

SERGII IAROVYI

SEMANTIC MODELLING FOR DYNAMIC SYSTEM
RECOGNITION IN NON-INTRUSIVE INDUSTRIAL
MONITORING SYSTEMS

Master of Science Thesis

Thesis topic approved in the Facul-
ty of Engineering Sciences meeting
on 8th of May 2013.

 I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Machine Automation

IAROVYI, SERGII: Semantic modelling for dynamic system recognition in non-

intrusive industrial monitoring systems

Master of Science Thesis, 62 pages, 12 Appendix pages

March 2014

Major: Factory Automation

Examiner: Prof. José Luis Martínez Lastra

Supervisor: Prof. José Luis Martínez Lastra, Jorge Garcia Izaguirre Montemayor

Keywords: Semantics, Device Profile for Web Services, semantic annotations, monitor-

ing system, smart shop floor devices, enterprise integration, ontology, knowledge-

driven configuration, function blocks.

Industrial monitoring systems play important role in decision making on all levels of a

factory from the shop floor to ERP systems influencing overall efficiency of production.

Together with a trend for mass customization and constantly increasing tempo of intro-

duction of new products, equipment and technologies to manufacturing, contemporary

monitoring systems should provide enough flexibility to be up to date with manufactur-

ing system. Such monitoring systems as the one offered in European Commission pro-

ject PLANTCockpit, offer the approach of extensively reconfigurable, loosely coupled

systems. Unfortunately, configuration of the monitoring system which could work on all

levels of automation hierarchy requires the knowledge of all those levels together with

knowledge of integration technologies and tedious work related with creation of config-

uration itself.

Present thesis work offers an approach which automates the configuration process

employing knowledge bases. This approach includes employment of SOA on device

level, with semantically enhanced services descriptions (and possibility to employ the

gateway devices for non-intrusiveness), definition of the metrics to be monitored by the

system in the knowledge base, as well as set of algorithms and standards required to

create configuration of the monitoring system. Reusability of knowledge defined on

devices and in knowledge base simplifies the process of introduction of new devices,

metrics or other reconfiguration of the monitoring system. The system implementing

proposed approach has been developed in this thesis and was able to configure monitor-

ing system for a test bed.

 II

PREFACE

After several months of search, research, implementation, reimplementation, writing

and rewriting, finally of procrastination this work is ready to be published. I would not

manage to make this thorny path alone, so I would like to mention the ones who helped

me the most.

I am grateful to prof. José Luis Martínez Lastra for possibility to develop myself in

Factory Automation domain as a student and as a researcher. As well I am thankful to all

the people who have been teaching during courses I have had during my Master studies.

My very special thanks should go to Jorge, with whom I worked in PLANTCockpit,

during last two years, who gave me plenty of important advices in work and study, super-

vised this work and occasional encounters with whom in Kultainen Apina were fun.

I would like to mention the friends from almost all possible continents whom I found in

TUT and who made my leisure, study and work full of joy. So cheers to Borja and Amalia,

Ahmed, Manu, Oscar, Zoran, Carlos, Gerardo.

Also I would like to thank my parents and whole family in Ukraine who cared about

me, supported me and asked me hundreds of times about advance of my thesis.

Finally, my biggest possible gratitude is dedicated to my wife Daryna, who encour-

aged me to apply and get through Master Studies, as well, she inspired me on multiple

other important deeds, and who simply makes me happy.

 III

CONTENTS
1. Introduction ... 1

1.1. Motivation .. 1

1.2. Problem Definition ... 2

1.2.1. Justification for the work ... 2

1.2.2. Problem statement .. 3

1.3. Work description .. 3

1.3.1. Objectives... 3

1.3.2. Methodology .. 4

1.3.3. Assumptions and limitations .. 4

1.4. Thesis Outline .. 5

2. Theoretical background ... 6

2.1. Industrial Monitoring Systems ... 6

2.1.1. Enterprise application layers .. 6

2.1.2. Flush-up Enterprise Integration Paradigm 7

2.1.3. PLANTCockpit .. 11

2.2. SOA at device level .. 13

2.2.1. DPWS and OPC-UA .. 13

2.2.2. State of the art of DPWS related research 14

2.3. Semantics ... 16

2.3.1. Ontology... 17

2.3.2. Manufacturing taxonomies .. 17

2.3.3. Semantic enrichment of Web Services .. 19

3. Methodology ... 20

3.1. Tasks and criteria ... 20

3.1.1. Shop floor connectivity .. 22

3.1.2. Semantic enrichment .. 23

3.1.3. Shop floor discovery .. 24

3.1.4. Semantics Extraction.. 24

3.1.5. Mapping to Knowledge Base ... 25

3.1.6. Analyse the Knowledge Base .. 26

3.2. Use case .. 26

3.2.1. MPS® 500-FMS .. 27

3.2.2. Gateway device .. 27

3.2.3. PLANTCockpit .. 28

3.3. Summary .. 29

4. Implementation ... 30

4.1. Implementation of the tool ... 30

4.1.1. UI overview.. 31

4.1.2. Discovery Module .. 32

4.1.3. Semantic Extraction Module .. 35

4.1.4. Mapping Module .. 38

 IV

4.1.5. KB Analysis Module .. 41

4.1.6. FBN Creation ... 42

4.2. Use Case implementation ... 47

4.2.1. Metric definition .. 48

4.2.2. Configuration of gateway devices.. 49

5. Results ... 52

5.1. Use Case ... 52

5.2. Concepts and learnings... 53

6. Conclusions ... 55

6.1. Thesis conclusions.. 55

6.2. Future work .. 56

6.3. Final considerations.. 56

Appendix 1: Use case FBN XML ... 63

Appendix 2: Feeder work station WSDL .. 68

 V

LIST OF FIGURES
Figure 1: ISA-95 activity hierarchy and corresponding applications hierarchy [14].. 6

Figure 2: WS architecture and interaction .. 8

Figure 3: Unified event management architecture by Walzer et al. [27] 10

Figure 4: Integration of FIS with PLANTCockpit [15] .. 12

Figure 5: General architecture of SOCRADES framework [36] 16

Figure 6: CAEX product-process-resource model [44] .. 18

Figure 7: Overview of project tasks .. 20

Figure 8: Schematic presentation of SAWSDL .. 24

Figure 9: Original CFBNO model offered in [43] .. 25

Figure 10: Festo FMS-500 layout and flow of work pieces and pallets in system ... 27

