
TALITA TOBIAS CARNEIRO

DISTRIBUTION OF LOW LATENCY MACHINE LEARNING

ALGORITHM

Master of Science thesis

Examiner: Prof. Timo Hämäläinen

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 29th August 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ABSTRACT

TALITA TOBIAS CARNEIRO: Distribution of Low Latency Machine Learning
Algorithm
Tampere University of Technology

Master of Science thesis, 71 pages

December 2018

Master's Degree Programme in Information Technology

Major: Pervasive Systems

Examiner: Prof. Timo Hämäläinen

Keywords: Neural Networks, Inference Accelerator, FPGA, Machine Learning, Ultra-Low

Latency, Mobile Networks

Mobile networks are evolving towards centralization and cloudi�cation while bring-

ing computing power to the edge, opening its scope to a new range of applications.

Ultra-low latency is one of the requirements of such applications in the next gener-

ation of mobile networks (5G), where deep learning is expected to play a big role.

Hence, to enable the usage of deep learning solutions on the edge cloud, ultra-low

latency inference must be investigated.

The study presented here relies on the usage of an in-house framework (CRUN) that

enables the distribution of acceleration on data center environment. The objective

of this thesis is to leverage the best solution for the inference of a machine learning

algorithm for an anomaly detection application using neural networks in the edge

cloud context. To evaluate the obtained results with CRUN a comparison work

is also carried out. Five inference solutions were compared using CPU, GPU and

FPGA.

The results show a superior performance in terms of latency for all CRUN exper-

iments, that basically comprehends three cases. The �rst one utilizing the RTL

anomaly detection neural network as a baseline solution, the second using the same

baseline code but unrolling the biggest layer for obtaining reduced latency and the

third by distributing the neural network in two FPGAs. The requirements for this

solution were to obtain latency between 20µs to 40µs for inference time and at least

20 000 inferences per second. These goals were categorically ful�lled for all CRUN

experiments, providing 30 µs latency in average, while the second best solution

provided 272 µs.

II

PREFACE

First of all, I thank God for my life and all the blessings that I have received.

This thesis work is part of a bigger project at Nokia. I would like to express my

gratitude to the company for the opportunity of developing and writing my thesis,

even during working hours. This support was immeasurable.

A big thank you goes to my supervisor Prof. Timo Hämäläinen for the guidance

during the entire thesis writing.

I would like also to thank my colleagues in Nokia for the support and advices pro-

vided for the writing of this thesis. In special, my sincere acknowledgment goes to

Petri Kärppä for valuable technical and academic guidance during this work. Also,

my profound gratitude to Jouni Siirtola for the technical background and restless

help with the work carried out here. I am grateful to Jouni Markunmäki for guid-

ance and Juho Tieaho for the cooperation during this thesis work. Additionally big

thanks go to Pekka Jokela, Hannu Tulla, Anssi Örn and Kalle Holma.

I deeply appreciate the support of my family, in special, my mother Nilceia de

Fátima Tobias Carneiro, whose love and care has been the foundation of my life and

my late father Jorge Tobias Carneiro who never, even in his wildest dreams would

have thought that his own daughter would graduate in Finland.

Finally, I wish to give my deepest thank you to my partner in all aspects of my life

Daniel Koslopp, whose love and support keep me alive.

Tampere, 18.11.2018

Talita Tobias Carneiro

III

TABLE OF CONTENTS

1. Introduction . 1

2. Mobile Networks and Cloud Computing 4

2.1 C-RAN . 5

2.2 NFV and SDN . 8

2.3 Deep Learning in Mobile Networks 9

3. Neural Networks . 13

3.1 Mathematical De�nition . 14

3.2 Concept De�nitions . 16

3.3 Training and Inference . 16

3.4 Inference's Computational Load . 17

3.5 Execution Platforms . 18

3.6 Network Model Optimizations . 19

3.7 Algorithmic Optimizations . 22

4. Inference Accelerators . 24

4.1 Hardware E�cient Design . 24

4.1.1 Parallelism Exploitation . 25

4.1.2 Resource Utilization . 26

4.2 System Architecture . 28

4.2.1 Hardware . 28

4.2.2 Software . 29

4.3 Tools and Architectures . 31

4.4 Inference Accelerators in Cloud Environment 33

5. Methodology . 35

5.1 Reference Implementations . 35

5.1.1 CPU & GPU . 36

5.1.2 Xilinx GEMX . 36

5.1.3 Xilinx SDAccel . 37

IV

5.2 CRUN Implementation . 38

5.3 Validation . 40

6. Implementation . 41

6.1 CRUN Architecture . 41

6.2 Anomaly Detection MLP . 46

6.3 RTL Implementation . 47

7. Results and Analysis . 52

7.1 Performance . 52

7.2 Resource Utilization . 58

7.3 Design Complexity . 59

7.4 Limitations . 60

8. Conclusions . 61

Bibliography . 63

V

LIST OF FIGURES

2.1 Traditional and C-RAN based architecture 6

2.2 C-RAN architecture . 7

2.3 Fronthaul functional split options . 8

2.4 Base Station functionalities . 11

3.1 Two-layer neural network diagram . 14

3.2 ReLU (Recti�ed Linear) activation function 16

3.3 Matrix multiplication for Fully Connected Layers 23

4.1 Systolic Array architecture . 26

4.2 Memory access for one MAC operation 27

4.3 Block diagram of a typical FPGA-based inference accelerator 29

4.4 Execution model analogy . 30

5.1 CRUN test cases . 39

6.1 CRUN architecture overview . 42

6.2 CRUN FPGA architecture overview 44

6.3 CRUN Accelerator Hardware Unit interfaces 45

6.4 Distributed CRUN . 46

6.5 Anomaly Detection MLP . 47

6.6 Hierarchical view of Anomaly Layers MLP 48

6.7 Comparison between control options 50

VI

7.1 Throughput vs. latency . 54

7.2 Inference per second vs. latency . 57

VII

LIST OF TABLES

2.1 Comparison between Cloud computing and C-RAN requirements [13]. 8

7.1 Results for di�erent implementations of anomaly detection neural net-

work. 53

7.2 Resource utilization for anomaly detection NN versions. 58

VIII

LIST OF ABBREVIATIONS AND SYMBOLS

C-RAN Cloud-based Radio Access Network

ACAP Adaptive Compute Acceleration Platform

AHU Accelerator Hardware Unit

API Application Programming Interface

AR Augmented Reality

ASIC Application-speci�c Integrated Circuit

AWS Amazon Web Services

BBU Baseband Unit

BLAS Basic Linear Algebra Routines

BNN Binarized Neural Networks

CNN Convolutional Neural Networks

COTS Commercial O�-The-Shelf

CPRI Common Public Radio Interface

CPU Central Processing Unit

CPU-1 CPU batch-1

CPU-16 CPU batch-16

CRUN-B CRUN Baseline

CRUN-D CRUN Distributed

CRUN-U CRUN Unrolled

CU Central Unit

DDR Double Data Rate

DMA Direct Memory Access

DNN Deep Neural Networks

DPDK Data Plane Development Kit

DRAM Dynamic Random-Access Memory

DSP Digital Signal Processor

DU Distributed Unit

FaaS FPGA-as-a-service

FFT Fast Fourier Transform

FIFO First In First Out

FLOP Floating-point Operations

FPGA Field-Programmable Gate Array

FPS Frames Per Second

GEMM General Matrix Multiplication

GEMX-32 GEMX batch-32

GPU Graphics Processing Unit

IX

GPU-1 GPU batch-1

GPU-16 GPU batch-16

HBM High Bandwidth Memory

HDL Hardware Description Language

HLS High-Level Synthesis

ILA Integrated Logic Analyzer

IoT Internet of Things

IP Internet Protocol

ISA Instruction Set Architecture

LSVRC Large Scale Visual Recognition Challenge

MAC Multiply-Accumulate

MEC Multi-Access Edge Computing

ML Machine Learning

MLP Multi-Layer Perceptron

NFV Network Function Virtualization

NN Neural Networks

NPU Neural Processing Unit

NRT Non-Real Time

NVDLA NVIDIA Deep Learning Accelerator

PCIe Peripheral Component Interconnect Express

PE Processing Element

QNN Quantized Neural Networks

QoE Quality of Experience

RDMA Remote Direct Memory Access

ReLU Recti�ed Linear Unit

RNN Recurrent Neural Networks

ROM Read-Only Memory

RRH Remote Radio Head

RRU Remote Radio Unit

RTL Register Transfer Level

SDAccel-1 SDAccel batch-1

SDAccel-16 SDAccel batch-16

SDN Software-De�ned Networking

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SoC System on a Chip

TNN Ternary Neural Networks

TPU Tensor Processing Unit

TTI Transmission Time Interval

X

VM Virtual Machine

vRAN virtualized RAN

a neural network activations

A matrix A

α scalar for matrix multiplication

b biases

B matrix B

β scalar for matrix multiplication

C matrix C

f(x) inference computation

f prediction function

fg function to be approximated

h(.) di�erentiable nonlinear activation function

op(.) original or transposed matrix

σ sigmoidal output unit activation function

w neural network weights

x neural network inputs

y neural network outputs

z second layer of the neural network

1

1. INTRODUCTION

It is well known that the next generation of mobile networks must support an ever

increasing number of mobile data tra�c. It is only true that mobile communications

are the world's largest technology platform [9].

The great capacity demands can only be answered with a massive evolution in mo-

bile networks architecture. The latest trend in this context is the centralization of

baseband functions that were once performed in a distributed fashion, usually very

close to the antenna site [40]. This e�ort is done in order to provide �exibility and

dynamic scalability for future applications. It also has an interest in running base-

band functions not only centrally but in a virtualized environment, so commodity

server hardware can be used. This architecture is commonly referred as Cloud-based

Radio Access Network (or C-RAN) or as industry seems to prefer virtualized RAN

(vRAN).

In order to use commodity server hardware in this context, the principles of Net-

work Function Virtualization (NFV) must be used. However, as more and more

demanding functions are virtualized, it gets more and more di�cult to attend their

requirements, in terms of latency and throughput for example, with Commercial

O�-The-Shelf (COTS) hardware and hardware acceleration must be employed.

A promising approach is to utilize neural networks in C-RAN. Deep learning has

a tremendous power when it comes to its applications. The appeal of deep neural

network solutions is undeniable. Since the dramatical reduction of the error rate

in the Large Scale Visual Recognition Challenge (LSVRC) [43], the interest in this

�eld has been renewed. Machine learning has proved to be an excellent tool, part

of this success is boosted exactly by Deep Neural Networks (DNNs). The major

breakthroughs experienced during the last decade, especially in computer vision

and natural language processing are a result of this �eld of research.

The DNNs ability of automatic feature extraction di�ers from the hand-made fea-

tures or rules devised by experts and is the reason why these solutions achieve such

superior performance when compared to other techniques. The algorithm is able to

1. Introduction 2

learn statistically from a large dataset the representation of the input space. This

learning phase is referred as training, in which a set of examples must be used to

adjust the weights that forms the model.

Once a DNN is trained, it is ready for use, so inference phase can start. These two

distinct phases have di�erent computational demands. Training requires through-

put while inference is concerned with latency. In this sense, the �rst presents higher

computational workload and is a �t for GPUs (Graphics Processing Unit), but the

second although being carried out in CPUs (Central Processing Unit) and GPUs

alike has gaining a rising interest for a specialized solution. The number of appli-

cation speci�c processors for ML (Machine Learning) inference o�ered by industry

increases all the time. These solutions come from tech giants and start-ups, in which

some examples are Tensor Processing Unit (TPU) from Google, Myriad from Intel,

Huawei, Cerebras, Groq and others.

In this context, industry's interest is towards faster inference rather than training.

But why? It is possible to deduce that inference is the production step with DNNs.

Indeed, it is only after training that the model is deployed to deliver the required

predictions.

Important to highlight that, since training takes a huge amount of time and inference

is where the model is put to a use, that the interest on industry is to accelerate

and make better and faster predictions. Either to support the development of the

Internet of Things (IoT) on the device or to boost the extensive set of applications

on cloud data centers.

With this in mind, it is natural that DNN solutions can be e�ectively applied across

the entire mobile networks architecture. However, an interesting point in Cloud RAN

is in the edge cloud concept, in which the idea is to distribute cloud capabilities

across the network placing computing resources at the edge of the network. In

this scenario, a myriad of applications can be accelerated, ranging from baseband

functions, management scope and analytics applications with the Multi-Access Edge

Computing (MEC). For example, auto-encoders can be used for anomaly detection

problems, a common application in mobile networks.

In order to enable the usage of deep learning inference applications in the edge cloud,

one needs to investigate how to minimize the latency of such algorithms in a system

level and on the applications level. Latency is important for deep learning inference,

it is even more important and indisputable in the edge cloud context.

Within this scenario lies the exact goals of this thesis, the investigation of possibilities

1. Introduction 3

vs. requirements. In special, the study of the usage of an in-house framework

(CRUN) that enables the distribution of acceleration on data center environment.

The objective of this thesis work is to leverage the best solution for the inference of a

machine learning algorithm for an anomaly detection application. The requirements

for this solution are ultra-low latency between 20µs to 40µs for inference time and

at least 20 000 inferences per second. Thus, the �fth generation of cellular networks

latency demands can be ful�lled.

A comparison work is the �nal contribution of this exploration between �ve im-

plementations, from GPPs (General Purpose Processors) architecture to a hand-

optimized RTL (Register Transfer Level) neural network implementation allied with

CRUN framework.

This thesis work is structured as follows. Chapter 2 discusses cloud computing in

mobile networks scope, its requirements and the role of deep learning in this con-

text, placing this thesis on this domain. In Chapter 3 the basics of deep neural

networks is reviewed, presenting important concepts and the considerations when

choosing a hardware platform for implementation. Following this �rst brief intro-

duction to neural networks, the examination of the possible optimizations is done

from a software perspective. An overview of hardware implementations of inference

accelerators and the closest related works is done in Chapter 4, in which the review

is divided into optimizations, tools and architectures propositions and the use of

such designs in cloud computing. The methodology of this thesis is presented in

Chapter 5. Subsequently, Chapter 6 summarizes the in-house infrastructure used to

accelerate the example NN application over the Ethernet, the optimizing techniques

utilized and the software application used for running the system. Finally, the re-

sults are presented in Chapter 7 and the comparison between di�erent platforms

and network size is discussed, as well as the considerations of the distribution of the

application. Conclusions and next steps are outlined in Chapter 8.

4

2. MOBILE NETWORKS AND CLOUD

COMPUTING

The domain of this thesis work is mobile networks and its evolution towards central-

ization and cloudi�cation. In special, the study of how deep learning applications

can be accelerated on the edge of the network.

The needs of neural networks are diverse. In general, one of the main reasons for scal-

ing up machine learning solutions is the inference timing constraints, which requires

predictions to be made in real-time [5]. From the computational load perspective,

only the inference is the object of study in this work. In this sense, its computation

can be either done on the cloud or on the device [70].

The application requirements and its scope will dictate where the inference of the

neural network will be processed. From the cloud viewpoint, the importance of the

latency requirement is becoming crucial as applications with live streams get more

and more popular for cloud service providers [17].

However, in order to fully understand the requirements which cloud computing

imposes, one must �rst comprehend its scope. In this respect, the National Institute

of Standards and Technology (NIST) de�nition for cloud computing is �a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of

con�gurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management

e�ort or service provider interaction.� [51, p. 2].

In Cloud computing-based architecture for Radio Access Networks (C-RAN) there

are the same interests to accelerate neural network inference workload as in tradi-

tional cloud. The tight requirements on latency appeal to a similar approach. This

chapter introduces C-RAN concepts and main requirements.

2.1. C-RAN 5

2.1 C-RAN

C-RAN is one of the answers for the continuous growth experienced in mobile data

tra�c [13]. The surge observed in mobile data transmission can be explained by the

ever increasing number of smartphones and applications [83]. To put it in numbers,

according to [18] the 49 exabytes (1012 MB) mark will be reached monthly by 2021.

The C-RAN concept addresses the challenges of adapting to a non-uniform tra�c

and the e�cient resource utilization. In this sense, it comprises a novel mobile

network architecture [13], that has evolved from the traditional distributed approach

in which a base station was responsible for the baseband and the radio processing

[40]. The nomenclature used can vary, but it is common to refer to the radio

processing portion as Remote Radio Head (RRH) and the Baseband Unit as BBU

[13].

The evolution towards C-RAN starts with the location in which RRH and BBU are

placed. In a traditional distributed architecture, they can either be located at the

base of the cell tower with a coaxial cable connection to the antennas, or in a split

manner in which RRH is at the top of the cell tower with the antennas and the BBU

is in a nearby cabinet with a �ber connection between the two [66]. From Figure

2.1 (a) the traditional approach is showed; the �gure depicts the split architecture

only.

