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Gene expression is manifested through the synthesis of proteins within the cell. The
Cell Atlas, within the Human Protein Atlas project, provides immunofluorescence
microscopy images of the cell structures aligned with images showing the stained
protein of interest. The images reveal the localization patterns of the majority of
proteins found in human cells. These patterns in turn can be used when studying the
cellular functions related to gene expression and mutations. In the advent of deep
learning methods applied to computer vision problems, machine learning algorithms
can be used to categorize the localization patterns into subcellular structures.
In this thesis, two types of neural network algorithms were applied into the clas-
sification of the Cell Atlas samples from the dataset used in 33rd Congress of the
International Society for Advancement of Cytometry imaging challenge, where the
task was to do multi-class multi-label classification of the images into 13 subcellu-
lar structures. The algorithms tested, namely, were Convolutional Neural Networks
(CNN) and Fully Convolutional Networks (FCN). Model performance was evaluated
with class-wise F1 score. The results were promising, with CNN and FCN imple-
mentations yielding weighted averages of class-wise F1 scores of 0.822 and 0.810

respectively. Another interesting remark is that the FCN, which outputs probabil-
ity maps showing where in the image the certain class is present instead of a single
probability for the whole image, learns significantly faster than the CNN, suggesting
that it efficiently utilizes the spatial information in the training samples. FCN also
provides more information in its outputs compared to CNN, which loses the spatial
information in its outputs.
Considering the relatively small size of the dataset (20 000 samples, divided to 16 000
training samples and 4 000 testing samples), and the fact that the data is heavily
imbalanced, the results are promising. More complex deep learning architectures
can take advantage of millions of images, so in the future research the size of labeled
dataset should be increased. Also, the quality of the labels can be questioned as
they are derived from consensus between individuals without professional training.
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Geenit ilmenevät pääasiassa proteiinisynteesin kautta. Cell Atlas, joka on osa Hu-
man Protein Atlas -projektia, tarjoaa fluoresenssimikroskopiakuvia solujen raken-
teista ja niissä esiintyvistä proteiineista. Kuvat paljastavat, kuinka ihmisen soluissa
esiintyvät proteiinit rikastuvat tietyissä solun rakenteissa. Näitä paikallistumiskaavoja
(localization patterns) voidaan hyödyntää solujen ja geenien mutaatioiden tutkimuk-
sessa. Lisääntynyt syväoppimiseen (deep learning) perustuvien metodien käyttö
konenäössä mahdollistaa samojen keinojen soveltamisen myös proteiinien paikallis-
tumiskaavojen luokitteluun solunsisäisten rakenteiden perusteella.
Tässä työssä kahdentyyppisiä neuroverkkoalgoritmeja sovellettiin Cell Atlaksen näyt-
teiden luokitteluun. Tutkimuksessa käytetty aineisto on peräisin vuonna 2017 jär-
jestetyn konferenssin (33rd Congress of the International Society for Advancement
of Cytometry) kuvantamishaasteesta, jossa tehtävänä oli luokitella kuvat yhteen tai
useampaan kategoriaan kolmestatoista solunsisäisestä rakenteesta. Testatut algorit-
mit ovat nimeltään konvoluutioneuroverkot (Convolutional Neural Networks, CNN)
ja täysin konvolutionaaliset neuroverkot (Fully Convolutional Networks, FCN). Suori-
tuskykyä arvioitiin F1-arvolla. Tulokset olivat lupaavia: CNN ja FCN ylsivät luok-
kakohtaisten F1-arvojen painotettuihin keskiarvoihin 0.822 ja 0.810. Toinen mielen-
kiintoinen huomio oli, että FCN, jonka ulostuloina on todennäköisyyskarttoja yksit-
täisen kuvalle annettavan todennäköisyysarvon sijaan, oppi huomattavasti vastaavaa
CNN-toteutusta nopeammin. Tästä voidaan päätellä sen hyödyntävän tehokkaasti
opetusnäytteissä olevaa spatiaalista informaatiota. Ulostulokartat myös antavat
tulosten tulkitsijalle enemmän informaatiota CNN-toteutuksen yksittäisiin toden-
näköisyyksiin verrattuna.
Ottaen huomioon aineiston suhteellisen pienen koon (20 000 näytettä, joista
16 000 käytettiin mallin opetukseen ja 4 000 testaukseen) ja aineiston voimakkaan
epätasapainon, tulokset ovat hyviä. Monimutkaisemmat syväoppimisarkkitehtuurit
voivat hyödyntää tehokkaasti miljoonia näytteitä, joten tulevaisuuden työssä datan
määrää tulisi kasvattaa. Myös datan annotointien laatua voidaan kyseenalaistaa,
koska annotointi tapahtui nettipelaajien välisen konsensuksen pohjalta.
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TERMS AND DEFINITIONS

CE Cross-entropy; one type of loss functions used with neural networks

CNN Convolutional Neural Network; a neural network with at least one
convolutional layer

DAPI 4,6-diamidino-2-phenylindole, a fluorescent stain used in fluorescense
microscopy that binds to specific regions of DNA

DNA Deoxyribonucleic acid, the molecular sturcture of which the heredi-
tory material of the cells (genes) consists of

ELU Exponential linear unit; a modification of ReLU in which the func-
tion with negative input is exponential

FC layer Fully connected layer; a neural network layer in which every input
is connected to every neuron

FCN Fully Convolutional Network; a CNN without fully connected layers

F1 score A statistical measure used to evaluate the performance of machine
learning models. Calculated as the harmonic mean of precision and
recall.

GPU Graphical processing unit; a computational component primarily
used for graphics rendering. Capable of thousands of parallel com-
putations making it extremely powerful tool with matrix calcula-
tions and thus useful when training neural networks.

IF Immunofluorescence, a technique of using antibodies with fluores-
cent dyes to target specific biomolecules. Used in light microscopy.

ILSVRC ImageNet Large Scale Visual Recognition Challenge; a yearly image
classification competition in which a large standard image classifi-
cation dataset is used

LR Learning rate; a coefficient for controlling the magnitude of steps
taken when changing the weights of a machine learning algorithm
during training

MLP Depends on the context. Multilocalizing protein; a protein that is
enriched in more than one subcellular location. Multi-layer percep-
tron; a neural network consisting only of FC layers.
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PCA Principal Component Analysis

ReLU Rectified linear unit; a commonly used activation function which
implements the ramp function

RNA A molecular structure similar to DNA. Carries the information in
the DNA out of the cell nucleus for protein synthesis.

SCV Single cell variations; variations in the enrichment levels of a protein
between cells of the same sample

SGD Stochastic Gradient Descent, an optimization algorithm utilizing
randomly sampled batches

VGGNet A popular CNN architecture develop in Visual Geometry Group of
Oxford University

V1 The part of the visual cortex that receives the sensory input
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1. INTRODUCTION

Eucaryotic cells consist of multiple different structures, or organelles, that have their
own functions. The hereditory material inside the cell nucleus, or the genes, is ex-
pressed by the synthesis of proteins within the cells. Each gene has its own specific
pattern on the spacial distribution of the synthesized protein.These localization pat-
terns may tell whether the cells are functioning normally, i.e. whether they are
healthy or not.

In this thesis, an attempt is made to classify the protein localizations with the
means of computer vision. Specifically, Convolutional Neural Networks and Fully
Convolutional Networks are used to model the localization using microscopy images
of the cell structures and the protein signal, as well as experimental labels provided
with the images in the dataset. F1 scores for each class of localization and a weighted
average of the scores are used to measure the performance of the models.

The dataset and the biological motivation are introduced in chapter 2. A couple
of interesting features in the data are introduced, for example the variations of lo-
calizations between single cells in the same sample, as well as the notion that some
proteins are enriched in multiple organelles while most are localized into single com-
partment. Chapter 3 describes the computational methods in depth. This includes
the theory and background of the neural networks in general. The main features
and building blocks of neural network architectures are introduced. The chapter
then continues to describe the Convolutional Neural Networks, which are a special
case of the general feedforward neural network. Some of the popular well-performing
architectures are introduced. Finally, the Fully Convolutional Networks are consid-
ered. Chapters 4 and 5 describe the actual methods used in the study, as well as
the results of the experiments. The reliability of the methods used is evaluated, as
well as the relevance of the results. Lastly chapter 6 contains the conclusions drawn
from the results and considers future research that could be conducted.

In summary, the results are quite promising. The models learn especially the
most frequent classes rather well, and the scores of the more rare patterns are also
surprisingly good. The dataset is relatively small for deep learning approaches,
and especially the examples of the rarest cases are few in numbers. This calls for
constitution of a larger dataset with more precise labeling information to increase
the performance and further study the issues in automatic analysis of the protein
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localization. Also, to more accurately model the relationships to other cellular
functions, a more fine-grained hierarchy of the subcellular structures could be used.
This would mean more classes for the classification task.
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2. THE DATA AND BIOLOGICAL

MOTIVATION

This chapter introduces the data used in the thesis. The biological background and
motivation for the research are also briefly explained. The connection between gene
expression and protein localization is drawn, and the significance for research and
applications is outlined.

2.1 Genes and protein synthesis

Eucaryotic cells have a well defined nucleus that contains the chromosomes which
consist of the hereditory material of the organisms called genes. The nucleus is
surrounded by a structure separating it from the rest of the cell called nuclear
membrane. Eucaryotic cells also contain various kinds of structures specialized to
certain functions, which are called organelles. [9]

To put it simple, genes are sequences of DNA (deoxyribonucleic acid) that when
expressed lead to synthesis of a protein. Proteins in turn are complex molecules that
consist of amino acids. Protein’s structure and function is defined by the sequence of
the amino acids. Proteins have a multitude of different functions. Firstly, they make
up the cell’s structure. Enzymes are proteins that carry out the chemical reactions
within the cell. Messenger proteins work as signals that coordinate the processes
between different parts of the cell, as well as between cells. Transport proteins carry
smaller molecules around the cell and the whole body. Andibodies bind to specific
targets, e.g. viruses, to prevent their function and thus protect the cells. [24]

The synthesis from gene to protein consists of two phases. Transcription is a
process where the DNA sequence of the gene is copied into a similar structure called
RNA (ribonucleic acid). RNA type that encodes a protein is called messenger RNA
(mRNA). mRNA carries the information out of the nucleus to cytoplasm where the
second phase called translation takes place. In it the information in mRNA is used
to assembly the protein by a complex called ribosome with assistance of transfer
RNA, another type of RNA. [23]

Proteins that are enriched in same subcellular locations often engage in mu-
tual protein-to-protein interactions. They also often function in similar ways. Dis-
eases can be linked with abnormal protein localization stemming from mutations
in disease-causing genes compared to healthy cells. Phenotypically related diseases
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Figure 2.1: An illustration of the cell and its major organelles. The image shows
the 13 organelles used as locations in the dataset used in this thesis. Some of the
organelles are further divided into more specific categories which are discarded in
the context of this work. Image taken from [21].

are linked by similar subcellular localization profiles. Thus observing and studying
the localization patterns is an essential tool in identifying and associating genetic
diseases, as well as understanding the mechanisms of how the diseases progress. [26]

2.2 Human Protein Atlas

The Human Protein Atlas [15] is a significant effort to provide protein local-
ization data for the human proteome. A part of it, the Cell Atlas, consists of
immunofluorescence (IF) microscopy images of cells with experimental localization
data. The data represents 12,003 proteins from 22 human cell lines resolved to 30
subcellular locations. Together the proteins represent 84% of all human genes that
encode proteins (16,504 of 19,628 genes). Hierarchical clustering analysis based on
RNA sequencing indicates that cell lines of similar phenotype are linked through a
common pattern in gene expression. [35]

The proteins were stained with fluorescent colour using a total of 13,993 antibod-
ies. Examples of images can be seen in Figure 2.3. Each antibody is designed to bind
to a single target protein. The protein signals are marked with green color in the
sample images. In addition to the protein of interest, reference markers were used
to show the nucleus, microtubules and endoplasmic reticulum (ER). Microtubules
were marked with an antitubulin antibody (red color). The nuclei were counter-
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(a) The counts for each location in the dataset. Over half of the proteins of interest
in the dataset localize to nucleus (10,453), and one third to cytosol (6,851). On
the opposite end, only 190 proteins are enriched in intermediate filaments.

