
SAMI PIETIKÄINEN
REMOTE ISOBUS TELEMATICS IN AGRICULTURAL
ENVIRONMENT
Master of Sciense Thesis

Examiner: Professor Hannu Koivisto
Examiner and topic approved in the
Engineering Sciences Faculty Council
meeting on 5th of March 2014.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Automation Technology
SAMI PIETIKÄINEN: Remote ISOBUS telematics in agricultural environ-
ment
Master of Science Thesis, 62 pages, 3 Appendix pages
June 2014
Major: Automation Software Engineering
Examiner: Professor Hannu Koivisto
Keywords: isobus, iso 11783, telematics, remote management

Many agricultural equipment manufacturers are mainly hardware providers, and
the product life cycle services are limited to machine maintenance and spare parts.
However, the modern wireless technologies makes it possible to access machines
in their working environment, thus enabling many new applications. Accessing
machines also requires accessing their internal communications network, which in
agricultural machines is increasingly often ISOBUS.

The purpose of this thesis is to study the available telematics information and
interfaces in an ISOBUS system, and also the applications this informations makes
possible. Based on this information telematics functionalities are selected and im-
plemented to Wapice Remote Management (WRM) system. Especially the standard
manufacturer independent interfaces provided by ISO 11783 standard, in which the
ISOBUS is based on, are studied.

The thesis is divided into three main parts. First, the current state-of-the-art is
presented followed by usage examples for the telematics system which also highlights
the main requirements for the system in whole. Thereafter, the second part intro-
duces SAE J1939 protocol in which the ISOBUS is based on. The main concepts
of the ISOBUS protocol are also introduced, and the ISOBUS is compared to other
common CAN-based protocols. The results for the study of available information
sources in an ISOBUS system as well as a general example reference architecture for
the system are presented. In the third part the implementation of ISOBUS support
in WRM system and the implementation of ISOBUS telematics functionalities is
presented.

The results of this thesis suggest that the ISO 11783 standard provides many
functionalities and interfaces that can be used to collect telematics as well as pro-
cess information in a manufacturer independent way. This is a key factor when
developing a generic system. The implementation for the WRM system also shows
that it is possible to integrate ISOBUS telematics in an existing remote management
system.

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Automaatiotekniikan koulutusohjelma
SAMI PIETIKÄINEN: ISOBUS etätelematiikka maatalousympäristössä
Diplomityö, 62 sivua, 3 liitesivua
Kesäkuu 2014
Pääaine: Automaation ohjelmistotekniikka
Tarkastaja: Professori Hannu Koivisto
Avainsanat: isobus, iso 11783, telematiikka, etähallinta

Monet maatalouden työkonevalmistajat ovat pääasiassa laitetoimittajia, ja tuotteen
elinaikaiset palvelut rajoittuvat huoltoon sekä varaosiin. Modernit langattomat tek-
nologiat kuitenkin mahdollistaisivat pääsyn koneiden informaatiojärjestelmiin nii-
den työympäristössä, joka taas mahdollistaa monia uusia sovelluksia. Pääsy koneisiin
vaatii myös pääsyä niiden sisäiseen kommunikointiväylään, joka maatalouskoneissa
on yhä useammin ISOBUS.

Tämän opinnäytetyön tarkoituksena on tutkia, mitä telematiikkatietoa ISOBUS-
järjestelmissä on saatavilla ja millaisia eri tyyppisiä sovelluksia tämä tieto mah-
dollistaa. Näiden tietojen perusteella valitaan ISOBUS-toiminnallisuuksia toteutet-
tavaksi Wapice Remote Management (WRM) etähallintajärjestelmään. Erityisenä
tutkimuskohteena on ISO 11783 standardin tarjoamat valmistajariippumattomat
rajapinnat.

Työ jakaantuu kolmeen pääosaan. Ensimmäisessä osassa esitetään maatalous-
järjestelmien nykytilanne, jonka jälkeen esitetään esimerkkisovelluksia, jotka myös
määrittävät järjestelmän tärkeimmät vaatimukset. Toisessa osassa esitellään SAE
J1939 -protokolla, johon ISOBUS perustuu. Tämän jälkeen käydään läpi ISOBUS-
protokollan tärkeimpiä käsitteitä sekä verrataan ISOBUS-protokollaa muihin ylei-
siin CAN-pohjaisiin protokolliin. Tutkimustulokset ISOBUS-järjestelmissä saatavilla
olevasta telematiikkatiedosta, sekä esimerkki järjestelmän yleisestä arkkitehtuuris-
ta on myös esitetty. Kolmannessa osassa kuvataan ISOBUS-tuen toteutus WRM-
järjestelmässä sekä varsinaisten telematiikkatoiminnallisuuksien toteutus.

Työn tulokset näyttävät, että ISO 11783 -standardiin perustuva ISOBUS-proto-
kolla tarjoaa monia toimintoja sekä rajapintoja, joiden avulla telematiikkatietoa voi-
daan kerätä valmistajariippumattomalla tavalla. Tämä on tärkeää, kun kehitetään
yleiskäyttöistä järjestelmää. Lisäksi esimerkkitoteutus osoittaa, että ISOBUS-tele-
matiikkaa voidaan integroida olemassa olevaan etähallintajärjestelmään.

III

PREFACE

This Master’s thesis was written for Wapice Ltd. as a part of EFFIMA Agromassi
research project. The thesis was supervised by Tommi Moisio from Wapice, and the
examiner was professor Hannu Koivisto.

First and foremost, I would like to thank Wapice Ltd. for an interesting topic,
guidance and also for the equipment needed to carry out the thesis. I would also like
to show my appreciation for my co-workers at Wapice, and for the individuals I have
had opportunity to work with in the Agromassi project. Special thanks to Tommi
Moisio who supervised the thesis and also provided valuable comments and tips. I
would also like to thank my examiner, professor Hannu Koivisto, for constructive
comments and valuable feedback throughout the writing process. Finally, I would
like to thank my family for their support throughout my studies.

Tampere, on May 3th 2014

Sami Pietikäinen

IV

CONTENTS

1. Introduction . 1
2. Applications for telematics . 3

2.1 Extended product . 3
2.2 State-of-the-art in agriculture and agricultural research 4
2.3 Usage examples . 7
2.3.1 Remote diagnostics . 7
2.3.2 Firmware updates . 8
2.3.3 Performance monitoring . 9
2.3.4 Integration to farm management systems 9

2.4 Information security . 11
3. Development towards ISOBUS . 12

3.1 Overview . 12
3.2 SAE J1939 . 13

4. ISOBUS . 17
4.1 Overview . 17
4.2 OSI model and ISOBUS . 19
4.3 Communication in ISOBUS network 21
4.4 ISOBUS equipment . 23
4.4.1 Universal terminal . 23
4.4.2 Tractor ECU . 23
4.4.3 Implement ECU . 24
4.4.4 Task controller . 24
4.4.5 Other equipment . 25

4.5 Conformance testing . 25
5. Other CAN-based higher layer protocols 27

5.1 NMEA 2000 . 27
5.2 CANOpen . 28
5.3 DeviceNet . 28
5.4 CAN Kingdom . 29
5.5 Smart Distributed System . 30

6. Telematics system architecture . 31
6.1 System requirements . 31
6.2 System architecture . 32
6.2.1 Bus-side subsystem . 34
6.2.2 Server-side subsystem . 36

6.3 Information available in ISOBUS network 37
6.4 Data representation . 40

V

6.5 Design considerations . 41
7. Wapice remote management system . 43

7.1 WRM concept . 43
7.2 Remote management device . 44
7.3 WRM server . 45

8. ISOBUS support in WRM system . 47
8.1 Telematics functionalities . 47
8.2 CAN-drivers and protocol stack . 48
8.3 Integration to WRM application . 50
8.4 Testing . 54
8.5 Results . 55

9. Conclusions . 57
References . 59
A. WRM data model . 63
B. ISOAgLib HAL class diagram . 65

VI

TERMS AND ABBREVIATIONS

AEF Agricultural Industry Electronics Foundation, an organization that
develops and maintains the ISOBUS and its conformance testing.

Agromassi Assisting and Adaptive Agricultural Machine, a research project that
aims to research and develop self-adjusting, adaptive and inherently
safe assisting control functions for agricultural machines.

CAN Controller Area Network, communications bus which is used espe-
cially in automotive and industrial applications.

CAN Kingdom CAN-based higher layer protocol that is maintained and developed
by Kvaser.

CANOpen CAN-based higher layer protocol that is maintained and developed
by the CiA.

CiA CAN in Automation, an international organization that develops
and maintains high-level CAN-based protocols.

CIP Common Industrial Protocol, higher layer protocol used in the au-
tomation industry.

DeviceNET Higher layer automation industry protocol that uses CAN-bus and
CIP-protocol.

CLAFIS Crop, Livestock and Forest Integrated System, FP7 funded research
project.

DMA Direct Memory Access, a feature in computer systems which allows
hardware to access main memories independently of the central pro-
cessing unit.

DTC Diagnostics Trouble Code, a numerical trouble indicator that is sent
by an ISOBUS ECU.

ECU Electronic Control Unit, physically independent electronic unit that
may contain both electronic and software modules.

EFFIMA Energy and Life Cycle Cost Efficient Machines, FIMECC-project
which aims to develop new technologies to lower life-cycle costs.

FIMECC Finnish Metals and Engineering Competence Cluster, consortium for
companies and research organizations to help innovate and develop
new technologies.

VII

FMI Fault Mode Indicator, Numerical code that identifies failure type in
ISOBUS diagnostics messages.

FI-PPP Future Internet Public-Private Partnership, European programme
which aims to accelerate the development and adoption of Future
Internet technologies in Europe.

FI-WARE Future Internet Ware, project that aims to develop truly open, pub-
lic and royalty-free architecture and core platform for future internet
applications.

FMIS Farm Management Information System, a software system to col-
lect, process and analyse information to help manage operations of
a farm.

FP7 Seventh Framework Programme, one of the financial tools through
which the European Union supports research and development ac-
tivities.

HAL Hardware Abstraction Layer, software layer that contains hardware
dependant parts to improve portability.

Headland Strip of land along the edge of an arable field left unploughed to
allow space for machines.

HTTP Hypertext Transfer Protocol, request-response protocol for distrib-
uted, collaborative, hypermedia information systems.

Implement Device that is mounted either rear or front of the tractor and is used
for agricultural work.

ISO International Organization for Standardization, an international
standard-setting body composed of representatives from various na-
tional standards organizations.

ISOAgLib A software stack that provides generic implementation for ISOBUS
protocol.

ISOBUS Communication protocol for agricultural industry which is defined
in ISO 11783 standard.

ISOBUS stack Software component that encapsulates ISOBUS-protocol specific
implementation.

LinCAN CAN-bus driver for Linux.

VIII

LLC Low Level CAN, Wapice developed software component that pro-
vides higher level access to CAN-drivers.

NAME 64-bit globally unique identifier for a device in SAE J1939 -based
networks.

NMEA National Marine Electronics Association, organization for maritime
industry in the United States.

NMEA 2000 Higher layer protocol that is based on SAE J1939 and is used in
maritime applications.

Observer pattern Software design pattern where observable object provides automatic
notifications to its observers.

OSI Open System Interconnection, a standard that describes a layered
reference model for a telecommunication network.

PDU Protocol Data Unit, a CAN-frame in SAE J1939 based networks,
including ISOBUS.

PGN Parameter Group Number, an identifier that specifies the message
type in SAE J1939 based networks, including ISOBUS.

PLC Programmable Logic Controller, a programmable digital computer
system targeted for industrial control applications.

REST Representational State Transfer, an architectural model to imple-
ment software interfaces based on HTTP-protocol.

RTOS Real-time Operating System, operating system that is designed to
guarantee deterministic performance which is required in real-time
applications.

SAE Society of Automotive Engineers, standardization organisation for
automotive industry in the United States.

SAE J1939 CAN-based higher layer protocol that is maintained by SAE.

SDS Smart Distributed System, a CAN-based higher layer protocol for
industrial automation.

Singleton pattern Software design pattern that restricts the instantiation of a class to
one common object.

IX

SOAP Simple Object Access Protocol, a protocol for information exchange
between Web services.

SocketCAN CAN-bus driver for Linux.

SPN Suspect Parameter Number, an unique identifier that identifies the
contents of a data element in SAE J1939 -based networks, including
ISOBUS.

SSH Secure Shell, a cryptographic network protocol for secure commu-
nication that is used, for instance, to gain a remote command line
access.

WCC-driver Wapice Custom CAN, CAN-driver developed by Wapice Ltd.

Working-set An integrated working unit that contains a tractor and one or more
implements.

WRM Wapice Remote Management, a complete remote management sys-
tem developed by Wapice ltd. that contains electronis, servers and
sofware.

XML Extensible Markup Language, a markup language designed for struc-
turing of information.

1

1. INTRODUCTION

Traditionally the agricultural equipment manufacturers have been mainly hardware
providers, and the product life cycle services have been limited to spare parts and
machine maintenance. The modern wireless technologies makes it now possible to
collect data directly from the machine in its working environment. This data can
be used to build a wide range of services covering the whole product life cycle.
Information from multiple working units can also be combined and used for efficient
fleet management or the information can be combined with other data sources such
as weather forecasts to built sophisticated applications.

The main motivation to implement such services is to provide more value to the
end customer. In practice this can be, for instance, enhanced servicing or better
yield through monitoring and optimizations. By providing these services, the ma-
chine manufacturer can make itself more competitive in the global market. There
are, however, conditions that need to be met before these functionalities can be im-
plemented. The machine needs to be accessible remotely in its working environment
and the data collected from it should be accessible to build the actual services.

To meet these conditions a telematics system is implemented which provides the
infrastructure to built the actual value adding services on top of it. The telemat-
ics system provides connectivity to individual machines as well as aggregates data
from multiple machine instances. It also provides well-defined interfaces to use its
resources to built the actual services. However, a mere connectivity to the machine
is not sufficient. The telematics system also needs to be able to communicate in
the machine’s internal communications network which in agricultural equipment is
increasingly often ISOBUS.

On a high level the telematics system consists of two main subsystems: remote
devices and server system. The remote devices are located in the actual machines,
and they handle the low level ISOBUS communication in the machine’s internal
network. They also provide the server system with data collected from the ISOBUS
network. The server system is responsible for storing the data and providing inter-
faces for outside world.

The purpose of this thesis is to study the available telematics information in an
ISOBUS system, and also the applications this information can enable. Based on
this information telematics functionalities are selected for implementation in the

1. Introduction 2

Wapice Remote Management (WRM) system. The main goal is to have ISOBUS
support in the WRM system, and also ISOBUS telematics functionalities that use
standard manufacturer independent interfaces.

In whole, the telematics system is complex, so the main emphasis in this thesis is
on the high-level architecture and interfaces. Therefore the detailed structure of the
underlying components is not discussed in detail. The implementation and design
of the value adding services built on top of the telematics system is also beyond the
scope of this thesis.

