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Recent advancements in signal processing techniques have led to obtain more high

resolution images. A high resolution image refers to an image with high density of

pixels. The importance and desire of high resolution images are obvious in the �eld

of electronic and digital imaging applications.

The quality of an image can be improved either by hardware or software ap-

proaches. Hardware approaches are straightforward solutions to enhance the quality

of a given image, but some constraints, such as chip size increment, making them

expensive to some extend. Therefore, most of the researchers are focused on software

methods.

Super resolution is one of the software image processing approaches where a high

resolution image can be recovered from low resolution one(s). The main goal of

super resolution is the resolution enhancement. This topic has been widely brought

into attention in image processing society due to the current and future application

demands especially in the �eld of medical applications.

Super resolving a high resolution image can be performed from either a single low

resolution or many low resolution images. This thesis is completely concentrated

on Single Image Super Resolution (SISR) where a single low resolution image is the

candidate to be exploited as the input image. There are several classes of methods to

obtain SISR where three important ones, i.e., the Example-based, Regression-based

and Self-similarity-based are investigated within this thesis.

This thesis evaluates the performance of the above-mentioned methods. Based

on achieved results, the Regression method shows better performance compared to

other approaches. Furthermore, we utilize parameters, such as patch size, to improve

the numerical and virtual results in term of PSNR and resolution, respectively.

These modi�cations are applied to the Regression-based and Self-similarity-based

methods. The modi�ed algorithms in both methods lead to improve results and

obtain the best ones.
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1. INTRODUCTION

1.1 Super resolution of images and videos

The problem of spatial resolution enhancement has been an active research area

since early 1980s when the �rst paper regarding Super Resolution (SR) or Resolution

Enhancement (RE) was proposed by Tsai and Huang [1].

The concept of the resolution in image processing is related to the amount of

information embedded in an image. Resolution can be described in various ways such

as Pixel Resolution, Spectral Resolution, Spatial Resolution, Temporal Resolution and

Radiometric Resolution. In this thesis, spatial resolution will be of the main interest

[3]. Henceforth, the term "resolution" will refer to a spatial resolution.

The term Pixel was invented from "Picture Element" word. Pixels are smallest

addressable points used to create an image. Each image is a matrix consisting

of thousands of pixels. Since these square-like pixels are so small, they are not

distinguishable when looking at an image [35]. Spatial resolution is related to the

number of pixels contributing to construct an image. Increasing the number of

pixels in an image causes to achieve higher spatial resolution as well as images

with improved sharpnesses [3]. In order to see pixels of an image, zooming is a an

appropriate tool. In Figure 1.1, pixels of a small region have been visualized by

extreme zooming.

The importance and desire of High Resolution (HR) images are obvious in the

�eld of electronic or digital imaging applications. High resolution image refers to

an image with high density in terms of pixels. In principle, an HR image contains

more information, in comparison with a low resolution image, which is a key point

in most of the applications. One of the crucial needs for HR images is in medical

applications where the accuracy of the diagnosing is proportional to the quality of

the image. It can be seen by the fact that having more resolution means having

more information which leads to more accuracy from medical application point of

view [2].
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Figure 1.1: Image and its zoomed version for a certain region

Figure 1.2 shows the di�erence between high and low resolution images. According

to the picture, it is obvious that Figure 1.2(a) has more sharpness compared to Figure

1.2(b) which is blurred due to the lack of adequate resolution. It is worthwhile to

mention that sharpnesses and edges are shown by High Frequency (HF) components

while LF components create a blurry image where the main structure of the image

can just be distinguished. Moreover, HF components present the pixels whose values

are changing rapidly while LF components values are changing slowly [4].

(a) (b)

Figure 1.2: a) High Resolution Image, b) Low Resolution Image
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1.1.1 Hardware perspective of image resolution enhancement

Considering image resolution, the �rst limitation is appeared in the hardware

part, i.e., image sensors. The two common image sensors are Charge-Couple De-

vice (CCD) and Complementary Metal-Oxide-Semiconductor (CMOS) active-pixel.

These sensors are used to take digital images and they are appropriate for most

imaging �elds. The signi�cant point is that they are not desirable for a current need

of resolution due to some hardware limitations [3].

As it was mentioned earlier, spatial resolution is proportional to the number of

pixels. As a result, the straightforward solution in order to increase the spatial reso-

lution is increasing the number of pixels (increasing the number of sensor elements).

The size of a pixel is reciprocal to the amount of the shot noise. In other words, as

long as the pixel size is decreasing, the amount of the shot noise is increasing. The

shot noise is created due to the decrement in available light along with �uctuations

seen in the number of detected photons [5]. Moreover, the hardware cost is increased

by utilizing more sensors. Therefore, there is always a trade-o� between the pixel

size and the amount of noise. It is worth mentioning that the lower limited pixel

size is approximately 40 µm2 for a 0.35µm CMOS process [2]. Increasing the chip

size in order to improve the resolution is another procedure. This approach causes

increasing the total capacitance. Since large capacitance leads to have low charge

transfer rate, this approach also can not be successful in resolution enhancement [2].

Hence, it is demanding to �nd alternative approaches in order to increase the level

of resolution.

1.1.2 Software perspective of image resolution enhancement

According to the problems caused by the hardware approach, a wise idea is to

emphasize more on software methods rather than the hardware ones. SR is a signal

processing technique in which an HR image is produced from one or multiple LR

images. In other words, SR techniques intend to improve the resolution and details

of an image by estimating the edges and textures which are the fundamental com-

ponents of an image. Recently, the SR has become more popular in di�erent �elds

of research which are mostly focused on image resolution enhancement. There are

several methods and algorithms to achieve SR which can be found in particular, in

[6]-[12].

There are several advantages in exploiting SR. One of the decisive advantages is

the cost of the development. These techniques are more e�cient than the hardware

ones. Another prominent feature enabled by SR in signal processing �eld is that the
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low resolution imaging systems can still be used [2].

Super resolution algorithms are divided into two main categories: Multi-frame

super resolution [13],[14] and Single-Image Super Resolution (SISR) [15]-[18]. In

this thesis, some of the algorithms targeting SISR are studied and compared. Figure

1.3 illustrates some categories of super resolution methods described in following

sections.

Figure 1.3: Scheme of the Super resolution techniques in details

1.2 Multi-frame super resolution

The traditional methods in SR are reconstruction-based, where multiple LR input

images are used to super resolve an HR image. They utilize information existing

between multiple LR images which are obtained either by capturing several pictures

from the same scene, or using multiple cameras placed in several locations. The

images have the same content, however a non-redundant information exists between

images introduced as subpixel shift. Subpixel displacements occur when there is a

movement in the objects, shifting in scenes or shifting between imaging systems.

The extra (non-redundant) information helps in recovering the HR image [3]. In

contrast, there is no extra information when a shifting occurs not within the subpixel

displacements. In this situation, each image has the same information. Figure 1.4

depicts the basic idea of reconstruction-based methods in super resolution. As it

can be seen, the green circles represent the integer shifts, the red squares and blue

triangles represent the subpixel shifts used in SR reconstruction. It also shows two

di�erent LR image acquisition mechanisms, i.e., either only with one camera or

multiple cameras [2].
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Figure 1.4: Schematic representation of a HR image reconstruction from multiple LR
images [3]

In the process of reconstructing an HR image, some natural noise and artifacts

are introduced to the image. Optical distortions, motion blur, sensor noise, etc are

introduced to the image as degradation factors, as well. These types of impair-

ments cause the image to loose the spatial resolution. Therefore, SR methods in

addition to reconstructing an HR image from LR ones, should cover image restora-

tion technique simultaneously. Image restoration technique assists to mitigate the

mentioned impairments as well as producing a high quality image without noise or

blurring e�ects. Image restoration does not change the image size [3].

The �rst step in SR reconstruction methods is to form a relationship between HR

and LR images called the observation model. There are several observation models

proposed in the literatur [3]. Figure 1.5 represents an example of an observation

model between HR and LR images.

Two main parameters used in reconstruction-based SR techniques are magni�ca-

tion factor (size of the desired enlarged image) and a number of observed LR images.

The performance of reconstruction-based methods are degraded if the magni�cation

factor is chosen to be large [23]. Hence, reconstruction-based methods are not ap-

plicable for any enlargement factor. In some cases, the number of LR images is not

su�cient enough to achieve e�cient results for super resolving problem. In addition,

information related to the sensors, Point Spread Function (PSF), LR images align-

ment, etc. are needed in multi-frame super resolution methods. Therefore, these

parameters can cause some constraints in some cases. In the next section, we will

consider the SR applications when there is only one input image.
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Figure 1.5: Observation model, real imaging system [3]. First desired HR image is achieved
by sampling continues signal beyond the Nyquist rate. After translation and rotation due
to some optical or motion events, they got blurred. Observed LR images are achieved by
downsampling (sampling so that the size of the image is reduced) the blurred images from
last step[2]

1.3 Single-Image Super Resolution

In SISR, the super resolving algorithm is applied to only one input image. Since

in most cases there is no underlying ground truth, the signi�cant issue is to cre-

ate an acceptable image. Hence, possessing a reasonable prior information is more

interesting rather than estimating the characteristics of the sensors [19]. SISR ap-

proaches can be classi�ed in two main categories: interpolation-based [20],[21], and

learning-based [6],[12].

