
FATEMEH ALSADAT ESTIRI
3D Object Detection and Tracking Based On Point Cloud Li-
brary Special Application In Pallet Picking For Autonomous
Mobile Machines
Thesis work

Examiners: Prof. Kalevi Huhtala

Dr. Reza Ghabcheloo

Examiner and topic approved by

The Faculty Council of the

Faculty of Engineering Sciences

9th April 2014

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

International Master's Degree Programme in Machine Automation Technology

ESTIRI, FATEMEH ALSADAT : 3D Object Detection and Tracking Based On

Point Cloud Library, Special Application In Pallet Picking For Autonomous

Mobile Machines

Master of Science Thesis, 96 pages, 0 Appendix pages

February 2014

Major: Mechatronics Engineering

Examiners: Professor Kalevi Huhtala, Dr. Reza Ghabcheloo

Keywords: 3D object recognition, point cloud library, PCL, object tracking, pallet pick-

ing, 3D visual servoing

This work covers the problem of object recognition and pose estimation in a point

cloud data structure, using PCL (Point Cloud Library). The result of the compu-

tation will be used for mobile machine pallet picking purposes, but it can also be

applied to any context that requires �nding and aligning a speci�c pattern.

The goal is to align an object model to the visible instances of it in an input cloud.

The algorithm that will be presented is based on local geometry descriptors that are

computed on a set of uniform key points of the point clouds. Correspondences (best

matches) between such features will be �ltered and from this data comes a rough

alignment that will be re�ned by ICP algorithm. Robust dedicated validation func-

tions will guide the entire process with a greedy approach. Time and e�ectiveness

will be discussed, since the target industrial application imposes strict constraints

of performance and robustness.

The result of the proposed solution is really appreciable, since the algorithm is

able to recognize present objects, with a minimal percentage of false negatives and

an almost zero false positives rate. Experiments have been conducted on datasets

acquired from a state-of-the-art simulator and some sample scene from the real

environment.

II

PREFACE

This thesis was performed as part of the GIM project in IHA department at Tam-

pere University Of Technology. Hereby I would like to thank my great supervisor

Dr.Reza Ghabcheloo for always being supportive and advising me so patiently even

in hard times.

My second thanks should go to all department members who warmly welcomed me

and aided me through the process, specially Mika Hyvönen who was always so kind

and helpful.

Finally the ones without whom I could not have been in such a position, my truly

patient and always supportive husband Behnam, and my parents Ali and Masoumeh

who raised me strong and blessed me with their prayers.

Fatemeh Alsadat Estiri

February 11, 2014

III

TABLE OF CONTENTS

1. Introduction And System Speci�cations . 1

1.1 Overview . 1

1.2 EUR-Pallet . 2

1.3 GIM Mobile Machine . 3

1.4 2D Versus 3D . 4

1.5 Laser Scanner . 5

1.6 Point Clouds . 6

1.7 The Point Cloud Library (PCL) . 7

1.8 PCD File Format . 10

2. Theoretical Background . 14

2.1 Overview . 14

2.2 Registration De�nition . 15

2.3 Point Search Methods . 16

2.4 Data Pre-Processing . 18

2.4.1 Key-Points . 18

2.4.2 Down-Sampling . 19

2.4.3 Pass-Through Filter . 20

2.5 Features . 22

2.5.1 Surface Normals . 24

2.5.2 PFH - Point Feature Histogram 27

2.5.3 FPFH - Fast Point Feature Histogram 28

2.5.4 SHOT - Signature of Histograms of OrienTations 29

2.6 Correspondences . 30

2.6.1 Finding Correspondences . 30

2.6.2 Filtering Correspondences . 31

2.7 Validation Functions . 34

2.7.1 Euclidean Distance Validation Function 35

2.7.2 Percent Of Outliers Validation Function 36

2.7.3 Normal Angles Validation Function 37

2.8 Random Sample Consensus (RANSAC) 37

2.9 Iterative Closest Points (ICP) . 40

2.10 Work Flow Of General Registration Process 42

3. Implementation . 44

3.1 Overview . 44

3.2 Getting PCL . 45

3.3 Programming Software and Dependencies 45

3.4 UDP Communication . 47

IV

3.4.1 UDP Communication In MATLAB Simulink 47

3.4.2 UDP Communication With C++ On Linux 49

3.4.3 Saving Point Cloud Data Through UDP 52

3.5 Point Cloud Production . 56

3.6 Servo Control . 59

3.6.1 Open Loop Phase . 60

3.6.2 Closed Loop Phase . 60

3.7 Overview Of The Simulink Model . 61

4. Tests and Results . 69

4.1 Overview . 69

4.2 Datasets . 69

4.3 Determining Parameters . 71

4.3.1 Control Signal Sending Frequency 71

4.3.2 Uniform Key points Sampling Size 72

4.3.3 Normal Estimation Radius . 73

4.3.4 Feature Extraction Radius . 73

4.3.5 RANSAC Parameters . 74

4.3.6 ICP Euclidean Fitness Epsilon 75

4.4 Simulation Results . 75

4.5 Real Data Results . 82

5. Conclusion . 93

5.1 Feature Work . 94

References . 95

V

LIST OF FIGURES

1.1 Euro standard pallet . 2

1.2 GIM mobile machine . 3

1.3 2D recognition failure due to underexposed parts, taken from [1] . . . 4

1.4 2D recognition failure due to semantics loss, taken from [1] 5

1.5 SICK LMS111 laser scanner . 6

1.6 PCL logo . 8

1.7 Point cloud library modules . 8

1.8 PCD �le format header . 11

2.1 Octree volumetric representation (leaf size of 1.5cm) taken from [1] . 17

2.2 Bd-tree volumetric representation (bucket size of 30 points) taken

from [1] . 17

2.3 A voxelized point cloud for down-sampling, taken from[18] 20

2.4 Applying pass-through (crop) �lter to a sample scene 22

2.5 Surface normal de�nition pictures taken from http://en.wikipedia.org 24

2.6 Oriented versus non-oriented surface normals, taken from [1] 25

2.7 Scale factor e�ect on surface normals, taken from [1] 26

2.8 Point feature histogram descriptor in�uence region, taken from [1] . . 27

2.9 Fast point feature histogram descriptor in�uence region, taken from [1] 28

2.10 Subdivision used by signature of histograms of orientations descriptor,

the inner sector or shell is depicted in blue and one sector of the

descriptor is highlighted in light gray, taken from [19] 30

2.11 All correspondences found between the model and the scene with

correspondence estimation shown in green lines 32

2.12 Remaining correspondences between the model and the scene after

rejection shown in green lines . 34

2.13 Calculating the euclidean score, blue: model cloud ; red: scene cloud

taken from [4] . 35

2.14 Calculating percent of outliers score, blue: model cloud ; red: scene

cloud, taken from [4] . 36

2.15 Random sample consensus line �tting, (a):input cloud; (b):blue dots

indicate inliers and red dots indicate outliers 38

2.16 Registration process �owchart . 43

3.1 CMakeLists.txt example . 46

3.2 UDP send/ receive blocks in simulink 48

3.3 UDP blocks parameters . 48

VI

3.4 UDP communication schematic diagram of the system 55

3.5 Measurement principle of LMS111 laser scanner 56

3.6 Laser beam and body coordinate frames 57

3.7 All assigned frames . 57

3.8 Laser beam and point coordinates measured in the sensor coordinate

frame . 58

3.9 Relative position of the machine, pallet and laser scanner 61

3.10 Complete model overview . 62

3.11 PCL registration data subsystem . 62

3.12 Laser vision subsystem . 63

3.13 Laser scanner subsystem . 63

3.14 Extracting body to world transformation matrix from navigation data 64

3.15 Controller subsystem . 65

3.16 Servo controller for open loop detection 65

3.17 Open loop control signal . 66

3.18 Servo controller for closed loop detection 67

3.19 Laser angle producer subsystem . 67

3.20 Control signal producer subsystem 68

3.21 Closed loop control signal . 68

4.1 Pallet front model . 70

4.2 Model uniform key points extracted with bin size 0.04m 70

4.3 Model normals extracted with search radius 0.1m 70

4.4 Comparing a sample scene saved with two di�erent control signal

frequencies . 72

4.5 Comparing scene normals estimated with two di�erent radius sizes . . 74

4.6 Sample saved scene cloud showing the pallet near position in relation

to the original model (the red area shows the �nal match) 78

4.7 Sample saved scene cloud showing the pallet near position in relation

to the original model (the red area shows the �nal match) 78

4.8 Sample saved scene clouds while the machine was moving (the red

areas show the matching result) . 80

4.9 A sample recognition result from di�erent view angles showing the

e�ect of iterative closest points alignment, the purple cloud shows

the output of random sample consensus algorithm, and the red cloud

shows the �nal result after �ne alignment with iterative closest points 82

4.10 The e�ect of statistical outliers removal �lter, the noisy data from the

side edge is removed . 84

VII

4.11 Applying statistical outliers removal �lter, most of the data associated

with noise is removed from the side edge and the empty space of the

front . 84

4.12 A noisy scene, �ltered with statistical outlier remover and downsampled 85

4.13 Recognition tests with real data, visual inspection (the red area shows

where the pallet has been �tted, the green lines show remaining cor-

rect correspondences . 92

VIII

LIST OF TABLES

4.1 Near Distance, With Training, Sample Size 0.001, Machine Stationary 76

4.2 Near Distance, With Training, Sample Size 0.05, Machine Stationary 77

4.3 Far Distance, With Training, Sample Size 0.05, Machine Stationary . 79

4.4 With Training, Sample Size 0.05, Machine Moving 81

4.5 Without Training, Sample Size 0.05, Machine Stationary 81

4.6 Algorithm 1, FPFH Descriptors, Scene Sample Size 0.04m, Model

Points 618 . 86

4.7 Algorithm 2, FPFH Descriptors, Scene Sample Size 0.04m, Model

Points 618 . 87

4.8 Algorithm 1, SHOT Descriptors, Scene Sample Size 0.04m, Model

Points 618 . 88

4.9 Algorithm 2, SHOT Descriptors, Scene Sample Size 0.04m, Model

Points 618 . 89

IX

LIST OF ALGORITHMS

1 Pseudo Code For Down-Sampling A Point Cloud 20

2 Pseudo Code For Pass-Trough Filter 21

3 Pseudo Code For Point Cloud Normal Estimation 25

4 Pseudo Code For The Euclidean Distance Validation Function 36

5 Pseudo Code For The Percent Of Outliers Validation Function . . . 37

6 Pseudo Code For The Normal Angles Validation Function 37

7 Pseudo Code For RANSAC Based Alignment Algorithm 39

8 Pseudo Code For ICP Based Alignment Algorithm 41

X

LIST OF SYMBOLS AND ABBREVIATIONS

PCL Point Cloud Library

PCD Point Cloud Data

TOF Time Of Flight

LIDAR LIght Detection And Ranging

DOF Degree Of Freedom

GUI Graphical User Interface

FLANN Fast Library for Approximate Nearest Neighbours

VTK Visualization Tool Kit

UDP User Datagram Protocol

IP Internet Protocol

PFH Point Feature Histograms

FPFH Fast Point Feature Histograms

SHOT Signature of Histograms of OrienTations

RANSAC RANdom SAmple Consensus

ICP Iterative Closest Point

1

1. INTRODUCTION AND SYSTEM

SPECIFICATIONS

1.1 Overview

The science of robotics is a creative activity involving state of the art manipulation of

di�erent branches of science. Although robotics has achieved great success to date in

the world of industrial manufacturing, it still has a long way ahead and fundamental

problems to solve. Among all di�erent types of robotic applications, autonomous

mobile ones are the ones with the most complicity, as they will need great level of

intelligence to overcome various di�culties and handle all kind of situations in harsh

and non-ideal environments of the real world.

This mission will not be completed without the robot being able to "see" or "sense"

its surrounding. New achievements in sensor technologies has played signi�cant role

with this regard. With the advent of di�erent 3D laser scanners it is now possible

to capture fast and safe 3D data with great detail and accuracy. On the other

hand, processing data received from these sensors has also opened a new �eld in

science. Speci�cally for laser scanner data processing there is great demand, as this

information will not have application only in robotics, but also in urban and city

projects [8], medical [9], computer games [16] and industrial marketing will also

bene�t from the results.

Thus we will tackle one of the most useful applications in mobile robots. Section

1.3 introduces the GIM fork lifter located in Tampere University of Technology as

the mobile robot on which we aim to manipulate and test the results, currently

using a 2D camera for EUR-pallet detection and tracking. In this project the main

focus will be on recognition and pose estimation of a standard EUR-pallet which

is introduced in section 1.2, but the results can be easily adapted to any kind of

object tracking problem, with understanding the algorithm and replacing datasets

with desired ones.

In section 1.4 of this chapter some bene�ts of 3D analysis as opposed to 2D is

discussed by expressing examples revealing some shortcomings of 2D processing.

Object detection and tracking will use a servo controlled laser scanner to gather

data from the environment. In section 1.5 this main data acquisition equipment is

introduced and its properties are described brie�y. This introduction is necessary to

1. Introduction And System Speci�cations 2

understand the platform on which we conducted our �nal tests. The main output of

such introduced sensors is a collection of triplets containing coordinates of a point

in 3D environment, which is called a point cloud. We will have a closer look at

the de�nition of this term in section 1.6. Following this introduction, the most

important tool of implementing this project will be introduced in section 1.7. The

Point Cloud Library (PCL) is introduced as a standalone, large scale, open source

project for point cloud processing containing numerous state-of-the art algorithms

related to 3D data processing. We will end this chapter with a brief introduction

on �le format of this type of data in section 1.8.

1.2 EUR-Pallet

Euro pallet is the standard European pallet as speci�ed by the European Pallet

Association (EPAL)1. The European pallet is a 1200*800*144 mm four-way pallet

made of wood that is nailed with special nails in a prescribed pattern. Following the

standardization, most of the European industries switched over to use Euro-pallets

with trucks, forklifts and high-rack warehouses optimized for their size.

Using a standard size and shape pallet optimized for using in transformation tasks,

reduces supply chain costs and increases the productivity. Necessary industry ad-

justments required for the implementation of standard pallet size(s), and all relevant

industries follow the standard nowadays. Due to this fact it is necessary to have

pallet recognition algorithms which would bene�t a wide range of users. Though

all pallets have the same outer size but they may vary in inner dimensions. They

may also undergo serious damages due to usage, di�erent climate conditions, and

decaying. Figure 1.1 shows a standard Euro pallet.

Figure 1.1: Euro standard pallet

1http://www.epal-pallets.org/uk/home/main.php

1. Introduction And System Speci�cations 3

1.3 GIM Mobile Machine

GIM is a research centre focused on intelligent mobile machines and robotics. Its

background is in the strong research tradition of the participating institutes in this

area and the urgent need from industry. According to the project o�cial web page2,

GIM is formed by a team of researchers from the Department of Automation and

Systems Technology at Aalto University and from the Institute of Hydraulics and

Automation (IHA) at Tampere University of Technology and its goal is to research

and develop methods and technologies for future intelligent mobile machines and

�eld and service robots. GIM started operations on January 2008.

Currently there are several machines under development in this project. The so

called "GIM-Machine" was built completely within GIM and will answer the research

needs even further to future and among other things provides a platform for research

and development of methods and technologies for future intelligent vehicles.

Figure 1.2: GIM mobile machine

The GIM machine is currently located at Tampere University of Technology mo-

bile hall and it is accessible for research purposes. It is also equipped with a SICK3

laser scanner as the main device for capturing 3D data from the environment. The

required speci�cations and details are given as we proceed to implement our project.

2http://gim.aalto.�/
3http://www.sick.com/

1. Introduction And System Speci�cations 4

1.4 2D Versus 3D

The motivation of this �eld of science relies on the answer to this question "why do we

need 3D at all?", which might be simple and complicated at the same time. In short

we can say because the world is in 3D. Framing the 3D surrounding environment

to 2D data has its own limitations and might not completely re�ect the semantics

needed to implement su�cient enough intelligence on mobile machines.

A brief comparison between 2D and 3D methods is given in [1] which is worth

reviewing here, as it illustrates the issue by giving some examples in which unlike

3D, 2D is not successful producing meaningful results. One of the �rst short comings

in 2D processing is related to limitations in the data stream itself. In 2D image

processing we usually rely so much on the conditions of the received data and the

environment. Many cameras fail to represent precise enough information when there

is not enough ambient lighting, or when the contrast of the scene is not so high.

Although this issue will be addressed in time, as technology progresses and better

camera sensors are developed, but still there might be problems due to objects

being in the shadow of other objects. An example of such a de�ciency is shown in

Figure 1.3, where due to the low dynamic range of the camera sensor, the right part

of the image is completely underexposed. This makes it very hard for 2D image

processing applications to recover the necessary information for recognizing objects

in such scenes.

Figure 1.3: 2D recognition failure due to underexposed parts, taken from [1]

Now assume an object present in a scene and an image of that object printed on

another object. If the third dimension of the real world is not taken into consider-

ation, there would be no di�erence between these two objects if recognized in 2D.

Figure 1.4 reveals this issue by an example. The right part shows a 2D algorithm

applied with a successful recognition. This basically means that the algorithm result

suggests a presence of the object and if this result is to be fed to a robot grabbing

arm, it will be obviously a fail, since zooming out of the �gure shows clearly that

1. Introduction And System Speci�cations 5

the semantics has been taken in the wrong way. This is a clear example which shows

that the semantics of a particular solution obtained only using 2D image processing

can be lost if the geometry of the object is not incorporated in the reasoning process.

(a) Recognition result (b) Zoomed out

Figure 1.4: 2D recognition failure due to semantics loss, taken from [1]

Whereas the advantages of using 3D based data acquisition system might be

enormous. Object recognition in 3D easily avoids lots of segmentation problems in

2D, where occlusions only happen in certain angles. In addition, 3D enables mea-

surement of real size of an object and to de�ne scale and ratio for the environment,

which has variety of applications such as measuring the volumes of packages, vehi-

cles or pallets, and volume �ow measurement for bulk materials to name a few[2].

3D and 2D can as well be combined easily, making 3D object recognition always

superior than 2D recognition and bene�t from both advantages.

1.5 Laser Scanner

Though there are many ways of measuring distances and converting them to 3D

points, in the context of mobile robotic applications, one of the most used ap-

proaches is Time-of-Flight (TOF) systems[3], which measures the delay until an

emitted signal hits a surface and returns to the receiver, thus estimating the true

distance from the sensor to the surface. This category of systems involves sensing

devices such as a Laser Measurement System (LMS) or LIDAR, radars, Time-of-

Flight (TOF) cameras, or sonar sensors, which send "rays" of light (for example

laser) or sound (for example sonar) in the world, which will then re�ect and return

to the sensor. Knowing the speed with which a ray propagates and using precise

circuitry to measure the exact time when the ray was emitted and when the signal

was returned, the distance can be estimated easily [1].

The laser scanner available on our target machine is a SICK LMS111 electro-optical

laser measurement system shown in Figure 1.5. The LMS scans the perimeter of its

1. Introduction And System Speci�cations 6

surroundings electro-sensitively in a plane with the aid of laser beams. According to

the product's manual4 the LMS measures its surroundings in two-dimensional polar

coordinates. If a laser beam is incident on an object, the position is determined in

the form of distance and direction. LMS111 has a range of 20 m (with 13 percent

object remission), a resolution of 0.25 degree, and 25 Hz frequency and is �xed on

the machine body, rotating by the means of a servo controlled motor.

Figure 1.5: SICK LMS111 laser scanner

1.6 Point Clouds

A point cloud, as its name suggests, is a set (cloud) of points in some coordinate

system. In a three dimensional coordinate system, these points are usually de�ned

by x, y, and z coordinates, and are often intended to represent the external sur-

face of an object. With this de�nition, each point can be considered as a triplet

in the form pi = {xi, yi, zi} and a cloud consisting of n points can be written as

P = {p1, p2, ..., pn} to represent 3D information about the world.

Point clouds may be created by actual devices such as laser scanners, stereo cam-

eras, and time of �ight cameras or produced synthetically via di�erent simulations,

software and processes. These devices measure a large number of points on the

surface of an object in an automatic way, and often output a point cloud as a data

�le. The point cloud represents the set of occupied points in the space detected

by the measuring device. As the result of a 3D scanning process point clouds are

used for many purposes, including creating 3D CAD models for manufactured parts,

4https://mysick.com/saqqara/pdf.aspx?id=im0031331& lang=en& page=1

1. Introduction And System Speci�cations 7

quality inspection, and a multitude of visualization, animation, rendering and mass

customization applications.