Chapter 2 begins by presenting the current state-of-the-art in agriculture and
agricultural research. It then goes through usage examples which highlight the dif-
ferent applications and requirements for the system in whole. This chapters gives a
practical context for the actual ISOBUS telematics system in agricultural applica-
tions.

Chapter 3 begins by discussing the need for a communications network in agri-
cultural machines in general. The Chapter 3 also introduces SAE J1939 protocol
which forms the basis for ISOBUS. Thereafter, Chapter 4 gives an introduction to
the ISOBUS protocol and the ISO standard it is based on. The most common device
types in an ISOBUS network are also introduced. Followed by ISOBUS, Chapter 5
briefly introduces other CAN-based protocols. These three chapters give the nec-
essary technical basis needed to understand the implementation of the telematics
system.

Chapter 6 goes into the actual telematics system by presenting a high-level ex-
ample reference architecture. This chapter also presents the results for the study
of available information sources in an ISOBUS system. Thereafter, Chapter 7 in-
troduces Wapice Ltd. as well as the Wapice Remote Management system in which
the ISOBUS telematics functions are implemented. Chapter 8 then presents the
implementation of ISOBUS support and telematics functionalities in WRM system.
Finally, Chapter 9 summarizes the main topics and results.

This thesis was written as a part of the Agromassi project (Assisting and Adap-
tive Agricultural Machine) in which the author is participating on behalf of Wapice
Ltd. Agromassi is conducted in co-operation with Aalto University, MTT Agrifood
Research Finland, University of Helsinki and 11 agricultural machinery manufac-
turers and software vendors. The project is part of the Energy and Life Cycle
Cost Efficient Machines (EFFIMA) research programme, which is managed by the
Finnish Metals and Engineering Competence Cluster (FIMECC) and funded by the
Finnish Funding Agency for Technology and Innovation (TEKES) together with
participating research institutes and companies.

3

2. APPLICATIONS FOR TELEMATICS

There is a lot of information available in agricultural machines that would also be
beneficial to have available outside the machine. Such information could be for
example fuel consumption, vehicle speed and machine location to mention a few.
Telematics system provides a means to expose interesting information from the
machine for other, external, applications to use. It also makes it possible to gain
remote access to the machine.

This chapter describes some of the applications in which the telematics informa-
tion could be utilized. These applications also highlight the characteristics which
are needed from the telematics system in whole. Some of the applications need
an ability to communicate with the machine in real time, whereas others will need
history data collected over a longer period of time.

Chapter 2.1 first introduces the extended product concept giving a larger context
and a business view for the telematics system. Thereafter, Chapter 2.2 presents the
current state-of-the-art in agriculture from the telematics point-of-view. Chapter
2.3 then presents usage examples in which the telematics information could be used.
Finally, Chapter 2.4 addresses information security aspects.

2.1 Extended product

The customer focus has shifted from the ownership of a physical product towards
an integrated solution that has been built around the core product. The integrated
services not only help a manufacturer to compete in a global market, but can also
provide additional revenue throughout the product life cycle. [1, p. 40]

Extended product means a core product that has been extended by offering ad-
ditional value adding services to the customer. These services or assets are usu-
ally information and knowledge intensive, and can consist of engineering, software,
maintenance, customer support and many others. [1, p. 40] Figure 2.1 shows a core
product that has been packaged to a customer appealing tangible product. The tan-
gible product has then been further extended by providing non-tangible, for instance
digital, services.

2. Applications for telematics 4

Core product Tangible product Tangible product +
non-tangible services

Ability to plant
seed

Machine dimensions
Speed
Efficiency

Customer support
Supporting services

Product complexity

Knowledge intensity

Figure 2.1: Extended product concept.

The telematics system can be used as an infrastructure to provide information
and tools that allows manufacturers to create new concepts around the core product,
thus extending their product. The telematics system can for instance gather data
or provide a means to gain remote access to the machine. These assets can then
be used to provide services directly to the customer or indirectly by, for example,
enhanced servicing.

2.2 State-of-the-art in agriculture and agricultural research

ISOBUS provides technology to integrate the controls of tractors and implements
to an integrated working-set which makes the driver’s work easier and makes it
possible to use machines with different tractors in a plug-and-play fashion. ISOBUS
also provides technology for location-based precision farming by defining tasks which
are planned in farm management information system (FMIS) and then executed by
the ISOBUS working-set. The technical aspects of ISOBUS are discussed in the
Chapter 4.

Based on discussions with Finnish agricultural equipment manufacturers during
the Agromassi project, the current situation especially in Finland is that there are
not many ISOBUS-enabled tractors or implements actually in use. This is partially
caused by limited selection of ISOBUS equipment in the market. For instance, from
Finnish implement manufacturers currently only Junkkari offers ISOBUS option to
one of it’s machines. Furthermore, the machines that do support ISOBUS usually
only provide basic functionality such as user interface using the ISOBUS display
(Universal Terminal). The customers in the agricultural domain also tend to be
conservative about new emerging technologies.

Farm management information systems are software systems which collect, store,

2. Applications for telematics 5

process and analyse data to help manage the operations of a farm. These operations
include for instance resource monitoring, work assignment planning, documentation
and assessment of performed work assignments. In the article Farm management
systems and the Future Internet era Kaloxylos et al. describe visions for future
FMISs but also their current state. Usually the FMIS is a independent software
running on the farmers PC, and all interaction with other systems such as weather
forecasts or government systems are explicitly handled by the FMIS provider. Most
of the features target simple monitoring, planning and bookkeeping, and advanced
features such as decision support are not available. [2]

An extensive FMIS research was also carried out byWageningen University within
the Dutch Program on Precision Agriculture in 2012. The research comprised over 80
FMIS applications (different versions from same software were reviewed separately)
from around the world. The main conclusion was that integrated solutions are very
rare. Usually farmers need to use multiple different applications to support all of
their farm management processes, and the data exchange between these applications
is not automatic. Many of the applications are also very regionally focused. [3]

From the telematics point of view neither the current machine-base nor the FMISs
allow to use ISOBUS telematics widely. However, when the ISOBUS equipment be-
comes more common, it also allows to create more sophisticated applications in
addition to the core ISOBUS technologies. Still, it seems that ISOBUS will be the
main communication standard in agricultural machines in future. This is indicated
by the foundation of Competence Center ISOBUS, which is an association founded
by large German agricultural manufacturers in 2009 to promote ISOBUS develop-
ment [4]. Similar association has also been founded in Finland in 2014 (Suomen
Maatalousautomaatio ry). Furthermore, when looking at already certified ISOBUS
products from one of the test laboratories DLG e.V., large international manufac-
turers such as John Deere and AGCO Group are present [5]. Therefore the research
and development for ISOBUS telematics at present can provide valuable advance in
the near future.

ISOBUS related research has been carried out in Finland for more than ten years.
Between the years 2003 and 2005 Agrix project, that was led by Helsinki Univer-
sity of Technology (now Aalto University), researched core technologies in agricul-
tural automation and precision farming, including ISOBUS. The project goal was
to develop a prototype of an open, generic and configurable automation platform
for agricultural machinery. Other partners included MTT Agrifood Research Fin-
land, University of Helsinki and industrial partners from agricultural domain such
as Junkkari, Valtra, Tume-Agri and others. [6]

Agrix project was followed by Farmix project which started in 2006 and ended
in 2008. The Farmix project used information and experience obtained in the Agrix

2. Applications for telematics 6

project as background to further research the automation in agricultural machines.
The main goal was to clarify challenges in tractor-implement integration and develop
methods to integrate the control over tractor and implements. When the tractor-
implement system is an integrated working-set, the driver’s work becomes easier
and also quality, efficiency and safety are improved. Many of the partners that
participated Agrix were also involved with Farmix. [7]

After Farmix the research has been continued in the Agromassi project. At this
point also Wapice got involved with the agricultural research. Agromassi started
in 2009 and is due to end in 2014. In Agromassi project self-adjusting, adaptive,
inherently safe assisting control functions for agricultural machine are developed to
support future product development in companies. [8] One of the work packages
targets telematics in agriculture in which this thesis is related to.

Agricultural research that relates to telematics has also been done in the Europe.
For instance, FutureFarm project that was funded by the European Commission
Seventh Research Framework Programme (FP7) was started in 2008. The project
had partners from ten European countries, and the main goal was to research how
to meet the challenges of the farm of tomorrow by integrating FMIS to support
real-time management decisions and compliance to standards. The project duration
was 3 years. [9]

Another FP7 funded research project that targeted agriculture was SmartAgri-
Food which started in 2011. SmartAgriFood was part of Future Internet Public-
Private Partnership (FI-PPP), and the project goal was to research and promote
the use of future internet technologies in agriculture. The project duration was two
years. The interfaces and specifications done in the project were also aligned with
non-agriculture specific Future Internet Ware project (FI-WARE). [10]

One of the most recent research projects that also targets agriculture is Crop,
Livestock and Forest Integrated System (CLAFIS) which started in December 2013.
The project aims to bring together technologies, experience and research results
from industrial automation, Internet of Things and agribusiness sectors to address
the needs for seamless data transfer between field devices, automation systems and
IT systems for various stakeholders. [11] These topics are very closely related to
ISOBUS telematics when the mentioned automation system is tractor-implement
working-set. Wapice and the author are also participating CLAFIS which means
that the results and experience obtained from this thesis may directly be used as
project background.

The research topics in FutureFarm and SmartAgriFood targeted high-level sys-
tems such as FMIS and decision support systems, and the use of internet technologies
in their realization. Agrix and Farmix on the other hand focused mainly on the the
core ISOBUS technologies and precision farming in tractor-implement working sets.

2. Applications for telematics 7

In this thesis the potential and limitations of connecting ISOBUS working-sets to
high-level systems similar to the ones researched in FutureFarm and SmartAgriFood
in a manufacturer independent way is researched. This includes identifying different
usage scenarios as well as ISO 11783 standard study to identify the different data
sources and interfaces that are available in an ISOBUS network.

2.3 Usage examples

This chapter describes some of the applications in which the telematics could be
utilized. The different cases highlight the various requirements for the telematics
system ranging from the real-time remote access to data storage. These usage ex-
amples also show the different actors. Some of the applications are used by the
end-customers, whereas others are used by the machine manufacturer.

The examples are discussed in the concept level, and their detailed technical
implementation is not addressed in this thesis. The main purpose is to present a
larger context for the telematics system. The applications are also not limited to
the ones described in this chapter, and it is possible to come up with far more uses.

2.3.1 Remote diagnostics

Diagnostics are usually needed when a machine is not functioning as it should, or
there is a problem with the machine installation. Typically these kind of situations
occur on the field when the machine is in use. Without an access to the machine, it
can be really difficult to diagnose the origin of the problem.

The problems can either be related to physical devices or software. Physical issues
can be caused by, for instance, incorrect hydraulic or electrical connection or broken
sensors or actuators. Software issues can be related to the device itself, or they can
be incompatibility issues when operating on a shared bus.

Traditionally there have been two main options to diagnose the machine. The
operator contacts the manufacturer, and the problem is diagnosed remotely, for
example, by phone. Usually the operator does not have special diagnostics devices
or expertise so the amount of information available for the support personnel is
limited. Second option is to diagnose the problem on site by service personnel which
can be really costly, and also means longer down-time for the machine. Currently
most of the agricultural machines are not able to connect to the Internet which
means that online diagnostics are not available, and the options described above are
used. Moreover, the diagnostics are especially challenging when machines are sold
abroad to countries which may not have the manufacturer’s own service organization
available.

2. Applications for telematics 8

As a part of the SmartAgriFood project a research of farmers needs was carried
out. This research included both farmer interviews as well as scientific research of
farm management systems that had been developed in earlier research projects such
as FutureFarm, agriXchange, PPL, iGreen and others. Among these use cases were
"Remote machine diagnostic" and "Faulty operation of sensors inside a farm". [2]
This shows that the need for remote diagnostics has also been identified in other
research projects.

The telematics system can be used to make diagnostics information available for
the support personnel when diagnosing the machine remotely. The telematics data
could include for example bus status, individual sensor statuses and readings and
active error codes. This information is useful when diagnosing both software and
hardware related issues. To fully benefit from the telematics system, the support
personnel should be able to communicate with the machine in real time. History
data can also be useful if the problem occurred during a work assignment. Telematics
device could also be retrofitted to old machines.

This idea could also be taken even further. The diagnostics information could
be recorded to an electronic service record with other service actions such as main-
tenances or new parts. This record would show the service history for the whole
machine life-cycle.

2.3.2 Firmware updates

As the amount of new functionalities and automation increases in machines, usually
so does the amount of software components in them. Like the mechanical parts, the
software also needs maintenance. The software maintenance can include for instance
bug fixes and introduction of new functionalities.

Updating software on an agricultural machine is challenging because usually the
machines are spread out geographically, and also not connected to the Internet. The
lack of connectivity to the Internet means that traditionally the firmware updates
have to be done on site. This is also the situation with most of the current agri-
cultural machines. The telematics system requires remote connectivity, and this
same infrastructure could also be used to download software updates to the ma-
chine. The online firmware updating was also among the use cases identified in the
SmartAgriFood project [2].

In addition to the maintenance updates, it would also be possible to offer up-
grade packages to customers. The upgrades could for example introduce completely
new features or unlock or extend existing functionalities. This would be very cost-
effective for the product manufacturer because there would be no need to send a
mechanic on site or bring the machine to service.

2. Applications for telematics 9

2.3.3 Performance monitoring

When a machine is carrying out a work assignment, it is usually relatively hard
to obtain detailed information about the assignment for later analysis. Current
values can be displayed to the operator, and data can even be logged locally to the
machine. However, the data still needs to be manually collected from individual
machines before it can be analysed. Additionally, this method does not allow real-
time remote monitoring.

Sørensen et al. report that "the farmer voice a need for additional information
and advanced technologies to manage monitoring and data acquisition on-line in the
field". The current field operations monitoring is very laborious because the informa-
tion needs to be imported and transferred manually, and the different applications
do not coordinate with each other automatically. [12]

With the remote telematics, the machine data can be collected and stored to a
server during the work assignment. It then becomes available for other applications
which can combine, process, analyse or otherwise refine the data. Data from the
whole machine fleet can also be combined for more detailed analysis.

It is also possible to equip the machine with positioning capabilities. This means
that the machine data can be coupled with location information which makes spatial
analysis possible. Location information could also be used for fleet management as
the machines could be monitored in a near real-time.

The performance monitoring could be an individual system but it could also be
integrated to a farm management system. In this case the performance information
would be directly available, for example, to optimize future work assignments.

2.3.4 Integration to farm management systems

ISOBUS also allows to perform precision farming. The FMIS is used to plan work
assignments, tasks, which are then performed in the machine. The tasks define how
much resources, such as fertilizer or seed, are used in different parts of the field.
After planning, the ISOBUS formatted tasks are transferred to the machine for
execution, and after the task completion results are transferred back to FMIS. The
device that orchestrates the task execution in the machine is called a task controller.
[14] Usually the task transfers has to be done manually using for instance an USB
drive. The telematics infrastructure could be utilized to transfer the task to machine
and results back to the FMIS to provide an integrated solution for the farmer.

