

DANIEL RAJALA

REDESIGNING SESSION ESTABLISHMENT IN A COMMAND

AND CONTROL SYSTEM

Master’s thesis

Examiner: Professor Timo D.
Hämäläinen
Examiner and subject approved at
the meeting of the Faculty Council of
the Faculty of Computing and Elec-
trical Engineering 17. October 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

DANIEL RAJALA: Redesigning session establishment in a command and con-
trol system
Tampere University of Technology
Master of Science Thesis, 48 pages
September 2016
Master’s Degree Programme in Electrical Engineering
Major: Embedded Systems
Examiner: Professor Timo D. Hämäläinen

Keywords: smart card, authentication, session, Java Web Start, certificate

The aim of this thesis was to redesign the session establishment mechanism of a large

command and control system. In this context session establishment refers to starting an

instance of the command and control system’s client application while authenticating its

user to the command and control system’s application server. User authentication is

performed using a smart card containing the user’s certificate.

The session establishment solution to be replaced was based on Java Web Start technol-

ogy and a browser. A redesign of this solution was undertaken because it suffered from

problems such as poor user experience, poor maintainability and complexity. Addition-

ally, it made testing of the started application difficult and introduced a problem in

which the application failed to open secure network connections using certificates

stored in smart cards.

The architecture of the command and control system was explored to understand how

the previous session establishment solution worked. The roles of smart cards, certifi-

cates and SSL-connections in user authentication were also identified. After gathering

requirements, a new session establishment solution consisting of an authentication ser-

vice, authentication client and application launcher was designed and implemented.

Compared to the previous solution, it was found to achieve its targets by providing bet-

ter maintainability, user experience and reliability.

ii

TIIVISTELMÄ

DANIEL RAJALA: Istunnon avauksen uudelleen suunnittelu hajautetussa joh-
tamisjärjestelmässä
Tampereen teknillinen yliopisto
Diplomityö, 47 sivua
Syyskuu 2016
Sähkötekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Sulautetut järjestelmät
Tarkastaja: professori Timo D. Hämäläinen

Avainsanat: toimikortti, todennus, istunto, Java Web Start, varmenne

Tämän työn tarkoitus oli suunnitella uudelleen hajautetun johtamisjärjestelmän istun-

nonavausmekanismit. Tässä yhteydessä istunnon avauksella tarkoitetaan johtamisjärjes-

telmän asiakassovelluksen käynnistämistä samalla, kun sen käyttäjä todennetaan sovel-

luspalvelimelle käyttäjävarmenteen sisältävää toimikorttia hyödyntäen.

Korvattava istunnonavausratkaisu perustui Java Web Start-teknologiaan ja selaimeen.

Korvaustyö tehtiin, sillä tämä ratkaisu kärsi useista ongelmista, kuten huonosta käyttö-

kokemuksesta, vaikeasta ylläpidettävyydestä ja monimutkaisuudesta. Lisäksi se teki sitä

kautta käynnistettyjen sovellusten testaamisesta vaikeaa ja toi mukanaan ongelman,

jossa tietyissä tilanteissa sovellus ei saanut avattua salattuja verkkoyhteyksiä käyttäen

toimikorttia.

Johtamisjärjestelmän arkkitehtuuria tutkittiin edellisen istunnonavaus ratkaisun ymmär-

tämiseksi. Toimikorttien, varmenteiden ja SSL-yhteyksien roolit käyttäjän autentikoin-

nissa myös tunnistettin. Vattimusten keräämisen jäkeen suunniteltiin ja toteutettiin uusi

istunnonavaus ratkaisu, joka koostui todennuspalvelusta, todennuspalvelun asiakas-

komponentista sekä sovelluksesta, jolla voi käynnistää johtamisjärjestelmän eri sovel-

luksia. Verrattuna entiseen, uusi istunnonavauksen toteutus oli luotettavampi, ja se näh-

tiin tarjoavan paremman käyttökokemuksen sekä olevan helpommin ylläpidettävä.

iii

FOREWORDS

This thesis was written at Insta DefSec, where I work as a software developer trainee.

I would like to thank my examiner, Professor Timo D. Hämäläinen for his eagerness to

help and cheery disposition, and my thesis supervisor, Sc. D. Panu Hämäläinen, for his

many incisive comments and suggestions. I would also like to thank my manager,

Teemu Salmivesi, for suggesting the thesis topic and taking an interest in my work. Fi-

nally, I would like to thank my girlfriend Hanna-Kaisa Kemppainen for her moral sup-

port.

Tampere, 11.09.2016

Daniel Rajala

iv

INDEX

1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Objectives ... 1

1.3 Structure of the Thesis .. 2

2. COMMAND AND CONTROL SYSTEM .. 3

2.1 Command and Control System ... 3

2.2 Architecture .. 3

2.2.1 Security ... 5

2.2.2 Remote Method Invocation ... 9

2.2.3 Java Web Start .. 11

2.2.4 Session Establishment Process .. 12

2.3 Environment ... 13

2.3.1 Development Environment .. 13

2.3.2 Production Environment ... 14

2.3.3 Test Environment .. 17

3. REQUIREMENTS FOR SESSION ESTABLISHMENT 19

3.1 Need to Redesign Session Establishment .. 19

3.2 Starting the Client Application .. 20

3.3 Dependency Management and Installation .. 21

3.4 User Authentication .. 21

3.5 Dependency Integrity .. 22

4. DESIGN AND IMPLEMENTATION ... 23

4.1 Launcher .. 23

4.1.1 Starting Java Applications ... 23

4.1.2 Launcher Configuration .. 25

4.1.3 User Interface ... 28

4.1.4 Implementation ... 29

4.1.5 Installation .. 33

4.2 User Authentication .. 33

4.2.1 Approach .. 33

4.2.2 Authentication Service .. 35

4.2.3 Authentication Client .. 37

4.3 Dependency Management ... 42

5. EVALUATION .. 44

5.1 Impact .. 44

5.1.1 User Experience .. 44

5.1.2 Reliability ... 45

5.1.3 Maintenance and Further Development 46

5.2 Potential Future Improvements ... 47

v

6. CONCLUSIONS... 48

REFERENCES ... 49

vi

ABBREVIATIONS AND SYMBOLS

AJP Apache JServ Protocol, a binary protocol used to proxy requests

from a web server to an application server.

API Application Programming Interface, a collection of function defini-

tions which define how a software system can be used by other ap-

plications.

CI Continuous Integration, a software production practice in which

developer work is frequently integrated into a shared codebase,

which is automatically built and tested when changes are made.

HTTP Hypertext Transfer Protocol, an application protocol used by the

World Wide Web for communication between clients and web

servers.

HTTPS Hypertext Transfer Protocol Secure, the HTTP protocol when used

over an SSL-secured connection.

IDE Integrated Development Environment, a tool for developing soft-

ware consisting of a source code editor usually coupled with inte-

grated tools such as build tools and debuggers.

JKS Java Key Store, a format used by the Java development platform for

storing key material such as certificates.

JNLP Java Network Launch Protocol, a protocol used to define an appli-

cation which can be downloaded and run using the Java Web Start

platform.

JVM Java Virtual Machine, a virtual machine fulling the Java Virtual

Machine Specification, used to run Java applications.

JWS Java Web Start, a technology for downloading and running Java

applications in a secure sandbox environment.

MVC Model-View-Controller, a software architecture pattern in which

user interface software components are divided into three parts: a

model for storing data, a view for displaying data and a controller

for modifying data.

PKCS Public Key Cryptography Standards, a set of public-key cryptog-

raphy standards.

PKCS#11 A PKCS standard defining an interface for using cryptographic

hardware tokens such as smart cards

PKCS#12 A PKCS standard defining an archive file format for storing cryp-

tographic objects such as private and public keys.

SSL Secure Sockets Layer, a protocol for establishing cryptographically

secure network connections using public key infrastructure.

TLS Transport Layer Security, the successor of SSL.

URL Universal Resource Locator, a reference to a resource on a comput-

er network consisting mainly of an address and the protocol used to

access the resource.

VM Virtual Machine, an emulation of a computer system that can be

used to run compatible software while abstracting away the plat-

form on which the virtual machine is run.

XML eXtensible Markup Language, a widely-used human-readable

markup language.

1

1. INTRODUCTION

1.1 Background

Insta DefSec is a leading Finnish defence and security technology company with exper-

tise in network-based command, control and communication systems as well as infor-

mation networking and security [1]. Among their products is a distributed command and

control system with client-server architecture within a single site of operations.

The product uses Java Web Start (JWS) technology to download and cryptographically

verify the client application dependencies, authenticate the user through mutual authen-

tication using a smart card and start the client application with the appropriate parame-

ters and a secure channel of communications with the server. This process is referred to

as session establishment in this thesis.

The JWS-based method for session establishment is complicated, involving a web

browser, a smart card reader with its associated software, and start up scripts. Though

functional, this approach has some serious disadvantages. Among these are a poor user

experience and difficulty in debugging the application. The session establishment has

been found difficult to maintain and develop further, since so much of the session estab-

lishment process occurs using the web browser outside the control of the application

code. A persistent problem also arose where the application could intermittently lose

connection to the smart card reader due to problems relating to the web browser and the

smart card reader driver software, meaning that the client application had to be restart-

ed.