1.3.1 Interpolation methods

According to [28], the goal of interpolation-based methods is to achieve a high

resolution image by employing a combination of methods such as upsampling, de-

noising, etc. Interpolation-based methods treat SR as a non-uniform interpolation

problem [25]. The assumption in interpolation algorithm is that the input LR image

is the downsampled version of an HR image. Based on this assumption, it tries to

recover the HR image by upsampling LR image while considering the impact of de-

aliasing [28]. In [28], the interpolation based methods can be divided in two groups

each of which splits into couple of categories. Interpolation algorithms are listed as

following: polynomial-based interpolation, and edge-directed interpolation.

Single image interpolation can predict new pixels by e.g. bilinear or bicubic in-

terpolation. However, results of these interpolation methods are not satisfactory

since they are not able to overcome the strong discontinuity contents of the images.

Discontinuities are nominated to natural speci�cation of each typical image. Having

various type of edges in a typical image is a good example of such discontinuities.
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Figure 1.6: Scheme of the Thesis

Although the interpolation based methods are simple, they produce variety of im-

pairments. The most prominent one is blurring the higher frequency components

resulting in smoothing of the entire image [18].

1.3.2 Learning-based method

Learning-based methods are used to recover the HR image by referring to missing

HF components of the LR ones. In addition, they arrange pertinent information

for the target image in advance. In this Thesis, learning-based methods are orga-

nized in three categories: example-based [6],[12], self-similarity-based [26], [22], and

regression-based [15],[8] .

The main focus of this Thesis is based on learning-based methods of single image

super resolution. In following chapters, they are discussed in more details. The

advantages and disadvantages of each method are investigated as well.

As it can be seen from Figure 1.6, this work is going through three di�erent SISR

classes. In this �gure, the red blocks show the methods which are going to be

discussed through this work.

1.4 Applications of Super Resolution

There are many applications where SR is applied such as satellite imaging, medical

imaging, video usage, high de�nition television, high performance color LCD, remote

sensing, etc. In all these applications, image reconstruction has a vital role [2]. The
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image quality in some medical imaging systems such as Magnetic Resonance Imaging

(MRI) or Computed Tomography (CT) is not quite high. However, they still have

the potential to be employed in the �eld of SR due to the ability of acquiring multiple

images.

Another example is a surveillance application which is available for both market

and home in order to monitor the environment. In such systems, the motion events

are recorded as long as there is no abnormality. Once the abnormality happens,

an alert is sent to the system controller. The video is also possible to be shown to

an authorized person in any location. In this situation, video streaming occupies

most of the bandwidth. Therefore, the band limitation issue is emerged. In order to

resolve this problem, data should be sent at the lowest possible rate. Hence, both

temporal and spatial SR would be required to achieve a reasonable video from the

received LR one [17].

1.5 Outline

The rest of the Thesis is organized as follows.

Chapter one presents the example-based methods. This chapter covers the ba-

sics of example-based SISR. An overview to the Freeman's method and a Neighbor

Embedding method will be given, as well.

Chapter two discusses the regression-based method. In this chapter, we are going

through the paper [15] and implementation of the proposed method. Afterwards,

we will present the modi�ed algorithm.

Chapter three presents the self-similarity method which has been widely used

recently. In this chapter, the main idea of the paper [26], will be investigated.

The results will be presented after applying few modi�cations to the original code.

Finally, a comparison between modi�ed code and the original one will be given.

Chapter four concludes the entire thesis focusing on di�erent SR methods. This

chapter also discusses the results and the performance of each of the implemented

methods in various situations and environments.
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2. EXAMPLE-BASED METHODS

This chapter is mainly focused on Example-based methods from the group of learning-

based algorithms in super-resolution. We present the basics of learning-based ap-

proach by implementing some example-based methods and show visual and numer-

ical results of simulations.

2.1 Introduction

In early super resolution algorithms, e.g. reconstruction-based, the main idea was

to aggregate multiple LR images which have the complementary information in the

spatial domain. This cannot always be practical due to some constraints appearing

during the measurements. In some cases, a problem appears, for instance, when

just one low resolution image is available. Learning-Based methods utilize external

examples to conquer the limitations of measurements in super resolving an image.

Example-based SR methods are based on sampling other images in training set [3].

In other words, the super resolved image is achieved by splitting training samples in

two di�erent sets of patches (small blocks or windows of (3 × 3) pixels). One set is

related to LR components and the other one to HR components. The training set

consists of huge number of LR and HR patches. The modeled relationship between

HR and LR patches helps each new given LR patch to �nd its corresponding HR

one according to the learning process in the training stage.

One of the earliest paper regarding the Example-based image super resolution,

published by Freeman et al. [6], has initialed an intensive research in the learning-

based �eld of single-image super resolution. Although Freeman's method is bounded

by some constraints, e.g. over-�tting, dependency on external data in some cases

and etc, it can be considered as an acceptable SR method. The main idea behind

it is to recover the missing HF components which can not be achieved by simple

sharpening.

2.2 Overview of example-based methods

Some of example-based algorithms (mostly previous ones), e.g. [6], [29], [13], [30]

are categorized in Nearest Neighbor (NN)-based estimation approach [19]. This
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classi�cation is due to the similarity of the algorithms based on NN estimation and

example-based methods. Here, LR patches and their corresponding HR ones are

collected. The nearest patch to the input LR patch among the training set is found

(checking neighbor compatibility) [19]. Super resolving is performed by �nding the

corresponding HR patch to the candidate LR patch.

In [30], the SR method has been performed according to analogies which can

be found between images. Baker et al. in [13] have used Laplacian pyramid to

represent the images and estimated the HR image by NN-based estimation. In [29],

initial interpolation of the given image is performed for any desired scaling factor.

Afterwards, NN-based estimation of missing HF components is applied in order to

super resolve the LR image. In this implementation, Markov Random Chain (MRC)

has been utilized to resolve the compatibility of the output. Chang et al. in [12]

have made their e�orts on eliminating some constraints which can be caused by

previous NN-based methods. In [24], Sparse coding Super Resolution (ScSR) has

been introduced as a method which can select the best patches adaptively.

In this section some of the mentioned example-based methods such as Freeman's

example-based SR algorithm [6], Neighbor Embedding (NE) method [12] and the

ScSR method [24] will be discussed.

2.2.1 Freeman's Method

The main goal of the Freeman's algorithm is to estimate the high-resolution com-

ponents which are missing in the original image. The entire algorithm can be cat-

egorized in two main sections. First section is related to the training stage where

the example patches are obtained from an external comprehensive database. The

database learns correlations between low and high resolution image patches which

form pairs. Example-based method is working in such a way that two sets of data,

which are employed as training patches to construct the new HR image, are pro-

duced. Assume set {xi}
n
i=1 is sampled from HR images and the second one, {yi}

n
i=1,

is sampled from the LR images. The observation model, which connects the HR and

LR image patch pairs, (xi, yi), is yi = DFHxi + V . In this model, D is a downsam-

pling operator, F is a motion information, H is a blurring model and V is a noise

[3]. In [16], the HR patch is predicted by applying the above mentioned observation

model to the test image. In the second section, the super resolving algorithm is

completed by utilizing a graphical framework (MRC or One-Pass algorithm) which

helps to preserve the neighbor compatibility.
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(a) (b)

(c)

Figure 2.1: a) Low-resolution downsampled image b) Initial Interpolated image c) Original
image

Training procedure

In the training stage, �ne details for each region in LR image should be learned

�rst. Then, the learned algorithm is used to predict �ne details for any given image.

Obtaining LR images in order to create the training set must be done before

starting training procedure. This can be achieved when the HR images are sub-

sampled (subsamplings used to reduce the image resolution). Afterwards, an initial

interpolation algorithm, e.g. the cubic spline, is applied to the obtained subsampled

images. The interpolation algorithm tends to produce an image with the same size

as the original HR one. The only di�erence is that the generated image, which is

called smoothed version of the original image, su�ers from lack of details. Figure

2.1 depicts the mentioned images as well as the corresponding low resolution and in-

terpolated versions. In this �gure, picture (c) is the original image whereas pictures

(a) and (b) are the downsampled (the image achieved by sampling and reducing the

number of pixels) and smoothed versions of the original image, respectively.
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It is expected that each HR image patch and its corresponding LR patch are

stored in two di�erent sets of patches to perform the training procedure. Storing

this amount of information causes some problems in terms of memory capability or

algorithm processing speed. In order to avoid such problems, a preprocessing step

must be executed beforehand. Preprocessing stage removes unnecessary variability

within the image and makes the training set more appropriate. The preprocessing

application includes �ltering of redundant data which are not essential through the

whole super resolution algorithm. An example of redundant data can be introduced

as the low frequency components of the blurred (interpolated) image. The LF com-

ponents of the interpolated image are not needed for predicting the missing HF

components [6].