The integration to the farm management information systems does not need
to be limited to transferring ISOBUS tasks. Other additional information could
also be transferred to support the decision making and planning. For instance fuel
consumption could be utilized for cost calculations or task completion times could

2. Applications for telematics 10

be used to schedule multiple tasks. Figure 2.2 shows how intelligent decision support
system can be used to improve decision making. It is worth noting that the ISOBUS
task controllers do already record the process variables during the work assignment,
and the data can be coupled with the location information. However, the decision
support system in the following figure encompasses a much more comprehensive
knowledge than a record from a single work assignment.

Planning in
FMIS

Execution in
field

Intelligent decision
support system

Assignment

Remote
monitoring

Results

Supporting
system is used

to improve
planning

External sources
(e.g. weather)

Feedback using telematics

Figure 2.2: Work planning using intelligent decision support system.

When a new work assignment is received, it is planned in the farm management
information system and then executed in the field. During the work assignment
a wide range of parameters can be monitored and stored to a database. When a
similar work assignment is planned in the future the experience from the previous
work can be utilized to improve the decision making process. Currently the FMIS
systems do not provide tools for intelligent decision making, and many farmers base
their decision on implicit knowledge, intuition and formed routines [2].

More complex information can also be derived from the collected data. For ex-
ample, a correlation between the amount of fertilizer used and the yield at the end
of the growing season. In addition to the data collected from an individual farm,
other data sources such as weather forecasts, anonymous data from other farmers or
information from government systems could be used to improve the decision making.

In addition to the improved work planning, the telematics system integrated
FMIS could also automate farm bookkeeping such as resource consumptions in dif-
ferent fields. It could also assist the farm manager with statutory forms and reports
or give warnings if the planned work assignment does not meet requirements or
recommendations.

2. Applications for telematics 11

2.4 Information security

An important aspect that needs to be addressed when designing the telematics
system and also applications on top of it is information security. The information
security should be taken into account in the practical implementation by using
appropriate encryptions for the data and communications when it is sensible. There
are, however, also other information security aspects that are not as apparent.

The collected information can give a detailed insight how a farm is being operated,
and the end-user does not want this information visible to competitors. However,
the telematics system does have many actors that are interested in different types of
information. Therefore a proper access right management is needed. There is also
a question of trust between the system provider and farmers.

Another interesting aspect, that is not strictly information security matter, is
the question of ownership. There are many actors as well as groups of interest that
are using the information from the telematics system directly or indirectly, but the
ownership of the data is not so apparent. When the data is stored to the telematics
system databases, is it owned by the telematics system provider, end-user or perhaps
the machine manufacturer? This question should be answered when the telematics
system and its applications are productised.

The data ownership, information security and trust were researched in the Smart-
AgriFood project. These results are publicly available in the project deliverable
D100.1 Review of the Literature and Future Internet Research [13]. The informa-
tion security aspects are not discussed further in this thesis but they are nevertheless
a very important part of the system.

12

3. DEVELOPMENT TOWARDS ISOBUS

When devices become more and more complex their control systems also need to
evolve to meet these challenges. The early agricultural machines were first man-
ually operated, and later electrical and hydraulic technologies provided means to
implement more complex features. The modern digital systems have provided tech-
nologies to implement very sophisticated automation and control to assist the driver
and to improve the efficiency of work.

This chapter describes the need for a communications bus, such as ISOBUS,
in an agricultural environment. Also, another communications network, namely
SAE J1939, is introduced in this chapter because it provides the basis for ISOBUS
protocol.

3.1 Overview

In an agricultural environment it is common to have one or more tractors and
also a number of implements that can be connected to these tractors. There are
also many different manufacturers that provide both tractors and implements, and
therefore the number of different combinations is very large. The figure 3.1 shows
a typical tractor-implement configuration which consists of a tractor and rear and
front implements.

Figure 3.1: Tractor and implements [15].

3. Development towards ISOBUS 13

Traditionally, if the implement needed some special controls besides the tractor
hydraulics, they needed to be custom fitted to the tractor cabin. This, of course,
makes the implement installation laborious, and if many different implements are
used with the same tractor, the number of individual controls in the cabin can also
became an issue. [16, p. 10] Additionally, it is also hard to swap the implement to
a different tractor as it would require a re-installation of the controls. Figure 3.2
shows an example of dedicated control panel for Junkkari implements.

Figure 3.2: Junkkari Wizard Plus dedicated control panel [17].

These challenges were noticed by the agricultural industry, and the solution was
to develop a implement bus where implements, tractor and other devices such as
displays could communicate with each other in a standardized way, thus making it
easy to install new devices to pre-existing systems. The purpose of the ISOBUS is
just that. [16, p. 10] The ISOBUS was not, however, built entirely from ground up.
Instead, SAE J1939 standard that was already in use in the automotive industry
was used as a basis for the ISOBUS standard.

3.2 SAE J1939

SAE J1939 is a network protocol that was designed for in-vehicle communication
in trucks and buses. The standard was first published in the late nineteens and is
still developed by the Society of Automotive Engineers (SAE). The SAE J1939 is in
turn built upon Controller Area Network (CAN). [18]

CAN is a network protocol which was originally developed for the automotive
industry in the 1980s, and it is still widely used today. The CAN protocol has
been standardized in the international ISO 11898 standard, and it defines the data
link layer of the ISO/OSI reference model. [19] It is possible to use CAN as is,
but usually a higher layer protocol is used to define how the CAN identifier and
data bytes should be interpreted which makes, for instance, interoperability between
manufacturers easier. SAE J1939 is a such higher layer protocol.

3. Development towards ISOBUS 14

In SAE J1939 network only extended CAN-frame format with 29-bit identifier
field is used for communication. Standard CAN-frames can also exist in the network
but they are explicitly reserved for proprietary use. The CAN-identifier (CAN-ID)
in SAE J1939 network is divided into Parameter Group Number (PGN) and source
address which identifies the node that sent the message. In turn, the PGN is also
divided to multiple fields which are shown in the figure 3.3. [18]

SOF
1

CAN-ID
29

RTR
1b

DATA
0-64

RTR
1

CONTROL
6

CRC
16

ACK
2

EOF
7

PGN
21

SRC ADDR
8

PRIOR
3

RES
1

DATA PAGE
1

PDU FORMAT
8

PDU SPECIFIC
8

CAN Frame

CAN-ID

PGN

field name

no. bits

Figure 3.3: CAN frame structure in SAE J1939.

The priority (PRIOR) field is used for bus arbitration, priority 010 being the
highest priority. The bit after priority is reserved for future extensions. The next
field is data page which can be used in future to expand the amount of PGNs. The
Protocol Data Unit (PDU) format field specifies, how the PDU specific field should
be interpreted. When the PDU format is between 010 and 23910, the PDU specific
field is interpreted as destination address. Messages in this PDU format range are
intended to be used for peer-to-peer communication between two nodes. When the
PDU format is above 23910, the PDU specific field is interpreted as group extension.
This message range is used for broadcast messages, and the group extension makes
it possible the express more unique message types. [18]

When using peer-to-peer communication, each node in the network needs to be
explicitly identified so that a message can be directed to it. In SAE J1939 each
device is identified by a globally unique 64-bit NAME which specifies, for instance,
the device type and manufacturer. The NAME is the machine’s persistent identity
which does not change runtime. The structure of the NAME is shown in the table
3.1. [20]

3. Development towards ISOBUS 15

Table 3.1: SAE J1939 device NAME.

Field Bits
Arbitrary address cabability 1
Industry group 3
Vehicle system instance 4
Vehicle system 7
Reserved 1
Function 8
Function instance 5
ECU instance 3
Manufacturer code 11
Identity number 21

The NAME cannot be used as the message address as is because the CAN-ID is
only 29-bits long, and the whole data field in CAN frame is only 64-bits. Instead,
a shorter one byte address is used in communication. Valid addresses for devices
are 010-25310, 25410 is null address and 25510 is broadcast address [21, p. 5]. In
SAE J1939 network there is no master node that could hand out these addresses for
devices. Instead, the bus addresses are obtained using an address claim procedure
specified by the standard. When a new node joins the network, it first needs to
obtain a valid address to start communicating. When claiming an address, the
NAME is placed in the CAN data field as shown in the figure 3.4 to identify which
device wants to claim an address. [21, p. 5]

Arbitrary
address

Industry
group

Identity
number

Manufacturer
code

ECU
instance

Function
instance

Function

Reserved

Vehicle
system

Vehicle
instance

CAN data
Byte 1 Byte 8

Figure 3.4: Structure of the CAN data field when NAME is sent.

Figure 3.5 shows a full address claim procedure without any conflicts. First, the
device joining the bus sends a request for address claim (1.). The new device does
not yet have a valid address but it is allowed to use the null address 25410 as a
source address. Destination address is set to broadcast (25510). When a request for

3. Development towards ISOBUS 16

address claim is sent to the network, all other nodes must reply with address claim
message using their own source address (2. and 3.). The address claim message’s
data field contains the 64-bit NAME to associate the device with the source address.
Now the new device can detect all the addresses that are already in use, and it can
select a free address. The device then claims the address by sending an address
claim message using the newly selected address as the source address (4.). This
way the other nodes can know which address the device is going to use. Finally,
the device needs to wait if there is address conflict before it can start the normal
communication using the claimed address (5.). [21, p. 6-7]

Device Network
1. Request for address claim

DA=255, SA=254

2. Address claim
DA=255, SA=A

3. Address claim
DA=255, SA=B

4. Address claim
DA=255, SA=C

5. Normal communication
SA=C

SA = source address
DA = destination address

250ms

t t

Figure 3.5: Address claim procedure without conflicts.

In addition to the network management functionality, the SAE J1939 also defines
application level messages. This is done by assigning meanings to the individual
protocol group numbers. For instance, the PGN 6525710 is "Fuel Consumption
(Liquid)" message [22]. Each message can also contain multiple data fields which are
also defined by the SAE J1939 and identified by their Suspect Parameter Number
(SPN). The "Fuel Consumption (Liquid)" message, for instance, contains SPNs
18210 and 25010 which are "Trip Fuel" and "Total Fuel Used" respectively [22].
The standard also defines length, resolution and offset for each suspect parameter
number.

Basically the SAE J1939 is a proven protocol for in-vehicle communications, and
it is also largely adopted by, for instance, diesel engine manufacturers. The protocol
defines both network management functionality as well as application messages.
Therefore the standard series provided a solid basis for ISOBUS.

17

4. ISOBUS

ISOBUS is an universal protocol for communication between implements, tractors
and computers in an agricultural environment. The primary goal for ISOBUS is to
ensure compatibility between machines from different manufacturers, and also be-
tween the mobile systems and the management software used on the farm. ISOBUS
is managed and developed by Agricultural Industry Electronics Foundation (AEF).
The basis for ISOBUS is the ISO 11783 standard - "Tractors and machinery for
agriculture and forestry - Serial control and communications data network". [23]

This chapter introduces the main concepts of the ISOBUS protocol as well as
the ISO 11783 standard in which the protocol is defined. The standard in whole
consists of 14 parts and more than a thousand pages so all of the standard parts are
not covered. Also, some of the most common device types in an ISOBUS network
are introduced.

4.1 Overview

ISOBUS is based on the SAE J1939 protocol which was introduced earlier in the
chapter 3.2. SAE J1939 was designed to be used in automotive applications which
shares many of the requirements with the agricultural applications, or more generally
moving machines. Therefore the J1939 was a suitable basis for the ISOBUS protocol.
It also meant that there was no need to reinvent functionalities such as network
management or device addressing because they were already proven and tested by
the J1939. This also meant that the ISOBUS developers could only specify the
agricultural specific messaging, and use the J1939 base mechanisms such as address
claiming as is. The concepts described in chapter 3.2 also apply to ISOBUS and
therefore they are not discussed again in this chapter.

As already mentioned in the chapter 3.1, a typical arrangement in an agricultural
machinery usually consists of tractor, a number of implements and other devices such
as displays. Figure 4.1 shows an example how these devices could be connected using
the ISOBUS.

4. ISOBUS 18

TractorTractor

Implement

Engine

Brakes

Transmission

...

Tractor ECU
Universal terminal

Task controller

File server

...

Internal bus ISOBUS

Implement bus breakaway connector

ISOBUS

Implement
ECU

Internal bus

Sensor

Actuator

...

Figure 4.1: Device interconnections using ISOBUS. [24, p. 12]

The figure shows that the tractor has its own internal control system which is used
for instance for motor and transmission control. This internal control system is not
directly visible to ISOBUS devices. Instead, the tractor has a dedicated control unit
which exposes some of the internal information to other ISOBUS devices. Similarly,
the implement may have its internal connections to sensors and actuators, and the
ECU (Electronic control unit) is the device that connects to the ISOBUS. The
figure also shows other ISOBUS devices (Task controller, Universal terminal and File
server) which are introduced later in the chapter 4.4. Both the physical connections
and the communication between these, and also other ISOBUS devices, are specified
in the ISO 11783 standard series.

The ISO 11783 standard currently consists of 14 parts [25] which describe the
communications network for agricultural equipment from the physical level all the
way to the application level. Part 1 is a general introduction to the standard series,
and it also describes the most important concepts of the network. Part 2 defines the
physical layer and connectors so that devices can be physically connected in a stan-
dardized manner. Parts 3 to 5 define the actual data link and network mechanisms
which are similar to SAE J1939. Rest of the standard parts define application level

4. ISOBUS 19

messages and mechanisms for agricultural applications. All of the standard parts
are listed in the table 4.1.

Table 4.1: ISO 11783 standard parts [25].

Part Name
1 General standard for mobile data communication
2 Physical layer
3 Data link layer
4 Network layer
5 Network management
6 Virtual terminal
7 Implement messages application layer
8 Power train messages
9 Tractor ECU
10 Task controller and management information

system data interchange
11 Mobile data element dictionary
12 Diagnostics services
13 File server
14 Sequence control

When looking at the individual standard part names, many of them use a term
layer. For instance part two is "Physical layer" and part three is "Data link layer".
These layers refer to OSI reference model which is introduced in the following chap-
ter.

4.2 OSI model and ISOBUS

Open Systems Interconnection or OSI in short is an architectural model which de-
fines a partitioning of network functionality into seven layers, where one or more
protocols implement the functionality in each layer. The model does not specify an
individual protocol, but instead provides a reference model for the main functional-
ities needed for networking. [26, p. 27] The OSI model is specified in the ISO/IEC
7498-1 standard. The OSI model is shown in the figure 4.2.

4. ISOBUS 20

Presentation

Application

Session

Transport

Network

Data link

Physical

Presentation

Application

Session

Transport

Network

Data link

PhysicalPhysical transmission media

Outgoing
communication

Incoming
communication

Figure 4.2: Open Systems Interconnection reference model.

