidaan myös
priorisoida tai testeistä voidaan valita vain pieni määrä ajettaviksi. Tässä tapaustutki-
muksessa tutkimme testien valintaa ja priorisointia koneoppimisen avulla. Valitsemme
ajettaviksi ainoastaan sellaiset testit, jotka koneoppimismallit ennustivat hajoaviksi. Ko-
neoppimismallit päättelevät testien lopputulemia eri tietolähteitä yhdistelemällä. Näitä
tietolähteitä ovat mm. koodikattavuus, testien ajohistoria, testien kestoaika ja testien ja
koodimuutosten samankaltaisuus. Käytämme tällaista testien valintaa aineistoon, joka
on kerätty avaruusteollisuuden ohjelmistoprojektista. Vertaamme koneoppimisen avulla
saatuja tuloksia perinteisiin testien valintamenetelmiin ja heuristiikkoihin. Tapaustutkimuk-
sessa vertailemme myös koneoppimisen avulla suoritettua testien priorisointia perinteisiin
koodikattavuuspohjaisiin priorisointimenetelmiin. Tutkimuksen tulokset osoittavat, että
tietyt testien valinta- ja priorisointimenetelmät tehostavat testaamista huomattavasti ja
tuottavat merkittävästi parempia tuloksia kuin satunnaisuuteen perustuvat menetelmät. Tä-
män lisäksi tulokset osoittavat, että testien valinnassa koneoppimismenetelmät saavuttavat
samankaltaisen tai paremman tuloksen kuin paras heuristiikka noin kahdenkymmenen
koodimuutoksen jälkeen. Testien priorisoinnissa koneoppimismenetelmät tuottavat mer-
kittävästi parempia tuloksia kuin vertailumenetelmät. Tutkimuksen tulokset osoittavat,
että koneoppimismenetelmät eivät välttämättä tarvitse suuria määriä koulutusdataa, vaan
voivat ennustaa pienelläkin määrällä koulutusdataa testien lopputulemia paremmin kuin
vertailumenetelmät.

iii

PREFACE

I am grateful for several people that contributed in this thesis. This master’s thesis was
created in co-operation with Space Systems Finland. From SSF, I want to thank Timo
Latvala for the oppourtunity. Thank you Jaakko Hujanen for the support throughout the
project. Thanks Ismo Toijala and Viorel Preoteasa. Thank you Tomi Räty from VTT
for the discussions and emails. Thank you Árpád Beszédes, Benjamin Busjaeger and
especially Helge Spieker for answering to my emails and clearing specific things out for
me. Your insights and knowledge were invaluable to me. From my university, I want
to thank professors Kari Systä and Hannu-Matti Järvinen. Thank you family members
and friends. Thank you Tiina for the persistent support along these years. If you are still
reading, thanks to you as well, dear reader.

In Helsinki, Finland, on 4 March 2019

Markus Mulkahainen

iv

CONTENTS

1. INTRODUCTION ... 1

2. THEORETICAL BACKGROUND ... 4
2.1 Continuous integration.. 4
2.2 Code coverage... 5
2.3 Test case selection... 5

2.3.1 Confusion matrix .. 9
2.3.2 Coverage overlapping ... 10

2.4 Test suite minimization ... 11
2.5 Test case prioritization .. 12
2.6 Dependency coverage ... 15
2.7 Machine learning .. 16
2.8 Related work ... 17

3. METHODOLOGY .. 20
3.1 Test case selection techniques... 20
3.2 Test case prioritization techniques .. 22
3.3 Test cases as feature vectors.. 23
3.4 Select hyperparameters for the ML models .. 24
3.5 Case study setup.. 26

3.5.1 1st phase: Data collection... 27
3.5.2 2nd phase: Apply test case prioritization and selection................ 29
3.5.3 3rd phase: Transitive dependency selection 33

4. RESULTS .. 34
4.1 Test case selection... 34
4.2 Test case prioritization .. 37
4.3 Transitive dependency selection ... 38

5. DISCUSSION.. 41
5.1 Test case selection... 41

5.1.1 Heuristics .. 41
5.1.2 Machine learning .. 44

5.2 Test case prioritization .. 46
5.2.1 Heuristics .. 47
5.2.2 Machine learning .. 48

5.3 Transitive dependency selection ... 51
5.4 Future work... 52
5.5 Threats to validity ... 53

6. CONCLUSION.. 54

REFERENCES .. 56

APPENDIX A: CONFUSION MATRICES .. 61

v

APPENDIX B: HISTOGRAMS .. 63

vi

LIST OF FIGURES

Figure 2.1. A two-by-two confusion matrix can be used to evaluate binary classi-
fication (after Fawcett [14]). .. 10

Figure 2.2. Total statement coverage of a test suite. The darker the area, the
greater number of tests exercise same part of the software. Test suite
covers 64% of all software statements in this particular software
version. .. 11

Figure 2.3. Comparison of test case prioritization strategies, see explanation in
text (inspired by Rothermel et al. [36]). ... 13

Figure 2.4. An example of test cases and their dependencies (after Yoo et al. [45]). 16

Figure 3.1. Version control history along with commit specific information, such
as number of executed tests on the left, index of source code mod-
ifying commit inside the shape and the number of failing tests on
the right. The star (*) denotes the initial commit where coverage,
test durations and verdicts are collected for the first time. The next
commit, tagged as T, is used to train the machine learning models.
The indices, e.g. numbers inside the shapes denotes nth measurement
point, where test suite reduction, recall and MCC are calculated for
test case selection techniques and APFD for test case prioritization
techniques. The commit types are separated into source modifying
commits (modifies src/*), source&test commits (modifies src/* and
test/*) and test commits (modifies test/*). .. 30

Figure 4.1. Matthews correlation coefficient of each test case selection method
over 35 commits. ... 34

Figure 4.2. Pairwise significance analysis using Dunn’s test with Bonferroni
adjustment. Any value below 0.05 indicate significant difference in
Matthews correlation coefficient. .. 35

Figure 4.3. MCC per method and commit. Trends for heuristics are shown in the
top plot, and for machine learning techniques in the bottom plot. 36

Figure 4.4. APFD of each test case prioritization method over 35 commits............ 37
Figure 4.5. APFD per commit for each test case prioritization technique. Trends

for heuristics are shown in the top plot, and for machine learning
techniques in the bottom plot. ... 38

Figure 4.6. Pairwise APFD significance analysis using Dunn’s test with Bonfer-
roni adjustment. Any value below 0.05 indicate significant difference
in the means of APFD. .. 39

Figure 4.7. Transitive dependency selection produced test suite reduction over
95% for most of the test modifying commits. ... 40

vii

Figure A.1. Summed confusion matrices of coverage based test case selection
methods over 35 commits. .. 61

Figure A.2. Summed confusion matrices of machine learning based test case
selection methods over 35 commits. ... 62

Figure B.1. Recall and test suite reduction of the coverage based test case selec-
tion techniques.. 63

Figure B.2. Recall and test suite reduction of the machine learning test case
selection techniques.. 64

viii

LIST OF SYMBOLS AND ABBREVIATIONS

TCS Test case selection
TCP Test case prioritization
CI Continuous integration
ML Machine learning
SUT System under test
MCC Matthews correlation coefficient
TSR Test suite reduction
APFD Weighted average of the percentage of faults detected
T P Set of true positives
FP Set of false positives
T N Set of true negatives
FN Set of false negatives
P A program or software
P′ A modified version of P
T Original test suite
T ′ Reduced or prioritized test suite
FT Set of faults found by T
FT ′ Set of faults found by T ′

fT Set of failing tests in T
fT ′ Set of failing tests in T ′

Ttmod Set of test cases selected with transitive dependency selection
Tsmod Set of test cases selected with any other TCS technique
∀ For all
∃ There exists
/0 Empty set
∈ Is an element of
≈ Is approximately equal to
̸= Is not equal to
≪ Is much less than
≫ Is much greater than
⊂ Is a proper subset of
⊆ Is a subset of
∪ Set union
∩ Set intersection

1

1. INTRODUCTION

Continuous integration (CI) is a software engineering practice where a team of developers
create software in frequent increments. The core principle is to integrate developers work
often with a stable version of the software. The name, continuous integration, straightly
refers to this activity of integrating new features and enhancements continuously to an
existing software product. CI allegedly has many benefits. It pursues to ease the burden of
developers by automating parts of the software code integration process and encouraging
developers to commit their work more often. Small feature increments help to maintain the
product functional at all times and to ensure that bugs show up quickly [16]. Additionally,
CI can help to release software versions twice as often compared to projects without CI
[20]. Applying CI practices and tools in any modern software project is therefore well
justified.

Testing in CI should be automatic [42][16]. Firing off the test suite automatically after
every change shifts the responsibility for testing from developers to the tools. Automatic
testing ensures that each code increment is validated and checked for bugs without user
intervention. Automatic testing speeds up the software product development process and
makes it possible to ship a quality release when necessary, even every day [42].

A key element to successfully adopt CI is to have efficient and fast software building and
testing processes [16]. Test suites tend to grow large during the lifecycle of software, and
sometimes this can cause problems in keeping the test suites fast. The vast number of tests
is not the only problem, but sometimes single test executions require long time periods
to finish. In the context of Space Systems Finland, the problem culminates in validation
tests, which exercise multiple features in an end-to-end manner. A validation test that runs
for 20 minutes is not abnormal. Slow test cases and test suites reflect to CI pipelines and
render them counterproductive. Test case selection and prioritization can be used in such
situations to speed up and enhance testing.

Test case selection (TCS) selects a subset of the test suite to test a modified program for
regressions. Ideally, the subset of tests finds the same number of faults with lesser effort
compared to the original test suite. Quite often, however, the reduced test suite does not
include all fault-revealing test cases, but TCS discards some of them. A somewhat safer
approach is to apply test case prioritization (TCP) to the test suite. It does not reduce
the number of tests in the suite, but merely re-orders them according to fault-revealing
capabilities. The tests cases, that are considered to be more likely to find a fault, are moved
to the top of the test suite allowing early test execution to reveal faults as soon as possible.
TCP seeks to provide a maximum benefit to the tester, even if the test suite execution is
halted at some point [44]. Even though such an interruption is possible, TCP executes the

2 1. Introduction

whole test suite by default. The goal of TCP does not have to be early fault-detection, but
it can be, for example, to maximize coverage as fast as possible instead [36].

The goal of this thesis is to explore and implement different TCS and TCP techniques
in order to speed up testing and facilitate continuous integration. We found machine
learning (ML) based techniques especially interesting. Machine learning was used in
TCP already in 2006 [41], but during the past few years, it has become more popular
in the domains of TCS and TCP [10][40][24][23]. These studies have shown promising
results for the novel techniques, strengthening the viewpoint of ML being an efficient
alternative for the traditional TCS and TCP approaches. The results of our thesis support
the latest advancements in ML-based TCS and TCP and we propose ways to improve them.
For example, we bring in more evidence that ML-based TCP surpasses the traditional
coverage based approaches in the weighted average of percentage of faults detected
(APFD), even without a rigorous amount of initial training data. We propose, that applying
ML incrementally is beneficial in cases where no existing training data is available.

In the case study, we use test verdict history (e.g. information about past executions of
a test), code coverage, test durations and text similarity to predict failing tests in the test
suite. Our case study is perhaps closest to the study by Busjaeger and Xie [10], but in
contrast to them, we show that with incremental learning we can speed up commissioning
ML based TCP techniques, when no initial training data exists. While Busjaeger and Xie
used machine learned ranking, we use different machine learning classifiers to classify
test cases into categories of failing and passing using scikit-learn [31]. This is especially
useful in TCS, where we can draw a decision boundary between the failing and passing
tests as opposed to selecting top n tests from the prioritized list. Furthermore, we apply
TCP by ordering test cases with class probabilities using the same classifiers as in TCS.

We separate the way how TCS and TCP handle commits that modify tests and source code.
This has little effect in TCP results but has a more notable effect in TCS results. Every time
a commit modifies only tests or their dependencies in the repository, we select all test cases
that depend transitively on the changed file. For example, in C-language such a dependency
is declared with #include directive. This technique is similar to techniques described by
Yoo et al. [45] and Gligoric et al. [17]. While we show that this kind of transitive test
case selection can reduce the number of tests significantly when applied to test modifying
commits, we think that it unnecessarily complicates TCS and TCP schemes, especially in
light of modern software engineering practices that encourage feature branching and merge
requests, where tests and source code are modified together. As an alternative approach,
we propose the dependency coverage score, introduced by Yoo et al. [45], which can help
to overcome this complexity.

We assume, that the tests and source code are maintained in the same repository. For the
sake of simplicity, we also assume, that tests exist in test/ directory, and source code under
src/ directory. We consider source modifying commits being the ones that modify any file
under src/, be it source code or configuration files, and test modifying commits the ones

3

that modify any file under test/, respectively. A commit can also modify both directories,
src/ and test/, and we call these commits ”source and test modifying commits”. While we
use our techniques to select and prioritize validation tests, there is no restriction to use any
of the techniques for integration and unit tests.

In this case study, we show that ML can be applied in TCS and TCS incrementally when
no initial training data is available. We show that random forest classifier is among the best
performing classifiers in TCS and TCP and that it produces higher scores and converges
faster than multilayer perceptron, for example. We show that using features such as
modification coverage, test history, and text similarity TCS can produce equal or better
MCC scores than traditional coverage-based approaches in approximately 20 commits.
Furthermore, we show that transitive dependency selection can significantly reduce the
number of tests. Finally, we show that the incremental learning TCP techniques surpass
coverage-based prioritization techniques in APFD scores even faster: almost immediately
after initial training.

SSF is a Finnish software company specialized in industrial systems, including high-
reliability software in the space domain. The system under test (SUT), i.e. the software on
which we apply TCS and TCP techniques is a satellite instrument control software and will
be part of the Meteosat Third Generation Sounder (MTG-S) satellites that are launched in
the 2020s. The instrument, namely Sentinel-4/UVN, is a high-resolution spectrometer and
will be used to monitor air quality parameters over Europe. The SUT is a command and
control software for the Sentinel-4/UVN instrument. The software and its validation tests
are programmed in Ada-language.

The research questions are the following:

RQ1 How big test suite reduction can code coverage based test case selection achieve?

RQ2 How effective is incremental learning based test case selection?

RQ3 How do the incremental learning based test case prioritization techniques compare to
traditional coverage based prioritization techniques?

4

2. THEORETICAL BACKGROUND

This chapter covers certain topics that are needed to understand the later chapters. Our case
study covers topics from regression testing, software engineering, machine learning, and
information retrieval. We do not introduce each field thoroughly but instead skim through
some important topics that help to understand our case study. We start with continuous
integration in section 2.1. Then we discuss code coverage and instrumentation in section
2.2. We introduce test case selection, minimisation and prioritization in sections 2.3, 2.4
and 2.5. We introduce dependency coverage and transitive dependency selection in section
2.6. We discuss machine learning in section 2.7. Finally, we present a non-exhaustive list
of related work in section 2.8.

2.1 Continuous integration

Continuous integration is a software engineering practice where developers merge and
integrate their work several times a day into a single source code repository [38]. The
repository should be equipped with automated building and testing tools [21]. CI is a
combination of tooling and best practices where the tooling includes 1) building and
2) testing the software automatically [20]. Best practices include integrating early and
not keeping code changes in the local workspace for too long [42]. The benefits of
continuous integration are early detection of faults and speed in the software lifecycle from
development to production [20].

Hilton et al. [20] investigated the use of continuous integration in 34,544 open source
projects on Github. They found out, that 40% of the projects use continuous integration
platforms such as Travis or CircleCI, and that the number is rising. Within the most popular
open source projects, 70% of the projects relied on a continuous integration platform.
Hilton et al. reported, that continuous integration helped the developers to release software
versions twice as often and accept pull requests faster compared to projects that did not
use continuous integration.

Zhao et al. [46] also studied the use of Travis in Github projects. They reported, that there
is a positive trend in the number of closed pull requests over time in a project’s lifecycle
regardless whether CI is applied or not, but after adopting CI the positive trend actually
flattens and becomes less steep. The results of Zhao et al. do not endorse the results of
Hilton et al., but says quite the opposite: the positive trend in closed pull requests slows
down after Travis is adopted. However, Zhao et al. identified other benefits for the use of
Travis, such as increased number of merge commits and automated tests.

Shahin et al. [38] pointed out that approaches and tools that aim to reduce build and test

2.2 Code coverage 5

time support and facilitate continuous integration and other continuous practices. Test case
selection and prioritization were seen as such supporting techniques. Indeed, one of the
biggest motivation behind our case study was to enhance and speed up testing in order to
enable efficient use of continuous integration.

