
INGO FRÖHLING
DEVELOPMENT OF A FRAMEWORK FOR A JAVA-BASED SIG-
NAL PROCESSING E-LEARNING PLATFORM
Master’s thesis

Examiners:
Prof. Irek Defee and
Prof. Markku Renfors
Examiners and topic approved by
the Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing on February 5, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Information Technology
FRÖHLING, INGO: Development of a Framework for a Java-Based Signal
Processing E-Learning Platform
Master of Science Thesis, 67 pages, 9 Appendix pages
June 2014
Major subject: Signal processing
Examiner: Prof. Irek Defee
Keywords: e-learning platform, JavaServer Faces, software architecture, software
development

The design and implementation of an interactive, but easy to extend and to maintain e-
learning platform is a complex task. In order to achieve this, existing learning platforms
have been reviewed concerning learning principles applied in them. Then, use cases have
been defined and a prototype of a web based learning platform has been built. Out of this
prototype creation process, the software architecture of the learning platform as well as a
model for creating exercises have been developed.

As a result of this thesis project, a well-structured, JavaServer Faces based distributed
e-learning software system has been developed. This software system integrates
MATLAB® functions and provides a well-structured user interface. The user is able
to configure the input signals as well as the digital signal processing algorithms freely,
which gives her the possibility to study the algorithm in a way she desires. The results of
the algorithms are presented using interactive charts, which can be saved to local disk for
later reference. Printable question sheets are attached to the exercises, which guide the
student towards to learning goals defined in advance.

By this thesis project it has been shown, how modern web technologies like JavaServer
Faces, jQuery and Highcharts are used to create an e-learning platform with MATLAB®
as an back end. The Model-View-Controller based software architecture of the learning
platform allows to separate responsibilities and thus keeps the code understandable and
clean. Due to its flexible software architecture, the learning platform can be extended by
other exercises, but also by other back ends like GNU Octave.

In the future, it shall be investigated how the e-learning platform can be extended to
two and three dimensional signals like images and videos. Also, an integration of simple
vector- and matrix exercises is desirable.

PREFACE

This work, on which this thesis is based on, has been carried out at the Department of
Electronics at Tampere University of Technology. The thesis has been individually pre-
pared by Mr. Ingo Fröhling. Its topic Development of a Framework for a Java-Based
Signal Processing E-Learning Platform has been suggested and the thesis has been super-
vised by Prof. Markku Renfors, whom I would like to warmly thank for the supervision
and for arranging many practical matters especially in the beginning of the thesis project.
Furthermore, I would like to warmly thank Prof. Irek Defee for his supervision, interest
and valuable input in matters of learning as well as the flexible arrangements to finish the
thesis in my home country.

I would also like to thank Prof. Rainer Creutzburg from Brandenburg University of
Applied Sciences, who recommended me to study at Tampere University of Technology
and who helped me arranging the thesis seminar presentation remotely here from Ger-
many. For the guidance through my studies and the thesis writing process, I would like to
thank the coordinators of the international study programmes in Information Technology
at Tampere University of Technology, Ms. Anna-Mari Viitala and Ms. Elina Orava.

Finally, I like to warmly thank my relatives and friends, especially the members of
ESN INTO and Tampereen TietoTeekkarikilta for their mental support during the thesis
process. Without them, my studies would not have been half as valuable. Thus, I would
like to dedicate this thesis to the international students in Tampere.

Tampere, 04.06.2014

Ingo Fröhling

ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CGI Common Gateway Interface

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

DAO Data Access Object

DFT Discrete Fourier Transform

DOM Document Object Model

DSP Digital Signal Processing

ECTS European Credit Transfer System

EJB Enterprise Java Beans

EU European Union

FFT Fast Fourier Transform

FTP File Transfer Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IP Internet Protocol

Java EE Java Enterprise Edition

JSF JavaServer Faces

JVM Java Virtual Machine

v

MCR MATLAB® Compiler Runtime

MVC Model-View-Controller Software Design Pattern

OSI Open Systems Interconnection Model

PHP Hypertext Preprocessor

PPP Point to Point Protocol

REST Representational State Transfer

ROI Region of Interest

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TUT Tampere University of Technology

UDP Unified Datagram Protocol

UI User interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XHTML Extensible HyperText Markup Language

XML Extended Markup Language

CONTENTS

1. Introduction . 1

2. Background . 5
2.1. The World Wide Web . 5

2.1.1. The Networking Stack . 5
2.1.2. Architecture of the World Wide Web 7

2.2. Languages for the World Wide Web . 10
2.2.1. HTML and CSS . 10
2.2.2. JavaScript . 12
2.2.3. JavaScript Libraries . 14

2.3. The Model-View-Controller Software Pattern 16
2.4. Numerical Computing Systems . 18
2.5. Java Enterprise Edition . 19

2.5.1. Servlets and JavaServer Pages 19
2.5.2. JavaServer Faces . 20
2.5.3. Java Enterprise Edition Runtimes 25

3. Development of the Learning Platform . 27
3.1. Starting Point for the Thesis Work . 27
3.2. Development Tools and Process . 29
3.3. Use Cases . 30

3.3.1. General Considerations . 30
3.3.2. Case study: Fast Fourier Transform Page 31

4. The Learning Platform . 34
4.1. The Prototype Exercise . 34

4.1.1. Design of the Pages . 35
4.2. Software Architecture . 35
4.3. Creation the Prototype Exercise Page . 37

4.3.1. Creating the MATLAB® Function 38
4.3.2. Creating the Java Code . 39
4.3.3. The Charts . 41

4.4. Directory Layout . 45

CONTENTS vii

4.5. Navigation . 45
4.6. User Interface Components . 46
4.7. Model for Creating Exercises . 51
4.8. The Introductory Signal Processing Course 52

5. Discussion of the Results . 55

6. Conclusions . 58

References . 60

Appendix 1: Additional Figures . 66

1. INTRODUCTION

For some students, studying signal processing is a challenging task, because it involves
understanding abstract mathematical concepts. Additionally, traditional classroom-based
teaching forces students to visit those lecture and exercise sessions on a given time sched-
ule. On the other side, students need to understand the taught knowledge from different
perspectives, which includes hands-on examples and demos. This gives students 24/7
access to the learning material and allows them to plan their study week more indepen-
dently. Additional material from external sources, exempli gratia, from other websites,
needs to be easily accessible by the student.

For Tampere University of Technology’s departments of Signal Processing and Digital
Communication Systems, a prototype of a learning platform, which supplements class-
room teaching is needed. It will be developed throughout this thesis work. The focus of
the learning platform lies in the area of signal processing and communication theory.

Since TUT receives students from a wide variety of countries and universities, the
level of subject-related and prerequisite knowledge as well as the language proficiency
in English1 varies between the students, which especially affects the introductory courses
like SGN-1107 Introductory Signal Processing and TLT-5206 Communication Theory.

Challenges with teaching and their solution approaches have been addressed in many
scientific articles. Based on the origin of the articles, recently industrialized and develop-
ing countries like China and India need to educate many students at low budgets.

Many approaches like [1] and [2] identify the student as the main actor of the system.
These approaches are grounded on the fact, that in many universities, teaching is centered
on the student.

The learning platforms, which were developed or employed in the studied articles
ground on different teaching models. Problem-centered education [3] applies the method
of helping the student to decompose a complex problem into smaller, solvable problems2

by letting the students develop a solution concept. The workflow based approach [4] con-
siders the whole process of learning, teaching and administrating the learning platform.
The question and test driven learning model [5] focuses on challenging the students with
questions and small exams to figure out the next useful steps to improve the knowledge
of the student. Another article [6] discusses the traditional task-driven model. The con-
clusion, however, is, that this model does not motivate students to learn actively. Also the

1English is the language of instruction of the international Master’s degree programmes at TUT
2This is referred as Divide and conquer

1. INTRODUCTION 2

idea of cooperative learning [6] is addressed, which employs the positive effects of team
work when solving exercise tasks.

Through the years, Moodle [7], a modular general-purpose learning platform has been
developed and is still undergoing further development. It consists of useful features,
which enhance the learning outcomes of the students. These are: chat module, forum,
self-tests for students, different languages for the user interface, et cetera. It also allows
to assign roles to the user like student, teacher, administrator.

Moodle and many other learning platforms developed by universities come with man-
agement tools. These allow teachers to create content, compile courses out of that content,
create examinations, and observe the student’s learning progress. The latter feature allows
the teacher to detect weaknesses and react in time by exempli gratia arranging tutoring
sessions to improve the student’s learning outcomes further. This helps the student to pass
the course using less attempts. Moodle’s feedback module allows the students to comment
on the course and suggest improvements for the next implementation of the course. In [6]
an approach of designing an online learning platform using Moodle is discussed.

It is mentioned in [3], that in order to facilitate the student’s way of learning, the
material needs to be presented from different points of view. This is done using different
contexts 3.

With the introduction of Web 2.0 4 and HTML5, rich and easy-to-use user interfaces
using the Browser-Server architecture [2, 5, 1] can be built. Already existing back-end
technologies like Java EE, PHP, MySQL [5] and Microsoft’s ASP are used to fetch, filter
and prepare content for displaying it in the user interface. Integrating social features
like forums and chats allows the students to exchange knowledge and help each other
understanding difficult topics. Before the era of HTML5, proprietary platforms like Flash
[8] or Microsoft .NET [9] were widely used for web-based learning platforms. These
platforms, however, introduce additional costs in form of royalty fees for licensing.

Another form of learning platforms are remote laboratories [10], where students are
able to conduct experiments remotely, id est from their home PCs or mobile phones. As
mentioned earlier, especially in industrializing and developing countries, but also at uni-
versities in industrialized countries, education has to be cost-efficient. Learning platforms
allow to cut costs by giving courses entirely online by reducing the amount of physical
exercise and tutoring sessions. Such remote laboratories allow to cut costs by giving the
students the possibility to study on themselves rather than being supervised by a teacher.

When choosing or developing a suitable platform, license fees have to be considered.
Expensive, ready-made platforms work out-of-the-box and are usually maintained by ex-
ternal companies. Open-source platforms,on the other hand, come with virtually no costs,
except for the hardware, but require maintenance. However, features are added and bugs
are fixed usually by a community of professional and hobby software developers. Plat-

3theoretical mathematical context, practical application context, demo
4Web 2.0 introduced technical improvements and social networks

1. INTRODUCTION 3

forms, which are entirely implemented by the teaching institution, are tailored directly
to the institution’s needs, meaning that unnecessary features are dropped. However, they
come at the cost of entirely implementing and maintaining the system by the teaching
institution. Powerful open-source software or freeware like Java EE, MySQL, PHP and
JavaScript libraries [5, 7, 6] still allow for a rapid development of useful learning plat-
form software. Additionally, since these technologies are well-known to programmers, it
is easy to find skilled personnel to create a learning platform based on those open-source
software packages.

Cloud storage [11] allows teaching institutions to exchange teaching material or to
design common examinations. It is even possible to apply existing cloud applications
like Google Docs, Google Calendar, et cetera. Since the cloud environment is a virtual
environment, storage and application are scalable to fit the needs of the educational insti-
tution. However, this comes with the penalty of reliability issues, because cloud providers
have the possibility to close their services or delete user accounts. Thus, the same data
needs to be stored on different cloud providers. A very promising example for a coopera-
tion between different universities of technology on US-wide and even international scale
using cloud service are edX [12] and Coursera [13]. Coursera offers distance learning
courses, of which students can also take examinations and receive a certificate of suc-
cessful completion of the course. The edX service also provides an excellent example
of reusing lecture material, which has been generated and updated by one institution, for
giving courses at other universities.

The interesting problem of creating a meaningful data model for the learning plat-
forms has been discussed in some articles. It is suggested by [14], that learning material
is decomposed into atomic pieces, which can be easily reused by other lectures or courses.
Such atomic pieces are images, graphics, small chunks of texts, videos, et cetera. Those
are grouped into concept maps5 out of which lectures and courses are assembled. It is
natural at this point, that such an approach minimizes time needed for authoring and re-
duces the amount of disk space needed to store the material. Such systems for authoring
and composing courses are referred as course management systems. Besides the above
mentioned features, course management systems allow the management of access rights
for users.

For digital signal processing students, lecture material is presented using multimedia
objects6, which are presented by the user’s browser to allow platform-independency. Mul-
timedia objects,and the non-linearity of hypertext documents7 and demos allow to exploit
the human associative way of thinking and makes accessing of external resources very
easy and natural [8]. When talking of platform-independent multimedia objects, it is nat-

5Concept maps allow to describe how a complex problem or course can decomposed into smaller,
understandable and reusable pieces

6The term Multimedia objects refers to animations, videos and images
7The non-linearity of hypertext is generated using hyperlinks to other learning units in the learning

platform or even to external resources

1. INTRODUCTION 4

ural to also name mobile phones as means of access [15, 14], because nowadays the vast
majority of mobile phones are able to display images, hypertext, play audio and video.
This allows the student to study even when traveling or on vacation, where ordinary PCs
are not available or not desired due to their extra weight and packing space usage.

A challenge in the context of hypertext document using mathematical formulas [8]
is the problem of typesetting them. This has been resolved with the introduction of the
MathML markup language [16] and the ability to transform formulas into images. The
MathJAX JavaScript library [17] automatically chooses the best suitable option for em-
bedding formulas into a web page.

As an example for teaching signal processing, a learning platform for the Fast Fourier
transform is discussed in [18]. It is a typical example of a mathematical, abstract concept,
which is yet one of the main fundamental concepts in signal processing and communica-
tion. The learning platform discussed in that article visualizes the concept and enables the
student to set input signals and additional parameters and to directly see how the inputs
influence the output of the Fast Fourier transform. Also [19] discussed a learning platform
for improving the understanding of the fundamental concepts of digital signal processing.

Some articles suggest to assess the learning progress of the students using quizzes,
intermediate online exams and feedback forms [3, 6]. Impact of a recently introduced
learning platform is measured by comparing collected feedback from a course implemen-
tation without using the learning platform with an implementation, that uses the learning
platform. Research suggests, that learning platforms increase the motivation of the stu-
dents to learn, which positively influences the grades and the percentage of students, who
pass the course [2]. Regular checks of the students performance not only help to figure
out the need for extra exercise or tutoring sessions, but also allow to adjust the learning
goals of the course [6].

A possible choice for implementing the learning platform is MATLAB® Builder JA
[20]. A possible implementation of such a learning platform for signal processing is
described in [21].

Another interesting kind of learning platforms are ubiquitous learning platforms [22,
23]. Those platforms allow implementing real-time help-seeking features. This is useful
when the student performs a laboratory exercise and needs help about an item. The items
in the questions are equipped with QR codes, which are scanned by the student’s phone.
The learning platform is then able to immediately give hints to the student about the item
in order to help her to successfully complete the laboratory exercise.

2. BACKGROUND

This chapter introduces all concepts necessary to understand the thesis work and its find-
ings. First, the concepts of the WWW and the client side languages HTML, CSS and
JavaScript are introduced. This is followed by a brief discussion of the Model-View-
Controller software pattern. Thereafter, the MATLAB® and GNU Octave numerical
computation systems are introduced. The chapter is concluded by an introduction of Java
Enterprise Edition.

2.1. The World Wide Web

This section discusses several aspects of the World Wide Web (WWW) relevant to this
thesis work. This includes the network topology, the HTTP protocol as well as relevant
languages used to crated web pages.

2.1.1. The Networking Stack

Every unit participating in a computer network implements a network stack according
to the Open Systems Interconnection Reference Model1. Cisco has described the OSI
stack comprehensively in [24]. Such a stack yields a standardized programmers interface,
which provides system-independence and abstraction.

In what follows, the OSI stack is introduced in a bottom-up manner. Used proto-
cols and possible programmers interfaces are discussed. The OSI stack consists of seven
layers. Each layer allows to abstract from the layers below them.

The lowest layer in the OSI stack is the physical layer. It defines the devices, signals
and properties on the wire. This is the place, where the actual transmission of data occurs.

On the top of the physical layer, the data link layer is situated. It defines the trans-
mission protocols, which are used on the physical medium. However, it abstracts from
the physical layer in that sense, that in here properties, signals and devices form the ba-
sis of this layer, but are not subject to it. Protocols used in this layer are exempli gratia
Point-to-Point protocol (PPP), Ethernet and Wireless LAN protocols. These protocols
only define the communication link between two directly linked devices, but do not allow
for communication and addressing over intermediate nodes. An example for this layer is
the communication between an Ethernet card and an Ethernet router.

1This is referred to as the OSI stack

2. BACKGROUND 6

In order to build up the Internet, communication must be possible over several nodes.
The network layer is responsible to carry out addressing and the communication over
several nodes in the network. As such, it abstracts from the data link layer by not being
involved in direct link communication. The best known protocol in the layer is the Internet
Protocol (IP). Its addressing mechanism allows to communicate with other devices, which
are not reachable over a direct communication link. An example for this is communication
from a laptop computer in the USA with the server www.tut.fi. The link between those
two devices is established through routers, which connect the different networks with each
other. Usually, the communication goes through multiple networks of which both devices
at the termini do not know. Yet, it must be taken into account, that communication over
the network layer is unreliable.

To overcome the unreliability of the network layer and to allow to address services
running on a device, the transport layer has been introduced. It defines protocols to handle
packet losses, flow control and packet segmentation or desegmentation. Packet segmen-
tation and desegmentation allows to adapt the size of the packets to be suitable being sent
over the networks in question.

The two protocols mainly employed in this layer are Transmission Control Protocol
(TCP) and Unified Datagram Protocol (UDP). TCP is the more reliable protocol as it
is able to detect packet losses and has the ability to request retransmission of the lost
packets. It also adds an error-checking mechanism, which is able to mark erroneous
packets as lost and request retransmission in the case of error as well. TCP provides
abstraction for the upper layers by accepting messages of arbitrary length, which allows
applications on the higher layers to abstract entirely from the underlying network, its
properties and restrictions. TCP is used for the World Wide Web as it provides reliability
and thus allows for a smooth data transfer from the web browsers point of view. A more
lightweight alternative to TCP is UDP. By being more lightweight, it however does not
provide a reliable link between two applications anymore. It is mainly used for streaming
services, where packet losses are not fatal the content transmitted.