It is not required that a standard or protocol based on the OSI model should
be explicitly partitioned into the seven OSI-layers. It is also not required that the
protocol should always provide all the layers if they are not needed for the specific
application. This is also the case with ISO 11783 as it is designed to support a
definite set of applications for a specific industry. The ISO 11783 standard specifies
the application layer, and the four lowest layers of the OSI model which are physical,
data link, network and transport layers. [24, p. 11]

The ISO 11783 does not specify session or presentation layers because they are
not needed. Figure 4.3 shows the respective standard parts which specify each of
the layers used in the ISO 11783 network. The network management has been
represented in the left side of the OSI layers as a separate functionality. Basically
the network management functionality consist of the automatic address allocation
and management scheme which does not fit to a any single layer.

Presentation

Application

Session

Transport

Network

Data link

Physical ISO 11783 part 2

ISO 11783 part 3

ISO 11783 part 4

ISO 11783 part 3

ISO 11783 parts 6-14

N
et

w
or

k
m

an
ag

em
en

t

IS
O

 1
1

7
8

3
 p

a
rt

 5

Figure 4.3: Application of OSI in ISO 11783.

The physical layer in ISO 11783 network is composed of a single linear quad-
twisted wire cable which connects the devices. Also, active terminating bias circuits

4. ISOBUS 21

are used in the each end of the network segment. The standard also specifies the
connectors used to connect implements to tractor, additional ECUs to network seg-
ment and a service tool to the network. In addition to the wiring and connectors,
the standard also specifies power sources needed by the network. [24, p. 11] So even
though the ISO 11783 is based on SAE J1939, it still specifies additional require-
ments for the physical layer to ensure interoperability between devices.

The data link layer in ISO 11783 is based on the CAN extended frame format, and
it is specified in the ISO 11783-3. CAN base format message frames can also be used
in ISO 11783 network, but they are reserved exclusively for proprietary use. The
data link layer in ISO 11783 specifies, how the extended CAN frame identifier should
be interpreted. It also specifies two different message formats, one for broadcast-only
messages and one for destination specific messaging. [27] In practise, this means the
protocol group number mechanism that was already introduced with the SAE J1939.

It is also possible that there is a need to connect a network with a different archi-
tecture to an ISO 11783 network. For example machine’s internal communication
bus. ISO 11783 network layer specifies network interconnect units which shall be
used to isolate network segments from each other. It is also possible to use network
interconnect units between ISO 11783 network segments to accommodate more de-
vices than electrical limits allow for a single segment. [24, p. 13]

The ISO 11783 part 3 which defines the data link layer also specifies a protocol for
multi-packet messaging. [27] This functionality corresponds to the transport layer
in the OSI model. This protocol is needed when more data needs to be transferred
that can be accommodated to a single CAN frame.

ISO 11783 standard also specifies a lot of functionalities for the application layer.
The different functionalities are grouped to individual standard parts. For instance,
virtual terminal messages are defined in ISO 11783-6 and messages between imple-
ment and tractor are defined in ISO 11783-7. These standard parts describe how
the lower layers are utilized for each individual functionality, and also how the data
is represented in the message frame.

4.3 Communication in ISOBUS network

In an ISOBUS system the communication between devices is very tightly coupled
to the protocol group numbers defined by the ISO 11783 standard. In practise,
this means that the ISO 11783 standard defines the meaning for each PGN which
in turn defines the message CAN ID. These PGN definitions are not limited to
network management since the standard also defines the PGNs that are available
for application level functionality. This is a similar practise that is used in SAE
J1939.

4. ISOBUS 22

This approach means that an individual ECU designer cannot extend or modify
the functionality provided by the standard. When new features are introduced,
new PGN values are assigned for them, and the functionalities are added to the
standard series. These standard parts not only define the message PGNs but also
the contents of the CAN data bytes. This methodology does not offer much flexibility
for a designer but in turn it makes seamless interoperability between manufacturers
possible. The table 4.2 shows a practical example of such application level message
definition.

Table 4.2: Ground-based speed and distance message. [28]

Field Value
Transmission repetition rate 100 ms
Data length 8 bytes
Data page 0
PDU format 254
PDU specific 73
Priority 3
Protocol group number 65097 (00FE4916)
Bytes 1,2 Ground-based machine speed
Bytes 3 to 6 Ground-based machine distance
Byte 7 Reserved
Byte 8, bits 8 to 3 Reserved
Byte 8, bits 2,1 Ground-based machine direction

The "Ground-based speed and distance" message is usually sent by the tractor
ECU in a constant 100 ms interval. From the message definition we can see that
the PDU format is 254. This means that the message is broadcast and the PDU
specific field is group extension. The standard also defines the meaning for each of
the data elements. Similarly to SAE J1939, each data element has a SPN assigned
for it. As an example table 4.3 shows how the "Ground-based machine speed" field
is interpreted.

Table 4.3: Ground-based machine speed field. [28]

Field Value
Data length 2 bytes
Resolution 0,001 m/s/bit, 0 m/s offset
Data range 0 m/s to 64,255 m/s
Type Measured
Suspect parameter number (SPN) 1859

4. ISOBUS 23

So basically large portion of the ISO 11783 standard series contains message and
parameter definitions for various application level functionalities. Clearly, the mere
message and parameter definitions are not enough to define complex functionalities.
Therefore the respective standard parts also define the sequences how these messages
are used to perform various functions such as updating the user interface.

The ISO 11783 also allocates PGNs for proprietary use. Messages that use these
PGNs can be both broadcast or peer-to-peer, and both single- and multi-message
communication are also allowed. These messages make it possible to implement
functionalities that are not defined by the standard. However, the use of these
functionalities are limited to devices that can understand this manufacturer specific
messaging.

4.4 ISOBUS equipment

ISOBUS systems can contain a wide range of different types of devices from different
manufacturers. This section briefly introduces some of the most important device
types which are common for ISOBUS system. These are logical functionalities, and
a same physical device may implement multiple of these types.

4.4.1 Universal terminal

Universal terminal is a ISOBUS specific display unit which is used to provide user
interface for the machine operator [30]. Devices can load their user interface to
the universal terminal, update values and receive user events from the terminal.
This way there is no need to install device specific control panels because the user
interface can be provided in the standardized way in the universal terminal.

Requirements for the universal terminal are defined in the ISO 11783 standard
part 6. Tractor ECU and also other ECUs connected to the implement bus can
utilize the universal terminal in a similar fashion as the implements. [24, p. 15] It
is also worth noticing that nowadays the official term used by the AEF is Universal
Terminal whereas the ISO standard uses the term Virtual Terminal. These both
terms mean the same device.

4.4.2 Tractor ECU

Tractor ECU (TECU) is a network interconnect unit that connects the tractor’s
internal control network to the implement bus. It also provides electrical isolation
between these buses. This isolation is necessary because the tractor’s internal bus
is used for safety critical communication such as motor and transmission control.
The tractor ECU also works as a bridge if the tractor’s internal bus uses a different
communications protocol. [24, p. 15]

4. ISOBUS 24

Tractor ECU can also expose information about the tractor’s state to the imple-
ment bus by broadcasting the information. For instance wheel-based speed, power
take-off rotation speed, hitch positions and much more can be sent. This way all
other nodes that require this information can easily gain access to it. The different
message types are defined in ISO 11783 standard part 7. [28] It is also worth men-
tioning that there are differences between tractors, and usually only a subset of the
tractor messages defined in the part 7 are actually implemented.

Additionally to sending information to the implement bus, the tractor ECU can
also receive requests from the bus. These request messages are also defined in the
part 7 of the standard. This way the tractor hydraulics and the tractor speed and
steering can be controlled. This makes it possible to implement automatic features
to assist the driver but it also introduces functional safety issues.

4.4.3 Implement ECU

Implements are the actual machines that are connected to front or rear of the tractor.
Different implements are needed for different work assignments so it is normal that
the implements are changed frequently. As an example a combi drill or a sprayer
would be considered as an implement.

In an ISOBUS system the implement provides its user interface using the universal
terminal. It is also possible that multiple implements are using the same universal
terminal simultaneously. The implement ECU can also support other interfaces in
addition to the universal terminal. A common interface is task controller interface
which can be used for precision farming.

4.4.4 Task controller

Task controllers are devices that provide scheduled control of implement functions
via the ISOBUS network. The task controllers receive planned work assignments,
tasks, from the farm management computer system. During the actual work, the
task controller sends control messages to the implement network as planned in the
task. The task controller also records data sent by the implement which can later be
reviewed in the farm management system. [24, p. 15] It is also possible to combine
positioning to the task which enables spatial precision farming.

The operation of the task controller and the messages sent to and from the im-
plements are defined in the ISO 11783 part 10. The data elements that can be
controlled by the task controller are defined in the standard part 11. The use of
task controller requires that the implement ECU implements the task controller in-
terface. This also includes a device description which lists data elements that can
be controlled in the ECU in question. Different data elements can also be viewed

4. ISOBUS 25

from the online ISOBUS Data Dictionary [29].

4.4.5 Other equipment

There are also other devices that can be used in the ISOBUS system besides the
ones that have already been introduced in this chapter. One device that is needed
for precision farming is a positioning system. The position information can be
provided in the same format as in NMEA 2000 by the tractor ECU or by a separate
positioning unit. The ISO 11783 standard also defines diagnostics devices that
can be connected to the bus. These devices can be used to diagnose problems or
configure the devices. Both proprietary and ISOBUS communication can be used
by the diagnostics devices.

The standard part 13 defines file server functionality. File server devices can be
used as a common storage devices. Other devices can both read and write files to
these servers, and the standard also defines protected manufacturer specific storage
which is only visible to the devices from the same manufacturer. [31] For instance
an universal terminal could expose an USB stick to the bus using the file server
interface, and reports or logs could easily be transferred to it.

The standard part 14 defines a device type which is relatively new in the ISOBUS
world, namely sequence controller. Similarly to the task controller the sequence con-
troller can also issue control requests to the implements and tractor. The sequence
controller makes it possible to record and then later reproduce a sequence of actions
involving the tractor and/or one or more implements [32]. This makes it possible
for the operator to perform a complex sequence of operations automatically with
one action. This is especially useful if the complex operation needs to be repeated
often. For instance, lowering or lifting the machines in the headland.

The Universal terminal provides its user interface which touch-screen, physical
buttons and dials or with a combination of the above. However, some implements
need precision control for which these controls are not best suited. The ISOBUS also
allows the operator to use auxiliary controls such as joysticks if the ECU supports
them [30].

4.5 Conformance testing

ISOBUS devices are developed by a large group of manufacturers around the world.
This means that the amount of different machine combinations that can exist is
considerable. However, from the end-user point of view all of these combinations
should work in a plug-and-play fashion. This is the reason why the AEF has adopted
a conformance testing procedure to ensure that each device conforms to the standard.

4. ISOBUS 26

The conformance tests are performed by AEF accredited test laboratories. When
a device passes the conformance tests it then receives an AEF ISOBUS Certification
label which not only shows that the device conforms to ISO 11783 standard and
AEF design guidelines but also the functionalities the device supports. [30] Figure
4.4 shows an example certification label.

Figure 4.4: An example AEF ISOBUS Certification label. [30]

The boxes on the right side of the certification label show the functionalities
the device supports. For instance the box on the upper left corner that is labelled
"UT", means that the device can be operated using an Universal Terminal. This
new certification label has just been adopted, and there are a lot of machines that
use an older style label that does not list the supported functionalities. [30]

When a device gets the certification label, it can also be added to the AEF
ISOBUS database. The database is mainly aimed for end-user so that they can easily
get information about available certified ISOBUS devices and their functionalities.
At the time of writing this thesis the ISOBUS database was not yet available for
end-users. [30]

27

5. OTHER CAN-BASED HIGHER LAYER

PROTOCOLS

In addition to the SAE J1939 and ISOBUS there are several other CAN-based higher
layer protocols which define how the CAN data link layer is used in a specific ap-
plication. Some of the most commonly used protocols are NMEA 2000, CANOpen,
DeviceNet, CAN Kingdom and Smart Distributed System which are introduced
briefly. Also their main differences compared to SAE J1939 and ISOBUS are pre-
sented.

Many of the other CAN-based protocols are designed to be used in different
applications of industrial automation. This also means that the target environment
for these protocols is very different when compared to SAE J1939 or ISOBUS which
are used in moving machines. Usually the setup in industrial automation is relatively
static and the network nodes are usually known at design time. In moving machines
the network nodes can change when the network is operational, which also leads to
very different requirements for the network protocol itself.

5.1 NMEA 2000

NMEA 2000 is a CAN-based higher layer protocol that is based on SAE J1939
similarly to ISOBUS. NMEA 2000 is designed to be used in maritime applications,
and the standard series is developed by the National Marine Electronics Association
(NMEA). It is used to interconnect navigation equipment, power generation and
distribution systems, piloting and steering devices, alarm systems and other devices
inside a ship. [33, p. 2-3]

The NMEA 2000 standard defines the physical layer including the connectors
used in the network. Data link layer and network management are aligned with
the ISO 11783 standard, and these parts are not fully defined by the NMEA 2000.
Instead, the NMEA 2000 references ISO 11783 parts 3 and 5. Application layer is
defined by the NMEA 2000 standard, because it defines the application field specific
messages and the information that is exchanged in maritime systems. [33, p. 5-6]

Because the NMEA 2000 is based on SAE J1939 and ISOBUS, it is very close
to them when it comes to its technical implementation. This means that the basic
network mechanisms such as address claiming and how the CAN IDs are interpreted
are same as in ISOBUS. However, the NMEA 2000 does define it’s own connectors

5. Other CAN-based higher layer protocols 28

and physical layer so these networks are not physically compatible.
Also, the application level information and functionalities are different because

of the completely different application domain. In practise this means that the
NMEA 2000 defines its own set of PGNs that describe the data objects needed
in maritime communication whereas ISOBUS PGNs describe information found in
tractor-implement combinations.

5.2 CANOpen

CANOpen is a CAN-based higher layer protocol for industrial automation systems.
CANOpen was developed within CAN-in-Automation (CiA) members and it is stan-
dardized in GENELEC EN 50325-4 standard. [34]

Each device in the CANOpen network has an object dictionary which basically is
an array of variables with 16-bit index and 8-bit sub-index. These object dictionary
variables can be used to configure the device, and they can also reflect the device
state by, for instance, containing measurement data. CANOpen standard defines a
set of profiles which in turn define a set of object dictionary variables each device
type needs to implement. [35, p. 28-30] This makes it easy to use devices from
different manufacturers.

The CANOpen also defines a set of protocols for various operations in the network.
For instance, Service Data Object (SDO) protocol is used to access entries in the
object dictionary and Process Data Object (PDO) protocol is used for transferring
process data between nodes. [35, p. 32-34]

When compared to ISOBUS and SAE J1939 the CANOpen has little in common
with them. CANOpen is targeted for industrial automation where the system is
usually very static. Therefore the original CANOpen does not have dynamic runtime
address management as in ISOBUS [35, p. 318]. Also the application level is very
different. CANOpen relies on device profiles which governs the structure of the
object dictionary, whereas the functionalities in ISOBUS are mapped directly to
PGNs and subsequently directly to CAN IDs.