It makes no sense to refer to a point cloud with actual coordinate values, without

mentioning about the point of origin. The {xi, yi, zi} coordinates of any point pi in

P are given with respect to a prede�ned coordinate system, which will depend on

the implementation and de�nition of the system and will be unique for each applica-

tion. Therefore it is important to know what process has been performed in order to

transfer a collection of measured distances into coordinates of points with respect to

a coordinate frame. This will be discussed in more details in section 3.7 of this report.

1.7 The Point Cloud Library (PCL)

The Point Cloud Library (PCL)5 is a standalone, large scale, open project for point

cloud processing containing numerous state-of-the art algorithms including �ltering,

feature estimation, surface reconstruction, registration, model �tting, segmentation,

tracking, recognition, and many more. These algorithms can be used, for example,

to �lter outliers from noisy data, stitch 3D point clouds together, segment relevant

parts of a scene, extract key points and compute descriptors to recognize objects

in the world, and create surfaces from point clouds and visualize them, to name a

few6.

Point Cloud Library is a fully template modern C++ library written with e�ciency

and performance on modern CPUs in mind. In order to support applications that

require real time point cloud processing, PCL has been designed to take advantage of

SSE instructions when available, and a GPU interface in association with NVIDIA.

PCL is released under the terms of the BSD license and is open source software. It

is free for commercial and research use. Development of PCL is a large collabora-

tive e�ort driven by researchers and engineers from many di�erent institutions and

companies around the world.

The project is �nancially supported by Open Perception, Willow Garage, NVidia,

Google, Toyota, Trimble, Urban Robotics, Honda Research Institute, Sandia Intel-

ligent Systems and Robotics, Dinast, Optronic, Velodyne, CogniMem Technologies,

Fotonic, and Ocular Robotics. This library aims to unite the �eld of point cloud

processing, by providing an extensible framework for all the geometric algorithms

necessary for 3D perception, PCL enables developers to create applications limited

by their imaginations, rather than their 3D geometric knowledge. Version 1.0.0 has

been released on May 2011 and until today the project has reached a good level

of maturity, since the library is progressively more and more used in academic and

5http://pointclouds.org/
6most of the text in this section has been inherited from the o�cial website

1. Introduction And System Speci�cations 8

Figure 1.6: PCL logo

industrial application.

To simplify development, PCL is split into a series of smaller code libraries that can

be compiled separately. This modularity is important for distributing PCL on plat-

forms with reduced computational or size constraints. PCL presents an advanced

and extensive approach to the subject of 3D perception, and it is meant to provide

support for all the common 3D building blocks that applications need.

Figure 1.7: Point cloud library modules

In version 1.6 of the framework there are several modules[18]:

[Common: contains the common data structures and methods used by the ma-

jority of PCL libraries. The core data structures include the Point Cloud class and

a multitude of point types that are used to represent points, surface normals, and

RGB color values and feature descriptors. It also contains numerous functions for

computing distances/norms, means and covariance, angular conversions and geo-

metric transformations.

[Features: contains data structures and mechanisms for 3D feature estimation from

point cloud data. 3D features are representations at a certain 3D point or position

in space, which describe geometrical patterns based on the information available

around the point. The data space selected around the query point is usually re-

ferred as the k-neighbourhood.

[Filters: contains outlier and noise removal mechanisms for 3D point cloud data

1. Introduction And System Speci�cations 9

�ltering applications. It also contains generic �lters used to extract subsets of point

cloud, or to exclude parts of it. It provides a voxel-grid class to down-sample a point

cloud by intersecting it with a lattice of points.

[Geometry: reserved for future work, it will contain computational geometry data

structures and algorithms.

[I/O: contains classes and functions for reading and writing point cloud data (PCD

and PLY) �les, as well as capturing point clouds from a variety of (OpenNI com-

patible) sensing devices.

[Kd-tree: provides the kd-tree data-structure, using FLANN implementation that

allows for fast nearest neighbour searches. A Kd-tree (k-dimensional tree, in most

cases in this work it is a 3d-tree) is a space partitioning data structure that stores a

set of k-dimensional points in a tree structure that enables e�cient range searches

and nearest neighbour searches. Nearest neighbour searches are a core operation

when working with point cloud data and can be used to �nd correspondences be-

tween groups of points or feature descriptors or to de�ne the local neighbourhood

around a point or points.

[Key points: contains implementations of several point cloud key point detection

algorithms. Key points (also referred to as interest points) are points in an image

or point cloud that are stable, distinctive, and can be identi�ed using well-de�ned

detection criteria. Key points and descriptors can be used to form a compact but

distinctive representation of the original data. Harris, Narf, Sift and Uniform key

points are implemented in the current version.

[Octree: provides e�cient methods for creating a hierarchical tree data structure

from point cloud data. This enables spatial partitioning, down sampling and search

operations on the point data set. Each octree node has either eight children or

no children. The root node describes a cubic bounding box which encapsulates all

points. At every tree level, this space becomes subdivided by a factor of 2 which

results in an increased voxel resolution.

[Registration: contains many point cloud registration algorithms for both orga-

nized an un-organized (general purpose) datasets, including ICP, correspondence

�nding and rejection, transformation estimators.

[Sample-consensus: holds SAmple Consensus (SAC) methods like RANSAC and

models like planes and cylinders. These can combine freely in order to detect spe-

ci�c models and their parameters in point clouds. Some of the models implemented

in this library include: lines, planes, cylinders, and spheres. Plane �tting is often

applied to the task of detecting common indoor surfaces, such as walls, �oors, and

table tops. Other models can be used to detect and segment objects with common

geometric structures.

[Search: provides methods for searching for nearest neighbours using di�erent data

1. Introduction And System Speci�cations 10

structures, including kd-trees, octrees, brute force and specialized search for orga-

nized datasets.

[Segmentation: contains algorithms for segmenting a point cloud into distinct clus-

ters. These algorithms are best suited to processing a point cloud that is composed

of a number of spatially isolated regions. In such cases, clustering is often used to

break the cloud down into its constituent parts, which can then be processed inde-

pendently. It also contains algorithms to �nd di�erences between two point cloud,

that can be used for example for quality inspection purposes.

[Surface: deals with reconstructing the original surfaces from 3D scans. Depend-

ing on the task at hand, this can be for example the convex/concave hull, a mesh

representation or a smoothed/re-sampled surface with normals. Creating a convex

or concave hull is useful for example when there is a need for a simpli�ed surface

representation or when boundaries need to be extracted. Meshing is a general way

to create a surface out of points which algorithms are based on marching cubes.

Smoothing and re-sampling can be important if the cloud is noisy, or if it is com-

posed of multiple scans that are not aligned perfectly. The complexity of the surface

estimation can be adjusted, and normals can be estimated in the same step if needed.

[Visualization: this library was built for the purpose of being able to quickly pro-

totype and visualizes the results of algorithms operating on 3D point cloud data.

Similar to OpenCV's highgui routines for displaying 2D images and for drawing

basic 2D shapes on screen. The package makes use of the VTK library for 3D ren-

dering for range image and 2D operations. Point clouds, normals, range images,

correspondences can be added to the viewer window.

1.8 PCD File Format

PCL has its own �le format for point cloud data saving with the extension ".PCD".

PCD is a simple �le format for storing multi-dimensional point data which consists

of a text header with the �elds described below, followed by the data in ASCII or

Binary.

[VERSION: The PCD �le version (usually .7)

[FIELDS: Name of each dimension/�eld that a point can have (x, y, z, colour,

intensity, ...)

[SIZE: The size of each dimension in bytes (for example a �oat is 4 bytes)

[TYPE: The type of each dimension as a char (I = signed, U = unsigned, F =

�oat)

[COUNT: Number of elements in each dimension (x, y, or z would only have 1,

but a histogram would have N)

[WIDTH: The width of the point cloud

1. Introduction And System Speci�cations 11

[HEIGHT: The height of the point cloud

[VIEWPOINT: An acquisition viewpoint for the points. This could potentially

be later used for building transforms between di�erent coordinate systems, or for

aiding with features such as surface normals, that need a consistent orientation. The

viewpoint information is speci�ed as a translation (tx ty tz) + quaternion (qw qx qy

qz). The default value is 0 0 0 1 0 0 0

[POINTS: Total number of points in the cloud

[DATA: The data type that the point cloud data is stored in (ascii or binary)

Each line consists of elements indicated by "�elds" in the header which may only

have x, y, z or contain RGB, RGBA, intensity, normal, curvature, and even user

de�ned other data as well to suit the needs. In our case we will not be dealing

with colours, so our �elds will only contain the coordinate information of a point.

Figure 1.8 shows how a point cloud PCD �le header may look like.

Figure 1.8: PCD �le format header

According to [18] PCD is not the �rst �le type to support 3D point cloud data,

but it is meant to complement existing �le formats that for one reason or another

did not/do not support some of the extensions that PCL brings to n-D point cloud

processing. The computer graphics and computational geometry communities in

particular, have created numerous formats to describe arbitrary polygons and point

clouds acquired using laser scanners. Some of these formats include:

PLY - a polygon �le format, developed at Stanford University by Turk et al

STL - a �le format native to the stereo lithography CAD software created by 3D

1. Introduction And System Speci�cations 12

Systems

OBJ - a geometry de�nition �le format �rst developed by Wave front Technologies

X3D - the ISO standard XML-based �le format for representing 3D computer graph-

ics data and many others

All the above �le formats su�er from several shortcomings, which is natural as they

were created for a di�erent purpose and at di�erent times, before today's sensing

technologies and algorithms had been invented. According to PCL o�cial website,

having PCD as (yet another) �le format can be seen as PCL su�ering from the "not

invented here" syndrome. In reality, this is not the case, as none of the above men-

tioned �le formats o�ers the �exibility and speed of PCD �les. Some of the clearly

stated advantages include:

[The ability to store and process organized point cloud datasets. This is of extreme

importance for real time applications, and research areas such as augmented reality

and robotics.

[Binary mmap/munmap data types are the fastest possible way of loading and

saving data to disk.

[Storing di�erent data types (all primitives supported: char, short, int, �oat, dou-

ble) allows the point cloud data to be �exible and e�cient with respect to storage

and processing. Invalid point dimensions are usually stored as NAN types.

[n-D histograms for feature descriptors. This is very important for 3D percep-

tion/computer vision applications.

An additional advantage is that by controlling the �le format, we can best adapt it

to PCL, and thus obtain the highest performance with respect to PCL applications,

rather than adapting a di�erent �le format to PCL as the native type and inducing

additional delays through conversion functions.

Among di�erent properties forming a PCD �le, two are of great importance for time

sensitive applications. First is storing "organized" data instead of "un-organized"

whenever possible. An organized point cloud dataset is the name given to point

clouds that resemble an organized image or matrix like structure, where the data

is split into rows and columns. Examples of such point clouds include data coming

from stereo cameras or Time Of Flight cameras. The advantages of an organized

dataset is that by knowing the relationship between adjacent points, nearest neigh-

bour operations are much more e�cient, thus speeding up the computation and

lowering the costs of certain algorithms in PCL.

The second is using Binary instead of ASCII data types. Although ASCII PCD

format is human readable, can be edited manually, and can be exchanged through

all machine architectures, but Binary has more advantages when it comes to time

consumption; it is very fast since one mmap call is used, usually has smaller size,

is easily exchangeable (for example between OpenNIGrabber, PCDGrabber, ON-

1. Introduction And System Speci�cations 13

IGrabber), is extensible allowing all kind of data to be published, and supports

streaming devices (OpenNIGrabber) as well as triggered devices (PCDGrabber).

Thus we will be using organized Binary type point clouds in our implementation

whenever applicable.

14

2. THEORETICAL BACKGROUND

2.1 Overview

The problem of aligning various 3D point cloud data views is known as registration

and its goal is to �nd the relative positions and orientations of the separately ac-

quired views such that the intersecting areas between them overlap perfectly. The

work presented here is motivated by �nding correct point-to-point correspondences

in real-world noisy data scans, and estimating rigid transformations that can rotate

and translate each individual one. Section 2.2 of this chapter de�nes this subject

more clearly.

To understand the geometry around a query point, most geometric processing steps

need to discover a collection of neighbouring points that represent the underlying

scanned surface through sampling approximations. The registration system there-

fore needs to employ mechanisms for enabling the search of point neighbours in fast

ways, without re-computing distances between each other every time. A solution

already implemented in PCL to tackle this issue is presented in section 2.3 and de-

scribed in more details.

Environment surfaces are usually scanned giving a very high number of points that

have similar characteristics, when described with a typical 3D descriptor. Using all

these points would mean a lot of computation and memory usage, because every

point needed to be described and inserted into the model. In addition tests have

shown that using all these similar points leads to false recognitions because every

planar surface casts many votes [17]. Thus a pre-process is necessary. This is done

in di�erent ways addressed in section 2.4.

The word "feature" can have many di�erent meanings, but in PCL it is de�ned as

a vector based on each points local neighbourhood, or sometimes a single vector for

the whole point cloud. Feature vectors can be anything from simple surface normals

to the complex feature descriptors needed for registration or object detection. By

including the surrounding neighbours, the underlying sampled surface geometry can

be inferred and captured in the feature formulation, which contributes to solving

the ambiguity of comparison. Section 2.5 attempts to address some of these related

initiatives and to explain the di�erences between them and their role in our proposed

approach.

The word "correspondence" which will be widely used in this report identi�es a set

2. Theoretical Background 15

of paired points across the given training shape instances which have been proposed

to represent the same point according to comparison results between their features.

But not all found correspondences are correct due to di�erent reasons, and thus

need to be �ltered to reject those not ful�lling speci�c requirements. Finding these

pairs and di�erent �lters to reject the bad ones are topics for section 2.6.

Finally based on the remaining correspondences the algorithm calculates a rigid

transformation and the output will be a translation matrix along with a single �oat

number indicating the "goodness" of the matching result. Section 2.7 will attempt

to introduce di�erent approaches to �nding a validity score and represent the exist-

ing methods as functions in PCL to perform the task.

When the initial rough alignment has been performed, the algorithm switches to

the �nal procedure that is done by the ICP algorithm, already implemented in PCL

library. ICP is a great sharp point to point registration algorithm usually used for

re�ning other algorithms results. In section 2.8 we will exactly explain how and why

this implementation is used.

On that note we will end the second chapter, having equipped ourselves with a very

brief, yet useful theoretical background and useful tools to step into the next level.

Before moving to the implementation phase, a �owchart is also provided in section

2.9 to give a more clear view of the scenario, from the �rst step and towards the �nal

goal. In addition, to avoid repetition, in each section after describing the principals

the exact piece of �nal code related to that part is pasted. This will provide the

clear understanding of how these tools are actually implemented and should be used

in PCL, as well as explaining the code piece by piece at the same time.

2.2 Registration De�nition

Registration can be simply de�ned as the problem of �nding corresponding points

on two di�erent point clouds for the purposes of object recognition, tracking and

�nding the transformation matrix which will align one point cloud to another. Reg-

istration is a very common and basic technique for combining several data sets into

one global consistent model. Using these techniques and algorithms provided by

literature, it is also possible to align a single object to a bigger scene. In this case

we call it object recognition problem, but the basic steps are very similar to regis-

tration.

The input to a general registration algorithm is two point cloud data sets either taken

from a single environment from two di�erent points of view, or an object model and

a scene containing that object (object recognition problem). The output of the algo-

rithm is a set of M roto-translation matrices Mi in the form M = {M1,M2, ...,Mn}
used to align the object point cloud to the most part of the visible objects in the

2. Theoretical Background 16

world point cloud (n objects). This kind of rigid transformation is a 4*4 matrix in

the form of

M =


r11 r12 r13 t11

r21 r22 r23 t21

r31 r32 r33 t31

0 0 0 1


which is composed of a 3*3 rotation matrix R and a translation 3D vector T

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 T =

t11t21
t31


With each matrix there is also a validation score vi which is the result of di�er-

ent validation functions, and measures the perfectness of the alignment, as will be

described in its relevant section. Hence, each alignment provided by this algorithm

is described by the couple {Mi, vi}; the matrix and its validation score. This matrix

is the main output, but of course other outputs could be personalized by the pro-

grammer to visualize the result of recognition, compute other consequent outputs

or show some text on the screen.

2.3 Point Search Methods

Most of the processing methods and specially pre-processing methods need to dis-

cover and go through a collection of neighbouring points that represent the under-

lying surface, in order to understand the geometry around a query point. Therefore

we need to employ mechanisms for enabling the search of point neighbours in fast

ways, without re-computing distances between two points every time.

A solution available in PCL is to use spatial decomposition techniques such as "kd-

trees" or "octrees", and partition the point cloud data into chunks, such that queries

with respect to the location of the points can be answered faster. Though di�erent

from an implementation point of view, both decomposition techniques can construct

and give hints of a volumetric representation for a cloud by enclosing all its points in

boxes also called "voxels" with di�erent widths. An example of such representations

is given in Figures 2.1 and 2.2 for octree data structures and box-decomposition(bd)

trees respectively.

2. Theoretical Background 17

Figure 2.1: Octree volumetric representation (leaf size of 1.5cm) taken from [1]

Figure 2.2: Bd-tree volumetric representation (bucket size of 30 points) taken from [1]

Octree is a tree-based data structure for managing sparse 3-D data. Each inter-

nal node has exactly eight children. The PCL octree implementation is a powerful

tools for spatial partitioning and search operation. Several octree types are provided

by the PCL octree component which basically di�er by their individual leaf node

characteristics. On the other hand, kd-Tree is a wrapper class which inherits the

pcl::KdTree class. It is a generic type of 3D spatial locator using kd-tree struc-

tures for performing search functions. The class is making use of the FLANN (Fast

Library for Approximate Nearest Neighbour) project. The other spatial decompo-

sition technique mentioned above, the bd-tree, represents one variant of a kd-Tree

structure optimized to provide a greater robustness for highly cluttered point cloud

datasets. Using a bucket instead of a constant distance will be more reliable if the

resolution of the cloud (the minimum distance between two points) is not exactly

known, since it may happen that no point lies in that certain distance.

Each level of a kd-tree splits all children on a speci�c dimension. At the root of

the tree all children will be split based on the �rst dimension (if the �rst dimension

coordinate is less than the root it will be in the left sub-tree and if it is greater

than the root it will obviously be in the right sub-tree). Each level down in the

tree divides on the next dimension, returning to the �rst dimension once all other

have been exhausted. The most e�cient way to build a kd-tree is to use a partition

method like Quick Sort to place the median point at the root and everything with

2. Theoretical Background 18

a smaller one dimensional value to the left and larger to the right.

It is however important to note, in contrast to octree structures, bd-tree or kd-tree

are more di�cult to update, and thus their usage is mostly limited to static scenes

for applications working with individual point cloud datasets. It is recommended

by PCL to use octree structures for real time applications. Thus this would be our

choice of search method when implementing our project.

2.4 Data Pre-Processing

Once a point dataset has been acquired, it needs to go through a series of processing

steps in order to extract meaningful information that can help a robot in performing

its tasks. This is the role of a speci�c algorithm therefore to process and convert the

raw input data into di�erent representations and formats based on the requirements

imposed by each individual processing step. Before the data set is fed to the actual

recognition algorithm it will undergo di�erent processes, called �lters, such as down

sampling, extracting key points, and cropping via a pass through �lter.

Applications needing a real time or near real time working programs need to use

di�erent strategies to decrease execution time. In the context of point cloud pro-

cessing these �lters will be critically bene�cial. Most of the functions performed on

a point cloud to extract geometrical features, must go through searching all points

one by one, so obviously more points will cause longer execution time. Additionally

more similar points will cause more redundant correspondences when searching for

similar points and might cause wrong registration results or need of additional pro-

cesses. We will discuss this issue in more details later when we discuss the e�ect

of di�erent parameters in the results section. In short, these �ltering stages are of

great importance and need to be performed accurately.

2.4.1 Key-Points

Among di�erent �lters, the ones extracting key points are of great use, since the

computational cost of descriptors is generally high, so it does not make sense to ex-

tract descriptors in all points of a cloud. Thus, key point detectors are used to select

interesting points in the cloud on which descriptors are then found. Key points are

points in an image or point cloud that are stable, distinctive, and can be identi�ed

using a well-de�ned detection criterion. Typically, the number of interest points in

a point cloud will be much smaller than the total number of points in the cloud, and

when used in combination with local feature descriptors at each key point, the key

points and descriptors can be used to form a compact, yet descriptive representation

2. Theoretical Background 19

of the original data. They are also known as points of interest and should be able

to describe electively the entire cloud using much less data.