Super resolution procedure

In this method, the input LR image is upsampled (predicting new pixels in order

to increase the size of an image) using bicubic interpolation. Thus, the upsampled

image, assume Ihl , is enlarged with the desired scaling factor. Certainly, this image is

blurred compared to the original version of itself. Afterwards, Ihl is passed through

a band-pass �lter which �lters the LF components while preserving the HF compo-

nents in the image. Therefore, the number of training examples is reduced due to

the elimination of low frequency components as well as normalization of contrast.

The super resolution algorithm is not a simple procedure. One of the major issues

in this method is that the LR image, i.e. Ihl , is divided into several small patches.

This means that, the observation model which is made between LR and HR patches

is local (i.e. the model is between patches not images). Hence, it is possible that the

chosen HR patch would not be compatible with its spatial neighbors. Consequently,

the algorithm should not only search through the LR database to �nd the closest

patch to the input image patch. Indeed, in order to have an accurate prediction

the surrounding patches in HR database are needed to be taken into consideration.

For example, the training set, in [6], includes e.g. 100,000 patches. For each given

patch, 16 closest patches are selected. Although these patches are quite similar to

the input ones, their corresponding HR patches are completely di�erent from each

other (Figure 2.2). Hence, �nding the closest LR patch (to the input LR patch)

along with its corresponding HR ones are not the only candidates to resolve an HR

patch.

Markov Random Chain is one of the solutions for the output compatibility prob-

lem. As Figure 2.3 shows, there are some blocks connected to each other where the

connections model the similarities between LR patches and their corresponding HR
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Figure 2.2: Representation of input patch. Second row shows 16 closest patches in LR
training dataset. The last row depicts the corresponding HR patches of 16 closest patches
[6]

ones. The compatibility between spatially neighboring HR patches are shown as

well. Figure 2.3 presents the MRC model, where the circles represent network nodes

and each line represents the dependency of the corresponding node. In Markov

network, the probability of selecting the appropriate HR patch is given by:

P (x|y) = 1

Z

∏
(ij)

ψij(xi, xj)
∏
(i)

φi(xi, xj) (2.1)

where ψ is the compatibility matrix which expresses the possible states of each pair, φ

is a vector which makes the relation between each observation and underlying hidden

states, Z is the normalization constant, yi is the representation of the observed LR

input patch and xi is the found candidate LR patch in the training set.

If i and j present two nodes, the compatibility matrix is:

ψij(xi, xj) = exp(−dij(xi, xj)
2σ2

) (2.2)

where σ is a parameter of the noise. In order to estimate φ, the following equation

should be applied:

φij(xi, xj) = exp(
|xi − xj|2

2σ2
) (2.3)
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(a)

Figure 2.3: MRF framework structure [3]

In Freeman's method instead of applying MRC algorithm, One-Pass has been

utilized. Although the one-pass algorithm is similar to Markov network, it is faster

in implementation because of considering only HR patch compatibilities. Figure 2.4

shows the one-pass algorithm.

The example-based algorithm is expressed brie�y as following:

Data: Input LR image Il, training set (including e.g. 100,000 LR and HR

patches), interpolated image Ihl
Result: High resolution super resolved image Ih

for each patch of Il do

searching in LR patches and �nd e.g. the 16 closest patches to it;

Finding their corresponding HR patches;

Applying Markov network to consider the neighboring information and �nd

the best LR patch, i.e x
′
;

Select its corresponding HR patch, y
′
, add it with the patch in the

interpolated image and insert it to the right place in the output image

end
Algorithm 1: Example-based super resolution algorithm

As it was previously mentioned, the Freeman's method is one of the �rst ap-

proaches toward the example-based super resolution algorithms. Later works with

the concept of example-based methods have made their e�orts on eliminating some

constraints introduced by Freeman's algorithm. The most signi�cant issue in example-

based method is the requirement of a huge training data (high dimensional data)

set to cover all possible patterns.
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(a)

Figure 2.4: One-pass algorithm [6]

2.2.2 Neighbor Embedding

The idea of NN-based methods has been used widely in super resolution algo-

rithms. It is worth mentioning that NN-based methods have impressively attracted

the most attention in super resolution �eld. However, there is still a need to achieve

more improvements in the algorithms. For instance, over-�tting problem (which ap-

pears due to using high dimensional data) should be resolved [19]. The over-�tting

usually happen during the learning process of NN-based methods. Consequently,

having a robust method, such as Neighbor Embedding (NE), to resolve the

above-mentioned constraint in NN-based methods is crucial.

NE is an algorithm proposed by Chang et al. in [12]. The term "neighbor"

refers to the nearest LR patches to the input LR patch. The algorithm was focused

on making a linear combination between training patches. Applying linear combi-

nations are only applicable when similar geometries for both LR and HR images are

available.

The super resolving algorithm starts by searching for a set of nearest LR patches

to the LR input patch. In this method, the input patch is reconstructed as a

linear combination of the recovered patches. This linear combination estimates the

output patch as a linear combination of the stored HR patches using the coe�cients

calculated from Locally Linear Embedding (LLE) algorithm. This method

causes enhancements compared to the NN-based. However, it can be useful as long
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as the local geometry between LR and HR images is the same.

Locally Linear Embedding

LLE is an unsupervised non-linear learning technique where the high-dimensional

data is considered to reduce the data dimension while local geometry is preserved.

In LLE each original point, Xi, is reconstructed according to its neighbors, i.e. Xj.

The reconstruction is based on a linear combination obtained from the weight matrix

Wij. The reconstruction error is simply computed by:

E(W ) =
∑
i

|Xi −
∑
j

WijXj|2, (2.4)

where E(W ) is the computed error, Wij represents the amount of contribution of

pointXj in reconstructing pointXi. Consequently, ifXj is not the adjacent neighbor

ofXi, the weight factorWij would be zero. Figure 2.5 depicts a simple representation

of reconstructing the original point. The Neighbor Embedding method is more

clari�ed using the following algorithm.

(a)

Figure 2.5: Weights of reconstruction
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Data: Input LR image Il, training set (including e.g. 100,000 LR and HR

patches), Interpolated Image Ihl
Result: High resolution super resolved image Ih

for each patch of Il do

searching in raster order through LR patches and �nd the closest ones;

Selecting K nearest LR patches, Nx = {x1, x2, ..., xk};
Finding the best weights W={w1, w2, ..., wk} which can be utilized in

presenting input patch x as a linear combination of {x1, x2, ..., xk };

Constructing y as a linear combination of Ny = {y1, y2, ..., yk}. Ny is the

HR correspondence to the Nx. They also use the same weights, i.e.

y=Ny×W;

Finally, when y is achieved, it should be added to the correct position in Ih
end

Algorithm 2: Neighbor Embedding super resolution algorithm

2.2.3 Sparse representation

In sparse representation, just a few desired coe�cients present the information.

Signals, unlike the sparse representation, consist of enormous amount of data which

make �nding the relevant data as a di�cult procedure. In order to make a sparse

representation, signal should be decomposed into basic elements in a category called

dictionary [36].

ScSR method in [24] introduces a sparse linear combinations of over-complete dic-

tionary's elements used to represent the image patches. Patch-based method intro-

duced by Yang et al. [24] derived from a theory which con�rms that the relationship

between HR patches can be recovered from their low dimensional projections. Two

dictionaries of HR and LR patches, i.e. Dh = [x1, x2, ..., xn] and Dl = [y1, y2, ..., yn],

construct the training sets. The LR images are achieved by downsampling an HR

image. In these methods, a sparse representation is searched for each patch of the

LR image. The achieved coe�cients from this representation are used to create the

HR image. Sparse linear combination of patches x of HR image X in dictionary Dh

(HR patches) can be written as x ≈ Dhα for some α ∈ RKwith ‖ α ‖� K.

The problem of recovering the sparse representation of a given test LR image

patch ytk (t shows the test patch from training set) can be solved by minimizing the

l1-norm:
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α̂ = min ‖ α ‖1
s.t. ‖ yt −Dlα ‖2< σ2 (2.5)

where Dl is the LR patch dictionary, yt is a patch from LR dictionary and α is a

desired coe�cient.

The corresponding recovered HR patch is xtk = Dhα̂. It can be seen that, unlike

the NE estimation algorithm where K �xed neighbors are selected in order to re-

constructing the HR patch, few essential coe�cients are chosen. This issue is also

helpful in overcoming the over-�tting problem.

2.3 Results and discussion

In this section, implementation results (visual and numerical) of the Freeman's

example-based, Neighbor Embedding and also ScSR methods are presented. Be-

fore going through the discussion, two major assessment tools should be addressed

�rst. These are Subjective and Objective methods. In the subjective method,

a human with the Human Visual System (HVS) evaluates the output image. In

this case, there is no reference image to compare the result with. In the objective

method, the numerical results present the performance of the proposed algorithm.

Consequently, in order to compute the amount of distance between the input image

and its reconstructed HR version, both images must have the same size. Hence,

to compute the numerical results, the downsampled version of the original image

should always be used through the computations. Afterwards, the super resolved

HR image has the same size as the original image and they can be compared with

each other.

Peak Signal-to-Noise Ratio (PSNR) andRoot Mean Squared Error (RMSE)

are the two common numerical tools in assessing the performance of an algorithm.