Both, the TCP and UDP protocols, introduce the concept of ports, which allow multi-
ple applications to act on the same machine. As an example, a computer, which serves as
a web server, but also as a file server is mentioned here. Also each client uses a separate
ports for communication. Exempli gratia, a web browser uses port X, whereas a Secure
Shell (SSH) client uses port Y for this communication.

The session layer is responsible for establishing and maintaining a connection be-
tween devices. Example applications of this layer are remote procedure calls. This layer
provides a common way of interpreting messages between the two applications involved
in the communication. A popular example is encryption and compression, which are both
employed in the communication between two WWW terminals. Encryption secures the
connection between the browser and the bank or the online store for making transfers and
purchases securely and provides authentication of both terminals if needed.

2. BACKGROUND 7

Finally, the application layer defines the high-level communication protocols between
two devices or terminals. Examples for this are the Hypertext Transfer Protocol (HTTP)
and the File Transfer Protocol (FTP). The application layer is the layer closest to the end-
user application in the OSI stack. For the WWW, the HTTP protocol is used to transfer
web pages, images, style sheets, JavaScript files, but it is generally suited to transfer any
content on top of it.

2.1.2. Architecture of the World Wide Web

The WWW is based on a client-server architecture, where the browser acts as the client
and the web server as the server. To be more precise, the WWW follows the principle of
information request and retrieval. This means, that the client as the active part, initiates
a connection to a server of its choice and requests information from it. The server then
replies with that information or in case of an error with an error message.

Suppose, the browser is asked by the end-user to display the weather forecast for Tam-
pere from the national Finnish weather service. The browser opens a TCP2 connection
to the web server of the national Finnish weather service and asks it to deliver back the
weather information for Tampere. The server processes the request and replies with a
document, that includes the requested weather forecast.

In order to aid the browser understanding which resource the end-user wants to access,
URLs have been introduced. URLs are in the form of <protocol>://<server>:[<port>]
/<path>/<to>/<resource>. The protocol parameter defines which application-level proto-
col is used for retrieving the resource. For the WWW, http or https3 are used. The server
parameter defines the server name or IP address, whereas the optional port parameter de-
fines the TCP port to be used for the connection. After it, the Unified Resource Identifier
(URI), which defines the resource on the server, is appended.

For the weather forecast retrieval example, the URL is http://ilmatieteenlaitos.fi/saa
/Tampere. This means, that the resource /saa/Tampere is retrieved using the HTTP pro-
tocol from the server at ilmatieteenlaitos.fi. As mentioned above, the Hypertext Transfer
Protocol (HTTP) is used to transfer information through the WWW and thus forms its
fundamental base. The HTTP protocol is defined in a Request for Comments (RFC) at
the IETF in document [25]. The RFC defines syntax, methods and status codes used in
HTTP based communication. This remainder of this subsection only briefly describes the
main aspects of HTTP. It is not meant as a reference to this protocol.

The HTTP Request Since the WWW is a request-response-based system, commu-
nication is always initiated upon a request sent by the browser. The HTTP request is
composed of multiple rows separated by \r\n marks. The request consists of a header,

2TCP is a network protocol in the transport layer of the OSI stack as described in section 2.1.1.
3The https prefix defines, that SSL/TLS secured HTTP is used to load the page

2. BACKGROUND 8

which defines the resource and gives the server additional metadata needed to process the
request. Optionally, a request body is also present if the browser wishes to send more
information to the server like a submitted form. The body separated from the header
introducing another \r\n line break. The syntax of HTTP requests is:

<method> <URI> <protocol version>\r\n

<header1>\r\n

...

<headerN>\r\n

\r\n

[<request body>\r\n

\r\n]

The methods specified in HTTP 1.1 are GET, POST, PUT, DELETE, OPTIONS. The GET
method is used to simply request information without expecting to change the state of the
data on the server and without the need to transfer a form. The POST method, on the
other side, is used if data is submitted to a server and the state of its data is allowed to be
changed. The GET and POST methods are used in the communication between browser
and web server, whereas the remaining methods are used in web services interfaced by
SOAP or REST4 APIs. A comprehensive book [26] about RESTful APIs is available.

In the example case of the weather forecast retrieval for Tampere, the above mentioned
URL yields the following HTTP request:

GET /saa/Tampere HTTP/1.1\r\n

Host: ilmatieteenlaitos.fi\r\n

\r\n

The HTTP Response After the web server has processed the request, it sends a HTTP
reply. As the request, the response also consists of header and body. The basic structure
of the reply is:

<Protocol> <status code> <status message>\r\n

<header1>\r\n

...

<headerN>\r\n

\r\n

[<response body>\r\n

\r\n]

The first line indicates the status of the request and the protocol, to which the message
complies to. It is followed by the headers and the message body. In the case of the weather
forecast retrieval to received message is shown in figure 2.1.

From this example it can be seen, that through the header a lot of meta data has been
provided besides the status code. After the header has ended, the body is transferred. The

4Representational state transfer

2. BACKGROUND 9

Status Code: 200 OK\r\n
Cache-Control: public, max-age=60\r\n
Connection: keep-alive\r\n
Content-Encoding: gzip\r\n
Content-Length: 8461\r\n
Content-Type: text/html;charset=UTF-8\r\n
Date: Sat, 09 Nov 2013 12:18:00 GMT\r\n
Expires: Sat, 09 Nov 2013 12:19:01 GMT\r\n
Server: Apache\r\n
Set-Cookie: JSESSIONID=3CE3941E0862671ED5EA0F58EFA3372E; Path=/

COOKIE_SUPPORT=true; Expires=Sun, 09-Nov-2014 12:18:01 GMT;
Path=/ GUEST_LANGUAGE_ID=fi_FI; Expires=Sun, 09-Nov-2014
12:18:01 GMT; Path=/\r\n

Vary: Accept-Encoding,User-Agent\r\n
\r\n
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\r\n
<html dir="ltr" xmlns="http://www.w3.org/1999/xhtml" class="html

">\r\n
<head>\r\n
<title>Tampere - Paikallissää - Ilmatieteen laitos</title>\r\n
...

Figure 2.1. A HTTP response

body has been cut after the fourth line as it contains the complete markup of the web page,
which is several kilobytes long.

HTTP status codes To indicate the status of the request, the server sends a HTTP
status code alongside the response. These status codes are divided into five categories.
The codes between 100-199 indicate, that the request is still ongoing and that the browser
is asked to perform an action in order to have the request succeeding. Codes between
200 and 299 are used to indicate successful request processing. For example, the code
200 refers to a successfully completed request with the entire results being supplied in
the body part of the response message. Status codes between 300 and 399 inform the
browser about a redirection to another URL, which it has to follow in order to retrieve the
response. 400-499 status codes inform the browser about a problem on the client side.
The codes in this category are:

• 400: Bad Request - This status code is returned if the request of the browser is
malformed, id est does not conform to the HTTP syntax.

• 401: Authentication required is issued if the browser tries to access a resource,
for which credentials must be supplied. The browser shall request those from the
end-user.

2. BACKGROUND 10

• 403: Forbidden - This status code is issued, if the browser is not authorized to
access the resource in question even if credentials were supplied.

• 404: Not Found is issued if the requested resource does not exist on the server.

Finally, status codes between 500 and 599 indicate a problem on the server. These are
exempli gratia server-side runtime errors of web applications, network problems within
the server’s network or a misconfigured server.

2.2. Languages for the World Wide Web

In order to facilitate displaying rich content through the web well-formatted and to add
interactivity to the content, several languages have been developed. The most important
languages like HTML [27], CSS [28, 29] and JavaScript [30] as well as the mechanisms
on how they interact are introduced in this section.

Web browsers internally store the web pages in the DOM5. The DOM is a represen-
tation of the web page’s markup and thus its content as a tree structure. It does not only
serve as a data model used to display the content on the screen, but also offers an interface
for scripting languages to add, modify or remove elements. Since the DOM also stores
the attributes given in the markup6, it is possible to programmatically change the look and
feel of the elements.

2.2.1. HTML and CSS

In the majority of cases, rich content in web pages is defined as HTML or XHTML
markup. Both are based on the XML language, which uses tags and attributes. The only
difference between these two is, that XHTML requires the markup to be well-formed
according to XML. In what follows, only HTML is considered, but the knowledge is
transferable to XHTML as well. A very simple example page markup is shown in figure
2.1.

In this example, first the type of the document is indicated. This defines, whether
a XHTML or HTML document has to be expected by the parser and it also defines the
version of markup standard7.

As with HTTP messages, HTML documents consist of header and body. These are
indicated by the head and body tags. Within the page header, the page title and any
additional JavaScript8 and CSS style sheet files to be included are defined.

5Document Object Model
6Those attributes contain style information, additional information used by JavaScript framework like

jQuery or Knockout.js
7Currently, HTML 4.01 and 5 and XHTML 1.0 and 1.1 are is use. However, older version of HTML

markup is still present on legacy pages.
8Technically, it is also possible to insert the JavaScript tags anywhere in the markup. The JavaScript

code is loaded and inserted at the place of the script tag.

2. BACKGROUND 11

<!doctype html>
<html>
<head>

<title>Page title</title>
</head>
<body>

<p style="font-family: Arial,Helvetica;">This is a text
paragraph typesetted using the Arial font.</p>

</body>
</html>

Figure 2.1. HTML markup of a simple web page

In what follows, the most important HTML markup tags are introduced. The <body>
section contains the actual page content. The <p> tag defines an ordinary text paragraph.
The text is automatically wrapped at the end of the line. A line break is forced with
the
 tag. Links to other documents or resources are inserted using the <a> tag. It
takes the URL as the href parameter and the optional alternative text as the alt parameter.
Items on a web page are further groupable using a <div> container element. These are
furthermore used to style the child elements using CSS. The tag serves the same
purpose as the <div> tag. The only difference is, that it does not force a newline on the
beginning and end of it. Unordered lists are inserted into the document using the
tag, whereas ordered lists are inserted using tags. Elements of such lists are defined
using the tag.

The HTML markup language only serves to define the elements to be shown in the
web page. Their look and feel, however, is defined using CSS style sheets. CSS code
is defined either inline directly using the element’s style attribute or external using a file
with .css extension. If a CSS file is used, upon page rendering, elements in the DOM
tree are matched to the style definitions. If a match has occurred, the style definitions are
applied.

CSS stands for Cascading Style Sheets, which means, that style definitions of a parent
element in the DOM tree are applied first to itself and to all of its children. If for the child
element another definition matches, its attributes are applied to the child element. This
means, that the rough definition of the parent elements are overridden by their children.

Suppose, the following HTML markup fragment has been loaded into the DOM:

<div id="myContainer">

<p id="myParagraph">This is some text.</p>

<p id="anotherParagraph">This is some other text.</p>

</div>

and the following CSS style sheet fragment has been defined:

#myContainer {color: red;}

#myParagraph {color: blue;}

2. BACKGROUND 12

This typesets the first line in blue color, whereas the second line stays red.
In order to be able to choose, which DOM elements are affected by the style definition,

selectors have been introduced to CSS. Some are briefly introduced in this paragraph. For
a complete reference, to [29] and for the standard definition to [28] is referred. DOM
elements are selected by their unique ID using the # symbol. Thus, the selectors shown in
the example above only select the DOM elements having myContainer and myParagraph
as their ID, respectively. HTML markup allows to add class attributes to DOM elements.
This is useful, if a style definition shall be applied to a set of DOM elements. In the style
definition, the . symbol is prepended to the classes name. It is also possible to use a tag
name as a selector. This matches all tags with that name and applies the associated style
definition to them. Descendants, children and siblings are selected using combinators.

2.2.2. JavaScript

JavaScript is a scripting language, whose purpose in the browser context is to create or
modify page content dynamically at runtime. As mentioned in the introduction of this sec-
tion, the browsers JavaScript DOM APIs have the ability to directly access, add, delete
and modify elements and their attributes in the browser’s DOM. This makes JavaScript
together with HTML and CSS a very powerful tool to create visually and functionally ap-
pealing web pages, which are able to act like an ordinary desktop application. JavaScript
code is usually stored in external .js files, from where it is included using:

<script src="http://server.ip/path/to/the/JavaScript.js">

</script>

It is also possible to directly insert JavaScript code into the HTML file using the script
tag:

<script>

alert(’This is a JavaScript code snippet’);

</script>

JavaScript is an object-oriented language, whose syntax is similar to C/C++’s syntax.
However, it does not come with a strong-typed system. This means, that classes cannot
be defined, but objects having attributes and methods are possible to realize in JavaScript.
In what follows, the principles of the inter-operation between JavaScript and the DOM is
introduced. A full JavaScript and DOM reference is available at [30].

JavaScript and the DOM The DOM API of the browser introduces functions to
retrieve, add, delete and modify DOM elements and their attributes. This paragraph gives
a brief introduction into these functions.

A new DOM element is created using var element = document.createElement(type).
This just creates a new element but does not add it to the DOM. Since it is not a child of
any child of the document object, it does not appear on the web page.

2. BACKGROUND 13

Assigning a DOM element as a child of another element is done
using anotherElement.appendChild(child). If anotherElement is reachable through the
DOM tree from the document node9, after the function call its just assigned child node is
and thus will be displayed on the web page.

DOM elements are retrieved by invoking document.getElementById(domId),
document.getElementByName(domName) or document.getElementByTagName(tagName).
The first call queries the DOM for the element having the unique ID domId, whereas
the second call returns the DOM element having domName as its name attribute. The
latter function returns all DOM elements having the HTML tag tagName. It also pos-
sible to dynamically remove elements from the DOM tree. This is achieved by using
parentElement.removeChild(childElement).

Suppose as an example a <div> container element created by the following HTML
markup:

<div id="container"></div>

This <div> element with the ID container is empty. As such it does not display anything
on the web page. A JavaScript code snippet, which adds content and modifies attributes
of the <div> element is shown in what follows:

var containerElement = document.getElementById(’container’);

var textParagraph = document.createElement(’p’);

var textNode = document.createTextNode(’Hello World’);

textParagraph.appendChild(textNode);

containerElement.appendChild(textParagraph);

containerElement.style.color = blue;

This JavaScript code snippet first retrieves a reference to the div element. Then, it adds a
new paragraph and a new text node into the DOM. Now, the pieces are wired up by first
assigning the text node as a child to the paragraph node. After that, the paragraph node
itself is assigned as a child element to the <div> element. Finally, the <div> element and
all of its children are styled using CSS10 with blue as the foreground color. Expressed in
HTML markup, this yields the following:

<div id="container" style="color: blue;">

<p>Hello World</p>

</div>

This example demonstrates the power of dynamically manipulating the DOM using
JavaScript. Out of this feature many JavaScript libraries and framework have been de-
veloped. Some of these are discussed in what follows.

Asynchronous JavaScript and XML - AJAX Another very powerful feature of
JavaScript is AJAX. It is used to request data from a web server without the need to reload

9The document node is the root node of the DOM tree
10see section 2.2.1.

2. BACKGROUND 14

the entire web page. AJAX requests are thus used if only a DOM element is modified by
the results of the request, but not the entire web page. It is obvious, that this increases
interactivity and responsiveness of the web page and it reduces the load on the network.
Since the request is sent asynchronously, the web page does not block or freeze during its
execution. Tutorials and references of AJAX can be found at [31] and [32].

AJAX requests are managed in the browser by a XmlHttpRequest object. On the server
side, these are treated as ordinary HTTP requests such as issued by clicking a hyperlink
or submitting a form.

To issue an AJAX request, first a XmlHttpRequest object is created and initialized with
the HTTP method to be used and the URL. Then, the request is sent to the server, which
processes the request and sends a reply according to the HTTP protocol as described in
section 2.1.2. After the response has been received11, it is processed by JavaScript and
finally inserted into a DOM element or the contents of a DOM element is modified.

Suppose, there is a need to compute the number of samples based on the signal’s
minimum and maximum values on the time axis and the sampling frequency. These three
inputs are queried from the user using three input fields and a text field is reserved for
holding the computed signal length in samples.

The HTML markup snippet for such a case is introduced in what follows:

Minimum x value: <input type="text" id="minimumX">

Maximum x value: <input type="text" id="maximumX">

Sampling frequency: <input type="text" id="fs">

 samples

The JavaScript code, which processes the inputs, issues the AJAX request and fills in the
received value into the signalLength is shown in figure A.3.

As it can be seen from that example, only the signalLength is modified by the
JavaScript snippet issuing the AJAX request, while the rest of the page is unchanged. The
amount of data transferred is significantly smaller than even transferring the small snippet
of HTML markup back to the browser.

2.2.3. JavaScript Libraries

Over the time, JavaScript libraries and frameworks have been developed. In this subsec-
tion, libraries and frameworks relevant for this thesis work are introduced.

jQuery jQuery is a JavaScript library used to access and manipulate DOM elements as
well as issuing AJAX requests in a much easier fashion than using the browser’s DOM
API described above. This is achieved by adding an abstraction layer to the browser’s
DOM API. Since browsers still have slightly different DOM API functionalities, jQuery

11A completed AJAX request is reported by the XmlHttpRequest object having its readystate attribute
set to 4.

2. BACKGROUND 15

var minimumX = $(’#minimumX’).value;
var maximumX = $(’#maximumX’).value;
var fs = $(’#fs’).value;

$.ajax({
url: ’/signallength?minimumX=’+minimumX+’&maximumX=’+

maximumX+’&fs=’+fs,
method: GET,
success: function(result) {

$(’#signallength’).html(result);
}

});

Figure 2.2. jQuery based JavaScript code of an AJAX request

aids in overcoming cross-browser compatibility challenges when it comes to manipulat-
ing the DOM tree. jQuery is extendable using plugins. The jQuery web page [33] is a
rich resource on API documentation and tutorials. Another source for documentation on
jQuery is [34].