There are di�erent types of key points and various methods to extract them, and

each technique has its own speci�c output. A useful comparative description and

evaluation of the key point detectors most often cited in the literature and available

in PCL is given in [11] to verify the invariance of the 3D key point detectors ac-

cording to di�erent rotations, scales changes and translations. Among all key point

extraction methods available in PCL, uniform key points are the only one suitable

for our application.

2.4.2 Down-Sampling

Down sampling �lter may be simply de�ned as reducing the number of points in

a point cloud data set. Down sampling is the most important �lter for increasing

the performance of any algorithm applied to point clouds. Decreasing the number

of points has a signi�cant role in reducing process time and speeding up the whole

computation. This is logical since every algorithm has to go through each and every

point during execution and meeting fewer points means �nishing in less time.

There are two ways of implementing this �lter in PCL. As previously described in

search methods, an input point cloud will be represented by voxels to the �lter, each

voxel being a small box with a speci�c size in the space. Down sampling function will

replace all points inside each grid with the centroid of that grid (which is di�erent

from the center of the grid), or the nearest existing point to the centroid. In the �rst

case the function is called "voxel-grid" and in the second case it is called "uniform

sampling". Figure 2.3 shows how voxels incorporate points for down sampling. The

di�erence between these two methods is that in voxel grid, a new point is produced,

but in the second case no new point is inserted to the cloud. In other words, the

uniform key points belong to the original cloud, whereas the voxel key points do not

belong to the original cloud. The uniform approach is a bit slower than voxel-grid,

but it represents the underlying surface more accurately. In addition the uniform

sampling has been chosen because with voxels, more noise will a�ect the results due

to the fact that it introduces new points[1].

To see how this algorithm is implemented in PCL we have pasted the exact piece of

our �nal code, which performs the down sampling. It starts with creating an object

(here called uniform_sampling followed by a point cloud to hold the indices for

sampled output points. The setInputCloud() function inputs the original cloud,

setRadiusSearch() gives the size for voxels, and �nally the compute() function

performs the actual sampling with the result points held in sampled_indices, then

copied to a pointer to be used further with other algorithms.

2. Theoretical Background 20

Figure 2.3: A voxelized point cloud for down-sampling, taken from[18]

Algorithm 1 Pseudo Code For Down-Sampling A Point Cloud

1. Create 3D voxel grids over the input point cloud data
2. For each grid compute the centroid of the present points
3. Set the result of 2 as the voxel for that cube
4. (if uniform sampling) The nearest point of the original cloud to the computed
voxel is set as the key point for that cube

pc l : : UniformSampling<pc l : : PointXYZ> uniform_sampling ;

pc l : : PointCloud<int> sampled_indices ;

uniform_sampling . setInputCloud (scene) ;

uniform_sampling . setRadiusSearch (scene_ss) ;

uniform_sampling . compute (sampled_indices) ;

pc l : : copyPointCloud (* scene , sampled_indices . po ints ,* scene_keypoints) ;

s td : : cout<<"Scene t o t a l po in t s : "<<scene−>s i z e ()<<

" ; Se l e c t ed Keypoints : "<<scene_keypoints−>s i z e ()<<std : : endl ;

2.4.3 Pass-Through Filter

The pass through �lter implemented in PCL is a simple �ltering along a speci�ed di-

mension, that is to cut o� values that are either inside or outside a given user range.

PassThrough passes points in a cloud based on constraints for one particular �eld

2. Theoretical Background 21

of the point type. It iterates through the entire input once, automatically �ltering

non-�nite points and the points outside the speci�ed interval which applies only to

the speci�ed �eld. This is a rather simple class and needs no more description. Here

is a pseudo code for this �lter.

Algorithm 2 Pseudo Code For Pass-Trough Filter

1. For each point i in the model cloud, �nd the nearest point j in the scene cloud
2. Calculate the squared distance between these two points
3. Calculate the mean value of all squared distances

To see how this �lter is implemented in PCL, here is the piece of our �nal code

which performs �ltering both on ”x” and ”y” axes. In our speci�c case in the simu-

lation we know that the pallet is always located at (0, 0,−3), since we have placed it

there manually. With this in mind and considering the size of the pallet plus some

margin, we cut the x values outside the range (−1.5m, 1.0m) and y values outside

the range (−0.6m, 1.5m). In the real data as we will be seeing in the results chapter,

we change this value for x to (0.0m, 5.0m) and for y to (−2.0m, 2.0m) as the upper

level controller will place the machine in such a relative position to the pallet where

the recognition will then start.

The process starts by creating an object of this class and a pointer to a cloud

to hold the output. The function setInputCloud() inputs the original cloud,

setFilterFieldName() speci�es the axis on which we want the �lter to be ap-

plied, and setFilterLimits() speci�es the boundary limits for values on that axis.

If setting the setFilterLimitsNegative() as true, the �lter will behave the op-

posite, meaning that it will discard values in between, and holds values outside the

speci�ed limit. Finally calling the filter() function will perform the actual �lter-

ing, leaving the result points in the de�ned point cloud. We have performed this

routine twice, once on the x axis and once on the y axis to gain our desired cloud.

Figure 2.4 shows a sample scene before and after �ltering with pass through.

pc l : : PassThrough<pc l : : PointXYZ> pass ;

pc l : : PointCloud<pc l : : PointXYZ>: : Ptr s c en e_ f i l t e r e d1

(new pc l : : PointCloud<pc l : : PointXYZ> ()) ;

pass . setInputCloud (s c ene_un f i l t e r ed) ;

pass . s e tF i l t e rF i e ldName ("x") ;

pass . s e t F i l t e r L im i t s (−1.5 f , 1 . 0 f) ;
pass . f i l t e r (* s c en e_ f i l t e r e d1) ;

pc l : : PointCloud<pc l : : PointXYZ>: : Ptr s c en e_ f i l t e r e d2

(new pc l : : PointCloud<pc l : : PointXYZ> ()) ;

pass . setInputCloud (s c en e_ f i l t e r e d1) ;

pass . s e tF i l t e rF i e ldName ("y") ;

2. Theoretical Background 22

pass . s e t F i l t e r L im i t s (−0.6 f , 1 . 5 f) ;

pass . f i l t e r (* s c en e_ f i l t e r e d2) ;

pc l : : PointCloud<pc l : : PointXYZ>: : Ptr scene

(new pc l : : PointCloud<pc l : : PointXYZ> ()) ;

* scene = * s c en e_ f i l t e r e d2 ;

(a) Before

(b) After

Figure 2.4: Applying pass-through (crop) �lter to a sample scene

2.5 Features

In their native representation, points are simply represented using their Cartesian

coordinates with respect to a given origin. Assuming that the origin of the coordi-

nate system does not change over time, there could be two points acquired at two

di�erent times having the same coordinates. Comparing these points however is a

problem, because even though they are equal with respect to some distance measure,

they could be sampled on completely di�erent surfaces, and thus represent totally

di�erent information when taken together with the other surrounding points in their

vicinity. That is because there are no guarantees that the world has not changed

between two time instances. Some acquisition devices might provide extra informa-

tion for a sampled point, such as an intensity or surface remission value, or even

a color, however that does not solve the problem completely and the comparison

remains ambiguous.

2. Theoretical Background 23

Applications which need to compare points for various reasons require better char-

acteristics and metrics to be able to distinguish between geometric surfaces. The

concept of a 3D point as a singular entity with Cartesian coordinates therefore dis-

appears, and a new concept, that of local descriptor takes its place. The literature is

abundant of di�erent naming schemes describing the same conceptualization, such

as shape descriptors or geometric features. For the remaining of this document they

will be referred to as both features and descriptors.

In vision and perception the word "feature" can have many di�erent meanings. In

PCL, feature estimation is de�ned as computing a feature vector based on each

points local neighbourhood, or sometimes computing a single feature vector for the

whole point cloud. Feature vectors can be anything from simple surface normals

to the complex feature descriptors needed for registration or object detection. By

including the surrounding neighbours, the underlying sampled surface geometry can

be inferred and captured in the feature formulation, which contributes to solving

the ambiguity of comparison. Ideally, the resultant features would be very similar

(with respect to some metric) for points residing on the same or similar surfaces, and

di�erent for points found on di�erent surfaces. A good point feature representation

distinguishes itself from a bad one, by being able to capture the same local surface

characteristics in the presence of rigid transformations, that is, 3D rotations and 3D

translations in the data should not in�uence the resultant feature vector estimation;

varying sampling density, in principle, a local surface patch sampled more or less

densely should have the same feature vector signature; and noise, the point feature

representation must retain the same or very similar values in its feature vector in

the presence of mild noise in the data.

An example for a local 3D descriptor "Signature of Histograms of OrienTations"

(SHOT) descriptor introduced in [21]. Another one is the "Fast Point Feature His-

togram" (FPFH) descriptor, shown in [14]. This descriptor generates a histogram

of the angular variations of the normals found in the neighbourhood of the point.

Global descriptors use a single vector to describe the whole point cloud. In contrast,

local descriptors describe the local region around each point, hence many local de-

scriptor vectors are needed to describe the whole point cloud. In [7] the "Global

Fast Point Feature Histogram" (GFPFH) descriptor is introduced, which generates

a global object description on the basis of the local FPFH descriptors. "Viewpoint

Feature Histogram" is another global feature introduced in [20] which is estimated

on a point cloud using points, normals and FPFH features.

When using global descriptors the whole model can be described in one vector. Hav-

ing just one feature for the model could be useful, but it is extremely di�cult to

segment a single object in the scene cloud, so the global features will contain too

much noise and it is not exploitable in this case. Due to this fact we will not be

2. Theoretical Background 24

using or describing global descriptors here. But the ones we are interested in are

the fastest and more reliable ones. In most applications nowadays the FPFH and

SHOT are widely used, since we will focus and compare these two types which will

be described later in this section.

2.5.1 Surface Normals

In the 3D space a surface normal or simply a normal to a surface at a point P is

a vector that is perpendicular to the tangent plane to that surface at p as shown

in Figure 2.5(a). The normal is often used in computer graphics to determine an

orientation of a surface towards a source. Figure 2.5(b) shows a plane and its two

possible normals.

(a) A surface normal (b) Two possible di-
rections of normals

Figure 2.5: Surface normal de�nition
pictures taken from http://en.wikipedia.org

Though many di�erent normal estimation methods exist, the one that we will

concentrate on at this point, is one of the simplest. The problem of determining

the normal to a point on the surface is approximated by the problem of estimating

the normal of a plane tangent to the surface as shown in Figure 2.5(a), which in

turn becomes a least-square plane �tting estimation problem. The solution for

estimating the surface normal is therefore reduced to an analysis of the eigenvectors

and eigenvalues of a covariance matrix created from the nearest neighbours of the

query point.

In general, because there is no mathematical way to solve for the sign of the normal,

its orientation computed via Principal Component Analysis (PCA) as shown in

Figure 2.5(b) is ambiguous and not consistently oriented over an entire point cloud

dataset. Figure 2.6(a) presents this e�ect on a section of a larger dataset. Due

to the orientation inconsistency, all the normals of a single plane are not correctly

oriented, but spread across the entire plane.

2. Theoretical Background 25

(a) None oriented surface normals in
a point cloud

(b) Oriented surface normals in a
point cloud

Figure 2.6: Oriented versus non-oriented surface normals, taken from [1]

The solution to this problem would be obvious if the viewpoint vp is in fact known.

To orient all normals −→ni consistently towards the viewpoint, they need to satisfy the

equation:

−→ni .(vp − pi) > 0

The results after all normals in the datasets have been consistently oriented to-

wards the viewpoint are represented in Figure 2.6(b). Given a geometric surface, it

is usually trivial to infer the direction of the normal at a certain point on the surface

as the vector perpendicular to the surface in that point. However, since the point

cloud datasets that we acquire represent a set of point samples on the real surface,

there are two possibilities:

1 . Obtain the underlying surface from the acquired point cloud dataset, using sur-

face meshing techniques, and then compute the surface normals from the mesh;

2 . Use approximations to infer the surface normals from the point cloud dataset

directly.

The implementation in PCL will address the latter that is, given a point cloud

dataset, directly compute the surface normals at each point in the cloud. The algo-

rithm for normals estimation may be brie�y described in the following pseudo code.

Algorithm 3 Pseudo Code For Point Cloud Normal Estimation

1. For each point p in the model cloud, get the nearest neighbours within the
speci�ed radius
2. Compute the surface normal n of p
3. Check if n is consistently oriented towards the viewpoint and �ip otherwise

As explained, a surface normal at a point needs to be estimated from the sur-

rounding point neighbourhood support of the point (also called k-neighbourhood).

2. Theoretical Background 26

The speci�cs of the nearest-neighbour estimation problem raises the question of the

right scale factor: given a sampled point cloud dataset, what are the correct k values

that should be used in determining the set of nearest neighbours of a point. This

issue is of extreme importance and constitutes a limiting factor in the automatic

estimation (without user given thresholds) of a point feature representation. To

better illustrate this issue, Figure 2.7 presents the e�ect of selecting a smaller scale

(small r or k) versus a larger scale (large r or k).

The left part of Figure 2.7 depicts a reasonable well-chosen scale factor, with es-

Figure 2.7: Scale factor e�ect on surface normals, taken from [1]

timated surface normals approximately perpendicular for the two planar surfaces.

If the scale factor however is too big (right part), and thus the set of neighbours is

larger covering points from adjacent surfaces, the estimated point feature represen-

tations get distorted, with rotated surface normals at the edges of the two planar

surfaces, and smeared edges and suppressed �ne details.

Without going into too many details, it su�ces to assume that for now; the scale for

the determination of a point's neighbourhood has to be selected based on the level

of detail required by the application. Simply if the curvature at the edge between

the handle of a mug and the cylindrical part is important, the scale factor needs

to be small enough to capture those details, and large otherwise. Surface normals

are widely used for di�erent purposes such as surface reconstruction, segmentation,

di�erent quality enrichments, smoothing and etcetera.

pc l : : NormalEstimation <pc l : : PointXYZ , pc l : : Normal> norm_est ;

pc l : : s earch : : KdTree <pc l : : PointXYZ>: : Ptr t r e e

(new pc l : : s earch : : KdTree<pc l : : PointXYZ>);

norm_est . setSearchMethod (t r e e) ;

norm_est . setRadiusSearch (0 . 1 f) ;

// Model Normals

2. Theoretical Background 27

norm_est . setInputCloud (model_keypoints) ;

norm_est . compute (*model_normals) ;

// Scene Normals

norm_est . setInputCloud (scene_keypoints) ;

norm_est . compute (* scene_normals) ;

2.5.2 PFH - Point Feature Histogram

PFH descriptors are a local features based on surface normals, 3D data and curva-

ture, which are capable of storing information about the geometry around a speci�c

point. The goal of the PFH formulation is to encode a point's k-neighbourhood

geometrical properties by generalizing the mean curvature around the point using a

multi-dimensional histogram of values. Figure 2.8 presents an in�uence region dia-

gram of the PFH computation for a query point pq, marked with red and placed in

the middle of a circle (sphere in 3D) with radius r, and all its k-neighbours (points

with distances smaller than the radius r) are fully interconnected in a mesh. The

�nal PFH descriptor is computed as a histogram of relationships between all pairs

of points in the neighbourhood, and thus has a computational complexity of O(k2).

Figure 2.8: Point feature histogram descriptor in�uence region, taken from [1]

The pcl::PFHEstimation class is the PCL implementation that computes this

kind of feature. This class accepts 3D coordinates (x, y, z) of n points, normals of the

input points (computed with a normal radius rn, and feature estimation radius rf

(which has to be greater than rn) or number of neighbours to consider (k neighbours)

as inputs and the result is an array of 125 �oat values (125 bytes) that represent

the histogram of the so called "bins" which encodes the neighbourhood's geometri-

cal properties and provide an overall point density and pose invariant multi-value

feature. This feature is stored in the pcl::PFHSignature125 type.

2. Theoretical Background 28

2.5.3 FPFH - Fast Point Feature Histogram

For real-time or near real-time applications, the computation of PFH features in

dense point neighbourhoods can represent one of the major bottlenecks. FPFH fea-

tures class computes another type of feature reducing the computation time and

complexity in comparison to PFH, yet maintaining most of its information. To sim-

plify the PFH computation, FPFH proceeds as follows:

1. First, for each query point pq a set of tuples α, φ, θ between itself and its neigh-

bours are computed as in PFH descriptors. This will be called the Simpli�ed Point

Feature Histogram (SPFH).

2. Then for each point, its k neighbours are re-determined, and the neighbouring

SPFH values are used to weight the �nal histogram of pq (called FPFH) as with the

following formula:

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=1

1

ωk

.SPFH(pk)

where the weight ωk represents a distance between the query point pq and a

neighbour point pk in some given metric space, thus scoring the (pq, pk) pair, but

could just as well be selected as a di�erent measure if necessary. To understand

the importance of this weighting scheme, Figure 2.9 presents the in�uence region

diagram for a k-neighbourhood set centred at pq.

Figure 2.9: Fast point feature histogram descriptor in�uence region, taken from [1]

The key di�erences between PFH and FPFH computation procedure are:

[The PFH of the point is computed with all the mesh of its neighbours, the FPFH

takes into account only the direct connections between itself and its neighbours.

2. Theoretical Background 29

[There are two steps for computation: in the �rst step the SPFH of all points are

computed, in the second step for each point the values of neighbour's SPFH are

used to weight the �nal FPFH histogram.

At high level we can say:

[The PFH of the point contains all and only the information provided by its k

neighbours (or distance r).

[The FPFH of a point does not contain all the relationships between its neigh-

bours, but contains some relationship between its neighbour's (at distance 2r).

The input of this class is the same as the input of PFH features, and the output is

an array of 33 �oat values (33 bytes) that represent the FPFH histogram, that is

stored in the pcl::FPHSignature33 type. Note that the e�ectiveness of this feature

depends on the chosen radius, hence di�erent radii expressed in millimetres should

be tested to get the best result.

Now as for our explanation routine, the piece of code is pasted here, since this is the

feature type we used in our algorithm. Like previous PCL algorithms, feature ex-

traction also starts with creating an object, here called fpfh_est. With the function

setSearchMethod(), tree is given to be the method for searching. The input cloud

is given by calling the setInputCloud() function, which is here the key points, since

we want the features to be computed only on extracted key points. Also previously

calculated normals are provided by setInputNormals(). setRadiusSearch() spec-

i�es the radius to consider for computing the features, and �nally the compute()

function performs the actual calculations with the result values held in a previously

de�ned point cloud.

pc l : : FPFHEstimation<pc l : : PointXYZ , pc l : : Normal , pc l : : FPFHSignature33>fpfh_est ;

fp fh_est . setSearchMethod (t r e e) ;

fp fh_est . setInputCloud (scene_keypoints) ;

fp fh_est . setInputNormals (scene_normals) ;

fp fh_est . setRadiusSearch (scene_descr_rad) ;

fp fh_est . compute (* s c ene_desc r ip to r s) ;

2.5.4 SHOT - Signature of Histograms of OrienTations

The SHOT descriptor presented in [21] is based on obtaining a repeatable local

reference frame using the eigenvalue decomposition around an input point. Given

this reference frame, a spherical grid centred on the point divides the neighbourhood

so that in each grid bin a weighted histogram of normals is obtained. The descriptor

concatenates all such histograms into the �nal signature. The spherical grid is shown

in Figure 2.10. It uses 9 values to encode the reference frame and the authors

propose the use of 11 shape bins and 32 divisions of the spherical grid, which gives

an additional 352 values. The descriptor is normalized to sum 1.

2. Theoretical Background 30

Descriptors except SHOT are either "histograms" or "signatures" based. The former

type maintains a histogram or properties of neighbouring points, while the latter

type calculates some single value of the neighbouring points[21]. The histogram

index i of a neighbouring point q inside a sector is calculated by 1
2
(1+r.nq)b where b

is the number of bins in the histogram. To reduce quantization errors, a neighbouring

point also contributes to histograms in neighbouring sectors of the subdivision using

a quadrilinear interpolation. Figure 2.10 shows subdivisions used by the SHOT

descriptor.

Figure 2.10: Subdivision used by signature of histograms of orientations descriptor, the
inner sector or shell is depicted in blue and one sector of the descriptor is highlighted in
light gray, taken from [19]

2.6 Correspondences

A correspondence is simply a couple of any class that are similar to some extent. In

point cloud processing context, correspondences represent a match between two en-

tities (points, descriptors) represented via the indices of a source point and a target

point, and the distance between them. In other words each correspondence is a pair

of points which the correspondence �nding algorithm suggests them to represent the

same point in both clouds.

