
ANSSE SAARIMÄKI
SINGLE IMAGE SUPER-RESOLUTION USING CONVOLUTIONAL
NEURAL NETWORKS
Master’s thesis

Examiner: Professor Karen
Eguiazarian (Egiazarian)

The examiner and topic of the thesis
were approved on 31 October 2018

i

ABSTRACT

ANSSE SAARIMÄKI: Single Image Super-Resolution Using Convolutional Neural
Networks
Tampere University of Technology
Master of Science Thesis, 57 pages, 3 Appendix pages
December 2018
Master’s Degree Programme in Information Technology
Major: Audio-Visual Signal Processing
Examiner: Professor Karen Eguiazarian (Egiazarian)

Keywords: Single image super-resolution, convolutional neural networks, image
enhancement

Enlargement of images is a common need in many applications. Although increasing the
pixel count of an image is easy with simple interpolation methods, those fail to increase
the amount of details in the image. Single image super-resolution (SISR) aims to solve this
ill-posed problem of producing a high resolution (HR) image from a given low resolution
(LR) image. A single LR image has always an infinite number of corresponding LR images,
but some of those are more probable than others. This probability density can be estimated
with machine learning techniques, and the most probable HR image can be constructed
based on that estimate.

In recent years artificial neural networks have become the most popular machine learning
methods. Convolutional neural networks (CNN) are a subtype of them, inspired by the
human visual system. They are used extensively in all fields of image processing, including
single image super-resolution. In this thesis different CNN based methods for SISR
are compared, and their performance is analyzed using both quantitative and qualitative
methods. In total four CNN methods were chosen, and they were compared to three other
methods. One of the reference methods was based on more traditional machine learning,
and the two others were based on self-similarity of the input images. In contrast to machine
learning approach, self-similarity based methods utilize only information in the input image
and do not require any training on external images.

The results show that CNN based methods outperform the alternative approaches in both
quantitative metrics and qualitative analysis. The methods perform especially well with
images that have clear structures and sharp edges, but highly textured images tend to be
problematic. Six of the methods aim to minimize pixel-wise reconstruction error, which
leads to overly smooth output on textured areas. One method was instead designed to
maximize the perceptual quality of the images, at the cost of increased reconstruction
error. It was able to generate very realistic textures in some cases, but had a tendency
to hallucinate very implausible textures into flat areas. Also other CNN based methods
tended to create erroneous but plausible details, which might be misleading in critical
applications like medical imaging. CNN based SISR is more suitable for entertainment
and other consumer applications, especially when the perceptually optimized methods are
developed further.

ii

TIIVISTELMÄ

ANSSE SAARIMÄKI: Yhden kuvan superresoluutio konvoluutioneuroverkkoja käyt-
täen
Tampereen teknillinen yliopisto
Diplomityö, 57 sivua, 3 liitesivua
Joulukuu 2018
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Audio-Visual Signal Processing
Tarkastaja: professori Karen Eguiazarian (Egiazarian)

Avainsanat: Yhden kuvan superresoluutio, konvoluutioneuroverkot, kuvanparannus

Digitaalisten kuvien suurentaminen on tarpeellista monissa sovellutuksissa, ja se on helppoa
suorittaa yksinkertaisilla interpolaatimenetelmillä. Ne eivät kuitenkaan kykene lisäämään
kuvan yksityiskohtia, ja varsinainen resoluutio jää samaksi kasvaneesta pikselimäärästä
huolimatta. Korkeamman resoluution kuvan tuottaminen yhdestä matalan resoluution
kuvasta on inversio-ongelma, jonka yhden kuvan super-resoluutio pyrkii ratkaisemaan.
Yhdellä matalan resoluution kuvalla on aina ääretön määrä korkean resoluution vastineita,
mutta osa niistä on aina todennäköisempiä kuin toiset. Tätä todennäköisyysjakaumaa voi
estimoida koneoppimismenetelmien avulla, ja todennäköisin korkean resoluution kuva
voidaan muodostaa tämän estimaatin pohjalta.

Viime vuosina keinotekoiset neuroverkot ovat muodostuneet suosituimmaksi lähestymista-
vaksi koneoppimiseen. Konvoluutioneuroverkot kuuluvat tähän ryhmän, ja ne ovat saaneet
inspiraationsa ihmisen näköhermostosta. Niiden käyttö on erittäin yleistä kaikilla kuvan-
käsittelyn aloilla, mukaan lukien yhden kuvan superresoluutiossa. Tässä diplomityössä
vertaillaan erilaisia konvoluutioverkkoihin perustuvia superresoluutiomenetelmiä, ja niiden
suorituskykyä analysoidaan sekä kvantitatiivisesti että kvalitatiivisesti. Neljää valittua
konvoluutioverkkopohjaista menetelmää verrataan kolmeen muuhun, joista yksi perus-
tuu perinteisempään koneoppimiseen. Kaksi muuta menetelmää hyödyntävät tyypillisissä
kuvissa toistuvia samankaltaisia elementtejä, eivätkä ne tarvitse opettamista ulkoisella
kuvadatalla kuten koneoppimismenetelmät.

Tulokset osoittavat, että konvoluutioverkkopohjaiset menetelmät suoriutuvat vaihtoehtoisia
menetelmiä paremmin sekä kvantitaviisessa että kvalitatiivisessa analyysissa. Menetelmät
suoriutuvat erityisen hyvin kuvista joissa on selkeitä rakenteita ja teräviä rajoja, mutta voi-
maakkaasti teksturoidut kuvat tuottavat ongelmia. Menetelmistä kaikki paitsi yksi pyrkivät
minimoimaan pikselikohtaisesti lasketun rekonstruointivirheen, joka johtaa liian tasai-
siin pintoihin tekstuuripitoisilla alueilla. Yksi menetelmistä pyrkii maksimoimaan kuvien
havainnoidun laadun rekonstruointivirheen kustannuksella, ja se kykeneekin tuottamaan
realistisen näköisiä tekstuureja sen ansiosta. Useimmissa tapauksissa sillä oli kuitenkin
taipumuksena tuottaa tekstuureja alueille joissa niitä ei kuuluisi olla, ja lopputulos oli
erittäin epäuskottava. Myös muilla konvoluutioverkkoja käyttävillä menetelmillä oli tai-
pumusta generoida virheellisiä, mutta uskottavan näköisiä yksityiskohtia. Tämä rajoittaa
niiden soveltuvuutta kriittisiin käyttökohteisiin, kuten lääketieteelliseen kuvantamiseen.
Konvoluutioverkkopohjainen yhden kuvan superresoluutio soveltuukin paremmin viih-
desovelluksiin ja muuhun kuluttajakäyttöön, erityisesti mikäli havainnoidulle laadulle
optimoidut menetelmät kehittyvät pidemmälle.

iii

PREFACE

This thesis was started while I was working as a research assistant in the Computational
Imaging Group of the Signal Processing Laboratory at Tampere University of Technology.
Most of the background research for this thesis was done during that employment, but the
thesis is otherwise independent from the project I was working on.

First of all I want to thank my supervisor and examiner, professor Karen Eguiazarian, for
his guidance during all phases of this project, and for the opportunity work in his research
group. Also I want thank my former colleague Cristóvão Cruz, who helped me numerous
times, and created the MATLAB testbench used for testing the methods in this thesis.

Last but not least, I want to thank my wife Nyyti, for her support and patience during this
prolonged project.

In Tampere, Finland, on 20 November 2018

Ansse Saarimäki

iv

CONTENTS

1. INTRODUCTION ... 1

2. THEORETICAL BACKGROUND.. 3
2.1 Sampling and interpolation... 3
2.2 Image quality metrics.. 11
2.3 Machine learning basics.. 13

2.3.1 Types of ML tasks... 14
2.3.2 Supervised and unsupervised learning ... 15
2.3.3 Datasets and model performance.. 16

2.4 Feedforward neural networks.. 17
2.4.1 Activation layers ... 18
2.4.2 Loss functions... 19
2.4.3 Optimization ... 20
2.4.4 Convolutional layers ... 23

3. SUPER-RESOLUTION... 27
3.1 Multi-image super-resolution.. 28
3.2 Single image super-resolution... 29
3.3 Self-similarity based SISR.. 29
3.4 Traditional Machine Learning Methods for SISR....................................... 30
3.5 Convolutional Neural Networks based SISR .. 31

3.5.1 HR Networks for SISR ... 32
3.5.2 LR Networks for SISR.. 34
3.5.3 Networks Optimized for Perceptual Quality................................. 37

4. TESTING METHODOLOGY... 38

5. RESULTS .. 40

6. CONCLUSIONS.. 49

REFERENCES .. 52

APPENDIX A: FULL SIZE OUTPUT IMAGES ... 58

v

LIST OF FIGURES

Figure 2.1. Illustration of a continuous signal and its sampling process. 4
Figure 2.2. Impulse responses of NN, linear, cubic and sinc interpolation filters. ... 7
Figure 2.3. Amplitude responses of NN, linear, cubic and sinc interpolation filters. 8
Figure 2.4. Example images produced by upsampling with different interpolation

methods... 10
Figure 2.5. A simple multilayer perceptron. ... 18
Figure 2.6. One-dimensional convolution with and without input padding. 24
Figure 2.7. Examples of one-dimensional strided convolution and deconvolution. . 24
Figure 2.8. Two-dimensional deconvolution with stride 1

2 [51]................................ 25
Figure 2.9. Two-dimensional sub-pixel convolution with scaling factor of 2 [51]. .. 26

Figure 3.1. The network structure of SRCNN [6]. .. 33
Figure 3.2. The network structure of VDSR [30]. ... 33
Figure 3.3. The network structure of ESPCN for scale factor of r [50]. 34
Figure 3.4. The network structure of SRResNet [35]. ... 35
Figure 3.5. The network structures of EDSR and MDSR [30].................................. 35
Figure 3.6. The network structure of D-DBPN [21]. .. 36
Figure 3.7. The network structure of ProSR [61]. .. 36

Figure 5.1. Patches extracted from image 66 from Urban100 dataset super-
resolved with scaling factor of 4... 43

Figure 5.2. Patches extracted from image 92 from Urban100 dataset super-
resolved with scaling factor of 4... 44

Figure 5.3. Patches extracted from image 858 from DIV2K validation dataset
super-resolved with scaling factor of 4... 45

Figure 5.4. Image 238 from TAMPERE17 dataset super-resolved with scaling
factor of 4. .. 46

Figure 5.5. Image 256 from TAMPERE17 dataset super-resolved with scaling
factor of 4. .. 47

Figure A.1. Image 66 from Urban100 dataset super-resolved with scaling factor
of 4.. 58

Figure A.2. Image 92 from Urban100 dataset super-resolved with scaling factor
of 4.. 59

Figure A.3. Image 858 from DIV2K dataset super-resolved with scaling factor of 4. 60

vi

LIST OF TABLES

Table 4.1. Summary of the compared SR methods. ... 38

Table 5.1. Average PSNR and SSIM scores for scaling factor of 2. 40
Table 5.2. Average PSNR and SSIM scores for scaling factor of 3. 41
Table 5.3. Average PSNR and SSIM scores for scaling factor of 4. 41
Table 5.4. Average processing time of a single image for each method, dataset

and scaling factor. .. 42

vii

LIST OF ABBREVIATIONS

CPU central processing unit
GPU graphics processing unit
HR high resolution
LR low resolution
MISR multi-image super-resolution
ML machine learning
MSE mean square error
NN nearest neighbor
PSNR peak-signal-to-noise ratio
SGD stochastic gradient descent
SISR single image super-resolution
SR super-resolution
SSIM structural similarity index measure

1

1. INTRODUCTION

Digital images have become ubiquitous in our everyday lives, ranging from consumer
applications like computer generated graphics on a website and holiday photos taken
with a cellphone camera, to critical professional applications like medical imaging and
surveillance camera footage. As images have become more common, their quality has
increased. There are multiple aspects of image quality, but one of the most important ones
is the resolution of an image. Resolution has multiple definitions in the context of imaging,
and even more outside it, but we will be discussing only spatial resolution of the images. It
can be defined as the number discrete points in an image that can be distinguished from
each other [48, p. 18].

The resolution of digital images is usually expressed as number of pixels in the image,
although it might not correspond with the actual resolution as defined above. Number of
pixels sets the upper limit for resolution, but it might be lower depending on the image
formation process. This is a common issue with typical digital cameras, where the number
of pixels is dictated by the sensor, but resolution is lower due to demosaicking, low quality
optics, focusing issues, denoising etc.

Similar problem occurs when we want to increase the size of a digital image, for example
to view it on a higher resolution display. Number of pixels in the image must correspond to
the display resolution and the desired image size. It can be achieved by interpolating the
image, but the actual resolution is not increased while the number pixels increases. This
leads to blurry looking images, as the amount of details in the image does not increase.
This limit is present in all digital imaging systems, and it cannot be surpassed by any
interpolation method.

Super-resolution (SR) tries to overcome this limit and produce a higher resolution image,
which actually contains details not visible in the source image. There are two distinct ways to
achieve this. The first, and more traditional one is the multi-image super-resolution (MISR)
approach, which produces a high resolution (HR) image from multiple low resolution
(LR) images depicting the same scene. Each of the input images should contain unique
information for MISR to work, meaning that the images should have sub-pixel level
displacements between them. This way the pixels are sampled from unique locations, and
the effective total resolution is higher than the resolution of any single input image.

MISR has a very limited applicability, as often only a single LR image is available. This
has lead to development of single image super-resolution (SISR) methods. There is always
an infinite number of unique HR images that could correspond to a single LR image, and
SISR methods can only make an assumption of what the HR image could look like. MISR

1. Introduction 2

methods on the contrary can extract actual HR details hidden in the LR images.

SISR can be performed by utilizing a large image database with both LR images and their
corresponding HR images. Machine learning techniques can be then used to learn the most
probable, input content dependable mapping from LR to HR image [54, 6, 30, 36]. Another
way is to utilize the self-similarity of the input image [9, 13, 26, 4]. Especially natural
images tend to have elements that repeat throughout the image, possibly with different
scale, rotation, and other types of affine transformations. When processing the image
patch-by-patch, the similar patches can be treated like individual images and processed
with MISR methods.

Convolutional neural networks (CNN) are the most popular machine learning approach
used in state-of-the-art SISR research [53, 56]. They are a specific subtype of artificial
neural networks, that are machine learning methods originally inspired by the workings of
biological brains [19, p. 13]. CNNs are a relatively old concept [34], but their popularity
surged to its current state only after 2012, when Krizhevsky et al. [33] published their
AlexNet image classification network. It outperformed all of the previous methods by a
clear margin, and changed the field of machine learning research completely [19, p. 24].

CNNs were first applied to SISR in 2014 by Dong et al. [6], and since it has become the
most prominent approach in state-of-the-art SISR research [3, 53, 56]. In this thesis we
will give an overview of CNN based super-resolution in a form of a literature review, and
discuss both the state-of-the-art methods and their historical background. Additionally,
a comparison of selected methods is performed, with both quantitative and qualitative
analysis of their performance. A total of seven methods were chosen to represent distinct
SISR approaches, with four of them being based on CNNs, two on self-similarity, and one
on classical machine learning. The results show that CNN based methods have unparalleled
performance in terms of image quality, and SISR research has made huge leaps through the
usage of CNNs.

For understanding the CNN based SISR methods, their theoretical foundations are discussed
in Chapter 2. To explain the problem SR is trying to solve, general theory on digital
sampling and interpolation is outlined first. After that we discuss the image quality metrics
used for quantitative comparison of the SISR methods. Last part of that chapter will explain
the theory behind CNNs, starting with basics of machine learning and ending with CNN
specific details.

Chapter 3 discusses the different SR methods, including MISR, self-similarity SISR, and
machine learning based SISR. The main focus will be on CNN based methods, and they
are explained in more depth than alternative approaches. The seven chosen methods are
also analyzed in that chapter. Chapter 4 describes the testing setup used in the comparison,
and the results are shown and analyzed in Chapter 5. Findings are summarized in Chapter
6, which also discusses the potential applications and topics for further research.

3

2. THEORETICAL BACKGROUND

As a basis for the super-resolution problem in general, a brief analysis of sampling and
interpolation theory is given in Section 2.1. Section 2.2 will give an overview of image
quality metrics used for performance comparison of SR algorithms in this thesis. Section
2.3 explains the main concepts of general machine learning and serves as a primer for
the next section. Section 2.4 explains the class of artificial neural networks known as
feed-forward networks, of which convolutional networks are a part of. That section will
also explain the basics of convolutional networks, but the next chapter demonstrates how to
apply them to super-resolution.