The keynote in C-RAN is the capacity of centralizing the baseband processing and

share its resources in a virtualized BBU pool [13], which can also be referred as

vRAN. This ability employs a sophisticated communication and cooperation mech-

anisms between base stations [40].

In this architecture, the baseband processing units (BBUs) consist of the central

pool of resources, the communication with di�erent base stations must be made with

low latencies and high throughput. The BBU pool enables the dynamic allocation

of baseband processing resources to di�erent cell sites and radio technologies [66].

The radio signals are collected from distributed antennas into remote radio heads

in which they are transmitted through optical transmission network to the cloud

platform [40].

Figure 2.1 shows the di�erences between the traditional and the C-RAN architec-

ture. Note the centralized BBU as the resource pool. Additionally, observe the three

main parts of this architecture, the RRH, BBU and the Fronthaul connections, in

which the last one connects the other two components [40]. On another perspective,

the Backhaul connects the BBU to the mobile core network [13]. Refer to Figure

2.1. C-RAN 6

Mobile Backhaul

Network

RRH 1

RRH 2

RRH n

BBU 2

BBU 1

BBU n

(a)

Mobile Backhaul

Network

RRH 1

RRH 2

RRH n

(b)

BBU Pool

Figure 2.1 Distributed BBU and C-RAN architecture. Adapted from [13].

2.2 for Fronthaul and Backhaul connections.

The full potential of a centralized architecture can be achieved with the virtualization

of BBUs. The vRAN architecture utilizes vBBUs (virtualized BBUs) deployed in

centralized data centers and the RRHs still remain at the cell sites on the edge [66].

The concept is still fuzzy regarding its name, this virtualized approach could still

be referred to as a C-RAN implementation.

In the C-RAN context, the baseband unit is deployed centrally at a network-edge

data center [9]. In Figure 2.2 these components correspond to the BBU pool loca-

tion. These facilities, when designed using cloud principles, provides the opportunity

of running also multi-access edge computing (MEC) services [9]. Moreover, the RAN

edge o�ers an ultra-low latency and high-bandwidth with real-time radio network

information environment that can be used by applications and services [62].

From a cost perspective the deployment of MEC and C-RAN should be done as one.

As such, since the BBU pool is already planned in C-RAN, the cost of providing

additional processing (MEC) in the same facilities is lowered [65].

Considering this, C-RAN model o�ers an integration possibility between radio access

with the rest of the telco cloud-enabled network, in which the same edge data center

hosts the application logic or content on cloud infrastructure and the centralized

control functions [9]. As of the writing of this work, it can be formalized, that in

5G there is a Central Unit (CU), a Distributed Unit (DU) and the Remote Radio

2.1. C-RAN 7

MOBILE CORE

NETWORK

BACKHAULFRONTHAUL

BBU Pool

BBU Pool

Aggregation

Network

Access

network

RRH

RRH

RRH

RRH

RRH

Figure 2.2 C-RAN mobile network. Adapted from [13].

Unit (RRU), which in 4G/LTE corresponded to the original BBU function. From

the deployment point of view, this leads to several options, in which each scenario

depends where each unit is located, for example the evolution from single-node in

4G to split function architecture of 5G [35].

From the function perspective, an important question emerges, what is the best

functional split between these units. Academia and industry alike are concerned with

the best trade-o� and several propositions are made, including a �exible approach,

as described by [32, 12, 50, 11].

The interest in this functional split is manifold. The reason is that as the data rates

increase the conventional fronthaul implementation (using Common Public Radio

Interface - CPRI) is impractical [35]. Figure 2.3 shows the optional split points.

In order to best choose the optimal split point, the trade-o�s between throughput,

latency and functional centralization must be taken into account. Observing Figure

2.3 it is possible to infer that moving towards a higher layer split, left-side of the

picture, means fewer processing functions to be centralized but relaxed requirements

when considering throughput and latency [35].

Another view to the same problem is whether to split Real-Time (RT) functions

and Non-Real-Time (NRT) ones. In this sense, the former would be deployed at the

antenna site for air interface resources management and the latter control functions

2.2. NFV and SDN 8

RRC PDCP
High-

RLC

Low-

RLC

High-

MAC

Low-

MAC

High-

PHY

Low-

PHY
RF

RF PDCP
High-

RLC

Low-

RLC

High-

MAC

Low-

MAC

High-

PHY

Low-

PHY
RF

O
p
ti

o
n
 1

O
p
ti

o
n
 2

O
p
ti

o
n
 3

O
p
ti

o
n
 4

O
p
ti

o
n
 5

O
p
ti

o
n
 6

O
p
ti

o
n
 7

O
p
ti

o
n
 8

Figure 2.3 Optional split points. Adapted from [35].

hosted centrally [9]. In essence, the best performance gains would be observed

if the entire protocol is centrally controlled, in Figure 2.3 this means Option 8.

Consequently, the requirements between CU and DU would be ultra-low latency

and high-bandwidth.

In order to emphasize the requirements and the challenges that they impose, table

2.1 shows the contrast between cloud computing requirements and C-RAN. It is

important to highlight that this work is mainly concerned with latency, data pro�le

and data rate, in this order of importance.

Table 2.1 Comparison between Cloud computing and C-RAN requirements [13].

Cloud Computing C-RAN

Data rate Mbps range Gbps range

Data pro�le Bursts and low activity Constant stream

Latency Tens of ms Hundreds of µs
Jitter Tens of ms ns range

Information Life time Long (content data) Extremely short

Recovery time s range ms range

Number of clients Thousands to millions Tens to hundreds

2.2 NFV and SDN

In a broader scope, C-RAN is a use case of Network Function Virtualization [33].

NFV describes a technique in which the network functions, traditionally computed

in speci�c network hardware (i.e. bare metal), are run as application software in

a general infrastructure hardware. In order to achieve this end result, a virtualiza-

tion layer (hypervisor) is used for virtualizing the physical hardware resources as

computing, storage and network [40].

2.3. Deep Learning in Mobile Networks 9

Indeed, note how NFV is one key enabler for C-RAN architecture in this sense. Also,

how the deployment of MEC and C-RAN can be carried out as one in this context.

As such, in the vRAN model, the deployment of vBBUs is done on multiple NFV

platforms utilizing standard x86 hardware and consolidated in central data centers

[66]. A second essential concept in this scope is Software De�ned Networks (SDN),

which is intrinsically related to NFV. According to [53], a networking solution that

combines NFV and SDN leads to a greater value resource.

SDN is a networking paradigm that provides centralized control of the network. It

eases the separation of the control and data plane [21]. As a result, networks are

programmable, adaptable and cost e�ective [40].

The decoupling of control plane and data plane is an important concept, since

traditionally they were packaged into proprietary, integrated code from proprietary

vendors [40]. This shift in abstraction shapes the functionality of network switches,

in which they become dummy packet forwarding devices that are controlled logically

by a centralized entity [13].

So far, the concepts behind cloud computing, NFV, SDN and C-RAN were intro-

duced. Although each one of these �elds seem to relate, no clear relationship was

established. For that purpose, in this work, the relationship proposed by [53] is

adopted. In this sense, NFV, SDN and cloud computing are abstraction of di�erent

resources, where compute is for cloud computing, network for SDN, and function

for NFV [53]. As for C-RAN, it can be understood as an example of this resource

abstraction endeavor.

2.3 Deep Learning in Mobile Networks

The �elds of deep learning and mobile networks have mainly been researched sepa-

rately [83]. However, recently the emergence of a combination of these two research

disciplines can be observed. For a comprehensive survey on this topic, the reader

should refer to [83].

In the evolution of mobile networks, the road leads for the 5th generation (5G) of

mobile systems. As such, the �fth-generation technologies, namely full-duplex, ultra-

dense networks and large scale antenna systems can be facilitated in full scale by

the �exibility and scalability that only a cloud-based approach as C-RAN naturally

imposes [40].

Deep learning has a wide range of applications. The same assertion is true in the

2.3. Deep Learning in Mobile Networks 10

scope of mobile networks [83]. To the extent of this work, the deep learning applica-

tions considered here are the ones pertinent to the edge cloud concept, introduced

in sub Section 2.1.

In this context, the edge of a mobile network is not only intended for specialized

processing, as it was in the past. It now o�ers the possibility to integrate applications

with radio equipment enabling a new set of high value services [62]. Consequently, in

this scenario a broad range of applications can bene�t from deep learning solutions.

In the management level utilizing network-level data, as an example, the work

carried-out by [63] demonstrates the use of MLPs (Multi-Layer Perceptron) for

user's QoE (Quality of Experience) prediction by using average user throughput,

number of active users in a cell and channel quality indicators.

Some use cases are depicted as examples in the edge cloud scenario in [62], at

least two are a perfect �t for deep learning, especially CNNs (Convolutional Neural

Networks), cited here:

• Augmented reality content delivery: the edge data center can provide appli-

cations performing local object tracking and local AR (Augmented Reality)

content caching,

• Video analytics: by processing the video stored by the video management

application to detect and notify speci�c con�gurable events.

The closer to the edge the tighter latency requirements. The mapping between use

case latency and the di�erent levels of distributed data center as possible location can

be referred from [65] and [9]. Important to highlight that because the 5G central unit

is also deployed in the edge data center, it is suitable for very low-latency services,

as it is the case of assisted driving, which again comprehends an important deep

learning application.

There is still a crucial characteristic when it comes to edge cloud responsibilities.

Depending on the functional split between CU and DUs, there is more room for

lower layer processing into edge data centers. Again, refer to Figure 2.3, according

to [35], the choice of the optimal split point depends on the speci�c deployment

scenario.

Figure 2.4 shows the base station functionalities separated into BBU and RRH,

although no separation for CU and DU is done. Note the wide scope for opportunities

of using deep learning solutions for L1, L2 and L3 processing.

2.3. Deep Learning in Mobile Networks 11

BBU

RRH

C
o
n

tr
o
l-

R
R

C

L3

T
ra

n
sp

o
rt

-M
A

C

C
o
M

P

C
h
a
n
n

el
 d

e-
/

co
d
in

g

A
n
te

n
n
a

M
ap

p
in

g
-M

IM
O

D
e-

/M
o

d
u
la

ti
o
n

C
P

R
I/

O
B

S
A

I/

O
R

I

L1L2

...

IQ DL

IQ UL

Figure 2.4 Base Station functionalities. Adapted from [13].

As an example, the investigation proposed in [82] shows the usage of deep learning for

channel estimation and symbol detection since DNNs present the ability for learning

and analyzing characteristics of wireless channels su�ering from nonlinear distortion,

interference and frequency selectivity. Similar objectives were investigated in the

work proposed by [54] using di�erent machine learning approaches. This application

requires very short latency and referring to Figure 2.4 would be mapped to L1

processing.

The proposition done by [60] is to interpret a communications system as an autoen-

coder, opening the view for the use of deep learning with the physical layer, L1 on

Figure 2.4.

Finally, the e�orts in using machine learning, especially deep learning, in 5G net-

works is also driven by industry. In [15], three examples are mentioned: beamforming

scheduling; indoor positioning and downlink/uplink channel con�guration.

The beamforming technology makes it possible to transmit beams of data for tar-

geted users, which minimizes interference and e�ciently uses the radiofrequency

spectrum. One potential issue in using beamforming is the scheduling of such beams,

a combination problem of four out of 32 beams gives 30 000 options. The usage of

deep neural networks for implementing this scheduler was already claimed by indus-

try [15]. This application corresponds to L2 in Figure 2.4. With this in mind, it

is possible to infer that the latency requirements for such solution is indeed ultra-

low, in the extreme case every sub air interface Transmission Time Interval (TTI)

corresponding to some tens of microseconds for the ML inference response.

In addition, the interested reader could refer to [36] for a bigger overview of the

usage of machine learning techniques as a whole in wireless communications, not

only focusing on deep learning.

In this thesis work, a real-time anomaly detection neural network for mobile network

2.3. Deep Learning in Mobile Networks 12

tra�c is considered. The application corresponds to the management level of mobile

networks and can be mapped to the edge cloud context that in C-RAN could be

deployed in the BBU Pool.

13

3. NEURAL NETWORKS

Machine learning aims to create algorithms for making predictions based on data. In

this sense, the mapping between input to output is the main task of such algorithm

which is a predictive function [5].

The main division for machine learning algorithms is the nature of the training phase.

There are two basic approaches, supervised learning and unsupervised learning.

Supervised learning must utilize a set of training data for constructing the prediction

function and apply it to the test data. The typical format for the training data is

labeled examples, which comprises the data instance and the ground truth [5].

In contrast, unsupervised learning operates in a set of inputs without any labeling

corresponding to it. In this case, the goal di�ers from supervised learning since some

sense must be made from the unlabeled data [6]

Arti�cial neural networks (or as they commonly are referred nowadays, only neural

networks) are inspired in biological structures. They are basically an attempt to

model the biological information processing of the nervous system [67]. Modern NNs

(Neural Networks), however, should not be understood as an accurate model for the

brain, but instead as function approximation engines which the basic underlying

ideas are borrowed from neuroscience [27].

In this sense, the hierarchical multi layered structure sets the pace for the transmis-

sion of information for neighbor's units and more distant ones. It is important to

highlight that the parallel computation is a nature aspect in neural networks. [67].

Feedforward neural networks, also called Multi-Layer Perceptrons (MLP) are the

foundation of deep learning. For a classi�cation problem, an MLP establishes the

mapping between the input and the class which the input belongs. Note from the

name, feedforward, that the output of the model is not fed back into it. But this

does not mean that it is not possible. In this case, the neural network is called a Re-

current Neural Network (RNN). RNNs present state of the art predictions for speech

recognition tasks, for example [27]. A third common type of NNs are the Convo-

lutional Neural Networks (CNN) that are speci�c MLP types with a convolutional

3.1. Mathematical De�nition 14

INPUTS OUTPUTS

HIDDEN UNITS

b0

x1

xD

b0

z1

zM

y1

yk

wMD
(1)

 wKM
(2)

w10
(2)

Figure 3.1 Basic two-layer neural network diagram. Adapted from [6].

layer intended for feature extraction. This set of neural networks are important for

vision tasks and object recognition.

3.1 Mathematical De�nition

Figure 3.1 depicts the basic two-layer neural network diagram and shows the basic

building blocks of a neural network.

Jumping to mathematics, one can de�ne feedforward networks from its fellow linear

models for classi�cation and regression. For a walk-through of this process, refer to

[6].

The starting point to devise the basic neural network model is given in equation

3.1, where w corresponds to the weights, b to the biases. Note the superscript

(1) which corresponds to the layer of the network (in this case, the �rst layer). The

activations correlate with the quantity a [6]. Again, refer to Figure 3.1 for reference.

aj =
D∑
i=1

w
(1)
ji xi + b

(1)
j (3.1)

3.1. Mathematical De�nition 15

Each of the activations expressed in 3.1 are transformed by a di�erentiable nonlinear

activation function h(.), here given by equation 3.2.

zj = h(aj) (3.2)

From Figure 3.1 observe the correlation with equation 3.1 and 3.2. The �nal

network function is provided in 3.4.

The process is repeated again by linearly combining the results in z, which corre-

sponds to the second layer of the network, this can be seen from Figure 3.1. From

equation 3.3 below, b corresponds to the bias.

ak =
M∑
j=1

w
(2)
kj zj + b

(2)
k (3.3)

A feedforward neural network is, in this sense, a series of functional transformations

[6]. The expression in 3.4 shows the �nal form of a two-layer neural network model,

where yk give the set of network outputs and σ represents the sigmoidal output unit

activation function, which can be used for binary classi�cation problems. Note the

matrix-matrix multiplications on equation 3.4.

yk(x,w) = σ(
M∑
j=1

w
(2)
kj h(

D∑
i=1

w
(1)
ji xi + b

(1)
j) + b

(2)
k) (3.4)

The process to choose the activation function to be used is determined by the nature

of the data and follows a speci�c set of rules [6]. The most used activation function

nowadays is the Recti�ed Linear Unit (ReLU), depicted in Figure 3.2. The main

advice is to use ReLU as the activation function for modern neural networks [27].

This recommendation comes from the fact that ReLU is a piecewise linear func-

tion composed of two linear pieces, which makes it almost linear and as such, the

optimization with gradient descent methods is straightforward [27].

In essence, the nonlinearity inserted with non-linear activation functions between

fully connected layers is necessary, otherwise a multi-layer network could be arith-

metically minimized to a one-layer deep neural network.

3.2. Concept De�nitions 16

0

0

z

g
(z

)
=

 m
ax

{
0
,
z}

Figure 3.2 Recti�ed linear (ReLU) activation function. Adapted from [27].

3.2 Concept De�nitions

In a neural network, the �rst layer is commonly called the input layer, similarly the

last layer is the output layer. The layers in the middle of the neural network are

called the hidden layers and their relationship to the network is tightly related to

training. [27]. Once again, acknowledge Figure 3.1 for reference.