2.6.1 Finding Correspondences

It is both possible to �nd all possible correspondences �rst and then reject them

by provided classes, or to search features one by one and add them to correspon-

dences manually if they ful�l some conditions. To search manually, one may �nd

correspondences iteratively on parts of the scene cloud enclosed in spheres, or �nd

2. Theoretical Background 31

correspondences iteratively on every cluster of the scene cloud, or go through all

scene key points and �nd the nearest feature in the model key points.

pcl::registration::CorrespondenceEstimation class is inherited by all follow-

ing classes as of PCL 1.7:

[pcl::registration::CorrespondenceEstimationBase represents the base class

for determining correspondences between target and query point sets/features.

[pcl::registration::CorrespondenceEstimationBackProjection computes cor-

respondences as points in the target cloud which have minimum distance to the

projected point in the model.

[pcl::registration::CorrespondenceEstimationNormalShooting computes cor-

respondences as points in the target cloud which have minimum distance to normals

computed on the input cloud

It would be up to the user to utilize an implemented tool in order to avoid the

problem of introducing a lot of false information and wrong data that de�nitely

would compromise the overall registration. Figure 2.11 shows all correspondences

found with CorrespondenceEstimation() in a sample saved scene cloud. The cor-

respondences shown in green lines connect two points which the estimation function

has paired. Also the piece of code performing this task is represented which is a

simple procedure of accepting descriptors for both model and scene and outputting

the pairs.

pc l : : r e g i s t r a t i o n : : CorrespondenceEst imation

<pc l : : FPFHSignature33 , pc l : : FPFHSignature33> cor_est ;

cor_est . s e t InputSource (model_descr iptors) ;

cor_est . se t InputTarget (s c ene_desc r ip to r s) ;

pc l : : CorrespondencesPtr model_scene_corrs (new pc l : : Correspondences ()) ;

cor_est . determineCorrespondences (*model_scene_corrs) ;

2.6.2 Filtering Correspondences

Scene features usually contain a lot of data, which makes it di�cult to perform a

robust search and match, it is better to use a divide and conquer strategy. If all the

scene features are to be used, the results would be very bad, since the model features

can be coupled with any scene feature, at any distance, for example two features

that are really close to each other in the model, can be coupled respectively with two

features that are very far from each other in the world, that is obviously impossible

and gives a wrong corresponding set. Figure 2.11 clearly shows this phenomena. Due

to this fact, founded correspondences need to be �ltered by some carefully speci�ed

conditions to avoid participation of non relevant ones in the main clustering phase.

pcl::registration::CorrespondenceRejector class is inherited by all following

2. Theoretical Background 32

Figure 2.11: All correspondences found between the model and the scene with correspon-
dence estimation shown in green lines

classes as of PCL 1.7:

[pcl::registration::CorrespondenceRejectorDistance rejects all the corre-

spondences that exceed a distance threshold. The correspondence distance is the

measure between corresponding key points of model and scene clouds.

[pcl::registration::CorrespondenceRejectorMedianDistance computes the

median distance between all the correspondences, then all the correspondences that

exceed a deviation threshold from that mean value are rejected.

[pcl::registration::CorrespondenceRejectorFeatures implements a corre-

spondence rejection method based on a set of feature descriptors. Given an input

feature space, the method checks if each feature in the model cloud has a correspon-

dence in the scene cloud, either by checking the �rst k (given) point correspondences,

or by de�ning a tolerance threshold via a radius in feature space.

[pcl::registration::CorrespondenceRejectorOneToOne implements a corre-

spondence rejection method based on eliminating duplicate match indices in the

correspondences. Correspondences with the same match index are removed and

only the one with smallest distance between query and match are kept. That is,

considering match at a query, one to many correspondences are removed leaving

only one to one correspondences.

2. Theoretical Background 33

[pcl::registration::CorrespondenceRejectionOrganizedBoundary class im-

plements a simple correspondence rejection measure. For each pair of points in

correspondence, it checks whether they are on the boundary of a silhouette. This

is done by counting the number of NaN dexels in a window around the points (the

threshold and window size can be set by the user).

[pcl::registration::CorrespondenceRejectorPoly implements a correspon-

dence rejection method that exploits low-level and pose-invariant geometric con-

straints between two point sets by forming virtual polygons of a user-speci�able

cardinality on each model using the input correspondences. These polygons are

then checked in a pose-invariant manner (i.e. the side lengths must be approxi-

mately equal), and rejection is performed by thresholding these edge lengths.

[pcl::registration::CorrespondenceRejectorSampleConsensus implements a

correspondence rejection using Random Sample Consensus to identify inliers and re-

ject outliers. RANSAC is a non-deterministic iterative method to estimate param-

eters of a mathematical model, from a set of observed data which contains outliers.

[pcl::registration::CorrespondenceRejectorSampleConsensus2D implements

a pixel-based correspondence rejection using Random Sample Consensus to identify

inliers and reject outliers.

[pcl::registration::CorrespondenceRejectorSurfaceNormal implements a sim-

ple correspondence rejection method based on the angle between the normals at

correspondent points.

[pcl::registration::CorrespondenceRejectorTrimmed implements a correspon-

dence rejection for ICP-like registration algorithms that uses only the best k corre-

spondences where k is some estimate of the overlap between the two point clouds

being registered.

[pcl::registration::CorrespondenceRejectorVarTrimmed implements a sim-

ple correspondence rejection method by considering as inliers a certain percentage

of correspondences with the least distances. The percentage of inliers is computed

internally.

Figure 2.12 shows the remaining correspondences after rejecting the bad ones out of

all correspondences in Figure 2.11 using CorrespondenceRejectorSampleConsensus

class. The correspondences shown in green lines in this �gure are the ones which

the transformation matrix of the registration algorithm will be computed based on.

This will be the class used to reject correspondences in our proposed algorithm, thus

the code piece is pasted. The procedure starts with creating an object of that class

here called sac. It then accepts keypoints for model and scene in addition to their

previously found correspondences.

This algorithm needs a threshold with which it will consider points to be inliers

or outliers. Points will be counted as inliers if they have less distance than the

2. Theoretical Background 34

threshold to the proposed model and vice versa.

Figure 2.12: Remaining correspondences between the model and the scene after rejection
shown in green lines

double eps i l on_sac = 0 . 0 3 ;

int i t e r_sac = 200 ;

pc l : : r e g i s t r a t i o n : : CorrespondenceRejectorSampleConsensus<pc l : : PointXYZ> sac ;

sac . s e t InputSource (model_keypoints) ;

sac . se t InputTarget (scene_keypoints) ;

sac . s e t I n l i e rTh r e s h o l d (eps i l on_sac) ;

sac . setMaximumIterations (n r_ i t e r a t i on s) ;

sac . set InputCorrespondences (model_scene_corrs) ;

pc l : : Correspondences i n l i e r s ;

sac . getCorrespondences (i n l i e r s) ;

Eigen : : Matr ix4f T = sac . getBestTransformat ion () ;

2.7 Validation Functions

In order to verify the correctness of any performable registration, we need a robust

validation function, that is capable of telling a good alignment to a bad one. For

di�erent needs three di�erent validation functions have been developed:

1. Euclidean distance validation function: it is used in the �nal registration to �nd

out the best match using the square distances between points.

2. Percent of outliers validation function: it is used in the initial registration to

2. Theoretical Background 35

recognize occlusions using the number of outliers points.

3. Normal angles validation function: it has been tried together with the Euclidean

distance validation function, but results are much worse, spending much more com-

putation time.

2.7.1 Euclidean Distance Validation Function

Euclidean Distance is a new speci�c-purpose �tness score that uses squared distances

and it is used while performing the initial rough registration. This function accepts

the scene cloud (consisting of n points), and the model cloud (consisting ofm points)

as inputs and outputs a single �oat score that represents the grade of alignment of

the object into the scene cloud according to the formula

score =
1

m

m−1∑
i=0

minn−1
j=0 (‖model.i− scene.j‖

2)

where model.i and scene.j represent the 3D vectors containing the coordinates

of the points in the model and scene point clouds respectively. From the result

score, zero represents a perfect alignment while 3, 40282 ∗ 1038 means the worst

alignment. This formula appears to be a very good method to roughly validate

the achieved results, since it is based on squared distances that penalizes even the

smallest distances between model and the scene.

Figure 2.13: Calculating the euclidean score, blue: model cloud ; red: scene cloud
taken from [4]

The drawbacks of this approach are:

[The possible presence of occlusions: in this case the score grows very fast, com-

promising the entire e�ectiveness of the registration process. The key to avoid this

is based on choosing the right model cloud.

[A wrong alignment may still maintain small distances between object and world.

In this case the score remains low and we cannot tell if the alignment is good enough

or not.

2. Theoretical Background 36

Algorithm 4 Pseudo Code For The Euclidean Distance Validation Function

1. For each point i in the model cloud, �nd the nearest point j in the scene cloud
2. Calculate the squared distance between these two points
3. Calculate the mean value of all squared distances

2.7.2 Percent Of Outliers Validation Function

The percent of outliers validation function is a simple yet more e�ective �tness score

to recognize occlusions and bad matching which is used while performing the �nal

�ne registration. This function accepts the scene cloud (consisting of n points), and

the model cloud (consisting of m points) as inputs and outputs a single �oat score

that represents the percent of outliers based on a small distance threshold according

to the formula:

score =
100

m

m−1∑
i=0

{
1 ifminn−1

j=0‖model.i− scene.j‖ > DistanceThreshold

0 otherwise

where model.i and scene.j represent the 3D vectors containing the coordinates of

the points in the model and scene point clouds respectively. In other words, no

matter if the distance is high, each outliers counts as one. From the result score,

zero represents a perfect alignment (with 0% of outliers) and 100 represents the

worst alignment with 100% of outliers).

This function is developed since the previous one is not sensible to particular

Figure 2.14: Calculating percent of outliers score, blue: model cloud ; red: scene cloud,
taken from [4]

cases, where euclidean distances are small but the alignment is wrong. Whereas

this function is able to tell a wrong alignment from a right one, while the euclidean

distance function cannot discriminate a false positive.

2. Theoretical Background 37

Algorithm 5 Pseudo Code For The Percent Of Outliers Validation Function

1. For each point i in the model cloud, �nd the nearest point j in the scene cloud
2. Calculate the distance between these two points,
if it is greater than the distance threshold then

it is an outlier
else

it is not an outlier
end if

3. Calculate the percent of outliers by dividing the sum by m and multiplying it
by 100

2.7.3 Normal Angles Validation Function

This function has been developed to take the place of the percent of outliers valida-

tion function in order to score the �nal registration, but the low performance of this

procedure made it a bad choice if a good performance is required. This function is

in many ways similar to the euclidean distance validation function, but it is based

on the squared di�erences of angles between the normals of the model cloud and

the normals of the scene cloud. More precisely, the normals taken into account are

calculated on each point in the model cloud and its closest neighbours.

This function also accepts the scene cloud (consisting of n points), and the model

cloud (consisting of m points) as inputs and outputs a single �oat score that repre-

sents the grade of alignment of the model into the scene, with zero meaning a perfect

alignment (0 degrees of di�erence between normals for all points) and 1802 meaning

the worst alignment (meaning that all the normals are opposite). It has been proven

that in comparison to the other two functions, the normal angles function is not a

good choice, both for quality of the results and time consumption.

Algorithm 6 Pseudo Code For The Normal Angles Validation Function

1. Compute normals for each point of the model and scene clouds with a �xed
given radius
2. For each point i in the object:
(a) �nd the nearest point j in the scene cloud
(b) calculate the squared distance of the angle between normal of the point i in
the model cloud and normal of the point j in the scene cloud
3. Calculate the mean value of all squared distances

2.8 Random Sample Consensus (RANSAC)

RANSAC is an abbreviation for "RANdom SAmple Consensus" which is an iterative

method to estimate parameters of a mathematical model from a set of observed data

2. Theoretical Background 38

(a) Data set (b) Fitted line

Figure 2.15: Random sample consensus line �tting, (a):input cloud; (b):blue dots indicate
inliers and red dots indicate outliers

which contains outliers. RANSAC is a non-deterministic algorithm in the sense that

it produces a reasonable result only with a certain probability, with this probability

increasing as more iteration are allowed. The algorithm was �rst published by Fis-

chler and Bolles at SRI International in 1981.

This is a general model �tting algorithm that uses the minimum number observa-

tions (data points) required to estimate the underlying model parameters. A basic

assumption in RANSAC is that the data contains two types, "outliers" and "inliers",

with inliers being the relevant data of the model and the outliers coming mostly from

noise sources or undesired data.

As this context will be an important part in our project, for better understandings

we go through an example in 2D. Assume a set of input data points and the goal is

to �t a line with the most number of lying points. At least two points are needed

to individually clarify a line in 2D space, thus the algorithm randomly chooses two

points in the data set. It assumes this line as the model and classi�es the remaining

points as either inliers or outliers. Each point is assumed to be an inlier if the dis-

tance between that point and the line is less than a certain threshold. The fraction

of inlier points to outliers must be at a prede�ned accepting level. After saving the

data derived from these processes the algorithm takes two other random points and

repeats the procedure. A visualization is given in Figure 2.15.

This procedure is repeated a �xed number of times, each time producing either a

model which is rejected because too few points are classi�ed as inliers or a re�ned

model together with a corresponding error measure. In the latter case, we keep

the re�ned model if its error is lower than the last saved model. The number of

iterations, N is chosen high enough to ensure that at least one of the sets of random

samples does not include an outlier.

2. Theoretical Background 39

Extending of RANSAC algorithm to 3D space and in our speci�c application of

template matching involves getting a number of correspondences or points at each

time and transforming the model accordingly. Then data points are categorized as

inliers and outliers with respect to a user de�ned threshold and a score is assigned to

this transformation. The whole procedure is repeated a user given number of times

and the best value along with its respective transformation matrix will be returned.

PCL holds di�erent RANSAC based methods and models that can be combined

freely in order to detect speci�c models and their parameters in point clouds. One

was mentioned among correspondence rejection functions as pcl::registration::

CorrespondenceRejectorSampleConsensus2D which uses a RANSAC based ap-

proach to categorize correspondences as inlers and outliers.

In addition there is another class implemented as the Sampled Consensus_Initial

Alignment algorithm. SAC-IA performs fast searches in an exhaustive correspon-

dence space to �nd a good alignment solution which can be further re�ned using

a non-linear optimization method [14]. This algorithm estimates and rejects corre-

spondences between two clouds in one single step, as opposed to the other method

that performs this task in two separate steps. This class as its name suggests only

provides an initial guess and for a better alignment the results are usually re�ned

with other available algorithms.

Algorithm 7 Pseudo Code For RANSAC Based Alignment Algorithm

1. Select s sample features from the scene cloud which their pairwise distances
are greater than a user de�ned minimum distance, MinSampleDistance.
2. For each sample feature �nd a list of similar features in the model cloud. Select
one of them to be considered that sample features correspondence which their dis-
tance is less than a user de�ned maximum distance, MaxCorrespondenceDistance.
3. Compute the rigid transformation de�ned by the sample features and their
correspondences and compute an error metric for the point cloud that computes
the quality of the transformation.
4. If the number of iterations is less than a user de�ned number, MaximumItera-
tions, repeat the procedure.

The piece of code performing this algorithm is represented below. The process

begins with de�ning the three above mentioned parameters that should be given

by the user. Next an object of this class is created, here called sac_ia. The pa-

rameters are passed to the object with relative functions setMinSampleDistance(),

setMaxCorrespondenceDistance(), and setMaximumIterations(). The scene cloud

and its features are passed by calling setInputTarget() and setTargetFeatures()

functions respectively. The same is done for the model cloud with setInputSource()

and setSourceFeatures() functions. After de�ning a point cloud to hold the re-

2. Theoretical Background 40

sults, function align() will perform the main task of alignment. Finally the �tness

score is printed out with a call to function getFitnessScore() and the result is

copied into a pointer for next uses.

f loat min_sample_distance = 0 . 2 ;

f loat max_correspondence_distance = 0 .3 f ;

int nr_ i t e r a t i on s = 200 ;

pc l : : SampleConsensusIn i t ia lAl ignment <pc l : : PointXYZ , pc l : : PointXYZ ,

pc l : : FPFHSignature33> sac_ia ;

sac_ia . setMinSampleDistance (min_sample_distance) ;

sac_ia . setMaxCorrespondenceDistance (max_correspondence_distance) ;

sac_ia . setMaximumIterations (n r_ i t e r a t i on s) ;

sac_ia . set InputTarget (scene_keypoints) ;

sac_ia . s e tTargetFeatures (s c ene_desc r ip to r s) ;

sac_ia . se t InputSource (model_keypoints) ;

sac_ia . s e tSourceFeature s (model_descr iptors) ;

pc l : : PointCloud<pc l : : PointXYZ> reg i s t r a t i on_output ;

sac_ia . a l i g n (r eg i s t r a t i on_output) ;

cout << "sac−i a f i t n e s s s co r e : " << sac_ia . g e tF i tn e s sSco r e

(max_correspondence_distance) << endl ;

i f (sac_ia . g e tF i tn e s sSco r e (max_correspondence_distance) < 0 .00002)

cout << "sac−i a f i t n e s s s co r e i s good ! (l e s s than 0 .00002) " << endl ;

pc l : : PointCloud<pc l : : PointXYZ>: : Ptr rotated_model

(new pc l : : PointCloud<pc l : : PointXYZ>()) ;

* rotated_model = reg i s t ra t i on_output ;

2.9 Iterative Closest Points (ICP)

The Iterative Closest Points (ICP) method is also a general model �tting algorithm

performing alignment of two models called source and target. This algorithm pro-

posed in [22] is motivated by minimizing the di�erence between two clouds of points.

Algorithm 8 presents a pseudo code related to this method. After ICP executes suc-

cessfully, the source will be aligned to the target. The algorithm requires the source

cloud to be already close to the correct match, as such ICP is used for re�nement,

while other methods (such as SAC-IA) can be used to perform an initial alignment.

The ICP algorithm works by estimating how well the two point clouds match. This

can be done in di�erent ways, but the preferred and simpler method is to use point-

to-point errors; for each point in the �rst cloud, the algorithm searches for the closest

point in the second cloud and computes its distance. The transformation that aligns

the source cloud to the target cloud is then the one that minimizes the total error

between all point pairs. This alignment step is performed iteratively until a good

match is found. The standard ICP algorithm has three alternative termination con-

ditions:

2. Theoretical Background 41

1. The number of iterations has reached the maximum speci�ed by user

2. The epsilon change value between the two last iteration is smaller than a value

speci�ed by the user

3. A �tness function computed internally has reached a threshold speci�ed by the

user

The choice of this two step alignment (initial guess plus �ne alignment) lies on the

fact that ICP performs well when its input clouds are relatively already close enough,

while SAC-IA is less accurate but more robust to large translations and rotations.

Employing both methods we obtain the robustness of SAC-IA and sharpness of ICP

at the same time. In addition to that, there is one other advantage of combining

the two. SAC-IA is a relevantly slow process and it will consume extremely large

amount of time to give a �ne alignment, but ICP is perfectly fast, so we decrease

the number of iterations of SAC-IA and interrupt its process, and let ICP do the

�ne and sharp �nal alignment which will be much faster.

The code piece performing ICP is represented below. The process begins with de�n-

ing an object of this class, here called icp. The scene cloud is passed by calling

setInputTarget() and the model cloud by calling setInputSource() functions.

After de�ning a point cloud Final to hold the result of alignment, function align()

will perform the main task. Finally the �tness score is printed out with a call to

function getFitnessScore().

pc l : : I t e r a t i v eC l o s e s tPo i n t <pc l : : PointXYZ , pc l : : PointXYZ> icp ;

i cp . se t InputSource (rotated_model) ;

i cp . set InputTarget (scene_keypoints) ;

pc l : : PointCloud<pc l : : PointXYZ> Fina l ;

i cp . s e tEuc l i d eanF i tne s sEps i l on (0 . 0 1) ;

i cp . a l i g n (Fina l) ;

cout << " icp f i t n e s s s co r e : " << icp . g e tF i tne s sSco r e () << endl ;

Algorithm 8 Pseudo Code For ICP Based Alignment Algorithm

1. For each point in the model cloud, �nd the closest point in the scene cloud.
2. Find the geometric centroid of accepted matches.
3. Find out rotation and translation based on Singular Value Decomposition
(SVD).
4. Calculate new average distances using the rotation and translation matrix.
5. Terminate the loop if any of the termination conditions is reached, otherwise
repeat the procedure.