Elements are queried from the DOM tree using selectors. These selectors follow the
same principles as the CSS selectors described in section 2.2.1. In what follows, the DOM
manipulation example from section 2.2.2. is transformed to jQuery.

var newParagraph=$(’<p>’, {text: ’Hello World’});

$(’#container’).append(newParagraph);

$(’#container’).css(’color’, ’blue’);

The first line of this example creates a new paragraph node with the text ’Hello World’. It
is then appended to the container div. Finally, the blue foreground color is applied to the
div and all of its children.

As mentioned above, jQuery ships with AJAX functionality. The AJAX example from
section 2.2.2. can be rewritten as shown by figure 2.2. Compared to the plain JavaScript
example in figure A.3., the code is significantly cleaner and easier to understand.

Flotcharts In order to interactively visualize data in the browser, JavaScript based
chart libraries have been developed. Most of them are jQuery based.

The Flotcharts library [35] is able to generate a huge number of different chart types
and is further extensible using plugins. Plugins allow to extend the basic functionality
of Flotcharts by introducing new chart types, add labeling and drawing options, modify
grids and axes and save the generated chart as an image to the client computer’s disk.
An example of a chart generated by Flotcharts is shown in figure A.10. The same chart
zoomed along the x axis is shown in figure A.11.12

12Own experiments have shown, that saving charts as images to disk does not work reliability in all web
browsers.

2. BACKGROUND 16

Flotcharts uses references to DOM elements to determine into which container ele-
ment in the DOM tree the chart has to be placed. This allows the user of the library to get
started very quickly. This is demonstrated using time series depicting the average temper-
atures of Tampere [36] throughout the year, which is plotted into a line chart. First, the
container element is defined in the web page’s HTML markup:

<div id="chartContainer"></div>

Then the data series is defined and the chart object is inserted into this container using
JavaScript:

var dataSeries = [[

[1, -6.4], [2, -6.9], [3, -2.8], [4, 3.3],

[5, 9.7], [6, 14.1], [7, 16.9], [8, 15.0],

[9, 10.0], [10, 4.6], [11, -0.6], [12, -4.5]

]];

var plot = $(’#chartContainer’).plot(dataSeries);

This code is sufficient to produce a basic line plot showing such a time series. This
example has shown the abstraction power from the DOM and any low-level line drawing
algorithmic challenges, of which jQuery and Flotcharts are capable of.

Highcharts Another JavaScript chart library is Highcharts [37]. An example of a chart
generated by the Highcharts library is shown in figure A.13. As with Flotcharts, a High-
charts chart is inserted into a DOM element. Data series are defined in a one-dimensional
JavaScript array through the option array. The above mentioned example transformed
to Highcharts is shown in figure 2.3. The highchartsOptions object in figure 2.3. con-
trols the whole chart and thus reduces the need to programmatically call functions on the
highcharts object. The Highcharts API [38] extensively specifies the attributes of such an
object. Figure 2.3. shows the previous example transformed for the Highcharts library.

2.3. The Model-View-Controller Software Pattern

Model-View-Controller (MVC) is a software pattern, which is widely used in graphical
user interface (GUI) programming. Its purpose is to separate application logic from the
data model and the view [39]. Such a separation allows the graphical page design to be
carried out by user interface (UI) designers, whereas technical aspects and program logic
are implemented by software developers.

MVC constitutes of a model, one to many views and one to many controllers associ-
ated to it. However, the model does not have any knowledge of its associated views or
controllers [40]. The model is regarded as the state of the application as it holds all the
required data needed to represent that state [39]. Since the model has no knowledge about
the other components of the software, there is a need for a mechanism, which is capable

2. BACKGROUND 17

var highchartsOptions = {
series: [

{
type: "line",
name: "Temperature [C]",
pointInterval: 1,
pointStart: 1,
data: [-6.4, -6.9, -2.8, 3.3, 9.7, 14.1,

16.9, 15.0, 10.0, 4.6, -0.6, -4.5]
}

]
};
$("#chartContainer").highcharts(highchartsOptions);

Figure 2.3. JavaScript code for producing a Highcharts chart showing the mean temper-
atures in Tampere

of updating the model and notifying the view of the updated model. This is achieved by
the controllers.

Controllers are responsible for reacting to and retrieving user input, processing it,
triggering all the required action to other components of the software system and filling
the model. At the process, the controller chooses and notifies the correct view about the
updated data [41].

Finally, the views are used to present the current state of the application partly or
completely to the user. The data is queried by the model and simply inserted into the
places, where it needs to be displayed. Views are divided into sub-views allowing for
logical separation and reuse of those sub-views [41].

As mentioned earlier, there is the possibility of having more than one view and con-
troller sharing a model. Such a situation arises from different views, that are needed for
different user groups, output devices, screen resolutions et cetera.

In the remainder of this section, aspects of employing the MVC pattern into web
applications are discussed. Generally, the use of MVC in web applications is possible.
However, during the design phase, the application has to be partitioned properly in order
to scale properly for the intended end-user devices and expected network traffic of the
application.

One possibility is to have the whole logic running entirely in the web browser13. The
view and the controller have be downloaded only on the first request as the former gets
updated by the controller and the latter does not change on the client itself. On every
update, however, the data model has to be fetched from the server. This choice is clearly
useful if the data model is small and the operations are not computationally demanding
and do not consume huge amounts of the web browser’s memory. The advantages of such
a partition is to have very short to almost instant response times.

13This is referred to as Fat Client

2. BACKGROUND 18

Another partition possibility is to deploy the whole application logic including the
data model on the server and also generate the markup of the view there14. This avoids
downloading the data model and the application logic to the web browser. It also reduces
the computational power and memory needed on the web browser to run the web appli-
cation. However, the entire view markup has to be transferred to the web browser even
when just a very tiny piece of the view has changed.

Since the introduction of AJAX15, web applications can be partitioned in an arbitrary
manner. This allows parts of the applications, like text labels, to be updated from the
server without the need to transfer the whole page. This makes the page more responsive
and reduces network traffic.

2.4. Numerical Computing Systems

MATLAB® Builder JA [42, 20] is part of the MATLAB® software package, but not
included in the standard distribution. It is sold with MATLAB® Compiler, on which
MATLAB® Builder JA is based.

MATLAB® Builder JA takes one or more MATLAB® functions as input and gener-
ates a Java jar package out of them. During the compilation process, each MATLAB®
function is embedded into a Java class, which is then packaged into a jar file for easy
deployment. The parameters for the compilation are set and the compilation itself is trig-
gered comfortably using the command deploytool in MATLAB® Desktop.

After the compilation succeeded, the jar file is copied to its intended place16 and is
used there as an ordinary Java library. For the jarred MATLAB® component, in order to
be able to run, it needs a special runtime environment, referred to as MATLAB® Com-
piler Runtime (MCR)17. The MCR includes the MATLAB® interpreter, which enables
the jarred MATLAB® function to execute and produce results as it would run inside the
MATLAB® version. When downloading and installing the MCR, it must be ensured, that
the version of the MCR matches the version of MATLAB® desktop, which was used to
create the jarred component.

The WebFigure feature of MATLAB® Builder JA allows to produce figures using
MATLAB® code, which are embedded into a web page. The figures are zoom-able and
pan-able. The figures are embedded into a web page by using a JSP tag library or by
retrieving HTML markup and embedding it into a web page. On the MATLAB® side,
the figures are created as any figure except that they are hidden. When the deployed
MATLAB® function returns, the WebFigures are transformed to a WebFigure object and
returned to the calling method. Technically, a MATLAB® WebFigure runs in an ex-

14This is referred to as Thin Client
15Asynchronous JavaScript and XML, see section 2.2.2.
16This process is referred to as deployment.
17MCR can be downloaded free-of-charge from http://www.mathworks.com/products/

compiler/mcr/

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/

2. BACKGROUND 19

tra servlet provided by MATLAB® Builder JA. An example of a figure generated by
MATLAB® WebFigures is shown in figure A.8.. A zoomed version of the same figure is
shown by figure A.9..

As an alternative to MATLAB®, GNU Octave [43] is considered. It serves the same
purpose and follows the basic syntactical principles as MATLAB® does. Additionally,
GNU Octave is developed with good compatibility to MATLAB® in mind. However, full
compatibility18 is currently not achieved.

In contrast to MATLAB®, GNU Octave is GPL19 licensed, which allows to freely
download and install the software. As an important feature of the GPL, the source code
can be examined and modified, which allows to fully prove the correctness of the calcu-
lations done by GNU Octave.

As with MATLAB®, GNU Octave is also interfaceable from the Java programming
language. The interface library is JavaOctave [44]. JavaOctave works different compared
to MATLAB® Builder JA. While MATLAB® Builder JA compiles all MATLAB® code
into Java jar packages, JavaOctave simply fires up the Octave engine. To this Octave
engine, matrices, scalars and vectors and GNU Octave code are fed in. The code is then
executed and the results are fetched from the Octave engine and are converted to Java
objects. The main limitation of JavaOctave is the missing support for struct vectors and
matrices. Simple 1x1 structs are, however, supported. Thus, workarounds, like wrapper
functions, must be employed to convert those struct matrices and vectors to 1x1 structs.
Another limitation is the missing support for retrieving vectors and matrices created by
vectorized code like

x=0:0.1:10;

Such vectors are placed into OctaveFake objects, which must be read as strings and con-
verted to Java double arrays using custom Java code.

2.5. Java Enterprise Edition

Since the Java based learning platform will be used through the WWW, components of
Java Enterprise Edition (Java EE) are used. In this section, several aspects of Java EE are
discussed in relation to the problems of web UI development and deploying a MATLAB®
function for the web.

2.5.1. Servlets and JavaServer Pages

Java EE allows web pages to be dynamically generated on the server by servlets or JSP
pages. The difference between those two is that, JSP pages are rather HTML pages having

18Full compatibility refers to being able to execute MATLAB® scripts in GNU Octave and vice versa
without the need for modification.

19GNU General Public License

2. BACKGROUND 20

JSP tags embedded, whereas a servlet is technically a Java class. JSP pages are parsed
and translated into servlet classes and executed as if they were ordinary servlets.

Servlets are equipped with a PrintWriter and an OutputStream object, which allow to
send output back to the web browser in any format desired. The PrintWriter object is used
for text-based output, like HTML markup, whereas OutputStream is used for binary data
like images. Since the PrintWriter object is only capable of producing plain string based
output, care must be taken when generating HTML markup. As the PrintWriter object
is not able to check for syntax errors, the risk of sending malformed HTML is imminent
and naturally grows with the complexity of the web page being generated. Such errors are
hard to detect unless a validation service like W3C Validator [45] is used, because web
browsers still try to render the page in a way they consider it to be most correct20. Servlets
are also capable of managing sessions over HTTP and they allow attaching, retrieving and
removing attributes to and from sessions.

JSP pages are chosen by Java EE software developers to generate the HTML markup
of the view. This reduces the risk of malformed HTML significantly. Servlets, on the
other side, are used as controllers, which interact with data sources or DAOs21 or act as an
adapter between the web browser and the business logic. Dividing view and controller in
this way also allows to spread duties between business logic developers and user interface
developers. Such a division is made possible by the servlet’s RequestDispatcher object,
which is capable of forwarding the request and the session including it’s attributes to
a JSP file. In case of having only a small HTML page to generate, it is however still
feasible to omit the forwarding of the request and directly write the HTML markup using
the PrintWriter object.

2.5.2. JavaServer Faces

When creating a sophisticated web-based user interface, Servlets and JavaServer Pages22

do not provide an easy-to-use and easy-to-understand way of structuring the application.
A popular choice for such a structure is the Model-View-Controller (MVC) software de-
sign pattern23.

While Servlets and JavaServer Pages allow to imitate the MVC pattern using the
RequestDispatcher class, the JavaServer Faces (JSF) user interface framework [46] is
developed with this pattern in mind. As well as servlets and JavaServer Pages, JSF is
standardized as well. The current standard is JSF 2.2. In this subsection, several aspects
of JSF are discussed.

20This rendering mode is referred to as Quirks mode.
21Data Access objects
22Servlets and JavaServer Pages have been introduced in section 2.5.1.
23See section 2.3.

2. BACKGROUND 21

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>

javax.faces.webapp.FacesServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>
Faces Servlet

</servlet-name>
<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

Figure 2.1. Deployment descriptor for Java Faces Servlet application

JavaServer Faces implementations The JSF reference implementation is Mojarra
[47], which is developed by Oracle and provided with the GlassFish application server
[48]. Another JSF implementation is Apache MyFaces [49], which is installable along-
side all Java EE application servers. Apache MyFaces is a natural choice to extend the
functionalities of Apache Tomcat24 by adding a JSF implementation.

Deployment of JavaServer Faces applications Since, internally, a JSF imple-
mentation is a servlet, which is started by the servlet container, the servlet container needs
to be informed about that servlet. This is achieved by mapping a URL pattern to the JSF
servlet in the deployment descriptor. An example URL mapping for the JavaServer Faces
servlet is shown in figure 2.1. In this example, the JSF servlet is mapped to all URL
starting with /faces/.

In order to receive more verbose debugging information in case an exception has been
thrown during the JSF lifecycle, the JSF based web application is developed in debug
mode. This is also configured through the deployment descriptor file.

As a difference to plain servlet classes, when deployed in development mode, JSF
pages do not require a republish operation nor a servlet container restart. It is clear, that
this speeds up the web application development. The JSF servlet takes care of rendering
the view pages, binding data and method calls to the underlying Java Beans.

Format of JSF pages JSF was originally specified in its first version to be based
on JSP markup. This, however, has caused lifecycle problems with execution of the JSF
pages. Thus, another markup language was sought. This finally led to the specification
of JSF 2.0, which uses XHTML as the markup language. JSF Pages written in XHTML
markup are referred to as Facelets. Due to lifecycle problems caused by the JSP markup,
it has been deprecated with the introduction of the JSF 2.0 standard [50].

24Java EE runtimes, application- and web servers are discussed in section 2.5.3..

2. BACKGROUND 22

Since XHTML is based on XML, JSF pages have to be well-formed. Otherwise, the
request for the page in question is rejected with an internal server error. Besides ordinary
XHTML markup, JSF pages consist of additional special tags collected in taglibs25. These
allow to bind data and actions to UI elements such as forms, text blocks et cetera. Also
AJAX26 calls can be bound to UI elements.

HTML forms are used to collect user input. Since JSF allows to create UI elements
and to bind data and actions to UI elements, which include forms, input fields, et cetera,
sophisticated user interfaces are buildable using JSF.

Managed Beans Another powerful mechanism of the JSF framework is the possibil-
ity to bind elements of the view to attributes and methods of underlying Java Beans. View
elements, which are bound to bean attributes, are bound to the data model. On the other
side, attributes, which are bound to bean methods, are said to be bound to the controller27.
Thus, this binding mechanism establishes the link between the models, the views and the
controllers. It is thus an essential part of JSF framework’s MVC pattern realization28.

Binding data to UI elements Since JSF is based on the MVC pattern, JSF applica-
tions possess a data model, which is represented in the back end code by Java Beans29.
JSF markup and expression language [53] allow to bind UI elements to attributes of those
Beans. Values are bound to JSF UI elements using the value attribute. An example of
such a binding is:

<h:inputText

id="boxcarAmplitude"

value="#{boxcarParameters.amplitude}"

size="4"

style="text-align: right;" />

This line of markup defines an input text field with DOM ID boxcarAmplitude and binds
it to the bean of class BoxcarParameter and to its amplitude attribute. The attributes on
the end define the layout of this field.

Composing web pages and view reuse In contrast to plain HTML or XHTML,
JSF allows to build complex web pages out of smaller XHTML files. This also allows to
reuse view components like form elements, pager headers and footers.

The content of an includable XHTML fragment file is embedded into
<ui:composition> tags. A very simple example is:

25These taglibs are specified in the JSF specification [51]
26AJAX is an abbreviation for Asynchronous JavaScript and XML, but transferred data is not restricted

to XML.
27In JSF, controllers are bound to a UI component using the action attribute.
28MVC refers to Model-View-Controller software pattern, which has been introduced in section 2.3.
29Java Beans are Java classes, which follow the Bean specification [52].

2. BACKGROUND 23

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:h="http://java.sun.com/jsf/html"

xmlns:ui="http://java.sun.com/jsf/facelets">

<p>Page Header</p>

</ui:composition>

In this example, an includable XHTML fragment, which adds at the place of inclusion the
HTML markup fragment: <p>Page Header</p>, is defined.

Including external resources External resources like CSS style sheets and
JavaScript files are also managed by the JSF framework. For this to work, they are stored
in the WebContent/resources directory. From there they are included within the <h:head>
section.

<h:head>

<h:outputStylesheet

name="style/jsfstyles.css" />

<h:outputScript

name="js/libs/jquery/jquery-1.10.2.js" />

<title>

<ui:insert name="title">FFT JSF</ui:insert>

</title>

</h:head>

This markup includes the style sheet from WebContent/resources/style/jsfstyles.css
and the JavaScript file WebContent/resources/js/libs/jquery/jquery-1.10.2.js into the web
page and defines FFT JSF as the title of the web page. It is clear, that this file inclu-
sion mechanism allows to abstract from the storage place within the JSF project as the
JSF servlet takes care of looking up the files and inserting the correct markup into the
rendered output.

Bean Validation A data model has to be consistent at any time during runtime. This
reduces the risks of running malicious code and makes sure, that input and output of the
application are always meaningful. A very simple example for this is a group of date input
fields. One field collects the day of the month, a second one the month and a third one the
year. The model has to make sure, that it only accepts valid dates. For example, inputing
as day 31, as month February and as year 2006 is nonsense and thus has to be rejected.

Bean validation is an easy solution offered by the JSF framework and is achieved
using validators. The first simple check, which it is performed, is for data type integrity.
If, exempli gratia, only integer values are allowed for this attribute, any value, which is not
convertible to integer, will be rejected. A second and yet more powerful feature of bean
validation is the ability to check, whether a given input is within a desired range. This

2. BACKGROUND 24

allows to check for dates, which are not between 1 and 31. Such consistency checks are
triggered by Java Annotations, which are shipped by the JSF framework. Annotations are,
however, not powerful enough to check the consistency of the bean itself. For such cases,
own methods are defined and bound to the UI. In case the data model is not consistent,
a ValidationException is thrown, to which a custom error message are added within the
current JSF context. On occurrence, this ValidationException is thrown to the view, which
then displays the error message at its place defined by the JSF markup.