PSNR measures the signal power ratio to the noise power and RMSE shows the error

of reconstruction algorithm. They can depict the amount of similarity between the

reconstructed result and the original data. The PSNR and RMSE are de�ned by:

RMSE =

√√√√(1/mn
m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2)

PSNR = 20× log10
MAXI

RMSE
(2.6)
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where, m and n depict the size of the images, I and K are the original reference

and reconstructed images, respectively.

Table 2.1 shows the numerical results of Freeman's method for various scaling

factors. As it can be seen the PSNR values are decreased when scaling factor is

increased. The amount of decrement in PSNR values from ratio 2 to 3 would be

higher than the one from ration 1.5 to 2. When an image is enlarged e.g. 3 times it

means that for each pixel 3 pixel are needed to be predicted. This is due to blurring

in the reconstructed image and losing more HF components. As a result, higher

scaling factor would cause lower PSNR value.

In order to make a fair comparison, the implementations of di�erent methods must

be under the same situations and conditions. In this experiment, both methods

have one similar training image as well as the same scaling factor of 4. It should be

mentioned that all the experiments have been accomplished in luminance channel.

Figure 2.6 and Table 2.2 represent the result of two di�erent types of pictures.

Table 2.1: Freeman method, PSNR values of Lena and Textured images, di�erent scaling
factors (R).

PSNR values

Images R=1.5 R=2 R=3

Lena 26.3059 25.6644 24.9691

Textured Image 21.7661 21.6270 21.0465

Table 2.2: PSNR values of Lena and Textured images, Scaling factor is 4

PSNR values

Images Example-based Freeman Neighbor Embedding

Lena 24.4292 27.7688

Textured Image 20.3653 24.7296

As it can be seen from Figure 2.6 picture (b), some noise is introduced due to

the heavy dependency of the algorithm to the training data. Numerical and visual

results in Table 2.2 and Figure 2.6 show that the NE method has better performance

compared to the Freeman's method. The values of PSNR for both Lena and Textured

images in NE estimation are considerable higher than the ones in Freeman's method.

Figure 2.7 and Table 2.3 depict another results through various images. In this

�gure and table, ScSR has been compared with other methods. The results are

gathered from [24] to make wide experiments. Pictures (a) and (b) in Figure 2.7
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: a)LR Lena Image b) Super-Resolved image achieved by Freeman algorithm
c) Super-Resolved image achieved by NE algorithm d) Textured Image e)Super-Resolved
image achieved by Freeman algorithm f) Super-Resolved image achieved by NE algorithm.
Scaling factor is 4.

Table 2.3: The RMS values of di�erent images achieved using di�erent methods [24].

RMS values for scaling factor 3

Images Bicubic Neighbor Embedding ScSR

Flower 3.5052 4.1972 3.2276

Girl 5.9033 6.6588 5.6175

Parthenon 12.7431 13.5562 12.2491

Raccoon 9.7399 9.8490 9.1874

depict input, bicubic interpolated, NE estimated, ScSR estimated and the original

images from left to right respectively. In this comparison, Neighbor Embedding

is able to create sharp edges compared to bicubic results, however it causes some

blurring. Sparse method shows more details in the results compared to NE. Table

2.3 illustrates ScSR method has better performance in reconstructing an HR image

compared to other methods (lowest RMS values). According to this table, NE

method was not successful in comparison with bicubic interpolation in terms of

RMS value.
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(a)

(b)

Figure 2.7: a)Left to right: Input, Bicubuc, NE [12], Sparse Representation [24] b) Left to
right: Input, Bicubuc, NE, Sparse Representation. scaling factor is 3 [24].

2.4 Conclusion

The learning process in example-based algorithm is introduced as an inaccurate

and slow algorithm. The proposed example-based method by Freeman et al. recov-

ers the high resolution output image. Although the Freeman's algorithm sharpens

the edges, it consists of magni�cent amount of noise as well as irregularities. This

impairments mainly happen due to the lack of relevant examples or patches. Free-

man's algorithm is strongly dependent on a huge data set used in the training stage.

NE method is a good candidate to reduce artifacts and keep the general shapes safe.

It works similarly to Freeman's algorithm in terms of reconstructing an HR image.

However, the NE method cannot be successful for all images due to the lack of adap-

tive selection of training elements. The number of elements in the dictionary as well

as the amount of neighboring region (which is considered in each patch) should be

selected adaptively. Consequently, this method can not be successful for all images

since it is dependent on the selection of the training images. This issue could be

almost covered by sparse coding methods. ScSR method by addaptively choosing

the desired data could overcome over-�tting problem. However, there is no certain

number of raw samples available for constructing dictionaries.
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Example-based super resolution methods are e�ective in environments with less

availability of the observations. However, a number of improvements are needed to

�nd out which patch size would be appropriate for a given image based on the image

content. Moreover, it would be better to make the training data adaptive for each

input image in order to increase the e�ciency and decrease the computational cost.



23

3. REGRESSION-BASED

This chapter presents another technique of learning-based category known as

Regression-based. We will clarify this method by implementing a regression-based

approach. Extracting some signi�cant parameters may help to know algorithm de-

sign in di�erent situations. Finally, this parameter representation helps to obtain

improvements through the performance of the algorithm both visually and numeri-

cally.

3.1 Introduction

One of the major demands in learning-based super resolution methods is to dis-

cover a relationship between LR patches with the corresponding HR ones. In other

words, it is challenging to �nd out an appropriate mapping function, f, in order

to map patch X in the low resolution space into Y in the high resolution space

[31]. As it was mentioned in the previous chapter, Chang et al. in [12] presented a

novel method to overcome the constraints, such as over�tting, in NN-base method.

Another method introduced in this chapter is making a regularization on regressor

directly. This is a direct approach to overcome the NN-based method's problems [19].

For instance, Support vector regression is a technique to cope with regression

problems in frequency domain proposed in [32]. In [15], matrix-value regression has

been used to overcome super resolution constraints. We also exploit this method in

our experiments while making some modi�cation to the original code. Implementing

the modi�ed algorithm alongside considering prominent parameters such as patch

size, we could achieve better results compared to the original code.

3.2 Regression algorithm

Matrix-value regression technique helps to improve the e�ciency of the learning

process by diminishing the impact of the large training data in single-image super-

resolution algorithms. The aim of the matrix-value regression is to promote learning

e�ciency from image pairs [15]. Tang et al. in [15] mostly concentrated on train-

ing data to have an e�cient data set. In this method, the regression operator is

considered as a matrix learned irrespective to the number of training set images.

SISR has been presented as a multi-task learning model in this regression method.

Multi-task learning facilitates performing several related task, simultaneously. It
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Figure 3.1: Vector to vector VS Matrix to Matrix [15]

has also claimed that multi-task learning can not be adequate to present the rela-

tionship between patches when the vector-to-vector model is employed. Therefore,

they have proposed a matrix-to-matrix multi-task learning. Figure 3.1 presents the

vector-to-vector versus matrix-to-matrix relations.

The matrix operator makes the relationship between low and high resolution

patches. The prior information in training images are used to make the opera-

tion matrix. A super resolved image patch is estimated using the matrix operator.

In the next section, we will present the training stage which is the most important

part of this algorithm.

Training procedure

At this stage, all training images are read. These images are considered as high

resolution images. The low resolution ones are obtained by executing down-sampling

and, consecutively, up-sampling operations on the HR images. Afterwards, images

are segmented based on the de�ned patch size, e.g. 3. All the patches in LR and

HR training images are employed to create the operation matrix A. The training

procedure is terminated as soon as the matrix A is estimated.

The Matrix operation algorithm can be achieved as following. Let's assume A :

X −→ Y to be the operator which maps the low resolution patches to high resolution

ones. Thus, the training set which contains n pairs of the training samples is formed

as:

S = (X1, Y1), (X2, Y2), ..., (Xn, Yn) (3.1)
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whereXi represent LR patches and Yi their corresponding HR ones. The least square

regression technique is used to learn the optimal matrix operator as following:

A = argmin

n∑
i=1

‖Yi − AXi‖2F (3.2)

where A is the matrix operator and ||.||F is the Frobenius norm (an Euclidean norm).

In order to reach the optimal matrix operator, F(A) should be:

F (A) =
n∑

i=1

‖Yi − AXi‖2F (3.3)

By taking into account the essential condition of the minimum, where the deriva-

tive is equal to zero, the matrix A is learned as:

∂F (A)

∂A
= 0

∂

∂A

n∑
i=1

(< Yi, Yi >F −2 < Yi, AXi >F + < AXi, AXi >F ) = 0

⇔ ∂

∂A

n∑
i=1

(< Yi, Yi >F −2 < YiX
T
i , A >F + < AXiX

T
i , A >F ) = 0

⇔
n∑
i

AXiX
T
i =

n∑
i

YiX
T
i

(3.4)

The optimal matrix operator obtained based on equation (3.4) is:

A =
n∑
i

YiX
T
i (

n∑
i=1

XiX
T
i )
† (3.5)

where XT
i is the transposed version of matrix Xi and ()† is the generalized inverse.