Figure 11: Use case diagram for the developed tool ... 30

Figure 12: Generalized sequential diagram of the tool use 31

Figure 13: GUI of developed tool ... 32

Figure 14: Concept of discovery module .. 32

Figure 15: Sequential diagram of DPWS discovery process triggered by DPWS

client .. 33

Figure 16: Sequential diagram of DPWS discovery process triggered by device 34

Figure 17: Concept for semantics extraction module ... 35

Figure 18: Class diagram of factory shop floor devices object model 36

Figure 19: Algorithm for WSDL parsing .. 37

Figure 20: Recursive parsing of elements in SAWSDL ... 37

Figure 21: CFBNO: relations between classes and data properties of adapters 38

Figure 22: Algorithm for CFBNO population .. 40

Figure 23: Algorithm for analysis of KB .. 42

Figure 24: Java Object for FBN configuration ... 43

Figure 25: Creation of FBNBlock Java Object of processor 44

Figure 26: Creation of FBNBlocks Java Objects of adapters 45

Figure 27: XSD schema of configuration FBN .. 46

Figure 28: Ontology with definition of the production duration metric 49

Figure 29: Parts of WSDL file .. 50

Figure 30: State diagram of the WorkStation ... 50

Figure 31: FBEC with deployed network for use case ... 53

 VI

LIST OF TABLES
Table 1: Main benefits of the SOA paradigm [5], [19] ... 8

Table 2: WSDL elements according to standard [23] ... 9

Table 3: WS operation types [24] ... 10

Table 4: Features comparison of OPC-UA and DPWS [33] 13

Table 5: Criteria for selection of shop floor device connectivity technology and

device .. 20

Table 6: Criteria for device description semantic enrichment technology and

taxonomy selection.. 21

Table 7: Criteria for technology selection for shop floor device discovery 21

Table 8: Criteria for semantic extraction technology selection 21

Table 9: Criteria for selection of technologies and algorithms to map the device

descriptions to KB ... 22

Table 10: Criteria for technology and algorithm selection to analyse the KB 22

Table 11: Methodology ... 29

Table 12: SPARQL query of populated CFBNO ontology and part of corresponding

result .. 52

 VII

ACRONYMS
ANSI American National Standards Institute

B2MML Business To Manufacturing Markup Language

CAEX Computer Aided Engineering Exchange

CEP Complex Event Processing

CFBNO Configuration Function Block Network Ontology

DCS Distributed Control System

DPWS Device Profile for Web Services

EAI Enterprise Application Integration

EDA Event-Driven Architecture

EIP Enterprise Integration Patterns

EIS Enterprise Information System

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

EU European Union

FB Function block

FBN Function Block Network

FIS Factory Information System

GDP Gross Domestic Product

HMI Human Machine Interface

HTTP Hyper Text Transfer Protocol

ICT Information Communication Technologies

IEC International Electrotechnical Commission

ISA International Society of Automation

ISO International Organization for Standardization

IT Information Technologies

JMEDS Java Multi Edition Device Profile for Web Services Stack

KB Knowledge Base

MES Manufacturing Execution System

OPC-UA OPC - Unified Architecture

OWL Web Ontology Language

PLANTCockpit Production Logistics and Sustainability Cockpit

RDF Resource Description Framework

SAWSDL Semantic Annotations for Web Service Description Language

SCADA Supervisory Control And Data Acquisition

SOA Service-Oriented Architecture

SOA4D Service-Oriented Architecture for Devices

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SWRL Semantic Web Rule Language

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

http://www.ansi.org/

 VIII

W3C World Wide Web Consortium

WS Web Service

WSDL Web Service Description Language

WSMO Web Service Modelling Ontology

XML Extendable Markup Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

WS4D Web Services for Devices

 1

1. INTRODUCTION

The chapter provides a motivation for this thesis work, defines the problem, which is

addressed in this research, specifies research objectives, limitations and methodology.

Additionally structure of the document is described in this section.

1.1. Motivation

Manufacturing is a vitally important sector of economy of European Union. Before the

financial crisis, in 2007 share of manufacturing in GDP of EU was 17.1%. Taking into

account corresponding energy generation, construction and business services the aggre-

gated share in GDP increases to 37%. In general, about 47% of GDP of European Union

are closely related with manufacturing, by estimations of European Commission's Di-

rectorate-General for Enterprise and Industry [1]. During crisis the share of manufactur-

ing reduced, and in 2010 the manufacturing contributed 16.5% of GDP [2] of European

Union. Considering non-financial business economy, it is the biggest share of value

added 26.8%, employing 22.6% of workers [3]. Hence the manufacturing is still an ef-

fective and powerful locomotive of European economy.

On-going saturation of the markets and results of financial crisis constantly esca-

lates the competition between the manufacturers. Contemporary enterprise should exe-

cute the customized orders in short terms with maximal resource efficiency and labour

productivity. In [4] among five main factors of production efficiency the technology and

closely related energy intensity had been defined; also the labour productivity has been

selected as one of two competitiveness indicators of the EU economy. The labour

productivity per employee in manufacturing has been annually increasing since 1995 at

average by 2% (as for 2009), which is about twice higher than average in economy.

Moreover, in 2010 the labour productivity per hour worked in manufacturing had grown

by 8.5% [4]. In long term improvement of the worker productivity and even more obvi-

ous in the growth of productivity per hour the technology is a key determinant. These

facts leads us to the conclusion, that technology plays important role in European manu-

facturing, increases the competitiveness of economy as whole and thus ensuring pros-

perity.

The new technologies offer more effective means to produce the conventional

products or even introduce the innovative ones. Another important idea employed to

maximize efficiency of enterprises is concept of information systems, which can reduce

of paperwork, help to optimize manufacturing and predict the flow of industrial pro-

cesses. This approach also allows to detect and to solve some of the problems before

they affected the production process.

 2

1.2. Problem Definition

Currently, the benefits provided by the implementation of new technologies and related

equipment in the manufacturing are reduced by expenses required for reconfiguration.

The lower reconfiguration costs are, the more likely factories would faster adapt new

technologies and equipment, and hence the manufacturing will be more effective, sus-

tainable and competitive.

Contemporary factory information systems are, usually, customized to manufactur-

ing system and change of the last one leads to reimplementation of information system.

This process significantly increases time and cost of introduction of the new technolo-

gies, thus reducing benefits from both new technologies and manufacturing systems.

The advance in microcontroller technology, as well as, in IT and ICT domains

which can be observed during last decades, introduces new potential to factory automa-

tion, especially in domain of factory information systems. The concepts, technologies

and tools already developed in the named domains can be applied to manufacturing,

reducing the cost of implementation of the new technologies.

Summing up, the currently sufficient efforts to set up monitoring system are re-

quired on introduction of new equipment, products or technologies to factory shop floor.

Monitoring systems employing modern software concepts and technologies can be dy-

namically configured, but still require abundant amount of data about shop floor devices

and layout. Contemporary technologies and smart devices are providing opportunities

for exposure shop floor device descriptions by device itself.

1.2.1. Justification for the work

Re-configurability of the manufacturing systems is closely related to reusability of the

system parts. Service Oriented Architecture (SOA) plays an important role in reusability

of contemporary software modules in IT [5]. Introduction of this approach to manufac-

turing domain had been going under several projects and initiatives [6]–[10] starting

from 2000s. In this endeavours the functional implementation of SOA based Web Ser-

vices (WS) technology had been developed – Device Profile for WS (DPWS). The

DPWS-enabled devices are currently available on the market [11]. These devices can be

employed on the factory shop floor as controllers, or as a gateway to existing equip-

ment, allowing non-intrusive creation of device SOA.

Currently, Event Driven Architecture (EDA), concept of Function Blocks (FB) and

loosely coupled integration are enhancing the reusability to systems in IT domain. Same

set of concepts is lying in the basis of the layered cockpit architecture, which is being

implemented in the PLANTCockpit EU project [12]. This approach makes factory in-

formation system dynamically configurable, e.g. no customization or recompilation of

the information system applications is needed, once the business functionality of the last

one has to be changed. Moreover, DPWS-enabled devices, mentioned in previous para-

graph, can be bridged to factory information system as shown in [13].

 3

In order to automate the reconfiguration process, on changes in the shop floor, se-

mantic enrichment and reasoning can be used. For semantic enrichment DPWS devices

can contain annotations in the service descriptions. Service descriptions with annota-

tions may define the role of device in manufacturing system. The role of device can be

used to deduce the meaning of data that this device can deliver to monitoring system.

Moreover, usage of standardized industrial taxonomy for named annotations, will allow

unambiguous definition of the integrated data. Later the reasoning mechanisms may be

employed to create a new configuration for dynamically reconfigurable system, so that

information system will be synchronized with changes on the factory shop floor. This

approach will reduce the efforts to adjust monitoring system on introduction of new

equipment, products or technologies to factory shop floor.

1.2.2. Problem statement

As it was mentioned above the automated configuration process of monitoring systems

can reduce both costs of monitoring system maintenance and of new equipment intro-

duction. The approach to achieve of this goal is dynamic system recognition. This ap-

proach needs following questions to be answered:

 How to synchronize the configuration of a monitoring system with the real

life layout of the manufacturing equipment?

 How to calculate the metrics to be displayed in monitoring system minimis-

ing configuration efforts of monitoring system?

 How to define metrics for the monitoring system so that configuration of

such can be automated?

 How to identify the current state of the system and transform it into a dy-

namic monitoring model?

1.3. Work description

1.3.1. Objectives

The objectives of this thesis work are defined as follows:

 Definition of a generic method for system model exposure and discovery:

 This task consists on the creation of a methodology for exposure of

new components into an integration framework based on the litera-

ture review. It can be seen as a blueprint that specifies the steps to

follow to semantically expose newly added components with differ-

ent communication protocols.

 Semantic description of the components of an industrial scenario:

 Modeling of the industrial components. Each component should ex-

pose its functionality in a standard way. (Similar to WSDL for WS)

How other protocols can expose their functionality while being more

expressive than WSDL (e.g. SAWSDL).

 4

 Extension of Semantic Configuration model of a SOA framework:

 Integration of the approach and models into the whole SOA integra-

tion platform. This work should include:

 Definition of messages for integration with the SOA platform

 Sequence diagrams describing interaction between compo-

nents

 Inclusion example of the information exposed by the newly

added component to the system

 Implementation of the system in the test bed:

 Testing the whole integrated solution in an industrial scenario.