5.3 DeviceNet

DeviceNet is a protocol which is designed mainly to be used between industrial
controllers and I/O-devices (Input/Output), and it is therefore mainly used in in-
dustrial automation. DeviceNet is based on the OSI model, and it uses CAN for
the data link layer and CIP (Common Industrial Protocol) for the higher layers.
DeviceNet also provides power bus which makes it possible to use low-power devices
without an external power-supply, thus reducing cabling. Open DeviceNet Vendor
Association (ODVA) also provides conformance testing for DeviceNet products in a

5. Other CAN-based higher layer protocols 29

similar fashion the AEF provides conformance testing for ISOBUS. [36, p. 1]
DeviceNet uses the standard CAN frames (11-bit identifier) for communication,

and the extended format is not used. The CAN ID is used as a connection identifier,
which in turn contains a MAC ID (media access code identifier) which is unique for
each module. [36, p. 3-4] DeviceNet does not differentiate the device identity and
address in a same way the ISOBUS does. Instead, DeviceNet uses the MAC ID
directly in the CAN message to identify the device.

DeviceNet uses CIP for its upper layers. CIP is an object-oriented model in which
each object has attributes (data), services (commands) and behaviour (reaction
to events). The application data remains the same regardless of the lower layers
which means that it is possible to connect DeviceNet network to another CIP-based
network, for instance EtherNet/IP, without modifications to the application layer.
Also, common application level profiles are used for different devices which makes
it easy to use devices from different manufacturers. [36, p. 5-6]

Again, when comparing the DeviceNet protocol to SAE J1939 and ISOBUS the
different requirements for the protocols are clearly visible. The DeviceNet is intended
to be used in static environment so there is no dynamic address management (dupli-
cate MAC ID check can be performed on start up). Furthermore, the object-oriented
CIP application layer is very different when compared to SAE J1939 based applica-
tion layer. DeviceNet also specifies standard device profiles in a similar fashion as
CANOpen.

5.4 CAN Kingdom

CAN Kingdom differs from the other CAN based protocols presented so far in a
one fundamental way: there is a master node which controls everything. When
most other networks are open in the sense that a module can begin to transmit
immediately when it joins the bus, a new module in CAN Kingdom is only allowed
to wait instructions from the King. However, the King node is only needed in the
configuration phase. When the system has been configured and each device has
stored its configuration to a non-volatile memory, the King can even be removed.
[37]

CAN Kingdom differentiates module design and system design. This gives the
system designer a lot of freedom to configure, for instance, the network topology
and priorities. For example in SAE J1939 and ISOBUS the protocol group number
affects the CAN ID, which in turn is used for prioritization. In CAN Kingdom the
message priorities can be selected by the system designer. [38, p. 1]

In CAN Kingdom all the needed nodes and connections between them must be
known in the design time so that the King can configure them in the configuration
phase. This approach works in control systems, where the system configuration is

5. Other CAN-based higher layer protocols 30

static during runtime. [38, p. 1] However, in ISOBUS system the user can connect
or disconnect devices from the network runtime, and therefore this approach is really
not applicable for agricultural environment.

5.5 Smart Distributed System

Smart Distributed System (SDS) is a CAN-based higher layer protocol designed by
Honeywell for industrial automation needs. It is designed to be used between in-
dustrial controllers such as PLC’s (Programmable Logic Controller) and IO-devices
like sensors and switches. Fundamentally SDS is a point-to-point protocol between
master device and slaves, which makes it effective for its intended use. [37]

Similarly to CAN Kingdom the SDS also assumes that there is always at least one
host node in the system, that can perform validity checks and configure the slaves if
needed. However, the SDS does not limit the number of master devices to a single
instance in a way the CAN Kingdom does. [37] SDS is designed in a fundamentally
different way compared to ISOBUS where no predefined master/slave roles exists.

SDS uses either 125k, 250k, 500k or 1M baud-rate which is selected by the mas-
ter devices. SDS also defines "autobauding" procedure which makes it possible to
automatically configure the baud-rate for slaves. In SDS network only standard
CAN-frames with 11-bit identifier field are used which is also a major difference
when comparing to ISOBUS. Similarly to DeviceNet, SDS also defines profiles for
different device types including behaviour and data structures to and from the de-
vices. [37]

31

6. TELEMATICS SYSTEM ARCHITECTURE

In this chapter the requirements for telematics system, and its high level architec-
ture is discussed. The main emphasis is on the component level and interfaces, so
therefore the underlying hardware and software components which implement these
interfaces are not addressed in detail.

Chapter 6.1 first goes through requirements which were identified by the usage ex-
amples described earlier in Chapter 2. Thereafter, Chapter 6.2 provides an example
reference architecture that fulfils these requirements. Followed by the architectural
discussion the information available in ISOBUS systems in general is presented in
Chapter 6.3. Then the representation and binding of the machine data is discussed
in the Chapter 6.4. Finally, Chapter 6.5 analyses the available interfaces and their
applicability to telematics.

6.1 System requirements

The requirements presented in this chapter are based on the earlier usage examples
in Chapter 2 and also discussions with Finnish agricultural machine manufacturers
in the Agromassi project. The main requirements for a telematics system are to
provide a means to gain remote access to a machine in its working environment as
well as to record information from it to a remote storage outside the machine.

The device that connects to the ISOBUS network in the machine needs to be able
to connect to Internet wirelessly. This way the machine can be accessed remotely
in its working environment. The system also needs to be able to collect informa-
tion from multiple machines simultaneously, and the collected data should also be
accessible when the machine is offline. The system should also provide previously
collected history data. Furthermore, both a user-interface and software interfaces
for external systems are required.

There are also requirements that are not strictly necessary for the core function-
ality, but are needed to make the system usable, maintainable and safe. One of
the most important design aspects is modularity and a proper use of interfaces to
abstract the modules. Modular design makes the system easier to maintain and
also makes it possible to extend the system in future. Modularity in the telematics
system design is addressed in the following architecture chapter.

Another important aspect is safety. In the telematics system the on-board device

6. Telematics system architecture 32

in the machine is connected to the machine’s internal communications network.
As described in the Chapter 4, the ISOBUS network is used, for instance, for the
communication between the Universal Terminal and implements. Special care needs
to be taken so that the telematics system does not interfere with other devices on
the bus. The other parts of the telematics system are not in a direct contact with
the machine, and thus not safety-critical.

There are also boundary conditions which affect how the system is designed and
how it can be used. Most notable boundary conditions are the limitations caused by
the mobile network (wireless Internet connection). The non-deterministic network
delays and possible random connection failures in the wireless mobile network means
that the telematics system should not be used for machine control. The system also
needs to be designed in a way that no data is lost even if the connection is lost
temporarily.

6.2 System architecture

It is a common situation in an agricultural environment that there are more than one
tractor-machine working-set that should be monitored simultaneously. This is why
the telematics system should be distributed so that telematics devices are placed to
individual machines, and they connect to a shared server system. Figure 6.1 shows
how the components in the telematics system could be distributed.

Telematics deviceTelematics device

Internet

Bus subsystem

Server subsystem

Wireless Internet
connection

FMIS Farmer ...

Internet

Telematics system

External systems

Figure 6.1: Distribution of the telematics system.

6. Telematics system architecture 33

The figure shows one server system and two telematics devices that are installed
in tractors. The telematics devices are connected to the server system using wireless
Internet connection. The system end-users and other software systems would con-
nect to the server, and not directly to individual telematics devices. This approach
allows flexibility on the hardware platforms used. The telematics devices could be
implemented using an embedded platform, whereas the server-side can use a generic
server hardware or it can be implemented as a cloud service. This also improves the
system scalability.

An example reference design that fulfils the requirements presented in the previ-
ous chapter and also supports distribution is shown in the figure 6.2. The system
consists of two main subsystems which differ significantly from each other. These
subsystems are the bus-side subsystem which connects to the actual communica-
tions bus in the machine and the server-side subsystem which stores the data and
offers interfaces outside. There is also a communication links between these two
subsystems and between the server and the outside world.

ExtSystem

Client

ServerSubsystem

ServerApp Database

DataDB
MetadataDB

ExtInterface

WebUI

...

BusSubsystem

ISOBUS-StackServerComm

SystemResourcesDataCollection

ExtSystem2

HTTP

Figure 6.2: Telematics system component diagram.

The two main subsystems are shown as packages, and for both packages some of
the most important internal components are also shown. In addition to the the ac-
tual subsystems, external systems that could utilize the telematics system interfaces
are also shown on the right side (Client, ExtSystem, ExtSystem2). These external
systems correspond to the FMIS and Farmer in the figure 6.1. The architecture
presented here is a system-level architecture, and each of the shown components
may have complex internal architecture as well.

6. Telematics system architecture 34

The server subsystem consists of database component (Database), the actual
server application that implements the application logic (ServerApp) and compo-
nents that implement different interfaces for external systems or clients (WebUI
and ExtInterface). These external interfaces could be for instance REST, OPC
UA, SOAP and others. The ServerApp component manages the remote devices,
authenticates them and stores the actual process data to database. It also pro-
vides internal interfaces to access the data and to manage the remote devices. The
server-side subsystem is described in detail in chapter 6.2.2.

The bus-side subsystem, or the remote device, consist of software component
that handles the communication with the server subsystem (ServerComm), ap-
plication logic that initiates and performs the actual data collection (DataCollec-
tion), ISOBUS-stack that handles the protocol specific communication and rou-
tines (ISOBUS-stack) and finally system resources such as device drivers (System-
Resources). The bus-side subsystem is described in detail in chapter 6.2.1.

The component diagram also shows the main abstractions in the telematics sys-
tem. The interfaces between the server-side subsystem and the bus-side subsystem
creates an abstraction that separates the two subsystem from each other. This way
the internal implementation of the telematics devices or their hardware platform
does not affect the server. Second distinct abstraction are the interfaces to the
outside world. For an external system, the telematics system in whole is seen as a
black-box.

The separation between the bus-side system (BusSubsystem) and the server-side
system (ServerSubsystem) is a key design decision in this architecture and it allows
these two subsystems to be distributed in different physical computer systems as
shown in the figure 6.1. Communication between the subsystems could be imple-
mented using, for instance, mobile networks, and various communication protocols
can also be used. For instance, binary protocols for size optimized communication
or OPC UA or Web Service interfaces for more generic approach.

6.2.1 Bus-side subsystem

Bus-side subsystem implements the link between the telematics unit and the com-
munications bus of the machine. It is also responsible for providing the configured
data to the server-side of the system. The software that implements the bus-side
subsystem functionalities is usually run on an embedded platform that is designed
for harsh environments, and in agricultural applications could be placed, for in-
stance, in tractor. The figure 6.3 shows an example structure of a complete software
stack for an ISOBUS enabled embedded device. The software that was shown in
the component diagram in figure 6.2 is located on the topmost layers of the software
stack.

6. Telematics system architecture 35

Software stack

Hardware platform

Device drivers

ISOBUS protocol stack

HAL

Application

Operating system

Figure 6.3: Software stack of ISOBUS enabled remote management device

On the very bottom is the physical hardware platform. On top of the hardware
platform is the operating system such as embedded Linux, Windows or a RTOS, and
also device drivers that give the application level access to the underlying hardware.
It is also possible to implement the embedded platform without a generic operating
system. However, the operating system creates a distinct abstraction between the
application and the hardware which improves the portability of the system, and can
also simplify the system design.

To make the application more maintainable and to improve re-usability, it is also
a good practise to separate the actual application and the ISOBUS protocol stack.
This way the protocol stack can be developed as an individual module that can
be re-used. Inside the protocol stack it is also a good practice to have a separate
Hardware Abstraction Layer (HAL) that contains all the parts that are hardware
or driver dependant. This way the protocol stack itself can be more easily ported
to another hardware.

It would also be possible, that the external systems would connect directly to the
telematics devices without any server system (both BusSubsystem and ServerSub-
system would be placed in a single physical device). However, this introduces many
problems that are avoided when using a separate distributed server. First of all, the
remote device is powered from the machine, and therefore it is only available when
the machine is used. Secondly, if many users want to access the device simultane-
ously, both network bandwidth and the device performance may not be sufficient.
Also the storage capabilities for embedded devices are usually limited. When the de-
vice communicates with a single server which in turn provides the external interfaces
and data storage, these problems are avoided.

6. Telematics system architecture 36

6.2.2 Server-side subsystem

The server-side subsystem is responsible for collecting and storing data from the
remote telematics devices (BusSubsystem) on the machines. It is also the side of the
system that is visible to the telematics system clients whether they are end-users
or other software systems. The software that implements the server-side subsystem
is usually run on a general purpose platforms that do not require any special cus-
tomizations for use in ISOBUS telematics. All the low level dependencies caused by
ISOBUS are abstracted by the bus-side subsystem.

The figure 6.2 showed some of the most important internal components in the
server-side subsystem. An important component is the database component that
abstracts the actual database accesses and provides the main server application with
storage functionalities. In the telematics system there are various kinds of data that
needs to be stored. First of all, the actual measurement data and also user access
information as well as device configurations.

The main application logic in the server system is implemented by the Server-
App component. It aggregates the data from multiple remote devices and stores
it to database. It is also responsible for authenticating the remote devices and for
providing them with a valid configuration.

To make the server subsystem more modular there are also internal abstractions.
The ServerApp component provides well-defined interfaces to access it’s resources.
This way there can be multiple different interfaces and modules that use the server
resources but do not need to know about it’s internal implementation. The com-
ponent diagram shows, as an example, WebUI and ExtInterface components which
use the same internal interfaces to access the resources.

User interfaces provide means for humans to interact with the system. There are
various different kinds of users, such as developers, administrators and end-users,
so usually multiple different user interfaces are needed. Alternatively, the different
user types may be presented with a different view or perspective within the same
user interface. In the component diagram a web based user interface was shown
(WebUI), but also other interfaces could be used.

In addition to the user interface also software interfaces can be provided. Soft-
ware interfaces are not meant to be used directly by end-users but instead by other
machines or systems. These software interfaces expose the telematics system re-
sources and make them available for external systems. These external systems can
then implement other applications and provide user interfaces for the end-users. In
the component diagram ExtInterface represents a concrete implementation for one
external interface, and ExtSystem a third party system that accesses the telematics
system.

6. Telematics system architecture 37

6.3 Information available in ISOBUS network

A high-level requirement for the telematics system is to be able to collect and record
data from the target machine. ISOBUS supports proprietary communication so in
principle arbitrary information can be collected from an individual machine. How-
ever, when designing a generic telematics system, the use of proprietary messages
will reduce its applicability. Therefore a better approach is to use the methods pro-
vided by ISO 11783 standard as much as possible. This chapter presents the results
for literature and ISO 11783 standard study of available information sources that
was done in this thesis. The ISO 11783 standard does not address remote telemat-
ics, so the standard is studied from the telematics point of view to identify which
existing data sources and interfaces could be adapted for telematics purposes.

There are two main methods for collecting data from a vehicle communications
bus. The device collecting data can either passively listen to the communication and
store interesting data, or it can actively be part of that communication. The former
method may be easier to implement, but it also has significant constraints because
the device can not query data actively. The latter method, in turn, allows the device
to work within the limits of the communications protocol. Table 6.1 summarizes the
different types of data that can be collected from an ISOBUS network.