(b) The frequencies of samples from each of the 22 cell lines in the dataset. The
top three cell lines U-2 OS, A-431 and U-251 MG together add up to 14,696
samples which is roughly 75% of the dataset. The other 19 cell lines have only
a fraction of support compared to those. The rarest two cell lines are practically
inexisting in the dataset (ASC TERT1 has nine samples, NB-4 has six samples.)

Figure 2.2: The distributions of sample labels and cell lines
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stained with DAPI (blue color). ER was also stained using an antibody (yellow
color, omitted from the images). [35]

2.3 Exploration of the dataset

The dataset used in this thesis originates from a competition held in CYTO2017
conference [1]. The data for the challenge is in turn sampled from the Cell Atlas.
The samples are localized into 13 major organelles of the cell depicted in Figure 2.1.

There are 20,000 samples in the dataset, each sample including the green image
for the protein of interest, as well as the red, blue and yellow images for microtubules,
nuclei and ER respectively. Each sample is labeled with one or more of the major
organelles indicating the localization. Figure 2.2a shows the counts of each location
in the dataset. It can be seen that the locations are not represented in equal portions.
For example, nucleus and cytosol are by far the most common locations where the
proteins are enriched. On the other hand, intermediate filaments and actin filaments
are rare locations for enrichment. All localization counts to different organelles for
each cell line are represented in Appendix A.

Figure 2.2b shows the frequencies of samples belonging to each of the 22 cell lines.
The top three cell lines make up most of the dataset while the rarest five cell lines
have only 95 samples combined. If the rare cell lines have visual features specific to
them, it can be challenging for the modeling algorithms to learn them.

2.4 Multilocalizing proteins

About half of the proteins are enriched in more than one subcellular location. Those
proteins are called multilocalizing proteins (MLPs). Multi-localization increases the
complexity of the cellular systems. The more locations are enriched, the more
protein-protein interactions can happen due to presence of different potential in-
teraction partners. On the other hand, different locations can affect the function
and timing of sub-cellular processes in more diverse ways when the protein is en-
riched in multiple locations. [35]

Figure 2.3a shows an example of a MLP. In it the protein is enriched in both
the nucleus and cytosol. There are differences in multilocalization between the
organelles. For example, the proteome of the nucleus and plasma membrane consist
mainly of MLPs, when in the case of mitochondria and ER the proteome mainly
contains proteins localizing specifically to one location. Some of the MLPs have
variations between cells within a sample whereas some have variations in localization
patterns between different cell lines. [35]

It has been observed that MLPs influence networks of complex processes by cre-
ating interactions between organelles that have different functionality. Those in-
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(a) An example of a multilocalizing protein. The sample is from U-2 OS cell line
and shows protein enriched in cytosol and nucleus which can be seen from the
green colour in both.

(b) Single-cell variations in protein enrichment. The sample is taken from MCF-
7 cell line where the protein localizes in nucleus and nucleoli (according to the
annotations, even though a clear signal can also be seen in the cytosol). Some
of the nuclei have high concentrations of protein which is stained by the green
colour while others have hardly any. Single-cell variations occur when individual
cells are in different phases of cell cycle.

Figure 2.3: Examples of protein localizations. Image credit: Human Protein At-
las [35]
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teractions also affect cell regulation which is usually credited to the nucleus. This
indicates a complex network of signalling between the cellular compartments in con-
trol processes. [35]

2.5 Single-cell variations

At times there are variations in the enrichment of a protein between the cells in a sin-
gle sample. These variations are called single-cell variations (SCV). The variations
can be either in the enrichment levels, which is seen as variation in the fluorescent
green intensity between cells, or the signal can be absent in some organelle in one cell
and present in another cell. There is no consensus on whether and to what extent
the variations are caused by stochastic events or by actual protein regulation. [35]

Figure 2.3b shows an example of variations of protein enrichment in different
cells of the same sample. Some of the cells show a bright green signal where as in
others the signal is almost absent. One suggested reason for the observed single-
cell variation is that many of the proteins are related to specific phases of the cell
cycle, and the cells in the samples are cultivated under asynchronous conditions, i.e.
different cells are in different phases of the cell cycle. This hypothesis is suggested
by the observation that the organelles with the most SCV also contain more proteins
that are known to depend on cell cycle in their enrichment. Some of the proteins
enriched are only present during cell division, e.g. mitotic spindle and cytokinetic
bridge. [35]

2.6 Image annotations

The images provided in the dataset were annotated through crowdsourcing in the
form of "Project Discovery", a challenge within a popular online game EVE online
with more than 180,000 players world wide [35]. The full description of the challenge
can be found in [27]. The players were provided with a brief introduction on what
the different localization patterns in the images look like. Then they were shown
images of the samples and their task was to label the images to 29 different structures
within the 13 major organelles. Each of the samples was allowed to belong to one
or more categories. The samples were not annotated if no protein enrichment signal
could be seen.

The correctness of players’ annotations were defined by consensus between the
players. More specifically, if majority of the players chose a certain location, it
was considered as the correct localization [27]. The validity and accuracy of the
annotations can be questioned because the players in general did not have prior
knowledge of the problem on hand. An example of annotations whose reliability can
be doubted is in Figure 2.3b. The annotated locations are nucleus and nucleoli, but
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there is a strong signal outside the nucleus present.
In the multi-label cases where more than one location were enriched, the locations

were further categorised into main and additional by defining the relative signal
strength between the annotated location and the most common location accross all
cell lines. Single-cell variations were also annotated based on the intensity of the
fluorescent green. [35]
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3. COMPUTATIONAL BACKGROUND

In this chapter the computational concepts related to the machine learning algo-
rithms used are introduced. The building blocks of a neural network architecture in
general, as well as in the case of CNNs and FCNs in particular, are described. Some
of the widely used successful CNN architectures, as well as how they can be reused,
are outlined.

3.1 Neural Networks

Neural networks can be seen as a class of functions consisting of linear functions
stacked on top of each other, with occasional non-linearities inbetween, in a hierar-
chical way in order to make up a more complex non-linear function. Feedforward
neural networks are models that map input to output through some function
y = f(x;θ) without any feedback connections of previous outputs. Networks that
introduce feedback connections are called recurrent neural networks (RNNs).
Feedforward networks are the basis for many different applications. For example,
CNNs are also a special case of feedforward networks. [11]

The depth of a neural network is usually interpreted as the number of layers that
have learnable parameters, e.g. Fully Connected (FC) and Convolutional (Conv)
layers. An example of a layer without learnable parameters thus not accounted
in the depth is Max Pooling layer, which only picks the maximum values from
a sliding window. By learnable parameters we mean the weights that are tuned
during training.

3.1.1 Score function

A score function maps the inputs into class scores. These class scores are then
interpreted into confidences for each class being present or absent. Linear score
function is formulated as an affine transformation of the input vector x:

s = W Tx+ b, (3.1)

where W is the weight matrix, x is the input vector and b is the bias vector. The
output vector contains the score for each class. The bias can be included in the
matrix multiplication by augmenting the matrix with the bias vector as the first
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Table 3.1: Commonly used activation functions

Name Function
Sigmoid σ(x) = 1/(1 + e−x)
tanh tanh(x)
Rectified Linear Unit (ReLU) max(0, x)
Leaky ReLU max(αx, x)
Maxout, k = 2 max(wT1 x+ b1, wT2 x+ b2)

Exponential Linear Unit (ELU)

{
x x ≥ 0

α(ex − 1) x < 0

row of the weight matrix and prepending the feature vector with a single value of
one. [20]

In a feedforward neural network, each neuron of a dense layer implements the
affine transformation accompanied with an activation function that introduces
a non-linearity to the stack of linear functions. An example of a two-layer fully-
connected neural network’s score function with Rectified Linear Unit activation is

s = W T
2 max(0,W

T
1 x). (3.2)

The weights W1 and W2 are learned using e.g. stochastic gradient descent
(SGD). The gradients are derived with chainrule using backpropagation algorithm
described in section 3.1.6. [20]

3.1.2 Activation functions

An activation function introduces a non-linearity between the layers of a neural
network. Without non-linearities, the overall score function of the network would
still be linear and collapse into a single matrix multiplication [11, p. 168]. Common
activation functions are presented in Table 3.1. From these, Rectified Linear
Unit (ReLU) is the most frequently used at the moment because it is nearly linear,
preserving most of the good optimization properties of linear functions, and is fast
to compute. [11, p. 189]. Following list summarizes the properties of some of the
common activation functions.

Logistic sigmoid squashes the output to range [0, 1] and has a pleasant biological
interpretation as the firing rate of a neuron. It has two major issues. Firstly,
sigmoid function saturates at both tails to 0 and 1 respectively, and the gra-
dient is nearly zero. During backpropagation the sigmoid’s output gradient is
multiplied with this local gradient so the signal flowing backwards gets ’killed’.
Secondly, sigmoid outputs are not zero-centered. This can lead to zig-zagging
behaviour on gradient updates which leads to slower convergence. Also, when
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compared to ReLU, the exponential is more computationally expensive than
max function. [11]

tanh is a scaled version of logistic sigmoid function so it has a shape similar to
sigmoid but it squashes the output to [−1, 1]. Thus the output is zero-centered
which is an improvement from sigmoid. On the other hand, the output still
gets saturated, so the gradient easily gets killed as is the case with logistic
sigmoid activation. [19]

ReLU simply thresholds the activation at zero. Compared to sigmoid activations,
stochastic gradient descent converges a lot faster with ReLU activations, prob-
ably due to linearity and the gradients not saturating at the positive side [17].
It is also very efficient computationally. The main down side of ReLU is that
gradient is always zero on the negative side. The weights may be updated
in a way that the activation will be zero with any input, which will kill the
gradient flow and thus the whole unit. Using a small enough learning rate will
make the dying ReLUs less of an issue. [22]

Leaky ReLU is a take on fixing the dying unit issue of ReLU by changing the
negative region to have a small negative slope instead of thresholding it to
zero. Leaky ReLU thus has a small gradient also when the input is negative
and allows gradient flow on the whole scale of input values. [22] Parametric
ReLU is an extension of Leaky ReLU, where the slope of the unit is learned
through backpropagation. This has been shown to lead to greater improvement
compared to a fixed slope. [14]

Maxout unit is a generalization of the different versions of ReLU. Instead of per-
forming a single matrix multiplication and applying the activation function to
the output of it, Maxout unit has k matrix multiplications as input, and the
output of the unit is the maximum value of these multiplications. Thus the
maxout needs to learn k weight matrices instead of one, which means a layer
with Maxout activation has k times more learnable parameters compared to
other ReLUs. An example of Maxout unit with k = 2 is shown in Table 3.1.
The main problem is that it doubles the parameters of the neuron. [20]

ELU uses an exponential function for negative values which drives the mean closer
to zero enabling faster learning. Contrary to e.g. Leaky ReLUs the negative
input values for ELU saturate, which decreases the variation for deactivated
units making the exact negative input value less relevant. This means that
ELU is capable of quantifying degree of presence of particular phenomena in
the inputs, but it does not quantify the degree of absence which is a desired
feature. [6]
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In summary, the default choice is to use ReLU. Sigmoidal functions will generally
perform worse. Extensions and generalizations of ReLU such as ELU, Leaky ReLU
or Maxout may improve the performance so it is good to try some of them out,
although for computational performance reasons it is best to go with ordinary ReLU
if no improvements can be observed.