2. Theoretical Background 42

2.10 Work Flow Of General Registration Process

The algorithmic steps for a general registration problem are simple. At the �rst step

both datasets should be preprocessed to remove outliers, distant points, and noise,

then key points should be extracted. The remaining points should be matched some

how between tow clouds. This can be done by assigning features to each point rep-

resenting data of the surface and �nding the best feature matches. These matches

are called correspondences. Correspondence between two points means that they

represent the same point on the same surface in two di�erent point cloud views.

Not all correspondences are correct due to di�erent reasons such as noise or similari-

ties between surfaces, thus a rejection method is essential. This step is so important

since bad correspondences a�ect the registration result negatively. This task is

performed during the correspondence rejection step. Final and desired rotation and

translation matrices are then calculated according to the remaining correspondences.

Figure 2.16 shows a �owchart representation of these steps.

A simple registration application will end at this point, but in our case we do not

stop here. As it was mentioned before, the �nal goal of our project is for the mobile

machine to track the pallet and safely approach it for lifting. This involves addi-

tional steps and specially a closed loop control system for the visual servoing part.

In the �owchart we have added a conditional step in which we choose next steps

depending on whether we are in the open loop stage or not.

In our proposed algorithm we run the illustrated simple registration phase only once.

This is performed at the beginning of the program when there is no data about the

position of a pallet or even its existence. Hence data is acquired from a wider laser

angle interval. When the �rst step has �nished processing, the output is the position

and orientation of the pallet. At this point the program switches to the closed loop,

limiting the laser sweep interval to the front area of the pallet. Since in the closed

loop phase we only use ICP for registration, we have added a conditional step before

computing the key points and after a scene cloud was acquired. If we are in the

open loop we proceed to key points extraction and using of RANSAC algorithm,

but if in closed loop phase, we jump to the ICP step as shown in the �owchart.

As it was described in the few previous sections, there exists two main methods to

perform the registration task in PCL. One will include estimating correspondences

and using one of the correspondence rejection functions to acquire the best corre-

spondences. The other method involves the use of SAC-IA to estimate an initial

alignment guess which will estimate and reject correspondences at the same time

and with one single step. In both cases the results will be re�ned with ICP. We

will implement both these methods and compare their results in detail in the results

chapter.

2. Theoretical Background 43

Figure 2.16: Registration process �owchart

44

3. IMPLEMENTATION

3.1 Overview

This chapter will cover di�erent aspects of implementing the project and use of dif-

ferent previously introduced tools to make an executable project. This starts with

getting PCL installed and executed on a compatible system, along with other nec-

essary libraries. This topic is the subject of sections 3.2 and 3.3.

The communication platform of the project is UDP. This is an extremely impor-

tant part of the implementing phase and needs to be done clearly and accurately.

UDP protocol is the bridge between di�erent modules, some running C++ codes on

Linux, and some running on xPC target. Thus in section 3.4, UDP communication

basics in these environments is covered. Sending and receiving data would also be

addressed there.

One of the most important practical aspects is the production of a point cloud. This

will a�ect all the later calculations since it will relate to the de�ne coordinate frames

and how range data from the laser system will be transformed to 3D coordinate in-

formation. We will tackle this topic in section 3.5. The topic for section 3.6. is

realizing a control signal to supervise the laser servo system, and saving point cloud

data in di�erent desired intervals. This section will as well cover the servo controller

method used in di�erent phases.

We will be testing all di�erent parts of our designed model on the GIMsim simu-

lator machine where we have the laser scanner, laser servo controller, pallet, and

machine's mechanic and hydraulic, and the environment simulated accurately. The

simulator system in IHA simulation lab is composed of several PCs running IO

and transducer models, terrain and collision model, machine dynamics, simulation

GUI, and Autonomous functions. A clear view of the whole system implemented in

Simulink is represented in section 3.7. At this point we will be having a completely

implemented working project ready to be tested and analysed for performance.

3. Implementation 45

3.2 Getting PCL

Getting PCL and installing it on your system has been made easy by documenting

step by step guidance to the process1. It runs on many operating systems, and

pre-built binaries are available for Linux, Windows, and Mac OS X. In addition to

installing PCL, it is necessary to download and compile a set of 3rd party libraries

that PCL requires in order to function. By selecting the operating system of your

choice you may continue and download PCL for your system. PCL also provides

the 3D processing pipeline for ROS, so it is possible to get the perception stack as

well and still use PCL standalone.

As PCL is continuously developing and new features are dynamically added to its

new versions, or if it does not provide pre-built binaries for a speci�c operating sys-

tem, it is also possible to compile the library from source. Our choice of operating

system is the latest version of Linux Ubuntu 13.04 and we have downloaded PCL

source code and compiled it according to instructions.

3.3 Programming Software and Dependencies

PCL also depends on Boost, Eigen, FLANN, and VTK, which are required in or-

der for that particular PCL library to compile and function. All the modules and

algorithms in PCL pass data around using Boost2 shared pointers, thus avoiding

the need to re-copy data that is already present in the system. Boost provides free

peer-reviewed portable C++ source libraries. It emphasizes libraries that work well

with the C++ Standard Library. Boost libraries are intended to be widely useful,

and usable across a broad spectrum of applications. The Boost license encourages

both commercial and non-commercial use.

Most mathematical operations in PCL are implemented with and based on Eigen3,

an open-source C++ template library for linear algebra: matrices, vectors, numeri-

cal solvers, and related algorithms. The backbone for fast neighbour search opera-

tions is provided by FLANN4 (Fast Library for Approximate Nearest Neighbours).

FLANN is a library for performing fast approximate nearest neighbour searches in

high dimensional spaces. It contains a collection of algorithms we found to work

best for nearest neighbour search and a system for automatically choosing the best

algorithm and optimum parameters depending on the dataset. FLANN is written

in C++ and contains bindings for C, MATLAB and Python.

1http://pointclouds.org/downloads/
2http://www.boost.org/
3http://eigen.tuxfamily.org
4http://www.cs.ubc.ca/research/�ann/

3. Implementation 46

PCL also comes with its own visualization library, based on VTK5. The Visual-

ization Tool Kit (VTK) is an open-source, freely available software system for 3D

computer graphics, image processing and visualization which consists of a C++ class

library and several interpreted interface layers including Tcl/Tk, Java, and Python.

VTK supports a wide variety of visualization algorithms including scalar, vector,

tensor, texture, and volumetric methods; and advanced modeling techniques such

as implicit modelling, polygon reduction, mesh smoothing, cutting, contouring, and

Delaunay triangulation. VTK has an extensive information visualization framework,

has a suite of 3D interaction widgets, supports parallel processing, and integrates

with various databases on GUI tool kits such as Qt and Tk. In addition VTK is

cross-platform and runs on Linux, Windows, Mac and Unix platforms.

More over PCL provides support for OpenMP6 and Intel Threading Building Blocks

(TBB) library7 for multi-core parallelization. From the execution point of view PCL

relies on CMake8, a cross-platform, open-source build system as a build tool. CMake

is a family of tools designed to build, test and package software, and it is used to

control the software compilation process using simple platform and compiler inde-

pendent con�guration �les. CMake generates native make�les and workspaces that

can be used in the compiler environment of your choice. Use of this build tool just

requires placing a �le called CMakeLists.txt in the same project folder and running

the "make" command to compile path.

Figure 3.1: CMakeLists.txt example

Having installed all the necessary depending libraries and CMake, the last in-

terface needed is any suitable programming language editor of choice to start and

write the main program. In this project the widely used programming environment

5http://www.vtk.org/
6http://openmp.org
7http://threadingbuildingblocks.org/
8http://www.cmake.org/

3. Implementation 47

of Eclipse9 is used, which is provided by the Linux software center as well. The

output of this part is a �le with the extension .cpp, the standards format for C++

code programs. Now it is enough just to place the CmakeLists.txt �le along with

the .cpp �le in the same folder and use a single simple Linux command to compile

the program and make an executable application.

3.4 UDP Communication

UDP is the main communication platform that needs implementation in this project.

With the User Datagram Protocol (UDP) computer applications can send messages,

in this case referred to as datagrams, to other hosts on an Internet Protocol (IP)

network without prior communications to set up special transmission channels or

data paths.

UDP uses a simple transmission model with a minimum of protocol mechanism. It

has no handshaking dialogues, and thus exposes any unreliability of the underly-

ing network protocol to the user's program. As this is normally IP over unreliable

media, there is no guarantee of delivery, ordering, or duplicate protection. UDP

provides checksums for data integrity, and port numbers for addressing di�erent

functions at the source and destination of the datagram. UDP is suitable for pur-

poses where error checking and correction is either not necessary or performed in the

application, avoiding the overhead of such processing at the network interface level.

Time-sensitive applications often use UDP because dropping packets is preferable

to waiting for delayed packets, which may not be an option in a real-time system.

3.4.1 UDP Communication In MATLAB Simulink

As described previously the simulation system consists of di�erent modules that need

to communicate and share data. In this speci�c project we need to communicate

between di�erent modules to read in point cloud data, navigation data, laser servo,

and to send control signals to the laser servo and detection results to the controller,

The controller is implemented in a MATLAB Simulink model, and our main program

is running on a Linux machine, thus we need UDP communication programming

both in Simulink environment and C++ under Linux. In the Simulink part this is

done rather straight forward, since it only su�ces to insert the corresponding blocks

shown in Figure 3.2 and to set parameters in the windows shown in Figure 3.3.

The receive block has two outputs, one to hold the received data and the sec-

ond one is an acknowledge signal sending a small pulse whenever a new data has

9http://www.eclipse.org/

3. Implementation 48

Figure 3.2: UDP send/ receive blocks in simulink

(a) Send block parameters (b) Receive block parameters

Figure 3.3: UDP blocks parameters

been received. The sending block only needs one input port to carry the data that

needs to be sent. As mentioned UDP sends short messages called datagrams which

comprise one message unit. To combine several doubles as one datagram, a "Pack"

block is needed before the send block to pack all the data inside one package. The

same applies to the other end, in order to extract individual data from a packet, the

"Unpack" block is utilized after a receive block. In addition there are parameters

for each block that should be set in order to complete the send or receive function.

Figure 3.3 shows parameter setting windows for both blocks. The left window cor-

responds to send block, which accepts an IP for the remote application (for single

cast) while providing a choice for broadcasting as well. Assigning a port number

is of great importance, since the end application will know where to read the data

from. This is specially important in UDP protocol since as noted this protocol is

connection less, and the ports are the only means to provide a rout between two end

points. Finally there are two �elds for the IP of the local PC and the sample time,

3. Implementation 49

which indicates the frequency for sending datagrams. As for the receiving block

there also exists a �eld to choose between accepting data from a speci�c IP or from

any user who uses the speci�ed port number in the second �eld. Finally comes the

sample time which indicates how frequently to read from or write to the port, and

before that the length of the received datagram is speci�ed in bytes for the receive

block. UDP discards messages which don't match this length, so it is necessary to

know the length of the transmitted datagrams in order to read them in correctly.

3.4.2 UDP Communication With C++ On Linux

In the C++ context, we need to de�ne sockets and set desired speci�cations for

them. In our program two types of sockets are needed, one for sending and one

for receiving data. De�ning a socket has a typical syntax and involves a few

steps to create and identify it. A socket, s, is created with the socket system

call int s = socket(domain,type,protocol) in which all the parameters as well

as the return value are integers. Domain is the communication domain in which

the socket should be created. Some of address families are AF_INET (IP), AF_INET6

(IPv6), AF_UNIX (local channel, similar to pipes), AF_ISO (ISO protocols), and AF_NS

(Xerox Network Systems protocols). Type is the type of service which is selected

according to the properties required by the application; SOCK_STREAM (virtual cir-

cuit service), SOCK_DGRAM (datagram service), SOCK_RAW (direct IP service). One

should check with his address family to see whether a particular service is available

or not. Finally the protocol indicates a speci�c protocol to use in supporting the

sockets operation. This is useful in cases where some families may have more than

one protocol to support a given type of service. The return value of this call is a �le

descriptor (a small integer).

For UDP/IP sockets, we specify the IP address family as AF_INET and datagram

service as SOCK_DGRAM. Since there is only one form of datagram service, there are

no variations of the protocol, so the last argument, protocol, is IPPROTO_UDP.

Next is the identi�cation of the socket. When we talk about identifying a socket, we

are talking about assigning a transport address to the socket which is de�ned in a

socket address structure. In sockets, this operation is called "binding" and the bind

system call is utilized as:

int bind (int socket , const struct sockaddr * address , socklen_t address_len)

The �rst parameter is the socket that was created with the socket system call.

The third parameter speci�es the length of that structure, which is simply the size

of the internet address structure, sizeof(struct sockaddr_in). For the second

parameter, the structure sockaddr is a generic container that just allows the oper-

3. Implementation 50

ating system to be able to read the �rst couple of bytes that identify the address

family. The address family determines what variant of the sockaddr struct to

use that contains elements that make sense for that speci�c communication type.

For IP networking, we use struct sockaddr_in, which is de�ned in the header

#include <sys/socket.h>. This structure is de�ned as:

struct sockaddr_in {

__uint8_t s in_len ;

sa_family_t s in_fami ly ;

in_port_t sin_port ;

struct in_addr sin_addr ;

char s in_zero [8] ;

} ;

Before calling bind, we need to �ll out this structure in which there are three key

parts to set. sin_family is the address family we used when we set up the socket. In

our case, it is AF_INET. sin_port is the port number which we may explicitly assign

or allow the operating system to assign one. However, instead of simply copying

the port number to this �eld, it is necessary to convert this to network byte order

using the function htons() which converts a port number in host byte order to a

port number in network byte order. The third �eld of sockaddr_in is a structure of

type struct in_addr which contains only a single �eld unsigned long s_addr. This

�eld contains the IP address of the host. For server code, this will always be the

IP address of the machine on which the server is running, and there is a symbolic

constant INADDR_ANY which gets this address. It is also needed to call the memset

function for the socket to �ll a block of memory. According to these descriptions a

small part of our code creating a socket to read point cloud data from port number

4599 looks like this:

int pointcloud_read_socket=socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP) ;

sockaddr_in po intc loud_read_cl i ent ;

socklen_t po intc loud_read_cl i ent_s ize = s izeof (po intc loud_read_cl i ent) ;

i f (pointcloud_read_socket < 0)

cout<< "Creat ing po int c loud read socke t e r r o r " << endl ;

memset(&pointc loud_read_cl ient , 0 , po intc loud_read_cl i ent_s ize) ;

po intc loud_read_cl i ent . s in_fami ly = AF_INET;

po intc loud_read_cl i ent . s in_port = htons (4599) ;

po intc loud_read_cl i ent . sin_addr . s_addr = htonl (INADDR_ANY) ;

i f (bind (pointcloud_read_socket , (sockaddr*)&pointc loud_read_cl ient ,

s izeof (po intc loud_read_cl i ent)) < 0)

cout<< "Binding po int c loud read socke t e r r o r " << endl ;

3. Implementation 51

This piece of code is repeated in our code four times to create one socket named

laser_send_client to send the initial values for laser angle to port number 4019,

one named control_signal_socket to read in the control signal from port 4545

sent from Simulink every 5ms (this will be discussed in the next section), one named

pointcloud_read_socket to read in the actual point data from port 4599 as de-

scribed above, and �nally a socket named registration_send_client to send the

registration results on port 4522.

Up to this point there is no di�erence between sockets that are going to be used for

sending or receiving, except for two minor modi�cations: �rst, for sending func-

tion it is necessary to know the address of the machine which is receiving the

data (if not broadcasting), so we used the IP address of the destination instead

of htonl(INADDR_ANY), as follows:

r e g i s t r a t i on_send_c l i en t . sin_addr . s_addr = inet_addr (" 192 . 1 68 . 0 . 3 9 ") ;

And the second modi�cation is about bind() function call. It is possible to call

bind() after the call to socket(), if we wish to specify which port and interface

should be used for the sending socket. However, this is almost never necessary since

the system will decide what port and interface to use. So the call to this function

has been skipped for those sockets that we want to use for sending.

Now what makes the di�erence is the use of two important functions,sendto() and

recvfrom() which are used to send and receive data respectively. The sendto()

function has the following syntax:

int sendto (int socket , const void * bu f f e r , s i z e_t length , int f l a g s ,

const struct sockaddr *dest_addr , socklen_t dest_len) ;

The �rst parameter, socket, is the socket that was created with the socket sys-

tem call and named. The second parameter provides the message we want to send

followed by the third parameter which it it's length. The �ags parameter is 0 and

not useful for UDP sockets. The dest_addr de�nes the destination address and

port number for the message and uses the same sockaddr_in structure that we

used in bind to identify our local address. As with bind, the �nal parameter is sim-

ply the length of the address structure: sizeof(struct sockaddr_in). The return

value from sendto only indicates if the packet was successfully sent from the local

computer and no information about whether or not the packet was received by the

destination or not.

Once you have a UDP socket bound to a port, any UDP packets sent to your sockets

IP address and port are placed in a queue. To receive packets just loop and call

recvfrom until it fails indicating there are no more packets left in the queue. The

recvfrom() function has the following syntax:

3. Implementation 52

int recvfrom (int socket , void * r e s t r i c t bu f f e r , s i z e_t length ,

int f l a g s , struct sockaddr * r e s t r i c t src_addr ,

socklen_t * r e s t r i c t * src_len)

The �rst parameter is the socket that we created. The port number assigned to

that socket via the bind call indicates on what port recvfrom will wait for data. The

�ags parameter allows processing out-of-band data, peek at an incoming message

without removing it from the queue, or block until the request is fully satis�ed. We

can safely ignore these and use 0 instead, specially in this application we are not in

need of �ags. The src_addr parameter is a pointer to a sockaddr structure that we

allocate and will be �lled in by recvfrom to identify the sender of the message. The

length of this structure will be stored in src_len. If it is not required to identify

the sender, it is possible to set both of these to zero, but then there is no way to

reply to the sender. The recvfrom call returns the number of bytes that were read

into bu�er, or −1 in case of failure.

There exists one other important behaviour of the recvfrom function, and that is

the behaviour which is called "blocking" or "non-blocking". Blocking refers to the

case in which the receiving function will block and wait for a packet to arrive. On

the other hand, in the non-blocking mode it will wait for a user de�ned amount of

time and then returns with a value 0 if there was no data available to read, or if

there is no time speci�ed, it will immediately return in this case. When the argu-

ment �ags of recvfrom() is set to MSG_NOBLOCK, the function does not block if there

is no data to be read, but returns immediately with a return value of 0 bytes. It is

notable that in this application we did not use this behaviour and all the reading

sockets are in blocking mode as in their default.

3.4.3 Saving Point Cloud Data Through UDP

Now that we have explained the basics of socket programming in C++ for a UDP

communication, it is time to look at an important piece of our code which uses a re-

ceive function iteratively to read and save the point cloud data. This code has been

pasted from the closed loop phase. The open loop phase is exactly the same, but

without the while loop to run only once. The reading and saving works as follows;

�rst a single double which is the control signal is read in. This signal is described in

detail in the next section, but for now it is enough to know that this is a condition

signal to control the read and save of data. If this value is one we proceed to read

one row of the point cloud data, and we do not read if otherwise.

while (true)

3. Implementation 53

{

recvfrom (contro l_s igna l_socket , contro l_s igna l_value ,

s izeof (contro l_s igna l_va lue) , 0 ,

(sockaddr*)& cont ro l_s i gna l_c l i en t ,

&con t r o l_s i gna l_c l i en t_s i z e) ;

i f (contro l_s igna l_va lue [0] == 1)

{

recvfrom (pointcloud_read_socket , &row_package1 ,

s izeof (row_package1) , 0 ,

(sockaddr*)&pointc loud_read_cl ient ,

&po intc loud_read_cl i ent_s ize) ;

udpVectorData1 . push_back (row_package1) ;

number_of_rows1 ++;

}

i f (contro l_s igna l_va lue [0] == 0 & number_of_rows1!= 0)

{

cout << "number o f rows : " << number_of_rows1 << endl ;

break ;

}

}

Note that both receive functions are in blocking mode, so the �rst function which

is reading the control signal, waits there until a data is available. This signal is

coming every 5ms, so if we are lucky not to loose it, this waiting should not take

more than that. If this value is equal to one, another receive function is called. This

function is in blocking mode as well, but there is a signi�cantly important di�erence

in between. The control signal is sent to this socket as unicast, and unicast data will

be placed in a structure so called a queue. Once read the package will be removed

from the queue and there will not be any data available before another 5ms. In

contrast the point cloud data are sent as broadcast and they will not be removed

when read. In fact there is no meaning for a queue for broadcasting, since every user

should be able to log and receive the broadcast data. This means that even though

these data are coming every 20ms, but the second receive will not need to wait

this time to read a data, the previous data is always available in between these 20

milliseconds and will not be removed even if it is read several times. With a simple

division it can be seen that we will be reading the same data four times repeatedly

before the new data is available after a 20ms.