Since the goal of a feedforward network is to approximate a given function fg, during

the training phase the objective does not change. The training data does not specify

the behavior of the hidden layers, instead the important concept here is that the

hidden layers must be used at its best to approximate the function fg. Thus, simply

put, the hidden layers are called as such because the output provided by them is

not yet the desired approximation. [27]

The depth of the model is given by how many layers the neural network has, which

directly correlates to how many processing stages it contains. From these two af-

�rmatives, it is possible to explain two important terms. The term deep for deep

learning comes from the model depth. On the other hand, multi-layer perceptron,

comes from the fact that each layer resembles the perceptron model [27]. For more

information on this model refer to [6].

It is important to highlight that a perceptron is only one of the many arti�cial

neuron models proposed in 1950s and 1960s [55].

3.3 Training and Inference

Deep neural networks are deployed in two phases: training and inference. Simply

put, training regards to identifying the prediction function f , while inference com-

3.4. Inference's Computational Load 17

putes f(x) on a data instance x. In order to understand the computational demands

of these two tasks, one must get a glimpse of the underlying concepts regarding how

neural networks are trained.

Without considering the speci�cs of training, one can assume that it basically means

an iterative procedure in which the objective is to minimize an error function by

adjusting the weights in a sequence of steps. At �rst, the evaluation of the error

function derivative with respect to the weights is carried out. In the subsequent

step the weights are to be adjusted accordingly with the derivatives evaluated at

the previous step. There is a distinction in these two steps, and as such di�erent

techniques are considered for each. In this regard, back-propagation can be observed

for the former whilst gradient descent for the latter. Notice that many more powerful

optimization techniques can be used instead of gradient descent, and its mention is

just an example due to its simplest form [6]. Another technique may be stochastic

gradient descent.

In a feedforward neural network, forward propagation consists of the input x being

propagated through the hidden layers until it reaches the output layer producing y.

In contrast, during the training phase, the back-propagation algorithm is responsible

for the �owing of information backwards in the network from the cost for gradient

computation in which the cost is a result of the forward propagation during training.

[27]

The process of training a neural network is highly computational intensive, the task

of iteratively calculating gradients and adjusting weights until the labeled data is

correctly predicted is indeed exhaustive. On the other hand, when compared to the

inference stage, one can only argue that inference o�ers a much easier task, since

only the forward pass takes place.

The previous remarks are the only ones referring to training and learning step on

NNs. For the remaining of the present work, all the investigation regarding neural

networks will be only focused on the inference phase of deployment.

3.4 Inference's Computational Load

The main achievements observed today, when referring to neural networks aston-

ishing performance in certain applications, are basically due to two main reasons:

the increasing computing power and the abundance of data. Analyzing over the last

twenty years, the growth in network sizes is exponential [23]. Early networks would

follow this premise, VGG would have around 2x the size of AlexNet that already

3.5. Execution Platforms 18

had 60M parameters [57].

It is true though that when analyzing a shorter period of time, the challenge of

maintaining bearable computational workload while increasing the accuracy has

been tackled by recent model approaches [2]. Consequently, these more recent DNNs

are especially designed to be more e�cient since there is a trend that the deeper a

neural network is, the more accuracy it will provide [57].

When referring to computational workload, CNNs are the most studied subject for

inference accelerators, as can be seen in [52, 48, 64, 85, 61, 22].

A CNN model comprises of convolutional layers and fully connected layers. The

complexity and computational requirements of these two layers types are di�erent.

A convolutional layer is computation-centric while a fully connected layer is memory-

centric. Furthermore, the former uses few parameters but needs heavy number of

operations while the latter utilizes hundreds of millions of weights that are used for

one time only [64].

An e�cient CNN inference accelerator would take this unbalance in computation to

memory-ratio and apply di�erent techniques for each portion of the neural network.

Although this work focuses on a fully connected layers network, the revision of

strategies will be made in a general format along with the trends in e�cient design.

There are many techniques for accelerating inference for CNNs. From the software

standpoint, the goal is to compress the model, reducing the memory footprint, the

number of operations while trying to maintain accuracy. On the other hand, from

the hardware perspective, the objective is to design the architecture to reuse data

as much as possible, increase its locality and accelerate the convolution operations.

Additionally, reducing the precision is also a target for e�ciently deploying these

models [64].

3.5 Execution Platforms

Before going deeper in the speci�cs of these strategies, the next paragraphs state

the most important points considering GPPs (General Purpose Processors), FPGAs

(Field-Programmable Gate Arrays) and ASICs (Application-Speci�c Integrated Cir-

cuit). For a review on related work in FPGA-based inference accelerators, please

refer to the Chapter 4.

Traditional general-purpose architectures are usually the choice platform for training

and predicting neural networks. In order to meet performance requirements, when

3.6. Network Model Optimizations 19

talking about CPUs, they are more likely to be used in large clusters [46]. GPUs on

the other hand, are well known for performing data parallel computation with high

throughput for �oating point in regular parallelism. However, even when increasing

the number of Floating Point Operations Per Second (FLOPS/s), GPUs support

only a set of native data types, which essentially means that for custom data types

it may perform poorly [57]. When comparing CPU clusters with GPU, the former

waste a big portion of its resourcing with synchronization between cores. Further-

more, in applications which the memory transactions are small when compared to

arithmetic operations, GPUs are a better choice [46].

From a memory point-of-view, general purpose processors rely on traditional Von

Neumann architecture. This means that instructions and data are stored in external

memory and are fetched when needed by the software execution. The motivation for

memory hierarchy lies exactly in this fact, for reducing the costly external memory

operations. In this regard, however big performance a GPP may o�er, the memory-

processor communication is the bottleneck in such architectures. This together with

the costly memory-bound deep learning operations makes the GPP performance to

su�er irrecoverably [44].

When it comes to ASICs, their speci�c purpose nature is converted into limited

programmability [56]. Although they typically provide the highest performance and

energy e�ciency with the smallest chip size, their design takes a substantial amount

of time. In addition, after the tape out of the chip, inserting new features or �nding

design errors translates into a new set of masks and considerably more time for a

new process. In this sense, they are only used with applications that requires a high

volume of these chips, so the e�ect of the cost can be diminished [86].

Two important factors contribute to the advantages of FPGAs as inference's exe-

cution platform. Firstly, an FPGA device, with its recon�gurable logic o�ers the

possibility of using di�erent and custom data types. Secondly, they can utilize the

distributed on-chip memory and pipelining, which means a great deal in feed-forward

systems. Also, the possibility of partial dynamic recon�guration plays a central role

in architecture planning. But the irrefutable truth is the level of solutions tailoring,

with extreme freedom for exploring optimizations [44].

3.6 Network Model Optimizations

In general, the usage of �oating points, although well supported by GPPs, is not an

e�cient implementation in ASICs and FPGAs, which are much more e�cient when

using �xed-point arithmetic [64]. Avoiding �oating point operations is a reasonable

3.6. Network Model Optimizations 20

approach in the DNN context.

Data quantization is one of the most common methods for reducing the precision of

activation values and weights without having a heavy impact in prediction accuracy

[2].

The bene�t of using quantization is twofold. Firstly, the use of less bits will re-

duce the memory footprint, its bandwidth and storage requirements. Secondly, the

adoption of simpler representation will reduce the hardware cost in the operations

standpoint [30].

At least two di�erent approaches for quantization can be identi�ed from literature,

static �xed point and dynamic �xed point. In the �rst, the bit-width is set accord-

ing to the numerical range and the precision required, thus every operand share the

same scaling factor. Each number is then quantized to the nearest �xed-point rep-

resentation. One identi�able problem with this approach is that the dynamic range

of �oating point representation is much bigger than the �xed point data, which

yields in either over�ow or under�ow [30]. To address the problem of the �rst, in

the second approach type, the scaling factor can di�er according to the parts of

the network. This is due to the fact that separate portions of a network can have

di�erent numerical range of data [2].

In addition, quantization is a method that can o�er various �avors combinations.

Indeed, when referring to quantized inference, the phase in which quantization is

applied is also an important factor. If the objective is to reduce model size with-

out the need of retraining the model, then post training quantization is an option,

which is a simpler method yielding good results. However, when aiming at higher

accuracies quantization aware training should be considered. For more information

about quantization for e�cient inference refer to [42].

It is indeed a trend in deep neural networks to improve e�ciency by taking into use

compact data types, even with �oating point representation. According to [57] the

usage of below 32-bit single precision �oating point is the new norm.

Recently, research e�orts have been directed to study the usage of extremely com-

pact data type representation, a big portion of these works refer to Binarized Neural

Networks (BNNs). These networks are proposed on the basis of using 1-bit repre-

sentation for neurons and weights, in which values are constrained to +1 and -1 [57].

The impact of using this representation on FPGAs is huge. It essentially means that

the multiply-accumulate (MAC) operations can be mapped to XNOR gates followed

by a bit counting operation. It is irrefutable though that the performance gained

3.6. Network Model Optimizations 21

with this method is heavily translated in accuracy degradation [2].

The work proposed by [72] targets binarization for all input activations, weights and

output activations. A second generation of the same proposition is done in [7], in

which the support for mixed and variable precision is added, as such, it targets a

bigger scope not only BNNs but also QNNs (Quantized Neural Networks).

Another e�ort targeting BNNs is XNOR Neural Engine [20], which is a hardware

accelerator IP integrated within a microcontroller unit for low-power solution on the

device.

Along the same path as BNNs, one can also �nd the ternary neural networks (TNNs),

in these type of networks, the weights are represented by 2-bit values and are con-

strained to 0, +1 or -1. In cases in which there is negligible accuracy loss the neurons

are not quantized.

If on one hand data quantization can be e�ectively used for optimization of neural

network models, on the other hand the number of neurons and weights can also be

optimized for e�ciency purposes.

In this context, pruning is a method that relies on exploiting sparsity (i.e. the near

zero values) in neurons and weights [57]. In fact, DNNs are often over-parametrized

in the sense that a big portion of its parameters can be pruned because they are

redundant [81]. The importance and applicability of this optimization has grown in

the recent years, this is due to the broad usage of ReLU as activation function, which

zeros out negative values. Consequently, the sparser a matrix the fewer operations

needed for its computation [57]. The pruning for weights is also very relevant [2].

The values that are zero out are interpreted as not important and this approach can

maintain the original accuracy [57].

One of the drawbacks of pruning is the irregular resultant network structure. Tar-

geting only CNNs, CirCNN [22] presents the usage of block-circulant matrices for

representing weights which reduces the storage and computational complexity with-

out pruning.

It must be kept in mind though that sparse computation is theme that will be

revisited during the hardware optimization part of this work. One can deliberately

insert zeros during training while keeping the hardware architecture in mind. In this

way, since zeros were allowed in speci�c parts and not in others, the optimization is

also done in a hardware level.

The methods targeting parameter reduction are usually followed by a �ne-tuning

3.7. Algorithmic Optimizations 22

phase in order to minimize the e�ect on the accuracy [2].

Sparsity exploitation means to take advantage of the intrinsic redundancy in data

representation. This aspect of neural networks has been explored by some works.

Proposed by [45], Stitch-X is a DNN inference accelerator that by combining spatial

and temporal reduction balances data�ow complexity in face of sparsity. It utilizes

a Parallelism Discovery Unit (PDU) that stitches together the input activation and

weight pairs for producing reducible partial sums.

Similarly, the accelerator proposed by [84], Cambricon-X, also aims to exploiting

sparsity and irregularity of NN models while also using 16-bit �xed-point represen-

tation. Related approaches can also be observed from [61, 38, 39].

3.7 Algorithmic Optimizations

In order to reduce complexity, some operations can be transformed, and algorithmic

optimizations applied.

When concerned about CNNs, a common approach is to instead of computing com-

plex convolutions in the time-domain, choosing to simply calculate multiplications

in the frequency-domain with Fast Fourier Transform (FFT) [81, 2]. If a more

hardware-friendly manner is required then Winograd transformation can be applied

[48, 58, 48, 70].

At this point, an important highlight must be made. From equations 3.1, 3.3

and 3.4, it is obvious why matrix multiplication is crucial for the computation of

neural networks and the importance in optimizing these operations.

The GEMM transformation basic idea is to map convolutional and fully connected

layers as General Matrix Multiplications. In the simplest format, GEMM computes

the operations given in equation 3.5, where A, B and C are matrices, α and β are

scalars and op(.) denotes either the original or transposed matrix [25]:

C = αop(A)op(B) + βC (3.5)

Previously, it was mentioned that the biggest portion of the weights are used by fully

connected layers. This is an important fact when using GEMM implementations for

computing these multiplications because batch processing can be used.

In batch processing, multiple inputs are provided instead of one, Figure 3.3 depicts

3.7. Algorithmic Optimizations 23

x =

B A C

M

N

N

J

M

(a)

x =

B A C

M

N

N

J

M

(b)

1
1

Figure 3.3 (a) Matrix-vector multiplication - Level 2. (b) Matrix-matrix Multiplication
- Level 3. Adapted from [70].

this case in (b), if the inputs are the combination of vector B in (a). The throughput

can be improved while memory bandwidth is maintained when instead of loading

weights multiple times, they are loaded once per batch. [2].

Indeed, from Basic Linear Algebra Routines (BLAS) three canonical computation

models can be performed: vector-only operations, matrix-vector and matrix-matrix

operations. Note that they correspond to levels, respectively Level 1, Level 2 and

Level 3. Figure 3.3 shows matrix-vector in (a) and matrix-matrix operations in

(b).

The lowest level can be used to implement the other two and so forth. Each of these

levels can be mapped for speci�c usage. On one hand, Level 3 operations are highly

desirable for dense matrix-matrix calculations and perform well for batch mode, on

the other hand, Level 2 is a good �t for batch-1 implementation [24].

So far, only software optimizations were discussed. Although these optimizations

were placed under software, they will directly impact on the hardware used to im-

plement the computations.

24

4. INFERENCE ACCELERATORS

This chapter reviews hardware-based acceleration techniques and proposals for neu-

ral networks inference. As such, important aspects for a hardware e�cient design

and system level architecture will be discussed.

The list of works targeting deep neural networks inference accelerators is extensive.

Although this is not a particularly new �eld of research, the �rst neural network

FPGA implementations are dated back to 1990's [44], there was an explosion of

works recently, as can be seen in [72, 7, 31, 85] and others.

However, the reviews showed in this work concentrate mainly in e�orts proposed

from 2014 to the present-day for three reasons. Firstly, the number of works in

this �eld is huge, secondly, NNs have become deeper after 2014 which changed their

computational requirements and thirdly, as mentioned earlier this work is not meant

as a survey.

4.1 Hardware E�cient Design

Recently there was a shift in the main purpose of the design of DNNs. Surely, in the

early days the main objective was to achieve the maximum accuracy. While this is

still true, the impact of the design in the hardware implementation is gaining more

and more importance. In this sense, the codesign of DNN models and hardware can

be classi�ed as an e�ort for maximizing accuracy and throughput, while minimizing

energy and cost. [70].

FPGAs provide a high level of �exibility for hardware implementation. However,

there are at least two big challenges in FPGA based accelerators [30]:

• the current working frequency of FPGA is usually in the range of 100MHz to

300MHz, much less than general purpose architectures,

• the abstraction level for implementing neural networks on FPGAs is much

lower, making it a much more di�cult task.

4.1. Hardware E�cient Design 25

In order to address these challenges, there are some trends in the FPGA industry to

look at. The operating frequency of usual designs should have a big improvement

with new technologies, as is the case of Intel's HyperFlex. Additionally, the on-chip

memory and the o�-chip bandwidth should increase considerably, the latter with

the use of HBM (High Bandwidth Memory) technologies [57].

Regarding the second challenge, the software ecosystem for FPGAs is becoming

more mature. The biggest FPGA's industry players, Intel and Xilinx, have been

supporting the use of High-Level Synthesis (HLS) tools which o�ers the possibility

of using high level abstraction languages for programming FPGAs. This support,

brings the advantages of these devices to the reach of more people than only hardware

experts [57].

It is important to highlight that scalability is the biggest issue when looking forward

on FPGAs and deep learning. In order to achieve successful implementations, they

must scale in data sizes and architectures, since the research in deep learning is still

on-going and the pace in which new models and techniques are being developed is

very high [44]. One may refer to this as exactly the lead which FPGAs represent.

4.1.1 Parallelism Exploitation

General Purpose Processors mostly employ a temporal architecture for parallelizing

computations, in the form of Single Instruction Multiple Data (SIMD) or Single

Instruction Multiple Thread (SIMT) techniques, for example. In contrast, FPGA-

based designs are usually constructed on top of spatial architecture for data�ow

processing. The main di�erence between these two architectures is the data passing

format. In the �rst, data can only be fetched from memory hierarchy and the

compute element cannot communicate in a direct manner with another. In the

second, data is passed from one unit to the other directly. [70].