For a long time, it was difficult to implement a system for reading the smart card from

within the application code, because the Java 7 platform for 64-bit Windows did not

include a vital module for communicating with smart card readers [2]. With the release

of the Java 8 platform, the required module was included, and implementing custom

code for accessing smart cards became significantly easier. This thesis is the result of

the decision to redesign the product’s session establishment.

1.2 Objectives

The objective of this master’s thesis was to design and implement a replacement for

JWS as a means of session establishment in the distributed client-server command and

control system. The purpose of redesigning session establishment was to improve the

potential for future development of the product and to enhance the security, maintaina-

2

bility and user experience of the product. This work involves investigating the role that

JWS plays in the product, gathering requirements, considering alternative solutions to

fulfill the requirements and implementing the replacement solution. Finally, the thesis

seeks to evaluate the suitability of the implemented solution and to suggest future im-

provements to its session establishment.

The thesis aims to take into account different perspectives on the implemented replace-

ment. These are the perspectives of fellow developers, who may have to work with the

system at the level of source code or in testing, the operational maintenance staff, who

maintain the application, and the end users of the finished product.

1.3 Structure of the Thesis

To provide the necessary context, chapter 2 seeks to give an overview of the product

and the environment in which it is run. This comprises a presentation on how the prod-

uct is used, its architecture as it relates to this thesis, the current session establishment

solution and the various environments in which it is used. This is followed by explora-

tion of the requirements for the new session establishment solution in chapter 3. Next,

chapter 4 details the implementation of the new session establishment solution. The

implementation is then evaluated for suitability from the perspectives of various stake-

holders and suggestions for improvement are made in chapter 5. Finally, conclusions

are drawn in chapter 6.

3

2. COMMAND AND CONTROL SYSTEM

2.1 Command and Control System

The product related to this thesis is a large, distributed, multi-site command and control

system. Based on feeds from various external information sources, it displays and dis-

tributes a real-time model of real-world situations between command and control sites.

Operators of the system can interact with the real-time model and use it for command

and control activities, with user actions propagated through all sites connected in the

distribution network. The system emphasizes high availability of data, real-time aware-

ness and robustness.

The product is accessed by users through a graphical user interface client application

that is run on a local computer and which communicates with an application server

through remote method invocations for most actions related to the real-time model.

There are a handful of different client applications. These applications are used for dif-

ferent purposes, but they share a common client application framework and are all relat-

ed to viewing a model of real-world conditions.

The users of the product can have different privileges when interacting with it, depend-

ing on their roles. For example, a trainee may have fewer privileges than a regular oper-

ator may.

The scope of this thesis is related to the command and control system at the level of a

single command and control site, usually consisting of a single application server and

any number of client applications.

2.2 Architecture

The product is written in Java and uses the Java 7 version of the platform with very little

use of external native components. At the very highest level, the product uses a server-

client architecture, as presented in Figure 1.

4

Figure 1. Deployment diagram of an instance of the command and control system.

Application Server

The server runs an instance of the JBoss application server. The JBoss application serv-

er hosts all of the products’s server-side business logic, which includes a set of web ser-

vices. Each web service is accessed through its own standard web application using Ja-

va servlets. Java servlets are small Java programs for handling HTTP requests in a web

server [3]. The web container is configured in such a manner that all the web applica-

tions are accessed through the same port, with the requested web application being spec-

ified by an URL pattern. The web applications can be accessed through either the HTTP

or Apache JServ Protocol (AJP) protocols. The AJP protocol is a binary protocol used

to proxy requests from web servers (such as the Apache httpd web server) to application

servers (such as JBoss) [4].

The web services hosted by the JBoss application server are not accessed directly by the

client. Instead, they are accessed through the Apache httpd web server which acts as a

reverse proxy. The purpose of the proxy is to encrypt traffic between the client and the

server using a well-established and widely used SSL implementation. The proxy also

serves as a centralized point for configuring access control and connection parameters.

Client Workstation

The client workstation has a smart card reader and driver software for it. The user’s

smart card contains a certificate which is accessed by the web browser for use in SSL

client authentication.

5

The web browser is used to access a web page served by the application server that con-

tains links for launching the client application. This is used by JWS, and it is discussed

in more detail in chapter 2.2.3.

The client application is run on the client workstation as a Java application. The client

application uses a set of configuration files that are installed manually and accessed

through environment variables passed to the client application.

The data server is accessed by the application server for user details. An instance of an

LDAP server provides user details such as name, role, organizational details and the

user’s certificate used in user authentication. An instance of an Oracle database is used

to store information on which application permissions belong to which roles. The server

uses this information together to authenticate users and authorize access to various ser-

vices.

2.2.1 Security

SSL

Secure Sockets Layer (SSL) is a technology for establishing cryptographically secure

connections using certificates. TLS (Transport Layer Security) the successor of SSL

with the same purpose. For historical reasons, ‘SSL’ is often used to refer to either TLS

or SSL [5]. In this thesis ‘SSL’ is used when referring to TLS to be consistent with the

naming of various Java platform classes and methods that perform TLS related opera-

tions.

SSL encrypts communications using symmetric cryptography. In symmetric cryptog-

raphy, the communicating parties possess a shared secret, namely a key used to encrypt

and decrypt communications [6]. The shared key is created upon the establishment of

the connection in a process called the SSL handshake. The SSL handshake uses public-

key cryptography to identify the parties of the connection and to generate the shared

secret [5].

Public-key cryptography is a form of cryptography based on pairs of keys called the

public and private keys. As its name suggests, only its owner knows the private key and

it is never distributed to others, whilst the public key can be distributed freely to anyone.

This form of cryptography works in such a way that data encrypted using a public key

can only be decrypted using the corresponding private key and vice versa. Using these

principles, it is possible to send messages encrypted with the recipient’s public key that

only the intended recipient can decrypt using their private key. This technique can also

be used to prove a party’s identity. [7]

SSL connections use certificates to implement the asymmetric cryptography. A certifi-

cate consists of a public key, details such as the name of the certificate, information

6

about the certificate owner’s organization and various other pieces of information such

as used cryptographic algorithms. A certificate also contains the name of the certificate

issuer, which is the entity that created the certificate. The issuer is represented by its

own certificate, and each certificate contains a cryptographic signature which can be

used to verify that it is indeed issued by the specified issuer. [7, pp. 215-216]

The linking of certificates to each other via the certificate issuer forms a certificate

chain, which ultimately leads to a root certificate [7, p. 217]. The advantage of the cer-

tificate chain is that instead of having to keep track of each trusted certificate individual-

ly, an SSL agent can store a handful of trusted root certificates and trust certificates is-

sued by them.

During a SSL handshake using mutual authentication, the following certificate-related

steps are performed:

1. The server presents the client its certificate chain

2. The client verifies the server certificate chain

3. The client presents the server its certificate chain

4. The server verifies the client certificate chain

[5]

The product makes use of SSL for connections between the client application and appli-

cation server.

Smart Cards

Smart cards are typically plastic cards with an integrated microprocessor with a broad

range of uses, including personal identification [8, p. 893]. The product uses smart cards

to authenticate the user of the client application to the application server.

The smart card contains the user certificate and the certificate’s private key. Certificates

stored on the smart card are freely readable and require no PIN number to access. The

private key, however, is designed at the hardware level to be inaccessible by the ma-

chine reading the smart card. Any operations involving the private key, for example

encrypting or decrypting data with it, are performed by the smart card hardware itself,

and require user authorization using a PIN number. [9]

Smart cards are read using dedicated smart card reader hardware. The smart card reader

hardware has its own drivers, which in turn are used by applications to interact with the

smart card. The smart card reader software used in the product provides an API library

implementing the PKCS#11 standard for interacting with cryptographic tokens such as

smart cards [10]. Figure 2 shows a high level overview of how a client application ac-

cesses smart cards using the PKCS#11 API.

7

Figure 2. Hardware and software used in interfacing with a smart card.

The 64-bit Windows version of the Java 8 platform includes a module for interacting

with PKCS#11 libraries. This module abstracts away most of the details of PKCS#11,

providing a convenient interface for accessing the smart card as a key store.

Confidentiality

The communications between the client application and the application server are sensi-

tive, meaning that their confidentiality must be ensured. This is achieved using secure

SSL connections between the client application and the application server.

The SSL connections are made to an Apache httpd server that forwards incoming re-

quests to the application server’s web container that does not use SSL. The Apache

server is configured to use SSL, but in principle the user client could attempt to make

connections straight to the application server’s unsecured web container thus circum-

venting the confidentiality provided by SSL. This is prevented by a firewall configura-

tion that prevents connections to the application server’s web container from the out-

side.

In the development environment, where the client application and application server are

run on the same machine, confidentiality is not necessary. In this case the application

server can be connected to directly without the Apache httpd server providing SSL.

User Authentication

Users of the product must be authenticated. Upon starting the client application, a mutu-

ally authenticated SSL connection is formed to the application server. The client certifi-

cate used in the connection is read from a smart card, requiring that the user prove own-

ership of the card by entering the correct PIN number. The application server uses the

client certificate to resolve the user’s details using the LDAP and database servers, after

which the user details are used to form a session that is then stored in a disk-persistent

8

cache. A session token is created that can later be used to access the cached session

information.