Table 6.1: Data collection methods.

Passive monitoring Active communication

P
ro

p
ri

et
ar

y

• Network statistics

• Proprietary broadcast messages

• Proprietary peer to peer proto-
col (arbitrary information can
be transferred)

IS
O

11
78

3

• Broadcast ISOBUS PGNs

• Broadcast active diagnostics
trouble codes

• Address claim information

• Request PGNs

• ISOBUS diagnostics protocol

• Process data logging

• File server

Passive monitoring means that the telematics device connects to the communica-
tions bus, but does not send anything. In an ISOBUS system this would mean that
the telematics device would not, for instance, do an address claim. When using pas-
sive monitoring the telematics device just listens to the CAN messages transmitted
to the bus and filters the interesting messages by using the message’s CAN ID. This

6. Telematics system architecture 38

method could be used to collect both proprietary and ISOBUS specific broadcast
messages that are automatically sent to the bus by some other device. From the
implementation point of view, this method is very simple because it does not require
a higher layer protocol stack. Simple CAN access is sufficient. In addition to the
actual CAN messages, it is also possible to measure network statistics such as bus
load, voltages, message errors or physical bus failures.

The proprietary broadcast communication can be performed using base format
CAN-frames because the ISOBUS only uses extended frame format [27, p. 2]. How-
ever, when using the base frame format, there is a possibility for CAN ID collisions
between manufacturers. Therefore the ISOBUS also provides a PGN for propri-
etary broadcast communication [27, p. 17-18]. When using this message type, the
sending device must have an address claimed. From the telematics point of view
this method is not very interesting because it relies on proprietary manufacturer
specified messages.

In spite of its simplicity, the passive monitoring is a useful method to collect
data from an ISOBUS network. A useful data source for monitoring is the tractor
ECU which broadcasts a lot of information to the bus automatically. For instance,
machine speed, hitch positions, power take-off rotation speed and much more may
be broadcast. These messages are specified in detail in ISO 11783 part 7 [28]. AEF
defines two different levels of functionality for tractor ECUs. TECU Basic provides
only a limited amount of information, and does not support bi-directional communi-
cation. TECU Advanced broadcasts more information and also supports command
requests from implements. [39] Controlling the tractor is not an important function-
ality for telematics, but the additional information provided by TECU Advanced is
useful. If the ISOBUS support has been retrofitted to the tractor, there might not
be ISOBUS capable tractor ECU at all.

Another useful information that is automatically broadcast to the bus is active
diagnostics trouble codes (DTC). When a fault condition becomes active, an ECU
starts sending Diagnostics Message 1 (DM1) periodically which contains information
about the fault. The message contains SPN for the subsystem that had failed, and
also Fault Mode Indicator (FMI) that identifies the type of failure. This message is
specified in detail in ISO 11783 part 12. [40, p. 10-11]

If the data obtainable from passive monitoring is too limited, the next step would
be to start actively communicating on the bus. Again, the base format CAN frames
can be used for peer-to-peer communication. This method does not necessarily
require a higher layer protocol stack. ISOBUS also provides a PGN for peer-to-
peer proprietary communication [27, p. 17-18]. This however, requires that both
devices have an address claimed. These methods only allow manufacturer specific
communication, and therefore are not a good approach for a generic telematics

6. Telematics system architecture 39

system anyway.
To get most information from the ISOBUS network, the telematics device should

have an ISOBUS protocol stack so that it can utilize the full potential of the protocol.
This is also the option that was used in the example reference design because it
allows much more information to be collected than passive monitoring. All of the
data sources that are visible in the Table 6.1 become available when using a ISOBUS
protocol stack.

First operations to do when a device joins the ISOBUS network is to claim an ad-
dress. This operation alone provides information about other devices on the network
and their ISOBUS NAMEs. The NAME in turn contains information about the de-
vice type and its manufacturer. So, just by joining the network, the telematics device
can obtain valuable additional information compared to passive monitoring. It is
worth noting that the "Address Claim" messages are broadcast and can in theory
be obtained only by listening. These messages are not, however, sent automatically
if no-one first sends an "Request For Address Claim" message.

The ISO 11783 defines a set of message PGNs that are used to request a message
with a specified PGN to be sent. These requests can be both global or directed to
a single device. This method allows the telematics device to query for information
that is not automatically broadcast. [27, p. 13-14] It is, of course, not guaranteed
that the requested information will be available. For instance, "ISOBUS compliance
certification message" could be queried to get information about the device ISOBUS
conformance testing or "ECU software identification" to get additional information
about the ECU firmware.

The ISO 11783 part 12 also defines additional diagnostics functionalities in addi-
tion to the DM1 message. It is possible to, for instance, request previously active
diagnostics trouble codes. Also, the "ECU diagnostic protocol" message allows to
query if the device supports other diagnostics protocols in addition to the methods
defined in ISO 11783. If the ECU supports them also SAE J1939-73, ISO 14230
(KWP200) or ISO 15765-3 (Unified diagnostics services on CAN) can be used to
obtain additional information. [40]

Apart from the broadcast PGN messages, the data sources discussed so far have
been mainly diagnostics. However, it is also possible to obtain process data from
implements during their work assignments. The ISO 11783 part 10 defines a generic
data logging interface that can be used to monitor the process variables during work
assignments. This is is a similar interface the task controller uses to monitor tasks.
The available process variables are defined by Device Description Data -file (DDD-
file) that is provided by ECUs that support task controller. The data logging is
a separate functionality, and all implements do not support it even though they
support the task controller.

6. Telematics system architecture 40

The ISO 11783 also defines a File Server functionality that allows other ECUs to
read and write files to a common storage. If the telematics device implements the file
server functionality, it could be used to make external files available to the ISOBUS
network. For instance, upload configurations or tasks from server to ISOBUS file
server or send log files written by ECUs to the server. These functionalities re-
quire that the ECUs use the file server, so they are not completely manufacturer
independent, but at least the proprietary messaging can be avoided.

6.4 Data representation

Raw data by itself has little value without a context to tell what the data represents.
Therefore, when data is collected, it is also necessary to store meta-data to preserve
the information value of this data. If the connection between the data values and
the context is lost, the data becomes useless. It is also important to know where
the collected information originated.

Usually a system has a data model that explicitly defines the structuring of data
objects within the system. This data model is constructed in a way that it allows
to represent information about the real-life objects that the information represents.
So basically the data model defines the different entities that can exist as well as
allowed connections between them.

The data model defines the logical structuring of data objects. However, this in-
formation also needs to stored and communicated which means that it needs to have
a well-defined representation. From the ISOBUS point of view, the data representa-
tion on the bus is governed by the ISO 11783 standard series which specifies the CAN
communications in detail. The standard also defines XML-bindings for information
needed to transfer ISOBUS tasks between the task controller and FMIS.

As a part of the FMIS study by Robbenmond et al. also the data exchange
between FMIS and other actors was studied. The study concludes that "there is a
lack of consensus about used data standards for data exchange in agriculture". They
also conclude that "no standardised messages from international standardisation
organisations have been discovered that facilitates data exchange between sensors
and the FMIS or data providers and the FMIS". [3, p. 27] Therefore, from the
telematics point of view it is not apparent which data model or data representation
format should be used.

There are attempts to provide a general data model and representations for the
agricultural domain. For instance, agroXML project provides a set of XML schemas
for representing data on work processes on the farm including accompanying oper-
ating supplies like fertilizers, pesticides, crops and the like [41]. Still, the current
situation is that there are many different data models in use in the industry.

6. Telematics system architecture 41

Another approach that is applicable for the telematics system is to use a more
generic data model. In this approach the generic entities are mapped to actual
domain specific objects when to telematics system is integrated to other systems.
This approach requires additional translations between the data models and can
therefore reduce performance. However, because of the various data models and
data formats that are used in agriculture, this kind of translations are likely to be
needed anyway.

6.5 Design considerations

The state-of-the-art study in Chapter 2.2 showed that the vast majority of the
ECUs in the current agricultural machine base do not have the required hardware
to connect to Internet. This means that the telematics functionalities in the current
machines would need to be implemented using a separate device that provides the
Internet connectivity. In future these functionalities could be integrated to other
ISOBUS devices such as tractor ECU, implement ECU or Universal Terminal if the
required hardware support is added. These devices could then communicate directly
with the telematics server.

The results for the study of available data sources and interfaces in an ISOBUS
system was presented in Chapter 6.3. These results show that a telematics device
can collect versatile information ranging from diagnostics to actual process data in
a manufacturer independent way. The study also shows that the telematics system
could be provided by a third party provider independently of the actual machine
manufacturer, and the system could be installed to current machines as and add-on.
Furthermore, the study suggests that the telematics part for all the usage examples
presented in Chapter 2.3 could be implemented without resorting to proprietary
communication.

The file server interface in particular provides very interesting possibilities for
telematics. The files transferred to the file server by other ISOBUS devices could
be uploaded to the server subsystem. This means that, for instance, system logs,
test results or basically arbitrary data could be transferred from a machine without
using any proprietary protocols. For example, in malfunction situation the support
personnel could obtain very detailed logs from the machine.

The files could also be downloaded from the server to the telematics device to
provide, for instance, firmware updates to machines that do not have Internet con-
nectivity. The file upload and download could also be used to transfer tasks between
the on-board task controller and FMIS to remove the manual transfer. It would be
beneficial if the use of file server would become a common practice for firmware
updates and task transfer instead of proprietary solutions for each manufacturer.
This would also serve the original purpose of the file server standard, and benefit

6. Telematics system architecture 42

both the machine manufacturers as well as telematics system providers. The main
limitation for using the file server to transfer large files is the limited bandwidth in
an ISOBUS network (250 kbit/s). Also, only a fraction of the maximum transfer
rate could be used for file transfer so that other communication is not disrupted.

Another very interesting interface is the process data logging interface which ex-
poses the actual controllable variables in a machine which could be monitored in
real-time. In precision farming the process variables are used to control the im-
plement based on location to optimize the work. The process logging and task
controller interfaces also support read-only variables which means that other infor-
mation could also be exposed using this interface; individual sensor readings for
instance. Also, the broadcast messages from tractor ECU would be interesting for
remote monitoring, and also to make available in FMIS.

From the implementation point of view the diagnostics, file server and process
data logging are well-defined by the ISO 11783 standard. Therefore the actual
software architecture and implementation can vary, but the interfaces used are stan-
dardized. However, as Chapter 6.4 showed, there is no consensus about the general
data model or the data exchange formats in agriculture. Therefore it is likely that
various different data models and data formats are encountered when the system is
integrated to existing FMISs. This is a major challenge that should be taken into
account in the system design.

Based on the identified usage examples in Chapter 2.3 and available data pre-
sented in Chapter 6.3 three telematics functionalities were selected for implementa-
tion in the Agromassi project. First, collection of ISOBUS frames based on their
PGN allows to monitor the information sent by the tractor ECU. This function-
ality can be used for remote monitoring, and it can also be integrated to FMIS.
Secondly, a device discovery functionality and the collection of active diagnostics
trouble codes allows the system to support basic remote fault diagnostics. Lastly,
file server functionality was selected because it allows to transfer versatile data,
including firmware update packages and tasks, between devices on the bus and ex-
ternal systems. These functionalities were selected because they allow the system
to support basic applications for all of the identified usage examples.

This chapter provided a high level example reference architecture which can be
used as a starting point for ISOBUS telematics implementation. Also, the different
data sources in an ISOBUS system and their applicability were assessed. The fol-
lowing chapters show how the ISOBUS support as well as telematics functionalities
were added to the WRM system.

43

7. WAPICE REMOTE MANAGEMENT

SYSTEM

Wapice Ltd is a Finnish company that concentrates on software solutions and inte-
gration of information systems of industrial companies. The company was founded
in Vaasa Finland, and today it employs over 260 software and hardware experts
(situation on spring 2014). Wapice is also ISO 9001:2008 certified. The company
is grouped to three segments which are embedded systems, industrial systems and
business solutions. In addition to subcontracting, Wapice also develops it’s own
solutions including Wapice Remote Management system. [42]

This chapter gives a general introduction to the WRM system in which the
ISOBUS support was implemented in this thesis, and which was also used dur-
ing the Agromassi project. First, the WRM system concept and its most important
parts are discussed. Then the remote management devices in WRM system as well
as the server side of the system are introduced.

7.1 WRM concept

The WRM-system is a complete solution which consists of remote devices, server
system and software. The system provides access to machines and devices regardless
of their location, which makes it possible to integrate them to other information
systems. The remote devices are located in the field and they connect directly
to target systems using, for instance, field-buses. The server system collects the
data from remote devices and stores it to database. It also provides user interfaces
to configure devices and measurements as well as software interfaces for external
systems. Figure 7.1 shows the WRM-system concept. [43]

7. Wapice remote management system 44

WRM remote devices perform
configured measurements

Web user interface
to configure devices
and visualize data

WRM system can be
integrated to 3rd party
systems

Measurements are stored
to database

Wired/wireless
connection between
server and devices

WRM-system

WRM247+ device

Figure 7.1: WRM system concept.

The dashed line in the figure shows the WRM-system boundary. Inside the WRM-
system a number of remote management devices and the server system are shown.
The remote devices connect to the server via Internet using either wireless or wired
connection. The server system also contains databases for the actual measurement
data, user information as well as the remote device configurations. The server also
provides Web user interfaces to manage the devices and visualize the collected data.
Software interfaces are also provided for external systems.

7.2 Remote management device

The concept figure also shows an example remote management device, WRM247+,
that can be used in the WRM-system. The WRM247+ is a cost-efficient device that
is designed to meet industrial requirements, and to support a wide range of common
interfaces. It can be connected to the WRM servers using either wired or wireless
technologies. Especially the possibility to use mobile networks (GSM/GPRS/3G)
makes the device suitable for moving machines including agricultural applications.
Table 7.1 lists some of the WRM247+ devices’ technical details.

7. Wapice remote management system 45

Table 7.1: WRM247+ technical details [44].

Feature Description
Processor ARM R© Cortex-A5, 536MHz
RAM 128MB DDR2
Flash 256MB NAND Flash
Connectivity Ethernet, CAN, RS-232, RS-485, USB
Wireless GSM/GPRS/3G, WLAN and Bluetooth
Positioning GPS+GLONASS, -165dBm sensitivity, 33 channels
Input/Output 4x Digital In, 4x Digital Out, 2x Analog In
Accelerometer Digital, triaxial, 16 bit, ±2g - ±16g
Operating system Real-time Linux
IP Rating IP 65

The WRM247+ device uses embedded RT-Linux as its operating system, on top
of which the Wapice’s own software solution has been implemented. The software
handles the communication with the server and performs the configured measure-
ments. The goal of this thesis is to add ISOBUS support to the WRM remote
device’s software which makes it possible to use WRM as an telematics system in
agricultural applications.

7.3 WRM server

Another important part in the WRM system is the server. The main responsibilities
of the server system are managing device configurations, storing the data received
from remote devices, providing user interfaces and access control. Normally the
remote management devices are installed on various automation systems, so the
server system is the side that is really visible to the system users.