Failed bean validation always cancels the execution of controller functions. This pro-
hibits erroneous data to be inserted into databases or malicious code to be executed. Still,
it is obvious, that the programmer carefully has to define the data model including the
values it accepts.

Lifecycle of a JSF application After the request has been forwarded by the servlet
container to the JSF servlet, a rather complex process [54] is triggered before the rendered
reply is transfered back to the browser. This process is briefly described in this chapter.

Upon startup, JSF binds event handlers and validators to the FacesContext30. Once
the FacesContext object is set up, the request parameters are bound to the UI components.
Data type violations cause exceptions to be thrown in this phase.

The next step is the validation of the request parameters using the methods discussed
in the previous paragraph. If the validation phase has been completed successfully, the
request parameters are bound to their respective bean attributes.

After all parameters are bound to their bean attributes, the business logic of the appli-
cation is invoked. In the vast majority of cases, the business logic modifies attributes of
the beans. This is caused by exempli gratia database lookups, calculations et cetera.

As a last step, the response is rendered. This is achieved by interpreting the given JSF
markup and inserting values of the bound bean attributes into the markup. The final result,
a valid XHTML web page, is then send back to the browser, which renders the XHTML
markup on the screen.

JSF page navigation handling A JSF application has the ability to dynamically
define on runtime, which view page will be rendered. This is useful to forward to error
pages or to display the correct view based on the users choice earlier in the application.

JSF framework’s page navigation handling is based on the request dispatcher mech-
anism of servlets31. Since the RequestDispatcher object simply forwards to a servlet or
JSP file given as a string, also within the JSF framework the XHTML file to be rendered is
defined using a string. This string is defined as the return value of the controller function,
which was bound to the previously displayed page. If the controller function returns a

30The FacesContext [55] represents the state of the JSF request and as such, it is responsible to bind all
involved elements together. It is transfered through the whole request processing chain until it response is
sent to the browser.

31Servlets are discussed in section 2.5.1..

2. BACKGROUND 25

null reference, the same JSF file is used for rendering the page. A simple example of this
method, which forwards to responseJSFPage.jsf, is:

public String process() {

return "responseJSFPage";

}

A more comprehensive article about JSF page navigation can be found at [56]

JSF pages and JavaScript or CSS code In some situations, it is desired to gen-
erate JavaScript or CSS code dynamically. This works exactly in the same manner as
in XHTML markup using Expression Language. Thus, this line of code generates a
JavaScript variable with data:

var dataToPlot =

#{samplingFormController.results.flotChartData};

It is obvious, that the data in samplingFormController.results.flotChartData must be
a string having a valid JavaScript expression as the JSF framework is not able to detect
syntactic correctness of expressions in other languages. Generating CSS code or any other
text-based code is realized by using the same mechanism.

2.5.3. Java Enterprise Edition Runtimes

In order to deploy any Java code and MATLAB® components for the web, a Java EE
runtime has to be employed. The most popular Java EE runtimes are Tomcat, GlassFish
and JBoss. Those runtimes are briefly compared and a choice will be made for deploying
the MATLAB® function.

Tomcat is a servlet container, which is used solely to deploy and run web applications,
that follow the Java servlet specification. It is the simplest and most lightweight Java EE
runtime. In order to run, it only requires a Java Runtime environment. Its current version
is licensed under the Apache License version 2 and can thus be used free-of-charge for
private, educational and commercial projects. The server is configured by a web based
console, which does not work if the server is operated from Eclipse IDE. In that case,
this feature is, however, not needed, because the deployment is done much easier using
Eclipse’s tools.

For software development purposes, Tomcat can easily be integrated into Eclipse
IDE’s Java EE perspective by adding it into the Server tab on the bottom of the Eclipse
IDE. Once integrated there, the server can conveniently be started, restarted and stopped
using the toolbar button of the Server tab. When the code deployed on Tomcat including
the MATLAB® component changes, it gets redeployed automatically onto the server if
the JVM is in debug mode and class hotswapping has been enabled.

2. BACKGROUND 26

Since Tomcat lacks many features, that a fully-blown JavaEE application server ships,
the TomEE project [57] has been created to fill that gap, while still allowing Tomcat usage.
TomEE ships with Apache MyFaces and others.

GlassFish is the Java EE reference implementation created and maintained by Ora-
cle. Its current version 4 supports, but also requires Java EE 7’s Java Development Kit
(JDK). In addition to Tomcat’s support for servlets, GlassFish supports the full Java EE
7 specification [58]. Since the source code of it’s servlet engine is derived from Tomcat,
in general, it runs servlet based web applications as in Tomcat. GlassFish allows for a
comprehensive web based configuration of all of its components and features. Own ex-
periments with the current version have however shown, that problems occur if additional
native libraries need to be loaded, which is the case for deployed MATLAB® functions.

Another popular Java EE runtime is JBoss created by Red Hat [59]. Besides the
ability to execute servlets, it also ships EJB32, Hibernate, CORBA support, Rich Faces
and others.

Since only JSF pages are created and additional features like Java Persistence or En-
terprise Java Beans are not needed for this simple application, TomEE has been chosen
due to its lightweightness and simplicity. Additionally, The MathWorks provides good
documentation on integration of MATLAB® functions into web applications using Tom-
cat. TomEE has been chosen because it is smaller than a Tomcat installation, and it ships
with Apache MyFaces, a JavaServer Faces, library.

32Enterprise Java Beans

3. DEVELOPMENT OF THE LEARNING PLATFORM

The development of the learning platform is performed using different software tools. In
this chapter, these tools, the materials used to develop the learning platform along the
development process are described.

3.1. Starting Point for the Thesis Work

In this section the currently used methods for teaching in the departments of Signal Pro-
cessing and Communication Systems are introduced. This section thus purposes on intro-
ducing the context, in which the here developed e-learning platform, is placed.

At Tampere University of Technology and especially at the above mentioned depart-
ments, the traditional classroom teaching method is widely applied. Traditional classroom
teaching consists of lectures, exercises, examinations and optionally homework assign-
ments. Such homework assignments are done in order to upgrade the final course grade,
upgrade the amount of credit points earned from that course or as a prerequisite to pass
the course.

Lectures are usually given in lecture halls using PowerPoint® slides, overhead pro-
jector slides and lecture notes. Further explanations of the subject are given on the black-
board as this allows to react individually to student’s questions. However, as a matter
of fact, the time during lectures is limited, which does not allow to answer all student’s
questions completely and as deeply as needed. Attendance to the lectures is in the vast
majority of cases voluntary, however it is strongly recommended by the teachers.

Exercises are given in order to give the students the possibility to recapitulate the
knowledge, that has been taught during the lectures. For some courses, attendance or even
active participation to the exercises is mandatory in order to pass the course. Exercises
are also used to upgrade the final grade of the course. During exercise classes tasks
are given to the students, which are solved using pen and paper, on the whiteboard or
using MATLAB®. Some exercise classes require to solve the assignments beforehand.
Laboratory-based exercises consist of pre-lab questions, which are answered before the
exercise session, the actual laboratory exercise and a report, which is written after the
exercise session and has to turned in after a rather short deadline. In the departments
of signal processing and communication systems, also laboratory work is done mainly
using MATLAB®, whereas C/C++ or Java are only used rarely. Teachers at the signal

3. DEVELOPMENT OF THE LEARNING PLATFORM 28

processing and electronics department are very well skilled in MATLAB®. Programming
skills in JavaScript or Java are less developed.

In addition to the exercise sessions, homework assignments are given to the students.
They usually go deeper into the topic than the exercises or even stimulate the students to
conduct additional studies.

Courses in English are offered to international and Finnish students. In order for new
international degree students to enroll at TUT, they need to present a proof of sufficient
language skills in English. This makes sure, that students are able to follow the lectures
and to solve the exercises, homework assignments and questions in the examinations[60].
It also reduces the requirement of internationalization for the learning platform to English
as many courses are taught in English nowadays.

As already mentioned earlier, on successful completion of a course, students are
awarded with ECTS1 credit points. The amount of credit points is based on the average
time and work effort needed in order to complete the course. One credit equals approxi-
mately 27 hours of work [61]. Courses last at most one semester and at least one teaching
period2. This ECTS credit point system allows to measure and compare the effort done
by students EU-wide. It also allows to slice the students problem3 of obtaining enough
credit points to fulfill the degree requirements into manageable chunks of courses rather
than having few huge courses like in problem-centered education4. Such huge courses
put higher risks on the students in that sense, that failure leads to spending much time and
effort while not getting any credits at all out of the problem-centered course. Additionally,
courses with more work load prevent students from taking other courses in parallel.

At the TUT’s department of Electronics, a learning platform, which is part of the
Invocom teaching project, is existing. It is based on MATLAB® WebServer, whose sup-
port was discontinued by The MathWorks [62]. This led to a situation, which does not
allow teachers to generate new learning material and especially interactive, demo-based
exercises.

MATLAB® WebServer was discontinued, because it had used the CGI interface of
a web server. Those interfaces are resource-intensive as for every request they start a
new process instead of a new thread. Also security considerations concerning the CGI
interface led The MathWorks to the decision to cease support for this technology with
MATLAB® version 2006b.

There is, however, still a need to create hands-on-demo exercises for students to un-
derstand learning subjects from a different point of view than just the mathematical for-
mulas presented in the lectures as well as the MATLAB® programming based exercises
as mentioned in the beginning of this subsection.

1European Credit Transfer and Accumulation System
2A teaching period corresponds to seven weeks of teaching and one exam week and a semester consists

of exactly two teaching periods.
3Here, the term problem refers to the whole study process.
4This term has been introduced in chapter 1.

3. DEVELOPMENT OF THE LEARNING PLATFORM 29

3.2. Development Tools and Process

Since the learning platform is written in Java for a Java EE application server, a suitable
IDE has to be sought. The requirements for such a IDE are syntax highlighting for Java,
XML and XHTML as well as JavaScript code, easy integration of a Java EE application
server, code assistance features and Git integration. Additionally, due to zero budget of
the thesis, the IDE has to be available free-of-charge.

Richly featured Java IDEs are Jetbrains IntelliJ IDEA [63], Oracle’s Netbeans IDE
[64] and Eclipse [65]. IntelliJ IDEA is not available free-of-charge and thus not suitable
for this project. Netbeans IDE is free-of-charge and comes with a wide range of features.
The same applies for Eclipse. The software development itself has been carried out using
Eclipse IDE for Java EE Developers [66], because it has a good support for Java EE
development by integrating Tomcat into its user interface. Eclipse IDE also ships an easy
to use, but comprehensive and verbose debugger interface.

As mentioned in chapter 3.1., many exercises in signal processing and communica-
tion engineering courses are given using MATLAB®. Thus, instructors have a very good
knowledge of MATLAB® and feel comfortable employing it also for e-learning plat-
forms. Thus, allowing instructors to express the underlying mathematics using MATLAB®
functions is a natural choice.

To deploy MATLAB® code to a web server, MATLAB® Builder JA5 has been chosen
as it is capable of translating and packaging MATLAB® functions into Java classes. Java
code itself can be processed by a Java EE servlet container like Tomcat [67], a Java-based
web server capable of processing HTTP requests sent by web browsers.

Since the programmer has not much experience with integration of
MATLAB® Builder JA components and the JavaServer Faces technology and the goals of
the thesis project were not clear in the beginning, an agile software development method
is used. This reduces the risks of setting too ambitious plans, which in the end causes the
thesis project to last too long or even to fail. Agile methods also allow to specify new
features6 and a new look and feel on the fly rather than making complicated plans. It
also allows to reduce the documentation work in the beginning of the software develop-
ment process and to push the documentation, which is really required for the end-user or
other software developers, to the end of the development process. In parts of the project,
SCRUM has been employed in order to allow the stakeholders to follow the progress and
in order to estimate the work and time remaining.

Based on the possible refinement due to the usage of agile methods, first the Fast
Fourier transform exercise has been implemented. There were implementation iterations
using plain Java Servlets, JavaServer Pages and finally JavaServer Faces. After the right
UI technology has been determined, the UI components were developed. Out of those

5MATLAB® Builder JA has been introduced in section 2.4.
6Features are also referred to as use cases.

3. DEVELOPMENT OF THE LEARNING PLATFORM 30

components, the exercises, which form the introductory signal processing course, have
been developed. As a last step, the navigation UI elements were implemented.

Due to the agility of this thesis project, long theoretical studies have not been con-
ducted. Thus, the theoretical part of this thesis mainly consists of material needed to
understand the basics of the conducted work.

As a basis for the programming work, the Java EE specification by Oracle has been
extensively used. For the solution of specific small problems, programmer platforms like
StackExchange and JavaRanch have been sought. Additionally, HTML, JavaScript, CSS
and XML specifications by W3C and tutorials by SelfHTML, W3Schools and tutorials-
point have been used.

The layout of the user interface has been developed with the existing, but legacy In-
vocom learning platform in mind. User interface mock-ups have been created using the
Pencil UI software package [68].

3.3. Use Cases

Use cases describe how and by whom the learning platform is supposed to be used. In
this chapter, the use cases for the learning platform are developed.

3.3.1. General Considerations

The learning platform to be developed within this thesis project serves the goal of sup-
porting lectures and exercises. This means, that it does not replace teachers or teaching
assistants, but gives the student a possibility to understand the subject from another point
of view.

Students, as the main actors of the learning platform, shall be enabled to experiment
with different fundamental aspects of digital signal processing and communication theory.
This already poses some important requirements to the learning platform, which are listed
in what follows.

An important role in a user-friendly learning platform is taken by the navigation. For
the here developed learning platform, a bread crumb-based navigation system is needed,
because it allows the user to go back to a page situated higher in the navigation hierarchy.

Since the learning platform is web-based and web-based applications are capable of
displaying and following hyperlinks, links to related content within the learning platform
as well as links to related and interesting pages in the WWW are displayed in the upper
part of the pages. Such links shall be shown on the top of the page, where they can be
found easily.

The user interface queries all parameters needed to perform the desired DSP tool from
the student. This gives the student free hands on experimenting with those parameters
to see the outcomes. Naturally the student is able to set multiple signal and algorithm

3. DEVELOPMENT OF THE LEARNING PLATFORM 31

parameters at a time allowing her to study the effect of all parameters using the learning
platform. The required user input parameters are obtained from the formula or the block
diagram of the DSP tool or algorithm. This realizes the concept of online laboratories7.

As with all software, user inputs need to be validated by the system. This has to be
done before the algorithm of the DSP tool is invoked in order to avoid attacks to the sys-
tem, overloading it leading to poor response times or even system outages. Poor response
times lead to user frustration, whereas system outages render the system completely unus-
able requiring support staff to start the system up again. It is clear, that during weekends
and in the evening hours such reboots are not feasible. However, during the weekends and
in the evening hours the most percentage of total users is expected the use the learning
platform.

After the student has set all the parameters for the DSP tool, she clicks the process
button, which triggers the algorithm to be performed. When the algorithm has completed,
the student gets presented the output using two dimensional charts. The charts are placed
in the corresponding blocks. This allows the student to easily see the signal corresponding
to its place within the signal processing algorithm. All charts need to be zoom-able along
the x-axis by marking the ROI8 using the left mouse button. The y axis is left in the
initial, automatically configured state based on the minimum and maximum values of the
displayed output and thus not affected by the zoom. A cross-hair mark follows the mouse
pointer along the x-axis while it is on the diagram displaying the x and y values at the
current mouse position. In order to enable the student to include the chart into exercise
reports, it must be possible to save to chart to local disk.

The interpretation of the results is completely left to the student. However, a link to
questions, which give hints for the interpretation and thus guides the student towards the
learning goals is embedded. When used in conjunction with exercises, questions can be
employed to aid writing reports are self-study notes, which themselves are possible to be
taken into account when grading the course.

3.3.2. Case study: Fast Fourier Transform Page

This subsection presents an example of the points mentioned above on the example of a
Fast Fourier Transform (FFT) demonstration page. The FFT example has been chosen
due to its simple structure and because its block diagram only consists of three blocks.
This reduces work when a change on the page is required. Such changes are needed often
due to interactive nature of this project9.

First, the input parameters adjustable by the user, are obtained using the well-known
formula of the FFT:

7Online laboratories have been introduced in chapter 1.
8Region of interest
9The project type has been introduced in section 3.2.

3. DEVELOPMENT OF THE LEARNING PLATFORM 32

Fm =

2n−1∑
k=0

xke
−
2πi

2n
mk

m = 0, ..., 2n− 1 (1)

Using this formula, it is determined, that the following parameters need to be given to the
FFT algorithm. These are the signal x and the length of the FFT n.

It is worth noting here, that the signal xk is entirely undefined at this point. Thus it
needs to be defined using signal types and their corresponding parameters. This allows to
study the effects of the FFT on different signal types. As with the DSP algorithm itself,
the formulas of the signals reveal the parameters and are thus used the find them.

This learning platform uses sine, cosine, boxcar, sinc, impulses, Gaussian bell curves
and constants as input signals as these are the most typical signals encountered in intro-
ductory signal processing and communication theory teaching. The user shall be able to
select the signal type and gets presented with the correct set of input fields to define the
signal further. These signals are discussed in what follows.

All signals have some parameters in common. First, the length of the x axis is de-
fined. The learning platform thus queries the minimum and maximum values on the x axis
along with the sampling frequency. These three parameters define the length of the signal
in samples and thus the amount of data to be processed by the algorithm. Since every
computer system has only limited amount of computational power and the user expects
results after a reasonable amount of time, the length of the generated input signal has to
be limited. Own experiments have shown, that a maximum input signal length of 2000
samples is a reasonable trade-off between performance and studying signal effects.