2.1 Sampling and interpolation

To really understand the problem super-resolution is trying to solve, one has to understand
the limitations imposed by the discrete sampling process and why pure interpolation
cannot overcome them. Digital imaging is essentially about sampling a two-dimensional
continuous signal, e.g. the scene "seen" by the optics of a camera. The same principles
apply to two-dimensional sampling as to the one-dimensional cases like digital audio.
Naturally the human visual system works very differently in comparison to the auditory
system, and thus many of the methods applied for audio processing are not usable in
imaging context even when they work theoretically. Basics are nevertheless the same, and
thus we will be mostly discussing the one-dimensional case in this section.

Let us consider a continuous band-limited real-valued function f (t),t ∈ R. A uniformly
sampled version of it is

f̃ (t) = f (t)s∆T (t) =
∞∑

n=−∞

f (t)δ(t −n∆T),n ∈ N, (2.1)

where ∆T is the sampling interval, δ(x) is the unit discrete impulse

δ(x) =

{
1 x = 0
0 x , 0

, (2.2)

and

s∆T (t) =
∞∑

n=−∞

δ(t −n∆T) (2.3)

is the sampling function equal to a train of unit impulses with ∆T intervals. An example
of function f (t), its sampled version f̃ (t), and the sampling function s∆T (t) are illustrated

2. Theoretical background 4

(a) A continuous band-limited signal f (t).

(b) The sampling function s∆T (t).

(c) The sampled signal f̃ (t). The dashed line is included as a reference only and it is not part of the signal.

(d) The discrete sample sequence fk .

Figure 2.1. Illustration of a continuous signal and its sampling process.

in Figure 2.1. We can also denote the sampled function as a sequence of discrete values
fk = f (tk),k ∈ N, in which tk = k∆T is the sample location. [18, p. 212]

The Fourier transform of function f (t) is

F{ f (t)} = F(ω) =
∫ ∞

−∞

f (t)e− j2πωt dt, (2.4)

where ω is the frequency. Since the function f (t) is band-limited, there exists a frequency
ωmax, for which F(ωmax) , 0 and F(ω) = 0,∀ω > ωmax. This the highest frequency

2. Theoretical background 5

component of the function f (t). The Fourier transform of the sampling function s∆T (t) is

F{s∆T (t)} = S∆T (ω) =
1
∆T

∞∑
n=−∞

δ
(
ω−

n
∆T

)
, (2.5)

which is also an impulse train, but with an interval of 1
∆T . The Fourier transform of the

sampled function f̃ (t) is thus F̃(ω) =F{ f̃ (t)} =F{ f (t)s∆T (t)}. As a Fourier transform of
a product of two functions is the convolution of Fourier transforms of those functions, the
sampled function in Fourier-domain is

F̃(ω) =F{ f (t)s∆T (t)}

= F(ω) ∗ S∆T (ω)

=
1
∆T

∞∑
n=−∞

F
(
ω−

n
∆T

)
,

(2.6)

where the ∗ is the convolution operation. [18, p. 212–213]

The Nyquist-Shannon sampling theorem states that f (t) can be perfectly reconstructed
from f̃ (t) when the sampling rate 1

∆T is greater than twice the highest frequency component
ωmax of the function f (t). The frequency limit of 1

2∆T is called the Nyquist rate (or the
Nyquist frequency), and it is the highest frequency that can be recovered from the sampled
signal. The case of ωmax <

1
2∆T is called oversampling, ωmax =

1
2∆T is critical sampling and

ωmax >
1

2∆T is undersampling. In the case of oversampling, the original function f (t) can
be perfectly recovered from the sampled version f̃ (t) by filtering out all the frequencies
greater than ωmax with ideal low-pass filter. In the case of undersampling, the frequencies
of F(ω) higher than 1

2∆T will be overlapping with the frequencies below. This effect is
called aliasing, and it prevents a perfect reconstruction and causes noticeable artifacts in
the sampled signal. [18, p. 214–215]

The perfect reconstruction using an ideal low-pass filter can be expressed mathematically
in the Frequency domain as

F(ω) = H(ω)F̃(ω), (2.7)

where

H(ω) =

{
∆T −ωc ≤ ω ≤ ωc

0 otherwise
(2.8)

is the filter’s frequency response and ωc =
1

2∆T > ωmax is the filter’s cutoff frequency. The
original signal f (t) can then be acquired from F(ω) using inverse Fourier transform:

f (t) =F−1{F(ω)} =
∫ ∞

−∞

F(ω)e j2πωt dω (2.9)

This filtering can also presented in spatial domain using convolution as

f (t) = h(t) ∗ f̃ (t), (2.10)

2. Theoretical background 6

where

h(t) =F−1{H(ω)} = 2ωc∆Tsinc(2ωc∆Tt) = sinc(t) =
sin(πt)
πt

(2.11)

is the filter’s impulse response. This ideal filter will attenuate all of the frequencies over
ωc, leaving only the original signal f (t). [18, p. 215–216, 220]

In practice this perfect sampling can never be achieved. First problem arises with the notion
of a continuous band-limited signal, as no signal of finite length can be truly band-limited
[18, p. 218]. All practical images are finite in length, thus there will always be some
aliasing introduced in the sampling process. The aliasing cannot be completely removed,
although it can be attenuated greatly with proper pre-filtering. Second problem is the
ideal low-pass filter required for the perfect reconstruction, as its impulse response, the
sinc-function, has infinite length.

Although the perfect reconstruction of f (t) is practically impossible, an adequate approx-
imation f̂ (t) ∼ f (t) could be achieved through convolution f̂ (t) = ĥ(t) ∗ f̃ (t) with some
other interpolation filter ĥ(t). For ĥ(t) to be an interpolation filter, it has to satisfy the
following requirements:

ĥ(t) =

{
1 t = 0
0 t = n∆T, |n| = 1,2, ...

(2.12)

This guarantees that the function values at sample locations will remain unchanged, thus
f̂ (n∆T) = f̃ (n∆T) = f (n∆T),∀n ∈ N. For simplicity we will assume from now on that the
sampling interval ∆T = 1, so that that the samples are always located at tk = k,k ∈ N. In
the context of this thesis the actual sampling interval is irrelevant and it is also unknown
for all the images used. Thus the interpolation can be represented in discrete terms as

f̂ (t) =
∞∑

k=−∞

fk ĥ(t − k), (2.13)

where fk = f (k) is the sequence of sampled values. [29]

The simplest possible way to interpolate is to use the so-called nearest neighbor (NN)
method, which chooses the value of the nearest sample as the interpolated value [18, p.
65]. In terms of filter impulse response, the method is defined as

hnn(t) =

{
1 −0.5 < t ≤ 0.5
0 otherwise.

(2.14)

Although it is mathematically very simple and computationally efficient, NN often produces
visually unpleasing results. Images upsampled with NN interpolation typically contain
blocky artifacts, which can be seen in Figure 2.4(a). Although those artifacts are intuitively
explained with the filter’s impulse response, their source is also easily visible in the filter’s
frequency response

Hnn(ω) =F{hnn(t)} = sinc(ω) =
sin(πω)
πω

. (2.15)

2. Theoretical background 7

The amplitude response |Hnn(ω)| is illustrated in Figure 2.3, which clearly shows the poor
performance when compared to the ideal reconstruction filter |Hsinc(ω)|. Frequencies
above the Nyquist-rate are attenuated inadequately and the resulting reconstruction is far
from ideal.

-3 -2 -1 0 1 2 3

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.2. Impulse responses of NN, linear, cubic and sinc interpolation filters.

A simple improvement over NN interpolation is to use the two nearest neighbors, and
linearly interpolate between them [18, p. 65]. In two-dimensional cases the method is
commonly called bilinear interpolation, and four nearest neighbors are used. The impulse
response of the one-dimensional filter is defined as

hlin(t) =

{
1− |t | |t | < 1
0 otherwise,

(2.16)

and its frequency response is

Hlin(ω) =F{hlin(t)} = sinc2(t) =
sin2(πω)

π2ω2 . (2.17)

With this filter the resulting image is notably smoother, but there is still visible jaggedness
around the sharpest edges, as can be seen in Figure 2.4(b). Also the amplitude response
(Fig. 2.3) has still room for improvement.

A commonly used compromise between computational complexity and output image
quality is the cubic convolution interpolation introduced by Keys in 1981 [29]. We are

2. Theoretical background 8

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 2.3. Amplitude responses of NN, linear, cubic and sinc interpolation filters.

referring its two-dimensional case as bicubic interpolation, although usage of that word is
ambiguous in other literature. The one-dimensional cubic method interpolates based on
the four nearest samples using a kernel defined as

hcub(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a+2)|t |3−(a+3)|t |2+1 0 < |t | ≤ 1
a|t |3−5a|t |2+8a|t | −4a 1 < |t | ≤ 2
0 otherwise,

(2.18)

where a is an constant affecting the properties of the kernel. Keys proved that by setting the
parameter as a = −1

2 , the interpolated signal f̂ (t) will converge fastest towards the original
signal f (t), when the sampling interval approaches zero [29]. Using this value the kernel
reduces to

hcub(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3
2 |t |

3− 5
2 |t |

2+1 0 < |t | ≤ 1
−1

2 |t |
3+ 5

2 |t |
2−4|t |+2 1 < |t | ≤ 2

0 otherwise.

(2.19)

and its frequency response becomes

Hcub(ω) =F{hcub(t)} =
sin3(πω)(−2πωcos(πω)+3sin(πω))

π4ω4 . (2.20)

2. Theoretical background 9

This form is used e.g. in MATLAB’s imresize function [39], which is the reference
resampling method in this thesis. Other values of a are also possible, and e.g. OpenCV
uses a = −3

4 instead [42]. Impulse and amplitude responses for both values of a are
demonstrated in Figures 2.2 and 2.3 respectively. For both options the impulse response is
a quite close approximation of the sinc filter for |t | < 1, and they include a negative lobe in
1 < |t | < 2 like the sinc filter. The amplitude shows a lot higher attenuation for the stop-band
frequencies than the previous two methods and the attenuation is less pronounced for the
higher pass-band frequencies.

Resulting images with bicubic upsampling are presented in Figures 2.4(c) and 2.4(d) with
a = −1

2 and a = −3
4 respectively. The results for both are very similar, with sharper edges

and less jaggedness in comparison to bilinear upsampling. Due to the negative lobes of the
filter kernels, there is a notable ringing visible in high contrast edges such as in the back of
the man. It is more pronounced in the image produced with a = −3

4 . Although this ringing
is mostly an unwanted effect it does increase the perceived sharpness and thus helps in
some cases.

An approximation of the ideal reconstruction with a sinc filter has been included for
comparison in Figure 2.4(e). As was said earlier, the truly ideal reconstruction cannot be
achieved with finite length signal, which has been circumvented in this example by padding
the input image with infinite zeros. Effectively this truncates the filter kernel to the size
of the input image and makes the computation tractable. This zero-padding will lead to
large amounts of ringing around the image borders and makes the image unusable, but it
does highlight the fundamental problem of this ideal reconstruction method. Every sharp
brightness transition in the input image will lead to similar ringing artifacts, which will
be repeated around the edges until attenuated below the quantization noise level. Thus
the ideal reconstruction would be a poor choice for image interpolation, even if it were
attainable in practice.

The upsampled images in Figures 2.4(a)–2.4(e) have all been produced by first downsampling
the original image (Fig. 2.4(f)) by a factor of 4 and then upsampled using the corresponding
interpolation methods and scaling factor of 4. The downsampling method is using the
bicubic filter and it is described in more detail below. This is the scheme that will be utilized
in this thesis also for comparing the super-resolution methods. Included in the figures are
PSNR (peak-signal-to-noise ratio) scores for the upsampled images, for which higher value
means higher similarity with the ground truth image (the original high resolution image).
The PSNR score and other image quality metrics will be discussed in the Section 2.2.

To resize the images in general, we can just utilize the equation 2.13 and set the new
sample locations as t = n∆T

s , where s is the image scaling factor. This works well for
upsampling(s > 1), but with downsampling (s < 1) there is a huge risk of aliasing. This
can be alleviated by using an anti-aliasing (AA) filter, which attenuates the frequencies
above the new Nyquist-rate from the interpolated image. AA-filter is essentially a low-pass
filter just like the interpolation filter, but with a lower cut-off frequency. Thus we can

2. Theoretical background 10

(a) Nearest neighbour (PSNR: 21.65 dB) (b) Bilinear (PSNR: 22.25 dB)

(c) Bicubic, a = − 1
2 (PSNR: 22.68 dB) (d) Bicubic, a = − 3

4 (PSNR: 22.78 dB)

(e) Sinc (PSNR: 22.08 dB) (f) Ground truth

Figure 2.4. Example images produced by upsampling with different interpolation methods.
The ground truth image (f) has been first downsampled with scaling factor of 1/4 to

produce a low resolution input. Images a–e have been upsampled from that LR image with
factor of 4 using the corresponding interpolation method.

2. Theoretical background 11

achieve the goal with a single filter, by lowering the cut-off frequency of the interpolation
filter. The cut-off frequency is inversely proportional to the width of the filter kernel [60,
p. 374]. Thus with an image scaling factor of s < 1 and an interpolation filter ĥ(t), the
desired anti-aliasing filter haa(t) will become

haa(t) = sĥ(st). (2.21)

The resulting interpolation kernel will have a support 1
s wider than the original un-dilated

kernel. This way of producing a downsampling kernel is appropriate for all interpolation
methods other than the nearest-neighbour, which should select the single nearest neighbour
also for all the pixels of a downsampled image. This scheme is used also in MATLAB
[38], and it will also be used when producing the low-resolution input images for testing
the SR methods.

2.2 Image quality metrics

Image enhancement methods like super-resolution are typically used to produce images
for humans to view, and thus maximizing the perceived quality of the output images is
important. The only way to get a reliable estimate of the perceived quality, is to test with a
large group of people, and a large dataset of different images. The images should have
different types and levels of degradations, and they should be processed with multiple
competing methods. The relative performance of the methods would then be compared
using the mean opinion score (MOS) collected from those images [45]. This is obviously a
very laborious task, and practically impossible to conceive during the development phase
of a method. Thus there is a need for some quantitative image quality metric that can be
easily calculated for any image. Numerous image quality metrics have been developed for
this task, and they can be coarsely divided into two subgroups: signal fidelity metrics and
perceptual visual quality metrics [37].

Signal fidelity metrics are the traditional methods like mean absolute error, mean square
error (MSE), signal-to-noise ratio (SNR), peak-signal-to-noise ratio (PSNR), and their
close relatives [37]. These are simple to calculate and well justified by the underlying
physics, but they are not designed specifically for measuring image quality. They are widely
known to correlate poorly with the perceived quality, but they are nevertheless universally
used in different image processing tasks [12, 37, 45].

PSNR is the de-facto metric used in modern super-resolution research [6, 11, 26, 30, 35,
36, 41, 53, 55, 56], thus it chosen also for this thesis. PSNR is based on MSE, which is
defined as

MSE(G,D) =
1

nm

n−1∑
i=0

m−1∑
j=0

(
Gi,j −Di,j

)2
, (2.22)

2. Theoretical background 12

where G is the reference (i.e. ground truth) image and D is the degraded image [24]. Both
are grayscale images represented by matrices of size n×m. PSNR itself is defined as

PSNR(G,D) = 10log10

(
Max2

G

MSE(G,D)

)
, (2.23)

where MaxG is the highest possible brightness value for G (and D) [1]. For 8 bit grayscale
images the value is MaxG = 255.

PSNR is considered to be a poor estimator of perceived image quality, which motivates
the use of perceptual visual quality metrics. Structural similarity index measure (SSIM)
by Wang et al.[62] is one such metric and a very common choice to accompany PSNR in
super-resolution research [11, 26, 30, 35, 36, 41, 53, 56]. SSIM is calculated locally for
each pixel of the images G, and D with the equation

SSIM(g,d) = l(g,d)c(g,d)s(g,d), (2.24)

where vectors g = {gi |i = 0,1, · · · ,k −1} and d = {di |i = 0,1, · · · ,k −1} represent the k-pixel
local neighborhoods of corresponding pixels from images G and D. The term l(g,d)
corresponds to luminance, c(g,d) to contrast and s(g,d) to structural similarity of the pixel
neighborhoods, and they are defined as

l(g,d) =
2µgµd + c1

µ2
g + µ

2
d + c1

(2.25)

c(g,d) =
2σgσd + c2

σ2
g +σ

2
d + c2

(2.26)

s(g,d) =
σgd + c3

σgσd + c3
. (2.27)

The local statistics µg, µd , σg, σd and σgd are estimated from 11×11 pixel neighborhood
weighted with a circular-symmetric Gaussian window w = {wi |i = 0,1, · · · ,k −1}, which
has standard deviation of 1.5 samples and has been normalized to unit sum. The estimated
statistic are then defined as

µg =

k−1∑
i=0

wigi (2.28)

σg =

(
k−1∑
i=0

wi(gi − µg)
2

) 1
2

(2.29)

σgd =

k−1∑
i=0

wi(gi − µg)(di − µd). (2.30)

Constants c1, c2 and c3 are included to avoid null denominators and to stabilize the metric.
The authors chose to use values c1 = (0.01MaxG)

2, c2 = (0.03MaxG)
2 and c3 =

c2
2 , which

are also used in this thesis.