Surely, this aspect re�ects directly into DNNs e�cient design. In this context, data-

path optimizations can be adopted to address the problem of e�ciently using FPGAs

for inference accelerators.

The usage of systolic arrays is well-known for this purpose. These are grid structures,

usually arranged as depicted in Figure 4.1, that are formed by several processing

elements (PEs). State-of-the art implementations employ a limited number of these

units on the FPGA, each of these units can be reused by iterating data through

them [2]. The utilization of systolic array architecture for CNNs in and end-to-end

automation �ow is demonstrated by [73].

4.1. Hardware E�cient Design 26

PE PE PE

PE PE PE

PE PE PE

WB

WB

WB

OB OB OB

IB IB IB
IN

OUT

W

Figure 4.1 Systolic array architecture. Adapted from [73].

It is important to formalize the possible sources of parallelism in DNNs in order to

understand the ways of exploring it. In this context, at least two forms can be readily

identi�ed, batch parallelism and inter-layer parallelism. The former was already

mentioned when discussing about matrix-matrix multiplications, but it means to

serve a group of inputs with the objective of reusing data and decreasing external

memory accesses. The latter refers to the scheme in which the computation is

launched in a pipelined fashion. [2].

Observe that these sources of parallelism are exactly aligned with the extraction of

maximum performance from a FPGA. In fact, the industry claim is to have a peak

performance of over 1 TFLOP/s for the DSP (Digital Signal Processor) blocks in

the FPGA. However, the task of fully pipelining and loop unrolling for maximum

parallelization is not as easy as it seems. [73].

Along these lines, loop unrolling is a key technique in hardware optimization. The

idea of unrolling loops in an FPGA is basically a trivial one, the downside is the

trade-o� between performance and resource utilization. An important side note

though is that if poorly chosen the unrolling parameter can cause severe hardware

underutilization. This is particularly important since di�erent layers have very di-

verse loop dimension. [30].

There are many methods proposed in literature for choosing an optimal value for

loop unrolling factors. The challenge is to derive a parameter that at the same time

minimizes the memory access and maximize resource utilization [2].

4.1.2 Resource Utilization

As mentioned previously in Section 4.1, although being improved recently, the on-

chip memory capacity on FPGAs is still small for deep designs. This means that

4.1. Hardware E�cient Design 27

MULTIPLY-

ACCUMULATE

(MAC)

ALU
X

+

MEMORY

READ

MEMORY

WRITE

WEIGHT

ACTIVATION

PARTIAL

SUM

UPDATED

PARTIAL

SUM

Figure 4.2 Memory access in one MAC operation. Adapted from [70].

o�-chip memory must be used [2]. Since this is inevitable, a caching memory hier-

archy should be implemented, it is usual to have a two-level cache in FPGA-based

implementations. One may question the need of such schemes, for that purpose

Figure 4.2 shows the need of three memory read operations and one write per

multiply-accumulate (MAC).

In this fashion, the use of a caching system is simply an exploitation of the spatial

architecture provided in FPGA implementations. The other option is to utilize o�-

chip memories and in the case of DRAMs (Dynamic Random-Access Memory) take

much more energy to access the memory than the computation itself [70].

From the same perspective, data reuse plays an important role in this scenario.

Even if DRAM accesses are needed, since they are so expensive, the fetched data

should be reused as much as possible. For a comprehensive explanation on data

reuse schemes on data�ows, refer to [70].

To reduce o�-chip memory bandwidth requirements and minimize data movement,

fused-layer accelerators can be used, as �rst demonstrated by [3]. This technique can

be combined with other optimizations, for example [85] o�ers the use of Winograd

in its convolution blocks templates with the addition of layer fusion optimization.

It is also important to mention general FPGA-based implementation optimizations.

Whenever a design is devised the target is to fully utilize the FPGA capabilities.

In this sense, many important guidelines must be followed. Among those, two are

absolutely important, the usage of DSP blocks and the improvement of working

frequency.

In the case of DSPs, the adopted bit-width is crucial. This is because, depending

on the vendor and on the FPGA, this can vary and hardened portions on FPGA

in general achieves higher frequency and consequently performance. For example,

4.2. System Architecture 28

the accelerator demonstrated by [31] utilizes the 8-bit �xed-point representation

for packaging two operations of 8x8 bits into one DSP of the FPGA. The system

presented in [64] applies dynamic-precision data quantization for VGG16 model by

using an automatic �ow, a small accuracy loss is introduced with the model under

8/4 bit dynamic-precision quantization.

Recently, a trend in FPGA industry is to support �oating point operations natively,

as is the case of Intel's Stratix10 device, o�ering up to 9.2 TFLOP/s of 32-bit �oating

point performance [57].

4.2 System Architecture

From a system level perspective, it is possible to identify some trends in neural

networks implemented in FPGAs.

When focusing in HDL (Hardware Description Language) model-based approach,

the main idea is to automate the process of generating the HDL description taking

into account the selected network. This means that the generated hardware is �ne-

tuned for a determined neural network and the best performance can be achieved

for that particular hardware [30].

Instruction based methods, on the other hand, do not modify the underlying hard-

ware, thus several neural networks can run on the same hardware implementation.

An application that needs neural network switching would target this implementa-

tion, since the change can be done in real-time [30].

Finally, these two methods can be combined into a solution that besides optimizing

the hardware, also uses a set of instructions compiled corresponding to the network

description. [30].

4.2.1 Hardware

A neural network inference accelerator is typically formed by the parts showed in

Figure 4.3. In a high level overview, the host CPU plays the role of a scheduler in

which it will issue commands to the logic and monitors its status until the end of the

computation is reached. For controlling the operation on the FPGA, a controller

must be implemented, it can either be a �nite state machine or an instruction

decoder [30]. Some implementations can use a soft-core processor synthesized in the

FPGA for this purpose, as is the case in [24].

4.2. System Architecture 29

FPGA logic

FPGA

DDR

CPU

HOST DDR

CONTROL

COMPUTATION

UNITS

ON THE

FLY LOGIC

BRAM

Figure 4.3 Block diagram of a typical FPGA-based inference accelerator implementation.
Adapted from [30].

From the memory viewpoint, for the reasons already referred previously, for a large

model an external memory is required for holding all the needed parameters. In

such cases, a memory hierarchy scheme must be devised, as for example using the

external memory and the on-chip memory as cache.

Obviously, this generic system can have several modi�cations and optimizations de-

pending on the main objective, its requirements. For example, in a simpler solution

only one memory could be used in the entire system, which can be seen on the

small con�guration version of NVDLA [58]. For more advanced and high perform-

ing solutions, besides the two external memories used, a micro-controller could be

placed between the CPU and the FPGA, so the host is freed from handling all the

interruptions in the system as is the case in the larger con�guration for [58], which

could even be implemented as a soft-core processor on the FPGA.

The content of the computation units can vary abundantly, as discussed previously

systolic arrays can be used to form convolutional compute engines. Inevitably, logic

for the non-linearity computation and algorithmic optimizations can be added to

overall structure of the FPGA. Again, an example is the NVDLA [58].

4.2.2 Software

From the software perspective, the execution model of an inference accelerator can

be compared to those of GPP architecture. That is because it usually involves two

phases, the compilation and execution, as depicted in Figure 4.4.

Analogously to the translation of a program targeting a speci�c architecture i.e. x86,

the compilation step targets a DNN accelerator, in which case the neural network

4.2. System Architecture 30

EXECUTIONCOMPILATION

DNN SHAPE

SIZE

(Program)

MAPPER

(Compiler)

DNN

Accelerator

(Processor)

PROCESSED

DATA

INPUT

DATA

MAPPING

(Binary)

DATAFLOW

(Architecture)

IMPLEMENTATION

DETAILS

(µArch)

Figure 4.4 Execution model analogy between DNN inference accelerators and GPP.
Adapted from [70].

is translated into a hardware-compatible computation mapping [70]. Note that in

this phase, or even before it, several neural network optimization techniques (as

described in Sections 3.6 and 3.7) can and should be applied to deliver the best

hardware friendly version possible.

Observe from the diagram in 4.4 that the mapper, in the compilation phase, needs

as input the hardware implementation details. This is a crucial step in producing

high-performing accelerators.

Additionally, it is important to notice that commonly an intermediary representa-

tion is needed to pass the model of the neural network to the accelerator. This

representation is usually very di�erent from the original model, for example, it can

have a fused layers implementation, as proposed by [3]. The objective of this method

is to reduce the use of external memory usage and as such improve the performance

of the design.

To address the same problem, it is also possible to use a persistent approach, in

order to pin the models in the on-chip memory of the FPGAs. This approach must

be supported by an entire infrastructure at scale, since if only the on-chip memory

is used, large models cannot �t in one device but can �t across several FPGAs.

Microsoft's project Brainwave targets exactly that.

4.3. Tools and Architectures 31

4.3 Tools and Architectures

One of the main concerns in implementing e�cient inference accelerators in FPGAs

is the heavy and di�cult task of doing so. In this context, to ease this process, many

works provide frameworks for automatically generating the underlying hardware de-

scription. This is the case of [72], further extended in [7]. FINN is a framework

targeting Binarized Neural Networks inference accelerators on FPGAs, a custom

architecture is built speci�cally for a given topology. The accelerator generation

process uses two inputs, the trained BNN and an FPS target for the �nal imple-

mentation.

Also relying on data quantization technique allied with a design �ow proposition,

Angel-Eye presented by [29] targets the mapping of CNN onto embedded FPGAs.

The input to the �ow is CNN model from Ca�e that is quantized and �ne-tuned

to increase accuracy, in the next step an instruction sequence is devised through a

compiler for the execution of the model. The underlying hardware implementation

is parameterized and runtime con�gurable.

In a similar manner, the framework proposed by [85] addresses the generation of

e�cient CNN models for domain-speci�c applications on FPGA. The key component

on this framework is the hardware design template used with Winograd optimized

convolution blocks and fused-layers approach. Transfer learning is used for �ne-

tuning the trained input model for a given application. In this sense, the inputs

for this design �ow are the domain knowledge, pre-trained models, the platform

speci�cations and the requirements. As a result, the optimized model design is

generated.

Another approach for abstracting these di�culties, is the use of Instruction Set

Architecture. Cambricon, proposed by [47] is an instruction set speci�c for neural

networks accelerators, it comprises the usage of a load-store architecture with 64-bit

instructions devised from the study of NN techniques. Indeed, no vector register �le

is used to supporting common computations on NN, so the data is kept in on-chip

memory being visible from the programmer perspective.

The combination of an Instruction Set with a framework targets an even bigger

scope. These solutions o�er the possibility of completely disengaging programmers

from hardware design. The work presented by [68] has as inputs a pair of (DNN,

FPGA), in which the DNN model is speci�ed by a high-level programming interface,

i.e. similar to Ca�e description, and is further translated into a macro data�ow

Instruction Set Architecture (ISA). Similar approaches are proposed by [28, 49, 28].

4.3. Tools and Architectures 32

Another important aspect is the system solution in which these inference accelerators

are deployed.

The approaches described so far usually present high �exibility of implementation,

either regarding the DNN models supported or the target hardware platform. The

work proposed by [52], NEURAghe, is aimed at Zynq SoCs (System on a Chip)

and investigates the usage of the ARM cores with a convolution speci�c processor

deployed on the recon�gurable logic. The ARM host program is automatically

generated for the execution of the fully-connected layers and data marshaling.

This is one of the several examples targeted to SoCs solutions focusing on embedded

architectures for NN acceleration. One can also mention [29] and [39] as recent

approaches in this context.

In this sense, when one proposes an FPGA-Based inference accelerator it is usually

designed to be a co-processor. One can either use SoCs that integrates multi-core

processors, memory interfaces and recon�gurable logic on the same board, for an

embedded approach or target the usage of the pair host and FPGA. This last ap-

proach utilizes PCIe I/O bus for communication between the host and the FPGA

device, as is the case in [28]. Observe that these two types of system implementation

can be interchangeable by some modi�cations.

The important point here is that all these implementations are usually targeted for

real-time mobile applications, that are performed on the device. From the server

point of view, [29] arguments that aiming at a speci�c network implementation is

a good choice for achieving extreme hardware performance, but a problem when

targeting real-time mobile applications that run on the device. This work agrees

with this sentence, a speci�c neural network is indeed implemented for extreme

performance purposes targeting a cloud environment structure.

The oldest work cited here is DaDianNao [14] and its correlation to the present

work is symbolic. Motivated by the memory storage and bandwidth requirements

in DNNs, as well as its correspondent limitations, the authors propose the usage of a

multi-chip system, in which each on-chip storage could be used for implementing the

biggest DNNs architectures. The proposed architecture is named a supercomputer

for its capacity. Note that the underlying idea of scaling-up Deep Neural Networks

across several chips is basically the core of a cloud computing environment.

4.4. Inference Accelerators in Cloud Environment 33

4.4 Inference Accelerators in Cloud Environment

From the inference accelerators perspective, they are usually designed as embedded

applications targeting real-time solutions, which is the interest of academia, as dis-

cussed in the previous paragraphs. When it comes for a cloud environment, two

examples will be exposed here.

Google's TPU [37] is a custom ASIC designed to be a coprocessor on the PCIe

I/O bus for easier integration with existing servers. The main objective was to run

inference models to reduce the host CPU interactions in this process, also to present

�exibility for several and evolving DNNs. The core of this accelerator is a Matrix

Multiply Unit, �tting the highest level of canonical computation model, Level 3,

as described in Sections 3.6 and 3.7. The instructions are sent from the host and

allocated in an instruction bu�er. The NN is compiled from TensorFlow to an API

that can run either on GPUs or TPUs. The TPUs were deployed since 2015 in

data centers for inference acceleration and can use big batch sizes for improving

performance.

From another perspective, Microsoft's Brainwave project [17] [24] targets the use of

FPGAs in their Azure cloud. In this sense, the acceleration scope is larger, since one

of the applications is indeed DNNs inference. Their goal is o�ering the possibility

of running real-time applications, in this sense, latency is the most important �gure

and batch size 1 is used for this purpose. The Neural Processing Unit (NPU) targets

a di�erent approach for low-latency solution, as demonstrated in [69], in which the

model parameters are pinned in on-chip memories. It presents an ISA for accom-

modating a wide range of DNN models and to ease the task of its programming.

Brainwave is built on top of the Catapult enhanced-servers [10], in which the FP-

GAs are PCIe attached to dual CPUs and are physically in-line between the server

Network Interface Card (NIC) and the switch enabling point-to-point connectiv-

ity, using RDMA-like (Remote Direct Memory Access) protocol, between thousands

of FPGAs in the data center. The tool �ow is responsible in accepting the DNN

model and mapping it to the distributed system architecture utilizing the hardware

microservices in which the NPU is synthesized in the targeted FPGAs.

The approach aiming at low-latency is well funded, as being referred extensively

in this work. In Google's TPU paper [37] when discussing their deployment, the

conclusion regarding NN inference applications in data centers is that they were

surprised by the strong response-time required by some applications in which the

preference was shifted from bigger waiting times with bigger batches to reduced

latency in inference.

4.4. Inference Accelerators in Cloud Environment 34

Still in this section, it is important to mention a few words on the role that industry

is playing in this �eld of research. From all the implementations and studies cited

here, at least one in three is directly mapped to the biggest industry players.

As is the case for FPGAs, Xilinx in [72] and [7] heavily and consistently work with

quantization, making a heavy e�ort in proving tools for abstracting the di�culties

in implementing e�cient inference accelerators in their FPGAs. Their latest work

[8] evaluates the FINN framework for di�erent data types in an AWS (Amazon Web

Services) instance, since Amazon o�ers FaaS, FPGAs as a Service in their public

cloud. Just recently, Xilinx revealed Versal ACAP (Adaptive Compute Acceleration

Platform) which combines programmable logic with a set of new features including

Intelligent Engines (Software programmable vector processors), refer to [79] for the

Versal architecture overview. Notice that the target of these devices is a wide range

of applications, including cloud, network and embedded.

Intel on the other hand, review similar optimization approaches for using with their

new FPGAs family [57], Stratix 10, which in a partnership with Microsoft is used

in large scale cloud environment with project Brainwave. NVIDIA undoubtedly

the biggest player in the GPUs market, has open-sourced their e�ort in devising a

complete software/hardware con�gurable solution in NVDLA [58] and also proposes

a sparsity accelerator, which is not a good �t for GPUs, in Stitch-X [45].

Google and Microsoft have been investing heavily in their cloud infrastructure from

two di�erent approaches. Google's TPU [37] is an ASIC based DNN inference accel-

erator whilst Microsoft recently deployed its Brainwave project [17] in FPGA based

inference accelerators.