2.2 Code coverage

In software testing, code coverage determines which parts of the system under test (SUT)
are exercised by a test suite [15]. Code coverage can be expressed, for example, as
the percentage of software statements exercised by the test cases in the test suite. The
percentage of statements covered by a test suite indicates how completely the software is
tested according to statement coverage criterion [47]. A well-tested program could yield
a statement coverage of 100% indicating that the test suite exercises every statement in
the software. However, 100% statement coverage does not imply that the software is well
tested [4]. The precision on which the software code is surveyed is called the coverage
criterion. Myers and Sandler [30] considers statement coverage as a weak criterion, and
they introduce four stronger criterions: decision or branch coverage, condition coverage,
decision-condition coverage, and multiple-condition coverage.

Decision or branch coverage is a stronger coverage criterion compared to statement
coverage. It requires, that each decision, e.g. if-else, do-while or switch, is evaluated to
both true and false at least once. For example, 100% branch coverage implies that the
test suite exercises every if-statement in the software so, that both output branches, true
and false, are taken. Generally, full branch coverage leads to full statement coverage, but
according to Myers and Sandler, branch coverage does not satisfy statement coverage
in certain special cases. An example of such a special case is a software code without
any decisions. Therefore the definition of branch coverage has been expanded to require
fulfilling statement coverage too. [30]

The code coverage information can be attained through code instrumentation [2]. Amman
and Offutt [2] explain, that an instrument is an additional software code, that collects
information from the software, but does not affect the functional behavior of the software.
The statement coverage can be measured by placing an instrument between every statement
in the software code and executing the test suite against the instrumented software. This
results in a log of visited software statements, e.g. set of visited statements Sv. The
statement coverage is then |Sv|

|S| ×100 where S is the set of all software statements. Even
though code instrumentation does not affect the functionality of the software, it can cause
side-effects such as concurrency or timing issues [2]. In practical applications, statement
coverage is often confused with line coverage [3].

2.3 Test case selection

Test case selection techniques are a group of regression testing techniques where a subset
of the test suite is selected for execution. It reduces the number of tests to be run allowing

6 2. Theoretical background

a shorter execution time, but at the same time risks neglecting fault-revealing test cases.
Rothermel and Harrold [33] initially defined test case selection, but it was reformulated by
Yoo and Harman [44] as following:

1. Given the program P, the modified version of it, P′ and a test suite, T .

2. Find T ′ ⊆ T to test P′.

According to Rothermel and Harrold [33], a test case t ∈ T is modification-revealing, ”if
and only if it causes the outputs of P and P′ to differ”. Furthermore, Biswas et al. [7]
specify that a modification-revealing test case t produces a different output for P and P′.
We therefore interpret, that if t fails in P but succeeds in P′, or t fails in P′ but succeeds in
P, t is modification-revealing.

Rothermel and Harrold [33] separate safe and unsafe regression test selection techniques.
They explain that safe techniques include every modification-revealing test case from the
test suite. Unsafe techniques respectively omit modification-revealing test cases from T ′.
Inclusiveness defined by Rothermel and Harrold [33] can be used to report the proportion
of modification-revealing test cases in the reduced test suite. Inclusiveness is defined as
[33]

Inclusiveness =
m
n
×100 (2.1)

where m is the number of modification-revealing tests in the reduced test suite, and n is the
number of modification-revealing tests in the original test suite. Rothermel and Harrold
clarify, that any technique that provides 100% inclusiveness, is considered a safe regression
test selection technique.

A test case is considered modification-traversing, if it fulfills one of the two criterions
[44][33]:

• it executes new or modified code in the new version of the software, or

• it used to execute code that was deleted in the new version of the software

Test case selection techniques have been evaluated in the literature using metrics such as
test suite reduction (TSR) and reduction in fault detection effectiveness [12][34][11]. Test
suite reduction is expressed as [34]

Test Suite Reduction =

(
1− |T ′|

|T |

)
×100 (2.2)

2.3 Test case selection 7

where T is the original test suite and T ′ is the reduced test suite. Reduction in fault
detection effectiveness is given as [34]

Reduction in Fault Detection Effectiveness =
(

1− |FT ′ |
|FT |

)
×100 (2.3)

where FT is the set of faults found by the original test suite T and FT ′ is the set of faults
found by the reduced test suite T ′. In the optimal situation, test case selection techniques
provide a maximum reduction in test suite size, but at the same time reveal the same
number of faults as the original test suite. It is therefore beneficial for test case selection
techniques to have maximal test suite reduction and minimal reduction in fault detection
effectiveness.

In our case study, FT is unknown, e.g. we do not know the number of actual faults in the
system. We only know which tests are failing, but a failing test does not always reveal one
unique fault. One failing test can reveal 0, 1, 2 or even more actual faults. Because we
do not know FT , we cannot use reduction in fault detection effectiveness to measure the
performance of TCS techniques. Instead, the closest we can get, is to assume that finding
the failing test cases helps us to find the actual faults in the system. Therefore, we use
TCS techniques to find the failing test cases, fT , from T . We do not want the reduced test
suite to contain anything else but the failing test cases. In addition to TSR, our objective
becomes to maximize the proportion of test failures in the reduced test suite T ′:

| fT ′ |
| fT |

×100 (2.4)

where fT ′ is the set of failing tests in T ′, and fT is the set of failing tests in original test
suite T . The expression 2.4 is interesting. We can rewrite it with true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN). We follow Knauss et al. [22],
and describe true/false positives/negatives as following:

• TP: Test cases that were selected to the reduced test suite and failed (failed and
predicted failing)

• FP: Test cases that were selected to the reduced test suite but passed (passed but
predicted failing)

• TN: Test cases that were not selected to the reduced test suite and passed (passed and
predicted passing)

• FN: Test cases that were not selected to the reduced test suite but failed (failed but
predicted passing)

8 2. Theoretical background

Removing the multiplication (×100), we can rewrite the expression 2.4 with T P, FP, T N
and FN:

| fT ′ |
| fT |

=
T P

T P+FN
(2.5)

which is the same as recall in information retrieval theory [14][32]. We can do the same
for test suite reduction, and rewrite it with T P, T N, FN and FP:

Test Suite Reduction = 1− |T ′|
|T |

=
|T |− |T ′|

|T |

=
(T N +FN +FP+T P)− (T P+FP)

T N +FN +FP+T P

=
T N +FN

T N +FN +FP+T P

(2.6)

We now have two conflicting performance scores for TCS techniques: test suite reduction
and recall. We can use these scores to measure 1) reduction in test suite size and 2)
proportion of failing tests in T ′. We would like to find a such TCS technique, that
maximizes both of these scores. It is not easy, because increasing 1) potentially decreases
2) and vice versa. Furthermore, it is not easy to differentiate two almost equally performing
techniques. Consider the following example with two TCS techniques T 1 and T 2:

• T1: Test suite reduction 0.95, recall 0.75

• T2: Test suite reduction 0.87, recall 0.82

It is hard to say which one of the two, T 1 or T 2, is better. We introduce another score, the
Matthews correlation coefficient (MCC). We found MCC to be a representative surrogate
for the combination of test suite reduction and recall. The MCC-score is a single value and
gives us a more robust way to compare performances of TCS techniques. B.W. Matthews
introduced the MCC-score in 1975 [28] and defined it as:

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(2.7)

The highest possible MCC score is 1. It is achieved when FP = /0, FN = /0, T P ̸= /0 and
T N ̸= /0. In such case, we do not have incorrect predictions. We correctly categorized
all tests into passes and fails. Selecting only the failing predictions, we get the ”perfect
selection”. The perfect selection never fully satisfies test suite reduction, e.g. T SR ̸= 1, but

2.3 Test case selection 9

1 - unsigned int eeprom_address = 0x1234;
2 + unsigned int eeprom_address = 0x1235;
3
4 unsigned int get_eeprom_address(void)
5 {
6 return eeprom_address;
7 }

Program 2.1. Code coverage based test case selection is unable to trace changes in global
variables. The minus sign in front of the code line indicates that the line was deleted, the
plus sign indicates that the line was added.

always results in the maximum recall value of 1. In other words, MCC = 1 evaluates to
highest possible test suite reduction for a recall of 1.

Knauss et al. [22] used F1 score (equation 2.8), among precision (equation 2.9) and recall
to measure the performance of a test case selection technique. In our case, the F1 score was
not a good option because we have a high class-imbalance in our dataset, e.g. less than 1%
of the samples are positive. Boughorbel et al. [8] mention that F1 score is sensitive to data
imbalance, but MCC score handles class imbalance well. We considered the disadvantage
of MCC score being that it values false positives and false negatives similarily, i.e. it is
invariant to the changes in false positives and false negatives when their sum is constant.
We argue, that having small amount of false negatives and greater amount of false positives
is more beneficial than the contrary in test case selection. Therefore, we would have liked
to add bias to the MCC score to penalize false negatives more than false positives, but we
did not do this.

F1 =
2× recall×precision

recall+precision
(2.8)

precision =
T P

T P+FP
(2.9)

Code coverage based test case selection is not able to trace every kind of change in the
codebase. These generally are the non-instrumentable parts of the code repository, such as
meta- or configuration files, but also source code. For example, a global variable value
change cannot be traced. Consider the program code 2.1. Even though the value of the
eeprom_address variable is changed, it remains invisible to code coverage based test case
selection.

2.3.1 Confusion matrix

The Figure 2.1 shows a confusion matrix. Confusion matrix in a binary classification
problem is a two-by-two matrix, that contains the numbers of correctly and incorrectly

10 2. Theoretical background

classified examples [39]. We separate these examples into bins of true negatives, true
positives, false positives and false negatives. The confusion matrix lays out these bins in
the four cells of the matrix.

Fawcett [14] describes each bin coherently: True positives are examples that are classified
as positive, and their actual outcomes are positive. True negatives are classified as negative,
and their actual outcomes are negative. False positives are classified as positive, but their
outcomes are negative. Finally, false negatives are classified as negative, but their outcomes
are positive.

A
ct

ua
l

Prediction

positive negative

positive True
Positive

False
Negative

negative False
Positive

True
Negative

Figure 2.1. A two-by-two confusion matrix can be used to evaluate binary classification
(after Fawcett [14]).

2.3.2 Coverage overlapping

Coverage overlapping happens when multiple test cases exercise the same areas in the
SUT. If two or more test cases exercise e.g. the same software statements, we say that
coverage overlapping is present. End-to-end tests tend to have a high coverage overlapping
because of their high total coverage.

The Figure 2.2 illustrates test suite of 528 tests and their coverage over the SUT. In this
particular software version, over 20 percent of the software statements are covered by more
than 500 tests. If we modify the software in this area and then apply coverage-based TCS,
the selection will most likely contain a lot of tests, e.g. T ′ ≈ T . Test suite reduction will be
therefore minimal. Generally, a modification in a densely covered area of the software can
prevent TCS techniques to bring any benefit to the tester. Harrold et al. [19] pointed out a
similar observation.

The Figure 2.2 reveals, that less than 20 percent of the software statements are covered by
1 to 10 test cases. A modification in this area of the software brings a large reduction in
test suite size, e.g. |T ′| ≪ |T |. Generally, a modification in a loosely covered area of the
software brings a great benefit to the tester in terms of test suite reduction.

2.4 Test suite minimization 11

100

90

80

70

60

50

40

30

20

10

Co
ve

ra
ge

 %

Coverage overlapping
Number of tests

0
1-10
11-100
101-500
> 500

Figure 2.2. Total statement coverage of a test suite. The darker the area, the greater
number of tests exercise same part of the software. Test suite covers 64% of all software
statements in this particular software version.

The Figure 2.2 shows, that surprisingly big part of the software, 36%, is not covered by
any test case. A modification in this part of the software yields 100% test suite reduction,
e.g. T ′ = /0. Such T ′ is not beneficial to the tester.

Wong et al. [43], Beena and Sarala [5] and Beszédes et al. [6] used priority-based test case
selection to further reduce the test suite after applying TCS. Whenever a coverage-based
TCS technique selected a high number of tests due to coverage overlapping, they applied
an extra prioritization step to discard redundant test cases. For example, some of them
applied additional coverage prioritization strategies to discard test cases with overlapping
coverage. Such strategies can be beneficial when a TCS technique produces a small test
suite reduction, e.g. when T ′ ≈ T .

2.4 Test suite minimization

Even though test suite minimization is not studied in this thesis, it is an important regression
testing technique and is thus shortly introduced. Test suite reduction problem definition
was given by Harrold et al. [18], but it was later named to test suite minimization. Yoo and
Harman [44] defines it as follows:

1. Given: A test suite, T, a set of test requirements r1, ...,rn, that must be satisfied to
provide the desired ’adequate’ testing of the program, and subsets of T,T1, ...,Tn, one
associated with each of the ris such that any one of the test cases t j belonging to Ti

can be used to achieve requirement ri.

2. Problem: Find a representative set, T ′, of test cases from T that satisfies all ris.

12 2. Theoretical background

Test suite minimization is similar to test case selection problem, but the key difference,
according to Yoo and Harman [44], is whether the changes of the system are examined.
Test case selection is interested in the changes of the system under test, while test suite
minimization considers only a single version of the system. Test suite minimisation and
selection use similar metrics for evaluation, namely test suite reduction (equation 2.2) and
reduction in fault detection effectiveness (equation 2.3) [11].

2.5 Test case prioritization

Test case prioritization is a regression testing technique [44], that reorders the test cases
in a test suite to maximize a specific goal [36]. The goal can be, for example, to detect
faults as early as possible, to detect high-risk faults as early as possible, or to maximize the
coverage of the system under test as fast as possible [36]. When the goal is early detection
of faults, test case prioritization re-orders a test suite so, that the most potential tests to
find a fault are executed first. This way, the tester will have faster feedback of failures and
further execution of the test suite can be even halted if a failing test is found.

Arguably, early detection of faults is the most famous goal for prioritization, and many of
the previous studies have used it as the goal [6][36][10][11]. This thesis does not make an
exception but uses the same goal to differentiate well and poorly performing prioritization
techniques. Test prioritization does not reduce the number of tests, and therefore test suite
reduction and fault detection effectiveness remain unaffected. This lies in the assumption
that the test suite execution is not halted.

The property on which the order is based on is called the surrogate [44]. The assumption
is, that early maximization of the surrogate leads to maximization of the goal [44]. For
example, if the surrogate was coverage, the test suite would be reordered descending by
the number of statements covered. Previous studies have shown such surrogate to be
significantly better than random ordering to maximize the goal of detecting faults early
[11]. The surrogate does not have to be a single property, but it can also be a set of
properties.

Formally, test case prioritization is defined as [44][36]:

1. Given: T , a test suite, PT , the set of permutations of T , and f , a function from PT to
the real numbers.

2. Problem: Find T ′ ∈ PT such that ∀T ′′ ∈ PT, T ′′ ̸= T ′: f (T ′)≥ f (T ′′).

where f is a function that returns an award value, where a higher value represents a better
ordering with respect to the goal. For example, if the goal was early detection of faults,
f could be a function returning the weighted average of the percentage of faults detected
(APFD) [36].

The APFD (equation 2.10) metric was first presented by Rothermel et al. [36], and it has
been used ever since to evaluate and compare different prioritization techniques. APFD is

2.5 Test case prioritization 13

1 while (a) {
2 if (b) {
3 s1; // modified

} else {
4 s2;
5 s3;

}
6 if (c) {
7 return 0; // modified

}
8 s4;
9 s5;

}

Statement test 1 test 2 test 3
1 X X X
2 X X X
3 X(M) X(M)
4 X
5 X
6 X X X
7 X(M)
8 X X
9 X X

Modifications Total Additional
No t1,t3,t2 t1,t2,t3
Yes t2,t3,t1 t2,t1,t3

Figure 2.3. Comparison of test case prioritization strategies, see explanation in text
(inspired by Rothermel et al. [36]).

a decimal number between 0 and 1 where a higher value indicates a better ordering, e.g.
that the fault finding tests were closer to beginning of the test suite. APFD consists of T Fi,
n and m, where n is the number of test cases, m is the number of faults revealed by test
suite T , and T Fi is the index of the first test case that reveals the ith fault.

APFD = 1− T F1 + ...+T Fm

nm
+

1
2n

(2.10)

Yoo and Harman [44] point out, that every fault and the test cases that revealed them must
be known in order to calculate APFD. If this information was known beforehand, we would
not need to prioritize anything. APFD can be used only for evaluation purposes after the
prioritization has been carried out to measure its performance.