2. Theoretical background 13

The equation 2.24 defines the SSIM score locally for a specific part of an image, but we are
interested in the quality of the whole image. For evaluation of full images we use the mean
SSIM

MSSIM(G,D) =
1

nm

n−1∑
i=0

m−1∑
j=0

SSIM(gi,j,di,j), (2.31)

where vectors gi,j and di,j are the neighborhoods of pixels Gi,j and Di,j from n×m images
G and D. In the rest of this thesis SSIM will always refer to the MSSIM from equation
2.31, as the local SSIM by itself is useless in this context.

Both PSNR and SSIM were described above only for grayscale images, as the scores
are typically calculated only on the luminance (Y) channel of YCbCr images. If quality
score on all color channels is needed, both metrics can be easily extended to work for
RGB images, by changing the matrices G and D to 3-dimensional tensors G and D of size
n×m×3 and extending the summations in equations 2.22 and 2.31 to work along the third
dimension also.

Both PSNR and SSIM belong to a group of image quality metrics called full-reference
metrics, as the score is calculated based on the image’s similarity with a reference image.
There are also metrics that estimate the quality purely from the degraded image without any
reference information, and they are respectively called no-reference metrics. Also metrics
utilizing only a part of the reference image exist, and they are called reduced-reference
metrics. [37]

Only PSNR and SSIM are used in this thesis, as they are the metrics conventionally used in
the field of super-resolution research. Nevertheless, it would be justified to include other,
more advanced metrics, as even SSIM has been proven to be a poor estimate for perceived
quality. Ponomarenko et al. [45] have shown that PSNR and SSIM correlate as poorly with
the mean opinion score, and Horé et al. [24] have shown that PSNR and SSIM are very
similar and mostly differ by their sensitivities to specific image degradations.

2.3 Machine learning basics

Main focus of this thesis will be on convolutional neural networks and their application on
super-resolution, which covers only a small part of the whole field of machine learning
research and its applications. The same principles still apply to SR and CNNs as do to
other fields, and definition of those principles is in order. This section will describe only
the basic concepts in a general level, and more detailed explanations and concrete examples
will be given in the next section in the context of neural networks.

Machine learning in general refers to algorithms, or computer programs, that can learn to
execute some task based on the data that is used to train those algorithms. But what actually
is the definition of learning in this case? Mitchell defined it as follows: "A computer

2. Theoretical background 14

program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T , as measured by P, improves with
experience E ." [40, p. 2]

In our case the task T would be super-resolution, the experience E would be the dataset
used for training the algorithm and the performance measure P would be the quality metrics
described in Section 2.2. Learning itself is not the task, it is just the means for producing a
computer program, often called model, that solves the task.

2.3.1 Types of ML tasks

The way an model solves the task T can be seen as a function that maps the input data to
the desired form of output data, and the different groups of tasks can be described in terms
of their input and output data types. We represent an example (a single instance) of input
data with vector x ∈ Rn, where each entry xi of the vector corresponds to a feature of the
input data. In the case of SR the example would be a single image we want to super-resolve
and its pixels would be the features. A vector is chosen as the example only to keep the
definition simpler, but a matrix could be also used as it would make more sense for images.

Type of the task T is the most important factor when selecting a suitable machine learning
method, and also the experience E and performance measure P are highly dependent on T .
Thus it makes sense to classify machine learning algorithms based on the task they are
trying to solve. The largest and most widely known groups of tasks are classification and
regression [19, p. 98–99], which will be discussed in more detail below.

Classification is the largest group of ML tasks and it has been the driving force behind
the modern machine learning advancements [19, p. 98]. In this task learning is used to
produce an classifier that assigns input example to one of k categories (or classes). The
classifier is usually a function f : Rn→ {1, · · · ,k}. When y = f (x), the model classifies
an input example x to category identified by the integer y. The model could also output
for each of the categories the probability of x belonging to that class. Typical example is
image classification, which is also the most common usage for convolutional networks. E.g.
the algorithm might be trained to classify pictures of cats, dogs and humans, and given an
input image it will categorize it to one of these classes. [19, p. 98]

Regression task is defined by Goodfellow et al. [19, p. 99] as predicting a single numerical
value given some numerical input, and it can represented by function f : Rn→ R. With
input x the output y = f (x) will be a scalar value. A common application for regression is
the prediction of price developments in stock market.

The above definitions by Goodfellow et al. [19] are relatively strict, in the sense that they
allow only a single output for the model. In the image classification example mentioned
above, the model would have to choose only a single category, even if the model were given
a picture with both a human and a dog in it.

2. Theoretical background 15

For tasks that require multi-value outputs with important relationships between those
values (e.g. vectors), Goodfellow et al. [19, p. 99] introduce group called "structured
output". Basically this includes all types of tasks that do not fit into above definitions of
classification and regression. A group this broad is almost useless for categorizing the
tasks and we will instead broaden the definition of the above mentioned groups to include
multiple outputs. Thus we consider super-resolution to be a special case of regression,
although it has multiple output values (one or three for each pixel of the output image), and
their relative locations are of utmost importance.

There are of course multiple other types of ML tasks, but many of them can be considered
as subgroups of the above mentioned regression and classification, at least when we extend
the definitions to include multiple outputs. Some tasks still fit poorly into either of those,
like machine translation, speech recognition and other tasks with natural language output.

2.3.2 Supervised and unsupervised learning

Usually the experience E is organized as a dataset, which is a collection of individual
examples, and the algorithm is allowed to experience this whole dataset during training.
The dataset contents provide another way to coarsely divide machine learning algorithms
into two subgroups, based on the type of experience the algorithm is allowed to have during
training. These groups are called supervised and unsupervised learning algorithms.

In supervised learning the dataset consists of both inputs examples x and associated output
labels or targets y. In the earlier classification example, the label y would tell in which
category (cat, dog or human) the training example belongs. For regression tasks such as
SR, we prefer calling the label y target instead, as it better describes the nature of that data.
For SR the target y would be the so-called ground truth image, a high resolution image
of which the input x is a downsampled version. The supervised case can be viewed as
estimating the probability distribution p(y|x), and predicting the most probable output y
given the input x).

In unsupervised learning the dataset consists of only input examples x, with no labels or
targets, and the goal is to learn some useful properties about the structure of dataset. A
good example of this is clustering, where the task is to divide the input data into clusters
of similar examples. Clustering algorithm has to learn the division rules by itself, with
no other guidance than the number of clusters needed. Texture synthesis is another prime
example of this type of learning, and somewhat closely related to SR. Idea in synthesis
is to implicitly learn the probability distribution p(x) that produced the examples in the
dataset, so that new examples can be synthesized from it. The goal could also be learning
the probability distribution explicitly like in the case of density estimation. [19, p. 103]

There are of course cases that fall somewhere between the supervised and unsupervised, as
the dataset could include labels or targets only for some the examples. This semi-supervised

2. Theoretical background 16

case, and the unsupervised case, will be outside the scope this thesis, as we are interested
only in supervised learning in the form of super-resolution.

2.3.3 Datasets and model performance

The performance measure P is not as useful for categorizing the different algorithms, but it
is still an essential concept in machine learning basics. It was stated earlier that in our case
P would be the image quality metrics of Section 2.2, but specifying only the metric is not
enough. It is important to define also the data that the performance will be measured on.
Thus far we have only mentioned the training dataset, and although the we want the model
to perform well on the training data, that performance is not what we are ultimately after.
Instead we want to maximize the model’s performance on data it has never experienced
before, i.e. we want the model to generalize well to any data that we want to use it for.

Maximizing the model’s performance only on the training data is easy; we can just select a
model with enough capacity to store every input example and the corresponding output of
the dataset, and train the model to associate them to each other. This model would give the
correct output every time it is given an example from the training dataset, but most likely
it would not work at all for any other data. This is an extreme example of overfitting, a
condition that impairs the models generalization capability.

The opposite of overfitting is underfitting, which happens when the model’s performance
is poor even on the training dataset. If the model’s capacity is inadequate for the task,
underfitting will definitely happen. Nevertheless, even a model with sufficient capacity
might underfit if the training procedure fails due to some reason.

Overfitting and underfitting can also be defined in terms of two different performance
measures: training error and generalization error. Training error is calculated on the
training dataset and generalization error on a separate dataset consisting of examples the
model has not seen before. This dataset is called the test set, and thus the error calculated
on it is also known as test error. Underfitting occurs when the test error is too large, and
overfitting when the training is error notably smaller than test error. Both conditions are
to be avoided and a well performing model minimizes both the training error and the gap
between training and test errors.

It is also possible for the test error to be lower than the training error, but usually this
indicates that the examples in the test set are significantly easier to predict than the
training examples. Testing on a set like this might not give a realistic estimate of the real
generalization error, and the test set should be changed. Ideally the test set and training
should be identically distributed, but still independent from each other.

Adjusting the model’s capacity is the main way of controlling the model’s tendency to
overfit or underfit. The capacity is the model’s ability to fit to a wide variety of functions, an
abstract concept that cannot be exactly quantified or defined. The actual learning happens

2. Theoretical background 17

by adjusting the model’s trainable parameters according to the experience given, and the
number of these parameters correlates strongly with the model’s capacity. The parameter
count itself is not the only element affecting the capacity though, as the operations these
parameters control and their interactions define what functions the model can fit to.

Most machine learning algorithms have settings for adjusting their behavior, and these
settings are called hyperparameters to distinguish them from the trainable parameters of
the model. These parameters are chosen to be set by the user and not learned from the data,
usually because they are either difficult to optimize or unsuitable for learning from the data.
For example the model’s capacity cannot be properly learned from the training data, as
maximum capacity would always minimize the training error and thus be chosen by the
algorithm.

For most of the hyperparameters there is no way to choose optimal values without trying
different combinations then and choosing the best performing ones. But we cannot choose
the values based on the test set performance, as the information from the test set would
indirectly affect the learning process. Thus we need a third set of data, the validation
dataset, that will be used for choosing the hyperparameters and testing performance during
the training process. Usually it is a small part split from the training set. The validation
error will typically underestimate the real generalization error, because the hyperparameters
have been "learned" from it, although the validation data will not be used for the actual
parameter updates. It will nevertheless be a better estimate than the training error alone.

2.4 Feedforward neural networks

Previous section discussed the basic concepts of machine learning, but did not give any
details on how these concepts can be applied in practice, as it is highly dependent on
the actual algorithm family used. As convolutional neural networks are a special case of
feedforward neural networks, we will introduce them using fully connected networks, or
multilayer perceptrons, as an example. They are the simplest form of neural networks and
based on the perceptron concept originally introduced by Rosenblatt in 1958 [47], which is
a linear binary classifier loosely inspired by the neurons of a human brain. As we are not
interested in classification, in the following examples the perceptron will perform linear
regression instead.

An example of a simple multilayer perceptron can found in Figure 2.5. A multilayer
perceptron contains always an input layer, an output layer and one or more hidden layers,
i.e. two or more perceptrons chained together. The number of layers is referred as the
depth of the network, which is the origin of the term "deep learning". Input layer is just a
collection of input values and thus not a perceptron like the other two layers. Our example
has a vector valued input x = [x1,x2]

⊤, hidden layer h = [h1,h2,h3]
⊤ and an output value y.

In the graph the variables are denoted with nodes and their relations are indicated by the
edges.

2. Theoretical background 18

x1Input #1

x2Input #2

h1

h2

h3

y Output

Hidden
layerInput layer Output

layer

h = f (1)(x) y = f (2)(h)

Figure 2.5. A simple multilayer perceptron.

This network can represented as a chain of functions f (x) = f (2)(f (1)(x)), where the hidden
layer is represented by the equation h = f (1)(x) and the output layer by y = f (2)(h). The
functions f (1) and f (2) are defined as

f (1)(x) =W⊤x+b (2.32)
f (2)(h) = w⊤h+ c, (2.33)

where W is a 2×3 matrix containing the weights of the hidden layer, vector b = [b1,b2,b3]
⊤

contains the biases for the hidden layer, vector w = [w1,w2,w3]
⊤ contains the output layer

weights and c is the output bias. Together these parameters θθθ = {W,w,b,c} are the trainable
parameters of this network, and we will use the notation f (x;θθθ) to indicate the models
dependency on the parameters, when referring to the network.

2.4.1 Activation layers

Neural networks are known for their ability to approximate nonlinear functions, but the
above example consists of only linear functions. No matter how many linear functions we
chain to together, the model will stay linear. Thus we need to introduce some nonlinearity
to the model, which is achieved using activation functions. The most common activation
function in modern neural networks is the rectified linear unit (ReLU) [19, p. 171], which
is defined as

g(z) =max{0,z}. (2.34)

The activation function is used in the hidden layers to modify the output of the nodes. In
the above example we would utilize it after the function f (1) so that the model becomes
f (x) = f (2)(g(f (1)(x))).

Earlier neural networks used the sigmoid, or logistic, activation function, which is defined
as

σ(x) =
1

1+ exp(−x)
. (2.35)

2. Theoretical background 19

Sigmoid function’s output range is (0,1), and it saturates strongly negative values to zero
and strongly positive values to one. This saturation leads to problem known as vanishing
gradients with deeper networks. Vanishing gradients can be mitigated by using ReLU
activation instead in the hidden layers, but sigmoid function is still useful as the output unit
in classifier networks. For regression tasks like SR the best choice is using linear output
unit.

2.4.2 Loss functions

Although the goal of training a neural network is maximizing some performance metric
(in our case PSNR and SSIM), the same metric used in performance comparison is not
typically used for steering the training process. In some cases it could be possible, at least
with some minor modifications to the metric, but it still might not feasible. The metric
used in the training process is called the loss function (or cost function), and the goal of the
process is to minimize it on the training data. In this thesis the loss function refers to a loss
calculated on a single example, and the cost function refers to loss calculated on the whole
dataset or specific subset of it, although in some literature they are used interchangeably.

Given a loss function L(ŷ,y), where ŷ = f (x) is the network output and y is the training
target corresponding to the input x, the loss function output is a scalar with lower values
corresponding to greater similarity between vectors y and ŷ. The only other requirement
for the loss funtion is that it is differentiable over ŷ, as the parameter updates done during
the training are based on the gradient of the loss function.

The most common loss function used in image processing tasks like SR, is the ℓ2 loss,
which is defined as the square of ℓ2 norm of the difference y− ŷ

Lℓ2(ŷ,y) = ∥y− ŷ∥22 . (2.36)

This loss function is essentially the sum of squared errors, thus minimizing it minimizes
also MSE and maximizes PSNR. This makes it an intuitive choice for maximizing PSNR,
but it has been recently shown to be a suboptimal choice.

Zhao et al. [68] compared the performance of models trained using different loss functions in
three different image restoration tasks: joint demosaicking and denoising, JPEG deblocking,
and super-resolution. They discovered that models optimized with the closely related ℓ1
loss

Lℓ1(ŷ,y) = ∥y− ŷ∥1 (2.37)

produced better results MSE-wise than otherwise identical models trained with ℓ2 loss.
They attributed this difference to ℓ2 loss’ higher tendency to get stuck in a local minimum
during training. Using combination of both losses Zhao et al. were able to decrease the
MSE even further, with best results given by first using ℓ1 and then finalizing with ℓ2.

2. Theoretical background 20

The motivation of Zhao et al. was to increase the perceived quality of the images, as MSE
and its derivatives have been known to be poor estimates of perceived quality. Thus they
tested also loss functions based on the SSIM metric and proposed a hybrid approach using
a mixture of ℓ1 and SSIM loss functions. There has been also perceptual loss functions that
utilize high level features extracted from neural networks trained for image classification.
The distance between the features extracted from super-resolved image and the features
from the target image is used instead of per-pixel differences. This approach was first
introduced for texture synthesis [14, 15], but it has been also employed for super-resolution
[28, 35, 49].