3.1.3 Model output

In the case of neural network classifiers, the final outputs can be interpreted as the
probabilities for a sample belonging to each class. In multi-class case, if the sample
is allowed to exactly one class, the final layer performs a softmax classification. In
it, the network output is a probability distribution, i.e. the output values sum to
one. If the score function’s output for class i before the probability transformation
is si, the softmax transformation (the probability of the sample belonging to class
i) is [20]:

P (y = i | s) =
esi∑
k e

sk
. (3.3)

If the single sample can belong to multiple output classes, the problem is called
multi-class multi-label classification. Each class probability is considered a sep-
arate binary output. In this scenario, the final layer consists of k separate logistic
regression classifiers, one for each class. Thus the probability of sample s belonging
to class i becomes [11, p. 65]:

P (y = i | s) = 1

1 + e−si
. (3.4)

3.1.4 Loss function

To be able to train the model, we need to have a way to measure how well the model
is classifying the sample. The loss function or cost function is a mapping of the
model output to a real-valued cost assigned for the difference between the output and
the actual label of the sample. A common technique to fit neural network models is
Maximum Likelihood Estimation (MLE) [11, p. 174]. The ML estimator for a
conditional distribution of Y given X is obtained by

θML = argmax
θ
P (Y| X;θ) (3.5)

θML = argmax
θ

n∏
i=1

P (yi| xi;θ). (3.6)

Taking a product over multiple probabilities may lead to issues like numeric
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underflow. Taking a logarithm of the estimate does not change the argmax value
and transforms the product into a sum which is more convenient [11, p. 130]:

θML = argmax
θ

n∑
i=1

logP (yi| xi;θ). (3.7)

Consequently, the ML estimate can be obtained by minimizing the negative log-
likelihood which corresponds to minimizing the cross-entropy between the empirical
distribution of the training data and the distribution of predictions of the model [11,
p. 130]. Thus, for a single sample i the loss for obtaining the ML estimate is the
negative log-likelihood:

Li = −logP (yi | xi) (3.8)

In the case of softmax output this becomes

Li = −log
esyi∑
j e

sj
. (3.9)

If the model is performing multi-label classification (separate binary outputs for
each class) the single-sample loss is the mean of the binary loss for each class:

Li = −
1

K

K∑
j=1

yij log(σ(sj)) + (1− yij) log(1− σ(sj)), (3.10)

where K is the number of classes, yij is the label of jth class for ith sample and sj
is the score of the corresponding label before probability transformation. Note that
yij is either 0 or 1 so one of the terms within the sum will always be zero.

The overall loss L is calculated as the average of the single-sample loss Li for each
sample in the data. This is called the data loss. To prevent the weights growing
too large, an additional penalty may be added. This is the regularization loss
R(W ). The overall loss is then calculated as

L =
1

N

N∑
i=1

Li + λR(W ), (3.11)

where λ is a scaling coefficient for the strength of regularization. [20]

3.1.5 Regularization

According to Goodfellow et. al. [11, p. 117]:

Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error.
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In other words regularization is done to prevent overfitting. There are various
kinds of regularization strategies. Constraints can be put straight on the weights, e.g.
a hard limit on the maximum value of a weight. Some strategies add an extra term to
the loss function that penalizes the weights some way. A third class of regularization
techniques are ensemble methods that combine multiple models by e.g. averaging
their outputs to reduce the variance of the overall estimator. In practice, the best
fitting models in deep learning are large models that are regularized properly to
prevent overfitting, instead of putting emphasis on finding the right capacity for
the model with less emphasis on regularization. The overfitting issues are easier
to manage with tuning regularization than with tuning the overall capacity of the
model. [11, p. 224]

Parameter norm penalties add a regularization loss term into cost function. L2
norm regularization, also known as Ridge regression is a simple and commonly
used penalty. It drives the weights to be smaller by adding regularization term 1

2
λw2

to the loss function L. The L2 norm is multiplied by 1
2
so that the gradient simplifies

to λw. L2 regularization has an intuition of preferring small, diffuse weights and
assigning heavy penalty to large weights. L1 regularization, also called Lasso
regression adds λ|w| for each weight to the regularization loss instead of squared
case of L2. This has the consequence of weight vectors becoming sparse instead of
diffuse. This means L1 regularized model ends up using a sparse subset of the inputs
which makes the model more tolerant for noise. Elastic net regularization is a
method that uses L1 and L2 penalties combined. [11]

Dropout is a simple and effective regularization technique for neural networks.
During training for each step separately, each neuron is kept with a probability p

that is a hyperparameter for dropout. Otherwise the particular neuron is set to zero.
This can be interpreted as subsampling the network during training and the final
result as consisting of an ensemble of all these subsampled networks. A common
value for dropout is p = 0.5. During testing, dropout is not executed, and the
activations need to be scaled with p so that they match the expected outputs for
similar input at training time [31]. Usually test time performance is critical for
applications and a modified version called inverted dropout is used instead, where
the scaling is done at training time. [11, p. 261]

Machine learning models tend to overfit when there is not enough data. One
way to address this issue is to augment the dataset by artificially creating new data
from the existing. Augmentation is particulary effective on image data: the model
needs to be invariant for transformations, and thus the data can be augmented by
introducing various random transformations into original images for example by
rotating, shifting and zooming. [11]

Batch normalization is a technique where the activations are normalized to
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X

W0

U H

W1

S ŷ L
mul

ReLU

mul

σ(S) CE(ŷ)

Figure 3.1: The computational graph for a two-layer MLP. ReLU activation is used
in the intermediate layer, and logistic sigmoid in the output. The loss L is sum of
cross-entropies (CE) for each individual binary output. I.e. the network performs
multi-class multi-label prediction. The weights for the layers are W0 and W1, X is
the input, ŷ are the predicted probabilities for each class, U are the weighted sums
before ReLU nonlinearity, H are the activations of the first layer and S are the logits
before sigmoid transformation.

unit Gaussian distribution before doing the actual training step for each minibatch.
In the implementation, this is done by adding a batch normalization layer between
FC or Conv layer and the non-linearity. With batch normalization, higher learning
rates can be used to speed up the training process. The normalization of the activa-
tions prevents small changes of weights to amplify into large changes in activations
during the optimization. This in turn prevents the optimization getting stuck on sat-
urated gradients because of large activations. Also, batch normalization makes the
backpropagating gradients resilient to the parameter scale, thus preventing gradient
explosion because of too large weights. [16]

Batch normalization also acts as a regularization technique because the activa-
tions for a given training sample are affected by other samples in the minibatch,
thus rendering the activations non-deterministic. The use of batch normalization
reduces the need for dropout, possibly even to a degree where it can be removed al-
together [16]. Batch normalization is especially relevant with deep neural networks,
because the size of weights tends to exhibit a multiplicating effect from layer to next.

3.1.6 Back-propagation

A feedforward neural network takes x as an input, which is then propagated through
each layer to produce the output ŷ. When training the network, ŷ is further prop-
agated through the loss function L(θ) to produce the scalar loss of the network.
To update the parameters θ, we need to compute the gradient of the loss with re-
spect to each parameter ∇θL(θ). This can be done efficiently using an algorithm
called back-propagation. Then, an optimization algorithm such as SGD is used
to perform the actual updates using the gradients. [11, p. 200]

To clarify how the back-propagation works, neural networks can be expressed as
computational graphs. There are different ways to represent the graphs. In this
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thesis, each node of the graph is a variable, such as weights, input or output. New
nodes are created from existing through operations, such as sum, dot product or
scaling. If node x is used in computation of node y, an edge is drawn between the
nodes. The operation is annotated with the edge [11, p. 201]. Figure 3.1 shows
the computational graph for a MLP with two learnable layers. On forward pass the
network computes function

ŷ = σ(W T
1 max(0,W T

0 X)). (3.12)

The loss used is binary cross-entropy (CE). This means that each output is con-
sidered as a separate binary label. The overall loss of the model is the sum of the
individual losses. If the sigmoid output for ith class is ŷi and the corresponding true
label is y, the binary cross-entropy is defined as

CE(yi, ŷi) = −yilog(ŷi)− (1− yi)log(1− ŷi). (3.13)

Then, the gradient for the overall loss with respect to the parameters can be ex-
pressed with chain rule using the gradient of the loss with respect to the local
output q and the gradient of q with respect to the weights [11, p. 202]:

∂L

∂wmjk
=
∂L

∂q

∂q

∂wmjk
, (3.14)

where wmjk is the weight of layer m connecting input node j to output node k.
Looking at Figure 3.1, using the chain rule we can compute the gradient of the

loss with respect to the weights connecting the hidden units H to the outputs:

∂L

∂w1
jk

=
∂L

∂ŷi

∂ŷi
∂si

∂si
∂w1

jk

. (3.15)

The partial derivatives needed in the calculation are

∂L

∂ŷi
=
−yi
ŷi
− (1− yi)(−1)

1

1− ŷi
=

ŷi − yi
ŷi(1− ŷi)

(3.16)

∂ŷi
∂si

=
e−si

(1 + e−si)2
= σ(si)(1− σ(si)) = ŷi(1− ŷi) (3.17)

∂si
∂w1

jk

= hj. (3.18)

The partial derivative of the loss with respect to the unnormalized logits si is needed
in the next step when computing the first layer’s weights:

∂L

∂si
=

ŷi − yi
ŷi(1− ŷi)

ŷi(1− ŷi) = ŷi − yi. (3.19)
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Table 3.2: Common local gradient functions and patterns in back-propagation

Function Gradient Pattern
z = x+ y ∂z

∂x
= 1 Gradient distributor

z = max(x, y) One for the max in-
put, zero for others

Gradient router. The gradient
flows as is to the maximum input,
and others are zero.

z = x ∗ y ∂z
∂x

= y Gradient switcher. The gradient
for x is the output gradient mul-
tiplied by y and vice versa.

z = ax ∂z
∂x

= a Scaler.

Finally, the equation for the gradient for the second layer’s weights simplifies to

∂L

∂w1
jk

=
∂L

∂si

∂si
∂w1

jk

= (ŷi − yi)hj. (3.20)

Then, the gradient on the weights connecting the input to the hidden layer is defined
as

∂L

∂w0
jk

=
∂L

∂uk

∂uk
∂w0

jk

. (3.21)

The equations needed in the computation are

∂si
∂hk

= w1
ki (3.22)

∂hk
∂uk

=

1 uk > 0

0 uk ≤ 0
(3.23)

∂L

∂uk
=
∑
i

∂L

∂si

∂si
∂hk

∂hk
∂uk

=
∑
i

(ŷi − yi)(w1
ki) uk > 0

0 uk ≤ 0
(3.24)

∂L

∂w0
jk

=
∂L

∂uk

∂uk
∂w0

jk

=
∑
i

(ŷi − yi)(w1
jk)(xj) uk > 0

0 uk ≤ 0
(3.25)

The gradients can be thought to flow backwards from the output towards the
input. The gradient of the output with respect to itself is one. The final node com-
putes the loss. This way, the gradient of overall loss with respect to any intermediate
parameter in the graph can be computed by recursively applying the backward flow
of simple local gradients. [11]

The operations that transform the nodes to new ones can be arbitrarily complex,
as long as the local gradient can be computed. By taking advantage of this feature,
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a library of meaningful building blocks can be created. For example, the sigmoid
function in Table 3.1 has a relatively simple derivative dσ(x)

dx
= e−x

(1+e−x)2
= (1 −

σ(x))σ(x). Gradients for some of the common operations used in neural networks
and the patterns they represent in the backward flow are represented in Table 3.2.