Using the coverage information as a surrogate for early fault detection has been studied
in the past. Di Nardo et al. [11] compared the APFD values of four different coverage
prioritization strategies, namely total coverage, additional coverage, total coverage of
modified code and additional coverage of modified code. We will go through these
strategies next, but introduce the Figure 2.3 shortly before that. The figure compares
each of the strategies in a concise format. The figure shows a source code snippet, three
test cases that cover the source code and a table that compares the orderings of the four
strategies. X in the right-most table indicates that the test case covers the statement, and
M inside the parentheses denotes that a statement has been modified. For example, test 2
covers statements 1,2,3,6 and 7. Two of the statements, 3 and 7, were modified from the
previous code.

Total coverage is the simplest of the strategies. It orders the test suite descending by a
chosen coverage criterion [11][36]. The coverage criterion addresses the resolution of

14 2. Theoretical background

the coverage information. This includes branch, statement, line and function coverage,
to name a few [11][44]. The test case with the highest number of statements, lines or
functions covered is executed first, and the least covering test case is executed last. The
order is therefore t1,t3,t2 in Figure 2.3. If two tests have similar coverage, the order can be
chosen randomly [36]. Total coverage strategies belong to greedy algorithms [44].

Total coverage of modified code is a variation of total coverage, that considers only the
changes introduced in the modified version of the software P′. Figure 2.3 presents the
changed statements as X(M). The test cases that exercise most of the modified code, are
prioritized as first, and the least modification covering tests are prioritized as last. The
order is therefore t2,t3,t1 in Figure 2.3. The modification aware strategies generally assume
that faults are found in the changed parts of the system.

Additional coverage strategy orders test cases descending by the coverage criterion. The
difference to total coverage is that overlapping coverage is avoided - the test case that covers
the greatest number of uncovered code is prioritized next [11]. For example, in figure 2.3
the order is t1,t2,t3, because initially test 1 has the most comprehensive coverage. After
removing the overlapping coverage in test 2 and test 3, test 2 has the highest coverage over
uncovered code, and is therefore prioritized second. The additional coverage approaches
belong to additional greedy algorithms [44].

Additional coverage of modified code is a variation of additional coverage, where only
the changes introduced in the modified version of the software P′ are considered. For
example, in Figure 2.3 the order is given as t2,t1,t3. Initially, test 2 covers most of the
modifications and is therefore prioritized first. When the overlapping coverage in test 1
and test 3 are removed, there are no test cases left that covers yet uncovered and modified
code. In this situation, the additional coverage approaches need a fallback strategy, e.g.
total coverage. Test 1 is selected next because it covers most of the statements according to
the total coverage strategy.

Both of the additional coverage approaches need a fallback strategy when the saturation
point is encountered. With saturation point, we mean the point during the prioritization
where the selected test cases exercise the software so completely, that no other test case
can increase test suite coverage. Rothermel et al. [35] used the total coverage strategy to
prioritize the remaining test cases, similarly what was done in the example of the Figure
2.3. In a later study, Rothermel et al. [36] reset test cases to their initial coverage values,
and then reapplied additional coverage strategy excluding the test cases that were already
selected.

In their study, Di Nardo et al. [11] concluded that additional coverage strategies perform
better than total coverage strategies. On the other hand, Rothermel et al. [36] did not find
evidence that additional strategies perform better than total coverage, but their results were
more mixed. Di Nardo et al. also concluded, that the modification information does not
enhance test case prioritization, and therefore there is no reason to use the modification

2.6 Dependency coverage 15

aware prioritization strategies over the non-modification aware strategies. We made a
similar notion in our case study as well.

2.6 Dependency coverage

When a modification is made to the software, the modification can break functionality in
the modified module, but also in the modules that depend on the modified module [45].
This propagation of the modification can be troublesome as faults can show up in surprising
components or sub-systems [45]. Executing the whole test suite for even a small change in
the software is therefore justified to reveal the maximum number of regressions, but this is
not always possible, due to restrictive time requirements, for example.

A rather safe way to reduce the number of tests, but to still to reveal faults in the dependent
modules, is to recognize tests that exercise the modified modules and their dependents
and execute them. Figure 2.4 presents a dependency graph with three test cases and six
modules. A change in module m1 would tag test t1 affected. A change in module m5
would tag tests {t2, t3} affected. A combination of changes in modules {m5,m3} would
tag all test cases affected. Executing only the affected tests in the test suite possibly brings
a reduction in the test suite size, but at the same time ensures that all dependent modules
are tested. From now on, we call such TCS technique as transitive dependency selection.

Yoo et al. [45] applied multi objective search-based test suite selection in Google’s
test environment. They used information such as fault history, test execution time and
dependency coverage to select and prioritize test cases from the test suite. Dependency
coverage measures how big portion of the transitively affected modules are exercised by
a reduced test suite. In other words, dependency coverage indicates the capability of a
reduced test suite to exercise the affected modules and possibly reveal regression faults.
Selecting such a set of tests that maximize the dependency coverage is therefore ideal. Yoo
et al. formulated dependency coverage as follows:

δcov(T) =
|{mi ∈ M : ∃t j ∈ T s.t. mi is reached from t j}|

|M|
(2.11)

where T is a subset of the full test suite T and M is the set of all transitively affected
modules {m1,m2, ...,mn} for a modification. A test case t j reaches module mi if mi is
transitively dependant on t j. For example, if we modify module m3 in Figure 2.4, M equals
to {m1,m2,m3,m4}, because these modules depend on m3. If we then choose a reduced
test suite T = {t1, t2}, δcov(T) equals to |{m1,m3}|

|{m1,m2,m3,m4}| =
2
4 = 0.5, indicating that the

reduced test suite exercises half of the affected modules.

Yoo et al. [45] separates test and use dependencies, as pointed out in Figure 2.4. Test
dependencies are between the test cases and the modules that they test. Use dependencies

16 2. Theoretical background

t2

t1

t3

m1

m2

m3

m4

m5

m6

Use dependency
Test dependency

Figure 2.4. An example of test cases and their dependencies (after Yoo et al. [45]).

are between any two modules, respectively. A use dependency can be between a test
and a functional module too if the test does not do assertations against the module. Such
dependency is shown between t3 and m6 in Figure 2.4. In our case study, we are interested
only in the use dependencies between the test cases and modules, for example helper
packages and collections of utility functions.

2.7 Machine learning

Machine learning is a multidisciplinary field, that combines ”statistics, artificial intelli-
gence, philosophy, information theory, biology, cognitive science, computational complex-
ity, and control theory” [29]. The gist of machine learning is a piece of software, that is
capable of improving its performance in a set of tasks, based on experience [29]. Any
software that is able to use its previous knowledge to perform better at something without
reprogramming the software, can be considered to realize machine learning.

Machine learning problems can be roughly categorized in supervised, semi-supervised,
unsupervised and reinforcement learning problems [1]. In this case study, we are mostly
interested in supervised learning, and especially in its sub-problem, classification. Super-
vised classification tasks are generally given training data and categorical labels, and the
goal is to learn a mapping function from the training data to the labels [1]. The better the
mapping function is, the more accurate results a machine learning model produces. For
example, in an image classification task, the goal can be to recognize a certain animal in
an image. The training data would consist of images of three animals, and the respective
labels for the images would be one of {cat(0),dog(1),horse(2)}. Given the training data
and the labels, the machine learning model would learn and modify its parameters so, that
every time an image of a cat is fed to the model, the output of the model would equal to
0. In an ideal case, the machine learning model would not only have learned to classify
images it has already seen in the training data but any arbitrary image of a cat or a dog.
We say that a machine learning model is able to generalize well, if it is able to correctly

2.8 Related work 17

classify images outside from the training data [1]. On the contrary, if the model is only able
to correctly classify the training samples and not any arbitrary image of a cat, it is possible
that our model is overfitting due to a low number of training samples or too complex model
[1].

In our case study, we classify test cases into categories of { f ail(0), pass(1)} using machine
learning, similarly to the image classification task. We use a variety of ML models, ranging
from neural networks and gradient boosting technique to simpler models such as logistic
regression and naive bayes. These models work differently, i.e. their underlying algorithms
are different, but they perform the same task: classification. As the models provide similar
service, the implementation details can be hidden. The scikit-learn library [31] takes
advantage of this and provides a similar interface to multiple machine learning models. In
addition to scikit-learn, we use xgboost library that provides a gradient boosting technique
for classification.

Online and incremental learning

Online learning is a branch of machine learning, where the training data is fed to the
machine learning model iteratively instead of in one batch. The benefit of doing this is
that the training data does not have to fit into the computer memory all at once, in case
the training data is very large. The training data can be split into smaller chunks, and the
model can be trained iteratively using the smaller chunks that fit into memory.

Another benefit of online learning is, that sometimes the full training data is not available,
but is achieved over time. For example, in test case selection or prioritization, an execution
of a test case increases training data by one sample. In these situations, it is useful for
being able to update the current machine learning model on the fly.

In our case study, we make the same distinction between online learning and incremental
learning as Saffari et al. [37]. Incremental learning is similar to online learning but is
allowed to store a data sample for later use, whereas online learning has to discard the
sample when the model is updated. Following this distinction, we apply incremental
learning instead of online learning in our case study. We do this by accumulating the
training data as more data samples become available after test executions and re-train the
model with full training data in every iteration.

2.8 Related work

Spieker et al. [40] used reinforcement learning and multilayer perceptron to predict failing
test cases based on test history. Their technique actualized both test case selection and
prioritization in test suites. The idea was to 1) prioritize the test suite T , and 2) repeat
selecting the topmost test from T as long as the summed duration of the selected tests
go under a time threshold M. Such a technique can be considered as priority-based test

18 2. Theoretical background

case selection. Spieker et al. used the normalized average percentage of faults detected
(NAPFD) to measure the performance of their technique. Spieker et al. concluded that
their technique needs approximately 60 CI cycles to perform equally or better compared
to comparison techniques. The comparison techniques were a random technique, which
ordered test cases randomly, a sorting technique, which ordered recently failed test cases
with higher priority, and a weighing technique, which ordered test cases by a weighted
sum of the test features. Spieker et al. were the first to apply reinforcement learning and
possibly online learning in the fields of TCS and TCP.

Busjaeger and Xie [10] used supervised learning and pointwise ranking to prioritize test
cases. They extracted testing results from an automation system worth three months,
processed the data and divided it into training and test datasets. They then trained an SVM
model with the training dataset and applied TCP to the test dataset. Busjaeger and Xie
showed, that their supervised ML prioritization technique outperformed all comparison
techniques. The comparison techniques included a random prioritization technique, a test
history technique, and a coverage prioritization technique, among others. Furthermore,
Busjaeger and Xie reported different recall values when a number of test cases are selected
from the top of the prioritized list. Selecting 3% of the top tests from the prioritized test
suite they achieved 75% recall. 3% selection size is the same as 97% test suite reduction.

Di Nardo et al. [11] applied TCS and TCP in an industrial system with real regression
faults. They measured reductions in test suite sizes and fault detection effectivenesses with
their coverage-based TCS techniques. Di Nardo et al. were barely able to reduce test suite
sizes at all. The maximum test suite reduction they recorded, was 2%. Because of the small
reductions, fault detection effectiveness was not compromised and the reduced test suites
revealed the same number of faults as the original test suites. Di Nardo et al. discussed,
that the small reductions in test suite sizes were likely caused by modifications to the core
components of the software. Such parts were thought to be covered by a multitude of test
cases. Additionally, as Di Nardo et al. examined only four different software versions,
the modifications between subsequent versions were arguably large. Considering TCP,
Di Nardo et al. showed that techniques based on additional coverage with fine-grained
coverage perform significantly better than total coverage techniques. Furthermore, using
modification information did not enhance coverage-based TCP techniques.

Beszédes et al. [6] used priority-based TCS to reduce test suite size in the WebKit web
browser engine. In their initial experiments, they selected every test case that covered
the modified procedures in the software, or that had failed previously. Using this initial
selection, they witnessed a test suite reduction of 79,43% with 95,08% recall on average.
In their study, Beszédes et al. used the term ”inclusiveness” instead of recall. They define:
”It is the ratio of the failing test cases included in the selection relative to the total number
of failing test cases when executing the complete test suite.” This is the same as recall,
as pointed out in section 2.3. Therefore, when Beszédes et al. mention ”inclusiveness”,
we substitute it with ”recall”. When Beszédes et al. applied their selection technique
in an actual live system where the setup was a bit more realistic, they witnessed a test

2.8 Related work 19

suite reduction of 51% with 75,38% recall on average. Beszédes et al. extended their
selection technique with an extra prioritization step. The prioritization was based on
coverage information. With this extra step, Beszédes et al. were able to further reduce the
selection size. Using such a technique, they showed test suite reduction of over 90% with
half the recall compared to the non-prioritized test suite. We interpret, that the recall was
therefore approximately 38%. Comparing this result to result by Busjaeger and Xie [10],
the ML-based TCS technique seems to have superior performance.

Harrold et al. [19] experienced fluctuating test suite reductions with their code-based
regression-test-selection technique. Their TCS technique relied on code coverage infor-
mation. Harrold et al. recorded test suite reductions from 0% to almost 100%. They
discussed, that the large reductions were due to small modifications in the software, where
only a few methods covered by a few tests were changed. Harrold et al. did not analyze
thoroughly the reasons behind the small reductions but mentioned that the location of
a change can affect test suite reduction. For example, ”a change in a startup code of a
software causes each test case to be selected.” As Harrold et al. applied their technique
over four different softwares with less than eleven software versions, it is possible that the
modifications between two consecutive versions were still quite large. Applying TCS in
such versions can bring no reduction in test suite size.

Gligoric et al. [17] used dynamic dependency tracking from tests to files to reduce the
number of tests in the test suite. Their tool, ”Ekstazi”, can track any changes in files that
are dependent on the tests, and execute only part of the test suite that is relevant for a set
of file changes. The tool is capable of tracking source code files, but also configuration
files. The tool monitors the execution of tests running on JVM and collects the accessed
files using bytecode instrumentation and listening to all standard Java library methods that
might open a file. After the collection of the dependent files is done, the tool can select a
subset of tests to be executed for any change made in the dependent files. Gligoric et al.
report, that their tool is capable to reduce end-to-end testing time by 32%.

Yoo et al. [45] used dependency coverage (equation 2.11) among other features to select and
prioritize test suites. The optimization technique by Yoo et al. balanced three competing
objectives: dependency coverage maximization, historical fault detection maximization
and execution time minimization. Yoo et al. reported an average test suite reduction of
68% with their technique.

20

3. METHODOLOGY

We apply test case selection and prioritization techniques to existing software from the
space industry to explore ways on how to enhance slow validation testing at SSF. We use a
number of techniques in our case study and compare their performances. The selection
techniques are introduced in section 3.1 and prioritization techniques in section 3.2. In
section 3.3, we describe the data that each selection and prioritization technique has access
to. In section 3.4, we describe how we select hyperparameters for the machine learning
models. Finally, in section 3.5, we describe our case study setup and how we carry out the
experiments.

3.1 Test case selection techniques

We chose eight test case selection techniques for comparison, where four are based on
heuristics and four on machine learning. The heuristics are namely Random, Coverage,
Coverage(H) and Coverage(PH). The machine learning techniques are namely Random-
Forest, RandomForest(U), LogReg and XGBoost. The Table 3.1 describes and summarizes
each technique.

Half of the techniques include setting an upper limit for selection size. We set the limit to
2%, which guarantees at least 98% test suite reduction. There is no special reason why we
set the limit to exactly 2%, but it was rather an arbitrary choice. We estimated, that 2%
selection size reduces our test suite to approximately 10 test cases, which was thought to
be reasonably quick to execute. An average test case takes 106 seconds to execute, and
therefore 10 test cases take around 18 minutes to execute without test parallelization. For
us, this is a more or less acceptable time waiting for the test results. For other projects
where the committing frequency is higher, 18 minutes could have still been unacceptable.

The Coverage(PH) technique guarantees a 98% test suite reduction. It applies a similar
selection technique to Coverage(H), and selects every test case that fails in previous commit
or covers changed parts in the SUT. Similarly to Beszédes et al.[6], a further prioritization
step is taken if the optimal selection size is exceeded. The prioritization is based on a
combined surrogate of test history and coverage, more precisely the average M+FR+(LP−1)

3 ,
where M is modification coverage, FR is failure rate and LP is latest pass (see 3.3). The
initially selected tests are ordered descending by this value, and only top tests from the
ordered list are executed so that 2% selection size is satisfied.