As we are not interested in the networks performance on a single training example, we
introduce the total cost function

J(θθθ;X,Y) =
1
m

m−1∑
i=0
L(f (xi;θθθ),yi), (2.38)

where X and Y are matrices containing all m training example pairs xi and yi [19, p. 149].
Ultimately we would want to minimize

J(θθθ) = E(x,y)∼pdataL(f (x;θθθ),y), (2.39)

which is the expected cost of any x and y belonging to the data-generating distribution pdata

[19, p. 272]. As the actual distribution is typically unknown, we can only estimate the cost
J(θθθ) with the equation 2.39.

The difference between the network output and the target is not always the only thing
we want to minimize, and many times it beneficial to keep the trainable parameters θθθ at
relatively low values. This limits the model’s capacity and thus lowers its tendency to
overfit. This is achieved by introducing a parameter norm penalty Ω(θθθ) to the total cost
function

J̃ (θθθ;X,Y) = J(θθθ;X,Y)+αΩ(θθθ), (2.40)

where α is a hyperparameter affecting the strength of the norm penalty. This regularized
total cost J̃ will be the target of optimization and minimizing it requires balancing
the loss L and the norm penalty Ω. The most widely used norm penalties are the ℓ2
penalty Ωℓ2(θθθ) = ∥θθθ∥2 and the ℓ1 penalty Ωℓ1(θθθ) = ∥θθθ∥1 [19, p. 227–232]. The penalty is
typically calculated separately for every layer of the network and the α parameter can be set
individually for every layer. Parameter norm penalty is one form of regularization, which
refers to any modifications done to the model to prevent overfitting [19, p. 224]. The above
mentioned norm penalties are the most widespread regularization methods, and are often
referred as just ℓ2 and ℓ1 regularization.

2.4.3 Optimization

Although the cost J(θθθ;X,Y) is easy to calculate, finding the optimal parameter values

θθθ0 = argmin
θθθ
J(θθθ;X,Y) (2.41)

2. Theoretical background 21

is practically impossible due to the high nonlinearity of a typical neural network. The cost
function will be non-convex with numerous local minima, and the goal of the optimization
is to find a minimum that is low enough for the task at hand. This is done using the gradient
descent algorithm, which iteratively updates the parameters θθθ by choosing

θθθ′ = θθθ − ϵ∇θθθJ(θθθ;X,Y) (2.42)

as the next set of parameter values after each update. The scalar ϵ is the learning rate
parameter affecting the speed of descent and ∇θθθJ(θθθ;X,Y) is the gradient of the cost
function. The parameter values are updated towards the negative gradient, with the norm
of the gradient and the learning rate dictating the magnitude of the updates.

The calculation of the gradient

∇θθθJ(θθθ;X,Y) =
1
m

m−1∑
i=0
∇θθθL(f (xi;θθθ),yi) (2.43)

has to be done for each update step, and its computational complexity is O(m). With
datasets large enough to be useful, the cost of this operation becomes prohibitively high.
As this cost function is only an estimate of the ideal cost J(θθθ), we can estimate the gradient
∇θθθJ(θθθ) with a smaller subset of m′ training samples. This subset is called minibatch
and the number of samples m′ is referred as the batch size. The estimated gradient then
becomes

g =
1
m′

m′−1∑
i=0
∇θθθL(f (xi;θθθ),yi), (2.44)

and the samples in the minibatch are redrawn from the training set for every update step.
Every sample will be used only once, until the whole training set has been processed and
the cycle begins again. This cycle is called epoch, and the number of epochs tells us how
many times the model has seen each individual training sample.

This minibatch gradient descent algorithm is often called stochastic gradient descent (SGD),
although originally that term referred only to the extreme case of m′ = 1 [19, p. 275–276].
SGD, or some variation of it, is used for optimization in practically every modern neural
network. Algorithm 2.1 illustrates how a simple version of SGD could be implemented.
The learning rate ϵk is set separately for each iteration k, as in practical scenarios it has to
be decreased as the training progresses. This is due to the noisy gradient estimate used in
SGD, which does not converge to zero even if a minimum is reached. [19, p. 290–291]

A common extension to SGD is momentum, which is meant to accelerate the learning
process. It is inspired by its physical namesake and introduces a variable v which represents
velocity. The velocity defines the parameter update direction and magnitude, and the
velocity is computed at each iteration from the current gradient and previous velocity. The
algorithm 2.1 can be extended with momentum by changing the update step to v← αv−ϵkg
and θθθ← θθθ +v. The hyperparameter α ∈ (0,1) defines how fast the velocity decays.

2. Theoretical background 22

Require: Learning rate schedule ϵ0,ϵ1, . . .
Initialize parameters θθθ
k← 0
while stopping criterion not met do

Sample a minibatch of m′ examples xi and yi from the training set.
Compute the gradient estimate: g← 1

m′
∑m′−1

i=0 ∇θθθL(f (xi;θθθ),yi)

Update the parameters: θθθ← θθθ − ϵkg
k← k +1

end while
Algorithm 2.1. Stochastic gradient descent

Learning rate is one of the most difficult hyperparameters to set, and its effects on the
model performance are significant [19, p. 302]. A single learning rate for every parameter
is rarely an optimal choice, as the cost function is typically sensitive to some directions in
the parameter space and less sensitive to others. This has lead development of adaptive
optimizers, which automatically alter the learning rate during the training process separately
for every parameter. Common adaptive algorithms are for example AdaGrad by Duchi et
al. [8], and Adam by Kingma and Ba [32].

With all gradient based optimizers, the calculation of the actual gradient ∇θθθL is done
with an algorithm known as back-propagation. It based on the chain rule of calculus,
which states that given functions f : R→ R and g : R→ R, and scalars x, z = g(x) and
y = f (z) = f (g(x)), the derivative of y over x can be calculated as

dy
dx
=

dy
dz

dz
dx
. (2.45)

This can be easily extended to multidimensional cases. Given functions f : Rn → R

and g : Rm→ Rn, vectors x ∈ Rm and z = g(x), and scalar y = f (z) = f (g(x)), the partial
derivative of y becomes

∂y

∂xi
=

n−1∑
j=0

∂y

∂z j

∂z j

∂xi
. (2.46)

This can be written in vector notation as

∇xy =

(
∂z
∂x

)⊤
∇zy, (2.47)

where ∂z∂x is the n×m Jacobian matrix of g. [19, p. 201–203]

Equation 2.47 forms the basis of the back-propagation algorithm. It shows that to calculate
the gradient of variable x, we can multiply a Jacobian matrix ∂z∂x with a gradient ∇zy. In
the back-propagation algorithm this product is calculated for each layer of a neural network
recursively, starting from the output and progressing backwards to the input layer. The
gradients of the later layers are used to calculate the gradients of earlier layers, i.e. the
gradient is propagated backwards in the network. The derivation of the complete algorithm
is outside the scope of this thesis, and we refer to the book Deep Learning by Goodfellow
et al. [19] for further information on the topic.

2. Theoretical background 23

2.4.4 Convolutional layers

Fully connected neural networks have a few limitations that make them poorly suitable
for image processing tasks, but those limitations can be overcome using convolutional
layers. Fully connected networks are limited fo fixed size inputs and outputs, and they
become computationally heavy with large input and output sizes, as each node of a layer
is connected to every node of the next layer. With n inputs and m outputs, the number of
trainable parameters of a fully connected layer becomes nm (or (n+1)m if bias parameters
are counted). [19, p. 330]

Convolutional layers work similarly to traditional discrete convolution, and thus the number
parameters stays constant regardless of the input size, as the same set of filter coefficients
is used for every input segment. In addition to enabling arbitrary-sized inputs and lowering
the number of parameters, convolutional layers make the network spatially invariant. This
is desirable in super-resolution and similar image processing tasks as the input patch should
be processed identically regardless of its location in the input image. [19, p. 331–335]

A simple one-dimensional convolutional layer is shown in Figure 2.6(a). Its input is vector
x = [x0,x1,x2,x3,x4]

⊤, and its output is vector y = [y0,y1,y2]
⊤ whose values are defined by

the equation

yi =

2∑
j=0

w j xi+ j + c, (2.48)

where w j are the coefficients of the filter vector w = [w0,w1,w2]
⊤ and c is the bias parameter.

With a filter of length n, the output will always be n−1 shorter than the input, unless some
form of input padding is used. Figure 2.6(b) shows a convolutional layer with the same
input and filter, but with zero-padding used in the input. [19, p. 342–343]

The output size can be kept identical to the input size by using zero-padding, but sometimes
it is desirable to change the data size inside the network. Typical image classification
networks decrease the size deliberately with pooling layers to introduce invariance to small
input translations, and to lower the computational costs [19, p. 335–339]. Pooling is less
useful in super-resolution and thus outside scope of this thesis.

Although super-resolution aims to increase the resolution of images, some SR networks
utilize also donwsampling layers in their architecture [21]. Downsampling can be done
with strided convolution, which is illustrated in Figure 2.7. Convolution with a stride k
progresses in steps of k elements over the input, and produces output of length j

k , when
input length is j and input padding used. Strided convolution can also thought as normal
convolution, where all but every kth output value is discarded.

If we want to increase the size with a factor of k instead of decreasing it, we can use
convolution with a stride of 1

k . This scheme is also known as deconvolution, transposed
convolution, sub-pixel convolution, and numerous other names [51], but we will call it

2. Theoretical background 24

x1

x2

x3

x4

x5

y1

y2

y3

(a) No input padding

x1

x2

x3

x4

x5

0

0

y1

y2

y3

y4

y5

(b) Zero-padding

Figure 2.6. Two versions a simple one-dimensional convolutional layer with input length
of 5 and filter length of 3. The first one has no input padding which leads to smaller sized

output and the second one uses zero-padding to preserve the input size in the output.

x1

x2

x3

x4

x5

x6

0

y1

y2

y3

(a) Stride 2

x1

x2

x3

0

0

0

0

0

y1

y2

y3

y4

y5

y6

(b) Deconvolution (stride 1
2)

Figure 2.7. Two examples of one-dimensional convolution where data size changes
deliberately. First one shows convolution with stride 2, which halves the size. Second one

shows deconvolution with factor of 2 (stride 1
2), which doubles the size of input.

deconvolution from now on. The term sub-pixel convolution is used for a closely related
scheme, which will be explained later in more detail. Deconvolution can be exemplified as
normal convolution, where the input vector has zeros added between every input element.
This is visualized in Figure 2.7(b) with filter length of 3, stride 1

2 , and zero-padded input.

2. Theoretical background 25

Until now we have discussed only one-dimensional inputs, outputs, and filters, but images
are usually two-dimensional and represented as matrices. In the case of color images we
have normally three channels for every pixel, and we need to use three-dimensional arrays
to represent them. To extend the concept of vectors and matrices to arbitrary number of
dimensions, tensors are typically used [19, p.31]. Further discussion of the tensor theory
is beyond the scope of this thesis, but we will use tensors to describe multi-dimensional
arrays in the rest of this chapter.

All of the one-dimensional examples we have discussed thus far can be easily extended to
multiple dimensions. Images are typically arranged into n×m× c tensors, where n is the
number of number rows, m is the number of columns and c is the number color channels.
With grayscale images c = 1, but they are still processed like other three-dimensional
tensors. A convolutional layer at the input of a image processing network would have filter
kernel of k1× k2× c, where k1 and k2 hyperparameters define the filter size. Although the
filter has a third dimension of length c, this is still considered two-dimensional convolution.
The filter length in third dimension is set as the same as the input’s third dimension, and
the output will be two-dimensional.

Each hidden convolutional layer will typically have f unique filter kernels, and the layer
output is arranged as a n×m× f tensor, assuming that input size is n×m× c and padding
is used. Thus the next layer will have filter size of k1× k2× f . The output layer will have
the number of filters set according to the desired number color channels.

Figure 2.8 illustrates a two-dimensional case of deconvolution, with a 4×4×1 input tensor,
4×4×1 filter kernel, stride of 1

2 , and zero-padding. The output is a 8×8×1 tensor. White
squares are used to depict the pixels of the input image, gray squares are the zeros used for
padding, and colored squares illustrate the connection between output pixels and the filter
coefficients used to calculate those pixels.

Figure 2.8. Two-dimensional deconvolution with stride 1
2 [51].

Figure 2.9 shows an alternative way to implement similar upscaling operation inside a
convolutional network. This method was introduced by Shi et al. [50, 51] and they named
it "efficient sub-pixel convolution", but we will refer to it as just sub-pixel convolution. The
input and outputs are the same size as in the previous example, but the filter is different.
Instead of a single filter, four individual kernels of size 2×2×1 are used with stride 1,
producing an output tensor of size 4×4×4. The output is then rearranged into a 8×8×1

2. Theoretical background 26

Figure 2.9. Two-dimensional sub-pixel convolution with scaling factor of 2 [51].

in the way illustrated by the color coding. In the general case this transforms a n×m× cr2

sized tensor to size rn× rm× c, where r is the scaling factor and c is the number of color
channels.

In this simple example case the difference between these two methods is purely imple-
mentational, as both methods use identical number of filter coefficients to produce and
identically sized output. However, Shi et al. [51] showed that their sub-pixel convolution
allows for greater flexibility with the filter sizes used, and is easier to implement efficiently.

There are also other modifications and extensions to convolutional layers, but most of
the super-resolution networks utilize only normal convolutional layers, and the above
mentioned upsampling convolutions. Concrete examples of those networks are given in
Section 3.5.

27

3. SUPER-RESOLUTION

Super-resolution (SR) aims to produce an high resolution (HR) image, given one or more
low resolution (LR) images as input. In contrast to simple interpolation techniques like the
ones described in Section 2.1, SR methods aim at recovering or estimating the information
missing from the low-resolution image. There are multiple ways to approach the problem
and SR algorithms can be classified in numerous ways. The simplest way is to classify
them either single image SR (SISR) or multi-image SR (MISR), based on the number
of low resolution input images used. MISR tackles the problem with multiple different
images depicting the same scene, with each image having different sub-pixel alignments
(translation, rotation etc.), different scales, different blurring, or other similar variations
between them. As a single low resolution image could have been produced by scaling
down infinite number of different high resolution images, using multiple different images
introduces additional constraints for the possible high resolution source and thus enables
the reconstruction of the high resolution details. [41]

In many practical applications only a single low resolution image is available, which
is why SISR algorithms have attracted more research interest in recent years. SISR
algorithms can be coarsely split into two different groups. Methods of the first group use
only the information available in the source image by exploiting the self-similarity of the
scene, whereas the second group utilizes external databases of different LR–HR image
pairs. Self-similarity based methods split the image into smaller patches and super-resolve
those patches individually using similar patches found elsewhere from the image. Ideally
those patches would represent the identical objects, but with different scales, translations,
rotations etc. like in the case of MISR. For example, many typical man made scenes
i.e. urban environments contain a lot of recurring elements which can be utilized in
super-resolution [26].

Algorithms using external image databases employ machine learning techniques to find a
typical mapping from high to low resolution, and use that knowledge to estimate a probable
high resolution image from the low resolution input. These techniques work especially
well in applications where the image content is limited to specific cases i.e. human faces or
hand written characters. Multiple different machine learning techniques can be used but
especially convolutional neural networks and other deep learning methods have proven
popular in recent years [6, 30, 67].

This chapter will give an overview of different approaches to super-resolution in a form of
literature review. The next two sections will give overviews of MISR (Section 3.1) and
SISR (Section 3.2) in general. Section 3.3 will briefly describe SISR algorithms based on
self-similarity. The main focus of this thesis is on methods based on convolutional neural

3. Super-resolution 28

networks, and Section 3.5 will describe those. Methods based on more classical machine
learning techniques will be discussed briefly in Section 3.4.

3.1 Multi-image super-resolution

All digital imaging systems, whether a digital still camera or i.e. a flatbed scanner, produce
a discrete, sampled version of the continuous objects present in the scene. As was described
in the Section 2.1, frequencies in the original signal higher than half of the sampling
frequency will be folded to lower frequencies causing aliasing artifacts. To prevent these
artifacts, cameras employ an optical low-pass filter in front of the sensors that blurs the
image before sampling. Ideal anti-aliasing filter is impossible to produce, and thus some
aliasing will always occur. These aliased frequencies are indistinguishable in a single image,
but when there are multiple unique images depicting the same scene, those frequencies can
be recovered. This phenomenon is exploited in classical MISR [17].

MISR algorithms were the first ones applied on digital images, but the concept of super-
resolution imaging was introduced even before the prevalence of digital imaging. First
papers concentrated on the so called optical SR, which tries to overcome the optical
resolution limit caused by diffraction, instead of digital sampling [41, 65]. The first
optical SR algorithm was introduced by Gerchberg [16] in 1974, although the theoretical
foundation was established ten years earlier by Harris [22].