 Validating results in an industrial scenario:

 Outcome should prove the generation of component networks using

dynamic system recognition. It should as well demonstrate how the

dynamic recognition allows to adequate the calculations of a certain

variable in a system. (e.g. if a system is monitoring process through-

put, how adding a new component affects the calculation and how the

framework can expand this calculation adding the new component)

1.3.2. Methodology

Current research will be conducted as presented further. At first, the review of relat-

ed works will be performed. This review will allow to form a theoretical background for

the thesis work. Based on this background the methodology for achievement of the stat-

ed goal will be defined. After this stage the generic method for system model exposure

and discovery and the approach for semantic description of components have to be de-

fined.

Once the technologies, tools models and techniques will be selected the implementa-

tion of the solution will be conducted. On implementation stage the algorithms and in-

teractions will be defined and implemented as software. Resulted tool will be tested in

industrial scenario. On this testing the test bed system will be configured according to

technological decisions defined in methodology.

The capabilities of the tool will be analysed based on results of testing. At last, the

developed approach and research process will be evaluated.

1.3.3. Assumptions and limitations

Assumptions made in this work are following:

 Equipment contains its operation descriptions where the final user can define its

role and data descriptions.

 Manufacturers enrich the device descriptions with semantic description of data

sources, employing the standardized taxonomy. Roles of the devices in manufac-

 5

turing system are to be defined by the end users of equipment (for example ex-

perts of manufacturing process).

 Expert creates ontological description of KPIs and metrics to be calculated, em-

ploying standardized taxonomy.

1.4. Thesis Outline

This thesis is organized in 6 Chapters. In Chapter 2 theoretical background required for

research is presented. Based on theoretical background and thesis objectives Chapter 3

defines methodological approach for current research. Chapter 4 describes implementa-

tion of the project and its testing in a test bed. The results obtained during research, im-

plementation and testing. Chapter 6 concludes the thesis work and defines future work.

 6

2. THEORETICAL BACKGROUND

In this chapter the review of the concepts and technologies, related to this thesis will be

provided.

2.1. Industrial Monitoring Systems

Industrial monitoring is a process of retrieval, analysis and presentation of the data re-

lated to the industrial processes. Industrial monitoring systems are the subdivision of the

Factory Information Systems (FIS), which are subset of Enterprise Information Systems

(EIS) applied for manufacturing industry. Contemporary EIS are commonly implement-

ed as legacy applications with poor cross-vendor compatibility.

2.1.1. Enterprise application layers

The most employed hierarchy of the applications is based on ISA-95 standard. ISA-95

(also known as ANSI/ISA-95) is a standard dedicated to integration interfaces for the

enterprise and control systems for factories. This standard had emerged in 2000s as a

result of cooperation of experts under the ISA Committee. ISA-95 also standardized as

IEC/ISO 62264.

Figure 1: ISA-95 activity hierarchy and corresponding applications hierarchy [14]

ISA-95 is divided in parts and the third part of it described the hierarchy of the ac-

tivity domains. As activities are executed primarily by the applications this hierarchy is

applicable for related applications. Level 4 of activity hierarchy corresponds to layer of

Enterprise Resource Planning (ERP) systems, level 3 – to layer of Manufacturing Exe-

cution Systems (MES), and levels 0, 1, 2 are matching with shop floor automation and

 7

control systems such as Supervisory Control and Data Acquisition (SCADA) and Dis-

tributed Control Systems (DCS) layers. The hierarchy of domain activities proposed by

ISA-95 and corresponding hierarchy of applications are depicted on Figure 1.

2.1.2. Flush-up Enterprise Integration Paradigm

As it was mentioned FIS are usually realized as a set of independent applications, em-

ploying dissimilar software, approaches, technologies and networking protocols on dif-

ferent levels of hierarchy, presented on Figure 1. These dissimilarities are restricting

access to data by layers. However, in such applications as energy management (see

[15]) or asset utilization (see [16]) data from different levels of hierarchy is required,

and currently this access is achieved by sporadic customized integration solutions.

Generalized approaches for enterprise integration are described in Enterprise Inte-

gration Patterns (EIP) by G. Hophe and B. Woolf in[17]. The book emphasize on im-

portance of reliability, scalability and reusability of integration. Concept of loose cou-

pling is assumed by the authors as most beneficial approach for integration. This con-

cept can be implemented employing the philosophy of Service Oriented Architecture

(SOA). Web Services (WS) technology is a particular implementation of SOA and is

currently most employed in industry.

Another important concept which can be employed to implement loosely coupled

integration of the enterprise applications is concept of Function Blocks (FB). Particular

realization of idea of FB is IEC-61499.

2.1.2.1 Service Oriented Architecture

Service Oriented Architecture had been defined in 1990s by Sun targeting the EIS do-

main. SOA is a software design which is based on the services – the independent and

interoperable modules of software. SOA services implement some defined functionality

which can be called by other services, so the loosely coupled set of services can imple-

ment some business logic. This approach allows to reuse the software component (con-

ceptually, even encapsulate non SOA software) thus it reduces development and

maintenance costs of SOA enterprise applications.

The concepts lying behind the SOA are modularity and interoperability of services

and separated from service functionality algorithms of service discovery and binding.

For interoperability the business logic of the service has to be separated from its imple-

mentation. To access the business functionality of the service the interfaces are used.

The interfaces are separated from the service implementation and this allows modifica-

tion of each service implementation (business logic) independent of whole service net-

work of SOA application[18].

SOA as a concept has proved its benefits to IT domain especially in the enterprise

application integration (EAI). The main benefits of SOA paradigm are summed up in

Table 1.

 8

Table 1: Main benefits of the SOA paradigm [5], [19]

Property Benefit

Interface separated from implementation Simplification of maintenance of system

Dynamic services discovery Simplification of extension of the system

Loosely coupled aggregated services Increased reusability of system parts

Web Services

Currently, there exist several dissimilar technologies implementing SOA concept.

Among the technologies implementing SOA concept Web Service (WS) is particularly

important. Web Service provider offers its functionality to network, allowing web cli-

ents (or service requesters) to use this functionality to process the information.

Operations provided by providers and interfaces required to invoke those operations

are defined in the description files. Description files follow Web Service Description

Language (WSDL) standard. Messaging between requesters and providers is imple-

mented using SOAP messages. Having the WSDL file describing the service provider

the requester can generate the SOAP message to invoke the operation and will receive

the response SOAP message schema of which is defined in WSDL. This allows to de-

couple the implementation of business logic of service providers and requesters. Uni-

versal Description Discovery and Integration (UDDI) is designed as a general service

registry system, but it was not widely adapted in industry[20], hence several alternatives

are created. All mentioned standards are open and XML based. [17]

The WS architecture and main interactions are presented on Figure 2. The actions on

Figure 2 are numbered. Initially discovery service obtains the service descriptions from

all services it can discover, this is presented on figure as “0.Discovery”. Discovery ser-

vice is a logical role and is usually implemented in requester, provider or other imple-

mentation of service. Later once some requester needs to use certain service it can get

WSDL describing this service from discovery service (“1.Get WSDL” on Figure 2).

This WSDL request can use some criteria (e.g. WSDL location or availability of certain

operation) to select the proper description file. If the WSDL matching the criteria is

found it will be returned to requester (“2.WSDL” on Figure 2). Once service requested

has a WSDL of the provider it can create and parse SOAP messages to communicate

and use the service of provider. [19]

Figure 2: WS architecture and interaction

In following subsections the overview of standards implemented for discovery, de-

scription and interaction with services will be performed.

 9

WS-Discovery

Main goal for WS discovery is to provide consumers with requested service descrip-

tions. In W3C standard for web services no single technology is defined for discovery,

but three approaches are offered. These approaches are: registry, index and peer-to-peer

approach.