When it comes to actual implementations of the deep learning algorithms, the
computation is done using vectors, matrices and tensors (multidimensional arrays).
The chain rule for the gradient on any parameter θi can be expressed in vector
notation as

∇θi
L =

(
∂q

∂θi

)T
∇qL (3.26)

In the vectorized form, the local gradients will be the Jacobian matrices. I.e. ∂q
∂θi

will contain derivative of each element in q with respect to each element in θi, which
contains both weights and inputs. In practice, these Jacobian matrices for layers
with possibly thousands of inputs and outputs become huge. Because the operation
is elementwise, the Jacobian matrix will become a diagonal matrix. Thus, only the
element-wise values need to be computed [11, p. 203]. From equation 3.26 we can
see that gradient of any layer’s parameters can be computed by multiplying the
gradient of the loss with respect to the layer output by the Jacobian matrix. The
back-propagation is then performed by doing this recursively for each operation in
the computational graph. [11, p. 204]

At branches, gradients are added. I.e. if one node’s output goes to multiple
nodes, the local gradients from the multiple nodes are summed as the gradient for
the branching node. Using the Jacobian matrix in computation takes automatically
care of this. Implementations of deep learning frameworks, e.g. Tensorflow, use this
kind of computational graph structure, with each node and layer implementing the
forward() and backward() APIs. An example implementation for a multiplication
gate would be [20]:

1 c l a s s MultiplyGate ( ob j e c t ) :

3 de f forward (x , y ) :
z = x∗y

5 s e l f . x = x # These are needed f o r backprop
s e l f . y = y

7 re turn z

9 de f backward ( dz ) :
dx = s e l f . y ∗ dz # [ dz/dx ∗ dL/dz ]

11 dy = s e l f . x ∗ dz # [ dz/dy ∗ dL/dz ]
r e turn [ dx , dy ]
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The popular frameworks automatically take care of the computation of gradients
making it easy to write code for algorithms that are rather complex underneath.

3.1.7 Parameter updates and optimization

After the gradients of the loss with respect to the parameters, which tell in which
direction in the parameter space the loss is increasing the fastest, have been com-
puted by the back-propagation algorithm it is time to update the weights. The most
straightforward way to do this is the gradient descent in which the weights are
updated by taking a small step in the direction of the negative gradient. The size of
the steps taken is called learning rate (LR). The issue with gradient-based methods
on neural networks is that the nonlinearities cause the commonly used loss functions
to become non-convex. This means that the convergence of the algorithms can not
be guaranteed and the initialization of the weights becomes crucial. [11, p. 173]

There are two major points of interest concerning the optimization process:

1. Does the process converge, and how fast?

2. Is the optimum found local or global? How good is the local optimum?

If the learning rate is too high, the optimization will not converge. If it is too
low, convergence will take ages. If the loss changes fast in one direction and slowly
in another, steepest descent will progress in a slow zigzag motion. [11, chapter 8.2]

Traditional gradient descent optimization can get stuck in a local optimum. It also
gets stuck in a saddle point, where the gradient is zero. In high-dimensional space
local minima are not that common, because the minimum is along all dimensions,
and if there are millions of dimensions, it is not probable that all of them are met.
Instead, saddle points are more common. The problem also exists near the saddle
point, where gradient is very small. [7]

Generally the optimization process, or training, goes as follows:

1. Sample a batch of data

2. Forward propagate through the network, compute overall loss

3. Backpropagate and calculate the parameters’ gradients

4. Update the parameters by using the gradients

5. Compute the validation loss. If the stopping condition is satisfied, end training.
Else go to 1.
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The stopping condition can be e.g. that maximum number of iterations has been
performed, or that the validation loss has not decreased in certain amount of last
iterations.

The batch size is an important hyperparameter of the algorithm. Using the whole
training set as the batch yields the most accurate estimate for the gradient but the
computation is very expensive. On the other extreme, only one sample is used as
a batch. In this approach, the gradient will be very inaccurate, and the parallel
processing capabilities of the computers may not be utilized efficiently. Usually the
batch size is chosen somewhere inbetween. Normally with image data the proper
batch size to use is as large as can be fit into the memory of the GPU at once so
that the whole computation of the batch can be efficiently parallelized. In that way
the gradients will be as accurate as possible without slowing down the runtime. [11,
p. 276]

The minibatch should be sampled randomly because if the samples are not inde-
pendent the gradient estimate will be biased. For example, if we have some measure-
ments on patients as the data, those measurements can be ordered chronologically
by patient in the dataset. Then if we do not shuffle the data for sampling, each batch
can consist of only one or two patients’ data and the estimate on the whole training
data will be extremely biased. This can drastically decrease the performance of the
model. [11, p. 277]

Minibatch gradient descent is called stochastic gradient descent (SGD) be-
cause each batch is sampled randomly from the training set. This introduces noise to
the process which acts as a means of regularization. In SGD, updates are performed
as follows:

θt+1 = θt − α∇J(θt), (3.27)

where θt are the parameter values on the iteration, α is the learning rate and ∇J(θt)
is the gradient on the parameters. [11, ch. 8.2]

Often it is reasonable to gradually decay the learning rate α over time. This can
be done as a function of the number of iterations performed. For example in Keras
library, one can define this by setting the decay parameter of an optimizer. Another
popular method is to decay α by a certain factor every time the training loss stops
decreasing. [5]

The issue with standard SGD is that it can get stuck in local minima or saddle
points. Another problem is that large differences in the steepness of the gradient in
different directions lead to ineffective updates. This is because the step size is the
same in every direction even though larger steps should be taken in the direction
of small gradient because the distance to the "bottom of the hill" is longer in that
direction. [11, ch. 8.2]
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A simple solution to the abovementioned issues is a technique called Momen-
tum [11, p. 292]. When using Momentum, an exponentially decaying running mean
of negative gradients v is calculated along the process. The calculation given in
equation 3.28 has a hyperparameter ρ which acts as kind of a friction so that v will
not grow too high. Then, the update is formed in equation 3.29.

vt+1 = ρvt − α∇J(θt) (3.28)

θt+1 = θt + vt+1. (3.29)

In the case of local minima and saddle points, the velocity v keeps the weights
updating as v starts slowing. In the case of poor conditioning which would lead to
zigzag-kind of effect in updates, v keeps on pushing the updates down the hill. [11,
p. 293]

Nesterov Momentum is a variant of Momentum, in which the velocity is ap-
plied first to the weights as shown in equation 3.30. Only after that the gradient is
evaluated and applied. Equation 3.29 defines the actual parameter update. Unfor-
tunately Nesterov Momentum brings improvements only on convex problems and
does not improve the convergence in non-convex problems like neural networks [11,
p. 296].

vt+1 = ρvt − α∇J(θt + ρvt) (3.30)

In addition to SGD and its variants described above, there are a handful of
algoriths with adaptive learning rates like AdaGrad, RMSProp and Adam. The
adaptive methods are attractive alternatives because learning rate is one of the most
problematic yet important hyperparameter to tune. [11, p. 303]. One downside
is that the adaptive methods have been claimed to lead to worse generalization
performance [36]. Their strength is that they save time and effort because the
learning rates need not be tuned.

AdaGrad adapts learning rate by scaling down the parameters by the sum of
squared values of the previous gradients. Parameters that have steep gradients will
be changed faster than those that are changing slowly. In deep neural networks,
AdaGrad can lead in premature and too large decrease in the learning rates. [11,
p. 303]

In RMSProp, AdaGrad is modified by using exponentially weighted moving
average in the gradient calculation. This leads to a decay in older gradients so
that the algorithm can converge more rapidly on good conditions. RMSProp is an
effective optimization algorithm that is currently often used. [11, p. 304]

Adam is one more adaptive algorithm that is quite like a combination of RMSProp
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and momentum with a couple of exceptions. It uses both the first moment (i.e. the
gradient itself) and the second moment (i.e. the gradient squared, or the uncentered
variance, as in RMSProp). Adam also performs a bias correction step on the both
moments which RMSProp is lacking. Hyperparameters of Adam are usually quite
robust by default, although initial learning rate change may sometimes improve the
performance. [11, p. 306]

At the moment, there is no consensus on which optimization algorithms are ob-
jectively the best. Many times, the choice depends on the user’s earlier experience
so that the hyperparameters of the algorithm are already familiar. [11, p. 308]

3.1.8 Initialization

Deep learning models are trained with iterative methods. This means that an initial
point in the parameter space needs to be defined in the beginning of the training.
As mentioned in section 3.1.7, the objective for optimization (i.e. loss function)
becomes non-convex for the nonlinearities in a neural network. This often means
that the convergence of the algorithm is very sensitive on parameter initialization.
With bad initialization, the algorithm may not converge at all. The initialization
also affects on the speed of convergence, as well as to what point the algorithm
converges and how high the loss is in that point. Another issue is that points with
approximately the same training loss may have generalization losses that are far
from another. [11, pp. 296-298]

Because the mechanics of optimization in neural networks is not yet properly
understood, the initialization methods are based on heuristics and experimenting.
Usually the methods have some desirable statistical properties such as the mean
being close to zero and the variance being inversely proportional to the size of layer’s
input and output. A major issue as mentioned above is that the effect of initial
point on generalization is unknown which makes the selection quite hazardous. [11,
pp. 297-298]

One property that is certain though is that the initial parameters cannot be the
same between different units of the layer. Having the same parameters on units
connecting to same inputs with same activation functions means that the units
perform exactly the same function in the beginning. With deterministic training
algorithm this means that the units will also learn exactly the same function. Even
if stochastic regularization methods such as dropout are used, the units should be
initialized to perform different functions. This is most computationally efficient to
do by using randomized initialization and tuning the statistical properties of the
distribution used in sampling of the parameters. [11, p. 298]

Usually the weights are drawn from either uniform or Gaussian distribution. The
scale of the weights have a couple of considerations. First, large weights break the



3. Computational Background 24

symmetry of the units better, and preserve stronger gradient signal, but too large
weights may lead to explosion during either forward or backward propagation. They
may also lead to saturation of the activation functions. The choice of the scale is
thus a trade-off between the signal strength and variance of the initial functions
performed, and the threat of exploding and saturating values. [11, p. 298]

Let the size of input and output of a layer equal to m and n respectively. One
commonly used heuristic in the parameter initialization is [10]:

Wij ∼ U

[
− 1√

n
,

1√
n

]
(3.31)

Glorot et. al [10] suggest that the variance of the gradient using the above method
depends on the layer and is decreasing. They call for a normalization procedure to
the initialization to keep the activation and gradient variances comparable between
the layers. They suggest an improved, normalized initialization as:

W ∼ U

[
−
√
6√

m+ n
,

√
6√

m+ n

]
(3.32)

This is known as Glorot -initialization. The equation is derived for network with-
out nonlinearities, i.e. using only matrix multiplications, but it is shown that the
linear assumption works rather well with the nonlinear models too [10]. There are
many other methods such as using random orthogonal matrices as initializations,
but in the scope of this thesis Glorot-initialization is used.

3.1.9 Data preprocessing

With image data, two preprocessing techniques are normally used: mean subtrac-
tion and normalization. Mean subraction is done by subtracting the mean of each
separate feature, i.e. each pixel from each image in the dataset. With images it is
also common to simply subtract the mean across all data, i.e. the "mean pixel" from
each feature. Another variant is to do the mean subtraction for each color channel
separately. [20]

Normalization of the data means transforming the features into the same scale.
The normalization is performed pixelwise. A couple of common normalization meth-
ods exist. First is to scale each feature to unit standard deviation. This is done by
dividing each feature by its standard deviation. Note that the mean is subtracted
first. Another popular method is minmax scaling which means that the features
are scaled so that the minimum and maximum values of each feature are -1 and +1
correspondingly. With images the normalization is not strictly required because the
pixel values are already roughly in the same scale as they range between 0 and 255
already. [20]
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(a) A sketch of the structures of a biological neuron. Dendrites carry the signal
from other neurons to the cell body. The different dendrite inputs accumulate,
and once the electric charge increases to large enough potential, the cell body
will release the charge as a spike into its output channel called axon. Then the
axon branches and connects to other dendrites via a connection called synapse
which has a property called synaptic strength that expresses how much electrical
potential is propagated from the axon to the dendrite.