The first application of super-resolution on digital images was by Tsai and Huang [59] in
1984, which used multiple low resolution images to produce a single high resolution image.
The method by Tsai and Huang, like the optical SR methods before it, worked in frequency
domain. However, frequency domain SR has its limitations [65], and due to that spatial
domain methods are more prevalent in modern research [41, 65].

The first spatial domain method was introduced by Peleg et al. [43], and it was based on
sub-pixel displacements between the images. Irani and Peleg improved the spatial domain
MISR further in 1991 [27] by introducing the iterative back-projection algorithm. This
algorithm works by first producing an initial estimate of the HR image, and then producing
simulated low-resolution images from the initial estimate. The simulated low-resolution
images are compared to the original input images, and if the HR estimate is correct, the
images should be identical. If there are differences between the images, the error is
back-projected to the high resolution estimate to produce a new estimate and this process is
iteratively repeated until the error is minimized. The iterative back-projection has been
popular in many subsequent works, including SISR algorithms [11, 26].

There are also other approaches to multi-image super-resolution, but they are out of the
scope of this thesis. All MISR algorithms are typically reconstruction based algorithms,
which recover only information already existing but indistinguishable in the low resolution
images. For these algorithms to work, it is required that every input image contains unique
information. As the low resolution images have limited information, the performance of

3. Super-resolution 29

these methods is also limited especially in high scaling factors. To alleviate this problem, the
so called hallucination based methods have been introduced. They can utilize information
gathered from external database of HR–LR correspondences and create details that do
not exist in the low resolution image. Although this approach could be integrated to
multi-image reconstruction methods, it is mostly employed in single image SR and thus
will discussed in more detail in the next section [41].

3.2 Single image super-resolution

In many applications it is infeasible or even impossible to acquire multiple images of the
same scene, which has lead to development of SISR algorithms [41]. This approach has
been the main interest in recent SR research, mostly because of its broad applicability
but also due to recent advances in machine learning techniques which have improved the
performance significantly [6, 30, 67].

To recreate the information missing in the low resolution, extra information has to be
acquired somehow. Since only a single image is available, the reconstruction approach
of MISR is impossible. The details have to be created by either using machine learning
methods with external database of LR–HR exemplar pairs, or utilizing the self-similarity
of the low resolution image. The latter method is enabled by the fractal nature of typical
scenes, as image elements tend to recur throughout the image in different scales, translations,
rotations etc. [26]. Self-similarity methods can utilize some of the reconstruction techniques
typical of MISR algorithms [17], as the image is processed in patches and similar patches
can be considered as individual images depicting the same object.

Self-similarity based methods have the advantage of not requiring an extensive database of
training images, but they have other drawbacks which have shifted the research focus towards
learning-based methods. Self-similarity based methods have typically high computational
cost for the processing of an image, since an extensive search of similar patches is required
for each image patch processed [26]. Learning-based methods require a computationally
intensive training process. However it is done only once and the super-resolving of a single
image is relatively fast in comparison to self-similarity based methods. Self-similarity
based methods produce good results only for images that have large amounts of similar
patches, which is not true for most natural images [26]. In those cases machine learning
methods typically outperform those based on self-similarity. Popularity of learning-based
methods has also increased due to recent advances in convolutional neural networks and
other deep learning techniques utilized in other image processing applications and they
have large potential also in super-resolution [6, 30, 67].

3.3 Self-similarity based SISR

First single image SR algorithm utilizing only the self-similarity within a low resolution
image was introduced by Ebrahimi and Vrscay in 2007 [9]. It was based on local scale

3. Super-resolution 30

invariance, which means that image patches are similar to themselves within small scaling
factors. For example, a sharp and straight transition between two flat surfaces will appear
identical across different scales. Glasner et al. took a different approach in 2009 [17], with
an algorithm based on the observation that typically similar image patches occur repeatedly
within an image, both with the same scale and different scales. The low resolution image is
processed patch by patch and for each patch the image is searched for one or more similar
patches. If multiple patches within same scale are found, those can be used with traditional
multi-image SR methods for scaling up the input patch. If at least one similar patch with
larger scale is found, it can be used directly for estimating the missing high-frequency
contents.

Freedman and Fattal combined the two approaches mentioned above and improved on the
computational costs, by searching for similar patches within the local neighborhood of
the target patch [13]. They also applied the method for video in addition to still images.
Until 2015 all of the self-similarity based methods had considered only translated, scaled
and rotated patches when searching similar patches, but Huang et al. [26] introduced
SelfExSR, that utilizes also perspective and affine transformations. Their method was aimed
specifically at images of buildings, urban environments and other man-built structures.
Those images typically contain planar structures with recurring elements, whose perspective
distortion can be easily estimated. Their method performs comparably to other methods of
the time in terms of PSNR, but the computational complexity of SelfExSR is significantly
higher than of the competing methods.

Self-similarity based methods have been used extensively also in other image processing
tasks, especially in denoising, and some of those methods have inspired also SISR
algorithms. A notable example of this is the BM3D algorithm by Dabov et. al. [5]
originally published in 2007. This BM3D paradigm has been applied for super-resolution
by Egiazarian et. al. first in 2007 [10] and later on in 2015 [11]. It utilizes both sparsity and
non-local self-similarity by searching for a group of similar patches, which are arranged
to a three-dimensional block. The block is then collaboratively filtered along all three
dimensions. This idea was further refined by Cruz et al. in 2017 [4] with their WSD-SR
method. It replaces the three-dimensional filtering with one-dimensional Wiener filter
working in the similarity domain, which is the third dimension of the patch block with
Haar-transform applied along it. Both WSD-SR and its predecessor work iteratively and
use back-projection to ensure that the SR estimate corresponds to the LR input.

3.4 Traditional Machine Learning Methods for SISR

Multiple different machine learning methods have been applied to SISR, although most of
them have become less popular while the research focus has shifted towards deep learning
methods. This is apparent from the results of NTIRE2017 challenge [53], where 18 teams
out of 20 used deep neural networks. Out of the remaining two, only RAISR by Romano
et al. [46] was based on machine learning. Similar trend continued in the NTIRE2018

3. Super-resolution 31

challenge [56], where 30 teams out of 31 used deep learning methods, and the remaining
one was a method based on RAISR.

Out of the classical ML methods, neighborhood embedding has proven to be a popular and
well performing approach [54, 55, 57, 64]. A+ introduced by Timofte et al. [55] in 2015
can be consider the baseline in this family of methods. It combines the approaches of earlier
methods ANR [54] and SF [64], by utilizing neighborhood regression and sparse coding.
The implementation runs on the central processing unit (CPU) and its computational
efficiency is still better than most modern state-of-the-art methods, although its output
quality is low on today’s standards [1]. A+ was further improved with IA in 2016 by the
Timofte et al. [57]. Many of the improvements they introduced can be applied also to other
ML based SR methods.

RAISR introduced by Romano et al. [46] is one the fastest algorithms published, and it
achieves its performance by learning a set of convolutional filters that adapt to the image
contents. The training input images are split into patches and the patches are grouped
with a hashing algorithm. For each group a separate set of filters is learned. When
super-resolving, the LR image is split into patches and for each patch the correct filter
set is chosen based on the same hashing algorithm. The input images are upscaled with
bilinear interpolation before processing. The output quality is on the level of A+, but its
computational complexity is significantly lower.

3.5 Convolutional Neural Networks based SISR

CNN based SISR methods can be coarsely divided in to two subclasses, based on the way
the actual upsampling is done. To distinguish these methods we adapt the terminology
used by Shi et al. [51] and refer to these methods as either HR or LR networks, based on
the resolution of the input image. HR networks are older of the two, introduced with the
first CNN approach to SISR in 2014 by Dong et al. [6]. In that approach the low resolution
input image has to be upsampled to the target resolution before processing it in the network.
Dong et al. used bicubic interpolation, although any other interpolation method could be
used. As the network input is the same size as the output, the same network can be trained
to process multiple scaling factors with a single model as demonstrated by Kim et al. [30].

LR networks do the actual upsampling inside the network, and earliest example of this is
the sub-pixel convolution method introduced by Shi et al. in 2016 [50]. With this approach
the network input is the original low resolution image, and the upsampling is done at the
last stage of the network using a learnable filter. This approach has two advantages: first,
the computational costs are lower when most the processing is done in the LR space, and
second, the learned upscaling filter can perform more optimally than bicubic upscaling.
Also, when using the bicubic interpolation as the first processing step, some of the original
image information will be lost. Main disadvantage of this approach is, that the same
network structure or model cannot be directly used for multiple scaling factors.

3. Super-resolution 32

As was mentioned in Section 2.4, the networks can also be classified by the loss function
they use. Most of the SR methods aim to maximize the PSNR score of the output image
and choose either ℓ1 or ℓ2 losses as the optimization target. This approach works well
when the aim is to reconstruct the HR image as accurately as possible, but the results are
not always visually pleasing. It has been shown that the PSNR correlates poorly with the
perceived quality, which has prompted researchers to try different perceptual losses [49]
for the network training. Another way to produce perceptually better images is adversarial
training, in which two different networks are trained in parallel: a discriminative network
that tries to distinguish generated images from real ones and a generative network that tries
to generate images that fool the discriminative network [20]. These generative adversarial
networks (GAN) have been successfully used for SISR by Ledig et al. [35] and Sajjadi et
al. [49] and they can produce visually pleasing images with realistic textures and details.

The next two subsections describe in more detail the two above mentioned approaches to
upsampling, HR and LR networks. The third subsection overviews the SR methods aiming
for maximal perceptual quality instead of high PSNR scores. This section will not cover
the theoretical details of convolutional neural networks, as they can be found from Section
2.4 instead.

3.5.1 HR Networks for SISR

The first CNN based method for super-resolution was the SRCNN by Dong et al. [6]
published in 2014. The network structure is simple compared to the state-of-the-art CNNs
[53], but it managed to outperform the competing methods of its time. It is still a good
example of how an end-to-end mapping from a low resolution input to a super-resolved
output can be achieved with neural networks, and it serves as a performance baseline
method in many newer publications. The network input is an LR image upscaled to the
target high resolution using bicubic interpolation, which leads to the name HR network
used by Shi et al. [51]. This type of network can also be thought as a network for correcting
the errors between the interpolated image and the ground truth image.

The SRCNN network structure is visualized in Figure 3.1. It is a fully convolutional
feed-forward network consisting of three convolutional layers with ReLU (rectified linear
unit) activations between them. The authors named the three stages as "Patch extraction
and representation", "Non-linear mapping" and "Reconstruction" to draw an analogy to
sparse coding based SR methods and to show that those can be viewed also as convolutional
networks.

The filter sizes f1 and f3 shown in the Figure 3.1 were chosen by the authors to be 9 and 5
respectively, in which the case size of the input patch used to construct a single output pixel
(the receptive field of the network) is 13×13 pixels. SRCNN does not use any padding in
the convolutional layers, which makes the output image 12 pixels smaller than input on
both dimensions.

3. Super-resolution 33

Figure 3.1. The network structure of SRCNN [6].

In 2015 Kim et al. [30] introduced VDSR, which improves over SRCNN in a few ways.
First, it increases the number of convolutional layers from 3 to 20. It uses the same filter
size of 3×3 on each layer, which increases the receptive field to 41×41. Additionally
zero padding is used on every convolutional layer, which keeps the image size unchanged
throughout the network. The second notable improvement is the residual connection.
Instead of passing the whole LR input image through the network like SRCNN, VDSR
network is trained only to estimate the difference of bicubic upscaled input and the desired
HR output. The VDSR structure is visualized in Figure 3.2.

Figure 3.2. The network structure of VDSR [30].

A year later Kim et al. [31] introduced DRCN, a method very similar to VDSR, with the
biggest difference being the recursive structure of the network. One of the convolutional
layers and its ReLU activation is used multiple times in a single forward pass. This
layer’s output is feeded back to its input up to 16 times, forming a loop inside the network.
All 16 intermediate outputs are used when constructing the final output image. Every
convolutional layer uses 3×3 filters, and through the longest chain the image passes 20
convolutional layers. This produces 41×41 receptive field identical to VDSR with less

3. Super-resolution 34

trainable parameters. The performance is almost identical to VDSR in terms of PSNR,
but the reduced parameter count comes with the cost of increased complexity and more
difficult training process.

In 2017 Zhang et al. [67] introduced DnCNN, which uses the same model for three different
tasks: multi scale SR, Gaussian denoising, and JPEG deblocking. The network structure is
almost identical to VDSR, with the exception of added batch normalization layers in the
hidden layers. In SR task it performs almost identically with VDSR, while still performing
well in the denoising and deblocking tasks.

3.5.2 LR Networks for SISR

Although using a bicubic upscaling as preprocessing simplifies the network design and
enables multiple scaling factors with a single model, in 2016 Shi et al. demonstrated that
this approach is sub-optimal and introduces unnecessary computational overhead [50].
They proposed a scheme where the image is upsampled at the last stage of the network
with a method they called sub-pixel convolution. They named the network ESPCN, and its
structure is visualized in Figure 3.3. The main advantages of doing the feature extraction in
LR space are the lower computational costs and memory requirements, and more optimal
performance when the upsampling filters can be learned separately for each feature.

Figure 3.3. The network structure of ESPCN for scale factor of r [50].

During the same year Dong et al. [7] independently proposed a similar scheme with
their improved version of SRCNN utilizing deconvolution as the upsampling layer. Both
deconvolution and sub-pixel convolution can achieve identical results when the filters are
learned, and the differences are mostly in the implementation. A more detailed explanation
of both upsampling approaches can be found from the Section 2.4.

Ledig et al. [35] improved upon the ESPCN concept with their SRResNet architecture
by incorporating the residual block structure originally introduced by He et al. [23] for
image classification. SRResNet takes the residual connection of VDSR even further, by
arranging the layers to blocks of two consequent convolutions and connecting the input
of each block to its output. The residual connections are used to alleviate the problem of
vanishing gradients and thus ease the training of deeper networks. The SRResNet structure
is shown in Figure 3.4. Although their paper mainly concentrated on perceptual quality

3. Super-resolution 35

with their SRGAN architecture, their SRResNet model optimized for MSE outperformed
DRCN by a clear margin [35].

Figure 3.4. The network structure of SRResNet [35].

SRResNet structure proved out be a popular starting point for contestants in the NTIRE2017
Challenge on Single Image Super-Resolution [53], and the winner of the competition, EDSR
by Lim et al.[36], is very similar to SRResNet with few notable differences. EDSR leaves
out the batch normalization completely, which lowers the memory usage and increases the
performance. In addition, they use a constant scaling of the residuals to keep the training
procedure more stable. These two techniques allow the increasing of the network depth
and filter count, which leads state-of-the-art results in terms of PSNR. They also introduce
a multi-scale architecture called MDSR, where the input and output sections of the network
are separate for scale factors of 2, 3, and 4, but the central layers are shared. Both networks
are shown in Figure 3.5.

(a) EDSR (b) MDSR

Figure 3.5. The network structures of EDSR and MDSR [30].

The residual block structure was taken even further by the DenseNet architecture introduced
by Huang et al. in 2017 [25], in which output of every layer is directly connected to the
inputs of every subsequent layer. It was first utilized for SISR by Tong et al. in 2017 [58]
with their SRDenseNet method, and later extended by Wen et al. in 2018 [63] with the
DRNet architecture.

Dense connections are also used in the D-DBPN network by Haris et al. [21], but otherwise
it has a very different approach in comparison to other SISR networks. Instead of doing all

3. Super-resolution 36

feature extraction in LR space and upsampling only at the very last stage, it incorporates
multiple upsampling units in conjunction with immediate downsampling. This approach is
inspired by the iterative back-projection algorithm originally introduced for MISR by Irani
and Peleg [27] and the authors name this approach as deep back-projection network. The
network architecture is illustrated in Figure 3.6.

Figure 3.6. The network structure of D-DBPN [21].

D-DBPN was one the winners of the NTIRE 2018 Challenge on Single Image Super-
Resolution [56], and three other methods shared the first place with it on the competition
track with bicubic downsampling and scaling factor of 8. One those was utilizing the
EDSR network structure and two others utilized a pyramid structure where the upsampling
is done gradually, by increasing the resolution in multiple steps. ProSR by Wang et al. [61]
was other one of those pyramid methods, and its architecture is shown in Figure 3.7.

Figure 3.7. The network structure of ProSR [61].

ProSR network can produce multiple scales with the same model, with a separate input
layer used for each factor like in the MDSR network. It also utilizes a similar residual
connection between input and output as VDSR, with bicubic upsampling used for scaling
the input for residual estimation. Dense connections are used within the pyramid levels
and sub-pixel convolution is used for upsampling at the last stage of each pyramid level.