After the training process, the �nal procedure is performed as soon as the matrix

A is available. This part consists of executing the super resolution algorithm on the

input test image. Algorithm starts by enlarging the test image with a desired scaling

factor. Each patch of the enlarged image is multiplied by the matrix A. Eventually,

the result of this operation will give the recovered HR image. Figure 3.2 illustrates

the entire process of the algorithm. In this �gure, the �rst row shows the test image

which is interpolated by any interpolation algorithm, e.g. bicubic, and then its HF

components are recovered by estimated matrix A (estimated from learning stage).

In the second row, the LR and HR version of the training image are achieved in
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Figure 3.2: The algorithm model for super resolution [15]

order to start learning procedure and �nd mapping function.

The entire algorithm is presented as following:

Data: Input image I0, training images It, Smoothed version of the input

image L1

Result: High resolution super resolved image IT

Set I0= Original Image, Input image to the algorithm is the smoothed version

of the original image, L1=U(D(I0)), where U and D are the bicubic

upsampling and downsampling operators respectively;

Training:

Reading all training images and consider them as HR training images;

First down-sample, then, up-sample the HR training images to achieve the

blurred version considered as the LR training images; for each patch (e.g. 3

×3) x in LR images and y in HR images do

A =
∑
yix

T
i (
∑
xix

T
i )
†

end

Super Resolving Algorithm:

for each patch z in smoothed image do

Super Resolved-patch=A× z ;
Inserting the achieved patch to the correct place in the output image IT ;

end
Algorithm 3: Reconstruction of high resolution images by Matrix Regression

method

We have exploited Freedman's method in our work, however there are some mod-

i�cations applied in the main code. In the next section, we present a modi�ed al-

gorithm and discuss more about the modi�cations which may lead to improvements

in results.
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3.3 Modi�cations of the progress

In the previous section we have presented the entire algorithm and the implemen-

tation levels. In this section, the modi�cations and parameters which have been

applied to improve the results will be investigated. As it can be seen from previous

section, the algorithm was based on patches. In other words, patches from two sets

of images (HR and LR) are collected to achieve the operation matrix A. In contrast,

in our experiments the transformed version of the patches, i.e. its corresponding vec-

tors, are used. For instance, patch size equal to 3 should be converted to a vector

of nine elements (9× 1). Afterwards, all the operations are applied on the achieved

vectors. The transformation to a vector can be performed in any direction. In other

words, the results of a patch transform to either a column or a row are the same.

This technique is applied for any desired patch size. The corresponding results of

the modi�ed code have been improved in comparison with the original one in both

visual and numerical points of view. The conversion from patches to vectors causes

changing in size of operation matrix A. It is the squared size of the corresponding

patch (i.e. for patch size 3× 3, matrix A is 9× 9). Operator matrix, B, is achieved

as following:

B =
n∑
i

yix
T
i (

n∑
i=1

xix
T
i )
† (3.6)

where xT
i is the transformed version of LR vector xi, yi is the HR vector, and ()† is

the generalized inverse. According to the experiments, transforming a patch to other

possible forms of matrix is not improving results. Consequently, all experiments have

been performed with vectors form of patches.

The e�ect of patch size is another major concern which should be considered in

SR algorithms. In order to assess both performance of the algorithm and sensitivity

to the selected patch size, the algorithm has been repeated for various patch sizes

in our experiments. It was observed that increasing the patch size can make some

improvements in visual and numerical results. Since these global improvements

have been achieved through an image recovered from various patch size, the e�orts

were made in reconstructing a switching operator. This operator made some local

improvements.

3.3.1 Switching Operator

The achieved results from the modi�ed version showed that image quality can

be dependent on the patch size. Hence, in this thesis instead of using one �xed

patch size, a mixture of di�erent patch sizes are employed by applying a proper

switching operator. When the four resultant images have been estimated from �xed
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patch sizes (3, 5, 7, 9), the switching operator compares each 9×9 patches (in order

to have a correct comparison, size of this patch should be equal to the maximum

size of patches which have been used.) of these images with the original one. The

comparison is performed by calculating the mean squared error between each patch

and the original one. As a result, four numbers will indicate the distance of these

patches from the original patch. The patch corresponding to the minimum number

is the closest candidate to the original one. The central pixel of the closest patch is

selected to be the corresponding pixel in reconstructed patch. This procedure will

be continued for all 9×9 patches within the images. Finally, the image is created

with a mixture of di�erent patch sizes. For each 9×9 comparison, the selection of

switching operator is stored in a matrix. The corresponding index of the closest

patch size is stored in a matrix each reference. The values of the created matrix, i.e.

gray levels, are changed from 1 to 4 according to the contents of the input image

and selected patch. The small patch sizes are good candidates in smooth area. Since

more changes exist in the areas with more contents, the larger patch size covers more

discontinuities and edges. Figure 3.3 depicts the image reconstructed by indexes to

each patch size.

Figure 3.3: Top row: original image, middle row: reconstructed images from �xed patch
sizes, bottom row: image reconstructed by patch size selection

As it can be seen, for the �rst pixel, each 9×9 red patch is compared with original
one. The central pixel of the nearest patch to the original one is stored in a new

reconstructed image. The number of corresponding image is stored in a matrix (see

bottom image). In this example, for the �rst comparison the nearest patch is for

image number 4 (i.e. image reconstructed with patch size 9). This is performed for

all 9×9 patches.
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3.3.2 Initial interpolation

In all experiments, the bicubic interpolated version of the input image is used to

recover its missing HF components. We repeated the algorithm again in order to

experiment whether it operates �ne for any other interpolation methods. This time,

instead of using bicubic algorithm as an initial interpolation, we have used the re-

covered image from patch size equal to 3. This image is sent through the algorithm

to recover the image with the patch size (i.e. 5). This procedure is performed se-

quentially until the last patch size. In these experiments, the improvements can be

observed in results. Figure 3.4 shows this sequential procedure. It should be men-

tioned that every interpolation algorithm used as the initial interpolation method

should be also used in the training procedure.

Figure 3.4: sequential algorithm

3.3.3 Training images

Figure 3.5 shows the input training image for both main and modi�ed algorithms.

In the last experiment, we changed the input training image in order to investigate

the e�ect of di�erent types of training images. Figure 3.6 shows two di�erent training

images where picture (a) is related to the geometric images and picture (b) refers

to the textured ones.

Images which are used in training process should be chosen properly to achieve

satisfactory results. Experiments showed that the performance of the algorithm has

some dependencies to the images used in the training procedure. In other words, if

the training image is far from the test image (in terms of content), the results will

not produce signi�cant improvements.
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Figure 3.5: Training Image

(a) (b)

Figure 3.6: a) Textured, b) Geometric. Both are used as training Images

It is worth mentioning that all low and high resolution color images are presented

in YCbCr channels. Since the human visual system is more sensitive to luminance

channel, the algorithm and computation steps were performed in Y channel. More-

over, for evaluating the performance of di�erent algorithms, the results must be com-

pared under the same conditions. For instance preliminary interpolation method,

zooming factor, image domain, etc. must be the same for di�erent implementations.

3.4 Results

The results shown in this section are achieved from implementing the main algorithm

proposed in [15] as well as the modi�ed version of it. In order to obtain more

experiments, this algorithm is examined using di�erent images in terms of content.

Tables 3.1 and Figure 3.7 present the numerical and visual results.

Figure 3.7 depicts three images with their interpolated versions in three di�er-

ent methods. From left to right original image, bicubic interpolated image, image
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.7: a)e)i) Original images b)f)j) Bicubic interpolated images c)g)k) images obtained
by main regression-based method d)h)l) images obtained after modi�cations, Patch size=3

Table 3.1: PSNR values, Ratio=3 and Patch size=3

PSNR values

Images Bicubic Main Regression Modi�ed Regression

Child Face 32.90 33.00 33.13

Textured image 27.42 27.51 27.72

Girl image 29.03 29.09 29.1
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achieved from implemented main regression algorithm and �nally image obtained

from our modi�ed code are depicted from left to right respectively. As it can be seen,

the impact of the algorithm for both numerical and visual results is not impressive.

The di�erence between PSNR values in bicubic interpolation and regression method

for patch size equal to 3 with enlargement factor equal to 3 is negligible.

In Table 3.2 the numerical results of two methods, for scaling factor 3 with di�erent

patch sizes, are collected. In our experiments, by increasing the patch size, PSNR

values in the modi�ed code are increased, while the corresponding values in the

main code decreased. These results are obtained from a textured image with total

improvement of approximately 1 dB (between the PSNR of last patch size and the

bicubic one). Another image which di�ers from the previous image ( in terms of

content) is used. Table 3.3 and Figure 3.8 present the results for this facial image.

In this table, the same as Table 3.2, improvements in PSNR values is observed when

the patch size increases. In Figure 3.8, the di�erences between results of two codes

are clear. The images on the left are obtained from our experiments with modi�ed

code, the images on the right are achieved from the main regression code. Our

results show more details in comparison with the original code's results. Moreover,

moving from up to down in this �gure shows super resolved images with patch sizes

3, 5 and 7 respectively.