The session token is provided to the client in the response to a successful mutually au-

thenticated request. When establishing new SSL connections to the application server,

the client may forgo mutual authentication by attaching the session token to the header

of each request, as the application server can use it to fetch previously authenticated

session details from the cache. Since the session token is used to identify a user’s ses-

sion, it must be protected by making sure it is never sent over unsecured connections or

otherwise leaked.

User Authorization

The product allows for control over which features are available to a user. For example,

it may be necessary to restrict what kind of information a user can view or manipulate.

This is implemented using a permission system, consisting of users, roles and permis-

sions. Roles consist of a set of permissions and the users who belong to the role. For

example, a training role with few permissions can be created for someone learning to

use the product.

The application server is configured to use the Spring Security framework for web secu-

rity. The framework is based on ‘security filters’, which are a form of middleware be-

tween receiving the request and servicing it in the application logic [11]. This is illus-

trated in Figure 3.

Figure 3. Requests pass through Spring Security filters before being handled by the web

service.

The purpose of filters is to perform tasks necessary before the request is processed by

business logic, for example ensuring user authentication and authorization. Figure 4

summarizes how the product performs authentication and authorization.

9

Figure 4. Authentication and authentication in the command and control system.

The Spring security filters combined with the product’s own customizations extract the

user certificate from the request and determine the user’s roles and permissions. This

information is fetched from LDAP and database servers. If a certificate is not provided,

but a valid session token is presented, the session token is used to fetch the session de-

tails that were cached when the session token was created. Once the session information

has been found, a thread local security context containing details about the user such as

their username and their permissions is created, which services can use to make authori-

zation decisions.

Services can use a separate user service, which provides methods for checking if the

user is authorized to perform an action. The user service accesses the thread local Au-

thentication object to find the user permissions. In case a request is not authorized, it

fails, and the Spring framework’s security filters return the appropriate HTTP status

code to the caller.

2.2.2 Remote Method Invocation

The product uses Spring framework’s HTTP invoker technology for remote method

invocation. Spring’s HTTP invoker technology is used to expose Java objects over

HTTP using Java’s native serialization features. It has the advantage of requiring little

configuration and providing Java web services as regular method invocations on plain

Java objects. [12]

Client

The client-side implementation of Spring’s HTTP invoker comprises a HttpInvok-

erProxyFactoryBean class which is responsible for creating a service proxy as seen in

Figure 5. This class is configured by setting the URL of the server-side service and the

interface to be implemented by the proxy it creates.

10

The proxy object is generated dynamically using reflection and it uses Java serialization

to serialize the method calls along with the method parameters when calling the remote

service. It uses the same serialization mechanisms to deserialize the results of the re-

mote method call returned from the service. To the user, the proxy object appears as a

regular Java object that implements the given interface.

Since the method calls are made over HTTP, the Spring HTTP invoker framework al-

lows developers to control the way the HTTP request is executed by creating a custom

class implementing the HttpInvokerRequestExecutor interface, as seen in Figure 5. This

can be used to add custom headers to the request, or change the way the connection is

established. For example, the product uses a customized implementation of this inter-

face to attach previously discussed session tokens to the requests’ header.

Figure 5. Implementation of a client-side Spring Remoting proxy.

Server

The server-side implementation of Spring’s HTTP invoker is based on the HttpInvok-

erServiceExporter class. This class implements the Java servlet framework’s Request-

Handler interface, meaning that it can be configured to handle requests to a given URL,

in this case the remote service URL. The relationships between these classes are show

in Figure 6. The service exporter deserializes the incoming requests into Java method

invocations, which are then applied to the provided service implementation object. The

return values or exceptions provided by the service implementation are then serialized

and sent to the client as an HTTP response. Only requests which make it through the

previously discussed security filters are serviced by these request handlers.

11

Figure 6. Server-side implementation of a Spring Remoting web service.

2.2.3 Java Web Start

The product uses the JWS technology for session establishment. JWS is a technology

created in 2001 by Sun Microsystems, the developers of the Java platform at the time.

Its purpose is to allow the easy deployment of Java applications from the web browser.

Among the advantages of the technology are the automatic downloading of the latest

version of the application, ease of use, and a secure sandbox for running the download-

ed application. [13]

JWS applications are defined using the Java Network Launching Protocol (JNLP).

JNLP uses the XML format to specify aspects of the application such as command line

arguments and application dependencies and their locations. [14] The web browser as-

sociates JNLP content with the JWS executable, meaning that clicking on a JNLP link

will start the given application. An example JNLP file is presented in Program listing 1.

12

Program listing 1. An example JNLP file defining a simple JWS application.

The example JNLP is a simple definition of an application which can be started using

the JWS framework. Among the most important things specified are the required re-

sources, the URL from which they can be downloaded, the permissions the application

requires and the program arguments.

By default, JWS applications run in a sandbox with restricted privileges, for example

without access to the file system. However, if the application and its dependencies are

signed using a trusted certificate, these privileges can be granted to the application. [15]

2.2.4 Session Establishment Process

The product’s application server hosts a web page presenting the different application

that can be started. The web browser is configured to use mutual authentication using a

certificate found on the user’s smart card, so when the user starts an application, a mu-

tually authenticated request to the web start service is made. If the mutual authentication

is successful, the product’s security architecture generates a session token identifying

the user as discussed previously. The web start service generates a JNLP description of

the requested application, and inserts the session token into the JNLP file as a command

line parameter for the client application that is being started. The JNLP file is automati-

cally executed by the JWS framework, which downloads all the dependencies specified

in the JNLP from the application server. Once the dependencies are downloaded and

JWS verifies their integrity, the application is started.

<?xml version="1.0" encoding="utf-8"?>
<jnlp

spec="1.0+"
codebase="https://example.net/ExampleApplication/webstart">

 <information>
 <title>Example Application</title>
 <vendor>Example Company</vendor>
 <icon href="icon.png" kind="default"/>
 </information>
 <offline-allowed>false</offline-allowed>
 <security>
 <all-permissions/>
 </security>
 <resources>
 <j2se version="1.6+" />
 <jar href="Example.jar" />
 </resources>
 <application-desc main-class="net.company.example.ExampleApp">
 <argument>--arg1</argument>
 <argument>--arg2</argument>
 </application-desc>
</jnlp>

13

The session token created when fetching the JNLP description is used to authenticate

and authorize all future remote method invocations. This is done by a custom imple-

mentation of the HttpInvokerRequestExecutor interface described in chapter 2.2.2,

which attaches the session token to the headers of all remote method invocation re-

quests.

From the above it can be seen that JWS’ roles in session establishment are the follow-

ing:

 Authentication of the user and fetching a session token

 Gathering application dependencies (Java libraries)

 Verifying the integrity of the downloaded dependencies

To fulfill these roles, the product’s codebase contains much code and configuration re-

lated to JWS. Among the components related to JWS are:

 A build plugin which generates a list of client application dependencies along

with their versions for JWS

 A web application serving the web page containing the links for the client appli-

cation JNLP file

 A web application for dynamically generating the JNLP file for the client appli-

cation so that it starts with the right session token

 A custom Java Servlet for downloading JWS dependencies

 Build configurations for signing all the dependencies of the JWS client applica-

tion, along with the signing certificates

 Classes that generate and inject a session token into the JNLP file of the client

application

 Classes for parsing JWS-related command line arguments in the client applica-

tion

 Apache httpd reverse proxy configurations for the JWS web application

The amount of code and configuration indicate the complexity of the JWS-based ses-

sion establishment.

2.3 Environment

2.3.1 Development Environment

The development environment is the environment in which the developers work on the

product, for example by developing new features. It is in itself a secure environment

with no requirements for user authentication, permissions or encrypted communications

(unless a developer is working on them). The main concerns for developers when using

the system is ease and speed of use, because development often entails restarting the

14

application very often. For this reason, the development environment is simplified, with

the application server and desktop client running on the same development machine

without an Apache reverse proxy, and security features such as user authentication and

authorization disabled.

Figure 7. The product and its installation in the development environment.

As seen in Figure 7, installing a new version of the product in the development envi-

ronment consists of simply running a script included with version control. The applica-

tion’s configuration is also included in version control, with environment variables

pointing to the configuration files. This is considerably simpler than in the other envi-

ronments, which can require extensive customization.

JWS is not used to start the client application in the development environment. Instead,

the application client is started directly in the IDE for speed of use and easy debugging.

2.3.2 Production Environment

The production environment is where the product is put to its intended use by the end

users. Only finished, stable versions of the product get installed in the production envi-

ronment by the customer. Security, robustness and usability are very important in the

production environment.

The infrastructure of the production environment is shown in Figure 8.

15

Figure 8. Infrastructure of the product in the production environment.

The production environment consists of separate machines for running the client appli-

cation, the application server and the database server. It also has a network drive which

can be accessed by both the application server and client machine, used by the client

machine to fetch configurations.

New versions of the product are provided to the customer on a disk, that an administra-

tor installs using a command line script. During installation, the user can set the values

for a broad range of parameters, that are then injected into the various configuration

files. The installation script creates a compressed package of configuration files for the

desktop client, which it then places on a network drive for the client machine to access.

To install a new version of the product on the client machine, the user fetches the con-

figuration from the network drive and extracts into a defined location, which the client

application can access through an environment variable.