Undoubtedly, Microsoft's Brainwave project is the most inspiring work, regarding

cloud architecture, for the present implementation. The work presented here also

aims at ultra-low latency applications, but uses a di�erent approach than the one

devising a NPU. As already cited, it is possible to defend speci�c implementations

when targeting extreme high performance. This is the case of the implemented

neural network, although it presents a synthesis time parametrization, it is aimed

only at MLPs. Another important mention is the system level architecture, in

which, by using Software De�ned Networks in the recon�gurable logic, it is possible

to route packets between FPGAs and achieve the same result as not having software

in the loop. Since, the MLP implemented does not need any instruction or runtime

con�guration it can work in a stream-like manner achieving the intended ultra-low

latency requirements.

35

5. METHODOLOGY

This work presents a comparison between multiple implementations for the acceler-

ation of an anomaly detection neural network. The neural network model creation

and training is not a part of this thesis. The original model was quantized, as an

optimization step for a hardware e�cient implementation. This quantization is also

out of the scope of this thesis work. As such, the comparison is done between:

1. the original model executed in CPU utilizing Keras,

2. the original model executed in GPU utilizing Keras,

3. the quantized model executed in FPGA utilizing GEMX,

4. the quantized model executed in FPGA utilizing SDAccel,

5. the quantized model executed in FPGA utilizing CRUN.

The original anomaly detection neural network model was implemented and trained

using Keras framework [16]. Thus, the original model could be executed in CPU or

GPU. The other three implementations utilized a quantized model with di�erent ap-

proaches, GEMX is a high-level implementation, whilst SDAccel and CRUN utilizes

a hardware RTL (Register Transfer Level) kernel. For all cases the pre-processing

of the data was not included in the latency measurements.

The steps of execution of each experiment are described in the next two sections.

The �rst introduces all the experiments, referred as reference implementations, with

exception of CRUN that is speci�cally introduced in the subsequent section. Only

CRUN and SDAccel were implemented from scratch and CPU, GPU and GEMX

were basically run for comparison purposes. The validation process is also described

in this Chapter.

5.1 Reference Implementations

The trials introduced in this section were performed for comparison purposes with

the main implementation of this thesis, the CRUN. This means that most of these

5.1. Reference Implementations 36

cases were conducted from ready-made implementations with needed modi�cations.

From the order of the implementations presented here, it is also possible to outline

the order in which the experiments were made. For example, CPU was the �rst

implementation and SDAccel the last. They represent steps for the �nal solution

constituted by CRUN.

5.1.1 CPU & GPU

The original anomaly detection neural network model was implemented and trained

using Keras framework [16]. Note that model development and training are not in

the scope of this work. However, for a simple comparison with the inference metrics

of the original model, in CPU and GPU, Keras was used.

Keras, written in Python, is a high-level neural networks API capable of executing

either on CPU or GPU by running on top of TensorFlowTM [16]. TensorFlowTM is an

open source software library based on data �ow graphs for numerical computation

[71].

The server used for both cases was Intel R© Xeon R© Gold 6130 CPU @ 2.10GHz [34]

and the NVIDIA R© Tesla R© V100 Data Center GPU was employed [59] for GPU

measurements.

In this scope, ready-made Python scripts with the original Keras model were used

and modi�ed for predicting the model and timing its computation. Only one use

case was performed here, measuring the time for predicting one or more inputs of

the model using the predict method in Keras. This was performed for CPU and

GPU independently. Also, di�erent batch sizes were used for analyzing the relation

of batch size and latency. The pre-processing of the data is not included in the

latency measurements, but only the inference latency.

5.1.2 Xilinx GEMX

The original anomaly detection model from Keras was quantized for the implemen-

tation with GEMX from Xilinx [74]. The quantization and GEMX implementation

details are not part of this work.

GEMX is a General Matrix Operation library used for acceleration of BLAS-like

matrix operations. It is used on SDAccel supported FPGA cards from Xilinx, which

5.1. Reference Implementations 37

comprises Xilinx KCU1500 and Xilinx VCU1525. In this work, this implementa-

tion was carried out in VCU1525 Recon�gurable Acceleration Platform featuring

Xilinx R© Virtex R© Ultrascale+TM FPGA [78]. The host was the same as in the CPU

implementation.

GEMX library is composed of three components: an engine library, a host code

compiler and an application or system building environment. The engine library

o�ers blocks for building matrix operation accelerators on FPGAs, it comprises a

set of C++ templates that can only be used on SDAccel supported platforms. The

compilation of the host code is performed by the host code compiler that trans-

lates the matrix function calls into a sequence of instructions for computing matrix

operations on FPGAs. Finally, the building environment uses GNU make �ow for

generation of the host code and FPGA's image [74].

A GEMX Python API was used for sending the data to be predicted to the FPGA.

Only one test case was performed with GEMX utilizing one batch size, which was

measuring the time spent for the FPGA computing the needed calculations and

returning the predictions. The pre-processing of the data is also not included in the

inference latency.

5.1.3 Xilinx SDAccel

An RTL kernel of the anomaly detection neural network was developed for and

implemented utilizing Xilinx SDAccelTM Environment [77].

SDAccelTM is a framework that o�ers the possibility of developing and delivering

accelerated data center applications on FPGAs. It uses standard programming

interfaces, making it easy to use for developers of accelerated applications with no

prior knowledge about hardware design. However, the tool �ow allows the usage of

hardware-centric approaches for development of the accelerated kernel [77].

This environment targets acceleration hardware platforms as Virtex R© Ultrascale+TM

FPGA VCU1525, which was used for carrying out this implementation. The host

was the same as in the CPU, GPU and GEMX implementations.

The SDAccelTM o�ers support for kernels developed in OpenCLTM C, C/C++ and

RTL [77]. In this thesis work, a RTL kernel was used and some requirements for its

development were ful�lled.

From the software side, the RTL kernel was designed for being started when called

by the host, compute all data values and return it at the end of the operation.

5.2. CRUN Implementation 38

From the hardware side, AXI4-Lite interface slave is used for accessing the kernel

control registers and AXI4 master interface for communication with the memory,

for sending and returning data.

For SDAccel, the test case was to measure the latency between sending the data

to the RTL kernel on FPGA and obtaining the results for that data using C code.

Two batch sizes were used for accessing the e�ect of the batch size in the latency

measurements. Observe that the pre-processing of the data is not included in the

measurements.

5.2 CRUN Implementation

CRUN framework is part of an in-house infrastructure, which is composed by soft-

ware and hardware components. This thesis utilizes its hardware components, here

referred as CRUN shell, for integrating with the RTL kernel of the anomaly detection

neural network. More information on CRUN framework can be found in [41].

The laboratory setup showed in Figure 5.1 (a) and (b) contains two servers with dual

socket Intel R© Xeon R© E5-2680 v4 @ 2.40GHz CPUs of 64-bit and x86 architecture,

the CPUs have 14 physical cores each and hyperthreading enabled, providing 56

treads in total and 128 GB of DDR4 memory. For network communication the

NICs (Network Interface Controllers) used are Intel R© 82599ES 10 Gigabit Ethernet

Controller. Additionally, the switch connecting NICs and FPGAs referred in Figure

5.1 is model QFX5100-48S from Juniper R© Networks.

The implementation was carried out on KCU1500 data center board with the Xilinx R©

Kintex R© UltrascaleTM FPGA. For more information on the board, refer to [76].

Vivado Design Suite [80] was used for developing, verifying, validating and integrat-

ing the RTL computation kernel for anomaly detection neural network and CRUN

shell.

The customizable Integrated Logic Analyzer (ILA) [75] IP core was also used for

monitoring the internal signals of the design. The latency measurements for the

anomaly detection RTL kernel were �rst analyzed from simulations and posteriorly

con�rmed by the usage of the ILA core. Then, by using IXIA board NOVUS-

R100GE8Q28 the CRUN shell only latency was obtained. This setup was part of

the Hardware (HW) only measurements, depicted on Figure 5.1(b).

For obtaining latencies from the Software (SW) level, another method was used.

The anomaly detection data was sent through the network over Ethernet to the

5.2. CRUN Implementation 39

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

TRex

FPGA

ETH

IXIA

ETH

HOST

NIC

PCIe

FPGA

PCIe

ETH ETH

TRex

(a) (b)

(c)

SWITCH

SWITCH

A B

A

B

A
B

Latency Measurement points

Figure 5.1 CRUN Test Cases Lab Setup. (a) represents the con�guration using one
FPGA. (b) shows the usage of IXIA board for HW measurements. (c) represents the
distributed version of the system, using two FPGAs.

FPGA, TRex was used as application from host OS. TRex [19] is an open source

tra�c generation tool, that runs on standard Intel processors. It uses DPDK (Data

Plane Development Kit) and supports stateful and stateless tra�c generation modes.

Both modes were used for the latency measurements discussed in Chapter 7. The

use cases utilizing TRex are depicted in Figure 5.1(a) and (c).

There is the possibility of running TRex on a hypervisor with virtual NICs. In this

work, however, bare metal was employed.

Figure 5.1 also shows the latency measurement points for each setup. For example,

in (a) the round-trip latency is measured from Trex following point A to point B.

The payload of each packet sent through TRex was generated based on the anomaly

detection data for prediction. The Ethernet packet �elds were con�gured for the

correct destination, depending on the lab setup utilized. For example, in the case

5.3. Validation 40

of Figure 5.1(a) the host was the destination, but in the distributed case depicted

in (c) the �rst FPGA should send the data to the second FPGA, so the destination

was changed.

In summary, three experiments for latency measurement were carried out with

CRUN framework and the anomaly detection RTL kernel: from SW perspective

utilizing one FPGA, from SW perspective with the distribution of workload to two

FPGAs and HW only measurement without SW layer in the loop. For all the ex-

periments with CRUN the pre-processing of the data is not included in the latency

measurements, but only the time between sending the data and receiving it.

5.3 Validation

The CPU and GPU implementations refer to the usage of the original Keras model

without quantization. Hence, they correspond to the base implementation for this

acceleration.

GEMX was the �rst implementation that utilized a quantized model, as such, accu-

racy study was carried out for comparing CPU and GEMX results. Note that this

was done previous to this thesis work.

However, the validation process carried out for the experiments of this thesis were

fully executed for Xilinx SDAccel and CRUN implementation. They were both val-

idated against GEMX implementation, which constitutes the �rst quantized experi-

ment. Validation scripts utilizing Python were especially developed for this purpose

and used throughout validation process.

Firstly, the RTL anomaly detection neural network was veri�ed utilizing its own

test bench written in System Verilog in Vivado environment. Once the behavior

was veri�ed, it was ported for SDAccel environment and the hardware emulation

�ow was used for testing the software integration. Finally, the system was fully

built and tested on hardware.

For CRUN implementation, the validation was also supported by Python scripts

for creating the necessary Ethernet packets with the correct payload data. Thus,

several pairs of input and expected output were validated for this system.

41

6. IMPLEMENTATION

At �rst, this Chapter describes the CRUN framework, an in-house development.

The anomaly detection neural network is then presented and explained in a high-

level overview. In the sequence, its hardware implementation is discussed along

with optimization methods utilized. The MLP, for anomaly detection application,

presented here is just one example from many candidates. Observe that it could

be any other cited on the subsection 2.3. In this case, the study was done in a

general format, which means that the work was realized as if the neural network

had di�erent characteristics, an example is the distribution of the workload to two

FPGAs.

6.1 CRUN Architecture

CRUN is a framework composed of software and hardware components. Since it is

still under development and it is an in-house e�ort for enabling the acceleration of

di�erent applications in a data center environment, its architecture will be presented.

However, only the hardware components will be discussed because the software is

out of the scope.

The CRUN ambit is bigger than what was used here, thus only a brief overview of

the most important components will be discussed in a top-down manner.

Figure 6.1 shows the high-level view of a distributed system enabled by CRUN,

composed of three example servers. The switch connects the local network composed

of hosts and FPGAs to the Internet.

The content of the three hosts are identical. Each server is connected to its NIC and

FPGA daughtercard through PCIe. In CRUN a Virtual Machine (VM) is used for

the deployment of the applications that will be accelerated. However, in this work

the application (TRex) runs on bare metal.

The framework also supports the software layer. Figure 6.1 shows two important

software components: BRO server and BRO client. They are responsible for all

6.1. CRUN Architecture 42

HOST 3

HOST 1

NIC

PCIe

FPGA

PCIe

ETH ETH

SWITCH

HOST 2

NIC

PCIe

FPGA

PCIe

ETH ETH

VM

NIC

PCIe

FPGA

PCIe

ETHETH

BRO

CLIENT

BRO

CLIENT

BRO

CLIENT

BRO

SERVER

INTERNET

VM VM

LOCAL ACC

NETWORK ACC

DISTRIBUTED ACC

1

2

3

Figure 6.1 CRUN architecture overview. VM represents the Virtual Machine present in
each host. Distributed acceleration is represented by red dashed line and is the only scenario
utilized for accelerating anomaly detection neural network.

the operations comprehending the deployment and management of the VMs and

applications through the hypervisor, the programming of the FPGA bit �le, the

con�guration of the network and the application life cycle.

Three types of accelerators are supported by this system, marked in Figure 6.1

by numbered routes. Path 1 from host 2 (black dashed line) shows the network

acceleration mode, in which application data is in-line accelerated before going out

of the data center. Path 2 from host 1 (orange dashed line) introduces the distributed

acceleration case, where data is routed to a chain of two FPGAs. Path 3 from host

3 (purple dashed line) shows the local acceleration, in this mode data is transferred

through PCIe to the accelerator and back using DMA (Direct Memory Access).

6.1. CRUN Architecture 43

However, only one of these acceleration modes is used in this thesis, the distributed

acceleration in two distinct ways. One is exactly as the picture shows, with two

FPGAs in which data is transferred to the FPGAs through the network. The other

is by using only one FPGA.

A closer look at the FPGA architecture of the system is given in Figure 6.2. All the

components on Figure 6.2 with exception of the Accelerator Hardware Unit (AHU)

are a static part of the recon�gurable logic and are referred to as CRUN shell.

The control elements of the system are represented in yellow, they can be accessed

through a PCIe driver that performs memory map access to the shell and AHU by

di�erent address spaces. The green blocks represent the local acceleration mode of

Figure 6.1, in which data is transferred through PCIe via DMA directly to the

accelerator and back.

The blue blocks of Figure 6.2 represents the Ethernet stream path and are the

most relevant part for this thesis work. Observe that Ethernet frame packets are

used for transferring the acceleration data, refer to [1] for more information on the

composition of such packets. P4 RX and P4 TX are SDN components and provide

the networking functionality of the shell.

ETH RX is responsible for checking and translating the incoming physical Ethernet

packet into an equivalent AXI4-Stream packet, no application speci�c information

is processed from Ethernet �elds. P4 RX main task is to �nd from the headers

�eld the correct AHU destination for sending the income packet, it also removes the

headers for delivering only payload data for the accelerator.

The ROUT RX component receives the packet payload and routes it to the cor-

responding AHU. In the case that AHU is not ready the packet is dropped. This

action is taken because the stream path function on line rate, and it is responsibility

of the AHU to support the correct throughput for the application.

Immediately after the AHU computation, ARB TX is responsible for receiving the

packets generated from the AHU and deciding which should be served. In the

sequence, P4 TX task is to build the IP headers for the speci�c payload it received

from AHU. The con�guration of addresses and ports, which constitutes the constant

�elds in the headers, is updated during runtime by PCIe control port.

The last step on the stream path is ETH TX that converts AXI4-Stream to physical

Ethernet packets for being transferred to the data center network. Once on the

network, the packet will be routed to its destination.

6.1. CRUN Architecture 44

FPGA

P4 RX
ETH

RX
R

O
U

T
 R

X
P4 TX

ETH

TX
A

R
B

 T
X

CTRL

PCIe DMA

PCIe CTRL

MEM IF

AXI4-Stream

AXI4-Lite

AXI4

CSR

MEM ARB

AHU 0

Figure 6.2 CRUN FPGA architecture overview. The stream data path is represented by
the blue components and is the only one used in the acceleration of the anomaly detection
neural network.

Note that in this thesis work the AHU corresponds to the anomaly detection MLP

discussed on next section. One can de�ne AHU as the hardware element that pro-

cesses the data, while the CRUN shell objective is to serve the correct data for the

speci�c AHU.

Here, the standard interface of AHU is presented on Figure 6.3 (a), di�erent inter-

faces are provided for control and memory access.

The usage of the CRUN framework in this work is limited and as such its capabilities

are beyond its scope. Anomaly Detection neural network AHU implementation does

not utilize any control or direct memory access scheme (either for host or on-board

FPGA memory), but solely the RX and TX using AXI4-Stream.