Table 3.2: Textured image, PSNR values, Ratio=3 and Di�erent patch sizes

PSNR values

Patch size P=3 P=5 P=7

PSNR, modi�ed code 27.72 28.01 28.39

PSNR, original code 27.51 27.07 26.95

Table 3.3: Child face, PSNR values, Ratio=3 and Di�erent patch sizes

PSNR values

Patch size P=3 P=5 P=7

PSNR, modi�ed code 33.13 33.30 33.46

PSNR, original code 32.9950 32.6084 32.6824

In order to consider the di�erences in images achieved from two codes (Figure

3.8), results for patch size equal to 5 are zoomed and shown in Figure 3.9. It can

be seen that more details are detectable in Figure 3.9 (b).

Table 3.4 depicts numerical results of di�erent images with various patch sizes.

From this table, it can be observed that the best PSNR values are achieved when
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: a) Patch size is 3, modi�ed code b) Patch size is 3, main code c) Patch size
is 5, modi�ed code d) Patch size is 5, main code e)Patch size is 7, modi�ed code f) Patch
size is 7, main code

the patch size is not �xed (last column). Changing the patch size not only globally

but also locally leads to have improved numerical results. The improvements are

not always considerable. Comparing result of last patch (i.e. 9) with the mixed

one depict that the improvement for the textured image is about 2 dB, however for

others are almost about 0.1 to 0.2 dB.

Figure 3.10 shows the visual results of the super resolved image from the mixture

of patch sizes. Moreover, in Figure 3.10, another image is created according to the
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(a) (b)

Figure 3.9: a) Main Code b) Modi�ed Code, Both images are zoomed in and the patch
size is 5.

Table 3.4: Modi�ed regression, PSNR values, Di�erent patch size and the mixed

PSNR values

Images P=3 P=5 P=7 P=9 Mixed patches

Child face 33.13 33.30 33.46 33.49 33.50

Textured image 27.72 28.01 28.39 28.5 30.19

Camera man 26.21 26.39 26.65 26.68 27.78

Girl 29.09 29.25 29.40 29.42 29.82

switching operator which selects the proper patch size for each HR patch reconstruc-

tion. It is expected to have larger window in edges. For instance, in Figure 3.10

(a) for edges contents (lines in the �gure), white regions are appeared in the Figure

3.10 (b). The same issue has happened for the girl and cameraman images when

the background is interrupted by object.

As it has been mentioned before, the initial bicubic interpolation can be replaced

by other methods. For instance, after super resolving an image with patch size equal

to 3, we have utilized the result image as the input to obtain next image with patch

size equal to 5. The result image is again used (as an input) to achieve the next

recovered image with patch size equal to 7. Table 3.5 shows the PSNR values of

this sequential experiments. As it can be seen, increasing the patch size improves

the PSNR values.

Table 3.5: Child face, PSNR values, Di�erent patch size and the mixed

PSNR values

Images P=3 P=5 P=7 P=9 Mixed patches

Child face 33.19 33.39 33.52 33.56 33.60

Textured image 27.58 27.92 28.39 28.55 30.04
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: a)c)e) Super-resolved images with mixed patch sizes b)d)f) Produced image
from switching operator

All the previous experiments have been performed with the same training image

(Figure 3.5). In the next experiment, we will show how the training image may

impact the results. Table 3.6 illustrates the results of two di�erent images, when

the training image is a geometric one. Table 3.7 also shows the results of two

di�erent test images, when the training image is the textured image. As it is clear

from both tables, textured test image can be recovered better from the textured

training image and, consequently, the geometric test image can be recovered better

from the geometric training image. This is due to the similarity between the training

and the test images, in terms of content. In case of having di�erent training and

test images (one is textured and other one is geometric), PSNR value is less than
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the case when both training and test images are from the same category.

Table 3.6: PSNR values, Geometric training Image, Two di�erent test images

Patch size P=3 P=5 P=7 Mixed patches Bicubic

PSNR, Textured test image 28.9293 28.9431 29.6088 29.9078 28.7271

PSNR, Geometric test image 26.2804 26.6898 27.0612 27.3795 25.8854

Table 3.7: PSNR values, Textured training Image, Two di�erent test images

Patch size P=3 P=5 P=7 Mixed patches Bicubic

PSNR, Geometric test image 25.9808 25.9857 26.2547 26.3666 25.8854

PSNR, Textured test image 28.9074 29.2648 29.8021 30.1341 28.7271

Figure 3.11: PSNR values of super resolving a geometric test image for di�erent patch
sizes. Red curve is for Textured Training image and the blue one is for geometric image

Figure 3.11 depicts changes of PSNR values for the geometric image which has

been super resolved by two di�erent training image sets. As it is shown, the red

curve and the blue one are related to the textured and geometric training image sets,

respectively. In this experiment, since the test image is the geometric one, more

relevant data exist between geometric training image and the test image. Hence, it

is expected to obtain larger PSNR values when the training and test images have

more correlation. As the Figure 3.11 shows, the curve with geometric training image

stands higher than the curve with textured training image in terms of PSNR values.
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Figure 3.12: PSNR values of super resolving a textured test image for di�erent patch sizes.
Red curve is for Textured Training image and the blue one is for geometric image

The same scenario occurs when the test image is textured. Figure 3.12 shows how

the position of the curves are altered when the test image has more correlation to

the textured training image.

(a) (b)

(c) (d)

Figure 3.13: a)Test textured image recovered from geometric training image b) Test tex-
tured image recovered from textured training image c)Test geometric image recovered from
textured training image d) Test geometric image recovered from geometric training image
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(a) (b)

(c) (d)

Figure 3.14: a) Test textured image recovered from geometric training image b) Test
textured image recovered from textured training image c)Test geometric image recovered
from textured training image d) Test geometric image recovered from geometric training
image

Figure 3.13 shows the visual results of these experiments. Figure 3.13 pictures (a)

and (b) show recovered textured image from geometric and textured images respec-

tively. Figure 3.13 (c) and (d) depict recovered geometric image from textured and

geometric images, respectively. In images (a) and (c), some irrelevant information

which degrade the image quality exist. This is due to recovering the test image from

a di�erent training image (in terms of content) .

Figure 3.14 illustrates images created by the selection of proper patch size (the

result of using various patch size). The training image can have impact on switching

along with the selection of proper patch. Figure 3.14 (a) and (c), include highlighted

parts where the switching has not operated perfectly.

3.5 Conclusion

This chapter illustrates a single image super resolution method which could over-

come some constraints, e.g. dependency to huge training data set, originated from

previous work ( example-based). All the experiments have been completed through

the regression-based method. Regression method aims to �nd a mapping function

between low and high resolution patches. The main idea of this chapter was based on

one of the previous work in regression methods. Improved results were achieved by
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exploiting some parameters and features such as patch size, vector-based multi-task

learning, etc.

One of the advantages of the regression-based method is the cost of the implemen-

tation in SR. The complexity of the computations in an NN-based algorithm (which

uses the nearest neighbour method) is compromised due to the local characteristics.

However, the cost of the computation for a huge training set is potentially high.

Hence, the regression-based method can obtain satisfactory results regardless to the

amount of training set.

Parameters investigated through this work cause signi�cant e�ects on the results.

Output image created by di�erent patch sizes showed the best numerical values

as well as visual presentations. Implementing a switching operator could help to

achieve the best result in PSNR within various images. Moreover, converting the

patch size through the training process to a vector led to obtain more acceptable

results. One of the major concern which should be taken into consideration is about

training image. The correlation between training and test images would make results

more accurate.
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4. SELF-SIMILARITY-BASED

This chapter describes self-similarity as the �nal learning-based method investi-

gated in this thesis. The implementation procedure along with the corresponding

numerical and visual results are presented. Furthermore, few modi�cations applied

to the main code as well as the idea behind that are discussed in detail.

4.1 Introduction

Self-similarity is a method which exploits similarities alongside the structural in-

formation of patches which can be employed to reconstruct the HR image. Chih-

Yuan Yang et al. in [18] introduced the problem of super resolution from Example-

based perspective. They also claimed that it is not necessary to use an external

imaging set to perform mapping learning between low-resolution and high-resolution

patch pairs. In such techniques, instead of extracting patches from external image

data base, further e�orts are made to study the relationship between patches in

di�erent scales of the input image.

In [27], Sae-Jin Park et al. categorized self-similarity into two di�erent classes.

The classi�cation is performed upon the used domain. In the �rst class, the concen-

tration is mainly on the spatial components meaning that the searching application

is performed through spatial version of pyramid scales. This kind of self-similarity

approach can be seen in [23] where the resolution enhancement procedure is based on

patch redundancy. In the second category, the self-similarity technique is based on

the frequency components of the input image. In frequency-based self-similarity al-

gorithms, detachment of low frequency and high frequency components is occurred.

This decomposition in the image components performed to �nd the similar patches

through the pyramid scales of the original image. Since this technique is built based

on LF and HF domain, it can be expanded in Learning-based SR methods as well.

However, in self-similarity SR methods, there is no need to have a prior dataset.

The pyramid scales of a given image is illustrated in Figure 4.1.

There are several papers focused on developing self-similarity methods. Noriaki

Suetake in [22] tried to design a codebook to show the relationship between low and

high frequency components according to the local self-similarity. In this mapping,
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Figure 4.1: Pyramid Scales. I0 is the LR input image. I−1, I−2 and etc. are the downscaled
version of input. IH is the HR output image.

an image whose high frequency components are estimated locally is reconstructed.