Sinusoidal signals are either sine or cosine signals. Their input parameters are easily
derived from their formulas as shown by equations 2 and 3, respectively.

x(t) = A sin(2πft+ φ) (2)

x(t) = A cos(2πft+ φ) (3)

In the above mentioned formulas, A denotes the signal’s amplitude, f the signal’s fre-
quency and φ the phase offset. These three parameters are the signal parameters and are
thus queried from the user. Boxcar signals, also referred to as rectangular functions, have
an amplitude and a width of their rectangle. Thus, amplitude and width are queried from
the user if she chooses to generate a boxcar signal. Constant signals posses a constant
value over the whole signal duration. Here, the user only has to set the value of the con-
stant. Sinc signals, which are created when taking with DFT of a boxcar signal, have the
following formula shown by equation 4.

x(t) = Asinc(2πft+ φ) (4)

3. DEVELOPMENT OF THE LEARNING PLATFORM 33

As with the sinusoidal signals, the sinc formula reveals, that the frequency f , the am-
plitude A and the phase offset φ have to be queried from the user as input parameter.
Gaussian bell curves are exponential signals, which are defined by the standard deviation
σ and mean µ. The formula of such signals is shown by figure 5.

x(t) =
1√
2πσ2

e
−
(t− µ)2

2σ2

(5)

Equation 5 reveals, that the required signal parameters for Gaussian signals are standard
deviation and mean.

After the student has set all required parameter, she clicks the process button in order
to start the algorithm. After the button has been pressed, the given input parameters are
validated. If the validation fails, an error message is printed and the algorithm is stopped.

As mentioned earlier in this chapter, the generated input signal and the resulting sig-
nals are displayed using charts. The outputs are separated using a horizontal line. In the
first block, the input signal, which was generated according to the parameters given by
the student, is displayed in a chart. In the remaining blocks, the charts required to fully
depict the output of the algorithm, are shown. For the FFT case, the amplitude spectrum
as well as the phase spectrum are required to be displayed.

In the initial state, the charts always show the entire signal leaving it to the user to
zoom in for getting a more detailed view of the signals. The y-axis has been scaled to
always allow 20% excess space from the minimum and maximum value. This does not
only allow to embed the legend into the chart, but also ensures, that the signal is shown
entirely in the chart without clipping or reaching the upper border of the plotting area. An
example chart showing a sinusoidal input signal is shown in figure A.2.

4. THE LEARNING PLATFORM

This chapter introduces and discusses all findings from the user interface design, the soft-
ware design and the software development phase. First, the prototype exercise is briefly
introduced. This is followed by the development of the software architecture and the
choice of software tools and libraries. Afterwards, the development process of the pro-
totype exercise page is discussed. This is followed a detailed description of the user
interface components. Out of these a model for creating more exercises is developed and
evaluated using the “Introductory Signal Processing” course.

4.1. The Prototype Exercise

To study the process of integrating a MATLAB® Builder JA component into a dynam-
ically generated web page, a demo for the Fast Fourier Transform has been created. In
order to investigate its spectrum and phase characteristics, the Fast Fourier Transform
transforms an input signal to its frequency representation. It is one of the most fundamen-
tal tools in signal processing and is thus essential for students to understand in order to
carry on with their signal processing and communication studies.

The demonstration developed in this section consists of a web page, which allows the
user to select different input signal types1 and adjust their parameters2. After the user has
made her choice, she clicks on the submit button, which triggers the back-end code. After
the computation has been finished, the page presents the input signal, its amplitude and
phase spectra plotted in separate line plots.

The user can repeat this process over and over again to study the properties of the
Fourier Transform. An attached question sheet guides the student towards the learning
goals. Hyperlinks in the “Related Content” section lead to material related to the exercise
and thus exploit the nonlinearity of the student’s learning process and the nonlinearity of
the WWW.

1In this example, sinusoidal, impulse, constant, sinc, boxcar and Gaussian bell curved signals are em-
ployed. These are defined in section 3.3.1..

2Adjustable parameters in this example are depending on the input signal type: sampling frequency,
amplitude, signal length, signal frequency, mean, standard deviation and boxcar width.

4. THE LEARNING PLATFORM 35

4.1.1. Design of the Pages

The goal of the page design is to create components, that can be reused for other demon-
stration pages. This saves disk space and reduces the amount of work needed to create
more exercises.

When the page is retrieved for the first time, the user is presented with preset input pa-
rameters. The user can simply accept them by clicking submit or change them according
to her needs. The input parameters are collected in a HTML form, which is grouped into
logical blocks according to the block diagram of the DSP tool. The desired signal type
is selected by a HTML selector. Based on its current selection, the signal-type specific
groups are switched in a way, that only the input fields used for the selected signal type
is displayed and the others are hidden. The fields for the common signal parameters like
minimum and maximum values on the x axis and the sampling frequency are, however,
shown for all signal types.

As with every web application, user input has to be verified and checked for plausi-
bility in order to avoid security holes. This is discussed in section 2.5.2.

Results are displayed in their corresponding blocks using basic two-dimensional line
charts. The units shown on the axes of the charts depend on what is displayed in the chart.
The y axes is scaled automatically based on the minimum and maximum values of the
corresponding axis and the x axis based on the current zoom. The user has the possibility
to zoom into the diagram. This zoom, however, is restricted to the x axis in order to
always be able to show the curve fully in its vertical extend.

Based on the considerations in section 3.3., the first mock-up of the user interface
for the FFT page has been created. It is shown in figure A.1. The user interface mock-
up has been iteratively refined using the results obtained from the development of the
FFT prototype page. It is created using the Pencil UI software package, which allows to
directly insert UI components rather than drawing them as it is done using basic graphics
processing software packages like MS Paint, GIMP or Adobe Photoshop.

4.2. Software Architecture

In this subsection, the software architecture for the teaching pages is developed. The
software architecture serves as a base for creating a model for adding more exercises to
the system later.

The Model-View-Controller pattern (MVC) as shown in section 2.3. can be employed
in web applications as well. Yet, it keeps the system easily maintainable and understand-
able. Thus, the MVC pattern is chosen for the learning platform, which is developed in
this thesis project.

The general structure of the demonstration is introduced here. It is visualized by figure
A.4.. The visual part of the teaching page is the view. It is realized as a XHTML page

4. THE LEARNING PLATFORM 36

having CSS style sheets and JavaScript code embedded into it in order to improve the
interaction with the page and to improve its look and feel. Apart from the visualization,
the view is also responsible for collecting the input parameters from the user.

In order to interact with the rest of the application and to forward the user input, the
view has its own data model, the View Data Model, associated with it. This data model is
responsible for validating and storing the inputs of the user.

When the user triggers the algorithm, the controller is invoked. For this to function
properly, the controller must be associated with the view. The task of the controller is to
trigger the conversion of the view’s data model to the one needed by its associated Data
Access Object (DAO).

The DAO is then invoked by the controller and invokes the MATLAB® component
associated to the it. After the DAO has received the results of the algorithm from the
MATLAB® component, it creates the data model, which holds the results. This results
data model is then queried by the view in order to present the results to the user.

Next, the general work flow mentioned above is evaluated on the Fast Fourier Trans-
form demonstration page3. Applying the model introduced above to the FFT demonstra-
tion page directly is principally possible, but leads to issues when thinking of reusing
view components and code created for this module in other learning units as the pages
will share many UI components.

Thus, it carefully has to be thought on how to split the view and its data model in a
way, that as many reusable components as possible are generated, which can be reused in
order learning units.

As shown in the use case definition in section 3.3., input signals have to be selected
and their parameters have to be defined. When creating more of these demo pages, users
will need the ability to define those signals and parameters there as well. Thus, it is a
natural choice to separate the view into field sets for the different signals as concepted in
section 3.3.2. Figure A.6. shows the division of the input field sets to different fragments.
From that figure, it can be seen, that for each signal type a separate fragment is created,
which resembles an input field set. Based on the signal type selection, its associated field
set is shown to the user.

In addition to the parameter required by the input signals, the FFT algorithm also re-
quires the FFT length as an additional parameter. Such parameters are easily embeddable
into the FFT UI block.

In order to exploit the division of the input field sets into fragments while still main-
taining the MVC pattern, data models are created for each fragment. The data models are
initialized using default values, which are empirically obtained. Care is taken upon model
definition, that the data is consistent and does not overload the server with too complex
computation requests. This has been done by allowing only a signal length of 2000 sam-
ples as shown in section 3.3.1. If the data model validation fails, the exact reason for

3The FFT demonstration page is introduced in section 4.1.

4. THE LEARNING PLATFORM 37

failure is printed below to the form and the actual algorithm is not invoked. In order to
leave freedom to the user to experiment with the parameters, restrictions on other param-
eters than the signal length have not been imposed. The relationship between the view
and its data models is depicted by figure A.7.

This results data model holds the signals obtained by the FFT algorithm. It is used to
create charts displaying the results of the algorithm. In the case of the FFT, it contains the
input signal, its amplitude and power spectra.

In order for the FFT MATLAB® DAO to be able to easily invoke the FFT MATLAB®
component, the data has to be in a format, which follows the parameter list of the deployed
FFT MATLAB® component and consists only of basic Java types and strings. Thus,
a MATLAB® parameter model has been introduced, which allows to abstract the user
interface data model from the parameter formats of the underlying MATLAB® function.

A button, which triggers the processing action of the user supplied parameters, is
associated with the view. Upon click, the view data validation is triggered first. If this
operation succeeds, the controller is invoked. Its tasks are to transform the view data
model into the FFT MATLAB® parameter model. The controller then invokes the FFT
MATLAB® DAO with the transformed data model. After the algorithm has completed,
the DAO has returned the results as a results data model object, which is forwarded to
the view. Before it is able to perform this operation, it transforms the data model values
into native MATLAB® Builder JA objects, which are then passed to the FFT MATLAB®
component.

After the call to the MATLAB® Builder JA component has returned, the DAO un-
wraps all results from the returned native MATLAB® Builder JA objects and generates a
result data model object out of it. This object is then passed through the controller back
to the view, where it is displayed in charts. Furthermore, the FFT MATLAB® DAO is
responsible for initializing and destroying the MATLAB® component as well as creating
and destroying native MATLAB® objects allocated by the DAO itself.

The MATLAB® component is invoked by the DAO and performs the actual FFT
algorithms and returns the input signal as well as its amplitude and phase spectra. This
component is discussed in more detail in section 4.3.1.

4.3. Creation the Prototype Exercise Page

This section discusses how the Fast Fourier transform exercise page has been created and
deployed. This page serves as a field to study different software libraries and to develop
the software architecture developed in section 4.2. and a model to create more exercises
by the teaching staff, which is developed in section 4.7.

4. THE LEARNING PLATFORM 38

4.3.1. Creating the MATLAB® Function

First, it needs to be defined, what the MATLAB® function is supposed to do and what are
its input and output parameters. The function has to carry out the Fast Fourier transform
(FFT) on one-dimensional signals. In order to input a signal to a DSP tool, the signal
first has to be created. This is performed by the inputSignalGeneratorStruct function.
As mentioned in section 3.3.2., one type of signals is sinusoidals and sinc signals having
a given frequency, amplitude, length and are sampled at a given sampling frequency.
Another type are impulses with a given amplitude and offset from t = 0. Constant signals
with a given length and value as well as boxcar signals with a given length, amplitude and
duration of that amplitude and Gaussian bell curved signals with a given length, standard
deviation and mean can also be generated by this function.

The function outputs the input signal and its amplitude and phase spectra as an array
of double values. The first double arrays holds the input signal fed into MATLAB®’s
fft function, whereas the second arrays holds the amplitude and the third array holds the
phase spectrum of the given signal. Thus, the signature of the MATLAB® function is the
following:

function [x, y, fftXAxis, fftAbs, fftPhase, funcEquation,

diagramMetadata] = FourierTransformDemoStruct(

inputSignalParameters, NFFT, showFftLogScale)

Using deploytool, the above mentioned function is compiled into a jar file, which
is deployed on an ordinary desktop computer or within a servlet container. The user
interface of deploytool prompts for embedding the function into a Java class. In this
demonstration, the Java class is named FourierTransformDemoStruct.

The compilation process requires Java Development Kit (JDK) to be installed onto
the computer and it’s bin/ folder to be on the PATH environment variable. After the
compilation has succeeded, the jar package with the FourierTransformDemoStruct classes
in it has been created. Its prototype is the following:

public class FourierTransformDemoStruct {

public FourierTransformDemoStruct(); // the constructor

// the actual MATLAB function

public Object[] FourierTransformDemoStruct(

int numberOfOutputParameter,

Object... inputParameters);

}

This component is then deployed with all libraries, on which a web application4 depends,
to the WEB-INF/lib folder, from where Tomcat loads everything up once the servlet is
initializing.

4A web application is a collection of static HTML pages, JavaScript files, style sheets, servlets and JSP
files

4. THE LEARNING PLATFORM 39

Since MCR depends on its own native libraries, also those libraries are reloaded every
time the servlet initializes if they were placed in the WEB-INF/lib folder. Such a reload
of native libraries, however, results in a java.lang.UnsatisfieldLinkError, because native
libraries can only be loaded once. Thus, the javabuilder.jar file of the MCR has to be
deployed into a location, where it gets loaded only once upon server start. Such locations
are the path of Tomcat’s common class loader or Tomcat’s shared class loader. Those
paths are adjustable in the catalina.properties file. The directory, where the native MCR
libraries are stored, are given to the JVM running Tomcat either as environment variables
or as the -Djava.library.path parameter.

In order to abstract from the work needed to access the MATLAB® component, a
data access object (DAO) is created. Such DAOs are widely used to abstract from low-
level database or file reading and writing operations or invoking other data generating
components like the MATLAB® Builder JA components. The responsibilities of the
MATLAB® DAO are discussed in section 4.2..

4.3.2. Creating the Java Code

In the first part of this subsection it is discussed how to create a servlet based sample
application, that interacts with the above created MATLAB® component. The second
part of this subsection covers how this sample application is created using JavaServer
Faces.

A new servlet class named FftDemoServlet is created as part of a web application
named TomcatTest. The servlet class imports the MATLAB® component class as well
as all classes needed from the MCR. In order to optimize performance, the MATLAB®
component classes is instantiated in the servlet’s init() method. This avoids reinstantiation
of the component class every time the servlet handles a new request.

For testing and demonstration purposes, it is best to have all parameters to the trans-
fered servlet using the HTTP GET method5. This allows modifying them on the fly in
the web browser’s address bar. Later on in production, HTTP POST will be used in order
to hide the parameters from users. This avoids the possibility of easily overloading the
server by adding huge numbers into the GET request string.

Servlets handle HTTP GET requests in their doGet(HttpRequest request, HttpResponse
response) method. The request parameter object contains all given parameters, which the
FftDemoServlet retrieves and checks for consistency. The consistency check avoids send-
ing erroneous and too huge parameter values to the MATLAB® component. After all
parameters have passed the consistency check, they are wrapped into MCR objects like
MWNumericArray or MWCharArray.

Now, that all input parameters are ready and the MATLAB® component has been
instantiated, the MATLAB® function is called. The results of the call are collected into

5The HTTP protocol has been introduced in section 2.1.2.

4. THE LEARNING PLATFORM 40

the returned array of Object named results. The first input signal WebFigure is unpacked
from the result array using:

MWJavaObjectRef ref = (MWJavaObjectRef)results[1];

WebFigure inputSignalPlot = (WebFigure)ref.get();

The amplitude and phase spectra plots are unpacked in the same way. As a next step, the
WebFigures are attached to the session, so that they are retrievable by the displaying JSP
page. This is demonstrated by the following code snippet.

HttpSession session = request.getSession();

session.setAttribute("inputSignalPlot",inputSignalPlot);

session.setAttribute("inputSignalPlotBinder",new

MWHttpSessionBinder(inputSignalPlot));

session.setAttribute("outputSignalPlot",outputSignalPlot);

session.setAttribute("outputSignalPlotBinder",new

MWHttpSessionBinder(outputSignalPlot));

session.setAttribute("phasePlot", phasePlot);

session.setAttribute("phasePlotBinder", new MWHttpSessionBinder(

phasePlot));

As a last step, all native MATLAB® resources have to be freed. This includes all
instances of MWArray and its subclasses as well as the MWJavaObjectRef objects and
the results array. This is done by calling MWArray.disposeArray(...) on the object in
question. When the lifetime of the servlet itself has ended, the instance of the MATLAB®
component class is disposed in the servlet’s destroy() method.

During the vast majority of operation, errors can occur. These are indicated by Java ex-
ceptions thrown back to the calling function. They have to be properly handled. Some er-
rors come from erroneous user input, others are generated by misconfigured and wrongly
used software components. In the phase of software prototype creation, exceptions are
only logged to the console of Tomcat.

The above mentioned cleanup operations like freeing memory from native MATLAB®
resources have to be done regardless whether an exceptions has been thrown or not. Thus
those operations are performed in a finally block, which is always executed.

Next, it is discussed how a JavaServer Faces application using the above generated
MATLAB® component is created. Based on the parameters needed for the called
MATLAB® function, the data models are created as they serve as a base for the UI and
the DAO. As a second step, the DAO is created for the MATLAB® function and tested.
Then, the UI is designed6 and the JSF XHTML markup is created7. Finally, the controller,
which wires up everything, is generated. By separating the responsibilities to all of those

6See section 4.1.1.
7See section 2.5.2.

4. THE LEARNING PLATFORM 41

components, the source code stays easily readable and understandable. Furthermore, the
well-known MVC pattern is realized allowing other software experts to understand the
system easily.

As shown in figure A.6., the view is composed of XHTML fragments in order to im-
prove reusability of code. Thus, the main XHTML file of the FFT view only includes
the necessary CSS style sheets and JavaScript files and defines spaces for the charts dis-
playing the output signals. The input signal and FFT parameter blocks are included from
other XHTML fragment files.

The application consists of more than one data model. This is done in order to reflect
the different domains, in which the data is used. The data model of the view’s input fields
is responsible for collecting the users inputs and validating them. The data model of the
MATLAB® DAOs holds all data needed for the invocation of its MATLAB® function.
Finally, the result data model has all data prepared to be displayed to the user as charts
and their labels and axes labels. The advantage of these different data models is, that the
views or DAOs do not need to transform any data. The transformation is solely triggered
by the controllers and performed by the corresponding data models, which are part of the
business logic.