The product has a requirement for supporting several ‘operational environments’. An

operational environment is an independent application server configured for a given

purpose, with its own data sources and configurations. The user is able to start the client

application such that it uses an operating environment of their choosing. The main pur-

pose of operating environments is to separate the use into different domains, such as

training and operational use. Instead of connecting to a live command and control envi-

16

ronment in which actions can have real-world consequences, a trainee can connect to an

operating environment specifically created for training.

Figure 9. Operating environments consisting of client application configurations and

application servers.

As shown in Figure 9, operating environments are implemented by having several ap-

plication servers running on their own virtual machines. The user chooses the operating

environment to use by running an operating environment specific client application

startup script, which sets environment variables such as the host name and port numbers

to point to the given application server.

Each operating environment has its own set of client application configurations that are

independent of one another. This means that a client application started in OPENV1

uses only configuration files for OPENV1. The configuration files of the operating envi-

ronments are stored in their own directories in a common distribution directory. Each

operating environment configuration directory contains a file containing the name of the

operating environment to which it belongs.

The operating environment is chosen by starting the application with the appropriate

startup script. Each operating environment has its own batch script that sets a series of

environment variables and copies files used by the client application to the appropriate

locations before starting the web browser. For example, the script sets an environment

variable with the IP address of the operating environment’s application server and cop-

ies custom application settings to the client application’s application data directory. The

scripts are generated when the application server is installed.

17

To run the product in the production environment, the application server has to be start-

ed. Once it is running, a startup script is executed on the client machine. The operating

environment is chosen by starting the application with the appropriate startup script.

Each operating environment has its own startup script that sets a series of environment

variables and copies files used by the client application to the appropriate location. For

example, the script sets an environment variable with the IP address of the operating

environment’s application server and copies custom application settings from a network

drive to the client application’s application data directory on the local disk. Finally, the

script starts the web browser and directs it to a startup page hosted by the application

server serving links to each client application’s JNLP file.

2.3.3 Test Environment

The test environment is where incremental versions of the product are tested. The test

environment attempts to match the production environment closely so that problems

likely to occur in the production environment are more likely to be detected. This envi-

ronment is used mainly by full-time testers, who do testing of a broader scope and over

a longer time than developers, though developers often use test environment to test fea-

tures or defects they are working on. To support testing and diagnosis of defects, the test

environment has various tools for interacting with the product.

As can be seen from Figure 10, the test environment features a very similar infrastruc-

ture to the previously discussed production environment.

18

Figure 10. Infrastructure of the product in the test environment.

The main difference in infrastructure between the production and test environment is the

inclusion of a continuous integration (CI) server. The CI server can be commanded to

build a version of the product from a given branch in version control. The CI server

produces a compressed package of the given version which is then placed on a network

drive. The installation of the package is very similar to that of the production environ-

ment, with the same kind of installation scripts installing the application server and ex-

porting client application configurations to a network drive.

Starting client applications is done similarly to in the production environment, except

that smart cards are not used. Instead, file-based certificates are used by the browser

when fetching the client application JNLP files. This is done for the sake of ease of use

and to ensure that the product works the same for different testers on the same machine.

The test environment additionally supports different operating environments in the same

way as the production environment.

19

3. REQUIREMENTS FOR SESSION ESTABLISH-

MENT

The purpose of this chapter is to detail the high-level requirements of a system to re-

place JWS. This is done by first identifying the broad components of the replacement

system. Next, more detailed requirements related to each component are introduced.

3.1 Need to Redesign Session Establishment

There are several reasons that led to the decision to redesign session establishment in

the product. Using the JWS technology to establish sessions suffers from many disad-

vantages from the perspectives of both the users and the developers.

The primary goal for the redesign of session establishment is an improved user experi-

ence. The current user experience in which the user has to run one of many startup

scripts for the given operational environment is considered messy, and the browser in-

terface for starting applications is disliked. Instead, something like a Java application

providing a simple, centralized way of starting client applications in the right operating

environment would be valuable to end users.

Developers benefit from a session establishment redesign in many ways. An immediate

concern is the difficulty of debugging and testing the client application. Since the client

application is run in its own JWS container instead of being run as a regular Java appli-

cation, it is almost impossible to do debugging in the test environment. Debugging in

the test environment is often crucial, since there are notable differences between the

development and test environments. For example, using the Java VisualVM tool to

monitor memory and processor use is nearly impossible. Even small changes to the cli-

ent application code require a great deal of time and effort. This is because the client

application dependencies are fetched from the application server and are signed, mean-

ing that a small change to the client application code requires an entire re-installation of

the application server, a process that can take an hour. It would be preferable to be able

to change individual client application libraries without requiring a reinstallation.

Redesigning session establishment would also help solve a long-standing problem that

users have noticed with the JWS-based session establishment, which causes client ap-

plications to become inoperable. Although the exact cause of the problem is uncertain, it

relates to how the client application attempts to re-establish connections to the server

after the smart card used in mutual authentication is removed for a while. JWS installs

20

custom instances of classes for handling SSL connections which make attempts to read

from the smart card. If there is a problem reading the smart card, remote method invoca-

tions fail. By redesigning the session establishment mechanism for greater control over

reading smart cards, this problem can be eliminated.

A more general concern with using JWS is that it leaves the developers with little con-

trol. The future development of the application is tied to the JWS platform and the deci-

sions made by its maintainers. The JWS platform perceived by the organization as bug-

gy, poorly maintained, and little used by the industry, meaning that developers have to

deal with bugs that they have no way to fix. A session establishment solution produced

in-house would provide developers with greater flexibility and control over the future

direction of how the client application is managed and started.

3.2 Starting the Client Application

One of the principal tasks of JWS is to allow the user to start client applications. The

product achieves this using a web project that hosts links to the correct JNLP files used

to launch the application. Additionally, the application must be started such that it uses

the correct operating environment.

This means that the web project hosting the JNLP links must be removed and a new

way of starting client applications in each of their modes must be created. The new way

of starting client applications must also be capable of the same logic as the client appli-

cation start scripts that are used to select the correct operating environment.

It is required that the new way of starting client applications take the form of a ‘launch-

er’ application with a clear user interface. The launcher application should display all

the applications that can be started and provide means of starting them. Additionally,

the launcher must be able to able to support web links, so that when the user clicks on

the link in the launcher application, the web browser is opened to the given web page.

To replace the scripts needed to start the client application in the right operating envi-

ronment, the new user interface must support selecting the desired operating environ-

ment. Ideally, it should be capable of detecting the available operating environments on

its own instead of having them configured.

The launcher application should be configurable, so that no changes in code are neces-

sary to modify which applications can be started. The way in which applications are

started should also be configurable, with the possibility to edit the command line argu-

ments of the application to be started.

The only technical limitation is that the launcher application must be implemented in

the Java programming language. This is to keep the launcher application in line with the

rest of the product.

21

3.3 Dependency Management and Installation

The JWS technology fetches the client application dependencies from the application

server by downloading them over HTTP upon startup. The dependencies are resolved at

compile time by a build plugin and injected into a JNLP template.

To create a new session establishment solution, an alternative way of resolving the cli-

ent application dependencies must be created. Mechanisms must also be implemented to

deliver the dependencies to the desktop machine, which involves refactoring the prod-

uct’s installation process.

There are no explicit requirements as how this should be achieved, but using a network

drive to provide the dependencies is preferred, as it is simple solution when using exist-

ing network drives. Using an existing network drive would also make it easy to inte-

grate dependency management with the installation process.

3.4 User Authentication

The user is authenticated to the application server when they access the JNLP file of the

application over a mutually authenticated SSL connection. This creates a session token

which is dynamically injected into the JNLP and passed to the client application as a

command line parameter. This means that once JWS is removed, a new way of authen-

ticating the user and fetching a session token must be developed.

It is required that the authentication process still use the user’s smart card for authenti-

cation. It is furthermore required that a component be developed which can use the

smart card reader for authentication from within Java code, a task which was previously

done by the browser. This smart card reading functionality must be based on the

PKCS#11 standard for interacting with cryptographic hardware tokens. If possible, the

smart card reading component should be an independent component, reusable for possi-

ble future smart card reading needs in the company’s other projects.

Since typically users do not use their smart cards in the test environment, the user au-

thentication mechanism should be able to support file-based certificates for authentica-

tion. For convenience, the implementation should revert to smart card authentication if

file-based authentication is not possible. Authentication and SSL connections are very

rarely used in the development environment, meaning that the implementation should

be able to forego authentication entirely in the development environment. This should

be done in such a way that authentication cannot be disabled by the user in the produc-

tion environments, in which authentication is required.

An additional requirement is that the client application, once started by an authenticated

user, should be able to continue operating in case the smart card is removed from the

22

reader. It should also continue operating seamlessly once the smart card is replaced in

the reader.

3.5 Dependency Integrity

The JWS framework requires that application dependencies be cryptographically signed

using a trusted certificate to ensure their integrity. The effects on security from remov-

ing dependency signing were considered, and it was not deemed necessary to sign de-

pendencies in the system that replaces JWS. This is because the product’s installation

process is tightly controlled by administrators in a secure environment in a closed net-

work, with no access from the outside.