Daniel Glasner et al in [23] have proposed a self-similarity approach which is a

combination of two previously mentioned methods: traditional Multi-frame SR and

Example-based. The idea behind this work is that each patch in a natural image tends

to be repeated several times over either the same or di�erent scales. The repetition

over the same scale is originated from the classical multi-frame SR techniques and

the repetition over di�erent scales is originated from the example-based SR methods,

respectively.

In following sections, the self-similarity method proposed by Freedman et al. in

[26] is discussed. It will be shown how self-similarity can preserve details and HF

components.

4.2 Local self-similarity method

As it was mentioned before, there is no prior example database in self-similarity

method. The proposed SR technique in [26] was performed using local self-similarity

method. The algorithm is based on a characteristic of natural images attributed as

the similarity of small patches when the scaling factor is small. This algorithm is

appropriate for small scaling factors. Moreover, large scaling factors are used by

employing several upscaling procedures to obtain the required factor.
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4.3 Implementation

The implementation procedure is split into two main sections. The �rst section

covers explanations related to the upscaling method process. The second part em-

phasizes more on the matching algorithm procedure to super resolve an image with

a reasonable quality along with the high frequency components. This procedure is

performed by utilizing both LR and HR images.

4.3.1 Upscaling process

In this section, simple interpolation algorithms are exploited in order to perform

upsampling and downsampling procedures. The aforementioned operators perform

the interpolation by bicubic algorithm. In order to go through the super-resolution

procedure, the required images for the matching step must be prepared. This re-

quired pack of images consists of low resolution input image, up-sampled version

of the input image and the high resolution components image. The explanation of

these three images are given as following.

The �rst image, i.e. low resolution input image, is L1 = D(I0) where D is the

downsampling operator and I0 is the original input image, respectively. It should be

taken into account that instead of taking I0 as the input image, L1 is selected as the

image during the computation process. This is due to achieving numerical results

in addition to visual results. This issue has been widely discussed in the second

chapter.

The second image, L0 = U(D(I0)), is the up-sampled version of the input image.

According to the previous notation, the result of D(I0) shows the input image.

Consequently, the U(D(I0)) is upsampled version of the input image. U and D are

the upsampling and downsampling operators, respectively.

The last image, which contains the high frequency components, is a representation

of image details. In this image, details and edges are more visible rather than the

main structure of the input image. Since details and edges of an image are embed-

ded in high frequency components, these sort of images are called high frequency

components images. High frequency components are easily obtained by subtracting

the original image from the smoothed one. The original image usually consists of

both low and high frequency information while the smoothed version of an image

only represents the low frequency components. Therefore, the subtraction process

results in preserving high-frequency components of the image. Figure 4.2 (d) is a

good example of the mentioned scenario.
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(a) (b)

(c) (d)

Figure 4.2: a) original image b)interpolated image c) low-Pass image d) high-pass image
[26]

4.3.2 Matching

In this stage, the images obtained from upscaling procedure are used to construct

the HR image. Henceforth, the interpolated image(L0) is called the "target" image.

In this step, missing high frequency components are recovered using di�erent scales

of the input image.

The matching process is a localized algorithm. It started by comparing each patch

of the interpolated image, e.g. 3× 3, with the corresponding ones in the LR image.

The comparison is performed by computing the squared di�erence between two

patches. Each patch of the target image is compared not only with the corresponding

one in the LR image, but also with the adjacent neighbors of the LR patch. Thus,

the local regions are examined within the LR image in order to �nd the closest

patch to the target one. The di�erences between each patch in the target image

and the ones in the LR image are stored in a matrix. Thereafter, for each patch

in the target a matrix is created. This matrix represents the squared di�erences of

a set of patches in the LR image with the target patch. The corresponding patch

to the lowest value is chosen as the closest patch to the one in the target image.

When the best patch in the LR image is determined, the corresponding one in the

HF image is chosen and stored in a new matrix. This algorithm is iterated for all

the patches in the interpolated image. Finally, the created HF matrix is added to

the interpolated image and the HR image is reconstructed. Figure 4.2 illustrates the

matching part as well as searching procedure. In this �gure, red and green patches
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represent HF and LF components, respectively. The dash-lined patch in the input

image is the corresponding one in the upsampled image. However, it can be observed

that the closest LR patch to the one in the interpolated image has been found in

the adjacent neighbor. Consequently, the corresponding HR patch to the closest LR

one is transfered as the recovered HF components of the patch in the interpolated

image. Potentially, self-similarity method can be categorized as a fast algorithm.

This is due to local searching of patches (instead of global searching) as well as not

using an external data base. Following presents the above-mentioned algorithm.

Figure 4.3: Matching Scheme [26]

Data: Input LR image L1(m,n), high frequency components image HF,

Interpolated image L0(zm, zn), Zooming factor z, Size of patch w,

Search Window 2w

Result: High resolution super resolved image IT

Set I0= Original Image, L1=D(I0) where D is the bicubic downsampling

operator, L0=U(D(I0)) where U is the bicubic upsampling operator;

for each pixel of L0 do

for every patch x in L0 and corresponding one y in L1 do
%Di�erences of patch x with the region in search window area.

Di�=x-y(-2w:2w);

S=Sum(Di�);

end

% Finding the closet patch and its location.

[P1, P2]=min(s);

%Finding corresponding HF patch of the closest LR patch

HF_new=HF(P1,P2);

end

%Adding the HF patch to the interpolated patch

Reconstructed_Img=HF-new+L0;
Algorithm 4: Reconstruction of high resolution images by self-similarity method
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4.4 Modi�cations of the progress

There are several advantages by exploiting the proposed idea in [26], however in

the wavelet interpolation part no reasonable results could be achieved. Hence, we

have replaced the interpolation part with a simple interpolation method, e.g., bicu-

bic. In addition, other changes performed in the whole implementation algorithm,

as well. The proposed method in [26] was performed for a �xed size of patch (i.e.

5 × 5). In our experiments, we exploit the e�ect of patch size in reconstructing an

image. Repeating the algorithm for di�erent patch sizes showed that the patch size

has a magni�cent impact on the results. This issue comes more into attention by

choosing the appropriate patch size. Therefore, it is more demanding to create a

reconstructed HR image not only with a �xed patch size, but also with various patch

sizes.

The most appropriate patch size is di�erent for each given image. In other words,

the magnitude of the patch size is changed based on the image content. Contents of

the images not only change between di�erent images, bus also vary within an image,

as well. Thus, there is no �xed patch size candidate as the best one even for just

a single image. Therefore, a switching operator can make the reconstructing HR

images more accurate.

4.4.1 Switching operator

In this stage, a switching operator is applied to the algorithm in order to re-

construct the best recovered HR image. The operation starts as soon as resultant

images reconstructed from four �xed patch sizes (i.e. 3, 5, 7 and 9) are achieved.

Each patch of these reconstructed images is compared with the corresponding one in

the original image ( it is assumed that the ground truth image is available). Switch-

ing operator chooses the best patch size in each comparison by computing the mean

of subtraction of each patch with the original one. The minimum value shows the

closest patch to the original one. Hence, the corresponding HR patch to the closest

one is selected to reconstruct the best image.

Numbers 1, 2, 3, 4 are assigned to patch sizes 3, 5, 7, 9, respectively. The

corresponding number of the closest patch size is stored in a matrix at each reference.

Eventually, these numbers create an image whose values are changed from 1 to 4

according to the contents of the input image alongside the selected patch. In this

image, the main structure of the image along with the corresponding edges are
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visible.

The selection of patch size in each comparison leads to �nd out the relation be-

tween the patch size and the content of the current patch. According to our exper-

iments, switching operator selects the largest possible patch size in smoother area

whereas the smaller patch size is chosen for regions with edges and discontinuities.

The smaller patch sizes are able to recover more details in such regions (the useful

information within the image might be lost if large patch size is selected). In the

�attened areas it is not necessary to select the small patch. These areas can be

properly recovered by even the large patch size.

4.5 Results

In this section, numerical and visual results of the algorithm are presented. Table

4.1 compares the PSNR values of the resultant images achieved by self-similarity

algorithm and the bicubic one. The numerical results imply an improvement about

2dB in the PSNR value of self-similarity method (compared to the bicubic method).

Table 4.1: Lena and texture images PSNR values, Ratio=1.5 and Patch size=3

PSNR values

Images Bicubic PSNR Proposed method

Lena 35.74 37.23

Textured Image 35.03 37.43

Figures 4.4 illustrates the visual results of the images in Table 4.1. As it can be

seen, images (b) and (e) are blurred while image (c) and (f) show more sharp edges

and details. The self-similarity can be considerably successful compared to bicubic

specially in small scaling factor (in this experiment scaling factor was 1.5).