Generalizing, registry approach requires discovery service to store all service de-

scriptions in it, index – to store links on descriptions located elsewhere and peer-to-peer

discovery approach allows Web Services to discover each other dynamically in WS

network. These approaches differ in its robustness and speed of discovery. Peer-to-peer

approach is considered as more applicable for dynamic networks, while registry provide

most benefits in static ones. [21]

All the mentioned approaches require the discovery protocol to search for service

descriptions in the network. This protocol is specified in OASIS WS-Dynamic Discov-

ery (WS-Discovery). WS-Discovery employs multicast SOAP-over-UDP messages to

discover the services. This protocol defines messages and their flow to find service de-

scriptions in a local network. On top of this protocol any of approaches from WS stand-

ard from W3C can be implemented. [22]

WSDL

There are several versions of WSDL, but version 1.1 is still most employed in in-

dustry. WSDL 1.1 is a XML file of a standard schema. W3C standard for WSDL de-

fines the meanings for WSDL elements present in Table 2.

Table 2: WSDL elements according to standard [23]

Name Meaning

Types Container for data type definitions using some type system

Message Abstract, typed definition of the data being communicated

Operation Abstract description of an action supported by the service

PortType Abstract set of operations supported by one or more endpoints

Binding Concrete protocol and data format specification for a particular port-

type

Port Single endpoint defined as a combination of a binding and a network

address

Service Collection of related endpoints

 In WSDL the operations are defined as a set of input and output messages. This part

of service description defines the message flow required to perform some action and

receive the result from it if required. According to message flow there are four types of

operations which are presented in Table 3.

In case service provider should send an outbound message to client, it should know

the endpoint where to send it. For request-response type of operation the response mes-

sage will be delivered to requester. But if a requester needs to receive notification type

of operation to monitor status of a service a mechanism of registering of requester end-

point is needed.

 10

Table 3: WS operation types [24]

Type Definition Pattern

One-way Operation only receives a message Input-only

Request-response Operation receives a request and returns a response Input-output

Solicit-response Operation sends a request and waits for a response Output-input

Notification Operation only sends a message Output-only

WS-Eventing

The mechanism of registering interest in the notifications is defined in WS-

Eventing. This mechanism is named subscription. To subscribe for notification a re-

quester should send a SOAP message defined in the standard. This message should de-

fine which notification to subscribe to, where to send the messages of notification, until

when the subscription should be maintained, filters and some other options. Once sub-

scribed, unless the subscription expires or requester had unsubscribed, requester will

receive the notifications from the service. [25]

2.1.2.2 Event-Driven Architecture

In [26] J. Van Hoof emphasizes the importance of publish-and-subscribe communica-

tion pattern, which should introduce higher level of autonomy of the system compo-

nents. This communication pattern is associated with a different architecture - Event-

Driven Architecture (EDA). In the article SOA is suggested to be used mainly for verti-

cal and EDA for horizontal integration.

Figure 3: Unified event management architecture by Walzer et al. [27]

K. Walzer et al. in [27] are presenting an architecture for cross-layer enterprise inte-

gration, based on EDA concept. This architecture was named unified event management

architecture and can be observed on Figure 3. The concept of abovementioned architec-

ture allows to reduce complexity of the integration of dissimilar applications which be-

 11

long to different layers of application hierarchy. Similar approach has been employed in

PLANTCockpit project which is described in section 2.1.3.

More advantages for EDA provides Complex Event Processing (CEP), which allows

to process event to generate high level events based on most basic ones and sets of

rules. Being decoupled from generation of the events itself, CEP provides a flexible

method to analyse the status of the system consisting of heterogeneous modules, such as

SOA and EDA based ones. [28]

Also Van Hoof in his article notes, that the concept of Enterprise Service Busses

(ESB) combines benefits of both SOA and EDA providing loosely coupled integration

of services. S. Ortiz Jr. in [29] defines the high reusability of ESB based integration

solutions, allowing incremental evolutionary development of enterprise information

eco-system. Additionally ESB provides means for further decentralization of the EIS

and hence increase robustness and reduce maintenance time and costs.

2.1.2.3 Function Blocks

Another important concept for flush-up enterprise integration is the idea of function

blocks. Function blocks can simplify configuration of integration system and introduc-

tion of new functionality in it modularising and decoupling business logic from func-

tional logic. Extensive configurability of the FB and separation of functional and busi-

ness logics allows to avoid customization of the function blocks based system

The most employed concepts of FB are specified in IEC-61131 and IEC-61499. The

goal of IEC-61131 is to define common programming languages for automation do-

main. Among others this standard specifies most basic concept of FB Diagram (FBD)

programming language, for application in PLC. Hence IEC-61131 defines the basic

concept of FB and their interactions [30].

In more details the concept of FB is developed in IEC-61499. The FB defined in the

IEC-61499 is an independent program module, which can be loosely coupled with other

FB employing EDA and messaging [31]. To introduce a data from external source,

which may not employ FB approach, in IEC-61499 a service interface block type is

defined. The concept of FB, defined in IEC-61499 provides scalability, connectivity,

reusability and re-configurability of system modules and hence tends to simplify loosely

coupled integration of the system [32], [16], [33].

2.1.3. PLANTCockpit

Employing the contemporary technologies and concepts Vasyutynskyy et al. in [16] are

proposing a generic approach for data integration in enterprise information system. This

approach is based on addition of a parallel level to standard automation ISA-95 based

hierarchy. This additional level is employing adapters to retrieve data from the enter-

prise applications or other relevant sources and can processed retrieved data.

 12

Creation of generic access to dissimilar information systems would simplify the

process of integration. This approach is being developed in PLANTCockpit project and

can be observed on Figure 4.

Figure 4: Integration of FIS with PLANTCockpit [15]

The principles on which the project is based are:

 Loose coupling

 Standardized messaging

 Configurability

 Independence

 Extendibility

To address the named principles and to allow high reusability PLANTCockpit em-

ploys the concept of IEC-61499. The data extraction, processing and presentation are

performed by the FB Network (FBN), which consists of the instances of FB Types.

Among FB Types there are adapters capable to extract data from external systems and

processors capable to process data. The most important FB Types for this thesis work

are DPWS adapter, which allows the system to subscribe to notifications from device

level and Esper Complex Event Processing (CEP) which enables asynchronous event

processing.

The FBN besides configuration of individual FBs describes connections between

function blocks, message including transformations. For message transformation Exten-

 13

sible Stylesheet Language (XSL) Transformation (XSLT) is employed. The XSLT file

is a XML of a specific format, which allows transform one XML to another by place

values of XML elements and attributes to elements and attributes of another XML.

The configuration of the FB and FBN is defined in XML file (see Appendix 1), con-

taining the business logic of FB instance, description of the routes between FB, which

includes required transformations [15, 24]. This XML file is being processed by Func-

tion Block Engine Configurator (FBEC) which parses the configuration file and inter-

acts with PLANTCockpit framework utilities such as Route Manager, Function Block

Manager, Persistence Manger in order to deploy the scenario, described in file. FBEC

also provides GUI for creation and edition of the FBNs.

2.2. SOA at device level

The benefits provided by SOA EDA are being adapted to Factory Automation domain

in several researches. A.W. Colombo et al. in [35] and [36], I. Delamer and J.L.M.

Lastra in [37] and [38], Lobov et al. in [39] have emphasized on importance of SOA

compatible devices to provide full benefits of loosely coupled automation systems.

2.2.1. DPWS and OPC-UA

As SOA has exhibited its benefits being implemented in enterprise systems the en-

deavours to introduce SOA approach to manufacturing domain appeared. Currently, two

most employed implementations of WS-based SOA technologies for devices are OPC-

UA and DPWS.

In 2010 Candido et al. are comparing named technologies [40]. The comparison of

the features provided in the article is presented in Table 4. The authors note that OPC-

UA is assumed to be not fully SOA compliant, partly employing WS protocols, and that

OPC-UA is limiting extensibility of the system, restricting user to predefined Web Ser-

vices. Main advantages of OPC-UA are mature binary encoding UA Binary and

metadata model UA Object Model [40].

On the other hand main advantages of DPWS are in flexibility and openness. Due to

these properties the lacking metadata can be added to DPWS services employing dis-

similar semantic enrichment technologies and a relevant taxonomy which will be de-

scribed in 2.3.