23

4. DESIGN AND IMPLEMENTATION

4.1 Launcher

4.1.1 Starting Java Applications

To build a launcher application for starting the products’s client applications, it is useful

to understand how the Java virtual machine is used to start Java applications. The most

important aspects in starting a Java application are the classpath, the main class, the

Virtual Machine arguments, program arguments and environment variables.

Figure 11. Starting a Java application in a Java Virtual Machine.

Classpath

As can be seen in Figure 11, the Java Virtual Machine (JVM) contains a component

called a classloader, the task of which is to load compiled Java class files into memory

so that they can be executed. The classloader looks for classes from the classpath. The

classpath refers to the file system path where the application dependencies reside. If a

class used by the application is not found on the classpath, the application cannot run.

The classpath can consist of more than one file path.

There are three kinds of classpath for the JVM. These are the bootstrap classpath, the

extension classpath and the user classpath. The bootstrap classpath is the classpath to

the default Java runtime libraries and it can be used to override classes in the underlying

24

Java platform. The extension classpath is used to point to classes that are used to extend

the Java platform using the Java extension mechanism. Neither the bootstrap nor the

extension classpath are used in the command and control application. The most conse-

quential classpath type is the user classpath, which is used to locate the classes of the

application to be started. [16]

The classpath is provided to the JVM as a command line parameter. The classpath can

consist of any number of file system paths, meaning that the classes used by the applica-

tion do not have to be placed in the same file system location. The classloader also

searches for compiled Java classes in located inside .jar and .zip compressed archives

placed on the classpath.

Main Class

The main class is the class containing a method that serves as the starting point of the

application execution. When starting a Java application, the name of the main class is

provided as a command line argument. The JVM searches for a class of this name, and

starts executing its main method if found.

The main method is a method with the following method signature.

The args parameter is an array of command line arguments provided to the Java pro-

gram.

Virtual Machine Arguments

The Virtual Machine arguments are command line arguments that affect the JVM in

which the application is run. They are typically low-level, affecting things such as the

heap size, garbage collection, etc. JVM arguments can also be used to set system prop-

erties for the Java application to be started. System properties are key-value pairs simi-

lar to environment variables that are accessible to the Java application. This makes sys-

tem properties a convenient way to provide certain parameters to the Java application.

Program Arguments

Program arguments are command line arguments provided to the main method of the

main class of the application that is being started. As the name suggests, they are de-

signed solely for the Java application and not the JVM. The program arguments can

take any form.

Example

public static void main(String[] args)

25

Below is an example of a typical command line command for starting a Java applica-

tion.

The command starts a JVM running the main method of the class

net.company.product.Application. The JVM arguments specify a maximum heap size of

1024 MB and a system property called javax.net.debug with the value ssl. The classpath

points to two .jar files containing the required classes. The program is provided with a

command line argument --host=https://company.net/application/, which the program will

need to parse itself.

Environment Variables

The JVM in which the Java application is run inherits environment variables like any

other process. Since the command and control application client is run on a Microsoft

Windows operating system, this means that the JVM child process inherits its parent

process’ environment variables [17]. Similarly, if a new Java process is created by the

Java application, the new process will inherit the environment variables of the Java pro-

cess that spawned it.

The Java application can access the environment variables in a similar manner to system

properties, but changing the environment variables through this mechanism does not

affect the underlying environment variables of the operating system process in which

the Java virtual machine is run. It is however possible to create new Java processes from

within Java code with custom environment variables.

4.1.2 Launcher Configuration

Chapter 2.3.2 details the concept of an ‘operating environments’ within a single client

desktop machine. An operating environment consists of its own application server and

client application configuration. Since each operating environment may need to define

its own list of applications to be started with a custom command line parameters and

environment variables, it is natural to include an independent launcher configuration

with each operating environment instead of creating a monolithic configuration com-

mon to all operating environments.

Instead of creating a launcher application for each operating environment, it is required

that a single launcher application be able to support all operating environments. This

means that the launcher will have to be able to find the launcher configurations included

with each operating environment. This requires that the launcher application have its

own configuration containing information about where the operating environments are

installed and how their launcher configurations can be found, as in Figure 12.

java –Xmx1024M –Djavax.net.debug=ssl –cp /lib/network.jar;/lib/gui.jar
net.company.product.Application –-host=https://company.net/application/

26

Figure 12. A common configuration is used by the launcher application to find operat-

ing environment specific launcher configurations.

The details of the two types of configuration (common configuration and the operating

environment specific launcher configuration) are discussed separately below.

Given the complexity of the types of configuration items described below, an obvious

technology for implementing the configurations is XML. The advantages of using XML

are the ability to model complex data, human readability and ease of editing.

Common configuration

The ‘common configuration’ is used by the launcher application to find operating envi-

ronment specific configurations. Operating environments are installed as their own di-

rectories under a common distribution directory, each of which includes a file contain-

ing the name of the operating environment. The operating environment specific launch-

er configurations are placed in these configuration directories. Given these facts, the

common configuration should contain the following configuration items:

 Path to the directory containing the operating environment configuration directo-

ries

 Path to the launcher configuration file from the operating environment’s directo-

ry

 Name of the file identifying the operating environment

These configuration items are sufficient for the launcher application logic to find all the

operating environments and their launcher configurations. An example of this configu-

ration is given in Program listing 2.

27

Program listing 2. An example common launcher configuration.

Operating Environment Specific Configuration

The launcher application uses the operating environment specific launcher configuration

to find which applications can be launched and which web links can be opened. Since

the launcher application replaces the startup scripts that copy files from the client con-

figuration directory into the local application data folder as described in chapter 2.3.2,

the launcher must be capable of this file copying. Given the requirements of the launch-

er application, the operating environment specific configuration must contain the fol-

lowing configuration items:

 The name of the operating environment

 A list of applications that can be started, their names, descriptions and the com-

mand line arguments to start them

 For each application, the filenames to which the stated application’s logs are di-

rected

 A list of environment variables used by the command and control client applica-

tion

 A list of web links that can be opened in a web browser along with their names

and descriptions

 A list of files to copy when an application is started, including the source and

destination paths

The following is an example of an operating environment specific launcher configura-

tion with a single application and a single link.

<?xml version=”1.0” encoding=”UTF-8” ?>
<launcher-common-config>
 <distribution-dir-path>C:/Applications/</distribution-dir-path>
 <openv-filename>operating-environment.txt</openv-filename>
 <launch-config-path>config/launcher.xml</launch-config-path>
</launcher-common-config>

28

Program listing 3. An example operating environment specific configuration.

4.1.3 User Interface

The user interface should clearly present the different applications that can be started

and links that can be opened for a given operating environment. The solution is to show

a list of labelled buttons for each application and link. The user interface should also

allow the user to select which operating environment to use, such that changing the op-

erating environment changes the available buttons. This is most easily implemented

using a combo box. A mockup of a user interface satisfying this functionality is shown

in Figure 13.

<?xml version=”1.0” encoding=”UTF-8” ?>
<launcher>
 <copy-files>
 <copy-file>
 <overwrite>false</overwrite>
 <source>C:/Applications/example/config.xml</overwrite>
 <source>%LOCALAPPADATA%/App/config.xml</overwrite>
 </copy-file>
 </copy-files>
 <java-launch-configs>
 <java-launch-config>
 <name>Example application</name>
 <description>Example description</description>
 <java-params>
 <java-executable>java.exe</java-executable>
 <vm-args>
 <arg>--Djavax.net.ssl.trustStore=C:/certs/trustStore.jks</arg>
 <arg>--Xmx1024M</arg>
 </vm-args>
 <program-args>
 <arg>--host=example.company.net</arg>
 <arg>--port=80</arg>
 <arg>--mode=normal</arg>
 </program-args>
 <classpaths>
 <classpath>C:/Applications/example/lib/*</classpath>
 <classpath>C:/3rdPartyComponent/lib/3rdpartyComponent.jar</classpath>
 </classpaths>
 <main-class>net.company.example.Application</main-class>
 </java-params>
 <envvars>
 <envvar>
 <name>CONFIG_DIR</name>
 <value>C:/Application/config</value>
 </envvar>
 </envvars>
 <output>
 <merge-stderr>false</merge-stderr>
 <stderr-path>application_error.log</stderr-path>
 <stdout-path>application_stdout.log</stdout-path>
 </output>
 </java-launch-config>
 </java-launch-configs>

 <links>
 <link>
 <name>App homepage</name>
 <description>Example app home page</description>
 <url>https://example.company.com/appliation</url>
 </link>
 </links>
</launcher>

29

Figure 13. A mockup user interface for the launcher application with the ability to open

web links and start Java applications in the selected operating environment.

It should be noted that the mockup is intended to represent the basic functionality of the

application and the actions that the user can perform on it. As such, it does not reflect

the launcher application in its final polished form.

4.1.4 Implementation

As a user interface application with the user interacts with information contained in con-

figuration files, the high-level architecture for the launcher application is the Model-

View-Controller (MVC) architecture. In this architecture, the model represents some

kind of data, the view represents the user interface that displays the data and passes user

input to the controller, and the controller implements the business logic that modifies

the data. The advantages of using the MVC architecture are the clear separation of con-

cerns that make the system easier to modify and maintain [18]. The ability to change the

user interface is particularly important in this case, because the final appearance of the

user interface is undecided and will be changed by other developers later.