3. Super-resolution 37

There are of course other CNN architectures for SISR, but they are outside the scope of this
thesis. The above mentioned ones are the most prevalent and represent the state-of-the-art
super-resolution, as can be seen in the results of recent SISR competitions [3, 53, 56].

3.5.3 Networks Optimized for Perceptual Quality

Although optimizing for ℓ1 or ℓ2 losses will produce the highest PSNR scores, the results
are typically overly smooth and lack high frequency details and texture. One approach
to gain more visually pleasing results, is to change the optimization target from MSE
to a perceptual loss function. In the context of texture synthesis, Gatys et al. [14, 15]
introduced the idea of using the features from a pre-trained image classification network
for determining the perceptual similarity of two images. This approach was applied to
super-resolution first by Johnson et al. [28] in 2016, who used the features from VGG
image classification network [52].

Ledig et al. [35] and Sajjadi et al. [49] independently developed this approach further
by using a generative adversarial network (GAN) in addition to the perceptual loss from
VGG features. GANs consist of two different networks: one generating the images, and
another network (the adversarial network) trying to discriminate between generated images
and ground-truth target images. They are trained in parallel to compete with each other:
generative network tries to fool the adversarial network and adversarial network is trained
to discriminate better.

Ledig et al. use the SRResNet architecture with their SRGAN method [35], and Sajjadi
et al. use similar structure with their ENet-PAT method. ENet-PAT does the upscaling
inside network like SRResNet, but uses nearest neighbor interpolation instead of sub-pixel
convolution. Both methods produce perceptually pleasing SR images, but their PSNR and
SSIM scores are significantly lower than of any MSE optimized method. In some cases
even bicubic interpolation scores higher. Ledig et al. did extensive mean-opinion-score
testing for different SR methods, and concluded that the SRGAN produces perceptually
better images by a clear margin in comparison to methods optimized for low MSE.

Wang et al. extended their ProSR architecture with adversarial training, and named this
method as ProGanSR [61]. In contrast to SRGAN and ENet-PAT, only adversarial loss is
utilized in the training process of ProGanSR, and no ℓ1, ℓ2 or perceptual losses are used.
They adopt a curriculum learning scheme, where the network is trained with samples of
gradually increasing scaling factors and difficulty. The authors argue that this scheme,
along with the residual output structure of ProSR, stabilizes the training process and enables
them to use only adversarial loss as the optimization target.

38

4. TESTING METHODOLOGY

Four CNN-based algorithms with publicly available implementations were chosen for this
comparison: D-DBPN [21], EDSR [36], ENet-PAT [49], and VDSR [30]. In addition to
CNN-based methods, A+ [55] was chosen to represent classical ML methods, and SelfExSR
[26] and WSD-SR [4] were selected to represent the self-similarity based approach. Main
features of these methods are shown in Table 4.1.

Table 4.1. Summary of the compared SR methods.

Method Type Platform
(CNN library)

Network
type Loss function No. of trainable

parameters

D-DBPN CNN Python
(PyTorch) LR ℓ2

5.95 M (x2)
10.4 M (x4)

EDSR CNN Lua
(Torch) LR ℓ1 43 M

ENet-PAT CNN Python
(Tensorflow) LR Perceptual, adversarial

and texture losses 853 k

VDSR CNN MATLAB
(MatConvNet) HR ℓ2 670 k

A+ Neighbourhood
embedding MATLAB - - -

SelfExSR Self-similarity MATLAB - - -
WSD-SR Self-similarity MATLAB - - -

Comparisons were made on four widely used datasets: Set5 by Bevilacqua et al. [2], Set14
by Zeyde et al. [66], Urban100 by Huang et al. [26], and DIV2K validation set from NTIRE
2017 competition [1, 53]. As these sets are common, they have also been used during the
development of most of the selected methods. The results on these datasets have likely
affected the choice of hyperparameters for those methods, and thus the results on these
datasets cannot be considered as unbiased estimates of the true generalization capability
of those methods. For this reason TAMPERE17 image database by Ponomarenko et al.
[44] has been included in the comparison. None of the chosen methods report results
for TAMPERE17, and most of them even predate the publication of this database, which
makes the database an optimal choice for this comparison.

Three scaling factors (2, 3 and 4) were used for all methods except for ENet-PAT and
D-DBPN. ENet-PAT supports only factor of 4 and D-DBPN supports factors 2 and 4. All
HR input images are first downscaled with bicubic downsampling (MATLAB’s imresize
function), and then super-resolved with each of the chosen methods. The resulting images
are then compared to the ground truth images with PSNR and SSIM metric. When
calculating the metrics, the borders of the image are discarded, with the width of border
set to the scaling factor. It is common to calculate these metrics only on the luma (Y)
channel of YCbCr color space, as human visual system is more sensitive to changes in

4. Testing methodology 39

brightness than changes in color. In addition to luma channel metrics, we also calculate
both of the metrics on the full RGB image for comparison. All methods are integrated
into a MATLAB testbench which automates the downscaling, super-resolving and quality
metric calculation.

All except one of the methods were tested on a Linux server with a 2.4 GHz Intel Xeon
E5-2640 v4 CPU, 16 GB of usable RAM, and a nVidia Tesla P100 GPU with 16 GB of
memory. The only exception is SelfExSR, which depends on Windows-only binaries and it
was tested on Windows 10 desktop with 3,4 GHz Intel i5-4670 CPU and 16 GB of RAM.
The SelfExSR utilized two CPU cores concurrently and all the other methods were running
on a single thread. The CNN based methods, D-DBPN, ENet-PAT, EDSR and VDSR,
utilize also the GPU for the computations.

The computational complexity of the algorithms was compared by calculating the average
processing time of a single image in each dataset. This comparison is not completely fair
for non-MATLAB methods, due to the limitations of the MATLAB testbench and the
way the integration of external non-MATLAB methods has been done as Python and Lua
methods cannot be called directly from MATLAB. When testing external methods, the
testbench stores the LR input image to disk and calls the external method through a system
call. External method then initializes itself (loads the network model etc.), reads the input
image from disk, super-resolves the image and stores the output to disk. This output image
is then read from the disk by the testbench, which then resumes the normal process. All
this overhead processing is counted when measuring the processing time of a single image.
Native MATLAB methods do not need similar extraneous file storing or reading and the
initialization is done only once and it is not counted in the measured processing time.

Due to the limited amount of GPU memory available, some of the CNN based methods are
not able to process the largest images in a single pass. Thus the input images have to be
split into smaller pieces before processing and then stitched back together to produce the
final image. This is done recursively so that the input image patch is split into four equally
sized pieces until the pixel count of the patch is under a specified value. When splitting the
patch, extra padding is left so that the patches overlap a little. For EDSR and D-DBPN
this splitting was already implemented by their original authors, but for ENet-PAT and
VDSR it had to be implemented separately. The maximum pixel count was set through
trial-and-error to highest possible value that enabled processing of all the images with
all scaling factors. The values were 276677 for D-DBPN, 70000 for EDSR, 260100 for
ENet-PAT, and 1050000 for VDSR. The padding parameters were left to the default values
for EDSR (10 pixels) and D-DBPN (16 pixels) and set to 32 pixels for ENet-PAT and
VDSR. For D-DBPN, the self ensemble mode was enabled, in which the output is produced
by averaging over 8 different SR images, each produced with a different combination of
flips and rotation.

40

5. RESULTS

Quantitative analysis was performed with PSNR and SSIM metrics, by calculating them
both on the luma channel and full RGB image. Results were averaged over all the images
of a dataset and the results are shown in following tables. Tables 5.1, 5.2 and 5.3 show the
PSNR and SSIM results for scaling factors 2, 3 and 4 respectively. Higher values indicate
better performance, and in each row the best performing method is highlighted with blue
color, the second best with green and the third best with red.

Table 5.1. Average PSNR and SSIM scores for scaling factor of 2.
Dataset Metric Bicubic A+ SelfExSR WSD-SR VDSR EDSR D-DBPN

Set5

PSNRY 33.68 36.58 36.58 37.21 37.56 38.21 38.23
PSNRRGB 31.80 34.34 34.50 35.07 35.17 36.03 36.02

SSIMY 0.9306 0.9547 0.9547 0.9577 0.9591 0.9614 0.9614
SSIMRGB 0.9093 0.9357 0.9372 0.9405 0.9404 0.9450 0.9449

Set14

PSNRY 30.24 32.29 32.37 32.83 32.99 33.86 33.89
PSNRRGB 28.68 30.49 30.73 31.12 31.11 32.16 32.19

SSIMY 0.8694 0.9060 0.9061 0.9103 0.9123 0.9198 0.9207
SSIMRGB 0.8468 0.8807 0.8853 0.8887 0.8864 0.8995 0.9004

Urban100

PSNRY 26.88 29.24 29.55 30.29 30.75 32.98 32.71
PSNRRGB 25.44 27.66 28.06 28.71 29.05 31.32 31.06

SSIMY 0.8412 0.8946 0.8978 0.9067 0.9144 0.9361 0.9339
SSIMRGB 0.8280 0.8821 0.8875 0.8962 0.9017 0.9271 0.9248

DIV2K

PSNRY 32.44 34.53 34.54 34.91 35.39 36.57 36.49
PSNRRGB 31.04 32.98 33.09 33.41 33.75 35.07 34.99

SSIMY 0.9042 0.9328 0.9326 0.9364 0.9402 0.9488 0.9481
SSIMRGB 0.8933 0.9225 0.9237 0.9272 0.9298 0.9411 0.9403

TAMPERE17

PSNRY 30.50 32.23 32.28 32.68 33.07 34.25 34.29
PSNRRGB 28.75 30.21 30.45 30.70 30.86 32.23 32.27

SSIMY 0.8517 0.8899 0.8908 0.8948 0.8984 0.9137 0.9138
SSIMRGB 0.8310 0.8687 0.8738 0.8767 0.8767 0.8978 0.8979

The results are consistent across different datasets and scaling factors, with EDSR and
D-DBPN being the best performing methods by a clear margin. On scaling factors 2 and 4,
and on all four metrics, EDSR outperforms D-DBPN on Urban100 and DIV2K datasets
by a small margin, but D-DBPN outperforms EDSR consistently on Set14, albeit with a
very small margin. The results on Set5 are more even, with D-DBPN scoring higher on
Y-channel metrics and EDSR on RGB-metrics. Differences on Set5 scores are neglible, but
consistent across both scaling factors. EDSR attains higher SSIM scores on TAMPERE17
with scaling factor 4, but DPBN performs better on the PSNR metrics and on all metrics of
scaling factor 2. Scaling factor 3 is not supported by D-DBPN, thus EDSR is the clear
winner in all test cases. Otherwise their results are so close that they can be considered
equally well performing.

The third place after EDSR and D-DBPN is contested by WSD-SR and VDSR, with VDSR
scoring higher on most of the metrics. The results even out on scaling factor 4, with
WSD-SR exceeding VDSR marginally on PSNR scores of Set5 and Set14. On all scaling
factors VDSR outperforms WSD-SR consistently on DIV2K and TAMPERE17 datasets.

5. Results 41

Table 5.2. Average PSNR and SSIM scores for scaling factor of 3.

Dataset Metric Bicubic A+ SelfExSR WSD-SR VDSR EDSR

Set5

PSNRY 30.40 32.60 32.65 33.50 33.68 34.68
PSNRRGB 28.63 30.56 30.76 31.51 31.51 32.67
SSIMY 0.8685 0.9082 0.9094 0.9187 0.9212 0.9293

SSIMRGB 0.8381 0.8798 0.8834 0.8929 0.8934 0.9055

Set14

PSNRY 27.54 29.13 29.24 29.72 29.75 30.44
PSNRRGB 26.07 27.48 27.72 28.12 28.03 28.89
SSIMY 0.7751 0.8197 0.8225 0.8298 0.8319 0.8459

SSIMRGB 0.7480 0.7891 0.7972 0.8020 0.8002 0.8215

Urban100

PSNRY 24.46 26.05 26.46 26.95 27.13 28.82
PSNRRGB 23.03 24.52 24.99 25.40 25.52 27.25
SSIMY 0.7363 0.7987 0.8103 0.8209 0.8286 0.8663

SSIMRGB 0.7154 0.7784 0.7926 0.8023 0.8080 0.8505

DIV2K

PSNRY 29.65 31.08 31.16 31.47 31.74 32.75
PSNRRGB 28.25 29.56 29.73 29.98 30.15 31.29
SSIMY 0.8308 0.8645 0.8667 0.8726 0.8772 0.8937

SSIMRGB 0.8135 0.8470 0.8515 0.8566 0.8596 0.8801

TAMPERE17

PSNRY 28.03 29.27 29.35 29.68 29.99 31.04
PSNRRGB 26.33 27.39 27.60 27.81 27.97 29.17
SSIMY 0.7536 0.7975 0.8006 0.8067 0.8125 0.8363

SSIMRGB 0.7235 0.7667 0.7743 0.7785 0.7811 0.8113

Table 5.3. Average PSNR and SSIM scores for scaling factor of 4.
Dataset Metric Bicubic ENet-PAT A+ SelfExSR WSD-SR VDSR EDSR D-DBPN

Set5

PSNRY 28.43 28.85 30.30 30.32 31.39 31.36 32.50 32.53
PSNRRGB 26.70 26.99 28.33 28.51 29.46 29.26 30.57 30.56

SSIMY 0.8108 0.8156 0.8595 0.8614 0.8815 0.8830 0.8982 0.8983
SSIMRGB 0.7730 0.7738 0.8228 0.8282 0.8485 0.8471 0.8685 0.8679

Set14

PSNRY 26.00 25.93 27.32 27.45 27.98 27.97 28.72 28.77
PSNRRGB 24.57 24.51 25.75 25.99 26.43 26.33 27.24 27.28

SSIMY 0.7037 0.6852 0.7506 0.7545 0.7657 0.7674 0.7868 0.7869
SSIMRGB 0.6742 0.6538 0.7179 0.7275 0.7351 0.7333 0.7609 0.7615

Urban100

PSNRY 23.14 23.63 24.34 24.80 25.16 25.17 26.65 26.55
PSNRRGB 21.71 22.10 22.83 23.34 23.63 23.60 25.12 25.03

SSIMY 0.6596 0.6944 0.7204 0.7392 0.7502 0.7535 0.8043 0.7987
SSIMRGB 0.6333 0.6641 0.6946 0.7166 0.7259 0.7273 0.7838 0.7781

DIV2K

PSNRY 28.11 27.61 29.27 29.35 29.65 29.80 30.74 30.73
PSNRRGB 26.68 26.09 27.75 27.92 28.16 28.22 29.28 29.27

SSIMY 0.7750 0.7544 0.8088 0.8121 0.8196 0.8236 0.8453 0.8440
SSIMRGB 0.7526 0.7249 0.7860 0.7920 0.7981 0.8004 0.8271 0.8258

TAMPERE17

PSNRY 26.61 25.83 27.61 27.69 28.00 28.17 29.14 29.16
PSNRRGB 24.93 24.13 25.79 25.99 26.19 26.26 27.35 27.38

SSIMY 0.6808 0.6482 0.7228 0.7277 0.7349 0.7404 0.7684 0.7673
SSIMRGB 0.6445 0.6088 0.6859 0.6951 0.6998 0.7029 0.7372 0.7363

A+ and SelfExSR perform very similarly, with a clear margin between them and WSD-SR
and VDSR. SelfExSR manages to outperform A+ clearly on Urban100 dataset, which is a
set introduced by the authors of SelfExSR, but on all the other datasets the differences are
minor.

ENet-PAT is the only method in this comparison, that has not been optimized for PSNR
or any other reconstruction error metric. Instead, the authors have aimed for a purely
perceptual quality, which is evident in the PSNR and SSIM scores of ENet-PAT in Table
5.3. ENet-PAT manages to outperform bicubic upsampling only on Set5 and Urban100,
and on other datasets it looses on all metrics.

5. Results 42

The computational complexity of the methods was analyzed by measuring the average
time it took to process a single image, and the results are visible in Table 5.4. VDSR
is overall the fastest method, with only A+ surpassing it on Set5 with scaling factors 3
and 4. In this comparison, the self-similarity based methods SelfExSR and WSD-SR are
orders of magnitude slower than other methods, with WSD-SR being slowest on all datasets
and scales. As was mentioned in Chapter 4, the overhead caused by the integration of
non-MATLAB methods into the testbench inflates the measured time for D-DBPN, EDSR
and ENet-PAT. As this overhead is mostly caused by the method initialization, it is not
strongly dependent on the size of the input image. With the larger images of the DIV2K
dataset, the overhead becomes relatively smaller. Thus EDSR and ENet-PAT manage to
outperform the A+ on DIV2K, which is otherwise the second fastest method. It is also
worth noting, that as VDSR upsamples the input image to target resolution before passing
it through the network, its processing time is not dependent on the scaling factor in this
setup. All other methods are consistently slower on smaller scale factors due to larger input
images, except for WSD-SR, which is fastest on factor 4 like others, but slowest on scale
factor 3.