Table 4: Features comparison of OPC-UA and DPWS [40]

Feature OPC-UA DPWS

Infrastructure

General-purpose transport HTTP 1.1 HTTP 1.1

General-purpose messaging
SOAP 1.2

WS-Addressing

SOAP 1.2

WS-Addressing

General-purpose encoding XML XML

Security WS-Security WS-Security

 14

WS-Trust

WS-SecureConversation

WS-Trust

WS-SecureConversation

Optimized transport
UA Native

UA SecureConversation
None (open)

Optimized encoding UA Binary Binary XML

Discovery

WS-Inspection

WS-Discovery

UDDI

WS-Discovery

Architecture

Software architecture
Client-server

Layered client-server

Peer-to-peer

Client-server

Targeted hardware platform Gateways / SCADA / HMI Devices

Modelling

Meta model UA Object Model None (open)

Management

Session management
SecureChannel service set

Session service set

None required

(WS-SecureConversation

may be used)

Resource discovery and

selection

View service set

Query service set
WS-Enumeration

Resource discovery and

management

NodeManagement service set

Attribute service set
WS-Enumeration

Eventing
MonitoredItem service set

Subscription service set
WS-Eventing

Operation invocation Method service set Standard Web Services

2.2.2. State of the art of DPWS related research

In recent decade the number of researches dedicated to implementation of factory wide

SOA employing DPWS technology was performed. Most important among them will be

described below.

2.2.2.1 ITEA-SIRENA

ITEA-SIRENA can be decrypted as Service Infrastructure for Real-time Embedded

Networked Applications. This project took place in 2003-2005 under European coop-

erative R&D programme ITEA, pioneering introduction of the SOA on device level for

industrial, automotive, telecommunication and home automation domains. SOA on the

device level is required to provide interoperability for heterogeneous devices with each

other and with information systems of the factory thus providing cross-layer and cross-

domain interconnectivity [6], [41].

 15

During SIRENA project the framework for implementation of SOA on the device

level had been defined. Comparing the technologies capable to introduce SOA on the

device level the DPWS technology has been selected and tested [41].

2.2.2.2 WS4D

Web Services for Devices or WS4D initiative is a non-profit project which aims to ex-

tend the result of the SIRENA project. Former partners of the SIRENA projects are co-

operating within this initiative. WS4D had implemented the toolkits to allow integration

of the DPWS implantations with different programming languages, hence ensuring the

interoperability of DPWS devices with software following WS standards [8].

WS4D initiative has currently created four toolkits targeting different languages and

domains where DPWS can be implemented. These toolkits are WS4D-gSOAP, WS4D-

uDPWS, WS4D-Axis2 and WS4D-J2ME. WS4D-gSOAP is based on gSOAP toolkit

used to implement SOAP/XML WS with small footprint, thus applicable for resource

constrained devices. WS4D-uDPWS aims to provide DPWS functionality to devices

with a small amount of memory (few hundreds of kilobytes [42]) such as wireless sen-

sors or other constrained networked embedded systems. WS4D-Axis2 is based Apache

Axis2 SOAP processor for WS. WS4D-J2ME or Java Multi-Edition DPWS Stack

(JMEDS) is Java based implementation of DPWS [8], [42].

2.2.2.3 SODA and SOA4D

Another project ITEA-SODA, also had been based on the results of SOA introduction to

factory devices achieved in ITEA-SIRENA. Aim of SODA project was to develop an

ecosystem for high-level SOA-based communication between WS-enabled devices,

employing the basis designed by SIRENA. Within the project the low-cost WS-enabled

devices had been created and the results of the research had been used in OASIS stand-

ardization process for DPWS. The project took place in 2006-2008.

During the project in 2007 the SOA for Devices (SOA4D) Forge had been setup in

order to promote an ecosystem for development of SOA-based software components for

resource constrained devices [10].

2.2.2.4 SOCRADES

In extension of the results achieved in the field of introduction of SOA to manufacturing

(mainly in SIRENA project) SOCRADES project took place in 2006-2010. Name

SOCRADES stands for Service Oriented Cross-layer Infrastructure for Distributed

smart Embedded devices [43]. This project aims to develop a platform for design, man-

agement and execution for industrial automation systems based on smart devices, em-

ploying SOA paradigm on device and application layers [9].

 16

Figure 5: General architecture of SOCRADES framework [43]

Implementation of SOA paradigm on device and application layers would allow

cross-layer loosely coupled seamless integration of the devices and information systems

through the enterprise. For SOA framework WS technology and correspondently DPWS

on device level technologies had been employed. The framework architecture utilized in

the project can be found on Figure 5. The reference implementation of the concept de-

veloped in the project was presented in [44]. This implementation employed the project

framework to integrate of smart devices with an ERP system, hence proving the capabil-

ities of developed infrastructure for seamless integration from enterprise to device level

applications.

The reference implementation for cross component communication employed the

important concept of Enterprise Service Bus, already mentioned in 2.1.2.2.

2.3. Semantics

Semantics is usually defined as a study of meaning. Employment of semantics in enter-

prise information systems allows delegate part of the tasks which were performed by

personnel to some reasoning algorithms. This approach is especially beneficial if big

amount of data should be processed. The EIS seamlessly connected to shop floor manu-

facturing devices providing multiple benefits described before contain numerous data

sources hence require semantic to keep it usable.

The machine readable Knowledge Base (KB) as a storage for the semantic meaning

s which can be processed by computer provides a concept for semantically rich envi-

ronment. In conjunction with defined rules KB can automate some decisions or at least

to provide decision support. Ontologies allow to describe the KB structure and to store

the knowledge. Zhonghua Yang et al. in [45] are defining two core technologies for

semantic rich environment: ontologies and standard language for ontology development.

 17

2.3.1. Ontology

The term ontology is originating from philosophy. In context of this thesis ontology

refers the definition provided by T. R. Gruber in [46]:

“An ontology is an explicit specification of a conceptualization. The term is bor-

rowed from philosophy, where an Ontology is a systematic account of Existence. For AI

systems, what “exists” is that which can be represented.”

Some other definitions that describes ontology from different perspectives are sum-

marized by A. Gómez-Pérez et al. in [47]. Finally, detailed encyclopaedic definition of

ontology in correspondence to computer science is provided by Gruber in [48].

The classification of ontologies can be performed based on subject of conceptualiza-

tion as defined by Gómez-Pérez et al. in [47]. On the other hand considering semantics

i.e. level of formalization ontologies S. Borgo et al. in [49] specifies ontological systems

with weak and rich semantics. The first ones are presented by thesauri, taxonomies and

other terminological ontologies. These ontological systems are beneficial in classifica-

tion and categorization and not provide strong reasoning support. The ontologies with

reach semantics are implementing rich logical relations between the described classes,

hence providing extensive base for reasoning [49].

Application of ontologies in manufacturing domain is being studied in multiple re-

searches for description of related entities as in [50] and [51] and extended further for

knowledge driven manufacturing frameworks [52], [53]<f. F. de B. Ramis Ferrer in [54]

has developed interoperable Manufacturing System and Configuration Function Block

Network Ontologies (MSO and CFBNO), concept of which could be employed as a

basement for EIS semantics, once it will be enhanced with appropriate manufacturing

taxonomy.

2.3.2. Manufacturing taxonomies

Currently, several solutions for manufacturing industry integration are employed. These

solutions are based on some classification. This classification can be used as a standard

language for integration of the heterogeneous systems from shop floor to ERP systems.

2.3.2.1 CAEX or IEC 62424

CAEX or Computer Aided Engineering Exchange defines an application neutral object-

oriented data format for hierarchical object description. This standard is used for static

features of the manufacturing systems such as plant topology. The product-process-

resource is employed in CAEX model (see Figure 6) [55].

 18

Figure 6: CAEX product-process-resource model [55]

 CAEX has to be extended to represent dynamic data from device level.Most often it

is used with OPC data models for dynamic data components [56].

2.3.2.2 AutomationML

AutomationML is an open, XML based standard for data format which aims to improve

interoperability for heterogeneous engineering tools [57]. AutomationML employs

CAEX to describe plant topology, COLLADA to describe geometry and kinematics of

the objects and PLCOpen XML for behavior description [58]. In [59] Faltinski et al. are

stating the benefits of AutomationML for planning, testing and integration of dissimilar

engineering tools. Particularly important benefit for EIS is possibility to extract and

neutralized the engineering data from the automation tools.

2.3.2.3 ISO 15926

ISO 15926 is a standard dedicated for oil and gas industry to model and exchange the

plant data. This standard has been compared with CAEX by T. Holm et al. in [60]. Orig-

inally ISO 15926 had been based on ISO 10303 or STEP (STandard for the Exchange of

Product modelling data) and was oriented towards databases. Later this standard had

been reformulated in OWL, but still is defined by W. Marquardt in [61] as incoherent

and with limited reusability. Moreover S. Berger in [62] states that this standard did not

solved interoperability problem.