This is a good strategy we have implemented to compensate the unreliable nature

of UDP. In other words, although the reading process is much faster than 20ms, but

this is a limitation since no new data will be available before this time. Experience

shows that reading only once during this 20ms will decrease the chance of receiving

the package, and a great number of data were lost. It is notable that this way the

reliability of reading data correctly is increased without loosing any time, which is

3. Implementation 54

desirable.

One row of point cloud data consists of 721 double values, consisting of a single

"sweep" value, 180 doubles of "variance", and 180 "point data" each having three

values for x, y, and z. We have de�ned two structures to save in data and to ease

accessing of the elements. The �rst structure which is called LaserData holds coor-

dinate values, and the second structure, UDPData, is a structure of structure and

holds the value of sweep, variances and its third element is 180 of LaserData type, as

shown below. An object of type UDPData is then de�ned and called row_package1

which is basically one row which will be read at each call of receive function. Finally

a vector called udpVectorData1 of the type UDPData will hold all the rows to form

a complete point cloud, and this is done by the push_back function. In addition an

integer number_of_rows1 will decrease by one each time a row is saved in that vector.

struct LaserData

{

double x ;

double y ;

double z ;

} ;

struct UDPData

{

double sweep ;

double var iance [1 8 0] ;

LaserData data [1 8 0] ;

} ;

vec to r <UDPData> udpVectorData1 ;

UDPData row_package1 ;

There still is another step to complete. You can see that the while loop which iter-

ates and saves data in a vector has a condition of always true, so we need to give

it a condition to break. This is satis�ed when both control_signal_value is zero

and number_of_rows1 is not zero. This guarantees that the control signal has had a

falling edge, meaning it has fallen to zero after a one and saving some data, and not

being in zero before saving any points when it has not even reached there. At this

point the reading from UDP socket is �nished and all data which we were allowed

to read during the high period of control signal is saved in a vector, ready to be

transformed to a PCL usable format. The relative piece of code which transforms

these data to a PCL compatible point cloud form is pasted here. This is a simple

iteration to go through the vector and access the coordinates and save them in a

pointer called cloud which will be usable by PCL for further processing.

3. Implementation 55

pc l : : PointCloud<pc l : : PointXYZ>: : Ptr c loud

(new pc l : : PointCloud<pc l : : PointXYZ>()) ;

int index = 0 ;

c loud −> width = number_of_rows * 180 ;

c loud −> he ight = 1 ;

c loud −> is_dense = fa l se ;

c loud −> po int s . r e s i z e (c loud −> width * c loud −> he ight) ;

for (int i = 0 ; i < udpVectorData . s i z e () ; i++)

{

for (int u = 0 ; u < 180 ; u++)

{

cloud −> po int s [index+u] . x = udpVectorData . at (i) . data [u] . x ;

c loud −> po int s [index+u] . y = udpVectorData . at (i) . data [u] . y ;

c loud −> po int s [index+u] . z = udpVectorData . at (i) . data [u] . z ;

}

index = index + 180 ;

}

Figure 3.4 summarizes all UDP communication performed in our algorithm in a

schematic representation.

Figure 3.4: UDP communication schematic diagram of the system

3. Implementation 56

3.5 Point Cloud Production

Up to this point, we have always considered that a ready point cloud in some format

is available from a port, holding points coordinates with respect to a prede�ned co-

ordinate system. We have also mentioned that what a laser scanner measures is the

distance between the beam origin and the detected point. So it is obvious that these

ranges must undergo some important processes in order to get point coordinates.

Here we will discuss how this is implemented in our project.

Recall section 1.5 where we stated that the LMS scans the perimeter of its sur-

roundings in a plane with the aid of laser beams and it measures its surrounding in

two-dimensional polar coordinates. This measuring principle is shown in Figure 3.5.

Figure 3.5: Measurement principle of LMS111 laser scanner

This type of laser measurement systems are inherently 2D, in the sense that they

usually combine a laser range �nder with some other techniques to measure distances

on a plane. To obtain a 3D point cloud, they are placed on a rotating unit. Using

the kinematics of this unit, we can obtain a multitude of such 2D measurement

planes, which can then be converted into a consistent 3D representation. In this

case we have a servo system controlling the tilt of the laser beam, and enabling the

sweep. Figure 3.6 shows our laser scanner with a �xture which will mount to the

machine body. The �xture is �xed to the machine and the sensor will rotate along

the Y axis.

In the system converting range data to a 3D cloud we have a set of assigned

coordinate frames that needs to be clearly described. The set starts with a frame

called FSensor assigned to the laser beam rotating around its Y axis while sweeping.

Another frame is assigned to the �xture called FLaser. This frame is �xed to the

�xture, and FSensor rotates with respect to that. These two frames are clearly shown

in Figure 3.6.

Another frame is assigned to the machine body which is called FBody, and �nally the

3. Implementation 57

Figure 3.6: Laser beam and body coordinate frames

global frame FWorld which is �xed to a certain non moving point and we would like

to have our data in that frame eventually. In Figure 3.7 all these frames are shown

with respect to one another. Note the agreement in this document, x axis will be

shown in red, y will be in green, and z axis will be blue. This is in accordance with

the PCL visualizer and will also apply to feature point clouds we represent in the

results chapter.

Figure 3.7: All assigned frames

Each point PSensor with coordinates measured in the sensor frame can be trans-

formed to the global world frame with a transformation matrix as follows

PWorld = TWorld
Sensor(t) PSensor

Now let us see how a point coordinate is found in this system with de�ned frames.

The laser sensor emits 180 laser beams with each two subsequent beams having

3. Implementation 58

0.0087 degree in between as it is shown in Figure 3.8. For each single emitted beam

with known angle α, the distance d is measured as described in section 1.5. It is

then a simple geometry calculation as done in the �gure to get two coordinates x

and y in the laser beam frame. The z coordinate value will obviously be zero for all

points measured in the sensor coordinate frame.

Figure 3.8: Laser beam and point coordinates measured in the sensor coordinate frame

The coordinate values (x, y, 0) in the laser beam frame can now be transformed to

the global frame with a series of transformation matrices through the laser body, and

machine coordinate frames. In other words this will be a series of matrix products.

Assume that the transformation matrix from the laser beam to the laser body is

denoted as TLaser
Sensor, the one from laser body to the machine is denoted as TBody

Laser,

and the one from the machine to the global frame is denoted as TWorld
Body . Thus a

transformation matrix from the laser beam to the global frame can be written as

TWorld
Sensor(t) = TWorld

Body (t) TBody
Laser T

Laser
Sensor

In the above equation, TWorld
Body is known based on the navigation data, and TBody

Laser is

a �xed matrix in accordance with the implementation. Also TLaser
Sensor will be calculated

based on the rotation angle of the servo unit. The laser beam frame rotates with

respect to the laser body frame and. Now each point PSensor with coordinates

(x, y, 0) measured in the laser beam frame can be transformed to the global world

frame as follows

3. Implementation 59

PWorld = TWorld
Sensor(t) PSensor

PSensor is a 3*1 matrix, while TWorld
Sensor is 4*4. Thus a row of ones is added to the

end of PSensor for the production to be done correctly.

3.6 Servo Control

Designing a controller to control the laser scanner servo motor to sweep as desired,

is an important task to be done at this stage. To simply describe the complete

scenario, assume that a program calls for the procedure to execute, which is in fact

a higher level control mechanism. As a result gathering required data for the �rst

time will start.

In this �rst scan, which we call it "open loop" phase, the aim is to acquire infor-

mation from a wider angle of view, since there is no information about the possible

position of a pallet or even the existence of one. This point cloud is saved during

a complete laser sweep and fed to the main program written using PCL. Here is

where all the previously described procedures and algorithms will take place, and

assuming there is at least one object present in the captured scene, the result will

be a 4*4 translation matrix showing the relative position of the found object in the

scene to the model in its data base.

At this point the second step commenced which we will name "closed loop" detection

phase. In this phase the result matrix of the open loop phase is given to the servo

controller and it is used there to control the movement of the machine towards the

pallet. As in this step there is relatively accurate information of the pallet position

with respect to the machine, we will be able to control the laser servo system to

focus on a speci�c desired area. This results in smaller scan angle intervals, smaller

point clouds and less processing time. As the machine starts moving towards the

pallet, we continue focusing on the goal area, capturing point clouds, feeding it to

PCL program, and feeding the result back to the controller in order to close our

feedback control loop and correct the machine's path towards the goal.

The already existing simulated model accepts a package of eight double values to

control the servo mechanism; the �rst �ve values are zero, the sixth value is at 1.85

and the seventh value is set at -0.6. The �rst value is the current height and the

second one is the current position of the laser with respect to the machine frame.

These con�gurations allows to change the location of laser on the body, thus en-

abling study the e�ect of calibration accuracy. The laser servo can be in position

mode or velocity mode control as well.

Finally the last value will be the actual angle we want the laser to be positioned

at. There is however an exception; if the constant -2000 is given, the laser will start

3. Implementation 60

sweeping continuously and periodically. This pack of eight has to be send to port

number 4019 and to the machine with IP address "192.168.0.11". As the code we are

writing should be in accordance with the hardware and interface design, we should

make sure to pass relevant data in each stage.

3.6.1 Open Loop Phase

At the beginning of our code, we send the constant -2000 which causes continuous

periodic sweep on the laser scanner. Since we are not focusing on any speci�c area,

it will su�ce to record data gathered during one sweep which means only one sweep

needs to be masked out. This masked sweep will be the only period in which we need

to record the point cloud data during the open loop phase. We will call this signal

the "control signal" since it will control the point cloud read and saving process and

plays a signi�cant role in the designed system. Of course this signal needs to be

appropriately merged with the closed loop phase control signal as well, in order to

enable reading and saving point clouds in both stages. The logic implementation

and generation of this signal will be clearly discussed in section 3.6. But for now this

signal remains one during one complete sweep after the program has commenced.

The control signal will be send to the Linux machine every 5ms where we will be

reading it inside our code and check its value. The case is then investigated, if the

value is one we proceed to read and save a single row from the point cloud, and

if it is zero we skip reading and saving. This procedure is repeated inside a while

loop until a zero is detected after a one, which indicates a falling edge in the control

signal and the loop is then terminated.

3.6.2 Closed Loop Phase

In the previous section we created the control signal for open loop phase. When the

program starts running, it will read in the value of this signal and saves the point

cloud when it is high. The point cloud processing is then started using PCL and

the resulting 4*4 translation matrix is returned.

Now in the closed loop detection phase we need to focus the laser sweep over a small

portion of the the pallet. This is a wise decision to avoid capturing unnecessary

data, as it is clear that for detecting the position and orientation of the pallet, it

will be enough to locate the front of the pallet. Since the machine is moving at this

stage, motion dynamics of the machine should also be considered. This motion of

the machine means that the lower and upper limits of the servo angle will change

with time, as the distance between the pallet and the machine changes with time.

3. Implementation 61

For a better understanding, consider Figure 3.9 which shows the relative position

of the machine, pallet and laser scanner. In this schematic, b indicates the distance

between the machine and the pallet. From a simple geometric calculation we have
α = Arctan(1.85/(b))

β = Arctan(1.85/(b+ 0.4))

in which 1.85m is the height of the laser scanner and 0.4m is the focus area. It can

be seen from the above equations that both α and β depend on the variable b. The

position of the machine in the world frame is known from odometers and the posi-

tion of the pallet in the world frame is also known from each registration, thus the

distance between the pallet and the machine is known for all the times. According

to the above equation, knowing this variable will result in knowing the upper and

lower limit angles in every instance. Comparing the current servo angle with the

upper limit (when moving upwards) or lower limit (when moving downwards) we

�nd the direction switching points.

Figure 3.9: Relative position of the machine, pallet and laser scanner

3.7 Overview Of The Simulink Model

At this point all the implementation steps are done and our Simulink model is

complete and in accordance with all hardware requirement and communication pro-

tocols. Now we may have a look at the �nal model and gain a more clear view, before

proceeding to our tests. The most upper level view of the whole system is shown in

Figure 3.10. The system consists of four main subsystems. All the controllers are

implemented in the subsystem called controller.

The PCL registration subsystem holds blocks for receiving registration results from

3. Implementation 62

Figure 3.10: Complete model overview

the PCL machine and extracting the rotation and transformation matrices out of

them. It has two outputs, the �rst is an acknowledge signal giving a short pulse

whenever a new data has been received, and the second one named T_P_W which is

basically the translation matrix of the pallet to the world coordinate frame. Fig-

ure 3.11 shows the contents of this subsystem, containing a laser vision block shown

in Figure 3.12. Recall the package sent from PCL to this model has 15 double values

with the �rst and the two last values being zero. Unpacking and extracting matrices

R and P take place in the laser vision block and the MATLAB function in the PCL

registration data subsystem just concatenates them to form a desired 4*4 matrix

T_P_W.

Figure 3.11: PCL registration data subsystem

The second subsystem in the model is the laser scanner subsystem shown in

Figure 3.13. It holds two UDP receive blocks to receive point cloud data in the

global coordinate frame, and also some other information about the laser angle,

being processed in a subsystem to extract the exact laser angle.

3. Implementation 63

Figure 3.12: Laser vision subsystem

Figure 3.13: Laser scanner subsystem

The third block in the main system is the navigation data subsystem, which is

shown in Figure 3.14. This package of navigation data comes from port number

4202 and it contains 16 doubles in the form of:

{North,East,Down,Roll, P itch, Y aw, vx, vy, vz, wx, wy, wz, odox, odoy, odoz, T ime}
received from a UDP receive bock and extracted by unpacking. What is desired for

us is to extract the complete translation matrix for the machine body to the world

coordinate frame. For this goal, we are going to be using {North,East,Down}
values to get the position vector, and {Roll, P itch, Y aw} values to get the rotation
matrix of the machine, and the rest of the data is of no use to us. In the MATLAB

function, the R matrix is generated from three angles according to the following

formula:

 cos(p)cos(y) cos(p)sin(y) −sin(p)
sin(r)sin(p)cos(y)− cos(r)sin(y) sin(r)sin(p)sin(y) + cos(r)cos(y) sin(r)cos(p)

cos(r)sin(p)cos(y) + sin(r)sin(y) cos(r)sin(p)sin(y)− sin(r)cos(y) cos(r)cos(p)



This matrix is then concatenated with the position. The process is shown in

Figure 3.14 and �nally the 4*4 matrix of T_B_W is outputted.

3. Implementation 64

Figure 3.14: Extracting body to world transformation matrix from navigation data

The fourth and �nal subsystem shown in the main model is the controller which

holds our designs for the previously described control signal. This block accepts the

outputs of all three previously mentioned subsystems to perform its functionality.

Figure 3.15 shows inside of this subsystem. The logic starts with getting the trans-

formation matrix from the body to the world(T_B_W) from the navigation data, and

the transformation matrix from the pallet to the world(T_P_W) from recognition re-

sult, and computing the transformation matrix from the pallet to the body(T_P_B).

In order to get the correct result, the following formula should be applied:

T P
B (t) = T P

W TW
B (t)

in which the t argument indicated the dependency on time. It can be seen from

the above formula that the transpose of the T_B_W matrix is needed. The transpose

of a 4*4 translation matrix is calculated according to the following formula:

M =

[
R P

0 0 0 1

]−1

=

[
RT −RT P

0 0 0 1

]

Element (2, 4) of this matrix is the distance between the machine and the pallet.

In section 3.6.2 we described how we need this distance value to dynamically focus

on a small area of the pallet front, and here we can see the actual implementation

in Simulink.

This distance value is also used to distinguish between open and closed loop phases.

When the simulation starts, this distance is equal to zero, due to the fact that there

is no information about the existence of a pallet. This value will only change if any

detection result from the PCL machine causes this to happen. Thus comparing this

3. Implementation 65

value to zero we can enable two di�erent subsystems. Inside these two subsystems

we produce the control signal and the output is logically "OR"ed to enable the

control signal if the value of an of these signals is high.

Figure 3.15: Controller subsystem

The subsystem shown lower in Figure 3.15 is related to the open loop phase.

In section 3.6.1 we discussed how we need this signal to behave in order to mask

only one cycle during an ordinary periodic sweep of the laser. Figure 3.16 shows

the underlying logic and its implementation which has a simple logic and does not

require any further explanation. To test the system Figure 3.17 shows the output

of this subsystem to a periodic simple sinusoidal signal. The signals are plotted as

value versus time. It can bee inferred that one sweep is masked in the lower signal

and its value is high in that interval.

Figure 3.16: Servo controller for open loop detection

3. Implementation 66

Figure 3.17: Open loop control signal

The other subsystem shown upper in Figure 3.15 is related to the closed loop

phase discussed in section 3.6.2, and its contents are shown in Figure 3.18. One im-

portant note here is that in this phase we also need to produce the servo angle signal

and send it to the laser servo. This is because here the angle should be dynamically

controlled in accordance to the relative distance of pallet and machine. Thus there

are two subsystems shown in Figure 3.18.

The goal is to make the laser sweep between two angles discussed in section 3.6.2;

α and β. Hence a MATLAB function is added to produce these two values using

the distance b and the previously discussed equations.

To produce the actual servo angle signal, we use a discrete time integrator. The

idea is to provide two values to the integrator, one positive and one negative to

cause increasing and decreasing in its output. For this purpose a controlled switch

is used. Also the initial condition of the integrator is the exact laser angle at the

time when the system switched from open loop to closed loop detection, to prevent

any discontinuity in the laser motion.

As shown in Figure 3.19, investigating the output of the switch, we will know

whether the angle is decreasing or increasing and based on that we compare the

3. Implementation 67

Figure 3.18: Servo controller for closed loop detection

Figure 3.19: Laser angle producer subsystem

current servo angle either to α or β. So the two enabled subsystems inputting α and

β are basically comparators detecting whether the integrator output has reached

any of these two values. In the case of comparing to α we know that the servo angle

is in increasing mode, thus the output will be +1 to cause the switch to output −8
and hence switch sweep direction. The same story applies when we are comparing

the servo angle to β which means we are in the decreasing mode, so to change the

direction the output is set to be −1. Then these two outputs are merged to be up-

dated whenever a change has happened and used to control the switch. The memory

block is added to cause a small delay in order to break a conditional in�nite loop.

Finally using the same package format discussed in section 3.6 this signal is packed

and sent to the servo system.

The last part that needs explanation is the subsystem generating the control signal

in this phase, and for this we will use the previously described servo direction in

addition to the acknowledge signal of PCL new data. The implementation is shown

in Figure 3.20.

We have made the servo angle to sweep between our desired values (which are set

dynamically), and now the idea is to mask one complete sweep (either increasing or

3. Implementation 68

Figure 3.20: Control signal producer subsystem

decreasing) each time after a new data has been sent from PCL. This will ensure

that if the registration result has come in the middle of a cycle, we gather data

from a complete increasing or decreasing cycle. As this will repeat every time a

registration result is received, it also works in accordance with the �nal while loop

in our C++ code, and guarantees iteration.

The logic behind this should be understood from the block diagram and for a deeper

understanding Figure 3.21 provides the resulting control signal. The �rst signal is

the direction of the laser servo which switches between +8 and -8 for two sweep

directions. The second signal shown is the PCL acknowledge signal having a small

pals whenever a result is sent from the PCL machine. Finally it can be seen from the

control signal (shown in the third row) that it will wait until a result is sent, then

it masks the �rst complete sweep. Note that the two triggered subsystems force a

zero output each time a falling or rising edge is detected.

Figure 3.21: Closed loop control signal

69

4. TESTS AND RESULTS

4.1 Overview

This chapter describes the evaluation of the implemented method for pallet recogni-

tion. Choices taken when designing the algorithm previously described were due to

what PCL had to o�er. Now to see the results and investigate whether or not our

choices were correct, several tests have been conducted and the output results are

presented. The chapter is divided into four sections. In section 4.2 the input model

is introduced with pictures. Details on parameters used by the implementations are

listed in section 4.3 alongside the values we used for those parameters.