In the next experiment, as it has been mentioned before, the e�ect of di�erent

patch sizes is investigated. Table 4.2 illustrates the fact that each patch size produces

di�erent result. For instance, patch size equal to 5 in both images has the best result

among the other patch sizes. The changes in the PSNR values will give an overview

about how various patch sizes might have di�erent e�ects on the �nal results. In

this table, the last column is related to our switching operator where the best PSNR

can be achieved. Visual results of the Table 4.2 are given in Figure 4.5.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: a)Lena: Original image b)Lena: Bicubic interpolated image c)Lena: Self-
Similarity d)Textured: Original image e)Textured: Bicubic interpolated image f)Textured:
Self-Similarity. Patch size=3, Ratio=1.5

Table 4.2: Self-similarity method. PSNR values of Lena and textured images, Ratio=1.5
and Patch size=3,5,7,9 and also the mixed one

PSNR values

Matching method P=3 P=5 P=7 P=9 various patch size

Lena 37.23 37.64 37.39 37.17 37.88

Textured Image 37.43 38.92 37.74 37.35 38.29

As it can be seen from Figure 4.5, since the reconstructed images from various

patch sizes are close to each other (in terms of quality) visual assessment would not

be accurate. In this case, quantitative tools such as PSNR, helps to make a correct

decision.

So far, all the experiments have been performed with a small scaling factor (e.g.

1.5). The input images were interpolated directly with the desired scaling factor. In

order to explore the impact of this method in larger scaling factors, the experiments

repeated. In Table 4.3, the results of reconstructing the image with scaling factor

3 are presented. In the �rst experiment, the scaling factor is applied directly and

the image is interpolated 3 times. In the second experiment, small factors of 3
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 4.5: Self-similarity method a) Lena, patch=3 b)Lena, patch=5 c) Lena, patch=7
d) Lena, patch=9 e) Lena, various patch size f) Textured image, patch=3 g) Textured
image, patch=5 h) Textured image, patch=7 i) Textured image, patch=9 j) Textured
image, various patch size

are applied to the input image. In other words, the image is interpolated by small

ratios, i.e., 4:3, 3:2 and 3:2, respectively. It can be seen that the proposed switching

operator in both experiments has achieved the best results (last column). The same

experiments have been performed for the textured image (see Table 4.4).
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Table 4.3: Lena image. PSNR values, Ratio=3 and Patch size=3,5,7,9 and also the mixed
one

PSNR values

Scaling types P=3 P=5 P=7 P=9 Mixed Patch

Direct scaling 28.86 30.08 30.52 30.67 30.83

Small scaling 29.88 30.57 30.72 30.78 31.22

Table 4.4: Textured image. PSNR values, Ratio=3 and Patch size=3,5,7,9 and also the
mixed one

PSNR values

Scaling types P=3 P=5 P=7 P=9 Mixed Patch

Direct scaling 26.03 28.48 29.2 28.88 29.59

Small scaling 27.30 28.60 28.91 29.02 29.82

According to Tables 4.3 and 4.4, it can be observed that using small coe�cients

of a large scaling factor can lead to obtain better numerical results. This is due to

enlarging an image in couple of phases instead of applying the scaling factor directly.

This enlargement causes to preserve more details in interpolation procedure.

The visual results of Lena image for scaling factor equal to 3 are depicted in

Figure 4.6. It can be seen that the image is su�ering from some noises during the

implementation phase. This noise is added to the image due to a use of large scaling

factors. However, it is seen that Figure 4.6 (b) has been reconstructed better than

(a) and (c).

(a) (b) (c)

Figure 4.6: Lena image a)bicubic interpolation b) self-similarity, various patch size, small
coe�cients of ratio 3 c) self-similarity, direct ratio 3, various patch

Figure 4.7 shows the images which are created according to the patch size selection

of switching operator. These images have been achieved from the �rst experiment
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for a zooming factor ratio equal to 1.5.

(a) (b)

(c) (d)

Figure 4.7: a)Original Lena Image b) Original Textured Image c) Image of selected patch
size, Lena Image d)Image of selected patch size, Textured Image
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A short comparison presented in Table 4.5 to observe the performance of self-

similarity with other techniques presented in previous chapters. Di�erent input

images have been used in this experiment. Regression and self-similarity methods

(as it can be found from previous chapters) are performed for di�erent patch sizes.

Consequently, the best achieved PSNR values (i.e. the one which is reconstructed

from mixed patch sizes) for these methods are presented in the table.

Table 4.5: Lena image. PSNR values, Ratio=3 and Patch size=3,5,7,9 and also the mixed
one

PSNR values

Image 1 Image 2

Methods R=1.5 R=4 R=1.5 R=4

Freeman 22.53 22.06 24.24 23.12

Regression-based 39.2 28.33 33.95 27.20

Self-similarity 38.50 27.70 33.84 26.88

It can be seen that although the PSNR values of regression method for all images

is higher than other methods, self-similarity can be considered as an appropriate SR

method. In this method, despite the fact that there is no extra data base missing

HF components have been recovered satisfactorily. The Freeman's method has the

lowest performance between two others approaches.

4.6 Conclusion

Self-similarity as a single-image super resolution method has shown enough ma-

turity to be employed for reconstructing an HR image. This method exploits the

similarity among di�erent patches within an image or through di�erent scales of the

image. Self-similarity such as other methods, has its own advantages and disadvan-

tages. This method is applied to given images to recover the missing HF components.

Self-similarity is dependent on the type of the input image, prior information, initial

interpolation, etc.

The signi�cant advantage of the self-similarity method is the fast computation

time. In addition, the complexity of the algorithm is reduced compared to example-

based method which has a huge dataset. The bene�t of this local selection method is

to reduce the amount of time spent to �nd the nearest patch. The small enlargement

factors work better compared to the large factors in local self-similarity. This issue,

in self-similarity method might be more sensible due to the nature of the algorithm.

In this method, recovering an HR image is depending to the various scales of the
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input image. Using large scaling factors lead to miss the resolution in the scales. As

a result, in this situation this method cannot be useful.

It is worth mentioning that this method is more useful for the images with initial

good quality. Self-similarity used the scaled version of the input image to esti-

mate the missing HF components of the interpolated image. In order to recover

the HF components, input image must contain more sharpness and high quality

components. In other words, a low resolution input image does not contain HF

components. Consequently, the scaled versions of a low resolution input do not

include HF components, as well. Furthermore, this method might not work for a

wide range of images since most of the available images are not high quality ones.

Choosing a method for super resolving application must be performed by taking

several conditions in to account such as input content, quality, desired scaling fac-

tor, etc. Moreover, one major issue which should be taken into consideration is

that, the numerical results are not always a good measurement tool in assessing the

performance of algorithms. On the other hand, visual results have an essential role

in making a decision with regard to the performance.
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5. DISCUSSION AND CONCLUSION

The ultimate goal of this thesis was to encourage studying super resolution as a de-

manding technique utilized in a variety of applications. Super resolution techniques

involve image enhancement in terms of resolution. The SR attracted attentions of

many researchers because of its critical role in medical applications, surveillance

applications, etc. SR techniques are performed not only by signal processing ap-

proaches, but also by several hardware applications such as reducing the chip area,

improving internal camera sensors, etc. Due to the constraints introduced in hard-

ware side (such as limited data transferring rate, chip size, pixel size, etc.), they are

not considered as the main candidates for SR methods. Moreover, generating an

HR image with a desirable resolution using hardware improvements would not be

e�cient. Hence, signal processing techniques are considered as the main possible

solution for SR applications.

This thesis is comprised of several SR methods where the input is just one image

(SISR). One of the SISR approaches is exampled-based methods where an external

database assists the algorithm to �nd the missing HF components. These methods

are strongly dependent to the external dataset. However, they are partially success-

ful in SR approaches specially when there are no more observations obtained from

a scene. The �rst and the most signi�cant disadvantage of example-based methods

is the high probability existence of irregularities and noise introduced within the re-

sultant image. This problem is happening due to using huge training dataset which

might be included to the input due to the plenty of irrelevant images.

The regression-based methods are another technique in SISR approaches. These

methods are also demanding due to the capability of �nding an appropriate re-

lationship function between LR and HR patches. Many researches have focused

on regression-based methods which were successful in recovering the missing HF

components. In these methods, the impact of large training dataset is a dominant

shortcoming. The main concerns in regression-based methods are generating an ef-

�cient mapping function, extracting parameters impacts when changing, �nding the

appropriate parameters for each input, etc.
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Eventually, self-similarity were investigated as the third group of methods in SISR

within this thesis. These methods introduced an impressive novel technique in super

resolution by omitting dependencies to the training dataset (not applicable in all

methods). Self-similarity methods, can resolve the HR image by exploiting similari-

ties between di�erent patches irrespective to the external dataset. These techniques

create a variety scales of the input image. Afterwards, they recover missing HF

components of interpolated version of the input image either from di�erent scales or

from various regions in one scale. These techniques work e�ciently as long as the in-

put image contains adequate resolution. This is due to the nature of the techniques

which employ HF components obtained from di�erent scales of the image. Hence,

if the input image su�ers from low quality, these methods can not be successful

further.

As the �nal words, presenting a method as the best candidate in SR is not possible.

There is always a trade-o� between di�erent SR approaches, each of which introduces

a new constraint to the corresponding method. Choosing an appropriate technique

to have satisfactory results depends on several factors. Initial quality of the image,

type of the image content, desired zooming factor, the application of HR image (i.e.

in which �eld is going to be used), cost, time, etc. are factors which should be taken

into consideration while choosing the appropriate super resolution technique.
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