2.3.2.4 ANSI/ISA-95, IEC 62264, B2MML

As it was mentioned in 2.1.1 ANSI/ISA-95 aims to define integration interfaces for the

enterprise and control systems for factories and is also known as IEC/ISO 62264. In the

first part of the standard the models and terminology employed in enterprise information

 19

systems are described. This standard offers the taxonomy for all levels in the enterprise

thus is most suitable for enterprise wide integration [63].

Employment of ISA-95 for manufacturing intelligence for lean manufacturing and

its benefits has been described on example of a manufacturing operation centre by H.O.

Unver in 2012 in his paper [64].

B2MML or Business to Manufacturing Markup Language implements all of ISA-95

data models as a set of XML Schemata, hence making implementation for XML based

communications easier. Also as XML is a widely accepted standard in EI, B2MML is

compliant with modern integration solutions. In [65] D.I. Nastasie et al. define B2MML

as the single existing international standard which covers all three main management

domains of the enterprise – engineering, business and information management layers.

2.3.3. Semantic enrichment of Web Services

Semantic enrichment is attachment of the metadata to some content [66]. In case of WS,

the metadata should be coupled with service description modules. More precisely, in

context of the current project, the metadata should be provided to the descriptions of the

data in messages.

Currently semantic enrichment is based on semantic annotation of the content. For

some domains exist algorithms which provide automatic annotations of the content

(such as text), but even best of those do not provide high level of precision in big

enough knowledge domains [67]. Hence in scope of this thesis work only manual se-

mantic enrichment is studied.

In [68] J. Cardoso et al. define three main approaches to bring semantics to Web

Services: SAWSDL (Semantic Annotations for WSDL), OWL-S (Web Ontology Lan-

guage for Services) and WSMO (WS Modelling Ontology). Only first from the list pro-

vides direct encapsulation of semantics within WSDL, hence providing bottom-up se-

mantic description and decentralizing efforts to bring semantics to WS [68]. SAWSDL

is based on WSDL-S standard [69]. SAWSDL had been developed for semantic en-

richment of WSDL 2.0, but it was also adapter for WSDL 1.1 as the last one is wider

used [53].

 20

3. METHODOLOGY

The main technologies and approaches currently available for the implementation of

non-intrusive dynamic system recognition for monitoring purposes are presented in pre-

vious section. Based on the technology overview, in this section the technologies, tools

and approaches to be employed in this thesis work will be selected and described.

3.1. Tasks and criteria

The process of development of the solution to the problem defined in this thesis can be

separated in set of subtasks. Firstly, the shop floor devices should be bridged to EIS, the

technology that allows dynamic connection and interoperability of the devices is re-

quires. For non-intrusiveness of the system, the business logic independent gateway

devices should be used. Secondly, the shop floor devices should provide the semantic

meaning of the data being exchanged by the devices. These semantic meanings have to

be standardized, to allow automation of dynamic and automated configuration of the

system. The next step is to define a technology to discover the shop floor devices and

react on the changes in shop floor. Further the semantic meanings of the discovered

devices should be extracted from description. At fifth step, the extracted metadata

should be mapped to the KB capable to present explicit descriptions of the data availa-

ble in the system, including all the data required to integrate the data sources and calcu-

late generic predefined metrics. Lastly, the technologies and algorithms of the analysis

of the knowledge base should be defined. All these steps are summarized in Figure 7

and described with criteria in more details further in this section.

Figure 7: Overview of project tasks

Subtask 1: Shop floor connectivity. The shop floor factory devices should be in-

teroperable with EIS. This task includes definition of the technology for shop floor to

EIS interoperability and selection of the device that implements the technology. To in-

crease the benefits provided by the solution should be non-intrusive as it is noted in

problem definition. The criteria are assembled in Table 5.

Table 5: Criteria for selection of shop floor device connectivity technology and device

Select Criteria

Technology for introduction of the device  Connectivity with EIS standard

Shop Floor
Connectivity

Semantic
Enrichment

ShopFloor
Discovery

Semantics
Extraction

Mapping
to KB

Analyse
KB

 21

constrained data to EIS technologies

Device implementing technology
 Non-intrusiveness

 Industrial applicability

Subtask 2: Semantic enrichment. This task requires definition of technology to at-

tach semantic values to the elements of the system and to define the taxonomy of the

semantic values. The attachment of the semantic description should be encapsulated in

the devices to allow true re-configurability of the shop floor. The taxonomy in its turn,

should be applicable on all the levels of the EIS, to unambiguous define the meaning of

the data and to loosely reference this data in the metrics formulae. Criteria for selection

of semantic enrichment technology and taxonomy are summed up in Table 6.

Table 6: Criteria for device description semantic enrichment technology and taxono-

my selection

Select Criteria

Technology to introduce semantic mean-

ing to the device description

 Connectivity with technology from

subtask 1

 Capability to be encapsulated in

device

The taxonomy to for semantics

 Applicability on shop floor and

EIS levels

 Industrial applicability

Subtask 3: Shop floor discovery. Development of a tool which will employ connec-

tivity of the shop floor devices requires selection of appropriate technologies, approach-

es and algorithms. This tool (hence technology as well) should enable discovery trig-

gered by the changes in shop floor and also retrieval of the description of the data

sources available in devices, which includes all the integration related information. Sub-

task criteria are summed up in Table 7.

Table 7: Criteria for technology selection for shop floor device discovery

Select / Develop Criteria

Select technology to discover devices and

develop a tool

 Dynamic discovery

 Capability to retrieve device de-

scription

Subtask 4: Semantics extraction. In this subtask the technology for parsing of the

semantically rich device description should be defined. Criteria for this selection are

presented in Table 8.

Table 8: Criteria for semantic extraction technology selection

Select / Develop Criteria

Select technology to extract semantics

from shop floor device description

 Capability to extract device de-

scription defined in subtask 2

 22

Subtask 5: Mapping to KB. The subtask includes definition and realization of the

technologies, approaches and algorithms, which will map the semantic annotation from

devices to the knowledge base. Criteria for decisions in subtask 5 can be found in Table

9.

Table 9: Criteria for selection of technologies and algorithms to map the device

descriptions to KB

Select / Develop Criteria

Select language to present KB
 Capable to express relations be-

tween the manufacturing entities

Select technology to edit KB
 Capable to parse and edit the KB

of defined format

Select or develop KB to model shop floor

 Capable to handle all data required

to map the shop floor

 Providing enough relations to effi-

cient querying

Develop a tool to map data from device to

KB

 Capable to parse device description

and retrieve semantic meaning

 Capable to read and edit the ontol-

ogy, based on semantic data

 Capable to analyse edited ontology

Subtask 6: Analysis of KB. Develop the algorithm to analyse the updated knowledge

base to generate possible component network configurations which can be used to cal-

culate predefined metrics. Selection of technology for KB analysis and development of

algorithm of it should satisfy the criteria presented in Table 10.

Table 10: Criteria for technology and algorithm selection to analyse the KB

Select / Develop Criteria

Select technology and define algorithm for

KB analysis

 Capability to provide support on

data integration

3.1.1. Shop floor connectivity

The concept of SOA on device level has been chosen to be employed in this thesis, due

to benefits provided by the approach in manufacturing, especially in EI. As it was men-

tioned in section 2.2, main implementations which are introducing SOA on shop floor

level are DPWS and OPC-UA. OPC-UA provides comprehensive set of technologies

and standards for factory SOA, but requires efforts of experienced personnel to be im-

plemented due to pervasive specification. DPWS, on the other hand, provides higher

flexibility and openness. Hence DPWS has been employed to implement SOA in cur-

rent work.

Among currently available, applicable for industrial purposes DPWS-enabled devic-

es Inico S1000 RTU of Inico Technologies is, allegedly, most suitable for purposes of

 23

this thesis. The Inico S1000 RTU is compatible with industrial standards and can be

employed as a controller. The RTU is capable on one hand to handle SOAP Web Ser-

vices, and on another to be connected via digital and analogue inputs and outputs to

manufacturing system, hence bridging the manufacturing devices with information sys-

tems of enterprise, such as monitoring systems.