Then in section 4.4 the results on the GIMsim simulator are discussed. The most

important performance parameters such as recognition time, the alignment �tness

score and the position and rotation results are computed. Comparing the average

results for ten iterations on each test, we then discuss the results.

Though the time constraint did not allow for complete execution and testing on the

machine, but we have gathered some real data from a standard pallet in an open

environment to execute some tests. Performed tests on these real data are presented

in section 4.5.

4.2 Datasets

It is now time to have a look at data sets used to test our algorithm. There are

two point clouds to be fed to the application as input, the previously captured and

trained "model" of the pallet front, which we aim to detect and it is saved in the

database of the system, and a complete point cloud called the "scene", which is the

captured data by the laser scanner in each execution step. Obviously the scene will

be di�erent at each time, due to the distance and angle of the laser scanner to the

pallet, and the dynamic environment which may change, but the model is the same

and it is shown in Figure 4.1.

In order to reveal the position and rotation of the pallet, it will be enough just to

see the front view, and no need to give the whole pallet as the model to be detected.

This is also due to the fact that we are not usually interested to detect an empty

pallet, but rather a loaded one. So when a pallet is loaded the only visible part will

4. Tests and Results 70

be the front. Note that a speci�c coordinate frame is assigned to the model, which

its origin is exactly at the middle of the pallet front.

Figure 4.1: Pallet front model

Another rather important time reduction strategy applied here is called the

"training" phase. In addition to the model point cloud, we also compute key points,

normals and features for the model and pass them to the algorithm as inputs, rather

than computing them at the same time with the source cloud. This is a rational and

bene�cial decision, since the model and all its descriptors remain the same during

the whole process, and there is no need to compute them over and over again. We

will see the e�ect of this step later in this chapter. If this process and pipeline is to

be used for another model, these data sets should be replaced with the desired ones.

Figure 4.2 represents computed key points using uniform sampling technique with

a search radius of 4cm. Figure 4.3 shows normals estimated at key points with a

search radius of 0.1m. The reason to choosing these values is given in section 4.3.2

and 4.3.3.

Figure 4.2: Model uniform key points extracted with bin size 0.04m

Figure 4.3: Model normals extracted with search radius 0.1m

4. Tests and Results 71

4.3 Determining Parameters

While introducing the algorithm step by step and illustrating the theoretical back-

ground for each step, we also presented and mentioned some parameters to be de�ned

by the user for that function. For instance, in the section where we discussed surface

normals, it was mentioned that there is no meaning for a normal for a point, but

we rather need a small neighbourhood of that point to be considered as a surface,

and then to compute the normal. This raised a need for a parameter of the radius

of that neighbourhood to be determined. Additionally it was mentioned that the

value of these parameters, play a vital role in the recognition algorithm and atten-

tion needs to be paid to their setting. Choosing the best parameters can be a little

tricky sometimes, and it often depends on the nature of the data.

According to our C++ code, parameters that need setting include the radius of key

point selection, radius for normal estimation, radius for feature extraction, minimum

distance of sample correspondences, maximum correspondence length, number of it-

erations for RANSAC algorithm, and �nally the euclidean �tness epsilon for ICP

algorithm. Through the next subsections we will investigate settings for each of

these parameters.

4.3.1 Control Signal Sending Frequency

Recall the section where we described how the scene cloud is saved with the aid of

a control signal sent every 5ms. A sample scene saved with this signal is shown in

Figure 4.4(a). To see the e�ect of this value, the frequency was changed to 15ms

and the scene was saved accordingly. The result is shown in Figure 4.4(b). Pay

attention to the number of rows not saved correctly and missed. Since this data

missing is random, it might happen to loose a lot of data on the front of the pallet,

and this will destroy the matching result. The results with 5ms were satisfying and

we decided to set the parameter to this value.

Note here the position of the pallet in the global coordinate frame. The ground is

positioned 3m above the zero level. This is due to the simulation implementation,

and it will not a�ect any process in the recognition algorithm. But the distance be-

tween correspondences in RANSAC should be adjusted with this in mind, as will be

shown later. In addition in all the following simulation tests, the left bottom corner

of the pallet is manually positioned at (0, 0,−3) in the world coordinate frame, thus

we always know what the results should be and calculate the error from that.

4. Tests and Results 72

(a) Control signal sent every 5ms

(b) Control signal sent every 15ms

Figure 4.4: Comparing a sample scene saved with two di�erent control signal frequencies

4.3.2 Uniform Key points Sampling Size

Extracting key points from a point cloud is the �rst step through the process and

setting the right value for this function is critically important and will a�ect all the

upcoming steps. This radius will a�ect the number of remaining points from the

original cloud after down sampling. Usually there is no strict routine for determining

the best value, but it depends a lot on the application, the data set, the minimum

speed, and the amount of details needed. Thus one should try some rational values

and perform a trade o� between the advantages and disadvantages.

This value will also a�ect the result of the recognition, in addition to the time. If

the sampling size is too high, there will be great loss of meaningful data, and might

even cause the object shape to be non recognizable. For the model cloud we set

this value to 0.04m and visualizing them shows that the shape is still recognizable.

Keeping this size �xed for the model, the scene sampling size should be found at

a point where the accuracy and time lines meet. In other words one should run

4. Tests and Results 73

multiple tests and �gure out the size which will give both satisfying computation

time and accuracy. The value was found to be the same for the scene as well.

4.3.3 Normal Estimation Radius

After extracting the key points, it is time to estimate normals for each remaining

point. This radius should be chosen to contain enough points in the neighbourhood

of a query point. From the key points extraction radius we will roughly know how

far points are located from one another, and if the normals radius is less than this

distance there will not be any points in the sphere to form a surface and the resulting

normal will be NaN. Usually it will be �ne to have some NaN in the results, specially

at the corners and they can be removed, but the ratio should be really small.

Another option is to use the function setKSearch() instead of setRadiusSearch()

which will use k neighbours no matter the radius, instead of all neighbours in a

sphere of radius r. It might be the case that the k neighbours search returns a

completely di�erent neighbourhood size than radius search, and obviously di�erent

neighbourhoods will result in di�erent normals. The radius search is of particular

interest for 3D feature estimations, because it attempts to capture the data on the

same surface patch, independent of the number of points. It is advised by the PCL

developers to use the radius search with a carefully chosen radius to get more ac-

curate normals [1], and this is exactly what we have done. Additionally it is a wise

decision to visualize the normals with provided classes in PCL and perform a visual

inspection and choose the best value accordingly.

Fortunately this value is not so sensitive as the concept of a surface remains valid

apart from the point data. Changes in the key points extraction size (at least in

centimetres order) will not a�ect the accuracy of normals. Remember as long as we

remain on the same surface the normal would be the same, either it is calculated

from 5 points or 20 points. We just have to make sure this is more than the sampling

size value.

After some trials we chose the radius of 0.1m for both model and scene clouds and

the test results were also satisfying. Figure 4.5 shows normals for the scene calcu-

lated with radius 0.1m(a) and 0.05m(b). Pay special attention to the marked areas

where the normals are not perpendicular to the surface due to a small radius choice.

4.3.4 Feature Extraction Radius

The feature extraction radius has to be larger than the radius selected to estimate

the normals, otherwise the features will be very similar, and thus they will not con-

4. Tests and Results 74

(a) search radius 0.1m

(b) search radius 0.05m

Figure 4.5: Comparing scene normals estimated with two di�erent radius sizes

tribute to the registration process. Unfortunately features are just �oat values and

can not be visualized to perform any visual inspection. But the procedure to �nd

the best value for this parameter is to start with a value certainly greater than the

normals radius, then run the recognition algorithm, and �nd a value that gives the

best result with some test and trial. This value will greatly depend on the algorithm

as will be seen later.

4.3.5 RANSAC Parameters

The two parameters MinSampleDistance and MaxCorrespondenceDistance are re-

lated to the RANSAC based recognition algorithm. The �rst one indicates the

minimum distance between two randomly selected correspondences. The value for

this parameter should be chosen in accordance with the object size. If the sampled

correspondences are too close to each other, the result might not be accurate enough.

The second parameter gives a hint about the distance between two corresponding

points in the two clouds. This will tell the algorithm that the point we are looking

for should not be further than some distance, and should be set to a little bit larger

than the average distance between corresponding points in two clouds. In our simu-

4. Tests and Results 75

lation environment we know that the scene is 3 meters above the model in the global

frame and also that the model coordinate frame has 90 degrees rotation around z

axis. Having these in mind an estimate of 3.5m is a good value for the maximum

distance between two corresponding points.

Whereas in the real environment we have to adjust this parameter accordingly. The

high level control guides the machine towards the pallet with a good precision based

on navigation and odometer data. Thus we will not be performing visual detection

from a distance more than 5m. According to these assumptions the correspondence

distance between two corresponding points will not be more than 5m in this case.

The number of iterations for this algorithm depends some how on the rotation of

the two clouds with respect to each other. If the two clouds have great rotations,

more iterations are needed. This value should be set to the minimum value with

which the algorithm gives a satisfying result. In the simulation environment the two

coordinate frames for model and scene have 90 degrees of rotation, while in the real

system the point cloud comes in the same coordinate frame as the model. Thus the

number of iterations would be much less in this case. There is no rule to set this

parameter, but one should try di�erent values and inspect the results and set the

value accordingly.

4.3.6 ICP Euclidean Fitness Epsilon

The intention of ICP is to keep minimizing the euclidean distance between all the

points (or a subset of them) selected in the point clouds and this is done iteratively.

One termination condition is to set the maximum allowed Euclidean error between

two consecutive steps in the ICP loop, before the algorithm is considered to have

converged and stops. The error is estimated as the sum of the di�erences between

correspondences in an Euclidean sense, divided by the number of them.

With this parameter we indicate that if the sum of Euclidean squared errors is

smaller than this value, we want to terminate the iteration. We have set this value

in accordance with our desired resolution to 0.01m.

4.4 Simulation Results

Time is one of the most important performance metrics in any project which be-

comes even more important in real time applications involving autonomy. In several

di�erent places within this document it was mentioned that some strategies were

applied in order to decrease the execution time and to increase the quality of our

proposed algorithm. It is now time to investigate the validation of those claims. In

4. Tests and Results 76

this section we will have a closer look at time consumption of di�erent steps within

our algorithm, in addition to performing some tests with di�erent parameters to

investigate the e�ect of each on the process time.

The system used for all tests is a lenovo X200 laptop with 4GB RAM, Intel core 2

duo CPU 2.26 GHz, operating on a 32 bit Linux ubuntu 13.04. All tests have been

performed on the same system, and also at the same time to decrease the chance of

any external factor a�ection. More over when investigating the e�ect of one param-

eter, all the other parameters were kept the same, except if otherwise mentioned. To

perform the tests, the machine was driven manually to a position near to the pallet

and facing its front. Some scenes were taken while the machine was moving and

some were taken with the machine standing still. All these conditions are described

in the following pages.

It was mentioned before that the uniform key points sampling size has a great ef-

fect on the �nal result and the recognition time as well. Thus several tests have

been conducted to investigate the e�ect of this parameter. First we have tried our

algorithm with a sampling size of 0.001 (1mm) which is a small size compared to

the pallet size and data resolution. The machine was placed at the nearest possi-

ble distance to the pallet and it was not moving during the data acquisition, then

the number of original scene cloud, number of selected key points, total registration

time, time consumption of each step, ICP �tness score and the rotation and position

of the �nal matrices were calculated. Note that since we are using a simulated model

and the environment is ideal, there was no rotations around x and y axis, and the

results also indicated this correctly, so we do not repeat these and only record the

rotation angle around z axis. Table 4.1 shows the results. In the next test the pallet

and machine positions were kept the same but we changed the sampling size to 0.05

(5cm) and the results are represented in Table 4.2.

Table 4.1: Near Distance, With Training, Sample Size 0.001, Machine Stationary

ICP Total Key Recognition Angle Pos. Pos. Pos.
Score Points Points Time(ms) (degree) X Y Z

1 0.000685 15424 3717 1389.70 93.43 -0.553 -0.133 -3.059
2 0.000410 15080 3721 1230.43 92.51 -0.537 -0.169 -3.059
3 0.000650 13469 3337 1129.31 91.89 -0.561 -0.144 -3.062
4 0.000594 15573 3665 1327.84 94.50 -0.558 -0.144 -3.059
5 0.000326 14108 3420 1162.82 90.05 -0.569 -0.151 -3.058
6 0.000595 14002 3610 1222.86 93.88 -0.582 -0.143 -3.059
7 0.000521 14971 3571 1234.68 95.46 -0.641 -0.144 -3.058
8 0.000529 13906 3512 1176.73 88.98 -0.625 -0.146 -3.059
9 0.000321 15423 3802 1328.12 89.07 -0.620 -0.159 -3.058
10 0.000345 14472 3457 1205.48 96.84 -0.627 -0.143 -3.058
Av 0.000497 14643 3581 1240.79 92.66 -0.587 -0.147 -3.058

4. Tests and Results 77

Table 4.2: Near Distance, With Training, Sample Size 0.05, Machine Stationary

ICP Total Key Recognition Angle Pos. Pos. Pos.
Score Points Points Time(ms) (degree) X Y Z

1 0.000566 12794 1701 592.357 88.21 -0.631 -0.095 -3.062
2 0.000749 14670 1885 634.040 87.00 -0.564 -0.091 -3.060
3 0.000512 13925 1825 600.673 86.54 -0.598 -0.085 -3.061
4 0.002214 14027 1778 620.687 55.87 -0.663 -0.077 -3.058
5 0.000512 14024 1741 607.865 91.55 -0.594 -0.069 -3.062
6 0.000664 12996 1762 618.269 89.77 -0.656 -0.064 -3.061
7 0.000736 13728 1901 673.732 86.21 -0.567 -0.063 -3.060
8 0.000520 13554 1811 627.370 94.23 -0.602 -0.045 -3.061
9 0.000432 13958 1894 658.331 97.88 -0.632 -0.037 -3.061
10 0.000584 14331 1862 634.239 88.95 -0.594 -0.041 -3.060
Av 0.000749 13801 1816 626.756 86.62 -0.610 -0.066 -3.060

Considering average values from these tests, with 1mm sampling size the total

recognition time was 1240.79 and with 5cm it was 626.756. At the same time the

average of ICP �tness score was 0.000497 in the �rst test and 0.000749 in the second

test. Any ICP �tness score with an order of 10−4 indicates a sharp and good result.

Comparing ICP �tness scores from their average might not be a good index to

consider, but it is better to use the number of bad recognitions out of ten trials.

With this in mind we can see that we had only one bad result out of ten in the

second test, while this ratio was zero in the �rst test at the cost of time. We do

not repeat the data, but we determined that this ratio increased with increasing the

sampling size. This gives a straight result of an inverse relationship between the

quality and quantity in the algorithm, and raises the concept of trade-o�. We have

accepted a 10% of failure and aimed for a recognition time under 1s. Of course this

can be modi�ed by needs. Also a sample scene is presented in Figure 4.6 showing

the pallet near position, the original model and the red area is where the algorithm

has placed the model as the result of recognition.

The next test is conducted to investigate the di�erence between detecting a near and

a far object. It is a natural behaviour of laser range scanners to produce more dense

clouds near the beam origin, and more sparse ones at further distances. Previous

�gures clearly show this common e�ect which is due to some divergence e�ect.

There are two divergences, one is the divergence of two adjacent beams, because of

ray nature of the beams originating from single point which will diverge along the

distance. The other is the divergence of one beam, since real laser is not perfect and

beam radius will increase as it travels farther.

As the density of the data has great e�ect on the number of points and thus on

the recognition accuracy and time, we conducted a test at the furthermost distance

4. Tests and Results 78

between the pallet and the machine where the pallet was still visible to the sensor.

While our previous tests have been in the nearest distance we will see the di�erence

as more magni�ed. With the same sampling size of 5cm the machine is situated at

a further distance and the results of ten recognition iterations are given in Table 4.3

and a sample cloud is shown in Figure 4.7.

Figure 4.6: Sample saved scene cloud showing the pallet near position in relation to the
original model (the red area shows the �nal match)

Figure 4.7: Sample saved scene cloud showing the pallet near position in relation to the
original model (the red area shows the �nal match)

4. Tests and Results 79

Table 4.3: Far Distance, With Training, Sample Size 0.05, Machine Stationary

ICP Total Key Recognition Angle Pos. Pos. Pos.
Score Points Points Time(ms) (degree) X Y Z

1 0.000753 3541 569 465.612 89.44 -0.636 -0.167 -3.038
2 0.000848 3697 611 464.319 88.12 -0.667 -0.167 -3.041
3 0.000836 3577 590 480.708 -79.92 -0.600 -0.176 -3.038
4 0.001764 3259 592 479.900 122.21 -0.558 -0.119 -3.037
5 0.000723 3763 548 446.417 88.54 -0.648 -0.171 -3.039
6 0.001848 2841 598 491.745 -145.55 -0.783 -0.184 -3.037
7 0.000777 3692 620 471.932 95.22 -0.675 -0.170 -3.041
8 0.000830 3109 566 466.298 188.87 -0.593 -0.176 -3.039
9 0.001090 3675 577 460.859 184.32 -0.580 -0.177 -3.039
10 0.000940 3253 537 449.900 44.05 -0.602 -0.178 -3.039
Av 0.001041 3441 581 467.769 67.53 -0.634 -0.168 -3.038

The very �rst great di�erence revealed from the results is the amount of points

gathered in two di�erent distances despite the same sampling size. When near, the

average total scene points was 13801 and the average of key points left after uni-

form sampling was 1816. While when far, these values dropped to 3441 and 581

receptively. This clearly shows that we will have more meaningful data (points from

the object) when the object is closer. Thus the density and resolution of the cloud

should be considered seriously before applying any uniform sampling, to adjust the

sampling size accordingly. Above results show that with the same sampling size

of 5cm the unreliability increases to 20% when the pallet is further. One possible

adaptive way is to use a greater sampling size for the �rst scan, then reduce it as

the machine approaches the pallet.

One more rather important test worth reporting was performed with the machine

moving during the data acquisition. We drove the machine manually with di�erent

speeds and accelerations and during di�erent times, completely randomly. Moreover

the movements were both in forwards and backwards directions. Table 4.4 holds the

results of ten recognition iterations. Three sample scenes are also shown in Fig-

ure 4.8. Note from the table that the amount of total points and key points has no

speci�c order, and this was completely expected. Also the pictures show randomly

distributed densities due to random movements as well. Though this will a�ect the

recognition time, but the results showed great accuracy during the tests except from

the the times when the pallet was at a far distance and there was not enough points

acquired.

4. Tests and Results 80

Figure 4.8: Sample saved scene clouds while the machine was moving
(the red areas show the matching result)

4. Tests and Results 81

Table 4.4: With Training, Sample Size 0.05, Machine Moving

ICP Total Key Recognition Angle Pos. Pos. Pos.
Score Points Points Time(ms) (degree) X Y Z

1 0.000462 13879 2108 805.286 92.04 -0.608 -0.129 -3.055
2 0.000562 5236 1162 534.021 89.88 -0.579 -0.159 -3.048
3 0.006800 4837 1113 557.591 178.04 -0.571 -0.148 -3.045
4 0.000992 9002 1819 640.853 145.52 -0.627 -0.206 -3.050
5 0.002541 9161 2326 826.957 -98.48 -0.644 -0.162 -3.062
6 0.000393 13034 2193 724.094 94.66 -0.579 -0.154 -3.053
7 0.000383 13054 2183 724.084 91.04 -0.589 -0.184 -3.083
8 0.000671 6243 1421 599.831 85.32 -0.561 -0.103 -3.047
9 0.000573 12093 2063 750.838 89.65 -0.519 -0.141 -3.056
10 0.001238 9220 1871 703.200 -154.22 -0.463 -0.178 -3.047
Av 0.001462 9576 1826 686.675 61.34 -0.574 -0.156 -3.054

One of the �rst recommended strategies was to previously compute key points,

normals, and features for the model and feed them as input to the algorithm, rather

than computing them at the run time. Although this decision might seem quite

obvious at �rst, but loading data will be time consuming as well. All previous tests

were done with training. To put this under test, an experiment was performed with

all preprocessing steps for the model at the same time with processing the scene.