The WRM-system users can view, modify or add measurements to the server data
model using the Web-interface. The server also supports user groups so that the
data model visibility and access rights can be controlled. Furthermore, the WRM-
server instances can be run in virtual environment or deployed directly to customer
servers to enhance information security. The server data model can also be accessed
using the REST (Representational State Transfer) interface.

The REST interface allows the WRM system to be integrated to third party
systems. Currently the REST interface supports browsing the data model, reading
history data from measurements and online read/write of data nodes. However the
interface does not allow, for instance, to create new data nodes or configure the
remote devices. These are features that could be added in future on per need basis.
The REST interface was also used in the Agromassi project to access the collected
data.

7. Wapice remote management system 46

The WRM data model is hierarchical and it is not domain specific so that it can
be used to model various real-life applications. On top of the hierarchy are enter-
prise nodes which represent companies or other organizations. Enterprises consist
of multiple sites which are usually physical locations such as factories, which in turn
consist of assets. Each asset can have multiple data nodes which represent individ-
ual measurements. There are multiple different types of data nodes which defines
how the data is obtained, for instance CAN message or I/O value. [45] Appendix
A presents the WRM data model using class diagram notation, and also an object
diagram that illustrates an example modelled using the WRM data model.

47

8. ISOBUS SUPPORT IN WRM SYSTEM

During the Agromassi project ISOBUS support was implemented to the WRM-
system. This makes it possible to use the WRM-system as an infrastructure for
telematics functionalities described in the earlier chapters.

The server side of the WRM-system was used as is, and the implementation
needed for ISOBUS support was done on the remote device’s software. This follows
the architectural idea introduced in the Chapter 6 that the ISOBUS specific imple-
mentation is abstracted to the remote devices. This chapter describes the ISOBUS
functionalities and the general ISOBUS support implementation that was done to
the WRM remote devices.

8.1 Telematics functionalities

In this thesis two concrete telematics functionalities were implemented to the WRM
system. These functionalities highlight the different requirements already discussed
in the chapter 6.1. They also ensure that the whole chain from the physical bus
to the server interfaces is functional. During the Agromassi project a file server
implementation was also planned, but due to resource cuts from other partners, this
functionality was omitted from the respective work package.

The first functionality is the collection of raw ISOBUS frames according to their
protocol group number. This functionality allows the user to configure arbitrary
amount of message PGNs which are then automatically collected. It is also possible
to configure the actual bytes from the CAN data which are kept as well as scaling.
This functionality is mapped to the WRM data model as a new data node type.
In practice, this means that the collected data can be directly used in WRM user
interface widgets such as charts or gauges. The data is also available using the WRM
REST interface. This functionality can be used to collect broadcast messages from
tractor ECU for instance to support basic performance monitoring.

The process data logging interface would allow to monitor the same variables the
task controller controls. However, this functionality was not selected for implemen-
tation because of its limited support in ISOBUS devices. The lack of support was
also verified for an open-source ISOBUS stack, ISOAgLib, during the Agromassi
project. In future this functionality could also be implemented to extend the data
available for monitoring.

8. ISOBUS support in WRM system 48

The second implemented functionality is device discovery which allows to list
all the devices that have claimed an address and thus registered to the bus. From
each of the devices their claimed bus address as well as their ISOBUS NAME can be
obtained. The address claim procedure was introduced in Chapter 3.2. Additionally,
information about the device’s active diagnostics trouble codes is recorded. From
each active DTC, their failure mode indicator (FMI) and occurrence count is also
saved. This functionality can be manually triggered from the server which makes it
suitable for online troubleshooting. The device discovery can also be triggered using
the REST interface. Again, this functionality maps to WRM data model as a new
data node type.

The file server was implemented to a point where the WRM remote device could
provide file handling to other ISOBUS devices according to the ISO 11783 part
13. This means that other devices on the bus could read and write files as well as
handle directories. Also, manufacturer specific directories were implemented which
are visible only to the devices of the same manufacturer (according to their ISOBUS
NAME) [31]. However, this functionality was neither integrated to the WRM main
software nor added to the server because it was omitted from the respective work
package.

The implementation uses the data model that is already available in the WRM
system. This is due to the fact that there is no consensus about the data mod-
els or formats in agriculture so adaptation to various systems is needed anyway
when systems are integrated. Also, using the pre-existing data model simplifies the
implementation.

8.2 CAN-drivers and protocol stack

An important aspect about the remote device from the ISOBUS point of view is
its connection to the CAN-bus. In the WRM-devices the CAN-drivers are custom
implementation which allows to optimize their performance for the specific hard-
ware. Junnila et al. describe the optimizations done in the Wapice Custom CAN
(WCC) driver as well as performance comparisons in their article [47]. These opti-
mizations include for instance preprocessor branch hints and use of direct memory
access (DMA). In summary, the WCC-driver offers significantly better performance
in the WRM-devices when compared to other common Linux CAN-drivers such as
SocketCAN or LinCAN.

To make the application development easier and also abstract the device driver
usage, a library component is used to provide higher level interface to use the CAN-
functionalities. This component is LowLevelCAN -library (LLC) and it is also de-
veloped in Wapice. the LLC-library provides interfaces to configure CAN-channels
as well as to receive and send messages through these channels. The LLC-library

8. ISOBUS support in WRM system 49

uses singleton design pattern which means that there is one shared instance of it
that manages all the CAN-channels and their parameters. The LLC-library also
uses observer design pattern which means that other modules can register listeners
and receive automatic notifications when new CAN-frames are received. Figure 8.1
shows an overview how the LLC-library is used.

Listener : LowLevelCAN : ReceiverThread :

par

[until channel open]

Description

singleton

Description

observer

getInstance()

handle

registerListener()

ok

notify observers

add listener

ok

wait message

Figure 8.1: Using the LowLevelCAN library.

The WCC-driver accompanied with the LLC-library provides a means to handle
basic CAN communication. However, to use ISOBUS functionalities, the actual
ISOBUS protocol support needs to be implemented using these components. The
ISOBUS protocol specific functionalities could be directly implemented to the WRM
application, but a better design approach is to use a separate protocol stack which
not only abstracts a lot of the ISOBUS specific routines but also makes the appli-
cation level implementation easier.

The protocol stack could be implemented from ground up, but to reduce imple-
mentation effort an existing protocol stack was used. ISOAgLib was selected as the
ISOBUS protocol stack [46]. The arguments for selecting ISOAgLib were suitable
licence, active development and experiences from previous projects in-house. It is
also constructed in a modular way, so that only the necessary functionalities can be
compiled to the stack. For instance, universal terminal interface is not needed in
the WRM so this functionality can be omitted from the stack. On the other hand,
new features can be added in a modular fashion in future. Figure 8.2 shows the
architecture of the ISOAgLib stack.

8. ISOBUS support in WRM system 50

Figure 8.2: ISOAgLib protocol stack architecture. [48]

The layered architecture shows hardware resources provided by the operating
system on the bottom. The bottom layers of the actual protocol stack are the
hardware abstraction layer that provides access to the system resources and also
driver extension. The top layer is the actual ISOBUS stack that consists of common
data- and network management handlers as well as modular functionality blocks
such as Task Controller client.

To integrate the ISOAgLib to WRM-device, a hardware abstraction layer (HAL)
needed to be implemented so that the protocol stack can access the device resources
such as CAN. The ISOAgLib specifies interfaces for CAN access and system resources
which abstracts the protocol stack from the underlying hardware. The ISOAgLib
can be ported to a new platform by providing device specific implementation for
these interfaces. Overview for the HAL implementation using LLC-library is shown
in Appendix B.

8.3 Integration to WRM application

The WRM remote devices support a range of protocols that are common in the
industrial applications. This means that the ISOBUS functionality may not be
needed at all in the majority of the applications. Therefore the ISOBUS stack or
other ISOBUS related functionalities should not be consuming system resources
when they are not needed. This is also true other way around. When the ISOBUS
functionality is used, other unnecessary functionalities should not consume the re-
sources. This is a key factor in the software architecture of the WRM system.

In the WRM system the ISOBUS functionalities are used in a different manner
than in, for instance, implement ECU. In an implement ECU the ISOBUS plays
an important role, and most of the functionalities are built around it. Whereas in
the WRM system, the ISOBUS is just another data sources among others. This
distinction also reflects to the software implementation which contains configurable

8. ISOBUS support in WRM system 51

modules for various data sources. The general software stack of the WRM remote
management devices is shown in the figure 8.3

Software stack

ARM-based hardware

Device drivers

ISOAgLib

Application

RT-Linux

Support libraries

CANOpen ...

CANModule ISOBUSModule ADCModule

IOModule ModbusModule ...

Figure 8.3: Software stack of the WRM remote management device.

At the bottom of the figure is the ARM-based hardware platform. One example
for the hardware, WRM247+, was already introduced in the chapter 7.1. On top of
the hardware is the operating system which in WRM devices is an embedded real-
time Linux. On top of the operating system are the device drivers that provide access
to the underlying hardware such as CAN-controller. To make the application devel-
opment easier, there are support libraries on top of the device drivers, LowLevelCAN
for instance, which simplify the device access from a high level application.

The software stack also shows that the ISOAgLib protocol stack has been sep-
arated from the actual application, and it is an individual software module. The
ISOBUS functionalities in the application are implemented by the ISOBUSModule
that uses the resources provided by the protocol stack. To minimize the dependencies
to the protocol stack, the ISOAgLib is only accessed from within the ISOBUSMod-
ule. Also, there are abstractions inside the ISOBUSModule that hides the actual
protocol stack usage from the rest of the application. Figure 8.4 shows a concept
class diagram of the ISOAgLib integration to WRM application.

8. ISOBUS support in WRM system 52

ISOBUSFuntion

- m_references : integer
- m_library : IsoAgLibHandler
- m_libMutex : ExclusiveAccess
m_isoName : IsoName

+ init(): boolean

IsoAgLibHandler

+ run()
+ stop()

DeviceDiscoveryFunction

+ init(): boolean
+ getDevices(out devices: DeviceInfo [*]): boolean

ConcreteFunction

+ init(): boolean
+ doFunction(): boolean

ExclusiveAccess

+ aquire()
+ release()

IsoAgLib

DeviceInfo

SimpleThread

WRM Application

IsobusModule

1

1

Figure 8.4: Class diagram: integrating ISOAgLib to WRM application.

In the WRM system the data sources that are available via ISOBUS are grouped
to separate functions, such as device discovery. This way they can be easily inte-
grated to the existing data model. The class diagram shows an abstract base class
for these functions (ISOBUSFunction) as well as two example concrete functions
that are inherited from it (ConcreteFunction and DeviceDiscoveryFunction).

The base class encapsulates common initializations that are required for all the
functions that use the ISOAgLib. Such initialization is, for instance, registering the
functions ISOBUS NAME, and performing an address claim with it. The implemen-
tation makes it possible that the same physical WRM device claims multiple logical
bus addresses using different NAMEs if its required. By encapsulating the common
parts to an abstract class, it is easier to add new ISOBUS related functionalities in
future.

Another important responsibility handled by the ISOBUSFunction is the life cy-
cle management of the ISOAgLib protocol stack. As mentioned earlier, the protocol
stack should not be consuming resources when it is not used. This is why the
ISOBUSFunction maintains a class variable reference counter which is the class in-

8. ISOBUS support in WRM system 53

stances using the ISOAgLib. This way the IsoAgLib can be started and initialized
when the first ISOBUSFunction-based instance is created and shut down when the
last instance is destroyed. During the initialization a separate thread (IsoAgLib-
Handler) is started to feed the ISOAgLib’s internal scheduler. The implementation
also needs to be thread-safe so mutexes are used for mutual exclusion. All this
is implemented in the base class, so the individual ISOBUS functions (childs of
ISOBUSFunction) can assume that the protocol stack is up and running. The us-
age of the device discovery functionality is described in the figure 8.5.

b : IsoAgLibHandler

App :

a : DeviceDiscoveryFunction

IsoAgLib :

par

[]

Description

Created and started only

when 1st ISOBUSFunction

based instance is created

loop

[]

create

run

Scheduler tick

create

init

getDevices

Init and address claim

Read devices

Figure 8.5: Sequence diagram: using the device discovery.

As the sequence diagram shows, using the ISOBUS related functionalities from
the main application is very simple. This is achieved because all the protocol stack
related operations have been abstracted from the rest of the application. The appli-
cation can simply create a DeviceDiscoveryFunction instance, initialize it and start
using it through its interface. Internally, the creation launches the ISOAgLib proto-
col stack if it was not already running. When looking at the sequence diagram above,
it is worth remembering that the creation and start-up of the IsoAgLibHandler is
handled by the ISOBUSFunction base class from which the DeviceDiscoveryFunc-
tion is inherited.

8. ISOBUS support in WRM system 54

8.4 Testing

An important aspect in the software development is the testing. The diagram in
the figure 8.6 shows the arrangement that was used for both development and local
testing throughout the development.

Local test arrangement

John Deere
Greenstar 2600

Universal Terminal

Junkkari Maestro
seed drill ECU

CAN-USB WRM247

ISOBUS

Test PC

WRM Server

Ethernet

RS-232

WebUI/REST

Figure 8.6: Local test setup.

The local test arrangement consists of CAN bus, ISOBUS devices and the test
PC. In addition to the WRM247 remote device, John Deere Greenstar display as
well as Junkkari seed drill implement ECU were also connected to the bus. The
test PC was connected to the ISOBUS using a CAN-USB adapter which allowed
to monitor the CAN traffic. Test PC was also connected to the WRM247 device’s
debug port using RS-232 adapter. Both the test PC and the WRM remote device
were also connected to Internet using Ethernet which allowed them to communicate
with the WRM server.

During development the WRM software and the ISOAgLib protocol stack were
compiled using debug options which allowed to monitor their execution state using
the RS-232 debug port. Also, the actual CAN frames sent to the bus were mon-
itored and recorded using Wapice CANrunner software on the PC. The Junkkari
ECU and the John Deere display allowed to test the device discovery functionality
because their ISOBUS NAMEs were known beforehand. The Junkkari ECU is also
developed by Wapice which allowed it to be modified for testing purposes. The ECU
was modified so that know diagnostics trouble codes could be activated using the
ISOBUS user interface. This allowed to test and verify the DTC collection func-
tionality. The collected data was verified in the remote device using the debug port
and also remotely using the server REST interface.

8. ISOBUS support in WRM system 55

The ISOBUS file server functionality in the WRM device was tested by imple-
menting a file server client to the Junkkari ECU. This was a standalone test which
did not use the WRM server because the file server was not integrated to the main
WRM application.

The test PC was actually the same computer that was used for development which
allowed fast prototyping and also fast unit tests throughout the implementation.
During the Agromassi project, these functionalities were also tested in co-operation
with MTT/Vakola ISOBUS laboratory. The test arrangement used in these tests is
shown in the figure 8.7.