RandomForest, LogReg and XGBoost also guarantee 98% test suite reduction. These
techniques use the class probabilities, predict_proba() in scikit-learn, to sort the test cases
descending by likelihood to fail when they exceed the initial selection size of 2%. They

3.1 Test case selection techniques 21

Technique Description Selection size
Random Select randomly n test cases from the test suite. n is a random

number from 0 to |T |.
0 to |T |

Coverage Select every test case that covers a modified statement. 0 to |T |
Coverage(H) Select every test case that either 1) covers a modified statement

or 2) failed in previous iteration.
0 to |T |

Coverage(PH) Select every test case that either 1) covers a modified statement
or 2) failed in previous iteration. Furthermore, if the selection
size is greater than 2%, prioritize the selected tests and select n
top test cases until 2% limit is satisfied. The prioritization step
calculates the average of test history and coverage, sorts the test
cases descending by this value and selects n top test cases from
the sorted list.

0 to 0.02×|T |

RandomForest Select every test case that is predicted failing using random forest
classifier from scikit-learn. The random forest implementation
follows the Breiman’s implementation [9]. Furthermore, if selec-
tion size is greater than 2% or less than 2, prioritize the test suite
T using class probabilities and select 2% of the most promising
tests.

2 to 0.02×|T |

RandomForest(U) Select every test case that is predicted failing using random forest
classifier from scikit-learn. The random forest implementation
follows the Breiman’s implementation [9]. Furthermore, if se-
lection size is less than 2, prioritize the test suite T using class
probabilities and select 2% of the most promising tests. (U) de-
notes unlimited, i.e. this technique has no upper selection size
limit.

2 to |T |

LogReg Select every test case that is predicted failing using logistic regres-
sion classifier from scikit-learn. Furthermore, if selection size
is greater than 2% or less than 2, prioritize the test suite T using
class probabilities and select 2% of the most promising tests.

2 to 0.02×|T |

XGBoost Select every test case that is predicted failing using gradient
boosting technique (XGBClassifier) from xgboost-library. Fur-
thermore, if selection size is greater than 2% or less than 2, prior-
itize the test suite T using class probabilities and select 2% of the
most promising tests.

2 to 0.02×|T |

Table 3.1. Test case selection techniques. The first four techniques are based on heuristics
and the last four on machine learning. The machine learning techniques apply binary
classification over the test case samples, and categorize the samples into bins of passing and
failing. Part of the techniques guarantee 98% test suite reduction, namely Coverage(PH),
RandomForest, LogReg and XGBoost.

select a number of test cases from the prioritized list until 2% selection size is satisfied.
Additionally, if the selection size was initially 0 or 1, these techniques apply the same
protocol: prioritize and select 2% of the test cases. We did it this way because we found
that in the beginning, the incremental machine learning techniques had the tendency to
select only a small number of test cases, even 0 during many early commits.

Four techniques do not have upper limits for selection sizes. These are Random, Coverage,
Coverage(H) and RandomForest(U). They can select any number of tests to be executed.
RandomForest(U) has a lower limit, i.e. it selects at least two test cases.

We evaluate the performances of each test case selection technique with MCC-score,
confusion matrix, recall, and test suite reduction. We differentiate the well and poorly

22 3. Methodology

performing techniques with MCC-score (equation 2.7). We use test suite reduction and
recall to link and compare the results of this case study to previous studies. Confusion
matrices provide additional details of the techniques, e.g. the number of false negatives,
false positives, true negatives, and true positives.

3.2 Test case prioritization techniques

We evaluate and compare the performance of ten different test case prioritization techniques,
where five are based on heuristics and five on machine learning. The heuristics are namely
Random, Coverage(T), Coverage(A) and Coverage(AM). The machine learning techniques
are namely RandomForest, MLP, XGBoost, NaiveBayes and LogReg. The Table 3.2
describes and summarizes each technique.

Technique Description
Random Prioritize test cases randomly.
Coverage(T) Prioritize test cases according to total coverage strategy. Order test cases descending

by statement coverage feature (see 3.3).
Coverage(TM) Prioritize test cases according to total coverage of modifications strategy. Order test

cases descending by modification coverage feature (see 3.3).
Coverage(A) Prioritize test cases according to additional coverage strategy. Order test cases descend-

ing by number of unique covered statements. Test case that exercises the maximum
number of yet undiscovered statements is prioritized next. Instead of the features in
3.3, this strategy needs to access the full coverage information for every test case.

Coverage(AM) Prioritize test cases according to additional coverage of modifications strategy. Order
test cases descending by number of unique covered and modified statements. Test case
that exercises the maximum number of yet undiscovered and modified statements is
prioritized next. Instead of the features in 3.3, this strategy needs to access the full
coverage information for every test case. Needs also the modification information (e.g.
git diff).

RandomForest Prioritize test cases with random forest classifier from scikit-learn according to
Breiman’s implementation [9]. Sort test cases descending by class probabilities with
predict_proba().

MLP Prioritize test cases with multi-layer perceptron classifier from scikit-learn. Sort test
cases descending by class probabilities with predict_proba().

XGBoost Prioritize test cases with XGBClassifier from xgboost-library. Sort test cases descend-
ing by class probabilities with predict_proba().

NaiveBayes Prioritize test cases with gaussian naive bayes classifier from scikit-learn. Sort test
cases descending by class probabilities with predict_proba().

LogReg Prioritize test cases with logistic regression classifier from scikit-learn. Sort test cases
descending by class probabilities with predict_proba().

Table 3.2. Test case prioritization techniques. The first five techniques are based on
heuristics and the last five on machine learning. The machine learning techniques apply
pointwise ranking on the test case samples using class probabilities.

The ML-based TCP techniques use class probabilities to prioritize test cases. The class
probabilities are probability estimates for a test to fail and pass. More closely, given a test
t, class probabilities is a tuple of {p1, p2}, where p1 is the probability estimate of t to fail
and p2 is a probability estimate for t to pass. We sort the test cases descending by p1. In
machine-learned ranking, such an approach is called pointwise ranking [26]. The other
approaches are pairwise and listwise ranking, which usually outperform pointwise ranking
[26]. In scikit-learn, we can get class probabilities with function predict_proba().

3.3 Test cases as feature vectors 23

If total coverage approaches find two equally important test cases, e.g. same statement
coverage for two or more tests, Rothermel et al. [36] state that additional rules are necessary
to order the equal test cases. We follow this suggestion and use duration as a secondary
sorting rule for Coverage(T), and statement coverage and duration for Coverage(TM),
respectively. Furthermore, in the literature, the additional coverage approaches also have
used fallback strategies, when all software statements have been exercised at least once
by a previous test case. For example, Rothermel et al. [35] used total coverage as a
fallback strategy to additional strategies. We instead, do a similar thing as we do with total
approaches: We use additional sorting rules. The secondary sorting rule for Coverage(A)
is duration, and for Coverage(AM) the secondary rule is statement coverage and third rule
is duration.

We measure the performance of each test case prioritization technique with weighted
average percentage of faults detected (APFD), like in previous studies [11][35][36][24].
We differentiate the well and poorly performing techniques with APFD.

3.3 Test cases as feature vectors

Before we can apply machine learning techniques on test cases, we have to represent
them as feature vectors. Feature vector describes an object and its characteristics as a
vector of features. A feature can be numerical or categorical, such as a real number or a
string. In our case study, all features are numerical. More closely, we use a total of seven
features to represent test cases as feature vectors. Namely these features are statement
coverage, modification coverage, similarity score, duration, failure rate, latest pass and
history length. The features are similar to features used in the study by Busjaeger and Xie
[10] but there are some differences. In the following section, we describe how we attain
these features. But for now, let’s not pay attention to where these features are coming from,
but instead assume, that they are given to us.

Statement coverage is a floating-point number with a closed interval between 0 and 1. It is
the total percent of statements (or lines) covered by a test case. For example, 1 would mean
that a test case covers every line of the software and 0 would mean that not a single line is
covered by the test case. The average statement coverage of all samples was approximately
0.39. The high value is explained by the nature of the validation tests, which can be
enormous and exercise multiple features and requirements in an end-to-end manner. Unit
tests, on the other hand, would arguably have a lower value. The statement coverage is
updated every time the test case is executed and remains unchanged until the test case is
re-executed. It is worth noticing, that even though statement coverage is said to be used in
this thesis, in reality, it is the line coverage, and not statement coverage. The reason for
this lies in the gcov-tool, which does not segregate lines and statements but interprets them
the same.

Modification coverage is similar to statement coverage and has similar properties, but the
coverage is calculated over the modified lines of a commit instead of all software code

24 3. Methodology

lines. More closely, the modification coverage is calculated as |Ct∩M|
|M| where Ct is coverage

of the test case and M is the set of modified lines. The test coverage, Ct , is produced by
gcov-tool. We use git diff command to find M. Version control systems are often able
to provide information about added lines too, but it is not easy to conclude whether they
are covered or not. The modification coverage is different from any other feature because
it combines information from history and the present. The full coverage of previous test
executions is needed to deduce coverage over the modified lines, e.g. |Ct ∩M|. Therefore,
the full coverage produced by gcov-tool needs to be persisted and transferred between any
two commits.

Similarity score is the only feature that can be calculated dynamically without any knowl-
edge of history. It is a similarity measure between a code change (git commit) and a test
case, where a higher value means that certain keywords occur more often in both texts
suggesting a higher similarity. The similarity score is calculated with TF-IDF transfor-
mation and cosine similarity [27]. TF-IDF ensures, that the keywords that occur in many
test cases are discarded. The similarity score is a floating-point number with a closed
interval between -1 and 1. Busjaeger and Xie [10] used the similarity score, but in addition,
they first parsed the source code into abstract syntax tree and extracted identifiers such as
method names, classes, and variables to build a content index. This case study does not
use as thorough pre-processing but instead removes special characters from the test source
codes before applying TF-IDF and cosine similarity.

Duration is test execution time of the test case in seconds. The average duration was
approximately 106 seconds, shortest 10.51 seconds and longest 2160.24 seconds. Duration
is updated every time the test case is executed.

Failure rate is a floating-point number with closed interval between 0 and 1 and it is
calculated by Tf

Tp+Tf
where Tf is the total number of failures and Tp is total number of

passes of single test case. Every test execution updates this value because either Tf or Tp is
incremented.

Latest pass is a left-closed and right-unbounded discrete value from 1 to infinity. It is the
number of failing test executions that precedes a passing test execution. Despite its’ name,
the latest pass is updated only if a test is executed as part of the test suite. Every failing test
execution increments this value by one and passing execution resets the value back to 1.
The initial value 1 is set because of the assumption that initially, every test case is passing.

History length is a left-closed and right-unbounded discrete value from 1 to infinity which
denotes the number of executions for the test case. The initial value is 1 and each test
execution increments the value by one.

3.4 Select hyperparameters for the ML models

Many machine learning models require setting a certain number of hyperparameters before
they can be used. For example, the random forest model requires the user to specify

3.4 Select hyperparameters for the ML models 25

the number of decision trees in the forest and the maximum depth for each tree. These
hyperparameters are usually set manually by the user, and they are not ”learned” in a way
like the parameters of the model are. Finding a good set of hyperparameters can be hard,
but there are a some techniques that can help. One of these techniques is a grid search.
Grid search requires a set of candidate values for every hyperparameter. From the given
candidate values, it tries to find the best combination of hyperparameters that produce the
highest score. It trains the machine learning model with every combination and reports the
set of hyperparameters that produce the highest score.

To search for the best hyperparameters for our binary classification machine learning
models, we use grid search together with stratified 5-fold cross-validation. We use stratified
cross-validation to make sure, that every fold has failing tests in them, because our data is
highly unbalanced. We first collect all the samples and their respective labels for every
test case, e.g. feature vectors consisting of statement coverage, modification coverage,
similarity score, duration, failure rate, latest pass and history length and the label of 1
(passing) or 0 (failing). We then apply the GridSearchCV in scikit-learn over a small subset
of these samples and labels using MCC as the score to find the best hyperparameters to
classify unseen data. We select randomly 15% of the samples from the full dataset, because
we want to minimize the data leakage from unseen data to later incremental learning. Also,
we want our models to be able to maximize MCC as early as possible during incremental
learning, and therefore there is no point using the whole dataset, as this would provide
maximum performance only in the last commit. We applied the hyperparameter selection
and obtained following hyperparameters for each classifier:

• Random forest

– n_estimators: 150

– max_depth: 7

– criterion: gini

– bootstrap: False

– min_samples_split: 5

– min_samples_leaf: 1

• XGBoost classifier (from xgboost-library)

– n_estimators: 125

– booster: gbtree

– max_depth: 7

– learning_rate: 0.75

– subsample: 1

– reg_alpha: 0

– reg_lambda: 1

– min_child_weight: 0

– max_delta_step: 0

26 3. Methodology

– gamma: 0.1

– colsample_bylevel: 0.75

– colsample_bytree: 0.5

– importance_type: gain

• Gaussian naive bayes (no hyperparameters)

• Logistic regression

– penalty: l2

– solver: liblinear

– tol: 0.1

– C: 0.2

– max_iter: 1000

– class_weight: balanced

• Multi layer perceptron

– hidden_layer_sizes: (8,)

– activation: relu

– solver: adam

– alpha: 1e-03

– learning_rate_init: 0.01

– tol: 0.001

– max_iter: 1750

– shuffle: True

– early_stopping: False

We are aware, that by simply iterating through every test and commit, we use coverage and
test history that would not be available yet in test case selection. We thought this to have a
small effect on the hyperparameters, so we did not consider this being a problem. Another
aspect is that we did not apply grid search separately for test case prioritization, but when
we found good hyperparameters for test case selection, we used the same hyperparameters
for prioritization.

3.5 Case study setup

Our task is to apply test case selection and prioritization in an existing software from the
space industry to see whether we can enhance the slow testing process. Speeding up testing
is important because it facilitates continuous integration and helps the developers to react
faster to faults and failing tests. We apply TCS and TCP techniques from sections 3.1 and
3.2 to the software to gain insight which techniques are the most helpful for us in this
sense.

3.5 Case study setup 27

We could have carried out the case study by checking out in the oldest commit in the
version control history, and work our way up towards the newest commit while applying
test case selection and prioritization techniques and recording APFD and MCC results
on the fly. However, this approach would have given us little control over the setup, and
we would have to repeat the process multiple times for different test selection techniques.
Repeating the process multiple times was out of the question because the full test suite
execution took us 17 hours. Instead, we wanted to collect coverage information, test
verdicts and test durations only once for every test in every commit, and then apply test
selection and prioritization to the collected data ”offline” to save time.

Additionally, we want to study the transitive dependency selection in our case study. We
try to find out how big test suite reductions transitive dependency selection can produce
among the test modifying commits. We, therefore, separate the case study in three phases:
1) data collection, 2) application of TCS/TCP techniques and 3) experimenting transitive
dependency selection. The first two phases are connected to each other, and the third phase
is its own independent experiment. In the next subsection, we describe how we collect the
data. After this, we describe how we apply TCS and TCP techniques. Finally, in subsection
3.5.3, we describe how we carry out the transitive dependency selection experiment.

3.5.1 1st phase: Data collection

We collected statement coverage, test verdicts and test durations for every test case for as
many commits as possible from the software. Because executing the full test suite took 17
hours, we knew that the data collection process was going to take a long time. In order to
reduce the time, we decided to separate how source modifying commits and test modifying
commits are handled. When a commit modifies only test/ directory and not src/ directory
at all, we use transitive dependency selection to select only tests cases that are transitively
affected by the modification. This indeed reduced the number of tests we had to execute
during the data collection and made the data collection faster but also complicated our case
study setup. We suggest another approach in the future work 5.4 how test case selection
and prioritization can be used in projects, where the repository consists of both tests and
source code. Our data collection algorithm is the following:

1. Checkout newest commit

2. Repeat:

(a) If current commit has src/* modifications:

i. Execute test suite

(b) Else if current commit has test/* modifications:

i. Find modified tests through transitive dependency selection (see 2.6)
ii. Execute modified tests

(c) Save executed test verdicts, coverage and durations

(d) Checkout previous commit

28 3. Methodology

The output of the algorithm above is an ordered set of tuples D = {commit, tests}, where
commit is a commit’s checksum and tests is a set of tuples {verdict, coverage, duration}.
verdict is the output of a test: pass or fail, coverage is the full gcov-coverage for the test
and duration is the test length in seconds. The first phase of the case study ends here. In
the second phase, we use this data to perform test case selection and prioritization. Before
that, we will describe the characteristics of our data, and how we preprocessed the version
control history.