Figure 6.3 (b) shows the AHU from the shell point of view. MLP LAYERS is the

RTL kernel with the anomaly detection neural network, detailed in Figure 6.6.

AXI4-Stream is employed for interfacing with CRUN shell. Note also that FIFOs

are inserted between MLP LAYERS and the AXI stream interface for supporting

6.1. CRUN Architecture 45

AHU

CONTROL

(AXI4-LITE)

R
X

(A
X

I4
-S

T
R

E
A

M
)

T
X

(A
X

I4
-S

T
R

E
A

M
)

MEM

(AXI4)

R
X

(A
X

I4
-S

T
R

E
A

M
)

T
X

(A
X

I4
-S

T
R

E
A

M
)

CTRL

F

I

F

O

F

I

F

O

MLP

LAYERS

(a)

(b)

Figure 6.3 (a) CRUN standard AHU interfaces. (b) AHU for Anomaly Detection neural
network RTL kernel referred to as MLP LAYERS.

bursts from Ethernet. The control logic is designed for controlling the packets arrival

and departure from and to the networking portion of the shell.

If a neural network model is too big and cannot �t into only one FPGA on-chip

memory, CRUN shell and its networking capabilities enable the distribution of such

model. For the distributed CRUN version, MLP LAYERS was divided in two parts:

one consisting of LAYER 0 and LAYER 1 and the other comprising LAYER 2 and

LAYER 3. Subsequently, each of them was wrapped by AHU interface wrapper to

be synthesized into two di�erent FPGAs.

The �nal architecture of the distributed version is showed in Figure 6.4. Also, MLP

LAYERS 1 utilizes the unrolled version of LAYER 2. Only the FPGAs are showed

and not their detailed connections.

For a complete overview of the system, Figure 6.1 shows the distributed acceleration

with the orange dashed line of route number 2. The two FPGAs in the chain

corresponds to FPGA 0 and FPGA 1 of Figure 6.4.

6.2. Anomaly Detection MLP 46

FPGA 0

CTRL

F

I

F

O

F

I

F

O

MLP

LAYERS

0

CRUN shell

ETH

FPGA 1

CTRL

F

I

F

O

F

I

F

O

MLP

LAYERS

1

CRUN shell

ETH

Network

Figure 6.4 Distributed CRUN implementation.

6.2 Anomaly Detection MLP

For the subsequent discussion, it is important to address the usage of auto-encoders

for anomaly detection. It is su�cient to state that this type of DNNs structures are

based upon MLPs, CNNs or RNNs and that it comprises two neural networks, the

encoder and decoder. What is di�erent from common types of neural networks is

the learning process applied to such auto-encoders [83].

The MLP used here was trained with the method discussed in [4]. Notice that

in their work, the authors used the complete auto-encoder, while for the inference

phase, as the object of study here, only the encoder portion is needed.

From a high level overview, the MLP used is described in Figure 6.5. This rep-

resentation shows only the layers and their sizes relation. In this sense, the ReLU

nonlinearity between layers is not represented neither the bias summation.

It is important to distinguish two aspects when considering application latency.

From the application software perspective, the latency requirement includes the

software layer, transport layer and the accelerator processing itself. This consti-

tutes the round-trip latency, the time for sending one or a set of inputs from the

software level and receiving the respective output. From the accelerator perspec-

tive, the latency re�ects the time passed between receiving one input and delivering

the correspondent output. In this context, it is crucial to underline that even if

6.3. RTL Implementation 47

Input

Layer

Output

Layer

 x

inputs

 x/2

outputs

Biggest

layer

4x

Figure 6.5 Anomaly detection example application MLP. The layer sizes are depicted as
relative to the input size.

the requirement for the software application seems tight, the accelerator latency

requirement is tighter.

For the study demonstrated here the objective was to have an overall application

round-trip latency between 20µ and 40µ seconds, which essentially means that the

inference accelerator should process one input in less than these values. More details

about this will be given in Chapter 7.

6.3 RTL Implementation

For the reasons discussed in Section 3.6, the original anomaly detection model was

quantized from 32-bits �oating point to 16-bits �xed-point, while the biases were

quantized to 32-bits �xed point for accuracy reasons. This means that the inputs,

outputs and weights of each layer uses 16-bit representation and only biases utilize

32-bit representation.

Each layer of the MLP showed in Figure 6.5 is formed by Multiply-Accumulation

engines, responsible for the multiplication of inputs and weights as well as the sum-

mation carried out for each neuron, corresponding to Equation 3.1. These engines

process the inputs in parallel but generate outputs sequentially. Each output is

6.3. RTL Implementation 48

NEURAL

ENGINE

AHU

FIFO

IN

FIFO

OUT

AHU

CONTROL

MLP LAYERS

UNROLLED LAYER

2 HIGH

MLP

CONTROL

LAYER

2 LOW

Latency

LAYER

0

LAYER

1

LAYER

3

MAC

B

I

A

S

R

e

L

U

RX TX

Computed

Neuron

Neuron Not

Computed

MLP LAYERS

BASELINE

LAYER

2

MLP

CONTROL

LAYER

0

LAYER

1

LAYER

3

Latency

1

2

3

Figure 6.6 Hierarchical view of Anomaly Layers MLP, in 1 is the original design referred
to as baseline and 2 shows the version with the biggest layer unrolled. The computation of
neurons of a single layer is displayed in 3. Green represents the neuron already computed,
yellow means processing, and gray refers for neurons not yet computed.

summed with its respective bias and subsequently passed by the ReLU activation

function block.

Figure 6.6 shows this behavior in 3. Note that each engine is reused for the

computation of each neuron on the network.

From the memory perspective a persistent approach is used here to take advantage of

on-chip memory only. As such, distributed ROM memories are inferred from RTL

code, whilst weights and biases are �xed at instantiation instead of being loaded

during runtime.

6.3. RTL Implementation 49

The RTL code is con�gurable on synthesis time and its options are:

• the bit-width of inputs, weights, bias and outputs;

• the number of inputs and outputs;

• usage of the activation function (ReLU);

• the rounding format of the output;

• the weight/bias input �les.

A hierarchical overview of the hardware implementation is showed in Figure 6.6.

Custom interfaces are used in all levels except when interfacing with the CRUN

shell. The operation of each layer simply comprises a start and done signal.

The latency for each layer computation depends directly on the size of the layer.

For example, referring to Figure 6.6 in 1, LAYER 2 is four times the size of LAYER

0, hence it takes four times more for computing its outputs.

So far, the discussion was about a single layer, i.e. LAYER 0 in Figure 6.6. One

level up there is the addition of the control logic. Since each layer has no back-

pressure support because no handshake is implemented, it is responsibility of the

control to schedule correctly the inputs for each layer. The output of each layer is

the input of the next, i.e. output of LAYER 0 is the input of LAYER 1 and so on.

Two implementations utilize the RTL described here, with some changes regarding

their nature. The SDAccel implementation is a co-processor type of acceleration,

in which host and FPGA transfer data by Direct Memory Access (DMA). The

CRUN implementation is a stream-like type of acceleration, in which the inputs are

streamed to FPGA over Ethernet.

The point here is that both implementation utilizes the same RTL kernel with

some di�erences on how the layers operate, their control. Figure 6.7 shows these

di�erences.

For the SDAccel implementation, the control logic starts all layers at the same time.

Thus, the design is latency bounded to the biggest layer computation and it is safe to

assume that once the biggest layer �nishes it is possible to forward the output of each

layer. However, this also means that in the beginning only the fourth output should

be accepted and the �rst three discarded. Observe Figure 6.7 (a) for reference.

6.3. RTL Implementation 50

2

(a)

X X X1

2 1 X

3 2 1

X

X

L
at

en
cy

 o
f

th
e

b
ig

g
es

t
la

y
er

8 7 6 5 4 3 1

(b)

1

L
at

en
cy

 o
f

ea
ch

 l
ay

er

Batch of 8 inputs

1

1

1

2

2

2

23

3

3

34

4

4 3 2 1

5 4 3 2

...
...

1

2

3

4

G
ap

 f
o
r

In
p
u
t

1

Figure 6.7 Comparison between di�erent control options. A batch-8 of inputs is showed
at the top of the �gure. (a) shows the SDAccel operation, since all layers start at the same
time, from step 1 to 2 the biggest layer was completed. The latency between each step is the
biggest layer. (b) shows the CRUN operation. Each step is correspondent to the latency of
each layer. Observe the gap for input 1 between both control options.

On the other hand, for CRUN implementation, because of the stream-like behavior

and no back-pressure support, this is not feasible. Layers have di�erent computation

times and the control should be able to start a speci�c layer at the correct time,

when inputs are correctly placed. As a simplistic approach, the control logic starts

one layer after the other i.e. �rst start LAYER 0, once it �nishes, start LAYER

1 and so on. When the biggest layer is completed, it is possible to accept more

6.3. RTL Implementation 51

inputs on LAYER 0. This process is depicted on Figure 6.7 (b). By using the

completion of the biggest layer, the approach becomes general for using with other

neural networks.

In this context, the biggest layer is the bottleneck of both designs. One possible

solution is to unroll the biggest layer at the cost of a bigger area. Figure 6.6 shows

this approach in 2. The e�ect of unrolling the biggest layer was carried out only for

CRUN implementation.

At this point, it is possible to summarize the optimizations used in the RTL imple-

mentation of anomaly detection neural network, as discussed in Chapter 4.

• Quantization: when quantizing from 32-bit �oating point to 16/32-bit �xed

point representation.

• Reuse: MAC engines are reused for each neuron output computation.

• Memory hierarchy: persistent approach, only on-chip memory is used for stor-

ing weights and biases.

• Layer-parallelism: the biggest layer is unrolled for decreasing latency of com-

putation.

52

7. RESULTS AND ANALYSIS

In this chapter the results for all mentioned implementations are presented. Analysis

and discussion for each solution leveraging pros and cons is subsequently given.

First, a common discussion for all trials is the accuracy drop from the original

model to the quantized model. As mentioned previously, CPU and GPU used the

original model, while GEMX, SDAccel and CRUN used the quantized version. Note

that, GEMX is a high-level implementation, whilst SDAccel and CRUN utilizes a

hardware RTL kernel, but they were both validated to the GEMX implementation.

More information about validation is given in Section 5.3.

In this regard, it is possible to establish only two di�erent models when referring

to accuracy: the original Keras model and the quantized model for RTL implemen-

tation. The original model utilized 32-bits �oating point representation, while the

quantized model 16-bits and 32-bits �xed point representation. Thus, the e�ect of

the quantization on anomaly detection model was reportedly inexpressive for the

quantized neural network and the drop in accuracy is less than 0.002%, which is

insigni�cant.

7.1 Performance

Table 7.1 shows the results for �ve trials of the anomaly detection neural network.

Di�erent batch sizes and RTL implementations were used for this comparison. Since

the drop in accuracy was insigni�cant and the quality of the results are all the same,

three metrics are used here for evaluating each solution, in order of importance:

• Latency;

• Inferences per second and

• Throughput.

NN Model in Table 7.1 refers to the implementation used. CRUN-B is the Base-

line version and it means the RTL anomaly detection neural network discussed in

7.1. Performance 53

Table 7.1 Results for di�erent implementations of anomaly detection neural network.

Experiment NN Rep. Latency/ Throug. Inf. Batch Freq. FPGA
Model Batch [µs] [Mbps] /sec Size [MHz] Board

CPU-1 Keras fp32 798 20.53 1 253 1 NA NA

CPU-16 Keras fp32 3 694.6 70.95 4 330 16 NA NA

GPU-1 Keras fp32 1 897.43 8.635 527 1 NA NA

GPU-16 Keras fp32 1 973.49 132.83 8 107 16 NA NA

GEMX-32 Python 16-bit 1 500 174.76 21 333 32 60 VCU

SDAccel-16 Baseline 16-bit 602.5 217.55 26 556 16 100 VCU

SDAccel-1 Baseline 16-bit 272.5 30 3 662 1 100 VCU

CRUN-B Baseline 16-bit 30.97 (+5) 405.5 49 499 1 156.25 KCU

CRUN-U Unrolled 16-bit 24.40 (+5) 594.48 72 568 1 156.25 KCU

CRUN-D Unrolled 16-bit 32.55 (+5) 1 232.8 150 488 1 156.25 KCU

Chapter 6. Recall the di�erences in the operation between SDAccel and CRUN

implementation. Unrolled NN model is mentioned as CRUN-U and refers to the

version with the biggest layer (LAYER 2) unrolled. CRUN-D is the distributed

version of the neural network. CRUN-B and CRUN-U corresponds to the route in

Figure 5.1 (a) while CRUN-D is showed in 5.1 (c).

It is important to highlight that the latencies were obtained from the same software

level for all solutions. This means that the roundtrip latency provided in Table 7.1

refers to the latency for one input being computed and resulting into one output

at the software level. The CRUN latencies presented were calculated from TRex

measurements. Figure 5.1 shows the latency measurement points for each case.

The latency reported for the CPU-1 case refers to batch-1. If the batch size is

increased to 16 in CPU-16, the latency grows by a factor of 4.6x, but the throughput

is only 3.4x bigger, the equivalent to 70 Mbps. The throughput for GPU also

increases when comparing batch-1 (GPU-1) and batch-16 (GPU-16), but for this

case, the increase is around 16x while the di�erence on latency is not signi�cant.

This means that for large batch sizes the GPU tends to increase the latency more

slowly than the CPU does. Likewise, the throughput will increase more rapidly for

GPU than for the CPU. For GPU-16 the utilization of the GPU is around 1%, which

shows that this small model on GPU with small batch size does not uses the device

properly.

The anomaly detection application, particularly is not a good �t for big batches, this

is because the latency requirements are extremely tight and only batch-1 can deliver

them. Table 7.1 shows only small batches being used, although batch-32 is used

for GEMX for achieving the required inferences per second metric. Thus, increasing

the batch size for CPU or GPU is not a good alternative. If the concern is purely

7.1. Performance 54

CPU-1
CPU-16

GPU-1

GPU-16

GEMX-32SDAccel-16

SDAccel-1

CRUN-B

CRUN-U

CRUN Dist.

7,000E+06

4,200E+07

2,520E+08

1,512E+09

9,072E+09

16 64 256 1024 4096

T
hr

o
ug

hp
ut

(l

o
g1

0
)

[b
p

s]

Latency (log2) [µs]

Throughput vs. latency

Figure 7.1 Throughput (bps) vs latency (µs).

ultra-low latency, neither CPU or GPU can give the best results, even with batch-1.

On the other hand, it is clear that CRUN delivers the best throughput and latency.

This assertion is true even when comparing two similar implementations, in terms of

the RTL kernel used, SDAccel and CRUN. Latency improves 96% when comparing

with SDAccel batch-16 (SDAccel-16) and CRUN-U, while the throughput is also

improved by 2.7x even when comparing CRUN batch-1 and SDAccel batch-16.

Figure 7.1 presents a graph of throughput vs. latency of the di�erent implemen-

tations. CRUN undoubtedly gives the best results and allows ultra-low latency

inference for the anomaly detection neural network. It gives more than 30x im-

provement over CPU-1 latency. Now, observe how the batch size in�uences on the

throughput and the latency of the inference for di�erent solutions.

It is not possible to compete with GPU's throughput when using large batches and

an optimized implementation that would use all of its resources. This is because

for bigger batch sizes, latency is sacri�ced to achieve more bandwidth, which is

usually the most pressing issue for demonstrating performance, but not for this

thesis. The same can be said for GEMX implementation, where batch size is also

used for mitigating the memory accesses by transferring several inputs at a time,

instead of just one. Observe that all these solutions are kept on a di�erent latency

level from SDAccel and CRUN.

GEMX is a quantized model implementation running on FPGA and shows already a

very good performance when compared with CPU and GPU. It uses batch-32 and it

gives better latency than CPU and GPU with batch-16. The increase on throughput

7.1. Performance 55

is 24% when comparing with GPU-16 while the latency is lowered by the same factor.

Also, observe how when comparing inferences per second, the improvement against

GPU-16 is by a factor of 2.6, this is an important aspect when comparing di�erent

bit-widths, as will be discussed later.

When comparing the results for GEMX, SDAccel and CRUN, one may notice that

the FPGA boards used are di�erent. In fact, the FPGA that was used for the �rst

two is bigger and in theory should deliver better results, this is because there is more

area for routing and higher frequencies can be achieved. However, notice how the

operating frequencies for GEMX and SDAccel are low when compared to CRUN. For

GEMX it is 60 MHz, and this cannot be controlled externally on the implementation.

The reason behind the 100 MHz of SDAccel is the static shell portion that composes

these designs, since the SDAccel shell uses a considerable portion of the FPGA, the

RTL kernel needs to be routed around it, which may cause the drop on frequency.