(b) Mathematical model of the biological neuron. Synaptic strength is modeled
as a scalar weight w. The axon output is modeled as a constant value x. Cell
body performs a dot product on the axons connected to the input dendrites and
the weights, adds a bias and then computes the activation function f on the sum.

Figure 3.2: Sketch of a biological neuron and the corresponding mathematical model
used in computational neural networks. Image credit: Li et. al. [20]

There are also other preprocessing techniques such as PCA and whitening of the
data but these are not used with image data and convolutional networks. These
methods involve decorrelation and normalization of the decorrelated features re-
spectively. In PCA only a certain amount of decorrelated features with the greatest
variance are kept, which leads to dimensionality reduction. [20]

3.1.10 Biological interpretation

The study of computational neural networks was originally inspired by modeling
the actual neurons in the brain. Nowadays the focus has drifted from biological
analogies to more sophisticated mathematical methods of e.g. optimization, as well
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as engineering. Figure 3.2 shows the structure of the neuron and the mathematical
model that is used with neural networks. Dendrites are inputs that connect to other
neurons’ outputs called axons. The connections called synapses themselves filter the
input: they have a synaptic strength. This is modeled as the weights. Cell body
accumulates the inputs: this is modeled as a dot product. Then, the cell body
releases the accumulated charge to its axon in a spiky manner. This is modeled
with an activation function on the weighted sum, which can be interpreted as the
firing rate of the cell. [20]

This kind of analogy is very loose. In practice the neurons are way more com-
plex. The dendrites by themselves introduce complex nonlinearities into the cell.
The synapses that connect axons to dendrites involve complex nonlinear, dynamical
neurochemistry, and still they are represented as scalar weights. Also, the patterns
in timing of the output spikes is crucial in many networks of the brain so the firing
rate as the output is also an oversimplification [20]. Nevertheless, the modern deep
learning models are inspired historically by their biological counterparts, and thus
the analogy is included here.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are neural networks that use the con-
volution operation (Conv) instead of ordinary matrix multiplication in at least one
layer. They can be used with data that has a grid-like structure, such as time series
which can be seen as 1D grid of regularly sampled measures, or images that are 2D
grids of pixels. [11, chapter 9]

In this section, the basic structures comprising a CNN are introduced, as well as
some of the most famous CNN architectures. The concept of transfer learning
that is relevant when considering the use of CNNs is also explained. CNNs have a
lot of applications, especially in computer vision, e.g. image classification, object
detection and localisation, semantic segmentation and image captioning. Perhaps
the most used and one of the most basic use cases of CNNs is image classification,
where the network gets an image as input and tries to predict to which class or
classes the image belongs as the output.

CNNs are an example of neural network algorithms that have a particularly solid
foundation on neurosciences. They are inspired by how the visual cortex of the
brain functions; particularly the primary visual cortex, or V1. The visual cortex has
a hierarchical structure where different types of cells have a different function that
corresponds to those of the layers of CNNs. [11, pp.358]

V1 is structured as a spatial map having a structure similar to convolutional
layers and their activation maps. Simple cells perform a function in a receptive
field that is spatially localized. The activations in the CNNs perform a similar kind
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Figure 3.3: The structure of a CNN consists of stacked layers of convolutions, ac-
tivations and pooling. The last Conv layer’s activation maps are then aggregated
with FC layers into final predictions in the same way as in any feedforward network.
Image credit: Albelwi et. al. [2]

of functionality. Complex cells, on the other hand, respond to similar kind of
stimuli as the simple cells, but small changes in the position of the stimuli do not
affect the response. The pooling layers in CNNs are trying to emulate the functions
of the complex cells. [11, pp. 358-360]

3.2.1 Basic building blocks of a CNN

Basic CNNs consist of repeated stack of convolutional layers, activation layers and
pooling layers. Structures of these three types are repeated as many times as the
desired depth is, and then one or a couple of fully connected layers is added to
aggregate the features and make the final predictions. The following list describes
the concepts and properties of these layers.

Convolutional layer The convolutional layer consists of k filters, or kernels, and
the output of the layer is the convolution between the input and each kernel.
This produces k activation maps as the output, one for each kernel. The
convolution in the context of CNNs between an image I and kernel K can be
formulated as [11, p. 329]

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n), (3.33)

Where i and j are the image coordinates in which the convolution is computed,
andm and n go over the dimensions of the kernel. The actual implementations
of the Conv operation use many kinds of tricks to make the computation
efficient. Usually in the context of CNNs convolution means the application of
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many convolutions in parallel to produce n activation maps. The input images
also have a depth because they consist of multiple color channels, specifically
three for RGB images. [11, p. 342]

Convolution can be thought as sliding the kernel over the input and computing
a kind of 3-D dot product on each position. In addition to the kernel size κ, the
layer has a parameter called stride (s), which tells how many pixels in each
direction are skipped on each location. Setting a stride larger than one will
downsample the input. Another parameter for a Conv layer is the padding.
Padding concerns how the edges of the image are handled. Without adding
any pixels on the edges, the conv layer will shrink each edge by κ/2 − 1

pixels. A commonly used padding strategy is called same, in which the layer
assings such padding that the size of the input is preserved to the output with
s = 1. [11, p. 343]

To use the Conv layer in training of the network, we also need to compute
the gradients for back-propagation. Say the Conv layer applies a stack of
kernels K to multichannel input V with stride s and the operation is denoted
as c(K,V, s), the output of the layer is Z and the loss function is denoted as
J(K,V). Then, during back-propagation the gradient of the loss with respect
to the layer output is G, where [11, p. 351]

Gijk =
∂J(K,V)

∂Zijk
. (3.34)

The gradient on the kernel weights can be then computed as [11, p. 351]

g(G,V, s)ijkl =
∂J(K,V)

∂Kijkl

=
∑
m,n

GimnVj,(m−1)×s+k,(n−1)×s+l. (3.35)

To propagate the gradients further back in the network, the gradient of the
loss with respect to V is also needed. This is computed as [11, p. 351]

∂J(K,V)

∂Vijk
=

∑
l,m
s.t.

(l−1)×s+m=j

∑
n,p
s.t.

(n−1)×s+p=k

∑
q

Kq,i,m,pGq,l,n. (3.36)

Activation layer The nonlinearities work in the same way as in the fully con-
nected feedforward networks. The same activation functions introduced in
section 3.1.2 can be used.

Pooling layer Pooling is performed to downsample the activation maps to make
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them smaller and more manageable. Each activation map is handled inde-
pendently which means the depth of activation maps is preserved. The most
common pooling method used is max pooling. It is performed by choosing
the maximum value within a rectangular area as its output. Max pooling pre-
serves the strongest signals within its kernel’s neighborhood. The pooling layer
has the kernel size and stride as hyperparameters just like the convolutional
layer. [11, pp. 336-339]

Fully Connected layer The FC layers are used to gather the outputs of final
convolutional layer to make the final predictions. They function the same way
as in feedforward networks introduced in previous sections.

3.2.2 Transfer learning for CNNs

Training a CNN with good performance requires a large dataset and takes time. In
practice it is common to take a network pretrained on a large dataset and use it
either by initializing the weights to the pretrained ones, or by freezing some or all of
the layers in it to be used as fixed feature extractors. The pretrained CNN models
can be used in following ways [20]:

Fixed feature extraction Remove the last fully connected layer, and use the pre-
vious layer’s output as a feature vector for other models. This may be a good
approach if the new dataset to be fitted is small and similar to the one that
was used in the pretrained model.

If the new dataset is small but it is not similar to the data used in pretraining,
the higher-level features may not be usable. Nevertheless, the low-level features
may work, so it is worth trying to fit a linear classifier using activations from
earlier layers as the features.

Fine-tuning In this approach, the last layer is replaced with a different classifier,
and in addition the weights of some or all of the preceding layers are further
trained through back-propagation. The earlier the layer, the more general are
the features that it learns. As pointed in the previous section, the first layers
learn very simple things as edges and shapes.

If the new dataset is large and similar to the one used in pretrained model,
all or most of the pretrained layers can be finetuned without excessive fear of
overfitting.

Using a pretrained model as the starting point The pretrained models for var-
ious datasets are publicly available in various deep learning framework repos-
itories. These models can be used as is, or further trained with similar data
to similar functions.
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If the new dataset is large but different to the data used in pretrained model,
the model may be trained from scratch. However, many times it is beneficial
to use the pretrained network as the initialization even if the data is very
different, e.g. pretraining was done on ImageNet data and the new data is
from microscopy imaging.

Transfer learning with CNNs is more common than training from scratch. It is
the norm, not an exception. This opens up new possibilities for experimentation,
because many of the open sourced CNN models would take months to train with
commodity hardware.

3.2.3 Well-known CNN architectures

There are a few specific architectures that are well-known and often used as a starting
point for transfer learning when training a CNN for a new purpose. They are also
used as a baseline when trying out new techniques on standardized datasets like
the large-scale visual database ImageNet [28] or the handwritten digits database
MNIST [18].

LeNet One of the first CNNs successfully applied in a recognition task on images of
hand-written digits which started the revolution of CNNs in computer vision
tasks. [19]

AlexNet The first CNN that outperformed all other models not based on deep
learning in ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
competition [28]. ReLU linearities were first used in AlexNet. It had a total
of five convolutional layers and three fully connected layers in the end (8-
layer depth). It used heavy data augmentation, dropout with probability
of 0.5, batches of 128 images, SGD with momentum of 0.9, initial learning
rate of 1 × 10−2 divided by 10 when validation accuracy plateaued and L2
normalization with decay of 5× 10−4. An ensemble of seven CNNs was used,
final class scores being the average of them. [17]

VGGNet A CNN with depth of 19 layers. The structure of VGGNet is quite
similar to AlexNet. The two main differences are that VGGNet uses smaller
filters (only 3×3 filters while AlexNet has 11×11 and 5×5 on the first layers)
and much deeper architecture (19 layers compared to 8). Effective receptive
field of three layers of 3 × 3 filters with stride 1 is the same as a single layer
with 7 × 7 filters. So by using smaller filters the effective receptive fields of
deeper layer stacks can be kept the same as with larger filters and less layers.
Deeper network means more non-linearities. Also, there are fewer parameters
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in the deeper architecture with small filters compared to less depth with larger
filters. [29]

GoogLeNet has a depth of 22 layers. It introduced the Inception module which
applies multiple different sized filters in parallel. The spatial dimensions of the
filter outputs are kept the same by applying different strides to different sized
filters. Then the outputs of these filters are concatenated depth-wise. There
are no fully connected layers. [33]

Figure 3.4a shows the structure of the inception module with dimension reduc-
tions to prevend computational explosion. With this trick the GoogLeNet has
12 times less parameters than AlexNet but depth has increased from 8 layers to
22. Since the Inception structure was introduced, it has been improved several
times, and is widely used in different popular, much deeper architectures [34].
GoogLeNet won the 2014 ILSVRC by a narrow marginal to VGGNet [28].

ResNet is a rather different architecture making extremely deep models possible.
The layers are learning residual functions with respect to the inputs instead
of unreferenced functions. These residual layers are easier to optimise which
means there can be significantly more layers without issues of exploding and
vanishing gradients. [13].

The residual is defined as F (x) = H(x) − x, where H(x) is the "normal"
mapping that is used in CNNs, and x is the layer input. I.e. the layer tries to
learn the residual instead of the plain mapping. Figure 3.5a shows the basic
idea of the residual block. Figure 3.5b depicts the architecture of a ResNet
model. ResNet won the 2015 ILSVRC with 152-layer network which is a huge
step from the 22-layer GoogleNet that won the previous year. [28]

The pattern of using deeper and deeper networks can be seen also in the evolution
of these widely used and cited networks. The evolution from 8-layer AlexNet, which
was once thought to be a truly deep network, to the 152-layer Resnet is astonishing.