The DPWS, implementing WS specification, allows devices to host the services and

interact with clients. The monitoring system should only receive the messages from the

shop floor devices. Hence, the notification type of operations is expected to be imple-

mented on shop floor side. To provide required information for monitoring system these

notifications should contain descriptions of current status of the shop floor equipment.

Following the EDA concepts each time that the status of device changes the notification

should be sent to monitoring system.

 The DPWS-enabled devices, such as Inico S1000, on one hand can be connected by

its inputs the shop floor devices and process the date received from these connections.

The devices can generate the notifications containing the information about shop floor

status generated as a result of processing the inputs. On the other hand, as it was noted

before DPWS is WS compatible and implements WS-Eventing standard allowing ser-

vice requester to subscribe and receive notifications from the service provider. Thus

DPWS compliant devices allow to discover and subscribe to their notifications to

DPWS-based applications. Hence, if monitoring system possesses a DPWS adapter it

can be loosely integrated with the shop floor. Moreover, such system get all benefits of

EDA as publish-subscribe pattern will be employed.

3.1.2. Semantic enrichment

As description of the service in DPWS-enabled device is realized employing a WSDL

file, and standard WSDL do not contain any functional or data description of operations

and messages, extension for WSDL is required. This extension should attach a semantic

meaning to service description.

SAWSDL format is most employed and mature standard to enrich WSDL with se-

mantic meanings. SAWSDL provides a “model reference” attribute for each element of

the WSDL described in section 2.1.2.1. The model reference attribute can define the

semantic meaning of the element. Being attached to the primitive data types, this se-

mantic value can describe the meaning of the data. As factory metrics are based on cer-

tain formulae, including these data the mapping of the service in the enterprise ontology

can be performed in order to define monitoring system configuration from device level

up to calculate the metric. The SAWSDL is schematically represented on Figure 8.

Need for common definitive language to describe the services on the shop floor is

already discussed in section 2.3. Hence, certain manufacturing taxonomy has to be se-

lected in order to provide this common language in EIS. B2MML based descriptions are

employed in this thesis due to its high descriptive capability and acceptance on shop

floor and business (to define metrics and KPIs) levels.

 24

SAWSDL

Service
 name

Port
 name
 binding

Binding
 name
 portType

PortType
 name

Operation
 name

Input
 message

Message
 name

Part
 name
 element

Types

Element
 name
 type

Element
 name
 type

SimpleType
 …

SimpleType
 …

ComplexType
 …

ComplexType
 …

Element
 ref
 modelRef

Figure 8: Schematic presentation of SAWSDL

3.1.3. Shop floor discovery

For dynamicity and flexibility of the developed solution, it should be synchronized with

shop floor level. For this synchronization the changes in the shop floor layout should be

mapped to the model of the factory. Employment of DPWS introduces possibility to

discover DPWS-enabled devices as DPWS standard strongly requires WS-Discovery

compatibility [71]. WS-Discovery also offers an approach to dynamically track the

changes in connected devices using Hello and Bye messages once device is connected

and disconnected respectively. This allows to make a system developed employing

DPWS to by synchronized with shop floor devices.

The algorithms of multicast discovery, Hello and Bye message listeners are imple-

mented in the WS4D (see section 2.2.2.2). Java programming language is used in this

thesis, hence JMEDS as realization of WS4D for Java can be employed to discover

DPWS-enabled devices and get descriptions of the related services.

3.1.4. Semantics Extraction

As it was defined in previous sections SAWSDL had been chosen in this thesis to pro-

vide metadata into device description. The metadata elicitation from the SAWSDL can

be performed employing various WSDL parsers. These parsers are generally speaking

XML parsers adapted for WSDL schema for XML.

Unfortunately, as SAWSDL had been initially developed to extend WSDL 2.0 and

in this thesis WSDL 1.0 is employed as more accepted in industry and due to current

device restrictions. SAWSDL has an adaptation for earlier version of WSDL, but not all

SAWSDL parser extensions can be used in this work. The most robust solution found

for semantic annotated complex data types of WSDL 1.0 is to use EasyWSDL parser

 25

with extension for complex data types with specific algorithms. More details on

SAWSDL parsing used in this work can be found in Implementation section.

3.1.5. Mapping to Knowledge Base

Next step required for automatic system recognition is to map the semantics extracted

from device description to the KB. This KB should contain all information about the

manufacturing system, providing single source for data integration information. The KB

should contain description of the metrics to be calculated as well as required data to

configure data extraction and processing if it is possible to calculate a metric in the sys-

tem.

As it was mentioned in section 2.3 ontologies are among most developed realization

of the machine-readable knowledge bases. Among the ontology languages in its turn

most employed currently are OWL and its dialects. Currently, there exist several OWL

ontology editors such as Protégé which makes the human processing of the ontologies

easier, allowing to introduce the new metric definitions manually if required.

The ontology should have a model, which will define the classes, properties and re-

lations between them employed to represent the knowledge and enable its analysis later.

The model of ontology which can handle integration information has been developed by

Borja Ramis Ferrer in [54], and will be employed in this thesis with some modifica-

tions. The ontology is named Configuration Function Block Network Ontology. Origi-

nal model of CFBNO, offered by Borja Ramis Ferrer can be observed on Figure 9.

CNFBO ontology defines main classes, their relations and properties of dissimilar enti-

ties of data integration. For more details about modified CFBNO see section 4. This

ontology allows to define the business and manufacturing metrics and KPIs as the rela-

tion of the data sources.

Figure 9: Original CFBNO model offered in [54]

For the purposes of reading and editing of the ontology, Apache Jena has been used.

Jena provides Java API to parse OWL files and add elements to ontologies. In more

 26

details the algorithms of population of the ontologies will be described in Integration

section.

3.1.6. Analyse the Knowledge Base

The ontology employed in this thesis contains not only device descriptions, but also the

definitions of the metrics. These definitions are the representation of formulae in which

the values are defined by semantic meanings. The semantic meaning of the data sources

should follow same taxonomy as one used for semantic definition of the data produced

by external systems and devices, such as shop floor DPWS-enabled devices. This stand-

ard taxonomy allows loose assembling of the data available from shop floor devices to

more abstract metrics.

The metrics could require the information from all levels of automation, hence the

taxonomy should be applicable to whole automation system. Moreover, metric itself

should have a semantic meaning as it may be required to calculate more complex ones.

The goal of analysis of KB is to define which metrics can be calculated and to pro-

vide to monitoring system information required for data integration related to metric

calculation. The algorithms of data analysis can be implemented employing Apache

Jena. These algorithms should find all metrics defined in CFBNO, check if all data

sources required for the metric calculation are available and finally, on user request to

generate data integration configuration for monitoring system to calculate the metrics

which have all required data sources available. The last part should be decoupled from

the approach to make the solution applicable for multiple monitoring systems.

3.2. Use case

The implementation of the system, which employs semantic models for dynamic system

recognition in industrial monitoring systems, should be able to monitor the changes on

device level of factory shop floor and propose information required to reconfiguration

of the monitoring system according to new status of the system. To prove the function-

ality of the approach proposed in this thesis the tool implementing the concept will be

developed and tested.

For testing of the tool capabilities it will be employed for data integration for moni-

toring of the industrial system. The implementation scenario is based on the Festo Mod-

ular Production System MPS® 500-FMS test bed, PlantCockpit EI tools, Inico S1000

DPWS-enabled RTUs and the tool developed in this thesis.

 27

3.2.1. MPS® 500-FMS

MPS® 500-FMS is an educational modular manufacturing system. This system is con-

tains the independent and interoperable modules, which are controlled by SIMATIC

Siemens PLCs.

Figure 10: Festo FMS-500 layout and flow of work pieces and pallets in system

In current configuration there are 5 manufacturing modules and a conveyor system.

The layout of the system can be observed on Figure 10. The manufacturing modules

are: feeding (F), testing (T), handling (H), processing (P) and buffering (B on Figure 10)

stations. Feeding and testing stations as well as handling and processing stations are

connected in pairs. Translation of the work piece between the stations of the named

pairs is performed immediately, while all other work piece transitions are executed by

the conveyor pallets.