The version control history contained multiple instances of test/* modifying commits one
after the other. We squashed these commits with git rebase -i command to save time
during the data collection. This was done as a preprocessing step before running the data
collection algorithm. Every commit that had no source or test modifications was also
removed since they had no effect on the functionality of the software.

The step 2ai, full test suite execution, lasted 17 hours on average. The algorithm was
continuously being executed for approximately two months for the preprocessed version
control history. 87 commits ended up in the dataset, where 45 commits had only source
code modifications, 17 commits had both test and source code modifications and 25
commits had only test modifications. Unfortunately, the test suite contained many non-
deterministic test cases due to differences in the test environments and we decided to
remove these tests from the dataset. As a result, a portion of the commits ended up having
no faults. Even though part of the commits had no longer failing tests, we did not remove
these commits from the dataset. We decided to keep them because we want our setup to
correspond to a real environment as closely as possible. In the second phase, we apply
test case selection and prioritization techniques in these commits, but we do not calculate
performance scores in them (APFD, MCC, TSR, recall, etc).

The characteristics of the collected dataset is shown in Table 3.3. The dataset contained
36 source modifying commits, 14 both source and test modifying commits and 11 test
modifying commits that included at least one failing test case. The 36 source commits
contained 142 failing and 18000 passing tests. Out of the 142 failing tests, 32 were
normal failures, and 110 either failed to build or had runtime errors. Note, that the build
or execution failures in the Table 3.3 are test cases that had passed at least once before.
We had to remove every test case that was recently added and had build or execution
failures because it was impossible to gather coverage information for them. As soon as
the removed tests passed again in the following commits, they were added back to the test
suite. The oldest commit in the dataset did not luckily contain any failing tests after the
non-deterministic tests were removed.

Surprisingly, many of the test cases failed because of build or execution errors. The reason
behind this was not thoroughly studied, but it could possibly relate to differences between
the test environments used in this thesis and the real one. It is also possible, that the
developers were aware of these build failures all along, and they had no intention to fix
them.

3.5 Case study setup 29

Modifications Commits Commits
with at

least one
failing

test case

Failing
tests

Normal
failures

Build or
execution

failures

Passing
tests

Source code 45 36 142 32 110 22590
Source and test code 17 14 124 66 58 8513
Test code 25 11 119 39 80 7109

Table 3.3. Charasteristics of the data used in this thesis.

Figure 3.1 illustrates the version control history with commit specific test execution
information. The shapes connected with lines represent commits in the version control
history, where the shape in bottom-left corner equals to the oldest commit. The commits
are divided in three types, source code modifying, test modifying and both source and
test modifying commits. There are no test modifying commits next to each other, because
consecutive test commits were squashed. The number on the left side of the commit is the
number of tests executed, excluding tests that were non-deterministic or newly introduced
and had build failures. For source and source&test modifying commits the number equals
to the size of the test suite. The number inside the circle shape denotes the nth measurement
point, e.g. measurement of APFD, test suite reduction or recall. Out of the 87 commits
35 were used as measurement points. Generally, all source modifying commits were
measured, unless they had zero test failures. The star (*) inside the first commit denotes
the initial commit, where code coverage, test durations and test history were initialized.
The following commit (T) refers to training, where the machine learning models for
test prioritization and selection were initially trained with the full test suite information.
Unfortunately, the training commit contained only one failing test, and therefore the initial
training was thin. Figure 3.1 does not display number of test executions and failing tests
for every commit. Whenever the numbers are not shown, it implies that the number has
same value as the commit before it.

3.5.2 2nd phase: Apply test case prioritization and selection

We apply test case selection and test case prioritization techniques to the collected data
in section 3.5.1. In the 1st phase, we collected an ordered set of tuples D = {commit,
tests}, and in the 2nd phase, we iterate through this data and apply different selection and
prioritization techniques to it. The algorithm below presents how we do it. We execute the
algorithm for every test case selection technique t and for every tuple d ∈ D:

1. If d.commit has test/* modifications:

(a) Let Ttmod be the tests selected with transitive dependency selection

2. If d.commit has src/* modifications:

(a) Let Tsmod be the tests selected with t according to current knowledge C

3. Let T ′ = Ttmod ∪ Tsmod

30 3. Methodology

*501 0

T 1

1

2

3 2

4

00

5 2501

01

6 2501

7 1

01

8 1501

9 2

1

10 3

02

211501

12 1

13 2

011

501

14 1

15

16

17 2

18

19

18

20

21

502 19

11

22 16503

05

16503

12

11509

08

51509

1798

23 10509

9

24

4

25

3

26 4

27

01

28 3509

29

4

30 3

5510

31509 3

32

33 4

34 5

4

3

35

0507

510

1

1512

01

1512

3

0

513

Commit type

Source

Source&Test

Test

Figure 3.1. Version control history along with commit specific information, such as number
of executed tests on the left, index of source code modifying commit inside the shape and
the number of failing tests on the right. The star (*) denotes the initial commit where
coverage, test durations and verdicts are collected for the first time. The next commit,
tagged as T, is used to train the machine learning models. The indices, e.g. numbers inside
the shapes denotes nth measurement point, where test suite reduction, recall and MCC
are calculated for test case selection techniques and APFD for test case prioritization
techniques. The commit types are separated into source modifying commits (modifies
src/*), source&test commits (modifies src/* and test/*) and test commits (modifies test/*).

4. Simulate the execution of T ′

5. Update current knowledge C

The C represents the current knowledge we know about the test cases. This includes the
coverage, durations and test verdict histories (history of passes and fails) for every test
case. In the first commit, we do not have this information, and therefore one commit is

3.5 Case study setup 31

needed to initialize the test case selection techniques. During the first commit, we collect
the initial coverage, durations, and test verdicts. This commit is denoted as * in Figure
3.1. Furthermore, as the machine learning techniques also need initialization, we use the
next commit to train the machine learning models with full knowledge provided in d.tests.
This is denoted as T in Figure 3.1. After these two consecutive commits have passed, we
can start applying the algorithm as planned.

In the first step, we apply transitive dependency selection to the d.tests, if d.commit type is
”test” or ”source&test”. In the second step, we apply the TCS technique t to d.tests using
the current knowledge C. We save the selected tests in Tsmod . In the third step, we combine
the transitively affected tests Ttmod and the selected tests Tsmod . Ttmod is empty, if d.commit
type is ”source”. Tsmod is empty, if d.commit type is ”test”, respectively. If d.commit type
is ”source&test”, both Ttmod and Tsmod can contain test cases, but not the same test cases.

In the fourth step, we do not have to execute the reduced test suite T ′, because we already
did it in the 1st phase. Instead, we imagine the execution of T ′, and update our current
knowledge about test histories, coverages and durations with the test cases selected from
d.tests. We discard the information for d.tests that were not selected in T ′, because, in
reality, we would not have their information. In the fifth step, we save and persist the
current knowledge C for the next iteration, di+1.

There are still a few things we have to clarify because the algorithm is abstracted and
hides some details. For example, it does not show how we accumulate training data for the
machine learning models, or where we re-train the models. Let us explain this next.

In addition to updating C in step 5, we turn the selection Tsmod into feature vectors. We
do this only if d.commit type is ”source”. Using the coverage, duration and verdict we
produce the feature vector {statement coverage, modification coverage, similarity score,
duration, failure rate, latest pass} for every test case. We do this for all tests in Tsmod ,
and save them for the next iteration di+1. We apply this idea in every source commit, and
eventually, our training data accumulates and grows larger. The training dataset is a set
of {Tsmod1 , ...,Tsmodn−1 ,Tsmodn}, where n is an index of a source commit. During every
iteration, we re-train the machine learning model with this training dataset. Accumulating
the training dataset like this can become infeasible in the long run, and online learning
solutions should be used instead. We have stated this in the future work 5.4.

The last hidden detail about the algorithm is that we calculate MCC, recall and test suite
reduction between the steps 4 and 5 if the d.commit is a source commit and the commit has
at least one failing test case. If there are no failing tests, the output of MCC is undefined,
recall is zero, and test suite reduction would be the only indicator worth measuring. We,
therefore, skip measuring performances when the commit has no failing tests. In addition
to non-faulty commits, we do not measure performances in ”test&source” commits or
”test” commits either. We consider the problems of this next.

Modern software engineering practices encourage the use of feature branches and merge

32 3. Methodology

requests. The project used in this thesis, however, uses a single branch without merge
requests, partly because the project repository was migrated from svn to git. While it is just
an implementation detail whether to apply test case selection over one commit or over a
merge request consisting of multiple commits, the types of the changes matter more. When
test case selection is applied over merge request, it is more likely, that the changes include
both test and source code modifications. If there are many test modifications, there is a risk
that transitive dependency selection selects the majority of the tests. Therefore, separating
the way how source and test modifications are handled, can be questioned. We realized this
issue earlier during the case study, but only figured out a candidate solution to it too late
considering the limited time resources given for this thesis. If the dependency coverage
(see 2.6) was added as a feature, there would not be a need to separate the handling of
source and test modifications. Instead, we could have applied the same test case selection
technique t in ”source”, ”source&test” and ”test” commits, and we could have measured
the performances regardless of the commit type. We address this issue in section future
work 5.4.

The following algorithm presents how we apply test case prioritization to the data collected
in section 3.5.2. The algorithm is executed for every test case prioritization technique t
and for every d ∈ D:

1. If d.commit has test/* modifications:

(a) Let Ttmod be the tests selected with transitive dependency selection

2. If d.commit has src/* modifications:

(a) Let Tp = t.prioritize(T −Ttmod,C)

3. Let T ′ = Tp ∪Ttmod

4. Simulate the execution of T ′

5. Save test suite information

where T is the original test suite. In the first step, we select a subset of tests with transitive
dependency selection from d.tests if the commit type is ”source&test” or ”test”. In the
second step, we exclude Ttmod from T , and apply test case prioritization to it if the commit
type is ”source&test” or ”source”. Ttmod is empty for source commits. The C inside the
prioritize-function represents the current knowledge of the test cases, i.e. the coverage
information from previous test runs, test verdict histories, and durations. In the third step,
we combine Tp and Ttmod . In the fourth step, the simulate the execution of T ′, and pull the
new information from d.tests, namely coverage, duration and verdict for every test case.
We do not need to execute T ′, because the test suite was already executed in the 1st phase.
If the d.commit type is ”source” and there is at least one failing test, we measure APFD for
Tp, and report it for later inspection. In the fifth step, we update the current knowledge C,
vectorize Tp, add it to the training dataset, and re-train the current machine learning model.

3.5 Case study setup 33

3.5.3 3rd phase: Transitive dependency selection

We carry out an additional experiment related to transitive dependency selection. This third
phase of the case study is not related to the two earlier phases but is its own experiment.
In this phase, we try to conclude whether transitive dependency selection can reduce
test suite sizes. We apply transitive dependency selection to test modifying commits
only. Since other TCS techniques can be applied to source commits, we try to find out if
transitive dependency selection could be a sufficient TCS technique among test commits.
We introduced transitive dependency selection in section 2.6.

This phase is quite straightforward:

1. Checkout to the previous test commit in version control history

2. Apply transitive dependency selection

3. Measure test suite reduction

We apply the above algorithm for as many commits as possible. Notice, that this algorithm
is not depending on the data collected in section 3.5.1. We apply the algorithm in the
non-preprocessed git-repository.

In the second step of the algorithm, we apply transitive dependency selection. We will
now describe how we do it. We first create the dependency graph for the current test suite
and their use dependencies, as in Figure 2.4. The use dependencies are effectively all Ada
packages that are recursively imported with ”with” keyword from tests T . We recursively
go through all file imports starting from the test cases, and this way create the dependency
graph. After we have the dependency graph, we mark the changed modules in it with the
help of git diff command. We then traverse the dependency graph from right to left to find
out the test cases that depend on the marked modules. Once we have found the test cases,
we mark this selection as the reduced test suite T ′. In the third step of the algorithm, we
measure the test suite reduction, e.g.

(
1− |T ′|

|T |

)
×100.

34

4. RESULTS

In this chapter, we go through the results attained from the TCS and TCP experiments.
Furthermore, we display results for transitive dependency selection in test modifying
commits.

4.1 Test case selection

Test case selection techniques were compared using Matthews correlation coefficient
(equation 2.7) values. We consider Matthews correlation coefficient to be a sufficient
surrogate for test suite reduction and recall. The boxplot in Figure 4.1 displays MCC-
scores for each test case selection technique over 35 commits. The green triangle is mean
and the orange line is median. The box presents values from lower to upper quartile. The
whiskers display the range of the data, and the dots are flier points. The Coverage(PH)
technique has the highest median and mean MCC-score, and Random technique the lowest.

RandomForest(U)
Random

Coverage(H)

RandomForest
XGBoost

Coverage(PH)
Coverage

LogReg

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

Test case selection

Figure 4.1. Matthews correlation coefficient of each test case selection method over 35
commits.

In order to examine the significance of the techniques, we carried out a Kruskal-Wallis test
for the MCC scores across 35 commits. The result showed H-statistic of 117,9 and the
p-value of 2,07 · 10-22 allowing the rejection of the null hypothesis (medians of the groups
are equal). In order to find which of the groups were different, a pairwise post-hoc test

4.1 Test case selection 35

was carried out using Dunn’s test with Bonferroni adjustment. The pairwise comparison is
shown in Figure 4.2.

RandomForest(U
)
Random

Coverage(H)

RandomForest
XGBoost

Coverage(PH)

Coverage
LogReg

RandomForest(U)

Random

Coverage(H)

RandomForest

XGBoost

Coverage(PH)

Coverage

LogReg

4.2e-11 1 1 1 1 1.3e-08 1

4.2e-11 3.7e-08 2.3e-09 6.4e-08 2.8e-13 1 2.6e-07

1 3.7e-08 1 1 1 5e-06 1

1 2.3e-09 1 1 1 4.4e-07 1

1 6.4e-08 1 1 1 8e-06 1

1 2.8e-13 1 1 1 1.5e-10 1

1.3e-08 1 5e-06 4.4e-07 8e-06 1.5e-10 2.7e-05

1 2.6e-07 1 1 1 1 2.7e-05

Significance table

Not significant

Significant

Figure 4.2. Pairwise significance analysis using Dunn’s test with Bonferroni adjustment.
Any value below 0.05 indicate significant difference in Matthews correlation coefficient.

Figure 4.3 shows MCC-trend for each heuristic (top) and each machine learning technique
(bottom) across 35 source modifying commits. All machine learning techniques have
fairly low MCC-values during the first 19 commits. Towards the end, the machine learning
techniques have improved, producing higher MCC-values.

The Table 4.1 shows average recall and test suite reduction for each test case selection
technique. The averages are calculated over all 35 source code modifying commits, and
they do not praise the results of machine learning techniques. The machine learning
techniques had a bad performance in the beginning due to low number of training samples,
and these results are included in the averages.

The Coverage(PH), LogReg, RandomForest and XGBoost techniques had an explicit limit
for test suite reduction, and at least 98% test suite reduction was guaranteed for them. The
Coverage(H) technique had the highest mean for recall (91.4%) and Random the lowest
(39,5%). The Figures B.1 and B.2 in appendix B (page 63) illustrate the relation of recall
and test suite reduction in more detail.

The Figures A.1 and A.2 in appendix A (page 61) show confusion matrices for each of
the test case selection techniques across all 35 source code modifying commits. Random-
Forest(U) correctly predicted the highest number of failing tests. It was able to correctly
predict 116 out of 141 failing tests. The technique with the highest average of MCC,
Coverage(PH), predicted correctly 97 out of 141 failing tests. The false positive values

36 4. Results

0.00

0.25

0.50

0.75

1.00

M
CC

Test case selection

Random
Coverage(H)
Coverage(PH)
Coverage

0 5 10 15 20 25 30 35
Commit

0.00

0.25

0.50

0.75

1.00

M
CC

RandomForest(U)
RandomForest
XGBoost
LogReg

Figure 4.3. MCC per method and commit. Trends for heuristics are shown in the top plot,
and for machine learning techniques in the bottom plot.

Technique Recall Test suite reduction
Random 0,395 0,561
Coverage 0,398 0,647
Coverage(H) 0,914 0,640
Coverage(PH) 0,785 0,987
LogReg 0,582 0,985
RandomForest 0,699 0,984
RandomForest(U) 0,779 0,982
XGBoost 0,655 0,984

Table 4.1. Average recall and test suite reduction of each test case selection technique
over 35 source code modifying commits.

4.2 Test case prioritization 37

Random MLP

RandomForest
Coverage(T)

Coverage(AM)
XGBoost

Coverage(A)
NaiveBayes

LogReg

Coverage(TM)

0.0

0.2

0.4

0.6

0.8

1.0

AP
FD

Test case prioritization

Figure 4.4. APFD of each test case prioritization method over 35 commits.

were 209 for RandomForest(U) and 131 for Coverage(PH), Coverage(PH) being notably
better.