3.3 Fully Convolutional Networks

A Fully Convolutional Network (FCN) is a CNN without the fully connected
layers in the end. Instead of class label targets, there are target activation maps for
the final convolutional layer, one for each class. Then, these activation maps can be
interpreted as local probabilities of the class being present in the sample. If pooling
or convolutions with stride different to one are used, the activation maps of the last
layer will be downsampled from the original size of the images. Then, the last layer’s
activations can be upsampled to obtain pixelwise or more precise predictions using
an operation called transposed convolution. [21]
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(a) Inception module with dimensionality reductions. With the 1x1 convolutions
the input depth is reduced. I.e. there are less filters than in the previous layer’s
output. With this the computational complexity of the larger filters and the depth
of the pooling output can be controlled. The 1x1 convolutions also add depth in
the form of added layers to the network, which is often a desired feature. [33]

(b) The full architecture of GoogLeNet. Here it is notable that most of the archi-
tecture consists of individual inception modules. Also, multiple computationally
expensive fully connected layers have been left out from the network architecture.
This reduces a lot of parameters. A third interesting detail is that there are two
auxiliary classification outputs in the lower layers of the model. This means that
the loss and gradients are computed and backpropagated during training in three
different places in the network which has shown to improve the performance. In
the final prediction, the predictions of the auxiliary inputs can be used by aver-
aging the sum of each output. [33]

Figure 3.4: Inception architecture
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(a) ResNet residual block. The residual block has a similar property to L2 regu-
larization in that it tends to drive the weights towards zero. In training, ResNet
drives to zero the weights of those blocks that are not needed in classification. [13]

(b) The full architecture of a 32-layer ResNet. Every residual block has two
convolutional layers. There is only a single fully connected classifier layer in the
end. [13]

Figure 3.5: ResNet building blocks and architecture. Image credit He et. al. [13]

One advantage of a FCN is that the input for it can be of any size. The model will
then produce output activation maps of size proportional to the size of the input.
The FC layer in the CNN can also be seen as a convolution, where the kernel size is
equal to the size of the input image. With this insight, any CNN can be transformed
to FCN and be used to arbitrarily sized inputs. [21]

FCNs are a good fit for semantic segmentation, where instead of trying to assign
classes to the whole image, a class is assigned to each pixel of the image. General
idea of segmentation with FCN is depicted in Figure 3.6. Keeping the subsequent
convolutional layer outputs the same size as the input is computationally expensive.
For that reason the layers are downsampled as described in section 3.2.1, and then
upsampled with additional layers to the desired output size. Often it is acceptable
that the output size is less than the input size. [21, 11]

Upsampled pixelwise predictions can be produced from the downsampled activa-
tion maps by shift and stitch strategy that consists of joining multiple outputs of
shifted versions of the original input [21]. Another way to produce the pixelwise
predictions is to use interpolation. This can be seen as convolution with a frac-
tional stride 1/f and is often referred as deconvolution or transposed convolution.
The concepts of unpooling and transposed convolution are illustrated in Figure 3.7.
Transposed convolution can be implemented by reversing the forward and backward
passes of a typical convolutional layer. I.e. upsampling is done by back-propagating
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Figure 3.6: Fully convolutional networks can be used in semantic segmentation of
an image. The network learns a downsampled representation of class probabilities
for each pixel, and the downsampled activation maps are then upsampled using
transposed convolution to represent pixelwise predictions. [21]

Figure 3.7: Deconvolution and unpooling operations can be understood as backward
operations of convolution and pooling. [25]
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the pixelwise loss. [21]
The term transposed refers to the property of the convolution which states that

it can be expressed as a matrix multiplication of a sparse convolution matrix C and
the input of the operation as a flattened vector v. For example, consider ordinary
convolution with stride 1 and no padding. Then, let the input be of size 4 × 4, or
16 × 1 when flattened. The convolution of a 3 × 3 kernel with the input V would
then produce a 2× 2 output, or 4× 1 when flattened. If the convolution kernel K’s
weights are denoted as wij, i and j being the row and column indices of the kernel
respectively, C can be expressed as a 4× 16 matrix [8]:[

w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0 0
0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0 0 0 0
0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2 0
0 0 0 0 0 w0,0 w0,1 w0,2 0 w1,0 w1,1 w1,2 0 w2,0 w2,1 w2,2

]

The convolution operation could then be obtained as Conv(K,V) = Cv.
Then, the backward pass can be performed by multiplying the transpose of C

by the output. Thus, in back-propagation the gradient of the loss with respect to
the convolution’s output is multiplied by CT . This means that by multiplying a
flattened 4 × 1 input with CT leads to 16 × 1 output which is then rearranged to
4 × 4. In another words, upsampling in a CNN can be performed by reversing the
forward and backward passes of a convolution layer as mentioned before. [8]

Popular deep learning frameworks have implementations of transposed convolu-
tion available for the upsampling process. In Keras framework the implementation
suitable for image data is named Conv2DTranspose [5].
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4. METHODS

This chapter describes the classification tasks considered in the study, the metrics
used to evaluate the model performance and the setup and implementation of the
testbench used in training and evaluation. We also discuss the various hyperparam-
eters of CNNs and FCNs, as well as how those hyperparameters were chosen in the
final models.

Another point of interest is the generation of the target activation maps (or target
masks in short) used in training of the FCNs. There was no densely labeled targets
included in the dataset, so the target masks were generated from the green channel
images that contain the protein signal strengths from IF imaging. There are a
couple of issues with this approach. The first and most critical problem is that
there may be multiple valid subcellular localizations within a single sample, and the
computational generation of the masks does not distinguish between the different
classes. Secondly, there is at least a small amount of protein signal more or less
everywhere in the images, so a threshold is needed to tell from the signal strength
whether a class is absent or present. These issues are discussed in section 4.3.2.

4.1 Classification tasks and performance evaluation

In this thesis, the ultimate task was to tell in which subcellular organelles the protein
of interest was significantly enriched, i.e. to which organelles a sample was labeled
to belong to in the dataset. The data consisted of images with four channels, where
the green channel contained the protein enrichment signals, and the three other
channels contained the structures of the cell as described in chapter 2.

For experimentation, two different approaches were chosen. First, a CNN with
the output being a vector of probabilities for each class present in the image was
trained. The second category of algorithms tested was an FCN with the outputs
being the activation maps for each class. The maps were generated according to
section 4.3.2.

The performance of the models was measured using F1 scores for each class.
Then, a single scalar measure is obtained by averaging the per-class scores. If true
positives, false positives and false negatives for a single class are denoted as tp, fp
and fn respectively, F1 score is calculated as the weighted average of the precision
and recall:
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precision =
tp

tp+ fp
(4.1)

recall =
tp

tp+ fn
(4.2)

F1 =
2× (precision× recall)
precision+ recall

(4.3)

4.2 Testbench implementation

As described in section 2.3, the dataset consists of 20 000 samples, each having
the four channels and the labels for the 13 subcellular locations provided with the
samples. Each sample is also labeled with an integer ID from 1 to 20 000. In the
testbench setup used in this thesis, sample IDs from 16 001 to 20 000 were used
as the test set for the final evaluation. The first 16 000 samples were used as the
training data for model training.

For training, 10% of the training data was used as the validation set. At the end
of each epoch, the model performance was evaluated with the validation set. The
validation loss was then used for monitoring the training process. Also, a technique
called early stopping was used during the training, and the metric used in it was the
validation loss. In early stopping, the training process is stopped if the monitored
metric does not improve for a certain amount of epochs. This amount was chosen
to be 20.

Another technique used in training that uses the validation loss as the metric is
learning rate reduction whenever the loss plateaus. In the training process, learn-
ing rate was reduced to one third if the validation loss did not improve in eight
consecutive epochs. This number of epochs was derived empirically.

4.3 Data preprocessing

In general, mean subtraction and per-channel normalization were used with the
images as described in section 3.1.9. In the case of FCNs, the target masks were
generated from the green channel images.

4.3.1 Class imbalance

Class imbalance in CNNs is not as insurmountable of an issue as with many other
machine learning algorithms [4]. In this study, the data was used as is, without
performing any balancing. One reason for this was to avoid overfitting through
oversampling of the rare classes. The rare cases are so infrequent that the oversam-
pling process would need to be very extreme to make a significant change in the
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proportions.
Another reason not to balance the classes was to keep things simple. If the dataset

is balanced through oversampling or undersampling, the prior distributions of the
classes are changed. This would create a source of bias that would need to be taken
into account when making the final predictions. The models perform quite well even
without balancing, and there were a lot of other things to be tuned, so the balancing
was left out of the scope of this thesis.

4.3.2 FCN target generation

In the case of FCNs, the target activation maps, or masks, are needed for training as
explained in section 3.3. The masks were generated from the green image as follows:

1. Scale the image to [0, 1]

2. Blur the image with Gaussian filter to spread the signal a bit

3. Threshold the filtered image. The threshold value of 0.3 was chosen experi-
mentally.

4. Apply binary dilation to the thresholded image so that the signal will not
vanish when resized

5. Resize the result image to the size of the FCN outputs.

This generation process was derived through intuition and probably is not optimal
for the problem at hand. Nevertheless, it performs comparable to the CNN approach
used. The major issue with this kind of mask generation is that it does not take into
account the situations where there are more than one class present in the sample.
Whether and to what extent this decreases model’s performance would need to be
studied as it was left out of the scope here.

4.4 Hyperparameters

A hyperparameter is a variable of the model that is fixed to a constant before the ac-
tual training process is performed. The performance of the algorithm depends on the
chosen hyperparameters. There are different ways of choosing the hyperparameters,
or optimizing them.

The first and most informal way is to tune the hyperparameters by hand, i.e. try
out some settings, then some others, and see which one performs better. A more
systematic way to do this is to perform a grid search. In it each hyperparameter
tested is chosen from a fixed set. Then the hyperparameter space is organized to a
grid-like structure, where each and every possible combination is tested. The issue
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Table 4.1: The essential hyperparameters in the models used.

Hyperparameter Values tested Explanation
Depth 2..10 The deeper the more non-

linearities.
Number of filters 16..256 How many kernels are learned per

layer. Usually because the activa-
tions are downsampled when for-
warding in the layers, the number
of filters can be increased along
the upstream.

Filter size 3× 3 With smaller filters, there can be
more depth with fewer param-
eters. More depth, more non-
linearities.

Convolution stride 1 How much the filter is slided at
each step.

Pooling 2 × 2 kernel with
stride 2

The amount of downsampling.

Padding ’Same’ How the edges of the images are
padded.

Activation ReLU, ELU Introduces the nonlinearities es-
sential to neural networks.

Batch Normaliza-
tion

With and without Normalize the activations for each
batch.

Optimizer SGD with Nesterov
momentum, Adam

How the parameter updates are
performed based on the gradients.

Initial learning rate 0.001 How large updates to perform at
the beginning of training.

LR decay factor 0.2, 0.33 Decrease the learning rate by
a factor when validation loss
plateaus. A plateau was detected
if the validation loss did not im-
prove in eight consecutive epochs.

Dropout 0.5 How big portion of neurons in a
layer to discard on each batch.
Acts as regularization method.

Weight initializer Glorot Random initialization with size
proportional to the input and out-
put. Too small -> collapse to
zero. Too big -> saturate (gra-
dients go to zero).
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with this approach is that it quickly leads to a combinatoric explosion if there are
more than a couple of hyperparameters with only a few of different possible values
for each.