Local setup

Setup in MTT/Vakola ISOBUS laboratory

Tractor ECU
simulator

WRM247

ISOBUS

Test PC

WRM Server

Vector CAN
analyzer

Junkkari ECU

GPRS

SSH

Figure 8.7: Remote connection test setup.

The WRM247 device was installed in the ISOBUS system in the MTT’s labora-
tory. There were also a Junkkari implement ECU, a tractor ECU simulator and a
Vector CAN analyser connected to the system. The WRM247 device used GPRS
connection to communicate with the WRM server. The GPRS connection also al-
lowed to directly connect to the remote WRM device using SSH (secure Shell). The
tractor ECU simulator was configured to produce a known set of broadcast mes-
sages which were then collected using the WRM-device. The data collected was
then verified using the WRM-server REST interface.

8.5 Results

The ISOBUS functionalities developed in this thesis and during the Agromassi
project has been taken into use in the WRM system, and ISOBUS is now available as
one of the protocol options. The ISOBUS support in general was implemented using
a full ISOBUS protocol stack which in practice means that new ISOBUS features

8. ISOBUS support in WRM system 56

can be developed quickly in future. This provides a good starting point for instance
for customer customization. Furthermore, even though the file server functionality
was not finished, the current implementation can be finalized with relatively little
effort if it is needed in future.

Wapice also develops an ISOBUS implement ECU, and the general experience
and the new knowledge of the ISO 11783 standard series will also benefit the ECU
development. Furthermore, Wapice is participating in research projects which are
related to ISOBUS technology, in which both the knowledge and the now available
ISOBUS support of the WRM system can be utilized. For instance, CLAFIS EU
project is one of those projects.

To further develop the ISOBUS support in WRM system, new functionalities
could be added to the remote device’s software. For instance, the process data
logging interface would allow to monitor the actual implement variables which are
also controlled by a task controller. The file server implementation would allow to
provide files, firmware updates or tasks, for instance, to other devices on the bus.

57

9. CONCLUSIONS

The main objective of this thesis was to study the available telematics information
and interfaces in an ISOBUS system, and also the applications this information
enables. Furthermore, the architecture of the telematics system as well as imple-
mentation using the Wapice Remote Management system was also presented.

The main motivation for such telematics system is to provide a means to access
agricultural machines in their working environment. This remote access makes it
possible to implement value-adding services that can extend existing agricultural
products, such as implements, and open new business opportunities. The telematics
system could be used, for instance, for online fault diagnostics or performance mon-
itoring which provides additional value to customers either directly or indirectly.
Requirements for these application vary, and some will need real-time access to the
machines whereas others will need data collected over a longer period of time.

An important aspect about the telematics system and it’s implementation, which
was studied in this thesis, is the information available in an ISOBUS system. The
ISO 11783 standard, in which the ISOBUS protocol is based on, does not address
remote telematics so existing interfaces were studied to find suitable interfaces that
could be applied to telematics purposes. ISO 11783 provides methods for proprietary
communication, so in theory it is possible to transfer arbitrary telematics informa-
tion. However, when implementing a manufacturer independent generic telematics
system, the proprietary messaging should be avoided because it limits the system
usage to specific manufacturers.

There are, however, also many information sources that can be used in a stan-
dardized manner in an ISOBUS system. For instance, the tractor ECU broadcasts
information about the tractor’s state. The ISO 11783 also defines diagnostics func-
tionalities which makes it possible to get information about diagnostics trouble codes
and also query ECU information. Additionally, the standard also specifies methods
for process data logging and file server functionality. So in short, the ISO 11783 pro-
vides standard interfaces to gather both telematics and process data, and to allow
bi-directional communication with devices on bus and external systems.

To collect this data, a device that connects to the physical bus in the machine is
needed. This device also needs to be able to communicate in the bus so it’s software
needs to support ISOBUS. The telematics system also requires a server subsystem

9. Conclusions 58

that aggregates data from multiple devices and provides both software- and user
interfaces to access the system. The remote embedded devices use wireless networks
to communicate with the server system.

In the telematics system the ISOBUS is only really visible in the low-level data
collection devices that actually communicates in the machine bus. This means
that when implemented correctly, the rest of the system, such as server and server
interfaces, can be generic and thus easily re-used. This also means the ISOBUS
telematics functionalities can be added to existing systems. This is exactly what
was done in the WRM system during the Agromassi project. The ISOBUS support
was added to the low-level remote management devices, and for the rest of the
system the ISOBUS was yet another data source and they were used as is.

When the ISOBUS support was added to the WRM system, a pre-existing pro-
tocol stack was used. This design decision meant that once the protocol stack was
ported to the WRM embedded platform, all of it’s functionalities became available
for application developers. Furthermore, this means that adding new ISOBUS re-
lated functionalities is easier because the protocol stack is already available. To
further develop the WRM ISOBUS functionalities, for example, file server interfaces
or process data logging interface could be added to the application.

59

REFERENCES

[1] Jansson, K., Thoben, K.D., The Extended Products Paradigm, An Introduc-
tion. In: Arai, E., Kimura, F., Goossenaerts, J., Shirase, K. Knowledge and
Skill Chains in Engineering and Manufacturing. Vol. 168. Osaka, Japan 2002,
Springer US. pp. 39-47.

[2] Kaloxylos, A., Eigenmann, R., Teye, F., Politopoulou, Z., Wolfert, S., Shrank,
C., Dillinger, M., Lampropoulou, I., Antoniou, E., Pesonen, L., Nicole, H.,
Thomas, F., Alonistioti, N., Kormentzas, G., Farm management systems and
the Future Internet era. In: Computers and Electronics in Agriculture. Vol. 89.
Amsterdam, Netherlands 2012, Elsevier B.V. pp. 130-144.

[3] Robbemond, R., Kruize, J.W., Data standards used for data-exchange of FMIS
(44). 2012, Wageningen University. 75 p.

[4] CC-ISOBUS Website. [WWW]. Competence Center ISOBUS e.V.. [cited:
4.4.2014]. Available: http://www.cc-isobus.org/en/association

[5] ISOBUS Compatible systems. [WWW]. DLG e.V.. [cited: 4.4.2014]. Available:
http://www.dlg.org/isobus_en.html?&L=51

[6] Agrix project website. [WWW]. Aalto University. [cited: 3.4.2014]. Available:
http://autsys.aalto.fi/en/Agrix

[7] Farmix project website. [WWW]. Aalto University. [cited: 3.4.2014]. Available:
http://autsys.aalto.fi/en/Farmix

[8] Project Details - Assisting and adaptive agricultural machine - Agromassi.
[WWW]. Agrifood Research Finland MTT. [cited: 3.4.2014]. Available:
https://portal.mtt.fi/portal/page/portal/mtt_en/research/projectdatabase/
Projectdetail?p_kielikoodi=GB&p_hakutyypi=perus&p_hanke_seqno=
296041

[9] FutureFarm project website. [WWW]. FutureFarm Consortium. [cited:
4.4.2014]. Available: http://www.futurefarm.eu/about

[10] SmartAgriFood project website. [WWW]. SmartAgriFood Consortium. [cited:
4.4.2014]. Available: http://www.smartagrifood.eu

[11] CLAFIS project website. [WWW]. CLAFIS Consortium. [cited: 4.4.2014].
Available: http://www.clafis-project.eu/

REFERENCES 60

[12] Sørensen, C.G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S.M.,
Basso, B., Blackmore, S.B., Conceptual model of a future farm management
information system, In: Computers and Electronics in Agriculture. Vol. 72.
Amsterdam, Netherlands 2010, Elsevier B.V. pp. 37-47

[13] Lehmann, R. J., Reiche, R., Schiefer, G., Deliverable D100.1 - Review of the
Literature and Future Internet Research. 2011, SmartAgriFood Consortium.
212 p.

[14] Miettinen, M., Oksanen, T., Öhman, M., Visala, A., Implementation of ISO
11783 Compatible Task Controller. 2006, Helsinki University of Technology. 6
p.

[15] Isobus-lisavarustepaketti N-, T-, M- ja S-sarjan traktoreihin. [WWW]. Valtra
Oy Ab. [cited: 13.12.2013]. Available: http://www.valtra.fi/news/press/2005/
659.asp

[16] Think ISOBUS. [WWW]. AEF. [cited: 5.3.2014]. Available: http:
//www.aef-online.org/fileadmin/MEDIA/downloads/com-pack/AEF_
Broschure_EN.pdf

[17] Ohjainlaitteet. [WWW]. Junkkari Oy. [cited: 13.12.2013]. Available: http://
www.junkkari.fi/kylvokoneet/ohjainlaitteet

[18] J1939-based. [WWW]. CAN in Automation e.V.. [cited: 24.11.2013]. Available:
http://www.can-cia.org/index.php?id=19

[19] Controller Area Network (CAN). [WWW]. CiA. [cited: 18.9.2013]. Available:
http://can-cia.org/index.php?id=systemdesign-can

[20] Introduction to SAE J1939. [WWW]. Kvaser AB. [cited: 1.11.2013]. Available:
http://www.kvaser.com/en/about-can/higher-layer-protocols/36.html

[21] Junger, M., Introduction to J1939. 2010, Vector Informatik GmbH. 11 p.

[22] J1939-71 - Vehicle Application Layer. Warrendale, USA. 2003. SAE Interna-
tional. 379 p.

[23] What is ISOBUS?. [WWW]. AEF. [cited: 15.9.2013]. Available: http://www.
aef-online.org/en/aef-projects/isobus/what-is-isobus.html

[24] ISO 11783-1:2007. Tractors and machinery for agriculture and forestry - Serial
control and communications data network - Part 1: General standard for mobile
data communication. Geneva, Switzerland. 2007. ISO. 94 p.

REFERENCES 61

[25] Standards catalogue - ISO/TC 23/SC 19 - Agricultural electronics. [WWW].
ISO. [cited: 28.1.2014]. Available: http://www.iso.org/iso/home/store/
catalogue_tc/catalogue_tc_browse.htm?commid=47156&published=on

[26] Peterson, L.L., Davie, B.S., Computer Networks ISE : A Systems Approach.
Fourth Edition. 2007, Morgan Kaufmann. 848 p.

[27] ISO 11783-3:2007. Tractors and machinery for agriculture and forestry - Serial
control and communications data network - Part 3: Data link layer. Geneva,
Switzerland. 2007. ISO. 42 p.

[28] ISO 11783-7:2009. Tractors and machinery for agriculture and forestry - Se-
rial control and communications data network - Part 7: Implement messages
application layer. Geneva, Switzerland. 2009. ISO. 144 p.

[29] ISOBUS Data Dictionary. [WWW]. VDMA e.V. [cited: 13.12.2013]. Available:
http://dictionary.isobus.net/isobus/

[30] AEF ISOBUS Functionalities. [WWW]. AEF. [cited: 28.1.2014]. Avail-
able: http://www.aef-online.org/en/about-isobus/aef-functionalities/
aef-isobus-functionalities.html

[31] ISO 11783-13:2011. Tractors and machinery for agriculture and forestry - Se-
rial control and communications data network - Part 13: File Server. Geneva,
Switzerland. 2011. ISO. 54 p.

[32] ISO 11783-14:2013. Tractors and machinery for agriculture and forestry - Serial
control and communications data network - Part 14: Sequence control. Geneva,
Switzerland. 2013. ISO. 65 p.

[33] Spitzer, S., NMEA 2000 Past, Present and Future. 2009. St.Petersburg, Florida,
National Marine Electronics Association. 25 p.

[34] CANOpen. [WWW]. CiA. [cited: 5.3.2014]. Available: http://www.can-cia.
org/index.php?id=canopen

[35] Pfeiffer, O., Ayre, A., Keydel, C., Embedded Networking with CAN and
CANopen. 2003, RTC Books. 350 p.

[36] DeviceNET: Technical Overview. 2004. Michigan, USA, Open DeviceNET Ven-
dor Association (ODVA). 8 p.

[37] Lennartsson, K., Fredriksson, L-B. SDS, DeviceNet and CAN Kingdom.
[WWW]. Kvaser AB. [cited: 11.11.2013]. Available: http://www.kvaser.com/
zh/about-can/higher-layer-protocols/59.html

REFERENCES 62

[38] Fredriksson, L-B. A CAN Kingdom Rev.3.01. 1995. Kinnahult, Sweden. Kvaser
AB. 117 p.

[39] ISOBUS in Functionalities. [WWW]. AEF. [cited: 11.4.2014]. Available:
http://www.aef-online.org/fileadmin/MEDIA/downloads/blaetterkatalog/en/
index.html

[40] ISO 11783-12:2009. Tractors and machinery for agriculture and forestry - Se-
rial control and communications data network - Part 12: Diagnostics Services.
Geneva, Switzerland. 2009. ISO. 24 p.

[41] agroXML website. [WWW]. KTBL e.V. [cited: 5.3.2014]. Available: http://
www.agroxml.de/

[42] Wapice Ltd. website. [WWW]. Wapice Ltd. [cited: 26.2.2014]. Available: http:
//w3.wapice.com/

[43] WRM-system’s website. [WWW]. Wapice Ltd. [cited: 26.2.2014]. Available:
http://www.wrm.fi/en/

[44] WRM247+ datasheet. [WWW]. Wapice Ltd. [cited: 14.12.2013]. Available:
http://www.wrm.fi/images/WRM247_DataSheet_2013.pdf

[45] WRM Server REST API, 2014, Wapice Ltd., 30 p.

[46] ISOAgLib website. [WWW]. OSB AG. [cited: 5.3.2014]. Available: http://
www.isoaglib.com/en

[47] Junnila, S., Pajula R., Shroff, M., Siuruainen, S., Kwitek, M., Tuominen, P.
Design of High-Performance CAN Driver Architecture for Embedded Linux.
13th international CAN Conference Part 5, Hamback Castle, Germany, March,
2012. Germany, CAN in Automation, 2012. pp. 1-9

[48] ISOAgLib System Architecture. [WWW]. OSB AG. [cited: 11.3.2014]. Avail-
able: http://www.isoaglib.com/en/function/systemarchitecture

63

A. WRM DATA MODEL

Enterprise

Site

Asset

DataNode ProcessData

DigitalIn TemperatureDigitalOut ...

Description

For illustrative purposes
only some of the
inherited types are
shown.

0..1

1

0..1

1

1

0..1

1

0..1

1 0..1

Figure A.1: Data model in WRM system.

A. WRM data model 64

CompanyA : Enterprise

FactoryA :
Site

FactoryB :
Site

MachineA :
Asset

DeviceTemp :
Temperature

MachineGroup :
Asset

Machine1 :
Asset

Machine2 :
Asset

RelayCtrl :
DigitalOut

SwitchState :
DigitalIn

PowerState :
DigitalIn

Figure A.2: Example enterprise object diagram.

65

B. ISOAGLIB HAL CLASS DIAGRAM

LowLevelCAN

LowLevelCanListener

HAL

IsoAgLibCANhandler

WRM_CAN WRM_SYSTEM

IsoAgLib

HAL_CAN HAL_SYSTEM

SystemWCC-driver

Figure B.1: Overview of ISOAgLib HAL implementation in WRM.