Designing the application top-down using the MVC architecture led to the interfaces

shown in Figure 14.

30

Figure 14. The model, view and controller components of the launcher application’s

MVC architecture.

When the model is set for the view, it displays the applications, links and operating en-

vironments contained in the model. It informs the controller when the operating envi-

ronment is changed, when an application is selected to be launched or when a link is

clicked on. It fetches the applications and links from an instance of LauncherConfig, a

class which will be introduced later.

The controller is informed by the view of which links are opened and which applica-

tions are launched. The controller then decides how to launch an application or open a

link. The controller is also informed when the user changes the operating environment.

In this case the controller edits the model by changing the currently selected operating

environment. Once the model is changed, it calls setModel on the view, updating the

displayed links and applications to those defined in the new operating environment.

The three new interfaces introduced in this MVC model are Launchable, Link and

LauncherConfig, show in Figure 15.

31

Figure 15. Interfaces used in the launcher defining launchable applications.

The Launchable interface encapsulates an application that can be started as its own pro-

cess by calling the launch method. The launch method takes a map of environment var-

iables that are inserted into the launched application’s process. This is necessary be-

cause there are environment variables that are specific for a given operating environ-

ment and inheriting environment variables from the launcher application’s process is

not sufficient. The launch method returns a handle on the started process, which can be

used e.g. to check if the launched application is still running. The getName method is

used for displaying the application’s name in the user interface and the getDescription

method can be used e.g. for tooltips when hovering the mouse over the application’s

button in the user interface.

The Link interface defines a link that when clicked on opens the web browser to a given

URL. The getName and getDescription methods serve the same purpose as they do in

the Launchable interface. The getUrl method is used to fetch the URL of the link.

The LauncherConfig interface encapsulates the launcher configuration for a given oper-

ating environment. It has methods for fetching the name of the operating environment,

the list of applications that can be started, the list of links that can be opened, the envi-

ronment variables for the operating environment and the details on which files need to

be copied before the applications can be started. The implementation of the Launcher-

Config interface parses an XML operating environment specific launcher configuration

to find these details. As such, there are as many different LauncherConfig instances as

there are operating environments.

32

These interfaces form the skeleton of the launcher application, although few important

utility interfaces are needed. These interfaces are shown in Figure 16.

Figure 16. Interfaces used to find opearating environments and to initialize the launch-

er settings.

The OperatingEnvironmentFinder interface is used to find the available operating envi-

ronments. The default implementation uses the previously discussed common launcher

configuration to search for operating environments based on the configured file paths.

This interface is used by the implementation of LauncherModel.

The SettingsInitializer interface is used to perform the logic of the startup scripts which

the launcher replaces. This includes copying the necessary files. SettingsInitializer is

used when LauncherModel is initialized upon starting the launcher application.

Together, the interfaces described above form the high-level architecture for the launch-

er application shown in Figure 17.

Figure 17. High level architecture of the launcher application.

Once the interfaces were decided upon, implementing them was straightforward. There

were two considerable choices of technologies. The first choice was the user interface

technology, for which Java’s Swing user interface framework was chosen. The second

technology choice was Apache XMLBeans for parsing XML configuration files.

XMLBeans is a technology which generates code based on an XML schema, resulting

native Java types which bind to XML data [19]. This makes using XML configuration

files very convenient.

33

4.1.5 Installation

Once the launcher application was created, it had to be made available to the test and

production environments. The launcher application is not used in the development envi-

ronment, so it was not taken into account.

Since the launcher application was designed to be used as a standalone Java application,

it was decided that it should be a runnable Java .jar archive. The runnable Java archive

is like a regular Java archive except that it contains additional metadata about how the

archive should be run and all the external class dependencies that are needed to run the

application. Using a runnable Java archive confers the advantage of ease of use, since in

the Windows operating system they can be run simply by double clicking on them like a

regular executable.

The command line application needs to read the common configuration file in order

work. Since the configuration needed to be user editable, it could not be packed inside

the runnable Java archive. This created the problem of how to tell the launcher applica-

tion the path to the common configuration without having to pass it as a command line

parameter. Pointing to the common configuration using an environment variable was

considered. However, this was rejected because of administrative work required to cre-

ate such an environment variable. Eventually it was decided that the configuration be

distributed alongside the runnable Java archive. The launcher application was pro-

grammed to find its own file path and access the common configuration relative to this

path. This resulted in the directory structure show in Figure 18.

It was decided that the launcher application be distributed as a compressed .zip archive

because of the simplicity of installation by extraction anywhere on the client machine.

4.2 User Authentication

4.2.1 Approach

In principle, it is not necessary to keep the product’s security architecture, in which re-

mote method invocations are authenticated using a session token fetched after success-

ful SSL mutual authentication. For example, it could be possible to mutually authenti-

cate all connections to the application server independently. However, it was considered

easier to implement the new authentication system on top of the existing security archi-

Launcher
|-- common-config
| `-- common-config.xml
`-- launcher.jar

Figure 18. Directory structure of the launcher installation directory.

34

tecture using session tokens to authenticate remote method invocations. In addition, the

reusing session tokens results in better performance than if the smart card were used in

establishing every SSL connection. Using the session token also reduces the risk of

failed remote method invocations due to previously mentioned problems reading the

client certificate from a smart card.

It was decided that authentication system should work similarly to the previous imple-

mentation, with an initial mutually authenticated SSL connection used to authenticate

the user and fetch a session token to be used in future remote method invocations. This

leads to the idea of an independent authentication web service from which the client

application can fetch session tokens upon successful user authentication using a mutual-

ly authenticated SSL connection. The authentication service would require an authenti-

cation client component in the product’s client application. This approach results in the

structure presented in Figure 19.

Figure 19. Communication between the authentication client and authentication ser-

vice.

Since the product requires user authentication through smart cards, the authentication

client implementation requires components with the ability to interact with the user

35

smart card. To make use in the test environment simpler, it should also be able to sup-

port file-based certificates in place of the smart card.

4.2.2 Authentication Service

The functioning of the authentication service is similar to what came before. The user

makes a mutually authenticated HTTPS request to the authentication service. The prod-

uct’s security architecture resolves user details based on the certificate presented in the

request and creates a session token, which the authentication service returns as a re-

sponse to the client. This is illustrated in Figure 20.

Figure 20. Fetching of a session token from the authentication service.

Like all other web services in the product, the authentication service is implemented

using the remote method invocation architecture described in chapter 2.2.2.

Since the application server’s security filter middleware performs user authentication,

the authentication service itself is very simple, leading to the authentication service in-

terface shown in Figure 21.

Figure 21. The authentication service interface.

The interface has a single method for fetching the session token, which only succeeds if

the user making the request can authenticate themselves with their certificate used in the

SSL handshake.

The authentication service implementation has to obtain the session token created by the

security filters. Since the scope of the session token is the request, there are two primary

ways for the service implementation to obtain the session token. The most obvious way

is to use the session token stored as thread local variable of the thread servicing the web

request. However, it was found that this thread local variable is only stored whilst the

security filters handle the request, and removed once execution progressed into the web

36

service business logic. The second way is to obtain the session token from the request

object, as the session token is added to the request as a header by the security filters.

The Spring HTTP Invoker remote method invocation technology does not let the class

implementing the web service see the HTTP request that is being serviced. To let the

authentication service access the session token contained in the request header, a custom

request handler was developed, which lets the service implementation see the request

for accessing the token. The solution is presented in Figure 22.

Figure 22. Server-side implementation of the authentication service.

As detailed in chapter 2.2.2, an instance of Spring HTTP Invoker framework’s

HttpInvokerServiceExporter, which implements the HttpRequestHandler interface, han-

dles the HTTP request by calling methods on the service implementation provided to it.

Since this does not allow the service implementation to see the request, a new imple-

mentation of the HttpRequestHandler interface was made: RequestDependentSer-

viceExporter. This class uses an instance of RequestDependentServiceFactory to create

the service implementation. The service implementation can then access the request

object using the method parameter of the createService method. Once the service im-

plementation is instantiated, it is provided to the HttpInvokerServiceExporter instance,

which finishes handling the request by invoking methods on the newly created service

instance. The outline of this process is shown in Figure 23.

37

Figure 23. Handling of a client request to the authentication service.

Apart from the changes described above, the authentication service implementation uses

the same architecture for web services as described in chapter 2.2.1.

The authentication service requires mutual authentication to be accessed. Since the

product uses an Apache httpd server as a reverse proxy for SSL connections, a new vir-

tual host was created for handling the authentication service requests. The virtual host

was configured in such a way that all connections to the authentication service require

client authentication. At the same time the virtual host for other services was configured

to make mutual authentication optional, allowing connections using the session token to

forego mutual authentication. The creation of a new virtual host exclusively for the au-

thentication service means that the authentication service is accessible through a differ-

ent port than other services.

4.2.3 Authentication Client

The authentication client is a component of the product’s client application that uses the

authentication web service to fetch a session token to be used for further remote method

invocations. It has to be able to perform mutual authentication using certificates on a

smart card to identify the user. It must also support file-based certificates in lieu of

smart cards in the test environment. This means that the following things have to be

designed and implemented as part of the authentication web service client:

 A typical Spring HTTP Invoker client proxy

 Classes for establishing mutually authenticated SSL connections using a config-

uration

 A configuration for specifying what kind of key material to use (smart card/file)

Proxy

As explained in chapter 2.2.2, the Spring HttpInvokerProxyFactoryBean class creates a

proxy implementing the AuthenticationService interface, such that method calls to the

proxy are invoked on the server implementation of the authentication service. This is

shown in Figure 24.