An improvement to grid search is to perform a random search through the
hyperparameter space. In it the possible values can be defined as continuous dis-
tributions or as discrete sets. Then, those distributions are randomly sampled to
obtain a hyperparameter combination that is tested. This is repeated as many times
as wanted. The strength of random search is that a model with equal performance
to a model tuned with grid search is found in only a fraction of time. If the random
search is performed as long as grid search, the hyperparameter space searched is
effectively a lot larger because the parameters are sampled from continuous distri-
butions instead of a discrete grid. [3]

Yet another technique for finding good hyperparameters is Bayesian optimiza-
tion in which the validation loss is modeled as a Gaussian process in the hyperpa-
rameter space. The issues with Bayesian optimization concern the sequential nature
of its optimization process (cannot exploit parallelism to full extent) and the fact
that the optimization process itself has hyperparameters which need to be searched
too. [30]

There are a plethora of hyperparameters in the case of neural networks, some
of which are more sensitive than others. The issue with utilizing hyperparameter
optimization techniques described above is that training neural networks is compu-
tationally heavy, and any optimization technique requires multiple models trained.
A proper hyperparameter search can take weeks or months. With the models tested
here, the hyperparameters were chosen by hand through informed guesses. A proper
hyperparameter search would be the next step in tuning the models. The most es-
sential hyperparameters of the CNNs and FCNs are listed in Table 4.1 with the
values tested in this thesis.

4.5 Network architectures

As the general architecture of the models, two main achitectures were tested. First,
a VGG-style network with layers of convolution, activation and pooling stacked
sequentially was trained from scratch. This is a simple and easy way to go. The
main downside with this architecture is that it has a lot of parameters which means
the model is large and heavy to train when the depth is increased.

The second approach was to use Inception V3 [34] model pretrained with Ima-
geNet data. This architecture utilizes the Inception module described in section 3.2.3
as a trick to decrease the number of parameters while maintaining a high complex-
ity of the overall function. Because the network was pretrained with photograph
images, the data used in pretraining was very different compared to the microscopy
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Table 4.2: Features of CPUs vs GPUs for some common models. The key takeaway
is that with neural networks a high-end CPU is not a sensible investment. On the
other hand, a high-end GPU like the Titan Xp here has significantly more cores
and fast memory compared to the consumer-level GTX 1070. Thus, investing into
a high-end GPU may be worth it depending on the specific needs. Examples taken
from the lecture notes of [20].

Model Number of cores Clock
speed

Memory Price

CPU (In-
tel Core i7-
7700k)

4 (8 threads with
hyperthreading)

4.4 GHz System RAM $350

CPU (In-
tel Core i7-
6950X)

10 (20 threads
with hyper-
threading)

3.5 GHz System RAM $1700

GPU
(NVIDIA
Titan Xp)

3840 1.6 GHz 12 GB GDDR5X $1200

GPU
(NVIDIA
GTX
1070)

1920 1.68 GHz 8 GB GDDR5 $400

images. For this reason all of the parameters were tuned in the training process.
Also, the pretraining data had only three channels so the red and yellow channels
in the training data were merged to one for the Inception architecture.

The architectures for the models trained from scratch are illustrated in Ap-
pendix B. The models have equal structures apart from the final layers. The base
model before the final layers has 10 convolutional layers. The original VGG-19 net
has 16 convolutional layers. On the other hand, the Inception V3 base model has 94
convolutional layers, which is a huge increase. This also means it takes a lot more
time to train the Inception V3 compared to the simpler VGG-like architecture.

A major aspect to note is the number of trainable parameters in the models. The
FC layer connected to the activation maps of the last convolutional layer in the case
of CNN has over 75% of the learned parameters of the whole model, the two FC
layers having almost 80% of the trainable parameters. Thus, the CNN with fully
connected layers has five times the parameters of the FCN without fully connected
layers. In many applications the size of the model is critical.

4.6 GPU Utilization

Graphical processing units (GPUs) are widely used when training deep learning
models, as they make the training significantly (10-100x) faster compared to using
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a general purpose CPU. In Table 4.2 some commonly used CPU and GPU models
are compared with respect to their number of cores, clock speed, memory and price.
CPUs have less cores but faster clock speeds on each core. In addition, the instruc-
tion set and architecture makes CPU cores a lot more capable compared to GPU
cores that can perform only simple tasks on parallel synchronized with the other
cores. [20]

Many of the operations performed in the context of neural networks need matrix
multiplication, for which GPUs are extremely well suited. Convolution is also a
massively parallelisable problem. In general, writing code for GPU is hard. As a
result, different high-level APIs are available, e.g. cuBLAS for basic linear algebra,
cuFFT for fourier transforms and cuDNN for deep learning. Deep learning libraries
make use of GPUs by utilizing these APIs. For example, Tensorflow (which is the
backend for Keras used in this project) uses cuDNN for implementing the algorithms
on GPU. [12]

One possible bottleneck when using GPUs is data transfer from the hard disc
into the CPU and copying the data between the CPU and GPU. It is preferable
to profile the training process on how much time is used reading the data and how
much doing the computation on the GPU. Some deep learning frameworks utilize
the multiple CPU cores to read the data to main memory on background and then
the main thread feeds the data to GPU on parallel. So by using a proper deep
learning framework all of this can be automated. [20]

Tensorflow, for example, keeps the computational graph inside the GPU memory.
So if the weights and weight updates are kept within the graphs, and not as outputs,
the large weight matrices will not be copied between CPU and GPU between the
batch runs.
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5. RESULTS

As described in section 4.5, the two architectures considered were the VGG-style
net trained from scratch, and Inception V3 net initialized to weights pretrained
with ImageNet data. The Inception V3 architecture is much more complex than
the custom architecture used, taking significantly more time to train. As the two
performed almost the same in the initial tests, the Inception V3 architecture was left
out from fine-tuning and the detailed results here for brevity. A probable cause for
the more complex Inception V3 architecture not exceeding the performance of the
much simpler architecture in comparison is that it was pretrained and fine-tuned
with totally different kind of data. Another issue is that there were only 16 000
training samples, which is rather small compared to the millions of images in the
ImageNet dataset.

5.1 Comparison of the model performances

As mentioned in section 4.1 the performance of the models was measured with F1

score. The overall performances for the best-performing CNN and FCN models
are summarized in Tables 5.1 and 5.2 respectively. Both weighted and unweighted
means of the classwise F1 scores are given because the original challenge [1] used
the unweighted mean. This emphasizes the rare cases and it can be argued that the
weighted score better describes the actual performance. Thus, both are provided

Table 5.1: The results for CNNs trained with different cell line combinations. The
training time was made equal by running the models with fewer samples for number
of epochs inversely proportional to the number of the samples used in training. Here
it can be seen clearly that the models perform the better the more samples are used
for training.
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Table 5.2: The results for FCNs trained with different cell line combinations similar
to CNNs in table 5.1. The same trend (better performance with more data) can
also be seen with FCNs.

here.
The validation loss between CNN and FCN models cannot be compared between

the two, because CNN uses the 13 × 1 classwise score vector when computing the
loss, whereas FCN loss is computed from the target masks. In the masks there
is quite a lot of black empty space which is easy for the FCN to classify, so the
validation loss is a lot lower compared to the CNN.

The algorithms were tested with five different combinations of cell lines. For the
separate cell lines, the most frequent three in the dataset were chosen. Models were
trained with samples from each of the top three cell lines separately, the top three
cell lines combined, and with all of the samples in the dataset.

From the Tables 5.1 and 5.2 it can be seen that the performances of the models
are quite similar. When using the whole dataset, CNN outperforms FCN in the
weighted average F1 score, but FCN has a bit higher unweighted mean. This shows
an interesting characteristic of the FCN: it learns faster with less data. This feature
can also be seen when looking at the metrics of the models trained with only one
cell line. In those models FCN has clearly better performance in the terms of both
weighted and unweighted means.

Tables 5.3 and 5.4 show the classwise metrics for the best-performing CNN and
FCN respectively. Here the FCN’s ability to learn from little data can also be seen.
All of the F1 scores in the case of FCN are well above 0.5 whereas the CNN’s scores
for rare classes are as low as 0.364 for actin filaments, which is the second rarest
class in the dataset.

The models have learnt the threshold values for classification by trying out values
with interval of 0.01 and choosing the thresholds that maximize the F1 score on the
training data. When looking at the classification thresholds, they are much more
consistent in FCN, fluctuating between 0.60 and 0.86. On the other hand, with the
CNN the thresholds are between 0.19 and 0.65. This can be interpreted so that the
FCN is more robust on the classifications it makes.
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Table 5.3: Classwise metrics for the best performing CNN.

Table 5.4: Classwise metrics for the best performing FCN.
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Table 5.5: Confusion matrix for the classification results of the best performing
CNN. The columns represent the the ground truth labels, and the rows are showing
the predictions.

Tables 5.5 and 5.6 show confusion matrices for the CNN and FCN models respec-
tively. Each column of the confusion matrix represents the true class and each row
represents the predicted class. Here it can seen, for example, that the CNN confuses
some of the actin filament samples with cytosol and intermediate filament samples,
whereas the FCN does not do either of these mistakes.

It should be noted that the confusion matrix cannot be unambiguously and ac-
curately defined for multi-class multi-label classification task, so these confusion
matrices are only directional. They simply tell that if a class for a sample was not
correctly detected, what other classes were present in the sample. In other words,
if the predicted labels for a sample do not contain the true label, each of the true
label’s false positive counts on the predicted labels were incremented, because it
cannot be determined to which single one label the sample was confused if there are
more than one predicted labels.

5.2 Training process monitoring

Figure 5.1 shows the progress of model loss as a function of training epoch number.
The previously discovered trend of FCN learning faster than CNN can be seen from
these graphs too. Both training and validation loss drop extremely fast in the case of
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(a) The CNN’s training process is not as steep as in the case of FCN.

(b) With FCNs, the loss decreases steeper, but the improvement then gets a lot
slower compared to the CNN.

Figure 5.1: The progress of loss and accuracy between epochs during the training
process for the CNN and FCN with best results. The large fluctuations of the
validation loss in the beginning of training result from a higher learning rate. When
the training process advances, the learning rate is reduced if validation loss has not
improved for a while. This leads to a smoother curve.
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Table 5.6: Confusion matrix for the classification results of the best performing
FCN. Like in the previous table, the columns represent the ground truth and the
rows represent the predictions.

FCN but then the progress plateaus. This is an interesting phenomena that would
need more research. It may be that the FCN would benefit from increasing the
model complexity (by adding more layers or more weights per layer) because this
kind of behaviour is often seen in models with not enough capacity.

With CNN, the loss curve seems more balanced. The large fluctuations in valida-
tion loss are the result of quite high learning rate combined with small dataset size.
As mentioned in section 4.2, the learning rate was reduced after eight consecutive
epochs if the loss did not improve. The fluctuations clearly decrease in certain points
of the progress, which are the learning rate reduction events. First, the learning rate
is reduced after around 40 epochs and then another time at around 75 epochs. This
mechanism could seemingly be fine-tuned to perform better.

5.3 Examples of the model outputs

Figure 5.2 illustrates an example of the CNN model output. On the top left, the
red, blue and green channels are shown. Then, only the protein signal, i.e. the
green image is plotted. From the green image we can see that the protein signal is
present more or less everywhere in the cell structures. Nevertheless, the signal is
a lot stronger in specific locations in the sample, namely the vesicles. The model
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Figure 5.2: CNN output for a sample localizing to vesicles. The model recognizes
localization to vesicles with very high confidence. The blue columns represent the
predicted probabilities of the model, and the orange columns are the thresholds of
detection that the model has learned. The predicted probability for vesicles is above
90%.
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Figure 5.3: An example of the output of the FCN. In this example, the true classes
present are Cytosol, Mitochondria and Nucleus, which the network detects quite
well. The one class it detects wrong is Golgi apparatus. The target mask and the
activation maps are smoothed with bilinear interpolation for visual appeal. Note
that the target mask is generated here for reference: this example has not been used
in the model training. It is interesting to see how the model detects the patterns of
localization presence very similarly to the generated mask. It can even be reasoned
that the FCN implicitly learns to generate the mask during training.
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outputs probability estimates for each location on whether they are enriched in the
image. The estimate of vesicles outstands from the output, and the model finally
makes the classification based on the estimate being higher than the threshold.