4.2 Test case prioritization

We compared ten test case prioritization techniques and found out that four machine
learning techniques surpassed the rest of the techniques. The Figure 4.4 shows APFD
boxplots of all techniques. There was no statistical difference between the machine
learning based prioritization techniques, except with multilayer perceptron, which was
outweighed by other machine learning techniques and had an equal performance with
random prioritization across 35 commits. Table 4.2 shows mean APFD values for each
technique.

APFD
Technique Mean Median
Random 0,445 0,451
Coverage(T) 0,675 0,807
Coverage(TM) 0,644 0,706
Coverage(A) 0,783 0,780
Coverage(AM) 0,783 0,780
MLP 0,523 0,460
RandomForest 0,963 0,995
XGBoost 0,956 0,994
NaiveBayes 0,945 0,992
LogReg 0,917 0,991

Table 4.2. Weighted average of faults detected (APFD) for each test case prioritization
technique over 35 source code modifying commits.

38 4. Results

0.0

0.2

0.4

0.6

0.8

1.0

AP
FD

Test case prioritization

Random
Coverage(T)
Coverage(AM)
Coverage(A)
Coverage(TM)

0 5 10 15 20 25 30 35
Commit

0.0

0.2

0.4

0.6

0.8

1.0

AP
FD MLP

RandomForest
XGBoost
NaiveBayes
LogReg

Figure 4.5. APFD per commit for each test case prioritization technique. Trends for
heuristics are shown in the top plot, and for machine learning techniques in the bottom
plot.

Figure 4.5 shows APFD trend for each prioritization technique. The APFD values are
fairly high for all machine learning techniques starting from the first commit, except for
multilayer perceptron. The APFD values also stay fairly high throughout the commits, but
there are a number of commits where the APFD values suddenly drop. For the heuristics,
APFD values fluctuate more. Interestingly, Coverage(AM) and Coverage(A) produce
similar curves.

We carried out Kruskal-Wallis test for the APFD values showing H-statistic of 184,9
and the p-value of 4,7 · 10-35. This allowed the rejection of the null hypothesis and
indicated that the median of at least one group had a significant difference. To find which
of the groups were different, we applied a post-hoc test using Dunn’s test with Bonferroni
adjustment, similar to what we did in test case selection. The Figure 4.6 shows the pairwise
comparison of each method.

4.3 Transitive dependency selection

Transitive dependency selection was executed for 347 test modifying commits. This is
more commits than was collected in data collection section 3.5.1. Applying transitive

4.3 Transitive dependency selection 39

Random MLP

RandomForest

Coverage(T)

Coverage(AM)
XGBoost

Coverage(A)

NaiveBayes
LogReg

Coverage(TM)

Random

MLP

RandomForest

Coverage(T)

Coverage(AM)

XGBoost

Coverage(A)

NaiveBayes

LogReg

Coverage(TM)

1 2.4e-16 0.63 0.0022 7.8e-15 0.0018 2e-14 3.2e-13 1

1 1.2e-10 1 0.73 2.1e-09 0.64 4.5e-09 4e-08 1

2.4e-16 1.2e-10 2.8e-08 0.0002 1 0.00026 1 1 7e-09

0.63 1 2.8e-08 1 3.4e-07 1 6.6e-07 4.6e-06 1

0.0022 0.73 0.0002 1 0.0013 1 0.0022 0.0089 1

7.8e-15 2.1e-09 1 3.4e-07 0.0013 0.0016 1 1 9.3e-08

0.0018 0.64 0.00026 1 1 0.0016 0.0027 0.011 1

2e-14 4.5e-09 1 6.6e-07 0.0022 1 0.0027 1 1.9e-07

3.2e-13 4e-08 1 4.6e-06 0.0089 1 0.011 1 1.4e-06

1 1 7e-09 1 1 9.3e-08 1 1.9e-07 1.4e-06

Significance table

Not significant

Significant

Figure 4.6. Pairwise APFD significance analysis using Dunn’s test with Bonferroni ad-
justment. Any value below 0.05 indicate significant difference in the means of APFD.

dependency selection does not require executing test suites, and therefore we did not limit
our analysis to the 27 test modifying commits. The disadvantage of not executing test
suites is that we do not know how many failing tests (e.g. recall) transitive dependency
selection was able to find. This could be interesting future work.

The histogram 4.7 shows results for test suite reduction of transitive dependency selection.
The average reduction over 347 commits was 78,8% and the median was 99,6%. Inter-
estingly, there are two visible peaks on both ends of the histogram. Most of the time the
reduction was over 95%, indicating that transitive dependency selection has the potential
to reduce test suite significantly. The reduction was never either 0% or 100%.

40 4. Results

0.0 0.2 0.4 0.6 0.8 1.0
Test Suite Reduction

0

50

100

150

200

250

Nu
m

be
r o

f c
om

m
its

Test suite reduction of transitive dependency selection

Figure 4.7. Transitive dependency selection produced test suite reduction over 95% for
most of the test modifying commits.

41

5. DISCUSSION

This chapter discusses the results of different test case selection and prioritization tech-
niques that we applied to the data collected in section 3.5.1. We compare our results
to previous studies and analyze if our techniques could enhance automatic testing and
facilitate continuous integration.

5.1 Test case selection

In our test case selection case study, we compared the performance of eight test case
selection techniques. Four of the techniques were based on heuristics, and the rest four
were based on machine learning. We measured three different performance indicators for
each technique, namely test suite reduction, recall, and Matthews correlation coefficient.
The MCC-score was used to differentiate the well and poorly performing techniques in a
form of significance analysis using Dunn’s test with Bonferroni adjustment (Figure 4.2).

5.1.1 Heuristics

The significance analysis reveals, that Coverage and Random test case selection techniques
are outweighed by the rest of the techniques. Interestingly, these two techniques do not
have a statistical difference in their performances. To understand why the simple coverage
technique did not perform better than random technique, we must carefully look at the
numbers of test suite reduction provided by the coverage technique. In 16 source modifying
commits, Coverage technique provided 100% test suite reduction, meaning that it did
not select any test case for execution and therefore recall and MCC scores were 0. This
implies, that the modified parts were not covered by any test case with the statement
coverage criteria. The high number of commits (16 out of 35) can be due to the outdated
coverage information, but arguably the total test suite coverage and uninstrumentable parts
of the software are the main factors for our findings. We performed an analysis of the test
suite coverage in one software version (see 2.3.2), and found total test suite coverage of
64%. We can deduce, that randomly modifying one statement in this software version
has 36% chance to cause 100% test suite reduction. The chance is greater if we also
consider modifications to the uninstrumentable parts of the software, such as header files
that contain only variable definitions. We think, that at least these three factors: total test
suite coverage, uninstrumentable parts of the software and outdated coverage information
were the reasons why Coverage technique did not select any test cases in a high number of
commits. To answer why Coverage did not outperform Random technique, we also have
to consider an important finding in our study: the same tests quite often fail in consecutive

42 5. Discussion

commits. Therefore, coverage over modifications is not a strong test failure predictor in
our case study.

The other extreme in Coverage selection technique is to select every test case for execution
and to provide no reduction in test suite size at all. This happened in 11 out of 35 source
modifying commits. We thought part of the reason for this being in the overlapping cover-
age (Figure 2.2). In our total test suite coverage analysis, we found out that approximately
25% of the software is covered by 500 or more test cases (out of 528 test cases). It seems,
that the commits quite often tend to modify these ”hot spots”, yielding no reduction in
coverage based test case selection. In these situations, 100% recall in ensured, but MCC
score is always 0. Combining the two extremes, where Coverage either selects every
test or not a single test case, happens in 27 out of 35 commits, and therefore the general
performance of Coverage is not good. The Figures 4.3 and B.1 visualize this problem.

RQ1: How big test suite reduction can code coverage based test case selection achieve?

The coverage based test case selection (Coverage) achieved test suite reduction of 64,7%
while having a recall of 39,5% on average. The MCC scores have no significant differences
from Random technique, and therefore the two techniques have equal performance. This
indicates, that the simple coverage selection technique is not sufficient to speed up testing
and facilitate continuous integration, but other techniques should be used instead. The
test suite reduction is often either 100% or 0%, e.g. T ′ = /0 or T ′ = T . In both of these
situations, TCS does not provide any help to the tester.

We were not the first to measure fluctuations in test suite reductions. Harrold et al. [19]
also experienced fluctuating test suite reductions in their coverage-based TCS technique.
They recorded 0% test suite reduction in 6 out of 32 software versions. We recorded a
0% reduction in 11 out of 35 commits. It is a good question, why we experienced this
more often than Harrold et al. We think, that the reason for this is behind our validation
tests and their tendency to have high coverage overlapping. Harrold et al. also measured
high reductions, such as 98%, but never as high as 100%. Our results are therefore more
polarized than results of Harrold et al. We think, that Harrold et al. had larger modifications
between software versions than we had between consecutive commits. This could explain
why Harrold et al. never experienced 100% test suite reduction, but we did.

Di Nardo et al. [11] applied coverage-based TCS techniques in an industrial system. In
most cases, Di Nardo et al. were unable to produce any reduction in test suite sizes. The
maximum test suite reduction they recorded, was 2%. Di Nardo et al. compared only
four consecutive software versions. This strengthens the viewpoint, that large number of
modifications between software versions cause smaller reductions. We also experienced a
lot of small reductions (0%), but they were due to coverage overlapping rather than large
modifications in the software.

The Coverage(H) technique was able to resolve part of the issues of Coverage, providing
significantly better results. It had an additional way to predict a test failure, namely the

5.1 Test case selection 43

latest pass. It selected every test case that either covered a modification or failed in the
previous commit. Coverage(H) yielded 91,4% recall and 64% test suite reduction on
average, prominently increasing the recall value from the simple technique and never
providing 100% reduction. This technique did not, however, fix the other problem of the
simple coverage method, but still executed the full test suite in the same 11 commits. To
overcome this problem, the Coverage(PH) used an extra prioritization step to further select
a number of tests. Wong et al. [43] were the first to apply prioritization after test case
selection, and later others used it too [5][6].

Beszédes et al. [6] used priority-based test case selection to reduce test suite size in the
WebKit web browser engine. In their initial experiments, they selected every test case
that covered the modified procedures in the software, or that had failed previously. This
technique is equivalent to our Coverage(H) technique, the coverage criteria being the only
difference. Using this initial selection, Beszédes et al. witnessed a test suite reduction of
79,43% with 95,08% recall on average. Later on, Beszédes et al. applied their selection
technique in an actual live system with a more realistic setup. They witnessed a test suite
reduction of 51% with 75,38% recall on average.

The results of Beszédes et al. and us are roughly similar, but the differences can be partly
explained by the coverage criteria. Beszédes et al. used a procedure level coverage, while
we used statement (or line) coverage. Fine-grained coverage can yield a bigger test suite
reduction and more efficient fault detection rates. On the other hand, procedure-level
coverage information can stay up to date longer compared to statement coverage as time
passes, and therefore coarser granularity can select test cases with more confidence even
with outdated coverage information.

When Beszédes et al. [6] extended their selection technique with an extra prioritization step,
they witnessed test suite reduction of over 90% with 38% recall. Their technique resembles
our Coverage(PH) technique, but we used the test history information to prioritize the
test cases in addition to coverage information. We were able to produce 98,7% test suite
reduction with 78.5% recall on average with Coverage(PH). It is surprising how much
greater recall we were able to get by simply using test history information as one of the
prioritization criteria. The TCS performances were roughly similar, but using test history
information in the prioritization step can make a big difference in recall.

The Coverage(PH) technique is indeed our most promising test case selection technique
among the heuristics. This technique uses priority-based test case selection over modifi-
cation coverage and test history. It selects every test case that covers a change or failed
in the previous commit. If the selection size is still too large, it reduces the selection by
prioritizing the selected tests using failure rate, latest pass, and modification coverage.

44 5. Discussion

5.1.2 Machine learning

When incremental learning is applied in test case selection, the assumption is, that the
performance of the machine learning models gradually increases as tests are being executed
and new labeled data samples are accumulated in the training dataset. Because the
MCC scores assumingly increase over time, using the significance table to examine the
performance overall commits may not be that interesting. It is more interesting to know,
that do the machine learning techniques eventually reach the same performance as the
heuristics, and if so, then how long time does it take to reach a similar performance? To
investigate this, Figure 4.3 shows the performance of each technique over time. Indeed,
every machine learning technique shows a positive trend for the MCC scores, where the
techniques perform better in the end than in the beginning.

Looking at Figure 4.3, we can see that the performances of the machine learning techniques
gradually increase, and towards the end, they perform equally or better than the heuristics.
There are small differences between the performances of the techniques, but they seem to
roughly follow a similar trend. It looks like, that at commit number 20 all of the techniques
gain a positive boost and they perform better than in commit 19. We figured out that the
reason behind this lies in test history. There is a squashed test commit between commits
19 and 20 (see Figure 3.1). The transitive dependency selection executed 501 tests in this
specific commit, where 18 tests failed. This caused the test cases to update their history,
most importantly the latest pass. The machine learning techniques had so far learned to
affiliate test history with currently failing tests, and therefore the techniques selected all
the previously failed tests for execution in commit 20, rendering a high MCC score.

It can be questioned whether such a big test suite is permitted in the squashed test commit
since we try to maximize the reduction. However, recall that the test commits are squashed.
In reality, there are many test modifying commits next to each other. Most of the time,
selecting transitively affected tests cause only a small portion of tests to be selected, as we
showed in section 4.3. Even though it seems that, as depicted in Figure 3.1, the test commit
executes the almost full test suite, it is more likely that there are many test commits next to
each other that over time execute the full test suite instead. The way how we separated test
and source code modifying commits, can be distracting, and we discuss this matter more
in section 5.4.

During the first 19 commits, the machine learning techniques have fairly low MCC scores
possibly due to the low amount of negative samples in the training data. Between commits
20 and 35 however, the machine learning techniques seem to perform better. The Table 5.1
collects the recall and test suite reduction values of each technique between the commits
20 and 35. By focusing on the differences in this table and Table 4.1, we can examine
which techniques were able to improve their performances.

Compared to Table 4.1, the machine learning techniques have increased their recall, but
also a bit of test suite reduction. RandomForest(U) technique outperforms Coverage(PH)

5.1 Test case selection 45

Commits 1-19 Commits 20-35
Technique Recall TSR MCC Recall TSR MCC
Random 0,316 0,588 −0,010 0,489 0,528 0,003
Coverage 0,553 0,524 0,047 0,215 0,793 0,007
Coverage(H) 0,886 0,523 0,387 0,947 0,778 0,600
Coverage(PH) 0,781 0,988 0,515 0,790 0,986 0,736
LogReg 0,412 0,982 0,189 0,783 0,987 0,771
RandomForest 0,623 0,980 0,220 0,790 0,990 0,854
RandomForest(U) 0,702 0,980 0,255 0,871 0,983 0,881
XGBoost 0,570 0,980 0,203 0,755 0,990 0,798

Table 5.1. Average recall, test suite reduction and Matthews correlation coefficient for
each test case selection technique. Most of the techniques had higher MCC score between
commits 20-35, indicating superior performance to performance between commits 1-19.

in recall with a slightly lesser test suite reduction. The rest of the techniques also provide
competitive results to Coverage(PH). Coverage(H) still remains the technique with the
highest recall.

RQ2: How effective is incremental learning based test case selection?

The best performing machine learning model was an unlimited random forest (Random-
Forest(U)), which achieved a test suite reduction of 98,2% and recall of 73,1% on average.
Towards the end the recall was notably higher, rendering MCC-score also higher. After
twenty commits the machine learning techniques started to perform notably better and
reached a similar performance to the best heuristics. This is a promising result for incre-
mental learning based test case selection and shows that machine learning techniques have
the capability to outperform heuristics in a relatively small number of commits. Therefore,
incremental learning is suitable in test case selection and can be used to speed up testing
and to facilitate continuous integration.

A distracting detail of the machine learning techniques is that at commit 17 the faulty
tests were explained by modification coverage alone (Figure 4.3). Some of the machine
learning techniques apparently had no previous knowledge of associating failing tests with
coverage, and the failing tests were missed. Because the failing tests were not executed
as part of the test suite, their test history remained unaffected, leading to the unfortunate
situation of missing the same tests in commits 18 and 19 as well. Logistic regression and
the unlimited random forest were the only techniques to select some of these failing tests.