4.3.3. The Charts

Since the charts display the outputs of the algorithms given the parameters inputted by the
user, special attention has to be payed to the output visualization as this is a prerequisite
for the interpretation of the results by the end-user8.

Since MATLAB® Builder JA, which has been introduced in section 2.4., is used,
a natural choice is to use its build-in WebFigure feature. On the other side, JavaScript
chart libraries can be employed to embed visually appealing and interactive charts. As an
example, the Flotcharts library is introduced in section 2.2.3..

In this subsection, the WebFigures produced by MATLAB® Builder JA [42] and the
JavaScript figures produced by the Flotcharts and Highcharts libraries as well as the work-
flows with both libraries are compared.

Workflow for MATLAB® WebFigures The workflow for retrieving a WebFigure
and attaching it to the current session is described in section 4.3.2. As mentioned in
section 2.4., a MATLAB® WebFigure is embedded into a web page by using the JSP tag
library supplied by the MATLAB® Builder JA software package or by requesting HTML
markup from MATLAB® Builder JA.

If the view is realized using a JSP page and a servlet has forwarded the request to the
JSP page using a RequestDispatcher object, the WebFigures JSP tag library is a natural
choice as it only requires to insert JSP markup. Thus, JSP scriptlets are avoided. First,

8More on the results interpretation is written in section 3.3.1.

4. THE LEARNING PLATFORM 42

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<%@ taglib prefix="wf" uri="http://www.mathworks.com/builderja/
webfigures.tld" %>

<html>
<head>
<title>MATLAB Builder JA WebFigure</title>
</head>
<body>

<wf:web-figure name="outputSignalPlot" scope="session" width
="600px" height="500px" />

</body>
</html>

Figure 4.1. JSP code snippet displaying a MATLAB® WebFigure object

WebFigureHtmlGenerator generator =
new WebFigureHtmlGenerator("WebFigures",

getServletContext());
String webFigureMarkup =

generator.getFigureEmbeddedString(outputSignalPlot,
"outputSignalPlot",
"session",
null,
null,
null);

Figure 4.2. Java code retrieving HTML markup for embedding a MATLAB® WebFigure
into a web page

the tag library has to be declared in the beginning of the JSP file. In this example, as the
tag prefix, wf is used. After its declaration, it is used later on using the <wf:web-figure>
tag. This tag needs the name of the WebFigure object defined in the servlet, which has
attached it to the scope. Additionally, the scope in which it has been attached to the servlet
context, is required. Optionally, the size of the WebFigure on the screen is defined in the
<wf:web-figure> tag. This is demonstrated by the code snippet shown in figure 4.1.

Another possibility to insert MATLAB® WebFigures into a web page is to create
HTML markup and use this directly in the web page created by a servlet or a JSP file. This
is achieved by using MATLAB® Builder JA’s WebFigureHtmlGenerator object. This ob-
ject creates a string, which embeds the WebFigure9 into a HTML iframe object. Assum-
ing, that the WebFigure is already attached to the context of the current servlet, markup
generated for it by the code snippet shown by figure 4.2.

9To be more precise, the WebFigure is technically another servlet, to which the web browsers sends
HTTP requests using AJAX.

4. THE LEARNING PLATFORM 43

From that code snippet, it can be seen, how the “WebFigures” string tells the markup
generator, that the WebFigures servlet is mapped to the WebFigures path and the
outputSignalPlot object refers to a WebFigure object.

Additionally, in [42] it is also mentioned the possibility to include static images of the
WebFigure into a web page. Since this does not allow for interactivity, this option is not
considered within this work.

Workflow for Flotcharts Flotcharts rely on data in JavaScript format. Thus, the data
returned by the MATLAB® component has to be transformed into a JavaScript array
suitable for Flotcharts. A workflow creating a simple chart using Flotcharts is described
in section 2.2.3.

For the FFT example, the data is transformed into a string processable by Flotcharts
and inserted as JavaScript code into the XHTML markup generated by the JSF page10.
Compared to the simple example shown in section 2.2.3., for the FFT example, there is
a need to supply options to Flotcharts plot function in order to display a chart according
to the requirements stated in the use case section 3.3. The configuration options are listed
in the JavaScript code snippet in figure A.12. In order to make the cross-hair11 feature
working, the jquery.flotcharts.crosshair.js and jquery.flotcharts.navigation.js plugin files
have to be included into the main HTML document, along the jQuery and Flotcharts
library JavaScript files.

Adding axes captions and chart titles is not yet implemented into the Flotcharts library.
Thus these need to be embedded in a 3x3 table. The chart’s <div> container itself is
placed in the center cell, whereas the y axis caption is placed in the left cell of the middle
row, whereas the x axis caption is placed in the middle cell of the lower row. The caption
of the chart is placed in the middle cell of the upper row. Thus, this problem is solvable
without much effort.

Workflow for Highcharts As with the above mentioned Flotcharts library, charts
are produced by the Highcharts library from JavaScript double arrays. This leads to the
same principal workflow for Highcharts charts as with Flotcharts. Thus, for the general
workflow is referred to the previous paragraph.

Flotcharts and Highcharts, however, differ in the format of their configuration option
object. This requires to create two new functions, which create the required JavaScript
code fragments. A major code refactoring is, however, not necessary to switch between
Flotcharts and Highcharts.

Compared to Flotcharts, Highcharts reduces the programming work needed in or-
der to get the zoom along the x axis, the axes captions and chart title, the horizontal

10JSF, JavaServer Faces are introduced in section 2.5.2. and the workflow for creating the JSF based
FFT demo is introduced in section 4.3.2.

11A cross-hair refers to a thin vertical line following the mouse pointer in x direction over the chart.

4. THE LEARNING PLATFORM 44

zoom and the crosshair feature working. These features are simply enabled through the
highchartsOptions object.

Additionally, the save to disk feature in Highcharts works significantly more reliable
than with Highcharts. This achieved by a better implementation of the canvas2image12

feature. If the browser is not capable of HTML5 canvas, the chart can be send to a third-
party HTTP server, which takes care of converting the chart to a downloadable image.

Comparison of MATLAB® WebFigures and JavaScript based chart frame-
works Both chart libraries allow to generate the line charts for the FFT amplitude
spectrum. If the chart is not zoomed at all, both charts look similar and are visually
appealing.

Problems, however, occur when charts are zoomed. MATLAB® WebFigures only
zoom equally along the x and y axes. Both axes, however, are dropped out of the chart
if the chart is zoomed in much. This leads to the fact, that the user is no longer able to
read the axes and thus does not know at which values the plot currently is situated. In
an application like this learning platform, hiding axes from and thus disabling the user
to properly read and interpret the results renders the charts unusable. This is especially a
problem as the zoom behavior of MATLAB® WebFigures cannot be influenced neither
by the programmer nor by the user of the learning platform.

The JavaScript based chart frameworks like Flotcharts, on the other side, allow for
zoom configuration. This means, that the Flotcharts and Highcharts frameworks allow to
configure the zoom method. It can either be configured to zoom equally along the x and
y axis, but it is also possible to zoom only along the x axis. Flotcharts also allows to insert
multiple plots into a chart. Additionally, the chart always show the axes when zoomed,
which allows the user to read the axes tick labels. It is also possible to insert a crosshair
into the chart. Along with the cross-hair, a legend can be inserted, which shows the values
on the x and y axes at the current mouse pointer position.

To sum up the comparison, it has to be said, that MATLAB® WebFigures is easier
from the programmer’s point of view as it requires only MATLAB® knowledge. Since, as
mentioned in section 3.1., the MATLAB® skills of the teacher are very good, this appears
as the natural choice to implement the learning platform. The JavaScript based chart li-
braries, on the other side, require skills in JavaScript programming language. They, how-
ever, offer much more configuration options, are very user-friendly and intuitive charts
can be produced.

Due to the severe drawbacks of MATLAB® WebFigure’s user interface compared to
its JavaScript based counterparts, for the learning platform to be developed within this
work, Highcharts has been chosen. The Flotcharts framework has not been chosen due
to its missing direct support for axes labels and chart titles as well as their unreliable
implementation of the save to local disk feature as discussed in section 2.2.3.

12The canvas2image feature allows to retrieve the chart as an image using HTML5 canvas.

4. THE LEARNING PLATFORM 45

4.4. Directory Layout

In this section, the directory layout for the learning units is developed. JavaServer Faces
projects follow a specific directory layout in order to keep everything simple and manage-
able. Further requirements are also imposed by the usage of Java packages.

All web resources including the JSF markup files are stored under the WebContent/
folder. Here, the fragments of the UI are stored in a subfolder BuildingBlocks/ in order to
separate them from the parent view files13, which are served to the browser. The building
blocks are the parts out of which the user interface is assembled. This implies, that those
files cannot be used alone. Examples for UI building blocks are the input signal parameter
block and the FFT block.

The actual web pages including the exercises are stored below the courses/ folder. For
each course, a representing subfolder is created. Below these course subfolders, folders
for lecture material and exercises are created. Below these folders, the lecture units are
stored.

The JavaScript files and CSS style sheets are stored in the resources/ folder. As
mentioned in section 2.5.2., this allows the abstraction from their actual storage using
<h:outputScript ...> tags in the JSF markup. Thus, those files can be moved to another
location if needed without the need to change the paths in the <h:outputScript ...> tags.

Within the resources/ folder, subfolder style/ is created to separate the CSS style
sheets from the JavaScript files, which are stored in the js/ subfolder. The JavaScript
libraries are further separated from each other using another subfolder hierarchy.

The WEB-INF/ folder is needed by the servlet container in order to run the web appli-
cation. It contains the deployment descriptor14 web.xml and all additional Java libraries
deployed alongside the web application. The compiled Java classes are stored in the
WEB-INF/classes folder. Within this folder, for each separate Java package a subfolder
is created. Id est, a class fi.frohling.learningplatform.datamodel.BoxcarParameterModel
is stored in WEB-INF/classes/fi/frohling/learningplatform/datamodel/BoxcarParameter-
Model.class.

4.5. Navigation

In this chapter, the method how navigation elements are included into the learning plat-
form, is discussed. The navigation back to parent pages is realized by bread crumbs.
Bread crumb refers to a hierarchical list of navigation items, that leads to the currently
opened page.

Since the JavaServer Faces technology does not provide a mean to generate such lists,
an own solution is created and described here. Such a hierarchical list is described using

13These parent view files are the exercise units and the index pages.
14An example deployment descriptor for JSF based web application is shown in section 2.5.2.

4. THE LEARNING PLATFORM 46

a tree data structure. In order to make it easily editable from the outside, a XML file is
used. Its name is breadcrumb.xml. It holds the entire navigation tree as a list of TreeNode
elements. Each TreeNode element has links to its parent and its child nodes as well as
links to pages related to it. The bread crumbs contain as payload the URI of the node and
a descriptive text as well as links to their parent and child nodes.

The class BreadcrumbList, which is part of the learning platform’s data model, is
responsible for reading in the XML file and converting it into the corresponding Java data
structure, List<Breadcrumb>. The corresponding XHTML view files query the list of
breadcrumbs based on the URI of the current request.

The homepage of the learning platform as well as the homepages of all courses stored
in the learning platform need to display a list of links of courses and learning material,
representatively. For this purpose, the above mentioned bread crumb data structure is
employed as well. In this case, the children attribute is used to store all bread crumbs,
which represent content below the currently viewed page. The view XHTML file simply
queries this list and displays it as a HTML unordered list15.

As mentioned in chapter 3.3., material related to the currently viewed learning unit is
valuable. Thus, a mechanism to include such links is needed along the bread crumb navi-
gation. For this purpose, the data structure in the XML file breadcrumbs.xml is extended
by adding the links to related pages to the data structure. After reading in the file by an
object of class BreadcrumbList, the view calls a function, which returns links to all related
pages of the currently viewed URI. The view code displays them sorted by internal and
external links on top of the page.

4.6. User Interface Components

In this section, the user interface components of the learning platform are introduced.
First, the basic layout of the UI and then the actual components are introduced.

As mentioned in section 3.3.1., the UI components are displayed as blocks. This is
done to mimic the block layout, which allows to grasp the signal flow much easier rather
than using mathematical formulas.

All inputs and outputs related to the blocks are collected and displayed within those
in order to provide an intuitive user interface to the learner. These blocks can be collapsed
and expanded in order to give the learner a chance to easily see the whole block layout on
smaller screens.

All components have to be reusable in order to facilitate their quick and easy use in the
actual exercise pages. This is achieved by passing the reference to their backing bean16 as
a parameter using the JSF tag

<ui:param name="mybean" value="#{controller.dataModel.object}">

15In HTML, an unordered list is defined using tags. Its list element are defined by tags.
16In Java Enterprise Edition, the term backing bean refers to the data model.

4. THE LEARNING PLATFORM 47

Figure 4.1. Fast Fourier transform block

Figure 4.2. Fast Fourier transform data model

and by assigning a unique name to them using

<ui:param name="myname" name="myname">

For the exercises of the course “Introductory Signal Processing”, the following blocks
were created: Fast Fourier transform block, Matrix input and output block, Multiplicator
block, arrows and nodes, summation block, sampler block, quantization block, chart dis-
play container and input signal parameter query container. These are briefly introduced
in the remainder of this section.

The Fast Fourier transform block is used to collect the length N as a parameter of the
FFT and whether the result shall be displayed in linear and logarithmic17 scale. The FFT
block is shown in figure 4.1.

The convolution block is a passive block, because as such it does not collect any input
from the user nor displays any results. Thus, it does not need any backing bean assigned
to it. The convolution block simply consists of a mathematical convolution sign. The
convolution block is displayed in figure 4.3.

In order to be able to collect scaling factors, which are used exempli gratia in the
FIR18 filtering exercise, the multiplicator block has been developed. This block consists
of a multiplicator symbol and an input field, which queries the scaling factor from the
user. Since data is queried by the multiplicator block, a backing bean has to be provided
to the component. A screenshot of this block is shown in figure 4.4.

Figure 4.3. Convolution block

17For the logarithmic scale, decibel (dB) is used.
18Finite Impulse Response

4. THE LEARNING PLATFORM 48

Figure 4.4. Multiplicator blocks used in a FIR filter

Figure 4.5. Multiplicator block data model

Arrows and nodes are employed to visually connect the building blocks of the user
interface. They are technically not related to any functionality and thus they do not need
any backing bean being provided. Arrows come as vertical arrows pointing downwards
and horizontal arrows pointing in both direction. Nodes are simple black dots.

The summation block is used to indicate, that summation of multiple signals occurs
at the point being. Since summation does not need any parameters, no backing bean is
provided for this block. Visually, this block only contains of a plus sign. The block is
shown in figure 4.6.

The sampler is a block, which collects the sampling frequency as input parameter
from the user. Thus, a backing bean has to provided to this component. The sampler
component is shown in figure 4.7. and its data model is shown in figure 4.8.

The quantizer block is similar to the sampler block having one input field. This input
field collects the resolution of the quantized signal in bits. Since it collects user input, a
backing bean is needed to be provided to the component as a UI parameter. The quantizer
block is depicted in figure 4.9. and the data model is shown in figure 4.10.

After results are computed by the deployed MATLAB® function, results are displayed
using the chart block. This block requires as UI parameters the ID of the DOM container,

Figure 4.6. The summation block

4. THE LEARNING PLATFORM 49

Figure 4.7. The sampler block

Figure 4.8. The data model of the sampler

which holds the chart, the customization options of the chart19, the data series to be plotted
and the caption of the chart20.

The main element of the chart block is the chart itself. The charts are realized using
the Highcharts JavaScript library21. The charts can be hidden and recalled by pressing the
Hide and Show buttons on the top. The chart is resizable like ordinary browser frames
and by using the plus and minus buttons on top of the chart. A copy of the chart can be
printed or saved to disk by clicking the disk icon on the top right of the widget. Horizontal
zoom is performed by marking the desired area inside the chart. The Reset zoom button
allows to return to the full data view. An example of the chart block is shown in figure
4.11.

The input signal block is a complex UI component used to collect all required input
signal parameters from the user. It is backed by a bean, which is structured the same way
as the UI component in order to make this complex structure easily understandable by
both end-users and programmers. The first part, which is always visible, is the common
signal parameter query group. It is used to select the type of the signal and x axis range
and the sampling frequency of the signal to be generated. The sampling frequency used
in the input signal block must not be mistaken with the sampling frequency used for the
sampler component. The common signal parameter block also checks via an AJAX call
whether the length of the generated signal is short enough in order to avoid high load on
the server caused by a demanding request.

Figure 4.9. The quantizer block

19The chart is customized using the deployed MATLAB® function in order to provide an unique plotting
interface to the creators of the learning units.

20This is usually the equation of the displayed function, but in principle any free text is possible to be
provided here.

21The Highcharts library is introduced in section 2.2.3.

4. THE LEARNING PLATFORM 50

Figure 4.10. The quantizer data model

Figure 4.11. The chart block

4. THE LEARNING PLATFORM 51

Figure 4.12. Input signal block querying parameter for sinusoidal signal

Based on the signal type selection, the group querying the signal-specific parameters
is shown, whereas all the remaining groups are hidden. If sine or cosine signal types
are selected, input fields for signal frequency, amplitude and phase offset are displayed.
Selecting boxcar as signal type results in displaying input fields for signal amplitude and
width in samples, where the signal exhibits the inputted amplitude. Sinc signals need
as a parameter the frequency, the amplitude and the phase offset. The Gaussian signals
are created using mean µ and standard deviation σ. Finally, for constant signals only
the value is queried. An example of the input signal block querying parameters for a
sinusoidal signal is shown in figure 4.12. and the underlying data model is shown in
figure A.5.

4.7. Model for Creating Exercises

Based on the conceptual and technical considerations in sections 3.3., 4.6. and 4.2., in
this section, a model of the workflow for creating learning units is derived. This process
is illustrated by figure A.14.