38

Figure 24. Creation of a proxy capable of using the authentication service.

The requests to the application server are executed by an instance of the HttpInvokerRe-

questExecutor interface described in chapter 2.2.2. An implementation of this interface

must be created which uses mutual authentication in SSL connections using the config-

ured key material.

HTTPS Connections in Java

Typically, Java applications use an instance of the HttpsURLConnection class to create

HTTPS connections. This class in turn uses an instance of the SSLSocketFactory class

to create SSL sockets used in the HTTPS connection. SSLSocketFactory instances rely

on instances of the TrustManager and KeyManager classes to handle the trust stores and

key stores respectively.

Trust stores and key stores are containers of key material such as certificates, public

keys and private keys. The trust store contains trusted certificates and it is used by the

Java SSL implementation to check if the server certificate is trusted. The key store con-

tains the client certificate sent to the server during an SSL connection and the user’s

private key used for cryptographic operations. Key stores and trust stores are password

protected, which means that modifying them or accessing sensitive information within

them such as private keys requires a valid password.

Both key stores and trust stores are implemented using the KeyStore class. KeyStore

instances can be configured to use different sources for their key material using the Java

Security Provider framework. For example, a smart card can be specified as a KeyStore

using the PKCS#11 provider included with the Java platform for interfacing with cryp-

tographic hardware. More typically, the key material is provided using file-based key

stores. The most common file-based key store type is the Java Key Store (JKS). JKS

39

is a file format for storing key material. PKCS#12 archives can also be used as key

stores using the PKCS#12 Provider. PKCS#12 is a standard for storing several crypto-

graphic objects in a single archive, for example used in packaging a public key and pri-

vate key.

Figure 25 demonstrates how the classes discussed above relate to each other.

Figure 25. The principal components used when forming an HTTPS connection from

Java code and their relations.

To be able to create custom connections that can use a smart card or file as the key

store, it is necessary to create a set of classes that, based on a given configuration, create

the necessary key stores, trust stores, key managers, trust managers, and SSL socket

factories.

Mutual Authentication

First, a high-level design was made for the way mutually authenticated connections

could be established from the authentication service proxy to the application server. The

outline of the design is show in Figure 26.

40

Figure 26. High-level design for making mutually authentication connections using a

custom authentication configuration.

In this design, when a request is made to the server, the MutualAuthRequestExecutor

class uses an instance of the previously discussed HttpsURLConnection class, for which

it sets an SSLSocketFactory that it obtains from the SSLSocketFactoryProvider. The

SSLSocketFactoryProvider creates SSLSocketFactory instances that use key managers

and trust managers created by the KeyManagerFactory and TrustManagerFactory clas-

ses, which in turn obtain their key store and trust store from instances of KeyStoreFac-

tory and TrustStoreFactory. These last two factories use an authentication configuration

to decide what key store and trust store to use. This way, either the smart card or a file

can be configured as the key store for the connection.

The trust store can also be configured in a similar manner. The KeyStoreFactory uses an

instance of CallbackHandlerFactory to create callback handlers for providing key store

passwords. When accessing a private key in a key store, a password has to be provided.

The KeyStore implementation invokes registered CallbackHandlers requesting the

password, which is fetched from an instance of PasswordProvider, which can e.g. re-

quest a password from the user via a graphical user interface.

In the development environment, the application server’s security features are disabled

and SSL is not used, as connections are established over HTTP directly to the applica-

41

tion server. To support this kind of use in the development environment, the Mutua-

lAuthRequestExecutor class only attempts to perform mutual authentication when the

used protocol is HTTPS. In case of HTTP the request is made over HTTP, with no cer-

tificate sent.

For the most part, the implementation of the high-level design described above was

straightforward. However, it was that when deciding which user certificate to send to

the server, the default Java implementation of the KeyManager interface would choose

the first certificate in a KeyStore, leading to situations in which the wrong certificate

was used from a smart card containing more than one certificate. To ensure that the cor-

rect certificate is always sent to the server, a custom KeyManager was created. This new

mechanism for choosing the correct certificate is presented in Figure 27:

Figure 27. Design of the mechanism for choosing client certificates to present in SSL

handshakes.

Each certificate in the key store is represented by an alias, which is a string. First the

ClientAliasChooser filters the aliases such that only certificates with e.g. appropriate

names or algorithms remain. The remaining aliases are presented to an instance of Cli-

entAliasSelector, which is implemented by a GUI window from which the user can se-

lect the certificate to be used in the connection.

Support was added for PKCS#11 (smart card), PKCS#12 and JKS key stores. During

development, an additional requirement emerged for automatically choosing one of

these key store types based on what key stores are available. For example, this key store

choosing mechanism could be configured to use PKCS#11 if available and default to

using JKS otherwise. This mechanism was implemented as a virtual ‘AUTO’ key store

type combined with a configurable list of preferred key stores in order of priority.

Authentication Configuration

42

Program listing 4 shows an example configuration of the mutual authentication classes.

Program listing 4. Example authentication configuration for specifying key stores and

trust stores to be used in mutually authenticated connections.

The configuration file allows the user to choose which kind of key store and trust store

to use. Using the given key store or trust store requires that the corresponding trust store

or key store file path is specified. The auto.keyStorePriorities parameter decides the prior-

ities of the different key stores when the AUTO keystore type is used to automatically

choose the key store type based on the available key stores. The alias.allowedClientAlises

parameter is used to decide which certificate aliases from the key store can be used in

mutual authentication.

Use of Authentication in the Product

The authentication mechanism described in this chapter is used in the product’s client

only once per client application instance. Whereas before the session token was provid-

ed to the client application as a command line parameter, the new implementation fetch-

es a session token from the authentication service immediately upon start up and sets it

as a system property. From then on, other remote method invocations use the session

token to refer to the active session. If fetching the session token fails, the client applica-

tion is shut down.

4.3 Dependency Management

Apart from user authentication and starting the client application, the final function of

JWS in the product is to provide the client application with all the dependencies needed

to run it. Since the client application already requires a configuration package to be in-

stalled manually in the test and production environments, the most natural solution is to

include the client dependencies with this package. This way, it is easy to add these de-

pendencies to the class path of the launcher application.

The existing client application build configuration gathered all configuration files from

different projects and produced a .zip configuration archive. This build process was

modified to resolve all the client application dependencies, build the dependencies and

add them into the mentioned .zip package as shown in Figure 28.

useKeyStoreType = AUTO
useTrustStoreType = JKS
pkcs11.libraryPath = C:/Programs/DigiSign/Cryptoki.dll
pkcs12.keyStorePath = C:/CRT/User.p12
pkcs12.trustStorePath = C:/CRT/Server.p12
jks.keyStorePath = C:/CRT/User.jks
jks.trustStorePath = C:/CRT/Server.jks
auto.keyStorePriorities = JKS, PKCS12, PKCS11
alias.allowedClientAlises = Authentication Certificate, User Certificate

43

Figure 28. Production of a distribution archive containing compiled Java dependencies

and configuration files.

This solution has the advantage of simplicity, as it only required changing the build con-

figuration. It also simplifies testing in the test environment, since when testing changes

developers can recompile and replace a single dependency as needed instead of having

to create and install an entirely new version of the product. This was not possible using

JWS, as all the libraries were signed and the application would not start if a dependency

was changed without updating its cryptographic signature.

44

5. EVALUATION

5.1 Impact

The command and control system is used in a few dozen physical sites, each with sev-

eral users. Because of the nature of the command and control system, its lifespan in op-

erational use is likely to be measured in decades. The new session establishment is very

visible, since the launcher application is the user’s first point of contact with the prod-

uct. Given the number of users, the long lifetime of the application, and the visibility of

the end result, the implemented session establishment can have a large impact on the

end users.

5.1.1 User Experience

From the perspective of the users in the production environment, starting the client ap-

plication with the new session establishment is simple, with a pleasant and easy to use

graphical user interface for starting client application in the right operating environment.

This is a large improvement over the JWS-based session establishment in which there

were command line scripts for each operating environment and in which the applica-

tions were started using a web browser.

In the test environment the new session establishment provides the same user experi-

ence improvements as in the production environment. Additionally, it makes debugging

and testing much easier. Whereas before it was almost impossible to use profiling tools

on applications started through JWS, applications can now be profiled with ease. Simi-

larly test automation has become easier with the new session establishment solution,

since it was difficult for the used automation testing framework to access the internals

of a client application running in the JWS sandbox.

Whereas before making any change to the client application in the test environment

typically required the re-installation of the command and control distribution, the new

session establishment solution allows the user to simply recompile and replace the re-

quired library in the client application’s class path, which rarely takes more than a mi-

nute. Since rebuilding and reinstalling the command and control system typically takes

at least 30 minutes, this can translate into substantial time savings when debugging the

client application in the test environment.