The inconvenience of commit 17 was not repeated. A similar situation happened in
commit 22, where a portion of test failures was explained by modification coverage alone.
Fortunately, the machine learning models had learned to associate modification coverage
with failing tests, and the failing tests were correctly predicted. It is not however safe to
think, that eventually all associations are discovered. It is possible, that some associations
are never found.

It is possible, that outlier detection or another unsupervised learning method could have
spotted the failing test in commit 17, because the modification coverage was prominently

46 5. Discussion

high for the failing tests. This could have been registered as an anomaly. Spotting
and executing the tests that have odd or exceptional features could supplement test case
selection. Using outlier detection to figure out yet undiscovered patterns would be an
interesting future study.

Spieker et al. [40] used reinforcement learning to select and prioritize test cases, and their
technique required 60 consecutive commits to perform equally or better than comparison
techniques. The test case selection results in our case study suggest, that our method
needs approximately 20 source code modifying commits to provide similar results with the
comparison techniques. The machine learning techniques provide similar or better MCC
scores compared to the Coverage(PH) technique after 20 commits. This could indicate,
that using a different model (e.g. random forest classifier instead of multilayer perceptron),
accumulating training data and re-training the machine learning model in every iteration,
and using more features in addition to test histories, such as coverage information and text
similarity scores, can help to reach the saturation point faster. The results we achieved
in our case study, are not outright comparable to results with Spieker et al., because our
experimentation setups were different, the comparison methods were different and the used
measures were different, namely NAPFD and MCC. We also did not validate our results
with other projects but applied our techniques to a single software project only. Therefore,
more investigation would be required to compare results more reliably with Spieker et al.
and us.

Busjaeger and Xie [10] used supervised learning and pointwise ranking to prioritize test
cases. Using their prioritization technique, they were able to select 3% of the topmost
test cases and provide 75% recall. Such selection equals to 97% test suite reduction. Our
results are approximately similar, but we achieved the results with less training data. The
results in our case study suggest, that if initial training data does not exist, incremental
learning can eventually achieve similar performance to supervised batch-learning in TCS.
The saturation point where we reached a similar performance to Busjaeger and Xie, was at
around 20th commit.

5.2 Test case prioritization

In our test case prioritization experiment, we compared the performance of ten different
prioritization techniques. Five of these techniques are based on heuristics, e.g. on coverage
information, and they have been studied in the past [11][36]. The other five techniques are
based on incremental machine learning. In order to compare the performances of these
techniques, we measured the weighted average of the percentage of faults detected (APFD)
for each technique. Then we applied Dunn’s test with Bonferroni adjustment to the APFD
values (Figure 4.6) to differentiate the well and poorly performing techniques.

5.2 Test case prioritization 47

5.2.1 Heuristics

The Figure 4.6 shows the significance table for ten prioritization techniques. Considering
the heuristics (Random, Coverage(T), Coverage(TM), Coverage(A), Coverage(AM)), the
random prioritization was outperformed by both additional coverage prioritization tech-
niques. Surprisingly, the total coverage prioritization techniques did not have a statistical
difference to the random technique, even though the mean and median values for APFD
were prominently higher for total techniques compared to random technique, as depicted
in Figure 4.4. Apparently, the deviation in performances of the total techniques was too
large.

The additional coverage prioritization techniques have been shown to outperform total
coverage prioritization techniques in the past [11]. Based on the significance analysis, we
were unable to support the claim. According to our results, the total coverage techniques
perform equally well with additional coverage techniques. However, based on the boxplot
4.4, we would still choose additional coverage prioritization techniques over total tech-
niques, because the average APFD is higher, and the lower and upper quartiles are higher
and closer to each other for additional techniques. Against the findings of Di Nardo et
al., Rothermel et al. [36] found total statement coverage technique being equally or better
performing than additional statement coverage technique. Our results do not support this
either.

Di Nardo et al. [11] produced mean APFD value of 74.2% and a median of 74.1% with
additional coverage prioritization technique. Total coverage approaches with the block-
coverage criterion produced mean APFD of 59.7% and a median of 59.7%, respectively.
Our results are slightly higher, means and medians being 78.3%, and 79% for the additional
coverage approach, and 69% and 80% for the total approach. The differences can be related
to the different coverage-criterion used, to the data, or to the way how APFD was calculated.
Di Nardo et al. used real regression faults to calculate APFD in their experiment, but we
assumed that one failing test reveals one unique fault in the system, and calculated APFD
accordingly. This can indicate, that our prioritization results are slightly over-positive,
and if we applied our techniques in a real system with real regression faults in interest,
the APFD values would not be as high. The same assumption, that a failing test reveals a
single unique fault, has been made in other studies too [40][10].

Di Nardo et al. [11] showed in their study, that the modification information does not
improve TCP results. We support this claim. According to Figure 4.6, there is no statistical
difference between Coverage(T) and Coverage(TM), and neither between Coverage(A) and
Coverage(AM), pointing out that using modification information to prioritize tests does not
improve APFD values. Additionally, modification aware techniques require extra work to
find out the modifications between P and P′, e.g. with git diff command. According to
results by Di Nardo et al. and us, there is no reason to do this extra work. The modification
unaware techniques perform equally well compared to modification aware techniques.

48 5. Discussion

A surprising detail of the two additional prioritization techniques is, that their performances
are almost exactly the same, as shown in Figure 4.5. They produce the same APFD values
in 27 out of 35 commits, and in 8 commits the values are close to each other. We found
out, that in 26 out of 35 commits both of the techniques even orders the test cases similarly,
producing exactly the same prioritized test suite. We did not thoroughly study the reason
why the orders are similar so many times, but we think that it relates to the fallback
method of the modification aware technique. Whenever it is satisfied including all the code
modifications, it proceeds with the basic additional coverage technique. Generally, the
commits tend to modify only a small number of statements, and therefore the fallback to
basic additional coverage happens early.

The commit number 17 in Figure 4.5 shows that modification aware prioritization technique
correctly ordered the test suite while the additional coverage with modifications did not.
The disadvantage of the additional technique is that if a modification breaks multiple tests,
it is unlikely that the broken tests are ordered next to each other. This was shown in commit
17. On the other hand, since all the broken test reveal the same fault, the order of the rest
test cases do not matter as long as the first failing test is executed as early as possible. We
do not consider the actual faults in this experiment but treat a failing test as a link to a
unique fault, which arguably distorts the results.

5.2.2 Machine learning

Similarly to test case selection, the assumption is that the performance of incremental
learning prioritization techniques gradually increase when test suites are executed and
more training data is being accumulated in the training dataset. Therefore, we would
expect to see an ascending curve for APFD values in Figure 4.5. Surprisingly enough,
the figure shows a rather stable curve for most of the machine learning techniques, with a
number of downward spikes at commits 3, 6, 10, 17 and 34. The techniques also seem to
perform unnaturally well starting from the first commit, and the performance is close to
100% in many commits. Only the multilayer perceptron seems to behave more or less the
way what we would expect to see, starting from low APFD values and gradually improving
its performance and producing higher APFD values on the way.

We explored the reason why APFD was so high in the beginning and found out that it
is due to test history being a good predictor on the test failures. Commits 1 and 2 did
not introduce any new test failures, but instead, the same tests failed in the commits 0, 1
and 2. The commit 0, denoted as T in Figure 3.1, is used to initially train the machine
learning techniques. Apparently, the machine learning techniques had learned to affiliate
test history with failing tests in the training phase at commit 0, and therefore prioritizing
the previously failing tests first immediately produced high APFD scores. We found similar
cases elsewhere.

We investigated further the issue and found out that commits 3, 6, 9, 10, 11, 13, 14, 17, 20,
22, 23, 25, 26, 33, and 34 introduce new test failures compared to their previous commit.

5.2 Test case prioritization 49

Conversely, commits 1, 2, 4, 5, 7, 8, 12, 15, 16, 18, 19, 21, 24, 27, 28, 29, 30, 31, 32 and
35 do not introduce any new test failures compared to their previous commit, but all of
the failing tests failed in the previous iteration as well. Therefore, most of the time we
would have got a high APFD score by ordering the test cases by the latest pass feature.
We realize, that it would have been a good idea to add such a technique into the pool
and compare its performance to e.g. machine learning techniques, but in this study, we
were more interested to investigate how the traditional coverage-approaches compare to
machine learning techniques. Busjaeger and Xie [10] has already shown, that ML-based
prioritization outperforms history based prioritization. How many consecutive commits
incremental learning requires to outperform history based prioritization, remains an open
question.

A note we can make about our version history and its test failures is that the same tests
quite often fail in consecutive commits. We think that the reason for this is, that the
testers did not execute the whole test suite in every commit, and therefore the failing tests
remained unexposed to the testers and the failing tests were not immediately fixed. This
is the reason, why the project was a good target for test selection and prioritization after
all. If we had used any of the ML prioritization techniques in the actual project, the testers
would probably have fixed the failing tests earlier. Many times, the consecutive failures in
the version control history were build or execution failures. It is possible, that the testers
were aware of the failing tests all along, and there was no intention to fix the failures right
away.

The Figure 4.5 shows negative spikes at commits number 3, 6, 10, 17 and 34 for the
machine learning prioritization techniques. These spikes happen at commits where new
failing test cases were introduced. The commit 3 introduced a code modification that
broke the tests. The modification was detectable by modification coverage, but none of the
techniques had affiliated modification coverage with failing tests so far. Commit number
6 introduced a new test case with a build failure, but we do not know the reason for the
failure. The commit before it tampered tests (see Figure 3.1), and arguably something in
this commit broke the test while the transitive dependency selection was unable to trace
the change. The commit number 10 introduced two new failing tests, and the failures were
caused by a change in a constant value. Because coverage does not editorialize global
variables and constants, modification coverage could not detect the change and the failures
were missed. The failures of commit 17 were explained by modification coverage alone.
The random forest had already learned to associate modification coverage with failing tests
and therefore produced a high APFD, but the rest ML-techniques did not perform so well.
The commit number 34 modified a part of the source code, that was covered by many test
cases, and apparently, there were a lot of failure candidates, but only one test case failed
due to this change.

The significance analysis (Figure 4.6) reveals, that all of the machine learning techniques
excluding multilayer perceptron outperforms random prioritization and all of the coverage-
based prioritization techniques. This is an interesting result and shows that even without a

50 5. Discussion

rigorous amount of training data, the ML-based test prioritization produces better APFD
values compared to the traditional approaches. Our results suggest, that ML prioritization
techniques can produce high APFD values starting from the first commit. Therefore,
when initial training data does not exist, incremental learning can be used to speed up the
commission of machine learning based test case prioritization. The expectation is, that the
APFD values are higher compared to APFD values produced by traditional approaches
starting from the first commit.

Interestingly, multilayer perceptron did not differentiate from random prioritization. It is
possible that the multilayer perceptron requires more negative samples, higher learning rate
or resampling strategies to converge faster. The Figure 4.5 shows a positive trend for MLP
and suggests that eventually, it performs as well as the other ML techniques, but it requires
more commits and data to gain similar performance. Towards the end, it performed almost
equally well with the other machine learning techniques. Neural networks have been used
in many machine learning tasks lately, even in test case prioritization [40], but our study
suggests that in test case prioritization, there are possibly better model alternatives when
incremental learning is applied, for example, random forests and boosting techniques. Our
approach was to fully re-train the machine learning model when new data arrives, and
therefore we do not know if e.g. truly online random forests outperform online neural
networks. Lakshminarayanan et al. [25] were able to provide a comparable performance
to periodically re-trained random forests with Mondrian forests, and therefore applying
such techniques in test case prioritization would be an interesting future study.

RQ3: How do the incremental learning based test case prioritization techniques compare
to traditional coverage based prioritization techniques?

According to the significance analysis (Figure 4.6), the incremental learning techniques
outperform traditional statement coverage based prioritization techniques in fault detection
rates, when a failing test is assumed to reveal one unique fault. Only the multilayer
perceptron did not show a statistical difference to the traditional techniques in the inspection
range from commit 1 to commit 35 in APFD values. Towards the end, it performed equally
or better than the traditional techniques. The rest of the ML techniques produce high APFD
values starting from the first commit. This is a surprising result because the assumption for
incremental learning is that the performances are initially low and they gradually increase.
The reason for the good initial APFD performance was thought to be due to test history
being a good predictor on test failures. In our dataset, many same tests failed in consecutive
commits, and therefore prioritizing the test cases that failed in the previous commit produce
high APFD values. The ML techniques seemingly had learned to affiliate test history with
test failures during the initial training phase at commit 0. However, the ML techniques did
not have a stable performance. The ML techniques produced abrupt low APFD values at
a number of commits, e.g. at commits 10 and 17 (Figure 4.5). The abruptly low APFD
values are possibly justified by the fact that the selected features were unable to explain the
test failures (commit 10), or that the ML techniques had not yet learned to affiliate certain
features with test failures (commit 17). There was no statistical difference between the four

5.3 Transitive dependency selection 51

best-performing machine learning techniques, but naive Bayes, logistic regression, random
forest and gradient boosting technique from xgboost-library had an equal performance in
fault detection rates. The random forest classifier, however, was possibly the best technique
to handle the surprising ”special” commits at 10 and 17.

5.3 Transitive dependency selection

We searched all transitively affected test cases from 347 commits to reduce the number of
tests that need to be executed during a commit that modifies test/* directory only. We did
not consider dependencies between test/ and src/ directories, but only the tests and their
dependencies under test/ directory. We applied other test case selection and prioritization
techniques for the source code modifying commits. We recorded an average reduction
of 78,8% and a median of 99,6% with executing all transitively affected test cases. The
Figure 4.7 shows, that most of the time the reduction was over 95%, and some times
below 10%. Surprisingly, we did not record any reductions between these two extremes.
Our result suggests, that selecting transitively affected tests reduce the number of tests
significantly for commits that modify tests or their use dependencies.

Gligoric et al. [17] used their tool, ”Ekstazi”, to track changes in dependant files. With their
tool, Gligoric et al. reduced end-to-end testing time by 32%. This is not the same as test
suite reduction, and therefore our results are not directly comparable, but arguably the time
and size reduction are roughly following each other which allows a coarse comparison.

Our technique is slightly different compared to Gligoric et al. We track all the dependent
Ada-files using static analysis on the recursive file imports. Using this technique, we
possibly got a higher test suite reduction than Gligoric et al. A higher test suite reduction
is expected because our technique selects only Ada-files, and not the configuration or other
metafiles at all. Additionally, Gligoric et al. used their technique for every kind of changes
in their system, while we considered only modifications under test/ directory. We don’t
know how much this affects the results, but arguably it either increases or decreases the
test suite reduction that we reported. Thirdly, Gligoric et al. validated their results with
615 revisions from 32 open-source projects, while we used 347 revisions from a single
project. Considering these three points, the 32% testing time reduction compared to 78.8%
test suite reduction still sounds like a big difference, and therefore we argue that our results
need more verification from other projects.

Yoo et al. [45] used dependency coverage (equation 2.11) among other features to select
and prioritize test suites. Yoo et al. reported an average test suite reduction of 68% with
their technique. This strengthens the viewpoint that the results produced by our transitive
dependency selection among test modifying commits require further verification.

52 5. Discussion

5.4 Future work

In any further test case selection or prioritization studies, we suggest the use of depen-
dency coverage (equation 2.11) in addition to the features explained in section 3.3. The
dependency coverage was introduced by Yoo et al. [45]. The dependency coverage could
be especially helpful in projects, where tests and source code are maintained in the same
repository. A modification of a test case or any of its dependencies can cause the test to
fail, and therefore dependency coverage could be a strong predictor for a test failure and a
nice addition to the features described in 3.3.

Furthermore, the dependency coverage could have fixed our complex case study setup
in section 3.5. We separated how test/* and src/* modifying commits are handled, and
this made our setup complex. With dependency coverage, we could have handled every
commit similarily, i.e. use the same test case selection or prioritization algorithm for every
commit regardless of the commit type. We consider this as a benefit in any future studies.

In our case study, we accumulated training data and fully re-trained the machine learning
models in every iteration. This produced good results, but in reality, this can be infeasible
when the training data grows large. We propose the online Mondrian forest technique
introduced by Lakshminarayanan et al. [25] for future studies instead. We showed, that
random forest outweighs multilayer perceptron in the range of 1-35 commits in test case
prioritization, and therefore propose Mondrian forest as an online alternative for the random
forest.

We applied transitive dependency selection over 347 test modifying commits. We measured
test suite reductions, but not recall, because we did not have full test execution information
for these commits. Finding the proportion of failing tests in the reduced test suites would
have been an interesting case study. We will possibly study this in the future.