Table 4.5: Without Training, Sample Size 0.05, Machine Stationary

ICP Score Total Points Key Points Recognition Time(ms)

1 0.000733 14210 1854 670.453
2 0.000973 14708 1899 691.501
3 0.000500 13810 1717 682.251
4 0.000508 14951 1983 764.664
5 0.000729 15091 1889 684.083
6 0.001299 14901 1935 702.992
7 0.000477 13757 1934 787.265
8 0.000439 14179 1919 690.751
9 0.000413 15295 1924 699.801
10 0.000449 14015 1860 675.622
Average 0.000652 14492 1891 704.938

Comparing the average recognition times from Table 4.2 and 4.5 it is clear that

we have saved 704.938 − 626.756 = 78.182ms on training. This could have been

anticipated since the model cloud does not contain so many points and it is rather

a small cloud. Thus the saved amount of time might not be signi�cant. This time

saving however will increase by the size of model cloud.

4. Tests and Results 82

Figure 4.9: A sample recognition result from di�erent view angles showing the e�ect of
iterative closest points alignment, the purple cloud shows the output of random sample
consensus algorithm, and the red cloud shows the �nal result after �ne alignment with
iterative closest points

As mentioned the �nal alignment is performed to give a sharp more accurate re�ne-

ment to the initial alignment result in a faster way. To see the e�ect of this process

a sample output is shown in Figure 4.9 from di�erent angles and closer views. The

black cloud is the original scene, the purple cloud is the output of RANSAC, and

the red cloud represents the output of the ICP algorithm. It is obvious that ICP

�ne alignment produces very great and accurate results and without a doubt it will

be very bene�cial.

4.5 Real Data Results

Our document would have not been complete without performing any tests on real

data. The simulation is a helpful method to test our algorithm, but the real data

4. Tests and Results 83

do not always look as in simulated environment. There are many factors a�ecting

the data, laser noise, weather conditions, object edges, and etcetera. Figure shows

a close look at a point cloud from a real pallet in outdoor environment and it shows

that how previously mentioned factors a�ect the cloud. These complicate the es-

timation of local point cloud characteristics such as surface normals or curvature

changes, leading to erroneous values, which in turn might cause point cloud regis-

tration failures.

Thus applying these data to our algorithm did not give any �ne results at all. This

data sets su�er greatly from the noise and the e�ect of sharp edges. PCL provides

a very useful �lter called "Statistical Outliers Removal" especially for this purpose.

Some of these irregularities can be solved by performing a statistical analysis on

each point's neighbourhood, and trimming those which do not meet a certain crite-

ria. The sparse outlier removal is based on the computation of the distribution of

point to neighbours distances in the input dataset. For each point, it computes the

mean distance from it to all its neighbours. By assuming that the resulted distri-

bution is Gaussian with a mean and a standard deviation, all points whose mean

distances are outside an interval de�ned by the global distances mean and standard

deviation can be considered as outliers and trimmed from the dataset.

The following Figures 4.10 and 4.11 show the e�ect of the sparse outlier analysis

and removal. The original dataset is shown on the top, while the resultant one on

the bottom. Note how the points at the side of the pallet are removed and how

the bottom pictures look smoother. Also the number of points in the original cloud

was 46646, while after removing the outliers the remaining number of points were

33573. Figure 4.12 shows �nally what we will be feeding the algorithm as the scene.

The outliers are removed and the scene is down sampled as well in this �gure. In

comparison to the original noisy scene in 4.11(b), see how the front of the pallet is

more recognizable and smooth.

To adapt the algorithm, the following piece of code was added to our main pro-

gram. As the usual routine �rst an object of this class of �lters is created here called

sor. The function setInputCloud() gives the scene cloud as the input to the �lter.

The two parameters of mean number of neighbouring points and the stadard devia-

tion threshold are set using the functions setMeanK() and setStddevMulThresh()

respectively. Then a call to the filter() function will perform the main �lter-

ing process. Just adding this �lter to the algorithm and changing the crop �lter

parameters the results were improved greatly.

pc l : : S ta t i s t i c a lOut l i e rRemova l <pc l : : PointXYZ> sor ;

so r . setInputCloud (scene) ;

so r . setMeanK (5 0) ;

so r . setStddevMulThresh (1) ;

so r . f i l t e r (* scene) ;

4. Tests and Results 84

(a) Before

(b) After

Figure 4.10: The e�ect of statistical outliers removal �lter, the noisy data from the side
edge is removed

(a) Before

(b) After

Figure 4.11: Applying statistical outliers removal �lter, most of the data associated with
noise is removed from the side edge and the empty space of the front

4. Tests and Results 85

Figure 4.12: A noisy scene, �ltered with statistical outlier remover and downsampled

For this data set we are interested in the e�ect of di�erent algorithms and per-

formance of di�erent descriptors in each of them. Thus four sets of tests were

performed comparing FPFH and SHOT descriptors in two previously mentioned

main algorithms. The �rst one is �nding and rejecting correspondences while the

second algorithm uses RANSAC based method.

Five tests have been conducted on �ve di�erent scenes and the results are presented

in Tables 4.6 , 4.7, 4.8, and 4.9 with the calculation of the time consumed by each

step and the position and rotation outputs. To capture the scenes the machine was

driven manually to the front of the panel in �ve di�erent positions. In all tests

the downsampled model containing 618 points was given as model input and the

radius for the scene down sampling was 0.04m, normal estimation radius was 0.1m,

epsilon distance for rejecting correspondences was 0.03m, minimum sample distance

and maximum correspondence distance for RANSAC based method were 0.02m and

4.5m respectively, and euclidean epsilon for ICP was 0.01m �xed.

Although in this stage we had no ground truth about the position of the pallet like

we did in simulation, but PCL provides a transformation validation function using

the method described in euclidean validation function section to produce a �oat

representing the level of con�dence of the resultant transformation. This class ac-

cepts the model and the scene clouds in addition to the transformation matrix, and

will calculate how this transformation matrix will get the model close to the scene.

Then it returns a �oat value with which we can perform comparison between dif-

ferent transformation matrices and investigate the correctness of our results. These

�tness scores are also given in each table.

For illustrative purposes we have also performed a visual inspection and the results

showed a very good estimation as represented in Figure 4.13. The �gure also shows

the remaining correspondences in green lines, based on which the best transforma-

tion was estimated.

4. Tests and Results 86

Table 4.6: Algorithm 1, FPFH Descriptors, Scene Sample Size 0.04m, Model Points 618

Fitness Total Key Total Desc. Corr.Est. Corr.Rej. Desc.Ext. Number of
Score Points Points Time(s) Time Time Time Radius Iterations

1 0.000533 46646 2763 2.46 0.63 0.04 1.67 0.28 1800
2 0.000438 46646 2776 0.64 0.14 0.02 0.26 0.11 300
3 0.000680 46646 2748 1.30 0.58 0.04 0.43 0.27 500
4 0.000587 46646 3340 1.13 0.46 0.02 0.35 0.22 400
5 0.000428 46646 2396 0.75 0.41 0.01 0.08 0.24 100

Rotation Matrix Roll(x) Pitch(y) Yaw(z) Translation Vector 0.76 −0.35 −0.53
0.18 0.92 −0.34
0.61 0.17 0.77

 12.45 13.32 -37.99

 2.00
−0.34
−0.21


 0.99 0.16 −0.00
−0.16 0.99 0.03
0.01 −0.03 1.00

 -1.71 -9.18 -0.57

 1.98
−0.30
−0.26


 0.94 0.27 −0.19
−0.20 0.93 0.31
0.26 −0.26 0.93

 -15.62 -12.01 -15.14

 2.22
0.12
−0.19


 0.88 −0.27 0.39

0.25 0.96 0.09
−0.40 0.01 0.92

 0.62 15.86 23.62

 3.07
−0.13
−0.38


 0.99 0.08 −0.11
−0.09 0.99 −0.07
0.11 0.08 0.99

 4.62 -5.19 -6.31

 2.87
−0.27
−0.33



4. Tests and Results 87

Table 4.7: Algorithm 2, FPFH Descriptors, Scene Sample Size 0.04m, Model Points 618

Fitness Total Key Total Desc. Alg. Desc. Number of
Score Points Points Time(s) Time Time Radius Iterations

1 0.000482 46646 2763 0.81 0.15 0.22 0.11 50
2 0.000607 46646 2776 0.82 0.14 0.20 0.11 50
3 0.000637 46646 2748 0.85 0.14 0.22 0.11 50
4 0.000757 46646 3340 0.99 0.19 0.20 0.12 50
5 0.000529 46646 2396 0.80 0.14 0.18 0.12 50

Rotation Matrix Roll(x) Pitch(y) Yaw(z) Translation Vector 0.97 −0.12 0.20
0.11 0.99 0.08
−0.20 −0.06 0.98

 -3.50 6.47 11.58

 1.96
−0.36
−0.26


 0.99 0.01 −0.12
−0.01 1.00 −0.03
0.12 0.03 0.99

 1.73 -0.58 -6.91

 2.02
−0.12
−0.26


 0.81 0.56 −0.13
−0.51 0.80 0.29
0.28 −0.16 0.95

 -9.56 -32.19 -16.30

 2.14
0.14
−0.20


 0.90 −0.32 −0.29

0.32 0.95 −0.04
0.28 −0.05 0.96

 -2.98 19.57 -16.34

 3.04
−0.08
−0.34


 0.98 0.04 0.21
−0.03 1.00 −0.04
−0.21 0.04 0.98

 2.34 -1.75 12.09

 2.89
−0.15
−0.37



4. Tests and Results 88

Table 4.8: Algorithm 1, SHOT Descriptors, Scene Sample Size 0.04m, Model Points 618

Fitness Total Key Total Desc. Cor.Est. Cor.Rej. Desc. Number of
Score Points Points Time(s) Time Time Time Radius Iterations

1 0.000388 46646 2763 1.34 0.15 0.93 0.04 0.11 50
2 0.000366 46646 2776 1.41 0.15 0.97 0.46 0.11 50
3 0.000426 46646 2748 1.49 0.15 0.92 0.17 0.11 200
4 0.000602 46646 3340 1.71 0.17 1.14 0.09 0.11 100
5 0.000657 46646 2396 1.34 0.13 0.80 0.17 0.11 200

Rotation Matrix Roll(x) Pitch(y) Yaw(z) Translation Vector 0.98 −0.20 −0.02
0.20 0.98 −0.04
0.02 0.04 1.00

 2.29 11.53 -1.14

 1.93
−0.24
−0.24


 0.99 0.06 −0.11
−0.08 0.99 −0.11
0.11 0.11 0.99

 6.34 -4.62 6.32

 1.99
−0.28
−0.27


 0.67 0.54 −0.47
−0.39 0.83 0.39
0.60 −0.09 0.79

 -6.50 -30.20 -37.74

 2.20
0.22
−0.25


 0.87 −0.48 −0.01

0.46 0.84 0.29
0.15 0.25 0.95

 14.74 27.86 -8.67

 3.09
−0.14
−0.37


 0.43 0.09 0.89

0.11 0.98 −0.16
−0.89 0.17 0.42

 22.04 14.35 63.49

 2.95
−0.30
−0.33



4. Tests and Results 89

Table 4.9: Algorithm 2, SHOT Descriptors, Scene Sample Size 0.04m, Model Points 618

Fitness Total Key Total Desc. Alg. Desc. Number of
Score Points Points Time(s) Time Time Radius Iterations

1 0.000371 46646 2763 8.26 0.17 7.53 0.14 300
2 0.000337 46646 2776 3.24 0.13 2.51 0.11 100
3 0.000440 46646 2748 7.10 0.16 6.35 0.13 250
4 0.000727 46646 3340 9.73 0.18 8.80 0.13 300
5 0.000891 46646 2396 5.12 0.12 4.43 0.12 200

Rotation Matrix Roll(x) Pitch(y) Yaw(z) Translation Vector 0.85 −0.27 0.45
0.22 0.96 0.16
−0.48 −0.03 0.88

 -1.95 14.51 28.66

 1.98
−0.32
−0.26


 0.87 0.06 −0.49
−0.08 0.99 −0.03
0.48 0.07 0.87

 4.60 -5.26 -28.78

 2.01
−0.24
−0.28


 0.84 0.54 −0.04
−0.50 0.80 0.32
0.20 −0.25 0.94

 -14.89 -30.76 -11.56

 2.22
0.24
−0.24


 0.77 −0.38 −0.50

0.30 0.92 −0.24
0.55 0.04 0.83

 2.75 21.29 -33.64

 3.05
−0.27
−0.36


 0.98 0.19 −0.08
−0.19 0.99 0.04
0.08 −0.02 0.99

 -1.16 -10.97 -4.58

 2.83
−0.35
−0.35



4. Tests and Results 90

In real data processing we are not only interested in the accuracy of di�erent

scene results, but the recognition of an object should be robust regardless of the

view angle. Especially in real time applications there is no chance to change the

parameters. Comparing the four above tables we can see that only one method with

one descriptor type will produce results with the same feature extraction radius. In

other three tables regardless of the accuracy of the results and the time consumption,

each scene needed a modi�cation in the feature extraction radius, which is not

desirable in our application at all. According to these results and tests we suggest

that SHOT descriptors along with the �rst algorithm will be the best choice in such

applications that need object recognition from di�erent angles.

4. Tests and Results 91

(a) Test1

(b) Test2

(c) Test3

4. Tests and Results 92

(d) Test4

(e) Test5

Figure 4.13: Recognition tests with real data, visual inspection (the red area shows where
the pallet has been �tted, the green lines show remaining correct correspondences

93

5. CONCLUSION

This work covered the problem of object recognition and pose estimation in a point

cloud data structure using PCL (Point Cloud Library). The motivation for this

work was the need of industries to have standard pallet recognition, since most of

the trucks and forklifts are equipped with 3D sensor devices.

We have started with a brief explanation of the problem and the aim of this project.

Di�erent software, hardware and tools were introduced step by step. The program-

ming of this project was done with an extensive use of an open source library which

also supports users for their problems and issues. The PCL was introduced along

with di�erent libraries for various mathematical and graphical operations. We then

developed our project step by step by giving necessary theoretical knowledge of ba-

sic 3D data processing concepts and what tools PCL had to o�er. In each section

the piece of relevant code was also presented, thus the main code was described at

the same time.

On the implementation side and more practical issues we then addressed commu-

nication, servo controller, and the main point cloud production phases. To simply

describe the complete scenario, we assumed that an upper level program calls for

the procedure to execute, as a result gathering required data for the �rst time was

started. In this �rst scan, which we called it open loop phase, the aim was to acquire

information from a wider angle of view, since we had no information about the pos-

sible position of a pallet. This point cloud was then fed to the main C++ program

written using PCL. Here all the previously described procedures and algorithms took

place, and assuming there was at least one object present in the captured scene, the

result was a 4*4 translation matrix showing the relative position of the found object

in the scene to the model in its data base.

At this point the second step commenced which we called it closed loop detection

phase. In this phase, the result matrix of the detection was fed to the designed

controller and was used there to control movement of the machine towards the pal-

let. As in this step we had relatively accurate information of pallet position with

respect to the machine, we were able to control the laser servo system to focus on

a speci�c desired area as well. This resulted in smaller scan angle intervals, smaller

point clouds and less processing time. As the machine started moving towards the

pallet based on open loop detection phase, we continued focusing on the goal area,

5. Conclusion 94

capturing point clouds, feeding it to PCL program, and feeding the result back to

the controller in order to close our feedback control loop and correct the machine's

path towards the goal.

Such real time applications not only have strict restrictions on time and accuracy,

but also require extremely robust procedures. To investigate this issue we compared

two main algorithms mostly used in literature and also present in PCL along with

two of the main descriptor types. Each descriptor was tested in each of the algo-

rithms and the results were represented. We discovered a valuable result from the

experiments not mentioned previously. Not all types of descriptors will perform �ne

with all types of algorithms. Most of the present research have focused on single

scene experiments, object categorization, or semantic maps, whereas in this appli-

cation we required a procedure to detect one object robustly from di�erent angles

and distances.

As all algorithms have parameters to be set by the user, our main problem was to

�nd an algorithm which will perform �ne with one setting. Results have proven the

use of SHOT descriptors along with �nding and rejecting correspondences will be

the best choice.

5.1 Feature Work

The time constraint did not allow for a complete implementation on the machine.

In this phase we have reached good results on the simulator environment and solved

communication issues. The next step for this project is to make an executable of

this program and implement it on the machine. It will then be possible to research

more on practical issues and investigate on the real aspects which will be a good

research topic.

95

REFERENCES

[1] Radu Bogdan Rusu, "Semantic 3D Object Maps for Everyday Manipulation

in Human Living Environments", PhD Dissertation Technische Universitat

Munchen, available at �les.rbrusu.com/publications/RusuPhDThesis.pdf

[2] Xin Zhang, John Morris, Reinhard Klette CITR, "Volume Measurement Using

a Laser Scanner", Computer Science Department, The University of Auckland,

September 2005

[3] Andreas Nuechter, "3D Robotic Mapping, Springer Tracts in Advanced

Robotics", volume 52, Springer Berlin / Heidelberg, 2009

[4] Stefano Squizzato, "Robot bin picking:3D pose retrieval based on Point Cloud

Library", University of Padova, December 2012

[5] Oliver van Kaick, Hao Zhang, Ghassan Hamarneh, Daniel Cohen-Or, " A Sur-

vey on Shape Correspondence", Computer Graphics Forum, Volume 30, Issue

6, pages 1681-1707, September 2011

[6] Luis A. Alexandre, "3D Descriptors for Object and Category Recognition:

a Comparative Evaluation", Workshop on Color-Depth Camera Fusion in

Robotics at the IEEE/RSJ International Conference on Intelligent Robots and

Systems(IROS), Portugal, October 2012

[7] R. B. Rusu, A. Holzbach, G. Bradski, and M. Beetz. "Detecting and segmenting

objects for mobile manipulation", In Proceedings of IEEE Workshop on Search

in 3D and Video (S3DV), held in conjunction with the 12th IEEE International

Conference on Computer Vision (ICCV), Japan, September 2009

[8] K. Hammoudi, F. Dornaika, B. Soheilian, N. Paparoditis, "Extracting Wire-

frame Models of Street Facades from 3D Point Clouds and the Corresponding

Cadastral Map", International Archives of Photogrammetry, Remote Sensing

and Spatial Information Sciences (IAPRS), vol. 38, France,September 2010

[9] Sitek et al., "Tomographic Reconstruction Using an Adaptive Tetrahedral Mesh

De�ned by a Point Cloud", IEEE Trans. Med. Imag., 2006

[10] Radu Bogdan Rusu, Steve Cousins, "3D is here: Point Cloud Library (PCL)",

Robotics and Automation (ICRA), IEEE International Conference on Robotics

and Automation (ICRA), May 2011

REFERENCES 96

[11] Silvio Filipe, Luis A. Alexandre, "A Comparative Evaluation of 3D Keypoint

Detectors in a RGB-D Object Dataset, 9th International Conference on Com-

puter Vision Theory and Applications", Portugal, January 2014.

[12] Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger and Darius

Burschka, "Rigid 3D geometry matching for grasping of known objects in clut-

tered scenes", The International Journal of Robotics Research, 2012

[13] Chavdar Papazov and Darius Burschka, "An E�cient RANSAC for 3D Object

Recognition in Noisy and Occluded Scenes", In Proceedings of the 10th Asian

Conference on Computer Vision (ACCV'10), November 2010

[14] Radu Bogdan Rusu, Nico Blodow, Michael Beetz, "Fast Point Feature His-

tograms (FPFH) for 3D Registration", International Conference on Robotics

and Automation (ICRA), 2009

[15] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, "Aligning Point Cloud

Views using Persistent Feature Histograms", 21st IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), France, September 2008

[16] http://www.xbox.com/en-US/kinect

[17] Jens Wittrowski, "Furniture Recognition using Implicit Shape Models on 3D

Data", Master Thesis in Intelligent Systems, Bielefeld University, October 2012

[18] http://www.pointclouds.org/documentation/tutorials/walkthrough.php

[19] Jens Behley, Volker Steinhage and Armin B. Cremers, "Performance of His-

togram Descriptors for the Classi�cation of 3D Laser Range Data in Urban

Environments", IEEE International Conference on Robotics and Automation

(ICRA), pp. 4391-4398, 2012

[20] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, John Hsu, "Fast 3D

Recognition and Pose Using the Viewpoint Feature Histogram", IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), 2010

[21] F. Tombari, S. Salti, and L. Di Stefano, "Unique signatures of histograms for

local surface description", in Proceedings of the 11th European conference on

computer vision conference on Computer vision: Part III. Berlin, Heidelberg:

Springer-Verlag, 2010, pp. 356-369

[22] Zhengyou Zhang, "Iterative point matching for registration of free-form curves

and surfaces", International Journal of Computer Vision, October 1994, Volume

13, Issue 2, pp 119-152