A comparison was made between the startup times of the client application using the

old and new session establishment. Startup time was measured from the moment the

45

user pressed the button to start the application to the moment that the client application

GUI became visible. To reduce the effect of human reaction time, the test was config-

ured not to ask the user for a key store password during mutual authentication, but use a

hard-coded password instead. In both cases, GUI visibility also indicated successful

session establishment via acquisition of the session token. The startup time using the

new session establishment mechanism was 3.0 seconds on average. The JWS-based

session establishment startup time depended on whether the application was started for

the first time or not. For the first start up, JWS had to download all the client application

dependencies from the application server, leading to a long average startup time of 21.3

seconds. For subsequent startups, JWS averaged 6.6 seconds. Based on the measure-

ments it can be said that the new session establishment mechanism is approximately

twice as fast as its predecessor.

The new session establishment mechanism also reduced the build time of the command

and control system from an average of 22 minutes to an average of 17 minutes, a reduc-

tion of approximately 20%. This is explained by the client application dependencies not

needing to be cryptographically signed as is the case with JWS. This makes developers

waste less time waiting for a build and reduces the burden on the CI servers.

The new session establishment solution was developed so as to not interfere with the

way the product is used in the development environment. For example, no authentica-

tion of the user is performed if a plain HTTP connection is used, as is the case in the

development environment. As a result, the new system has no effect on the typical use

of the product in the development environment. This is as intended, because session

establishment was very rarely used in the development environment to begin with.

From the perspective of system administrators in the test and development environ-

ments there were some tradeoffs in the complexity of administration. Whilst server cer-

tificate authority (CA) certificates no longer need to be installed into the web browser,

they have to be installed into a key store for the new implementation to work. Adding a

launcher application and its associated configuration adds some complexity, but since

the startup scripts used in the JWS-based session establishment solution can be re-

moved, the overall complexity was lowered in this area. Finally, since the authentication

service is accessed through a different port than the other web services, firewall config-

urations may need to be changed, adding slightly to the administration work.

It can be concluded that the new session establishment solution broadly achieves the

user experience goals that it set out to achieve.

5.1.2 Reliability

The JWS-based session establishment solution suffered from a problem with reading the

smart card after it is removed and replaced after a few minutes, rendering the client ap-

46

plication inoperable. This problem has been solved in the new session establishment

solution, since only the authentication service ever performs mutual authentication us-

ing the smart card, and it does this just once when the session is established. This means

that once the application is started, the smart card can be removed and replaced freely,

and the application still remains operational.

By eliminating this long-standing problem in the product, its reliability has been im-

proved appreciably. Previously the client application was rendered inoperable in ap-

proximately 30% of the cases in the test environment, and 100% of cases in the custom-

er’s environment. Now that the problem has been solved, the customer can use the cli-

ent application reliability without having to restart it each time they remove their smart

card.

5.1.3 Security

The new session establishment mechanism has improved the security of the command

and control system considerably. This is because the JWS-based session establishment

required the user to open a JNLP file using the browser, which then downloads the file

onto the local disk so to be opened by the JWS executable. As discussed in chapter

2.2.4, the session token is injected into the JNLP file to be passed to the client applica-

tion as command line argument. This means that anyone with access to the local disk

can open the JNLP file and see the session token in plain text.

By replacing JWS in session establishment, the session token is never leaked outside of

the application in plaintext. Instead, every transmission of the session token is per-

formed over a cryptographically secure SSL connection.

5.1.4 Maintenance and Further Development

One of the concerns with the JWS-based session establishment mechanism was the ex-

tent to which it was beyond the control of the development team. This is because it re-

lied on a command line scripts, a web browser communicating independently with a

smart card reader and JWS, none of which are directly accessible in the product’s code.

By using Java code to communicate with the smart card reader in the client application,

and by creating a Java-based launcher application, much of this process has been

brought under control of the developers. In case of any future problems or development

needs, it is easy to work on the new session establishment, whereas it was almost im-

possible using the JWS-based session establishment mechanism.

Although it was imagined that a smart card reading component could be developed into

its own product to be used within the company, it was quickly discovered that the Java

47

platform abstracts away so much of the card interaction that there was no need for this.

Despite this, the classes used in establishing mutually authenticated connections were

general enough that some of them were used in another version of the product to better

control how connections to the application server were made.

5.2 Potential Future Improvements

While implementing the new session establishment solution, some opportunities for

further improvement were noted. Although they were related to session establishment,

they were considered to be outside of the scope of this thesis. These potential improve-

ments are presented here.

The launcher application’s user interface (not the logic) created in connection with this

thesis was very plain. Since the launcher application provides the customer’s first

glimpse of the product, it was decided that it be re-implemented to be more aesthetically

pleasing using the modern Java FX user interface framework.

Another improvement likely to be implemented in the future is the filtering of available

operating environments in the launcher application. Currently, the launcher application

displays all the operating environments installed on the machine. However, the operat-

ing environments typically have restrictions on which users are allowed to access them.

It could be possible for the launcher application to find out which operating environ-

ments the user is allowed to access and only present those environments to the user.

The previous session establishment solution would ensure the integrity of the client ap-

plication dependencies by cryptographically signing them and refusing to run if they

were tampered. Since this is feature of the replaced JWS technology, no integrity checks

are performed. The security implications were considered, but it was decided that pres-

ently there is no need to protect the dependencies in this way, because the environments

in which the product is used are considered secure enough, having no access to outside

networks. This might change as the customer’s security requirements evolve, meaning

that similar integrity checks may be performed by the launcher in the future.

48

6. CONCLUSIONS

The purpose of this thesis was to redesign session establishment in a distributed com-

mand and control system. The work was undertaken because of a variety of disad-

vantages in using the previous JWS-based session establishment solution. Among these

were poor end user experience, poor support for testing and debugging, poor support for

continued development, unreliability and a dependence on an increasingly superannuat-

ed technology.

The problem was approached by elucidating the product’s architecture, identifying how

the previous session establishment worked, and gathering requirements for the new ses-

sion establishment solution. It was decided that the new session establishment solution

should handle all smart card interactions itself using Java code, support file-based certif-

icates and allow the user to start applications from a Java launcher application.

Finally, the new session establishment solution was designed and implemented, result-

ing in a well-functioning system relying mainly on a web service for authenticating us-

ers based on their certificates from either a file or a smart card, and a launcher applica-

tion for starting command and control client applications.

The implemented session establishment solution was evaluated for how well it achieved

its stated goals and how it impacted end users. In comparison with the previous solu-

tion, it was deemed to provide greater opportunity for further development, improve-

ments in usability, testability and maintainability, making it much better suited for the

product’s needs.

49

REFERENCES

[1] "Insta DefSec Website," 9 5 2016. [Online]. Available:

http://www.insta.fi/defsec/en/. [Accessed 12 09 2016]

[2] Oracle, "Java SE 7 Documentation," [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/security/p11guide.html.

[Accessed 12 09 2016].

[3] Oracle, "Servlet API Documentation," [Online]. Available:

http://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html. [Accessed 12 09

2016].

[4] Apache Software Foundation, "AJP Protocol Reference," [Online]. Available:

https://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html. [Accessed 12 09

2016].

[5] C. Heinrich, "Secure Socket Layer (SSL)," in Encyclopedia of Cryptography and

Security, Springer US, 2005, pp. 548-551.

[6] J. Davies, Implementing SSL / TLS Using Cryptography and PKI (1), Wiley,

2011.

[7] R. Oppliger, SSL: Theory and Practice, Artech House Inc, 2009.

[8] W. Rankl and W. Effing, Smart Card Handbook (4), Wiley, 2010.

[9] M. Keith and M. Konstantinos, Smart Cards, Tokens, Security and Applications,

Springer, 2008.

[10] RSA Laboratories, "PKCS #11: Cryptographic Token Interface Standard,"

[Online]. Available: http://www.emc.com/emc-plus/rsa-labs/standards-

initiatives/pkcs-11-cryptographic-token-interface-standard.htm. [Accessed 13 09

2016].

[11] Pivotal Software, "Spring Security Filter Chain," [Online]. Available:

http://docs.spring.io/spring-security/site/docs/3.0.x/reference/security-filter-

chain.html. [Accessed 12 09 2016].

[12] Pivotal Software, "Remoting and web services using Spring," [Online]. Available:

50

http://docs.spring.io/autorepo/docs/spring/3.2.x/spring-framework-

reference/html/remoting.html. [Accessed 12 09 2016].

[13] Oracle, "Java Web Start Technology Documentation," [Online]. Available:

http://docs.oracle.com/javase/8/docs/technotes/guides/javaws/developersguide/ov

erview.html#jws. [Accessed 12 09 2016].

[14] Oracle, "JNLP File Syntax," [Online]. Available:

http://docs.oracle.com/javase/8/docs/technotes/guides/javaws/developersguide/sy

ntax.html#intro. [Accessed 12 09 2016].

[15] Oracle, "JWS Security and Code Signing," [Online]. Available:

http://docs.oracle.com/javase/8/docs/technotes/guides/javaws/developersguide/de

velopment.html#security. [Accessed 12 09 2016].

[16] Oracle, "Finding Classes," [Online]. Available:

http://docs.oracle.com/javase/8/docs/technotes/tools/findingclasses.html.

[Accessed 12 09 2016].

[17] Microsoft, "Windows Environment Variables," [Online]. Available:

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms682653(v=vs.85).aspx. [Accessed 12 09 2016].