Table 5.4. Average processing time of a single image for each method, dataset and scaling
factor.

Dataset Scale ENet-PAT A+ SelfExSR WSD-SR VDSR EDSR D-DBPN

Set5
2 0.84 39.65 60.31 0.79 5.22 7.37
3 0.44 28.49 78.18 0.61 5.16
4 5.47 0.33 24.95 79.16 0.60 5.13 6.86

Set14
2 1.57 95.80 207.49 0.66 5.61 9.02
3 0.88 67.92 238.39 0.65 5.35
4 5.31 0.67 57.66 213.54 0.65 5.22 7.68

Urban100
2 6.16 388.11 951.21 0.85 7.94 16.79
3 3.84 269.04 1136.63 0.85 6.52
4 5.75 3.02 226.72 986.45 0.88 5.97 11.13

DIV2K
2 23.57 1474.76 1955.21 1.82 16.65 48.39
3 15.01 1345.34 2165.90 1.82 11.45
4 7.26 12.03 882.99 1841.03 1.82 8.78 23.73

TAMPERE17
2 1.77 134.23 197.84 0.66 5.77 9.22
3 1.02 88.87 219.47 0.67 5.47
4 5.40 0.77 79.74 195.66 0.66 5.27 7.75

For qualitative analysis 5 images were chosen to highlight the differences between the
methods. First two images are numbers 66 and 92 from Urban100, and 64× 64 pixel
patches extracted from them can be seen in Figures 5.1 and 5.2 respectively. Due to the
large size of the original images, full resolution versions are included only in Appendix A
on Figures A.1 and A.2. Third example is the image number 858 from DIV2K validation
dataset, and patches extracted from it are shown in Figure 5.3 and full size images can
be found from Appendix A, Figure A.3. Last two images are numbers 238 and 256 from
TAMPERE17 dataset and they are shown in full size in Figures 5.4 and 5.5 respectively.

All figures show the output images from the seven selected SR methods and bicubic
interpolation, with their corresponding PSNRY scores included. The low resolution input

5. Results 43

images and the ground truth HR images have been added for reference. To visualize
better the amount of input information, the LR images have been upsampled with NN
interpolation to the target resolution. Only scaling factor of 4 has been used for the figures,
as the differences between the methods are more visible on higher scaling factors and it is
the only factor supported by all of the methods.

(a) LR input with NN upsampling (b) Bicubic (PSNR: 21.34 dB)

(c) ENet-PAT (PSNR: 21.00 dB) (d) A+ (PSNR: 21.85 dB)

(e) SelfExSR (PSNR: 21.89 dB) (f) WSD-SR (PSNR: 22.09 dB)

(g) VDSR (PSNR: 22.14 dB) (h) EDSR (PSNR: 22.35 dB)

(i) D-DBPN (PSNR: 22.27 dB) (j) Ground truth

Figure 5.1. Patches extracted from image 66 from Urban100 dataset super-resolved with
scaling factor of 4.

Urban100 was the most difficult dataset to super-resolve based on the average PSNR scores,
and Figures 5.1 and 5.2 visualize some of the reasons for this. As the images mostly
represent buildings and similar man-made structures, there are a lot of simple geometric
shapes with sharp edges visible. These features are relatively easy to reconstruct for all of
the methods, but the problems arise with the areas between the edges. They often contain
high contrast, high frequency details and textures, and some of the images are considerably
noisy. Figure 5.1(j) highlights the noise and texture visible in the ground truth image,
which is hard to reconstruct for all the methods. PSNR values are low, and all methods
except ENet-PAT produce overly smooth and unrealistic surfaces. ENet-PAT on the other
hand hallucinates highly distorted and unplausible details. The rightmost patch of Figure
5.1(c) is a good example of this, as ENet-PAT produces repetitive pattern of curly vertical

5. Results 44

lines to an area which is relatively smooth on the ground truth image.

(a) LR input with NN upsampling (b) Bicubic (PSNR: 16.58 dB)

(c) ENet-PAT (PSNR: 17.46 dB) (d) A+ (PSNR: 17.33 dB)

(e) SelfExSR (PSNR: 17.86 dB) (f) WSD-SR (PSNR: 18.04 dB)

(g) VDSR (PSNR: 18.14 dB) (h) EDSR (PSNR: 19.14 dB)

(i) D-DBPN (PSNR: 19.06 dB) (j) Ground truth

Figure 5.2. Patches extracted from image 92 from Urban100 dataset super-resolved with
scaling factor of 4.

Figure 5.2 highlights another great source of difficulty in the Urban100 dataset. The ground
truth image contains a lot of repetitive high contrast line patterns, with frequency contents
way beyond the Nyquist frequency limit of the LR image. These features are low-pass
filtered into to almost completely flat surfaces in the input image (Figure 5.2(a)), and
understandably none of the methods are able to reconstruct these patterns. This leads to
very low PSNR values and unplausible output images. Also worth noting is the aliasing
visible in the second patch from left, which leads to all methods producing line patterns
with wrong orientation. Only D-DBPN manages to produce lines with somewhat correct
orientation.

Natural images tend to have a lot of irregular textures, that are very difficult to super-
resolve accurately. However, methods optimized for perceptual quality can produce very
believable results in these cases. One example of this is image 858 from DIV2K shown in
Figure 5.3. ENet-PAT manages to create very natural looking textures, which are almost
indistinguishable from the ground truth. All other methods produce very smooth textures,
that make the images look very artificial.

5. Results 45

(a) LR input with NN upsampling (b) Bicubic (PSNR: 28.23 dB)

(c) ENet-PAT (PSNR: 27.28 dB) (d) A+ (PSNR: 29.09 dB)

(e) SelfExSR (PSNR: 29.05 dB) (f) WSD-SR (PSNR: 29.23 dB)

(g) VDSR (PSNR: 29.36 dB) (h) EDSR (PSNR: 29.94 dB)

(i) D-DBPN (PSNR: 29.94 dB) (j) Ground truth

Figure 5.3. Patches extracted from image 858 from DIV2K validation dataset
super-resolved with scaling factor of 4.

Another example is image 238 from TAMPERE17, a highly textured image of a rock surface
covered in moss, which is shown in Figure 5.4. Once again ENet-PAT manages to produce
the most realistic looking output, but with a closer look one can distinguish the somewhat
noisy and oscillative looking artifacts. With natural images like this, humans have very
strong expectations about the textures, and it is very difficult to fool them with artificial
details. For all of the PSNR optimized methods this image is almost equally difficult, and
the difference in PSNRY is only 0.32 dB between SelfExSR and EDSR/D-DBPN. This
image also highlights quite well how poorly SelfExSR performs on natural images and it
produces similar, highly distinctive artifacts on all images with irregular textures.

Figure 5.5 shows a photo of a bulletin board with various posters, the image number 256
from TAMPERE17. It has a lot of smooth surfaces and sharp edges, that should be easy to
super-resolve accurately. Nevertheless the A+ and SelfExSR outputs are relatively blurry,
and ENet-PAT produces ringing like artifacts around the edges. Other methods, especially
EDSR and D-DBPN produce very sharp and accurate edges. They also manage to improve
the readability of the text quite notably, which is evident especially in the upper left corner.
Using SR for text processing does have its risks though, as we can see in the upper right

5. Results 46

(a) LR input with NN upsampling (b) Bicubic (PSNR: 22.47 dB) (c) ENet-PAT (PSNR: 19.95 dB)

(d) A+ (PSNR: 22.80 dB) (e) SelfExSR (PSNR: 22.68 dB) (f) WSD-SR (PSNR: 22.79 dB)

(g) VDSR (PSNR: 22.85 dB) (h) EDSR (PSNR: 23.00 dB) (i) D-DBPN (PSNR: 23.00 dB)

(j) Ground truth

Figure 5.4. Image 238 from TAMPERE17 dataset super-resolved with scaling factor of 4.

5. Results 47

(a) LR input with NN upsampling (b) Bicubic (PSNR: 27.66 dB) (c) ENet-PAT (PSNR: 27.68 dB)

(d) A+ (PSNR: 28.60 dB) (e) SelfExSR (PSNR: 28.50 dB) (f) WSD-SR (PSNR: 28.95 dB)

(g) VDSR (PSNR: 29.30 dB) (h) EDSR (PSNR: 30.79 dB) (i) D-DBPN (PSNR: 31.02 dB)

(j) Ground truth

Figure 5.5. Image 256 from TAMPERE17 dataset super-resolved with scaling factor of 4.

5. Results 48

corner. The "eestec" logo has become "oostoc" in the super-resolved images, and errors
like this might be critical in many use cases.

In this subjective analysis, it was noted that higher PSNR might not always signify higher
perceived quality, as is the case with some of the ENet-PAT output images. Although,
when comparing only PSNR optimized methods, the perceived quality correlates extremely
well with PSNR and SSIM scores and the top-performing methods EDSR and D-DBPN
consistently produce the most pleasing result.

49

6. CONCLUSIONS

In this thesis, a literature review and comparative analysis on single image super-resolution
was performed. The main focus was on methods utilizing convolutional neural networks.
These were primed in Chapter 2, where theoretical background was given on the topics of
sampling and interpolation, image quality metrics, and convolutional neural networks. A
survey on both the history of super-resolution, and modern developments of it were given
in Chapter 3. SISR methods based on traditional machine learning, and methods based on
self-similarity were discussed briefly to provide a reference point to CNN based methods.
For our comparison, A+ was chosen to represent the traditional machine learning approach,
and SelfExSR and WSD-SR to represent self-similarity based methods.

CNN based SISR methods can roughly be divided into two groups, which were the main
focus of Chapter 3. The older group contains methods using HR networks, which upsample
the image before feeding it to the network. The more modern and efficient approach are
the LR networks, that upsample the image at the last stages of the network. Four CNN
methods were chosen for comparison: VDSR, EDSR, D-DBPN, and ENet-PAT. VDSR is
the only representative of the HR network group, with rest of the methods falling to the
latter group. In this comparison EDSR is the purest example of LR networks, as it has a
very deep architecture and the upsampling is done at the very last layers, with learnable
filters. Also ENet-PAT does the upsampling at the last stages, but uses nearest neighbor
interpolation instead. D-DBPN uses learnable filters, but adopts a structure were the data
is first upsampled and immediately downsampled. The upsampling-downsampling-scheme
is repeated multiple times throughout the network.

In total seven different algorithms were chosen for performance comparison, and they were
tested on five datasets. Four of those were widely used datasets: Set5, Set14, Urban100,
and DIV2K. As those sets have been used also during the development phase of most of
the compared methods, the image quality results on those sets might be biased. Thus a fifth
dataset, TAMPERE17, was included. It has not been used by the authors of any chosen
method, so the results on it are less biased.

Quantitative analysis was done using two image quality metrics, PSNR and SSIM. Both
are de facto metrics used in SISR research, and they are typically calculated only on the
luma channel of images transformed to YCbCr color space. Additionally, we calculated the
metrics on the full RGB color space to observe if the relative performance of the methods
is dependent on the color space. Thus four different metrics are calculated for each dataset,
which makes a total of 20 test cases for each scaling factor.

Results show that CNN based SISR methods offer unparalleled performance in comparison

6. Conclusions 50

to other methods, on both PSNR and SSIM metrics. On scaling factor of 4, EDSR and
D-DBPN share the overall first place, with only neglible difference between them. EDSR
scores highest on 12 out of 20 cases, with D-DBPN taking the first place on rest. On the
scaling factor of 2, the number of first places is split evenly between the two methods.

There is a clear margin to the next best methods, VDSR and WSD-SR. Their results are
quite close to each other, but clearly below EDSR and D-DBPN. The difference in PSNRY

between them and the top-performers is typically around 1 dB, which is quite notable and
the difference is clearly visible in the resulting images. VDSR outperforms WSD-SR by
a small margin in most of the test cases. WSD-SR scores higher in 6 out of 20 cases on
scaling factor of 4, and 3 out of 20 on other scaling factors.

There is once again a clear drop in all metrics, when moving to the next methods, A+ and
SelfExSR. They are both from 2015, and have been included to highlight how rapidly
the field has progressed in recent years. They are both around 1.5 dB below EDSR and
D-DBPN, with SelfExSR scoring a little higher than A+ on all test cases.

ENet-PAT was the only method optimized for perceptual image quality, instead of minimiz-
ing MSE based reconstruction error. This is clearly visible in the quantitative results, and
ENet-PAT is below even bicubic interpolation on 12 out of 20 cases. ENet-PAT tries to
generate perceptually pleasing and plausible details, which comes with the cost of very low
performance on quantitative metrics. ENet-PAT does succeed at its goal on few cases, by
producing images almost indistinguishable from the ground truth images. Nevertheless, in
most cases it fails and produces very distinctive and unplausible artifacts.

ENet-PAT highlights a very notable issue in the other methods. Optimizing for low
reconstruction error leads to very good results on images with sharp edges and relatively
flat regions, but on highly textured images they produce overly smooth results that look very
unnatural. This issue has been noted also by other researchers in the field, and the first SISR
competition concentrating on perceptual quality was organized recently [3]. The competion
organizers noted that none of the commonly used full-reference image quality metrics are
able to properly estimate the mean-opinion-scores, and many of them (including PSNR
and SSIM) are actually anti-correlated with perceptual quality. No-reference metrics had a
better correlation with the mean-opinion-score, but even the best of them were inadequate
for proper perceptual quality assessment.

Since most of the methods in this comparison were optimized for MSE, the PSNR and SSIM
values seemed to correlate well with the perceived quality. PSNR and SSIM correlated
quite strongly with each other, with both RGB and Y color spaces. There were a few cases
where the relative ordering of the methods changed with different metrics, but in those
cases the differences were minor. There seems to be no extra information to be gained from
calculating PSNR and SSIM in the RGB color space. Also usage of both PSNR and SSIM
seems questionable in this context, as they both favor similar methods.

The numerical results are in line with other literature [53, 21], and they highlight another

6. Conclusions 51

trend in SISR research. The performance of MSE-optimized SISR seems to have reached
a saturation point recently, as D-DBPN, the winner of NTIRE2018 [56] competition,
performs almost identically to the previous year’s winner EDSR [53]. Furthermore, the
NTIRE2018 competition actually had the first place shared by 4 separate teams, as their
PSNR scores were within 0.05 dB from each other.

Most likely in the near future the SISR research focus will shift towards perceptually
optimized methods and even higher scaling factors, as the practical limits are approached
in MSE-optimized SISR and scaling factors of 4 or less. Nevertheless, the current state-of-
the-art still leaves room for improvement, especially in the computational complexity.

Tests were done using a very high-end GPU, and still D-DBPN took almost 50 seconds
process an average image from the DIV2K dataset on scaling factor of 2. The input images
were around 1000 pixels wide in that case, which is relatively low resolution by modern
standards. A typical cellphone camera produces much larger images, and has a lot less
processing power available. Thus algorithms like D-DBPN would be out of the question in
mobile applications, or in any similarly powered embedded systems.

CNN-based methods present the absolute state-of-the-art in SISR, both in image quality and
computational complexity, although there are still applications in which the self-similarity
based approach might be more suitable. The two tested self-similarity methods were
magnitudes slower, but they do have the advantage of not requiring any external data
or prior training. In addition, CNNs have a larger tendency to hallucinate completely
erroneous details, that might be critical in some applications. The more traditional machine
learning methods share the same disadvantages as CNNs, but have lower image quality.
Earlier methods like A+ had an advantage on computational complexity, but that gap has
been closed by modern GPUs.

It is worth noting that all comparisons were done in an artificial setting, as the LR input
images were downsampled with bicubic from the ground truth images without any noise
or other degradations. In real world scenarios the mapping from HR to LR is usually
unknown, and the LR images have noise, blur, and compression artifacts. None of the
tested methods take these issues into consideration, and they would most likely perform
sub-optimally with real world data [53, 56]. An interesting aspect for further research
would be the incorporation of perceptual quality optimization with input data degraded by
unknown noise, blur, and compression artifacts. This would correspond well to typical
consumer level applications for SISR, like video upscaling, and photo enhancement. In
those use-cases perceptual quality is prioritized over reconstruction accuracy, and they
would be highly suitable applications for CNN based SISR.

52

REFERENCES

[1] E. Agustsson, R. Timofte, NTIRE 2017 Challenge on Single Image Super-
Resolution: Dataset and Study, in: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2017.