Figure 5.3 illustrates an example of the FCN model’s output. In the input there
are three localizations present, namely cytosol, mitochondria and nucleus. The
target mask is generated from the green channel. It is a downsampled version of
the green image with the areas of strong signal preserved and dilated. In the final
model, the output size is 32 × 32. The mask can be thought of as a map showing
roughly the areas where the protein signal is strong.

Then, the FCN model learns to predict those areas according to the training
masks. The last 13 images in Figure 5.3 show the output activation maps for each
organelle. These maps can be thought of as probability maps showing the areas
where the model tells the protein signal is strong within a specific organelle. The
model is surprisingly confident on what it sees. In this three-label example it is
rather sure that nucleus and cytosol are enriched on those locations, correctly. With
mitochondria the confidence is clearly lower. The model also predicts with a consid-
erable probability that there is enrichment in golgi apparatus although according to
the labels there is not. Here it is good to bear in mind that the labels are provided
by laymen playing the Eve Online game, as explained in section 2.6. Thus, the
model might give better estimates on the labels than the actual label providers.

The outputs of FCN compared to CNN reveal another advantage of FCN: it
actually tells where in the image the signal in a specific organelle is enriched. CNN
only tells that somewhere in the image there is enrichment within a specific structure,
but it does not express the spatial locations.
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6. CONCLUSIONS

In this thesis the usage of CNNs and FCNs for subcellular protein localization was
studied and tested. The dataset was the same that was used in Cyto2017 confer-
ence’s imaging challenge [1]. It consisted of only 20 000 samples taken from Protein
Atlas database [35]. Rather small architectures similar to VGGNet were used when
training the models from scratch. For comparison, Inception V3 was used as the
base architecture for both CNN and FCN. These models were initialized to the
ImageNet weights provided by Keras. These pre-trained models are trained with or-
dinary photographs, which is very different from the fluorescent microscopy images
used in this study. Because the Inception V3 architecture is heavy to train, and it
did not perform significantly better on the initial tests, it was left out from further
fine-tuning, and the study focused on the VGG-like case of CNN and FCN.

All in all, the results were surprisingly good considering the size of the dataset.
The weighted average of classwise F1 scores was well above 0.80 for both CNN
and FCN. This tells that the task of automatic localization of the proteins into
subcellular structures with the means of machine learning is plausible.

Automatic categorization of the enriched proteins into the subcellular structures
gives new insight to the functions of the cell. One application of these techniques
would be to detect malfunctioning cells in a patient. When a gene is enriched
normally, it manifests as a specific localization pattern of a certain protein. Thus,
by studying the protein localization patterns we are actually also studying the gene
expression.

When comparing the CNN and FCN it was revealed that the FCN learns faster
with less data. The FCN model also is only a fraction of CNN in the terms of
number of parameters because it lacks the FC layers in the output. According to
the monitoring of learning progress, the FCN model could make use of increased
model capacity, i.e. more parameters in the form of either deeper architecture or
more parameters per layer. This would be an interesting direction of future research.

The number of samples in the dataset was rather small for modern deep learning
architectures. Interestingly, advances in this area have been made lately. The same
strategy of collecting labels through the Eve Online Project Discovery crowdsourcing
challenge has been continued, with an extended number of 29 categories compared
to the 13 categories present in the dataset used in this thesis. Compared to the 20
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000 samples, a whopping 23.7 million samples have been annotated in the updated
dataset [32]. In the article related to the new dataset, a similar classification task
was solved. It would be interesting to apply the algorithms developed in this study
to the extended dataset, as well as continue the development of the FCN approach.

The reliability of the online players’ consensus as the source of ground truth labels
has also been discussed in the context of the extended dataset. The evaluation and
refinement of the annotations obtained through the Project Discovery, as well as the
quality assessment for this process, is an ongoing effort [32].

In addition to the rather small size of the dataset, the human resources for con-
ducting the study were limited, and more systematic fine-tuning of the network
structure and the hyperparameters would be needed. Also, the reliability of the re-
sults should be analyzed more in depth. In general, the mechanisms of deep learning
are not well understood after all.
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A. COUNTS OF LOCALIZATION LABELS BY

CELL LINE

Table A.1: Localization counts per cell line. The labels are abbreviated from the
originals: AF (Actin Filaments), CE (Centrosome), CY (Cytosol), ER (Endoplas-
mic Reticulum), GA (Golgi Apparatus), IF (Intermediate Filaments), MT (Micro-
tubules), MC (Mitochondria), NM (Nuclear Membrane), NI (Nucleoli), NU (Nu-
cleus), PM (Plasma Membrane), VE (Vesicles)

AF CE CY ER GA IF MT MC NM NI NU PM VE
cell_line
A-431 66 125 1795 109 302 32 99 365 98 379 2230 450 449
A549 4 13 152 12 28 9 8 41 5 44 255 49 68
AF22 0 3 2 1 3 0 0 1 0 1 14 3 4
ASC TERT1 0 0 4 0 0 0 0 0 0 0 2 3 1
BJ 3 2 34 11 24 0 1 8 3 15 88 29 31
CACO-2 3 0 44 11 27 2 4 30 3 36 205 21 55
HEK 293 5 16 121 15 37 9 6 57 16 60 330 23 86
HUVEC TERT2 0 0 3 6 6 0 0 0 0 0 12 6 7
HaCaT 0 8 36 2 13 8 1 6 5 12 69 36 30
HeLa 6 9 107 13 25 3 5 25 7 40 246 52 58
Hep G2 1 5 96 19 39 0 5 31 3 32 222 23 55
MCF7 5 9 130 23 36 7 5 70 17 138 460 23 67
NB-4 0 0 2 0 2 0 0 1 1 0 0 0 0
PC-3 0 8 156 21 12 0 11 29 17 87 337 50 58
REH 0 5 10 1 1 0 0 2 0 2 6 2 1
RH-30 3 42 85 4 32 3 3 25 9 47 263 35 46
RT4 0 11 52 8 25 1 0 17 7 16 156 19 54
SH-SY5Y 6 15 76 11 29 5 1 16 12 36 172 18 74
SK-MEL-30 0 11 30 4 9 1 6 19 5 25 111 10 26
SiHa 5 14 47 12 21 1 3 21 5 26 145 26 47
U-2 OS 125 156 2215 238 345 78 129 610 120 697 3081 643 837
U-251 MG 29 135 1654 107 267 31 89 309 79 380 2049 417 373
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B. NETWORK STRUCTURES

B.1 Architecture for CNN trained from scratch

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 256, 256, 4) 0
_________________________________________________________________
conv_0 (Conv2D) (None, 256, 256, 32) 1184
_________________________________________________________________
conv_act_0 (Activation) (None, 256, 256, 32) 0
_________________________________________________________________
conv_0_2 (Conv2D) (None, 256, 256, 32) 9248
_________________________________________________________________
conv_act_0_2 (Activation) (None, 256, 256, 32) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 256, 256, 32) 128
_________________________________________________________________
conv_pool_0 (MaxPooling2D) (None, 128, 128, 32) 0
_________________________________________________________________
conv_1 (Conv2D) (None, 128, 128, 64) 18496
_________________________________________________________________
conv_act_1 (Activation) (None, 128, 128, 64) 0
_________________________________________________________________
conv_1_2 (Conv2D) (None, 128, 128, 64) 36928
_________________________________________________________________
conv_act_1_2 (Activation) (None, 128, 128, 64) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 128, 128, 64) 256
_________________________________________________________________
conv_pool_1 (MaxPooling2D) (None, 64, 64, 64) 0
_________________________________________________________________
conv_2 (Conv2D) (None, 64, 64, 128) 73856
_________________________________________________________________
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conv_act_2 (Activation) (None, 64, 64, 128) 0
_________________________________________________________________
conv_2_2 (Conv2D) (None, 64, 64, 128) 147584
_________________________________________________________________
conv_act_2_2 (Activation) (None, 64, 64, 128) 0
_________________________________________________________________
batch_normalization_3 (Batch (None, 64, 64, 128) 512
_________________________________________________________________
conv_pool_2 (MaxPooling2D) (None, 32, 32, 128) 0
_________________________________________________________________
conv_3 (Conv2D) (None, 32, 32, 256) 295168
_________________________________________________________________
conv_act_3 (Activation) (None, 32, 32, 256) 0
_________________________________________________________________
conv_3_2 (Conv2D) (None, 32, 32, 256) 590080
_________________________________________________________________
conv_act_3_2 (Activation) (None, 32, 32, 256) 0
_________________________________________________________________
batch_normalization_4 (Batch (None, 32, 32, 256) 1024
_________________________________________________________________
conv_pool_3 (MaxPooling2D) (None, 16, 16, 256) 0
_________________________________________________________________
conv_4 (Conv2D) (None, 16, 16, 256) 590080
_________________________________________________________________
conv_act_4 (Activation) (None, 16, 16, 256) 0
_________________________________________________________________
conv_4_2 (Conv2D) (None, 16, 16, 256) 590080
_________________________________________________________________
conv_act_4_2 (Activation) (None, 16, 16, 256) 0
_________________________________________________________________
batch_normalization_5 (Batch (None, 16, 16, 256) 1024
_________________________________________________________________
conv_pool_4 (MaxPooling2D) (None, 8, 8, 256) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 16384) 0
_________________________________________________________________
dense_1 (Dense) (None, 512) 8389120
_________________________________________________________________
activation_1 (Activation) (None, 512) 0



B. Network structures 60

_________________________________________________________________
dropout_1 (Dropout) (None, 512) 0
_________________________________________________________________
dense_2 (Dense) (None, 512) 262656
_________________________________________________________________
activation_2 (Activation) (None, 512) 0
_________________________________________________________________
dropout_2 (Dropout) (None, 512) 0
_________________________________________________________________
dense_3 (Dense) (None, 13) 6669
_________________________________________________________________
activation_3 (Activation) (None, 13) 0
=================================================================
Total params: 11,014,093
Trainable params: 11,012,621
Non-trainable params: 1,472
_________________________________________________________________

B.2 Architecture for FCN trained from scratch

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 256, 256, 4) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 256, 256, 32) 1184
_________________________________________________________________
conv2d_2 (Conv2D) (None, 256, 256, 32) 9248
_________________________________________________________________
batch_normalization_6 (Batch (None, 256, 256, 32) 128
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 128, 128, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 128, 128, 64) 18496
_________________________________________________________________
conv2d_4 (Conv2D) (None, 128, 128, 64) 36928
_________________________________________________________________
batch_normalization_7 (Batch (None, 128, 128, 64) 256
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 64, 64, 64) 0
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_________________________________________________________________
conv2d_5 (Conv2D) (None, 64, 64, 128) 73856
_________________________________________________________________
conv2d_6 (Conv2D) (None, 64, 64, 128) 147584
_________________________________________________________________
batch_normalization_8 (Batch (None, 64, 64, 128) 512
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 32, 32, 128) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 32, 32, 256) 295168
_________________________________________________________________
conv2d_8 (Conv2D) (None, 32, 32, 256) 590080
_________________________________________________________________
batch_normalization_9 (Batch (None, 32, 32, 256) 1024
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 16, 16, 256) 0
_________________________________________________________________
conv2d_9 (Conv2D) (None, 16, 16, 256) 590080
_________________________________________________________________
conv2d_10 (Conv2D) (None, 16, 16, 256) 590080
_________________________________________________________________
batch_normalization_10 (Batc (None, 16, 16, 256) 1024
_________________________________________________________________
conv2d_11 (Conv2D) (None, 16, 16, 13) 3341
=================================================================
Total params: 2,358,989
Trainable params: 2,357,517
Non-trainable params: 1,472
_________________________________________________________________