Before a learning units can be created, its learning outcomes are defined. As men-
tioned in chapter 1., a powerful tool to achieve this is to define questions, which the stu-
dent has to answer in order to see whether she fully understands the subject to be taught
by this unit.

Since the learning platform is based on the Model-View-Controller pattern, after the
learning goals and the question sheet have been defined, the data model22 is created. It
defines all input and output parameters of the learning unit. The data model is then pro-
grammed into Java classes under the fi.frohling.learningplatform.datamodel package. In
order to separate the XHTML page form data from the MATLAB® input parameters and

22The data model describes the domain of the application.

4. THE LEARNING PLATFORM 52

the results, data models are created for each of those. The results models must implement
the ResultsModel interface in order to achieve a unified calling interface.

As a next step, based on the data model, the building blocks of the user interface are
identified. Those are either already existing UI components or a component, which is
created from scratch.

After that, the back end functionality is created. The first step to achieve this is to
program, test and compile the MATLAB® function. For calling a MATLAB® function,
a data access object (DAO) is created under the fi.frohling.learningplatform.dao package.
As with the results data model, in order to have a unified calling interface, all DAO classes
must implement the MatlabDao interface.

After the DAO is created, the controller class, which calls the DAO object, is pro-
grammed. It is worth noticing, that an object of the controller class owns an object of the
DAO class as well as an object of its corresponding results model. The controller provides
a method, which is linked as an action to a command button in the user interface. The
task of the controller’s method is to create a new object of its corresponding MATLAB
parameter class, assigns this object to the DAO object and calls the perform() method of
the DAO object.

4.8. The Introductory Signal Processing Course

In this section, the exercises, of which the Introductory Signal Processing course is com-
posed of, are introduced. After selecting the course from the course listing, the student
gets presented with a list of learning units associated to the course. The course is com-
posed of the following exercises: Fast Fourier transform, Convolution, Sampling and
Quantization, Windowing, FIR Filtering and Convolution theorem.

The Fast Fourier Transform Exercise The purpose of this exercise is to give the
student the possibility to study how different signals behave in frequency domain. Thus,
the exercises need to consist of an input signal block, a Fourier transform block and two
charts showing the generated input signal and its Fourier transform.

The Convolution Exercise This exercise demonstrates the principles of convolution.
This requires to place two input signal blocks and two charts displaying the generated
input signals. These two signals are fed into the convolution block. The result of this
operation is shown in another chart on the right of the page.

The data flow starts after all required inputs are made and the Process button has been
pressed. The process() function of the managed bean23 of class ConvolutionController
is called. It creates an object of MatlabConvolutionParameterModel24, feeds it into the

23Java Beans are introduced in section 2.5.2.
24Objects of this class prepare data to be fed in parameters to the deployed MATLAB® function.

4. THE LEARNING PLATFORM 53

ConvolutionMatlabDao object and calls the DAO’s perform() method. The DAO calls the
convolution MATLAB® function, unpacks the resulting data needed for the charts and
creates an object of MatlabConvolutionResultsModel. This object is used by the view to
display the charts.

The Sampling and Quantization Exercise Sampling refers to discretization of a
continuous signal along the time axis, whereas quantization refers to discretization of a
signal along the y axis. Both method are needed to be performed for an analog-to-digital
conversion.

Also for this exercise, an input signal is needed and thus the UI has to be equipped
with an input signal block. The sampler block collects the sampling frequency used for
this exercise and the quantization block queries the resolution of the quantized signal
in bits. Charts are used to display the generated input signal and its Fourier transform,
the sampled signal and its Fourier transform as well as the quantized signal. Due to
the developed framework, the flow of data principally works the same way as with the
Fourier transform and the convolution exercise except that objects of the classes used for
the sampling and quantization exercise are used.

The Windowing Exercise Signals encountered in the real world last infinitive time.
Thus, for studying and processing signals in a computer in digital domain, signals need
to be cut of for a specific amount of time. If the signal is simply cut of, the Gibbs phe-
nomena occurs due to the sharp transition. Thus, windows have been introduced in order
to alleviate the distortions caused by the Gibbs phenomena.

Since the exercise allows to study the effects of windowing on a signal, the input
signal block is needed in this exercise as well. Additionally, the windowing block, which
queries the window type and its length from the user, has to be included into the exercise
user interface.

After processing, charts for the input signal and its Fourier transform, the window
function, its Fourier transform and the resulting windowed function and its Fourier trans-
form are displayed. Also for this exercise, the data flow is principally the same due to the
developed framework.

The Convolution Theorem Exercise The convolution theorem is used to save com-
putational power when conducting convolution. In mathematical terms, the convolution
theorem, is expressed as:

z = x ∗ y = F−1(F (x)F (y)) (1)

where F denotes the Fourier transform and ∗ denotes convolution. Since convolution has
a computational complexity of O(n2) and FFT of O(n · logn), applying the convolution
theorem has a significant computational advantage.

4. THE LEARNING PLATFORM 54

As with the convolution exercise, two input signals and thus two input signal blocks
are needed. To depict the convolution theorem, a convolution block, three FFT blocks25

and a block for point-wise matrix multiplication are needed.
Charts display the input signal, the convolved and the signal, that has been processed

using the convolution theorem. Also, a chart showing the residual signal and a text block
showing the summed mean-squared residual is placed into the block diagram of the ex-
ercise. Again since the data flow is determined by the developed framework, except that
the instantiated classes are suitable for the convolution theorem exercise.

The FIR Filtering Exercise Another exercise, which makes use of the block structure
of the user interface, is the FIR filtering exercise. This exercise serves to demonstrate the
basic properties of low- and highpass filtering.

Here, an input signal is fed into an array of multiplicator blocks. The number of
multiplicator blocks, which resembles the filter order, is configured on top of the page.
The results are finally summed up and the resulting signal is shown in a chart. Also the
generated input signal is shown in another chart. Internally, the backing data model of the
UI is composed of an array of Multiplicator class instances26, an input signal object.

25Here, two FFT blocks for the forward FT are needed and one FFT block for the inverse operation are
needed.

26The multiplicator objects themselves encapsulate the multiplicator as a double value.

5. DISCUSSION OF THE RESULTS

This chapter sums up and discusses the results, which were obtained by the previous
chapter. The results are compared with the existing approaches from chapter 1.

As mentioned in section 3.1., the legacy Invocom learning platform used the dis-
continued MATLAB® WebServer toolbox to compute and visualize mathematic calcu-
lations. The here developed software, however, uses MATLAB® Builder JA, which of-
fers the possibility to deploy MATLAB® functions to a Java EE application server. Such
Java EE applications allow the deployment of Java code, which generates HTML markup.
MATLAB® Builder JA offers, compared to the legacy MATLAB® WebServer, better in-
tegration into distributed software systems. Additionally due to the fact, that the CGI
interface is not used anymore, security and performance have been improved.

One of the goals of this project is to create a remote laboratory. Such systems have
been briefly introduced in chapter 1. Remote laboratories are very beneficial to students
as they allow for hands-on-experience on the topic with inputs and parameters, which
they are able to choose freely. The here developed block layout with the parameter input
directly inside the blocks of the user interface allows to grasp the main elements of the
demonstration unit easily.

This also leads to student-centeredness. As described in section 3.3., the learning
platform has been designed and developed with the student as the main actor in mind. As
mentioned earlier, students are able to choose all parameters of the subject to be studied
freely, so that they get to experiment with the matter rather than studying dry mathematical
formulas from the blackboard or the lecture slides.

The concept of nonlinearity in learning is realized by adding a “Related Content”
section to the exercise page. Into that section, links to internal and external resources
related to the topic of the exercise, are inserted. This motivates the student to stroll through
the learning platform or the WWW finding information presented from different points of
view.

As the student plays the central role in this learning platform, her learning is fostered
towards the clearly defined learning goals by offering the possibility to attach a question
sheet to the exercise. This question sheet is printable, which allows the learner to individ-
ually take notes on the sheet. On the other side, the questions allow to monitor the learning
process of the students by offering a possibility to collect the sheets and to evaluate them.
Such question sheets also offer the possibility to reduce exam pressure by allowing the
students to collect bonus points from those exercises. The objective of the question sheet

5. DISCUSSION OF THE RESULTS 56

is to guide the student towards the learning goals. This is refereed to as questions- and
test driven model. On the other side, forcing students to answer the questions on those
sheets is possible with this learning platform as well. Such a force is id est introduced
by requiring the student to work through the question sheets in order to pass a course.
This is refereed to as task-driven model. Such a model is useful, if an examination can
be skipped. This should, however, be well thought of. Instead, it is possible to extend the
course over another teaching period or to lower the amount of ECTS credits awarded for
the successful completion of the course in question.

As the main result of this thesis project, a MVC software architecture has been devel-
oped, which allows to create and integrate reusable user interface components according
to the building block principle. The challenge of making MVC to work over the WWW
has been overcome by using the JavaServer Faces framework.

The problem of integrating the deployed MATLAB® functions into the learning plat-
forms, which requires much custom Java code to be written, has been separated from the
user interface code by developing DAOs for the MATLAB® functions. If another data
source is desired later in the future, the UI code does not need to be changed, but only
the DAO class has to be developed newly. This allows to easily integrate another nu-
meric computation system like GNU Octave or SciLab if MATLAB® ceases its Builder
JA product or if the teaching is switched to another numeric computation system.

Apart from visualizing the problem setting of the exercise using a building block
UI layout, results also need to be visualized in a meaningful way. This requires charts,
which are interactively zoom- and panable. MATLAB® Builder JA ships WebFigures,
a framework to show ordinary MATLAB® figures on web pages. These, however, lack
interactivity as their zoom functionality is not capable of zooming along axes and axes dis-
appear if zoomed. Thus, another solution has been sought and found as JavaScript chart
libraries. These allow charts to be zoomed and paned along axes, add crosshair navigation
aids including values at the current crosshair position to be shown in the legend. In con-
trast to MATLAB® WebFigures, JavaScript-based chart libraries do not cause network
traffic upon zooming or panning due to the fact that the chart logic and the data is trans-
ferred entirely into the browser. As all components of MATLAB® are proprietary and
thus closed-source, the shortcomings of MATLAB® WebFigures cannot be fixed by the
open-source software developer community. On the other side, since the JavaScript chart
libraries are open-source, bugs are fixed quickly and new features are added if requested
by the user community. Since one of the requirements was to have a chart configuration
as close to MATLAB®’s figure and plot functions, an output parameter as a MATLAB®
struct has been added, where the creator of the MATLAB® function has the possibility
to configure the appearance of the JavaScript chart. Since the underlying technologies
differ much, it is clear, that the possible usable properties are different from the ones
MATLAB® uses.

5. DISCUSSION OF THE RESULTS 57

In contrast to the existing, legacy Invocom learning platform, the layout of the new
platform’s blocks is not as good as with the Invocom platform. This is due to the fact, that
the new platform’s blocks are laid out using HTML tables. This leads to an adaption of
the table columns width according to the block, which takes the most horizontal space. If
the difference of the blocks widths is huge, this leads to arrows not starting or ending at
the blocks edges. This problem has been overcome by the Invocom platform by imple-
menting a pixel-exact layout. Such a layout, however, does not allow for exercise pages,
which are assembled out of those building blocks using JavaServer Faces’s <ui:include>
mechanism.

Another possibility mentioned in chapter 1. is to integrate this learning platform into
existing systems like Moodle. Such an approach requires the programmer to familiarize
herself with such platforms. Additionally, if the teaching institution decides to switch to
another system, huge efforts are needed to port the learning platform to the new system.
Thus, this learning platform has been implemented as a stand-alone system. Nowadays,
the possibilities offered by cloud storage are promising as well. This pushes the data and
responsibility from the teaching institution to an external service provider. The hardware
and service maintenance costs are lowered. In case of errors or software updates, however,
the external service provider has to be contacted and asked for assistance. This introduces
dependency. Also the load on the servers owned by the teaching institution caused by
the learning platform is rather low. Thus, the learning platform can be installed on a
machine, which is already used by other services. Thus, there are no significant benefits
of outsourcing the learning platform to a cloud provider.

In chapter 1., also the concept of cooperative learning has been introduced. This con-
cept is promising in that sense, that individual understanding of the topic by the students
in the learning group is combined. This fosters discussions on the topic beneath the stu-
dents and helps them to understand the subject taught using the other group members.
At Tampere University of Technology, solving exercises to be graded in groups is not
desired. Thus, the learning platform has been developed with the individual student in
mind. It is, however, possible to adapt the question sheets to foster cooperative learning.

6. CONCLUSIONS

In this chapter, the results are summed up and their importance as well recommendations
for their practical application are discussed. Furthermore, suggestions for future research
based on this thesis are given.

This thesis project has been an innovative research and development project in the field
of applied software development. Starting from the already existing learning platforms,
possible learning strategies useful for the needs of newly developed platform, have been
taken into account to create use cases. These use cases have been realized by a JavaServer
Faces based web application prototype. Based on this prototype, the software architecture
and a model for creating more exercises have been developed.

In the beginning of this project, a need for an interactive, easy-to-use and easy-to-
extend e-learning platform for signal processing and communication theory students fol-
lowing the hands-on and question-driven learning principles has been identified. The
use cases developed from this need define, that the student shall get the possibility to
freely generate input signals and configure the parameters of the DSP algorithms. Input,
intermediate and output signals shall be depicted as time series charts, which shall be
zoom-able, pan-able and which can be saved to local disk in order to include them into
exercise reports. Exercise questions are attached to the exercise page as a printable docu-
ment. This allows students to individually make notes in written form on the printout, but
also serves as a template for the exercise report. The questions are created based on the
learning goals of the exercise.

The interesting project results from the teacher’s point of view is the model on how
to add new exercises to the learning platform. This is an important thesis project out-
come as it allows teachers to create new exercises in a framework, which requires less
Java and JavaScript coding, but lets teachers perform most of the work using HTML and
MATLAB®1. Limiting the programming language requirement to HTML and MATLAB®
allows teachers from the departments of signal processing and electronics to create new
exercises, because in these departments a high proficiency in HTML and MATLAB® is
present, but the Java and JavaScript proficiencies are rather lower in these departments.
If the idea of integrating MATLAB® into this learning platform is thought further, re-
searchers can get the possibility to demonstrate the results of their research using the
learning platform. All it needs to be done is to create the MATLAB® function and the

1The complex mathematics are formulated in MATLAB® functions, which are used by the learning
platform.

6. CONCLUSIONS 59

presentation page along with some Java code wiring everything up as shown in section
4.7.

From the software engineering point of view, the software architecture, which has
been developed throughout this project, is of interest. It has been shown, how MATLAB®
functions are integrated into a modern web application using state of the art JavaServer
Faces, jQuery and Highcharts front end technologies. It has also been shown once more,
that the well-known MVC pattern for UI application development is easily applicable
for web applications too. In the learning platform, the MVC pattern allowed to clearly
separate presentation matters from the data model and the actions needed to perform the
whole task of retrieving the user-supplied parameters, running the DSP algorithm and
presenting the results in a meaningful way to the user. Below this MVC layer, a data
access layer has been deployed. Its responsibility is to abstract from the actions required
to interact with the deployed MATLAB® functions. Since interaction with this layer
happens through an interface, over which the parameters needed for the math function
call are passed, it is possible to realize the mathematic functions using another technology
such as GNU Octave, SciLab or as a Java numerical computing library.

The current version of this learning platform is a stand-alone distributed software
system, which requires to be installed on a server maintained by the teaching institute. On
the other side, this makes the teaching institute independent from third-party providers,
such as cloud operators. Since the learning platform is not integrated into a framework
such as Moodle, the teaching institute is free to change its general teaching framework
software without the need to modify the learning platform developed in this project.

The current version of the learning platform, which has resulted from this thesis
project, implements the work with one dimensional signals. Future projects have, based
on this research, the possibility to investigate how the learning platform can be extended
for two dimensional signals such as images and three dimensional signals such as videos.
This allows the student to study how the DSP algorithms work with images or videos and
what influences the results. Here, attention shall be payed to the data models and how
the object-oriented design can be used to reuse the code already existing for the one di-
mensional case. Another case to study is the realization of simple vector- or matrix based
exercise to study the DSP algorithms such as convolution, correlation and Fourier trans-
form on these very simple examples. In this case, it is of special interest whether and how
the existing MATLAB® functions can be used for these examples, too. Further research
can also assess the improvements in learning caused by this learning platform. For this,
a group of students takes a signal processing course with and a control group without the
aid of the learning platform. Results of the examination and course feedback from the
students shall be taken into account when performing the assessment.

References

[1] Y. Tang and A. Fan, “An integrated approach to self-regulated learning platform en-
hanced with Web 2.0 technology,” Communication Software and Networks (ICCSN),
2011 IEEE 3rd International Conference on, pp. 236–239, 2011.

[2] L. Yin, B. Tan, Z. Li, and Y. Wang, “Web-based interactive learning platform of
multimedia technology course,” 2009 International Conference on Computational
Intelligence and Software Engineering, pp. 1–4, Dec. 2009.

[3] G. a. Krudysz and J. H. McClellan, “Web-based platform for problem-centered
learning in DSP,” 2011 Digital Signal Processing and Signal Processing Education
Meeting (DSP/SPE), pp. 402–407, Jan. 2011.

[4] J. Yong, “Workflow-based e-learning platform,” Proceedings of the Ninth Interna-
tional Conference on Computer Supported Cooperative Work in Design, 2005., pp.
1002–1007 Vol. 2, 2005.

[5] F. Wen, J. Zhang, and Y. Tian, “Design and application of an e-learning platform
for various learning groups,” Network Infrastructure and Digital Content, 2009. IC-
NIDC 2009. IEEE International Conference on, 2009.

[6] S. Jin, “Design of an online learning platform with Moodle,” in Computer Science
Education (ICCSE), 2012 7th International Conference on, July 2012, pp. 1710–
1714.