Two trials with SDAccel were carried out with di�erent batch sizes. Observe the

di�erence in latency for batch sizes 16 and 1, while also considering the obvious

relationship of batch sizes and throughput. With batch-16 (SDAccel-16) the latency

increases only 2.2x while the throughput grows by 7.2x. The reason behind this is

exactly the same mechanism behind CPU, GPU and GEMX batch scenarios. From

the 272.5µs for batch-1, the correspondent to 245µs is related to memory accesses,

which represents almost 90% of the latency. With this mind, it is absolutely clear

why to use batches, because of the overhead of moving data back and forth to the

FPGA with DDR (Double Data Rate) operation latency cost.

The superior results achieved by CRUN implementation targets exactly the costly

DDR operations. Since only on-chip memory is used for storing the neural net-

work model, fair to mention that the exact same approach is taken in SDAccel,

the di�erence is that the input and output data does not need to be transferred

via memory. Instead, they are transferred in Ethernet-based packets that leverages

DPDK as software acceleration. This alongside the RTL implementation and its

optimizations allow the system to achieve the presented latencies.

There are di�erences between the latencies of the baseline and unrolled versions for

CRUN. Those latencies were obtained using TRex and as such they represent the

software level round-trip latency.

It is easier to compare baseline and unrolled versions when analyzing the HW-only

measurements, which were obtained from clock cycle measurement in simulation and

proofed with ILA cores on the design. These latencies are 26.29µs for baseline and

19.72µs for unrolled. For both measurements 4.245µs corresponds to the latency

7.1. Performance 56

of the CRUN shell, what gives the latency for only the anomaly detection neural

network as 22.04µs for baseline and 15.48µs for unrolled. The throughput values

are the theoretical �gures and agrees with the measured ones with IXIA.

By unrolling the biggest layer, as showed in Figure 6.6, the latency is dropped

by 21%. Observe that the throughput also increases considerably. This means

that further unrolling this layer would still improve latency and throughput alike,

although the improvement would be smaller and smaller in this process.

There are still two possibilities that could be explored for obtaining even bigger

throughput for the anomaly detection neural network computation. First, the op-

erating frequency for the anomaly detection neural network on CRUN could be in-

creased if, for example, the bigger board VCU1525 were used. Although the 156.25

MHz comes from the CRUN shell, there is no limitation for the kernel, only its own

computational demands. Second, the operation of the control for the CRUN imple-

mentation. It would be possible, by adding handshake signals to each layer, to start

the next layer immediately after the previous layer has computed its output, which

would double its current throughput to around 1.2 Gbps. This operation change

was not pursued because the current values already give a good enough system for

this study purposes.

Nevertheless, the HW-only measurements are not a fair comparison with the other

solutions, because it does not consider the latency from the SW layer. The measure-

ments with TRex are on Table 7.1. However two di�erent values were obtained

utilizing di�erent TRex operation modes. TRex can operate in stateful or stateless

mode and the latency measurements were done for both. The di�erence between

these modes represented the addition of 5µs to the values showed in Table 7.1. In

this context, it is safe to assume that the latencies for these cases are between the val-

ues presented on Table 7.1 and the 5µs addition. The di�erences in measurements

are due to the di�erent �ow that TRex utilizes when in stateless mode.

One may argue that this addition is too low compared to the other implementation's

latencies. This is true but when considering ultra-low latency scenarios, even the

smallest of the values start to make a di�erence.

Even in the worst case, the results with CRUN are superior. The round-trip latency

is between 24µs and 29µs. Important to highlight that the usage of TRex application

here is the key for achieving these latencies for data transmissions. Indeed, DPDK,

which is used by TRex shows similar results to RDMA in comparison depending on

the packet size, as showed in the work by [26]. In that sense, DPDK and RDMA

are referred as kernel bypassing technologies and as such they are used for delivering

7.1. Performance 57

CPU-1
CPU-16

GPU-1

GPU-16

GEMX-32SDAccel-16

SDAccel-1

CRUN-B

CRUN-U

CRUN Dist.

512

2048

8192

32768

131072

16 64 256 1024 4096In
fe

re
nc

es
 p

er
 s

ec
o
nd

 (
lo

g2
)

Latency (log2) [µs]

Inferences per second vs. latency

Figure 7.2 Inference per second vs. latency (µs).

low-latency communication among the components in a data center [26].

In this context, an application built especially for CRUN would need to use these

technologies for optimizing these communications and enabling its usage in a real

environment.

Still regarding the throughput presented for di�erent solutions on Table 7.1, one

may raise the point that to compare CPU, GPU with the other �xed point imple-

mentations is not fair. That is because the former utilizes 32 bits �oating-point

representation and the throughput is described in bits per second. For that reason,

inferences per second metric is used instead of throughput in Figure 7.2.

With this in mind, once again CRUN versions show the best results in latency and

throughput. If optimized designs with larger batch sizes are taken into use for GPU

implementation, CRUN distributed version may not deliver equivalent performance.

However, the most important metric here is not inference per second, but latency,

and in this �gure any CRUN implementation is undoubtedly the best.

One down side of CRUN distributed version is the utilization of more area by using

two FPGAs. From the bright side, it gives a 98% drop on latency, while giving 18.5x

increase for inference per second than GPU batch-16.

7.2. Resource Utilization 58

7.2 Resource Utilization

Also mentioned in Chapter 6, the decrease on latency comes at a cost, which is area.

To underline this trade-o�, Table 7.2 shows the resource usage for both versions of

the RTL implementation and for CRUN shell only design.

Table 7.2 Resource utilization for anomaly detection NN versions.

Resource Utilization %
Baseline Unrolled Shell Only

LUT 37,22 40,67 15,41

LUTRAM 5,54 5,79 5,53

FF 48,12 51,13 13,56

BRAM 47,96 57,01 17,25

DSP 64,93 74,20 0

First, one can acknowledge the size of the CRUN shell and how it restrains the

AHU design. Especially important to notice is that almost 18% of Block RAMs

(BRAMs) are already in use by the shell, which is a primary concern regarding neural

networks model sizes. Another consideration is about the DSP usage, CRUN shell

does not utilize any DSP resource which is of prime importance when implementing

the needed multiplications in a neural network computation.

Furthermore, the unrolled version had an increase of around 10% for BRAM and

DSP. One can argue that this is a small price to pay for obtaining 79% of the system

latency. But in that case, depending on the neural network, this will not be possible

with only one FPGA, which is exactly the argument for distributing it across two

or several FPGAs.

In this case, the anomaly detection neural network was distributed across two FP-

GAs. Some considerations are important in this scenario. The CRUN shell latency

is doubled and impacts more heavily the overall latency, contributing to roughly half

the latency of the anomaly detection computation itself. Also, the latencies of the

switch (already included on all the latencies for CRUN) will also contribute more

because of the added routing path.

In summary for a two FPGA design, the shell and the switch latency from a one

FPGA design would be doubled. From the bright side, with more area the biggest

layer could be unrolled once more as already discussed. In summary, even for low

latency use cases, this mode could still be applicable if more throughput is desired.

7.3. Design Complexity 59

7.3 Design Complexity

The complexity of the implementation can also be inferred from Table 7.1. The

presentation of solutions is in increasing order of complexity. Indeed, once one has

the Keras model, it is very straightforward to run the inference phase with it. That

is the reason why CPU and GPU are at the top of the table, since it is basically a

matter of calling the predict method for the model. When it comes to running the

predict method on CPU or GPU, it can be basically done with a few lines of code

in a Python script by directly calling TensorFlow functions.

GEMX implementation is one step further on the di�culty scale. Although this was

carried out by using a Python API for GEMX, it still imposes some challenges. The

quantization is basically one of them. However, since no RTL is directly needed, and

as such, a Python script can handle basically the whole process, it still constitutes

an easier implementation.

SDAccel represents a new level of complexity. As mentioned there is the possibility

of using standard programming languages or even HLS for describing the compu-

tational kernel. However, in this case, for the optimum solution, RTL kernel was

implemented from scratch. This can be easily justi�ed by the extent in which opti-

mizations can be done at this level of abstraction. Nevertheless, SDAccel leverages

a standard type of acceleration, in which data is written to the device memory, the

computation is carried out and once it is completed the host reads the result from

the DRAM of the device. This also means that the framework provides a good sup-

port for handling this process, o�ering wizards for creating the necessary interfaces

for communication with SDAccel shell.

At the other end on the complexity spectrum is CRUN implementation. CRUN uses

basically the same underlying hardware as SDAccel and as such already imposes a

great challenge for RTL kernel development. The di�erence here is that no wiz-

ard can be used for generating the necessary interfaces for the CRUN shell, which

complicates the process. Another important point is the di�erence regarding the ac-

celeration mode, since CRUN utilizes Ethernet packets, this should be handled from

SW level, and as already mentioned TRex was used for this purpose with custom

payload data.

Another thought when distributing the design is the synthesis and implementation

time that is reduced proportionally to size. In this case since the design was sepa-

rated into two, the synthesis design for each is less than it was for the whole design,

which is also a point to consider. However, this consideration may have a minor

impact if this procedure is seldom executed.

7.4. Limitations 60

7.4 Limitations

The results from CPU and GPU does not contain any optimization. This means

that they were used plainly from Keras framework and TensorFlow backend. In fact,

it is possible that if these solutions were implemented with more e�ort the results

could be improved. However, notice that a tailored implementation targeting better

values increases the complexity.

When it comes to the limitations, this is an o�-line experiment. Data for the anomaly

detection NN algorithm was already preprocessed and the latencies for doing so are

not included in these results. This is done because of the testing mode employed,

with TRex. Since the measurements are carried out for all implementations from

the same level, the preprocessing is excluded from all trials, making the results

comparable.

Another limitation constitutes the �exibility of this design. The anomaly detec-

tion neural network was especially designed for this purpose. This means that if

another neural network is required, several modi�cations would need to be made,

although the underlying RTL has a level of generalization, no convolutional layer

was developed for example. Yet, this lack of �exibility is exactly one of the rea-

sons for the excellent results when referring to latency, because of the optimizations

implemented.

Also note that the system implemented and used with CRUN cannot be applied

to every neural network. In the case of the anomaly detection NN since an MLP

was used this stream-like approach is a perfect �t. However, if complex layers or

short-cut connections are needed, this approach cannot be used.

From the measurements with TRex for CRUN, the �gures on Table 7.1 are average

values. However, the maximum latency observed was 290 µs. This means, that in

order to have a reliable system this should be taken into account.

Finally, the latencies for CRUN cases were calculated from individual measurements,

CRUN shell only, AHU and TRex. This can potentially be translated as an error

source, but it is not expected to invalidate these results. One important considera-

tion in this aspect is that the HW measurements are completely reliable.

61

8. CONCLUSIONS

In this thesis work, a comparison between �ve implementations of an anomaly de-

tection neural network inference was studied.

It is clear that the best performing solution in terms of latency and throughput is

provided by CRUN unrolled version. This means that a hardware neural network

implementation leveraging several optimizations allied with CRUN framework o�ers

the possibility of running inference in the data center environment with ultra-low

latency.

The requirements for this solution were to obtain latency between 20µs to 40µs for

inference time and 20 000 inferences per second. These goals were categorically

ful�lled with all CRUN implementations, even with the worst performing solution,

that was the baseline version.

The improvement in performance is also observed when comparing similar imple-

mentations, in terms of the RTL kernel used, as is the case of SDAccel, the second-

best solution after CRUN. Latency improves 96% when comparing with SDAccel

batch-16 and the throughput is also improved by 2.7x even when looking at CRUN

batch-1 and SDAccel batch-16.

This is especially important in the context of mobile networks and the edge cloud.

The impact of this study has a prime importance within 5G scope. This is because,

depending on the application, the deployment of deep learning solutions requires

a low latency format that may not be achieved when using expensive memory to

memory communications, but is facilitated when utilizing stream-like style. The

innovative approach of utilizing Ethernet based packet communications for deep

learning acceleration, although not new even in cloud environment, is a pioneer on

the mobile networks cloud context.

As a general guideline, CRUN should be used when ultra-low latencies are required,

in which batch-1 cases is the only solution for ful�lling this requirement. However,

its usability is tied to the type of application and neural network used, which should

be heavily considered. Nothing else can be inferred for the usage of CRUN because

8. Conclusions 62

more experiments are needed to draw deeper conclusions.

For future work, optimizations for achieving even lower latencies will be done. This

is needed because the better the latency of the neural network acceleration the more

time is spared for communication and processing tasks, what would impact the

overall performance of the system.

63

BIBLIOGRAPHY

[1] �IEEE Standard for Ethernet,� IEEE Std 802.3-2015 (Revision of IEEE Std

802.3-2012), pp. 1�4017, March 2016.

[2] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, �Accelerating CNN inference

on FPGAs: A Survey,� 05 2018.

[3] M. Alwani, H. Chen, M. Ferdman, and P. Milder, �Fused-layer CNN accelera-

tors,� in 2016 49th Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), Oct 2016, pp. 1�12.

[4] C. Aytekin, X. Ni, F. Cricri, and E. Aksu, �Clustering and Unsupervised

Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations,�

CoRR, vol. abs/1802.00187, 2018.

[5] R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine Learning:

Introduction. Cambridge University Press, 2011.

[6] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[7] M. Blott, T. B. Preusser, N. C. Fraser, G. Gambardella, K. O'Brien, and

Y. Umuroglu, �FINN-R: An End-to-End Deep-Learning Framework for Fast

Exploration of Quantized Neural Networks,� 2018.

[8] M. Blott, T. B. Preusser, N. J. Fraser, G. Gambardella, K. O'Brien,

Y. Umuroglu, and M. Leeser, �Scaling neural network performance through

customized hardware architectures on recon�gurable logic,� 2017 IEEE Inter-

national Conference on Computer Design (ICCD), pp. 419�422, 2017.

[9] G. Brown and H. Reading, Cloud RAN & the Next-Generation Mobile Network

Architecture, White Paper.

[10] A. M. Caul�eld, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman,

S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,

M. Papamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger, �A cloud-

scale acceleration architecture,� 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 1�13, 2016.

BIBLIOGRAPHY 64

[11] C. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar, �Flex-

CRAN: A �exible functional split framework over ethernet fronthaul in Cloud-

RAN,� in 2017 IEEE International Conference on Communications (ICC), May

2017, pp. 1�7.

[12] A. Checko, A. P. Avramova, M. S. Berger, and H. L. Christiansen, �Evaluating

C-RAN fronthaul functional splits in terms of network level energy and cost

savings,� Journal of Communications and Networks, vol. 18, no. 2, pp. 162�

172, April 2016.

[13] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger,

and L. Dittmann, �Cloud ran for mobile networks a technology overview,� IEEE

Communications Surveys Tutorials, vol. 17, no. 1, pp. 405�426, Firstquarter

2015.

[14] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,

N. Sun, and O. Temam, �Dadiannao: A machine-learning supercomputer,� in

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture,

Dec 2014, pp. 609�622.

[15] K. Cheung. How nokia is utilizing machine learning in 5g net-

works. [Online]. Available: https://algorithmxlab.com/blog/2018/06/27/

how-nokia-is-utilizing-machine-learning-in-5g-networks-2/

[16] F. Chollet et al., �Keras,� https://keras.io, 2015.

[17] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caul�eld, T. Massen-

gill, M. Liu, M. Ghandi, D. Lo, S. Reinhardt, S. Alkalay, H. Angepat, D. Chiou,

A. Forin, D. Burger, L. Woods, G. Weisz, M. Haselman, and D. Zhang, �Serv-

ing DNNs in Real Time at Datacenter Scale with Project Brainwave.� IEEE,

March 2018. [Online]. Available: https://www.microsoft.com/en-us/research/

publication/serving-dnns-real-time-datacenter-scale-project-brainwave/

[18] Cisco, �Global mobile data tra�c forecast update.� [Online]. Avail-

able: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/mobile-white-paper-c11-520862.html

[19] Cisco. Trex. [Online]. Available: https://trex-tgn.cisco.com/trex/doc/trex_

book.pdf

[20] F. Conti, P. D. Schiavone, and L. Benini, �XNOR Neural Engine: a Hardware

Accelerator IP for 21.6 fJ/op Binary Neural Network Inference,� CoRR, vol.

abs/1807.03010, 2018.

https://algorithmxlab.com/blog/2018/06/27/how-nokia-is-utilizing-machine-learning-in-5g-networks-2/
https://algorithmxlab.com/blog/2018/06/27/how-nokia-is-utilizing-machine-learning-in-5g-networks-2/
https://keras.io
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.microsoft.com/en-us/research/publication/serving-dnns-real-time-datacenter-scale-project-brainwave/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://trex-tgn.cisco.com/trex/doc/trex_book.pdf
https://trex-tgn.cisco.com/trex/doc/trex_book.pdf

BIBLIOGRAPHY 65

[21] J. H. Cox, J. Chung, S. Donovan, J. Ivey, R. J. Clark, G. Riley, and H. L.