During our case study, we thought unsupervised learning to be an interesting case study in
the areas of test case selection and prioritization. For example, outlier detection could spot
tests with surprising behaviors ahead of time and reveal yet undiscovered patterns. We also
propose exploiting semi-supervised learning in test case selection, where the training data
accumulation can be rather slow. Semi-supervised learning could be used to fill the gaps in
the labels of the training data.

Another idea we had during our case study, was that machine learning could be used to
spot non-deterministic test cases. Any test case without an apparent reason for failure
could be interpreted as a non-deterministic test case. The false negatives are an interesting
category in this sense. According to Martin Fowler [13], spotting and eradicating the
non-deterministic test cases from the test suite early is important, because they can have
negative and infectious effects on developers attitude towards failing tests.

5.5 Threats to validity 53

5.5 Threats to validity

There are many threats to validity. Firstly, we deleted all the non-deterministic tests
from the test suite before the experiments. This arguably distorts the test selection and
prioritization results. However, we argue that test history features, such as the latest
pass and failure rate described in section 3.3 are the key features to explain even the
non-deterministic test case failures.

We used a different test environment during the data collection (section 3.5.1) than what is
used in the actual project. These two test environments are similar, but they use a different
amount of hardware simulation. This could have brought excessive discrepancies on test
verdicts between the test environments.

We do not know the actual faults in the software and we treated a failing test as a link
to a unique fault. Unfortunately, this means that the weighted average percentage of
faults detected (APFD) values are just estimates. Previous studies have made the same
assumption, that a failing test reveals one fault [6][40].

Because of separating how src/* and test/* commits are handled, the experiment setup
became complex. We reported MCC, recall and test suite reduction of source modifying
commits only, and ignored the values for the rest commit types. Using dependency
coverage as a new machine learning feature could have fixed this issue. This was already
pointed out in future work section 5.4.

We found out that coverage information produced by gcov-tool is not accurate when a
statement contains line breaks. In such situations, the first line is only detected by gcov,
and the rest of the lines are ignored. Our software code contained abundance number
of statements that split to multiple lines. Therefore, the coverage based selection and
prioritization techniques could have been affected.

Finally, we applied test case selection and prioritization to a small amount of data from
one software project only. This suggests that external validity can be affected. We had
planned to include another project if there was time left, but this would have surpassed the
scope of a master’s thesis.

54

6. CONCLUSION

It is beneficial in continuous integration, that building and testing a software happens
as quickly as possible. Because CI aims to provide rapid feedback to the developers,
slow testing can be harmful [16]. As softwares evolve, the test suites become large
and at some point, they can no longer be executed in a short time. We tried to find
ways to enhance or speed up testing in order to facilitate CI. We found out, that test
case selection techniques can be used to reduce the time required for testing. Test case
prioritization also helps to decrease the time for getting feedback from test executions. We
found incremental machine learning especially interesting for its capability to eventually
outperform comparison heuristics.

We used incremental machine learning to predict failing validation tests out of the test
suite using information such as test history, code coverage, and modifications introduced
in a commit. With these predictions, we were able to effectively select a small number
of test cases for execution when a new commit was made to the software repository. We
found out, that the incremental machine learning based test case selection techniques
eventually perform equally well or better than the best heuristic. Similar results have
already suggested by Spieker et al. [40], who used reinforcement learning and neural
networks to select a subset of tests based on test history. Their technique required 60
consecutive CI cycles to perform equally well or better than the comparison techniques
in NAPFD values. Our evaluation was based on the MCC score, and the ML techniques
produced equal or better MCC scores than the best heuristic after 20 source code modifying
commits. Our results support the results of Spieker et al. and brings in more evidence that
when initial training data does not exist, machine learning can be applied incrementally
to eventually produce as good or better results as comparison techniques. In addition to
that, our results give a cautious hint, that accumulating training data and re-training the
models in every iteration, using more features such as code coverage and similarity score
and using a different classifier, e.g. random forest, can make the models learn faster and
predict failing tests correctly earlier.

We compared a number of test case prioritization techniques. Half of the techniques were
based on incremental machine learning and the other half on code coverage. A random
technique was also included. The coverage based techniques have already been studied in
the past [11][36]. We found out, that the incremental learning based techniques outperform
rest of the techniques in APFD values. The machine learning techniques produced signifi-
cantly better APFD values compared to the coverage and random techniques in the range
of 1-35 source modifying commits. Only the multilayer perceptron did not perform better
than the comparison heuristics but required a longer training period to catch up with a

55

similar performance to other techniques. Towards the end, multilayer perceptron produced
almost equally good APFD values with the rest machine learning techniques. However,
the results suggest that incremental machine learning has a lot of potential in test case
prioritization.

We explored how transitive dependency selection affects test suite reduction when a
commit modifies tests or any of their ”use dependencies”. Transitive dependency selection
produced an average test suite reduction of 78,8% over 347 test modifying commits. This
shows that transitive dependency selection can reduce test suite substantially.

Despite our positive results in favor of using machine learning in test case selection and
prioritization, we think that our results need further verification. We used only a single
software project in our case study, and therefore external validity is risked. Secondly, we
fully re-train the machine learning models in every commit, which can become infeasible
when the training data increases. Thirdly, our experiment setup was complex because of
how we treated commits that modify src/* and test/* directories. We have plans to continue
the investigation of incremental learning in test case selection and prioritization at SSF,
and we are going to pay attention to these issues in the future.

56

REFERENCES

[1] E. Alpaydin, Introduction to Machine Learning, 2nd ed., The MIT Press, 2010.

[2] P. Ammann, J. Offutt, Introduction to Software Testing, 1st ed., Cambridge Uni-
versity Press, New York, NY, USA, 2008.

[3] C.S. Arapidis, Sonar Code Quality Testing Essentials, Packt Publishing Ltd, Olton,
2012. ID: 1019538. Available: http://ebookcentral.proquest.com/lib/tut/detail.
action?docID=1019538

[4] O. Banias, The drawbacks of statement code coverage test case prioritization
related to domain testing, in: 2016 IEEE 11th International Symposium on Applied
Computational Intelligence and Informatics (SACI), May, 2016, pp. 221–224.

[5] R. Beena, S. Sarala, Code Coverage Based Test Case Selection and Prioritization,
ArXiv e-prints, Dec. 2013.

[6] Á. Beszédes, T. Gergely, L. Schrettner, J. Jász, L. Langó, T. Gyimóthy, Code
coverage-based regression test selection and prioritization in webkit, in: 2012 28th
IEEE International Conference on Software Maintenance (ICSM), Sept, 2012, pp.
46–55.

[7] S. Biswas, R. Mall, M. Satpathy, S. Sukumaran, Regression test selection tech-
niques: A survey, Informatica (Ljubljana), Vol. 35, Jan. 2011.

[8] S. Boughorbel, F. Jarray, M. El-Anbari, Optimal classifier for imbalanced data
using matthews correlation coefficient metric, PLOS ONE, Vol. 12, Iss. 6, June
2017, pp. 1–17.

[9] L. Breiman, Random forests, Machine Learning, Vol. 45, Iss. 1, Oct, 2001, pp.
5–32.

[10] B. Busjaeger, T. Xie, Learning for test prioritization: An industrial case study,
in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, New York, NY, USA, 2016, ACM, FSE
2016, Seattle, WA, USA, pp. 975–980.

[11] D. Di Nardo, N. Alshahwan, L. Briand, Y. Labiche, Coverage-based regression
test case selection, minimization and prioritization: a case study on an industrial
system, Software Testing, Verification and Reliability, Vol. 25, Iss. 4, pp. 371–396.

http://ebookcentral.proquest.com/lib/tut/detail.action?docID=1019538
http://ebookcentral.proquest.com/lib/tut/detail.action?docID=1019538

57

[12] E. Engström, P. Runeson, M. Skoglund, A systematic review on regression test
selection techniques, Information and Software Technology, Vol. 52, Iss. 1, 2010,
pp. 14 – 30.

[13] Eradicating non-determinism in tests, https://martinfowler.com/articles/
nonDeterminism.html. Accessed: 2019-02-13.

[14] T. Fawcett, An introduction to roc analysis, Pattern Recognition Letters, Vol. 27,
Iss. 8, ROC Analysis in Pattern Recognition, 2006, pp. 861 – 874.

[15] M.M. Fawzy, M.S. El-Mahallawy, H. El-Deeb, Enhanced code coverage approach
for regression testing, in: 2015 International Conference on Control, Instrumenta-
tion, Communication and Computational Technologies (ICCICCT), Dec, 2015, pp.
438–442.

[16] M. Fowler, M. Foemmel, Continuous integration, Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf, Vol. 122, 2006, p. 14.

[17] M. Gligoric, L. Eloussi, D. Marinov, Ekstazi: Lightweight test selection, in: 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, May,
2015, Vol. 2, pp. 713–716.

[18] M.J. Harrold, R. Gupta, M.L. Soffa, A methodology for controlling the size of a
test suite, in: Proceedings. Conference on Software Maintenance 1990, Nov, 1990,
pp. 302–310.

[19] M.J. Harrold, J.A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S.A.
Spoon, A. Gujarathi, Regression test selection for java software, SIGPLAN Not.,
Vol. 36, Iss. 11, Oct. 2001, pp. 312–326.

[20] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and benefits
of continuous integration in open-source projects, in: 2016 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), Sep., 2016, pp.
426–437.

[21] J. Humble, J. Molesky, Why enterprises must adopt devops to enable continuous
delivery, Vol. 24, Aug. 2011, pp. 6–12.

[22] E. Knauss, M. Staron, W. Meding, O. Söder, A. Nilsson, M. Castell, Supporting
continuous integration by code-churn based test selection, in: 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering, May,
2015, pp. 19–25.

[23] R. Lachmann, Machine learning-driven test case prioritization approaches for
black-box software testing, in: European Test and Telemetry Conference ettc2018,
Jun, 2018, pp. 300–309.

https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html

58 References

[24] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, I. Schaefer, System-level test case
prioritization using machine learning, in: 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), Dec, 2016, pp. 361–368.

[25] B. Lakshminarayanan, D.M. Roy, Y. Whye Teh, Mondrian Forests: Efficient
Online Random Forests, arXiv e-prints, June 2014, p. arXiv:1406.2673.

[26] H. Li, Learning to Rank for Information Retrieval and Natural Language Process-
ing, Second Edition, Vol. 4, Apr. 2011.

[27] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval,
Cambridge University Press, New York, NY, USA, 2008.

[28] B. Matthews, Comparison of the predicted and observed secondary structure of t4
phage lysozyme, Biochimica et Biophysica Acta (BBA) - Protein Structure, Vol.
405, Iss. 2, 1975, pp. 442 – 451.

[29] T.M. Mitchell, Machine Learning, 1st ed., McGraw-Hill, Inc., New York, NY,
USA, 1997.

[30] G.J. Myers, C. Sandler, The Art of Software Testing, John Wiley & Sons, Inc.,
USA, 2004.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, Journal of Machine Learning Research, Vol. 12, 2011, pp.
2825–2830.

[32] D. Powers, Evaluation: From precision, recall and f-factor to roc, informedness,
markedness & correlation, Mach. Learn. Technol., Vol. 2, Jan. 2008.

[33] G. Rothermel, M.J. Harrold, Analyzing regression test selection techniques, IEEE
Transactions on Software Engineering, Vol. 22, Iss. 8, Aug, 1996, pp. 529–551.

[34] G. Rothermel, M.J. Harrold, J. Ostrin, C. Hong, An empirical study of the effects
of minimization on the fault detection capabilities of test suites, in: Proceedings.
International Conference on Software Maintenance (Cat. No. 98CB36272), Nov,
1998, pp. 34–43.

[35] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Test case prioritization: an
empirical study, in: Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’
(Cat. No.99CB36360), Aug, 1999, pp. 179–188.

59

[36] G. Rothermel, R.H. Untch, C. Chu, M.J. Harrold, Prioritizing test cases for regres-
sion testing, IEEE Transactions on Software Engineering, Vol. 27, Iss. 10, Oct,
2001, pp. 929–948.

[37] A. Saffari, C. Leistner, J. Santner, M. Godec, H. Bischof, On-line random forests,
in: 2009 IEEE 12th International Conference on Computer Vision Workshops,
ICCV Workshops, Sep., 2009, pp. 1393–1400.

[38] M. Shahin, M.A. Babar, L. Zhu, Continuous integration, delivery and deployment:
A systematic review on approaches, tools, challenges and practices, IEEE Access,
Vol. 5, 2017, pp. 3909–3943.

[39] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for
classification tasks, Information Processing & Management, Vol. 45, Iss. 4, 2009,
pp. 427 – 437.

[40] H. Spieker, A. Gotlieb, D. Marijan, M. Mossige, Reinforcement learning for
automatic test case prioritization and selection in continuous integration, in: Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, New York, NY, USA, 2017, ACM, ISSTA 2017, Santa Barbara, CA,
USA, pp. 12–22.

[41] P. Tonella, P. Avesani, A. Susi, Using the case-based ranking methodology for
test case prioritization, in: 2006 22nd IEEE International Conference on Software
Maintenance, Sep., 2006, pp. 123–133.

[42] M. Virmani, Understanding devops amp; bridging the gap from continuous inte-
gration to continuous delivery, in: Fifth International Conference on the Innovative
Computing Technology (INTECH 2015), May, 2015, pp. 78–82.

[43] W.E. Wong, J.R. Horgan, S. London, A.P. Mathur, Effect of test set minimization on
fault detection effectiveness, in: Proceedings of the 17th International Conference
on Software Engineering, New York, NY, USA, 1995, ACM, ICSE ’95, Seattle,
Washington, USA, pp. 41–50.

[44] S. Yoo, M. Harman, Regression testing minimization, selection and prioritization:
A survey, Softw. Test. Verif. Reliab., Vol. 22, Iss. 2, Mar. 2012, pp. 67–120.

[45] S. Yoo, R. Nilsson, M. Harman, Faster fault finding at google using multi objective
regression test optimisation, in: European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’11), 2011.

[46] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, The impact of continuous
integration on other software development practices: A large-scale empirical

60 References

study, in: 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), Oct, 2017, pp. 60–71.

[47] H. Zhu, P.A.V. Hall, J.H.R. May, Software unit test coverage and adequacy, ACM
Comput. Surv., Vol. 29, Iss. 4, Dec. 1997, pp. 366–427.

61

APPENDIX A: CONFUSION MATRICES

Figures A.1 and A.2 show confusion matrices for every test case selection technique.

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

72 69

7678 9822

Random

2000

4000

6000

8000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

41 100

6171 11329

Coverage

2000

4000

6000

8000

10000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

132 9

6212 11288

Coverage(H)

2000

4000

6000

8000

10000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

97 44

131 17369

Coverage(PH)

2000

4000

6000

8000

10000

12000

14000

16000

Figure A.1. Summed confusion matrices of coverage based test case selection methods
over 35 commits.

62 Appendix A: Confusion matrices

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

86 55

185 17315

LogReg

2000

4000

6000

8000

10000

12000

14000

16000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

91 50

182 17318

RandomForest

2000

4000

6000

8000

10000

12000

14000

16000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

116 25

209 17291

RandomForest(U)

2000

4000

6000

8000

10000

12000

14000

16000

Fai
l

Pa
ss

Predicted label

Fail

Pass

Tr
ue

 la
be

l

80 61

194 17306

XGBoost

2000

4000

6000

8000

10000

12000

14000

16000

Figure A.2. Summed confusion matrices of machine learning based test case selection
methods over 35 commits.

63

APPENDIX B: HISTOGRAMS

Figures B.1 and B.2 show the relation of recall and test suite reduction for every test case
selection technique in 35 source code modifying commits. One dim square in the plot
corresponds to a single commit. The color intensity explains the number of commits. The
best scenario is where recall is close to 1, and test suite reduction is close to 1. For example,
the Coverage(PH) technique has eighteen such commits. We wish to see as many commits
as possible in the upper-right corner of the 2d histogram.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

Random

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

Coverage

0

2

4

6

8

10

12

14

16

18

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

Coverage(H)

0

2

4

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

Coverage(PH)

0

2

4

6

8

10

12

14

16

18

Figure B.1. Recall and test suite reduction of the coverage based test case selection
techniques.

64 Appendix B: Histograms

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

LogReg

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

RandomForest

0

2

4

6

8

10

12

14

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

RandomForest(U)

0

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 su
ite

 re
du

ct
io

n

XGBoost

0

2

4

6

8

10

12

14

Figure B.2. Recall and test suite reduction of the machine learning test case selection
techniques.