[2] M. Bevilacqua, A. Roumy, C. Guillemot, M.l.A. Morel, Low-Complexity Single-
Image Super-Resolution based on Nonnegative Neighbor Embedding, in: Proced-
ings of the British Machine Vision Conference 2012, 2012, British Machine Vision
Association, pp. 1–135.

[3] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, L. Zelnik-Manor, 2018 PIRM
Challenge on Perceptual Image Super-resolution, in: ECCV, 2018.

[4] C. Cruz, R. Mehta, V. Katkovnik, K.O. Egiazarian, Single Image Super-Resolution
Based on Wiener Filter in Similarity Domain, IEEE Transactions on Image
Processing, Vol. 27, Iss. 3, Mar. 2018, pp. 1376–1389.

[5] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image Denoising by Sparse
3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image
Processing, Vol. 16, Iss. 8, Aug. 2007, pp. 2080–2095.

[6] C. Dong, C.C. Loy, K. He, X. Tang, Learning a Deep Convolutional Network
for Image Super-Resolution, in: ECCV, 2014, pp. 184–199. Available: http:
//link.springer.com/10.1007/978-3-319-10593-2_13

[7] C. Dong, C.C. Loy, X. Tang, Accelerating the Super-Resolution Convolutional
Neural Network, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.), ECCV,
Cham, Aug. 2016, Springer International Publishing, Lecture Notes in Computer
Science, p. 17.

[8] J. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization, Journal of Machine Learning Research, Vol. 12, 2011,
pp. 2121–2159.

[9] M. Ebrahimi, E.R. Vrscay, Solving the Inverse Problem of Image Zooming Using
“Self-Examples”, in: Image Analysis and Recognition, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007, pp. 117–130. Available: http://dx.doi.org/10.1007/
978-3-540-74260-9_11

[10] K. Egiazarian, A. Foi, V. Katkovnik, Compressed Sensing Image Reconstruction
Via Recursive Spatially Adaptive Filtering, in: 2007 IEEE International Conference
on Image Processing, Sept. 2007, IEEE, pp. I – 549–I – 552.

http://link.springer.com/10.1007/978-3-319-10593-2_13
http://link.springer.com/10.1007/978-3-319-10593-2_13
http://dx.doi.org/10.1007/978-3-540-74260-9_11
http://dx.doi.org/10.1007/978-3-540-74260-9_11

References 53

[11] K. Egiazarian, V. Katkovnik, Single image super-resolution via BM3D sparse
coding, in: 2015 23rd European Signal Processing Conference (EUSIPCO), Aug.
2015, IEEE, pp. 2849–2853.

[12] A. Eskicioglu, P. Fisher, Image quality measures and their performance, IEEE
Transactions on Communications, Vol. 43, Iss. 12, 1995, pp. 2959–2965.

[13] G. Freedman, R. Fattal, Image and video upscaling from local self-examples, ACM
Transactions on Graphics, Vol. 30, Iss. 2, Apr. 2011, pp. 1–11.

[14] L. Gatys, A.S. Ecker, M. Bethge, Texture Synthesis Using Convolutional Neu-
ral Networks, in: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Gar-
nett, R. (eds.), Advances in Neural Information Processing Systems 28, Curran
Associates, Inc., 2015, pp. 262–270. Available: http://papers.nips.cc/paper/
5633-texture-synthesis-using-convolutional-neural-networks

[15] L.A. Gatys, A.S. Ecker, M. Bethge, A Neural Algorithm of Artistic Style, CoRR,
Vol. abs/1508.0, Aug. 2015.

[16] R. Gerchberg, Super-resolution through Error Energy Reduction, Optica Acta:
International Journal of Optics, Vol. 21, Iss. 9, Sept. 1974, pp. 709–720.

[17] D. Glasner, S. Bagon, M. Irani, Super-resolution from a single image, in: 2009
IEEE 12th International Conference on Computer Vision, Sept. 2009, IEEE, pp.
349–356.

[18] R.C. Gonzalez, R.E. Woods, Digital image processing, 3rd ed., Prentice Hall,
Upper Saddle River, NJ, USA, 2008. Available: https://dl.acm.org/citation.cfm?
id=1076432

[19] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[20] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative Adversarial Nets, in: Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2,
Cambridge, MA, USA, 2014, MIT Press, NIPS’14, pp. 2672–2680.

[21] M. Haris, G. Shakhnarovich, N. Ukita, Deep Back-Projection Networks for Super-
Resolution, in: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[22] J.L. Harris, Diffraction and Resolving Power*, Journal of the Optical Society of
America, Vol. 54, Iss. 7, July 1964, p. 931.

[23] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016, IEEE, pp. 770–778.

http://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks
http://papers.nips.cc/paper/5633-texture-synthesis-using-convolutional-neural-networks
https://dl.acm.org/citation.cfm?id=1076432
https://dl.acm.org/citation.cfm?id=1076432

References 54

[24] A. Horé, D. Ziou, Image Quality Metrics: PSNR vs. SSIM, in: 2010 20th
International Conference on Pattern Recognition, Aug. 2010, IEEE, pp. 2366–
2369.

[25] G. Huang, Z. Liu, L.v.d. Maaten, K.Q. Weinberger, Densely Connected Convo-
lutional Networks, in: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, IEEE, pp. 2261–2269.

[26] J.B. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed
self-exemplars, in: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, IEEE, pp. 5197–5206.

[27] M. Irani, S. Peleg, Improving resolution by image registration, CVGIP: Graphical
Models and Image Processing, Vol. 53, Iss. 3, May 1991, pp. 231–239.

[28] J. Johnson, A. Alahi, L. Fei-Fei, Perceptual Losses for Real-Time Style Transfer and
Super-Resolution, in: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.), Computer
Vision – ECCV 2016, Springer International Publishing, Cham, Mar. 2016, pp.
694–711. Available: http://link.springer.com/10.1007/978-3-319-46475-6_43

[29] R.G. Keys, Cubic Convolution Interpolation for Digital Image Processing, IEEE
Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, Iss. 6, Dec.
1981, pp. 1153–1160.

[30] J. Kim, J.K. Lee, K.M. Lee, Accurate Image Super-Resolution Using Very Deep
Convolutional Networks, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 38, Iss. 2, Nov. 2015, pp. 295–307.

[31] J. Kim, J.K. Lee, K.M. Lee, Deeply-Recursive Convolutional Network for Image
Super-Resolution, in: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, IEEE, pp. 1637–1645.

[32] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv, Iss.
cs.LG/1412.6980, 2014.

[33] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, in: Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, USA, 2012, Curran
Associates Inc., NIPS’12, pp. 1097–1105.

[34] Y. LeCun, Generalization and network design strategies, in: Pfeifer, R., Schreter, Z.,
Fogelman, F., Steels, L. (eds.), Connectionism in perspective, Elsevier, 1989.

[35] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,
A. Tejani, J. Totz, Z. Wang, W. Shi, Photo-Realistic Single Image Super-Resolution
Using a Generative Adversarial Network, arXiv, Iss. 1609.04802, Sept. 2016.

http://link.springer.com/10.1007/978-3-319-46475-6_43

References 55

[36] B. Lim, S. Son, H. Kim, S. Nah, K.M. Lee, Enhanced Deep Residual Networks for
Single Image Super-Resolution, in: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), July 2017, IEEE, pp. 1132–1140.

[37] W. Lin, C.C. Jay Kuo, Perceptual visual quality metrics: A survey, Journal of
Visual Communication and Image Representation, Vol. 22, Iss. 4, May 2011, pp.
297–312.

[38] MATLAB images.internal.resize.contributions source code, 2017.

[39] MATLAB images.internal.resize.cubic source code, 2017.

[40] T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[41] K. Nasrollahi, T.B. Moeslund, Super-resolution: a comprehensive survey, Machine
Vision and Applications, Vol. 25, Iss. 6, Aug. 2014, pp. 1423–1468.

[42] OpenCV resize source code, 2018. Available: https://raw.githubusercontent.com/
opencv/opencv/3.4.2/modules/imgproc/src/resize.cpp

[43] S. Peleg, D. Keren, L. Schweitzer, Improving image resolution using subpixel
motion, Pattern Recognition Letters, Vol. 5, Iss. 3, Mar. 1987, pp. 223–226.

[44] M. Ponomarenko, N. Gapon, V. Voronin, K. Egiazarian, Blind estimation of white
Gaussian noise variance in highly textured images, Electronic Imaging, Vol. 2018,
Iss. 13, Jan. 2018, pp. 382–1.

[45] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel,
K. Chehdi, M. Carli, F. Battisti, C.C.C. Jay Kuo, Image database TID2013:
Peculiarities, results and perspectives, Signal Processing: Image Communication,
Vol. 30, Jan. 2015, pp. 57–77.

[46] Y. Romano, J. Isidoro, P. Milanfar, RAISR: Rapid and Accurate Image Super
Resolution, IEEE Transactions on Computational Imaging, Vol. 3, Iss. 1, Mar.
2017, pp. 110–125.

[47] F. Rosenblatt, The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain, PSYCHOLOGICAL REVIEW, 1958, pp. 65–386.

[48] J.C. Russ, F.B. Neal, The Image Processing Handbook, Seventh Edition, 7th ed.,
CRC Press, Inc., Boca Raton, FL, USA, 2016.

[49] M.S.M. Sajjadi, B. Schölkopf, M. Hirsch, EnhanceNet: Single Image Super-
Resolution Through Automated Texture Synthesis, in: 2017 IEEE International
Conference on Computer Vision (ICCV), Dec. 2016, pp. 4501–4510.

https://raw.githubusercontent.com/opencv/opencv/3.4.2/modules/imgproc/src/resize.cpp
https://raw.githubusercontent.com/opencv/opencv/3.4.2/modules/imgproc/src/resize.cpp

References 56

[50] W. Shi, J. Caballero, F. Huszar, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert,
Z. Wang, Real-Time Single Image and Video Super-Resolution Using an Efficient
Sub-Pixel Convolutional Neural Network, in: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016, IEEE, pp. 1874–1883.

[51] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig, Z. Wang, Is the
deconvolution layer the same as a convolutional layer?, arXiv, Iss. 1609.07009,
Sept. 2016.

[52] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, arXiv, Iss. 1409.1556, Sept. 2014.

[53] R. Timofte, E. Agustsson, L.V. Gool, M.H. Yang, L. Zhang, B. Lim, S. Son,
H. Kim, S. Nah, K.M. Lee, X. Wang, Y. Tian, K. Yu, Y. Zhang, S. Wu, C. Dong,
L. Lin, Y. Qiao, C.C. Loy, W. Bae, J. Yoo, , NTIRE 2017 Challenge on Single
Image Super-Resolution: Methods and Results, in: 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), July 2017, IEEE,
pp. 1110–1121.

[54] R. Timofte, V. De, L.V. Gool, Anchored Neighborhood Regression for Fast
Example-Based Super-Resolution, in: 2013 IEEE International Conference on
Computer Vision, Dec. 2013, IEEE, pp. 1920–1927.

[55] R. Timofte, V. De Smet, L. Van Gool, A+: Adjusted anchored neighborhood
regression for fast super-resolution, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), Vol. 9006, 2015, pp. 111–126.

[56] R. Timofte, S. Gu, J. Wu, L. Van Gool, NTIRE 2018 Challenge on Single Image
Super-Resolution: Methods and Results, in: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2018, pp. 852–863.

[57] R. Timofte, R. Rothe, L.V. Gool, Seven Ways to Improve Example-Based Single
Image Super Resolution, in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, IEEE, pp. 1865–1873.

[58] T. Tong, G. Li, X. Liu, Q. Gao, Image Super-Resolution Using Dense Skip
Connections, in: 2017 IEEE International Conference on Computer Vision (ICCV),
Oct. 2017, IEEE, pp. 4809–4817.

[59] R. Tsai, T. Huang, Multiframe image restoration and registration, in: Advances in
Computer Vision and Image Processing, 1984.

[60] M. Vetterli, J. Kovacevic, V.K. Goyal, Foundations of Signal Processing, Cambridge
University Press, 2014.

References 57

[61] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-Hornung,
C. Schroers, A Fully Progressive Approach to Single-Image Super-Resolution,
in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, 2018.

[62] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image Quality Assessment: From
Error Visibility to Structural Similarity, IEEE Transactions on Image Processing,
Vol. 13, Iss. 4, Apr. 2004, pp. 600–612.

[63] R. Wen, K. Fu, H. Sun, X. Sun, L. Wang, Image Superresolution Using Densely
Connected Residual Networks, IEEE Signal Processing Letters, Vol. 25, Iss. 10,
Oct. 2018, pp. 1565–1569.

[64] C.Y. Yang, M.H. Yang, Fast Direct Super-Resolution by Simple Functions, in:
2013 IEEE International Conference on Computer Vision, Dec. 2013, IEEE, pp.
561–568.

[65] L. Yue, H. Shen, J. Li, Q. Yuan, H. Zhang, L. Zhang, Image super-resolution: The
techniques, applications, and future, Signal Processing, Vol. 128, Nov. 2016, pp.
389–408.

[66] R. Zeyde, M. Elad, M. Protter, On Single Image Scale-Up Using Sparse-
Representations, in: Boissonnat, J.D., Chenin, P., Cohen, A., Gout, C., Lyche, T.,
Mazure, M.L., Schumaker, L. (eds.), Curves and Surfaces, Berlin, Heidelberg,
2012, Springer Berlin Heidelberg, pp. 711–730.

[67] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian Denoiser:
Residual Learning of Deep CNN for Image Denoising, IEEE Transactions on
Image Processing, Aug. 2017, pp. 1–1.

[68] Y. Zhao, R. Wang, W. Dong, W. Jia, J. Yang, X. Liu, W. Gao, GUN: Gradual
Upsampling Network for single image super-resolution, arXiv, Iss. 1703.04244,
Mar. 2017.

58

APPENDIX A: FULL SIZE OUTPUT IMAGES

(a) LR input with NN upsampling (b) Bicubic (PSNR: 21.34 dB) (c) ENet-PAT (PSNR: 21.00 dB)

(d) A+ (PSNR: 21.85 dB) (e) SelfExSR (PSNR: 21.89 dB) (f) WSD-SR (PSNR: 22.09 dB)

(g) VDSR (PSNR: 22.14 dB) (h) EDSR (PSNR: 22.35 dB) (i) D-DBPN (PSNR: 22.27 dB)

(j) Ground truth

Figure A.1. Image 66 from Urban100 dataset super-resolved with scaling factor of 4.

Appendix A: Full size output images 59

(a) LR input with NN upsampling (b) Bicubic (PSNR: 16.58 dB)

(c) ENet-PAT (PSNR: 17.46 dB) (d) A+ (PSNR: 17.33 dB)

(e) SelfExSR (PSNR: 17.86 dB) (f) WSD-SR (PSNR: 18.04 dB)

(g) VDSR (PSNR: 18.14 dB) (h) EDSR (PSNR: 19.14 dB)

(i) D-DBPN (PSNR: 19.06 dB) (j) Ground truth

Figure A.2. Image 92 from Urban100 dataset super-resolved with scaling factor of 4.

Appendix A: Full size output images 60

(a) LR input with NN upsampling (b) Bicubic (PSNR: 28.23 dB)

(c) ENet-PAT (PSNR: 27.28 dB) (d) A+ (PSNR: 29.09 dB)

(e) SelfExSR (PSNR: 29.05 dB) (f) WSD-SR (PSNR: 29.23 dB)

(g) VDSR (PSNR: 29.36 dB) (h) EDSR (PSNR: 29.94 dB)

(i) D-DBPN (PSNR: 29.94 dB) (j) Ground truth

Figure A.3. Image 858 from DIV2K dataset super-resolved with scaling factor of 4.

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1. Introduction
	2. Theoretical background
	2.1 Sampling and interpolation
	2.2 Image quality metrics
	2.3 Machine learning basics
	2.3.1 Types of ML tasks
	2.3.2 Supervised and unsupervised learning
	2.3.3 Datasets and model performance

	2.4 Feedforward neural networks
	2.4.1 Activation layers
	2.4.2 Loss functions
	2.4.3 Optimization
	2.4.4 Convolutional layers

	3. Super-resolution
	3.1 Multi-image super-resolution
	3.2 Single image super-resolution
	3.3 Self-similarity based SISR
	3.4 Traditional Machine Learning Methods for SISR
	3.5 Convolutional Neural Networks based SISR
	3.5.1 HR Networks for SISR
	3.5.2 LR Networks for SISR
	3.5.3 Networks Optimized for Perceptual Quality

	4. Testing methodology
	5. Results
	6. Conclusions
	References
	Appendix A: Full size output images