Owen, �Advancing software-de�ned networks: A survey,� IEEE Access, vol. 5,

pp. 25 487�25 526, 2017.

[22] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai,

G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu, X. Lin, and B. Yuan, �CirCNN:

accelerating and compressing deep neural networks using block-circulant weight

matrices,� in MICRO, 2017.

[23] Y. Ding, S. Hu, M. T. Niemier, J. Cong, Y. H. Hu, and Y. Shi, �Scaling for

edge inference of deep neural networks,� 2018.

[24] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,

S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek,

G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caul�eld, E. S. Chung,

and D. Burger, �A Con�gurable Cloud-Scale DNN Processor for Real-Time

AI,� in 2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA), June 2018, pp. 1�14.

[25] R. Garg and L. Hendren, �A portable and high-performance general matrix-

multiply (gemm) library for gpus and single-chip cpu/gpu systems,� in

2014 22nd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, Feb 2014, pp. 672�680.

[26] D. Gehberger, D. Balla, M. Maliosz, and C. Simon, �Performance Evaluation

of Low Latency Communication Alternatives in a Containerized Cloud Envi-

ronment,� 3D Digital Imaging and Modeling, International Conference on, pp.

9�16.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[28] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,

and J. Cong, �FP-DNN: An Automated Framework for Mapping Deep Neural

Networks onto FPGAs with RTL-HLS Hybrid Templates,� 2017 IEEE 25th

Annual International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp. 152�159, 2017.

[29] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang,

�Angel-eye: A complete design �ow for mapping cnn onto embedded FPGA,�

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 37, pp. 35�47, 2018.

http://www.deeplearningbook.org

BIBLIOGRAPHY 66

[30] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, �A survey of FPGA

based neural network accelerator,� CoRR, vol. abs/1712.08934, 2017. [Online].

Available: http://arxiv.org/abs/1712.08934

[31] A. Hadnagy, B. Fehér, and T. Kovácsházy, �E�cient implementation of con-

volutional neural networks on FPGA,� in 2018 19th International Carpathian

Control Conference (ICCC), May 2018, pp. 359�364.

[32] D. Harutyunyan and R. Riggio, �Flexible functional split in 5G networks,�

in 2017 13th International Conference on Network and Service Management

(CNSM), Nov 2017, pp. 1�9.

[33] M. Huang, X. Wang, K. Li, and S. K. Das, �A comprehensive survey of network

function virtualization,� Computer Networks, vol. 133, pp. 212�262, 2018.

[34] INTEL. Intel Xeon Gold 6130 Processor. [On-

line]. Available: https://ark.intel.com/products/120492/

Intel-Xeon-Gold-6130-Processor-22M-Cache-2-10-GHz-

[35] ITU-T, Transport network support of IMT-2020/5G.

[36] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, and L. Hanzo, �Machine learning

paradigms for next-generation wireless networks,� IEEE Wireless Communica-

tions, vol. 24, no. 2, pp. 98�105, April 2017.

[37] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa,

S. Bates, S. K. Bhatia, N. Boden, A. Borchers, R. Boyle, P. luc Cantin, C. Chao,

C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,

R. Gottipati, W. Gulland, R. Hagmann, R. C. Ho, D. Hogberg, J. Hu, R. Hundt,

D. Hurt, J. Ibarz, A. Ja�ey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch,

N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,

R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,

A. Phelps, J. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,

J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,

E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, �In-

datacenter performance analysis of a tensor processing unit,� 2017 ACM/IEEE

44th Annual International Symposium on Computer Architecture (ISCA), pp.

1�12, 2017.

[38] D. Kim, J. Ahn, and S. Yoo, �A novel zero weight/activation-aware hardware

architecture of convolutional neural network,� Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2017, pp. 1462�1467, 2017.

http://arxiv.org/abs/1712.08934
https://ark.intel.com/products/120492/Intel-Xeon-Gold-6130-Processor-22M-Cache-2-10-GHz-
https://ark.intel.com/products/120492/Intel-Xeon-Gold-6130-Processor-22M-Cache-2-10-GHz-

BIBLIOGRAPHY 67

[39] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson, �Fpga-based

cnn inference accelerator synthesized from multi-threaded c software,� in 2017

30th IEEE International System-on-Chip Conference (SOCC), Sept 2017, pp.

268�273.

[40] E. J. Kitindi, S. Fu, Y. Jia, A. Kabir, and Y. Wang, �Wireless network virtual-

ization with sdn and c-ran for 5g networks: Requirements, opportunities, and

challenges,� IEEE Access, vol. 5, pp. 19 099�19 115, 2017.

[41] D. Koslopp, �CRUN: Distributed Processing in FPGA Accelerated Cloud,�

Master of Science Thesis, Tampere University of Technology, 2018.

[42] R. Krishnamoorthi, �Quantizing deep convolutional networks for e�cient infer-

ence: A whitepaper,� CoRR, vol. abs/1806.08342, 2018.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation with

deep convolutional neural networks,� in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, ser.

NIPS'12. USA: Curran Associates Inc., 2012, pp. 1097�1105. [Online].

Available: http://dl.acm.org/citation.cfm?id=2999134.2999257

[44] G. Lacey, G. W. Taylor, and S. Areibi, �Deep learning on fpgas: Past,

present, and future,� CoRR, vol. abs/1602.04283, 2016. [Online]. Available:

http://arxiv.org/abs/1602.04283

[45] C.-E. Lee, Y. S. Shao, J.-F. Zhang, A. Parashar, J. Emer, S. W. Keckler, and

Z. Zhang, �Stitch-x : An accelerator architecture for exploiting unstructured

sparsity in deep neural networks,� 2018.

[46] Z. Li, Y. Wang, T. Zhi, and T. Chen, �A survey of neural network

accelerators,� Front. Comput. Sci., vol. 11, no. 5, pp. 746�761, Oct. 2017.

[Online]. Available: https://doi.org/10.1007/s11704-016-6159-1

[47] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen, �Cam-

bricon: An instruction set architecture for neural networks,� 2016 ACM/IEEE

43rd Annual International Symposium on Computer Architecture (ISCA), pp.

393�405, 2016.

[48] L. Lu, Y. Liang, Q. Xiao, and S. Yan, �Evaluating fast algorithms

for convolutional neural networks on fpgas,� in 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), vol. 00, April 2017, pp. 101�108. [Online]. Available: doi.

ieeecomputersociety.org/10.1109/FCCM.2017.64

http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1602.04283
https://doi.org/10.1007/s11704-016-6159-1
doi.ieeecomputersociety.org/10.1109/FCCM.2017.64
doi.ieeecomputersociety.org/10.1109/FCCM.2017.64

BIBLIOGRAPHY 68

[49] Y. Ma, Y. Cao, S. B. K. Vrudhula, and J. sun Seo, �An automatic rtl compiler

for high-throughput FPGA implementation of diverse deep convolutional neural

networks,� 2017 27th International Conference on Field Programmable Logic

and Applications (FPL), pp. 1�8, 2017.

[50] A. Maeder, M. Lalam, A. D. Domenico, E. Pateromichelakis, D. WÃ1
4
bben,

J. Bartelt, R. Fritzsche, and P. Rost, �Towards a �exible functional split for

cloud-RAN networks,� in 2014 European Conference on Networks and Commu-

nications (EuCNC), June 2014, pp. 1�5.

[51] P. M. Mell and T. Grance, �Sp 800-145. the nist de�nition of cloud computing,�

Gaithersburg, MD, United States, Tech. Rep., 2011.

[52] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Ra�o, and

L. Benini, �Neuraghe: Exploiting cpu-fpga synergies for e�cient and �exible

cnn inference acceleration on zynq socs,� CoRR, vol. abs/1712.00994, 2017.

[53] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

�Network function virtualization: State-of-the-art and research challenges,�

IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 236�262, Firstquar-

ter 2016.

[54] S. N. Motade and A. V. Kulkarni, �Channel estimation and data

detection using machine learning for mimo 5g communication systems in

fading channel,� Technologies, vol. 6, no. 3, 2018. [Online]. Available:

http://www.mdpi.com/2227-7080/6/3/72

[55] M. A. Nielsen, �Neural networks and deep learning,� 2018. [Online]. Available:

http://neuralnetworksanddeeplearning.com/

[56] L. Nobach and D. Hausheer, �Open, elastic provisioning of hardware accelera-

tion in nfv environments,� in 2015 International Conference and Workshops on

Networked Systems (NetSys), March 2015, pp. 1�5.

[57] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock,

Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh,

�Can fpgas beat gpus in accelerating next-generation deep neural networks?�

in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, ser. FPGA '17. New York, NY, USA: ACM, 2017,

pp. 5�14. [Online]. Available: http://doi.acm.org/10.1145/3020078.3021740

[58] NVIDIA. NVDLA open source project. [Online]. Available: http://nvdla.org/

[59] NVIDIA, NVIDIA Tesla V100 GPU Accelerator.

http://www.mdpi.com/2227-7080/6/3/72
http://neuralnetworksanddeeplearning.com/
http://doi.acm.org/10.1145/3020078.3021740
http://nvdla.org/

BIBLIOGRAPHY 69

[60] T. O`Shea and J. Hoydis, �An introduction to deep learning for the physi-

cal layer,� IEEE Transactions on Cognitive Communications and Networking,

vol. 3, no. 4, pp. 563�575, Dec 2017.

[61] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,

J. S. Emer, S. W. Keckler, and W. J. Dally, �Scnn: An accelerator for

compressed-sparse convolutional neural networks,� 2017 ACM/IEEE 44th An-

nual International Symposium on Computer Architecture (ISCA), pp. 27�40,

2017.

[62] M. Patel, Y. Hu, P. Hede, J. Joubert, C. Thornton, B. Naughton, J. R. Ramos,

C. Chan, V. Young, S. J. Tan, D. Lynch, N. Sprecher, T. Musiol, C. Man-

zanares, U. Rauschenbach, S. Abeta, L. Chen, K. Shimizu, A. Neal, P. Cosi-

mini, A. Pollard, and G. Klas, Mobile-Edge Computing - Introductory Technical

White Paper.

[63] L. Pierucci and D. Micheli, �A Neural Network for Quality of Experience Es-

timation in Mobile Communications,� IEEE MultiMedia, vol. 23, no. 4, pp.

42�49, Oct 2016.

[64] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,

S. Song, Y. Wang, and H. Yang, �Going deeper with embedded fpga platform

for convolutional neural network,� in Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser. FPGA

'16. New York, NY, USA: ACM, 2016, pp. 26�35. [Online]. Available:

http://doi.acm.org/10.1145/2847263.2847265

[65] A. Reznik, L. M. C. Murillo, Y. Fang, W. Featherstone, M. Filippou, F. Fontes,

F. Giust, Q. Huang, A. Li, C. Turyagyenda, C. Wehner, and Z. Zheng, Cloud

RAN and MEC: A Perfect Pairing White Paper, ETSI.

[66] W. River, vRAN: The Next Step in Network Transformation, White Paper.

[67] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Heidelberg:

Springer-Verlag, 1996.

[68] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and

H. Esmaeilzadeh, �From high-level deep neural models to FPGAs,� 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 1�12, 2016.

[69] I. H. C. . Symposium, Ed., Accelerating Persistent Neural Networks at Datacen-

ter Scale. [Online]. Available: https://www.hotchips.org/wp-content/uploads/

http://doi.acm.org/10.1145/2847263.2847265
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.60-NeuralNet1-Pub/HC29.22,622-Brainwave-Datacenter-Chung-Microsoft-2017_08_11_2017.pdf

BIBLIOGRAPHY 70

hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.60-NeuralNet1-Pub/

HC29.22,622-Brainwave-Datacenter-Chung-Microsoft-2017_08_11_2017.pdf

[70] V. Sze, Y. Chen, T. Yang, and J. S. Emer, �E�cient processing of deep neural

networks: A tutorial and survey,� Proceedings of the IEEE, vol. 105, no. 12, pp.

2295�2329, Dec 2017.

[71] TensorFlow. Tensor�ow. [Online]. Available: https://www.tensor�ow.org/

[72] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,

M. Jahre, and K. Vissers, �FINN: A Framework for Fast, Scalable

Binarized Neural Network Inference,� in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, ser. FPGA

'17. New York, NY, USA: ACM, 2017, pp. 65�74. [Online]. Available:

http://doi.acm.org/10.1145/3020078.3021744

[73] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,

�Automated systolic array architecture synthesis for high throughput CNN in-

ference on FPGAs,� in 2017 54th ACM/EDAC/IEEE Design Automation Con-

ference (DAC), June 2017, pp. 1�6.

[74] Xilinx. General matrix operation library. [Online]. Available: https:

//github.com/Xilinx/gemx

[75] Xilinx. Integrated logic analyzer (ila). [Online]. Available: https://www.xilinx.

com/products/intellectual-property/ila.html

[76] Xilinx, KCU1500 Board User Guide. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/boards_and_kits/

kcu1500/ug1260-kcu1500-data-center.pdf

[77] Xilinx, SDAccel Environment User Guide. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/sw_manuals/

xilinx2018_2/ug1023-sdaccel-user-guide.pdf

[78] Xilinx, VCU1525 Recon�gurable Acceleration Platform. [Online]. Avail-

able: https://www.xilinx.com/support/documentation/boards_and_kits/

vcu1525/ug1268-vcu1525-recon�g-accel-platform.pdf

[79] Xilinx, Versal Architecture and Product Data Sheet: Overview.

[80] Xilinx. Vivado design suite. [Online]. Available: https://www.xilinx.com/

products/design-tools/vivado.html#documentation

https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.60-NeuralNet1-Pub/HC29.22,622-Brainwave-Datacenter-Chung-Microsoft-2017_08_11_2017.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.60-NeuralNet1-Pub/HC29.22,622-Brainwave-Datacenter-Chung-Microsoft-2017_08_11_2017.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-Tuesday-Pub/HC29.22.60-NeuralNet1-Pub/HC29.22,622-Brainwave-Datacenter-Chung-Microsoft-2017_08_11_2017.pdf
https://www.tensorflow.org/
http://doi.acm.org/10.1145/3020078.3021744
https://github.com/Xilinx/gemx
https://github.com/Xilinx/gemx
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/products/intellectual-property/ila.html
https://www.xilinx.com/support/documentation/boards_and_kits/kcu1500/ug1260-kcu1500-data-center.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/kcu1500/ug1260-kcu1500-data-center.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu1525/ug1268-vcu1525-reconfig-accel-platform.pdf
https://www.xilinx.com/products/design-tools/vivado.html#documentation
https://www.xilinx.com/products/design-tools/vivado.html#documentation

Bibliography 71

[81] X. Xu, Y. Ding, S. Xiaobo Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, �Scaling

for edge inference of deep neural networks,� vol. 1, 04 2018.

[82] H. Ye, G. Y. Li, and B. Juang, �Power of deep learning for channel estimation

and signal detection in ofdm systems,� IEEE Wireless Communications Letters,

vol. 7, no. 1, pp. 114�117, Feb 2018.

[83] C. Zhang, P. Patras, and H. Haddadi, �Deep learning in mobile and wireless

networking: A survey,� CoRR, vol. abs/1803.04311, 2018. [Online]. Available:

http://arxiv.org/abs/1803.04311

[84] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. F. Li, Q. Guo, T. Chen, and

Y. Chen, �Cambricon-x: An accelerator for sparse neural networks,� 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 1�12, 2016.

[85] R. Zhao, H.-C. Ng, W. Luk, and X. Niu, �Towards E�cient Convolutional

Neural Network for Domain-Speci�c Applications on FPGA,� 2018.

[86] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis, B. Cremen, and

B. Troxel, �A hybrid asic and fpga architecture,� in IEEE/ACM International

Conference on Computer Aided Design, 2002. ICCAD 2002., Nov 2002, pp.

187�194.

http://arxiv.org/abs/1803.04311

	Introduction
	Mobile Networks and Cloud Computing
	C-RAN
	NFV and SDN
	Deep Learning in Mobile Networks

	Neural Networks
	Mathematical Definition
	Concept Definitions
	Training and Inference
	Inference's Computational Load
	Execution Platforms
	Network Model Optimizations
	Algorithmic Optimizations

	Inference Accelerators
	Hardware Efficient Design
	Parallelism Exploitation
	Resource Utilization

	System Architecture
	Hardware
	Software

	Tools and Architectures
	Inference Accelerators in Cloud Environment

	Methodology
	Reference Implementations
	CPU & GPU
	Xilinx GEMX
	Xilinx SDAccel

	CRUN Implementation
	Validation

	Implementation
	CRUN Architecture
	Anomaly Detection MLP
	RTL Implementation

	Results and Analysis
	Performance
	Resource Utilization
	Design Complexity
	Limitations

	Conclusions
	Bibliography