[7] “Moodle.org: open-source community-based tools for learning,” Moodle Ltd.,
2013, [accessed on 14.03.2013]. [WWW]. Available at: http://www.moodle.org

[8] A. Asif, “Multimedia learning objects for digital signal processing in communica-
tions,” 2003 IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, 2003. Proceedings. (ICASSP ’03)., vol. 3, pp. III–781–4, 2003.

[9] M. Llopis and F. Llopis, “.NET e-learning platform,” 2008 Eighth IEEE Interna-
tional Conference on Advanced Learning Technologies, pp. 664–665, 2008.

[10] I. Kastelan and M. Katona, “Students perspective of the embedded engineering
learning platform - a case study in digital design,” 2011 Proceedings of the 34th
International Convention MIPRO (2011), pp. 1178–1182, 2011.

http://www.moodle.org

REFERENCES 61

[11] D. Chandran and S. Kempegowda, “Hybrid e-learning platform based on cloud ar-
chitecture model: A proposal,” 2010 International Conference on Signal and Image
Processing, pp. 534–537, Dec. 2010.

[12] “edX,” EdX, 2013, [accessed on 14.03.2013]. [WWW]. Available at: https:
//www.edx.org

[13] “Coursera,” Coursera, 2013, [accessed on 14.03.2013]. [WWW]. Available at:
https://www.coursera.org

[14] C. Giovannella, P. Selva, L. Serafini, and a. Bruni, “Conceptual learning assessment
and content management in e-learning platform by means of conceptual maps,” Pro-
ceedings 3rd IEEE International Conference on Advanced Technologies, pp. 400–
401, 2003.

[15] F. Lerro, S. Marchisio, S. Martini, H. Massacesi, E. Perretta, a. Gimenez, N. Aimetti,
and J. Oshiro, “Integration of an e-learning platform and a remote laboratory for the
experimental training at distance in engineering education,” 2012 9th International
Conference on Remote Engineering and Virtual Instrumentation (REV), pp. 1–5, Jul.
2012.

[16] “Mathematical markup language (MathML) version 3.0 2nd edition,” W3C,
[accessed on 18.04.2014]. [WWW]. Available at: http://www.w3.org/TR/
MathML3/

[17] “MathJax,” MathJax, [accessed on 18.04.2014]. [WWW]. Available at: http:
//www.mathjax.org/

[18] C. H. Chen and H. C. Lin, “A distance e-learning platform for signal
analysis and measurement using FFT,” Computer Applications in Engineering
Education, vol. 19, no. 1, pp. 71–80, Mar. 2011. [WWW]. Available at:
http://doi.wiley.com/10.1002/cae.20292

[19] W. Junfeng, “Application of interactive teaching in digital signal processing
courses,” seiofbluemountain.com, pp. 450–452, [accessed on 08.02.2013].
[WWW]. Available at: http://www.seiofbluemountain.com/upload/product/201006/
2010jyhy03a14.pdf

[20] “MATLAB Builder JA - MathWorks Nordic,” The MathWorks Inc, 2013. [WWW].
Available at: http://www.mathworks.se/products/javabuilder/

[21] B. Sturm and J. Gibson, “Signals and systems using MATLAB: an integrated suite
of applications for exploring and teaching media signal processing,” Proceedings
Frontiers in Education 35th Annual Conference (2005), pp. 21–26, 2005.

https://www.edx.org
https://www.edx.org
https://www.coursera.org
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/MathML3/
http://www.mathjax.org/
http://www.mathjax.org/
http://doi.wiley.com/10.1002/cae.20292
http://www.seiofbluemountain.com/upload/product/201006/2010jyhy03a14.pdf
http://www.seiofbluemountain.com/upload/product/201006/2010jyhy03a14.pdf
http://www.mathworks.se/products/javabuilder/

REFERENCES 62

[22] G.-J. Hwang, C.-H. Wu, J. C. R. Tseng, and I. Huang, “Development of a ubiquitous
learning platform based on a real-time help-seeking mechanism,” British Journal of
Educational Technology, vol. 42, no. 6, pp. 992–1002, Nov. 2011.

[23] G.-H. Hwang, B. Chen, H.-C. Chu, and Z. S. Cheng, “Development of a Web 2.0-
based ubiquitous learning platform for schoolyard plant identification,” 2012 IEEE
Seventh International Conference on Wireless, Mobile and Ubiquitous Technology
in Education, pp. 259–263, Mar. 2012.

[24] “Internetworking technology handbook,” Cisco Inc, [accessed on 09.11.2013].
[WWW]. Available at: http://docwiki.cisco.com/wiki/Internetworking_Basics#
Open_Systems_Interconnection_Reference_Model

[25] “Hypertext transfer protocol – HTTP/1.1,” Internet Engineering Task Force (IETF),
[accessed on 09.11.2013]. [WWW]. Available at: http://www.ietf.org/rfc/rfc2616.txt

[26] S. R. Leonard Richardson, Mike Amundsen, RESTful Web APIs. O’Reilly Media,
2013.

[27] “XHTML™1.0 the extensible hypertext markup language (second edition),” W3C,
[accessed on 01.04.2014]. [WWW]. Available at: http://www.w3.org/TR/xhtml1/

[28] “CSS specifications,” W3C, [accessed on 01.04.2014]. [WWW]. Available at:
http://www.w3.org/Style/CSS/specs

[29] “CSS reference,” W3Schools, [accessed on 13.11.2013]. [WWW]. Available at:
http://www.w3schools.com/cssref/default.asp

[30] “JavaScript and HTML DOM reference,” W3Schools, [accessed on 13.11.2013].
[WWW]. Available at: http://www.w3schools.com/jsref/

[31] “AJAX tutorial,” W3schools, [accessed on 13.11.2013]. [WWW]. Available at:
http://www.w3schools.com/ajax/default.asp

[32] D. Sureau and xul.fr, “AJAX tutorial,” [accessed on 29.08.2013]. [WWW].
Available at: http://www.xul.fr/en-xml-ajax.html

[33] “jQuery,” The jQuery Foundation, [accessed on 13.11.2013]. [WWW]. Available
at: http://jquery.com/

[34] “jQuery tutorial,” W3Schools, [accessed on 13.11.2013]. [WWW]. Available at:
http://www.w3schools.com/jquery/default.asp

[35] IOLA and O. Laursen, “Flot: Attractive JavaScript plotting for jQuery,” [accessed
on 29.08.2013]. [WWW]. Available at: http://www.flotcharts.org/

http://docwiki.cisco.com/wiki/Internetworking_Basics#Open_Systems_Interconnection_Reference_Model
http://docwiki.cisco.com/wiki/Internetworking_Basics#Open_Systems_Interconnection_Reference_Model
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/xhtml1/
http://www.w3.org/Style/CSS/specs
http://www.w3schools.com/cssref/default.asp
http://www.w3schools.com/jsref/
http://www.w3schools.com/ajax/default.asp
http://www.xul.fr/en-xml-ajax.html
http://jquery.com/
http://www.w3schools.com/jquery/default.asp
http://www.flotcharts.org/

REFERENCES 63

[36] “Tampere - wikipedia,” [accessed on 13.11.2013]. [WWW]. Available at:
http://en.wikipedia.org/wiki/Tampere

[37] “Highcharts - interactive JavaScript charts for your webpage,” Highsoft, [accessed
on 02.04.2014]. [WWW]. Available at: http://www.highcharts.com/

[38] “Highcharts API reference,” Highsoft, [accessed on 02.04.2014]. [WWW].
Available at: http://api.highcharts.com/highcharts

[39] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80,” J. Object Oriented Program., vol. 1, no. 3, pp.
26–49, Aug. 1988. [WWW]. Available at: http://dl.acm.org/citation.cfm?id=50757.
50759

[40] J. Deacon, “Model-view-controller (MVC) architecture,” 2009, [accessed on
28.08.2013]. [WWW]. Available at: http://www.jdl.co.uk/briefings/MVC.pdf

[41] A. Leff and J. Rayfield, “Web-application development using the Model/View/Con-
troller design pattern,” In: Enterprise Distributed Object Computing Conference,
2001. EDOC ’01. Proceedings. Fifth IEEE International, 2001, pp. 118–127.

[42] “MATLAB Builder JA 2 user’s guide,” The MathWorks, [accessed on 29.08.2013].
[WWW]. Available at: http://www.scribd.com/doc/52391015/JA-builder

[43] J. W. Eaton, “GNU Octave,” [accessed on 07.03.2014]. [WWW]. Available at:
http://www.gnu.org/software/octave/

[44] K. Hansen, “JavaOctave: Wiki: Home - project kenai,” [accessed on 07.03.2014].
[WWW]. Available at: https://kenai.com/projects/javaoctave/pages/Home

[45] “The W3C markup validation service,” W3C, [accessed on 07.03.2014]. [WWW].
Available at: http://validator.w3.org

[46] “JavaServer Faces community,” [accessed on 07.03.2014]. [WWW]. Available at:
https://javaserverfaces.java.net

[47] “Oracle mojarra JavaServer Faces,” [accessed on 29.08.2013]. [WWW]. Available
at: http://javaserverfaces.java.net/

[48] “Glassfish server,” Oracle, [accessed on 29.08.2013]. [WWW]. Available at:
http://glassfish.java.net/

[49] “MyFaces - welcome to the apache MyFaces project,” http://myfaces.apache.org/,
Apache Software Foundation, [accessed on 29.08.2013]. [WWW]. Available at:
http://myfaces.apache.org/

http://en.wikipedia.org/wiki/Tampere
http://www.highcharts.com/
http://api.highcharts.com/highcharts
http://dl.acm.org/citation.cfm?id=50757.50759
http://dl.acm.org/citation.cfm?id=50757.50759
http://www.jdl.co.uk/briefings/MVC.pdf
http://www.scribd.com/doc/52391015/JA-builder
http://www.gnu.org/software/octave/
https://kenai.com/projects/javaoctave/pages/Home
http://validator.w3.org
https://javaserverfaces.java.net
http://javaserverfaces.java.net/
http://glassfish.java.net/
http://myfaces.apache.org/

REFERENCES 64

[50] H. Bergsten, “Improving JSF by dumping JSP,”
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html, September 2004, [ac-
cessed on 28.8.2013]. [WWW]. Available at: http://www.onjava.com/pub/a/onjava/
2004/06/09/jsf.html

[51] “JSF 2.1 view declaration language,” Oracle, [accessed on 28.8.2013].
[WWW]. Available at: http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/
vdldocs/facelets/

[52] “JavaBeans spec,” Oracle, [accessed on 07.03.2014]. [WWW]. Available at:
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

[53] “Expression language - the Java EE 6 tutorial,” Oracle, [accessed on 28.08.2013].
[WWW]. Available at: http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html

[54] “JSF life cycle,” tutorialspoint, [accessed on 02.11.2013]. [WWW]. Available at:
http://www.tutorialspoint.com/jsf/jsf_life_cycle.htm

[55] “FacesContext (javaserver faces API (2.0)),” Oracle, [accessed on
02.11.2013]. [WWW]. Available at: http://docs.oracle.com/cd/E17802_01/j2ee/
javaee/javaserverfaces/2.0/docs/api/javax/faces/context/FacesContext.html

[56] “JSF - page navigation,” tutorialspoint, [accessed on 02.11.2013]. [WWW].
Available at: http://www.tutorialspoint.com/jsf/jsf_page_navigation.htm

[57] “Apache TomEE,” The Apache Software Foundation, [accessed on 06.11.2013].
[WWW]. Available at: http://tomee.apache.org/apache-tomee.html

[58] C. Humble, “Oracle officially launches Java EE 7 and Glassfish 4 today,” 2013,
[accessed on 22.07.2013]. [WWW]. Available at: http://www.infoq.com/news/
2013/06/ee7-launch

[59] “JBoss enterprise application platform features,” Red Hat, 2013, [accessed
on 22.07.2013]. [WWW]. Available at: http://www.redhat.com/resourcelibrary/
articles/jboss-enterprise-application-platform-features

[60] “Language requirements,” Tampere University of Technology, [accessed on
07.03.2013]. [WWW]. Available at: http://www.tut.fi/admissions/applying/
master-s-programmes/language-requirements

[61] “Study guide for degree students,” Tampere University of Technology, 2012-2013,
[accessed on 07.03.2013]. [WWW]. Available at: http://ttyhakuinfo2.mediacabinet.
fi/hakuinfo/filebank/1217-TTY_degree_students_2012-13_www.pdf

http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://docs.oracle.com/javaee/6/javaserverfaces/2.1/docs/vdldocs/facelets/
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://www.tutorialspoint.com/jsf/jsf_life_cycle.htm
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/api/javax/faces/context/FacesContext.html
http://docs.oracle.com/cd/E17802_01/j2ee/javaee/javaserverfaces/2.0/docs/api/javax/faces/context/FacesContext.html
http://www.tutorialspoint.com/jsf/jsf_page_navigation.htm
http://tomee.apache.org/apache-tomee.html
http://www.infoq.com/news/2013/06/ee7-launch
http://www.infoq.com/news/2013/06/ee7-launch
http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-application-platform-features
http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-application-platform-features
http://www.tut.fi/admissions/applying/master-s-programmes/language-requirements
http://www.tut.fi/admissions/applying/master-s-programmes/language-requirements
http://ttyhakuinfo2.mediacabinet.fi/hakuinfo/filebank/1217-TTY_degree_students_2012-13_www.pdf
http://ttyhakuinfo2.mediacabinet.fi/hakuinfo/filebank/1217-TTY_degree_students_2012-13_www.pdf

REFERENCES 65

[62] “Options for deploying MATLAB applications via the Web - MathWorks
Deutschland,” MathWorks Deutschland, [accessed on 18.04.2014]. [WWW]. Avail-
able at: http://www.mathworks.de/products/new_products/webserver_discontinued.
html?s_cid=r2006b_webserver

[63] “IntelliJ IDEA - the best Java and Polyglot IDE,” JetBrains, [accessed on
18.04.2014]. [WWW]. Available at: http://www.jetbrains.com/idea/

[64] “Welcome to NetBeans,” Oracle Corporation, [accessed on 18.04.2014]. [WWW].
Available at: https://netbeans.org/

[65] “Eclipse - the Eclipse open source community website,” The Eclipse Foundation,
[accessed on 29.08.2013]. [WWW]. Available at: http://www.eclipse.org

[66] “Eclipse - the Eclipse foundation open source community website,” The
Eclipse Foundation, 2013, [accessed on 12.04.2013]. [WWW]. Available at:
http://http://www.eclipse.org/

[67] “Apache Tomcat - Welcome!” The Apache Software Foundation, 2013, [accessed
on 11.04.2013]. [WWW]. Available at: http://tomcat.apache.org/

[68] “Home - Pencil project,” Evolus, [accessed on 18.04.2014]. [WWW]. Available at:
http://pencil.evolus.vn/

http://www.mathworks.de/products/new_products/webserver_discontinued.html?s_cid=r2006b_webserver
http://www.mathworks.de/products/new_products/webserver_discontinued.html?s_cid=r2006b_webserver
http://www.jetbrains.com/idea/
https://netbeans.org/
http://www.eclipse.org
http://http://www.eclipse.org/
http://tomcat.apache.org/
http://pencil.evolus.vn/

APPENDIX 1: ADDITIONAL FIGURES

Figure A.1. JSF FFT User interface

APPENDIX 1: ADDITIONAL FIGURES 67

Figure A.2. Chart showing Generated input signal

APPENDIX 1: ADDITIONAL FIGURES 68

// Retrieve the input values from the form
var minimumX = document.getElementById(’minimumX’).value;
var maximumX = document.getElementById(’maximumX’).value;
var fs = document.getElementById(’fs’).value;
var signalLengthElement =

document.getElementById(’signalLength’);

// Prepare the AJAX request
var request = ’/signallength?minimumX=’+minimumX+’&maximumX=’+

maximumX+’&fs=’+fs;
var ajaxRequest = new XmlHttpRequest();

// Define the action to be performed
// when the request successfully completes
ajaxRequest.onreadystatechange = function() {

if (ajaxRequest.readystate === 4 &&
ajaxRequest.status === 200) {
// Assign the response of the AJAX request
// as the text of the signalLength DOM element
signalLengthElement.innerHTML =

ajaxRequest.responseText;
}

};

// Send the request to the server
ajaxRequest.open(’GET’, request);
ajaxRequest.send();

Figure A.3. Plain JavaScript code of an AJAX request

APPENDIX 1: ADDITIONAL FIGURES 69

Figure A.4. General software architecture

Figure A.5. Data model of input signal block

APPENDIX 1: ADDITIONAL FIGURES 70

Figure A.6. FFT view components

APPENDIX 1: ADDITIONAL FIGURES 71

Figure A.7. FFT view and view data model association

APPENDIX 1: ADDITIONAL FIGURES 72

Figure A.8. MATLAB Builder JA WebFigure

Figure A.9. MATLAB Builder JA WebFigure zoomed in

APPENDIX 1: ADDITIONAL FIGURES 73

Figure A.10. Flotchart

Figure A.11. Flotchart zoomed in

APPENDIX 1: ADDITIONAL FIGURES 74

var flotPlotOptions = {
grid: {

clickable: false,
hoverable: true,
autoHighlight: false

},
xaxis: {

zoomRange: [0.01, maximumXAxisVal-minimumXAxisVal],
panRange: [minimumXAxisVal, maximumXAxisVal],
ticks: tickFun

},
yaxis: {

min: yAxisMin,
max: yAxisMax,
// do not zoom on the y-axis
zoomRange: [maximumYAxisVal-minimumYAxisVal,

maximumYAxisVal-minimumYAxisVal],
panRange: [minimumYAxisVal-0.2, maximumYAxisVal+0.2]

},
zoom: {

interactive: true
},
pan: {

interactive: true
},
crosshair: {

mode: "x"
},
legend: {

position: ’se’
}

};
// Create the plot
flotPlot = $("#container").plot(data, plotOptions);

Figure A.12. Program listing showing Flotchart options used for the FFT demonstration
page

APPENDIX 1: ADDITIONAL FIGURES 75

Figure A.13. A chart generated by the JavaScript Highcharts library

APPENDIX 1: ADDITIONAL FIGURES 76

Figure A.14. Workflow for creating exercise units