The work piece being processed in the system is a plastic cylinder. This cylinder is

being introduced in the system by feeder station from magazine. The work piece it

transmitted to testing station, where parameters of cylinder are tested and cylinders with

wrong parameters are rejected. Not rejected cylinders are transferred on conveyor pallet,

once one is available. The pallet with work piece is delivered by conveyor to handling

station. Handling station delivers the cylinder to processing station. In the processing

station some manufacturing actions are performed on the cylinder, and once cylinder is

ready it is returned to handling station. The handling station, once it had received a

complete work piece places it on conveyor pallet. The pallet with finished cylinder is

delivered by controller to buffer station, where it is placed in storage.

3.2.2. Gateway device

Based on the status of the workstation equipment and history of its changes it is possible

to establish the status of the workstation. It was mentioned each workstation is con-

 28

trolled by a controller. Based on status and history of changes of inputs and outputs of

controller it is possible to define the current status of the workstation. It was stated in 0

that to provide dynamic shop floor device connectivity to monitoring system DPWS

will be used in this thesis.

As SIMATIC Siemens S300 controllers, employed in Festo MPS® 500-FMS, do

not provide DPWS, some other devices should be employed as a gateway. Moreover, it

would be beneficial to reduce amount of messages in network, as SOAP-messages em-

ployed in DPWS can provide sufficient load. Hence the gateway device should process

status of controller inputs and outputs and provide messages describing workstations

and work pieces status changes. Inico S1000 RTU can be employed as such device, as it

provide required computing power to define workstation status and also are DPWS-

enabled.

3.2.3. PLANTCockpit

The PlantCockpit project is already partly described in section 2.1.3. The project pro-

vides the tools for enterprise integration. Among other utilities PlantCockpit provides

set of adapters and processors, which can be used to create the system for data pro-

cessing required for monitoring system. As well PlantCockpit has a Visualization En-

gine, which can listen to user defined endpoints in configured data processing system

and represent values received from the endpoints in a web browser. These tools can be

employed for monitoring tool in the thesis.

Important benefit provided by PlantCockpit tools is configurability. Integration sce-

nario in PlantCockpit is defined by XML files, which can be parsed and deployed by

FBEC.

Generation of these configuration files based on KB analysis can provide dynamical

configurability of the system, triggered by changes on the shop floor. To generate the

configuration file the business logic of adapters and processers required in the FBN,

message flow between them and required message transformations to adjust message

types should be defined. All information required for creation of the configuration file

for metric calculation should be received from shop floor devices and the KB describing

the metric.

As well it should be mentioned that configuration XML files contain sufficient

amount of information and thus are complex. Even for a specialist, who knows both

production process and data integration, manual creation of FBN configuration is a

complex task as size of configuration XML file can exceed 200 KB (i.e. could include

more than 200,000 characters). Creation of FBN configuration employing UI of a

FBEC, is easier and not require to interact with thousands of lines, but still requires in-

teraction of user with repetitive low level tasks. Hence employment of the automated

configuration based on KB and semantic descriptions of the shop floor devices can sim-

plify this task.

 29

3.3. Summary

At the first stage the tool should be developed. The tool development includes definition

and implementation of algorithms capable to discover semantically rich descriptions on

shop floor, algorithms to extract the semantic values from descriptions, algorithms to

populate KB accordingly to the service descriptions of shop floor devices and to analyse

the updated KB in search for metrics which can be calculated.

In second phase the tool should be employed in industrial scenario to prove its func-

tionality. For this purpose the selected manufacturing system should be extended with

DPWS-enabled devices which will provide the web services. The WS should be trig-

gered by the manufacturing line equipment and generate the messages, which will de-

scribe the change of the system status. Semantic definition of the messages should be

also provided in devices employing the technologies and models specified in methodol-

ogy. In the end, transformation of the information obtained by tool to the format reada-

ble by the integration tools has to be developed.

Summing up methodology section Table 11 Table 4can be formed.

Table 11: Methodology

Manufacturing line Festo MPS® 500-FMS

II. In
d

u
strial

S
y

stem

Shop Floor

Connectivity

Inico S1000 RTU

DPWS

Semantic

Enrichment

SAWSDL

B2MML

Shop Floor

Discovery
JMEDS

I. T
o
o

l

Mapping to KB

EasyWSDL

OWL

CFNBO

Apache Jena
Analysis of KB

Integration PlantCockpit

 30

4. IMPLEMENTATION

This section will describe implementation of the tool which enables the dynamic system

recognition for industrial monitoring systems and realization of the implementation sce-

nario, which aims to test the tool. The development of the tool had been performed em-

ploying Java programming language in Eclipse IDE.

4.1. Implementation of the tool

The developed tool should perform four main actions in response to user requests.

These actions are to discover devices in the network and listen to changes on shop floor,

to populate ontology with data received on discovery, search for metrics which have all

required data sources and finally to create the FBN for monitoring system configuration.

These actions are summed up on Figure 11.

Figure 11: Use case diagram for the developed tool

In more details the interaction of user and modules of the tool are presented on se-

quential diagram (see Figure 12). On this diagram it can be observed that once user se-

lects start discovery action UI triggers discovery activity on corresponding module.

When the services are found their WSDL files retrieved by discovery module and user

can start populating the ontology. First action triggered by UI in response to user re-

quest is parsing of the WSDLs performed by Semantics Extraction Module. When the

parsing of the service descriptions is finished, extracted data is being placed in ontology

on “populateOntology” action of Mapping Module.

 31

Once population of ontology is finished user can initialize the search for metrics

which can be calculated on current system configuration. This action is performed by

Analysis Module, and when the search is finished the module returns the list of names

of metrics which can be calculated.

As a next step the user can select the metric by name to create FBN XML. This ac-

tion, firstly, requires extraction of the data integration information from ontology. Once

all required information to create XML is extracted the next action of creation of the

XML file can be started.

In more details all the behaviour of the modules is presented in following sections.

Figure 12: Generalized sequential diagram of the tool use

4.1.1. UI overview

In order to trigger execution of operation of the modules the GUI presented on Fig-

ure 13 have been developed. “Discover DPWS Devices” button triggers DPWS discov-

ery and starts hello/bye message listeners. This process includes operations of discovery

module. Once the process of DPWS Discovery is finished user can put data about ser-

vices found in the network to CFBNO using “Populate CNFB Ontology”. This action

employs functionality of semantic extraction and mapping modules. “Find Possible

Metrics” button triggers analysis of KB, and populates drop down list on the right side

of interface with names of possible metrics. On this activity KB analysis module is used

 32

If it is possible to select a metric “Create FB Network” button can be pressed and XML

configuration file will be generated. The generation of XML is defined by format of the

monitoring system. In this thesis PLANTCockpit enterprise integration framework had

been employed, hence the format of XML follows framework requirements. Generation

of this XML was included in KB analysis module of the program.

Figure 13: GUI of developed tool

4.1.2. Discovery Module

The aim of the discovery module of the program is to enable synchronization of the

knowledge base describing shop floor with the shop floor itself. The functionality of

DPWS is depicted on Figure 14. Once the tool is started the information about shop

floor devices should be placed in knowledge base. On the other hand once some chang-

es are performed in configuration of the shop floor it should initiate required changes in

the knowledge base to keep the system synchronized with real world.

DPWS-enabled device 1

DPWS-enabled device 2

DPWS-enabled device 3

Discovery Module

Local folder

WSDL1 WSDL2 WSDL3

DPWS-enabled device 4

WSDL4

Figure 14: Concept of discovery module

The information about the devices is placed in WSDL files hosted on devices. The

set of WSDL files contains all the information required to create a model of the factory

shop floor. Hence the discovery module should update the set of the WSDL files ac-

cording to devices available in the network. Each WSDL file itself will be processed by

other module of the program. In order to avoid the problems caused by networking

(such time delays, access rights limitations, communication failures and others) the

WSDL files should be retrieved from devices and stored locally on the hard disk of the

user’s computer. Hence, the aim of the discovery module is to keep local storage of

WSDL files synchronized with the WSDL files available in the network.

 33

The discovery module is implemented in this thesis as DPWS Client employing

JMEDS stack. The DPWS Discovery Client should trigger discovery once it is connect-

ed to the network of shop floor devices, to get initial configuration of the shop floor.

This discovery is client-triggered. On the other hand once the DPWS Client is already

connected to the network it should be able to notice the changes in the shop floor, thus

the device-triggered discovery should be implemented as well in DPWS Client.

4.1.2.1 Client-triggered Discovery

Client-triggered discovery is performed in two phases. At first phase the DPWS-enabled

devices are discovered on second the services hosted on them are found. The services

are related to WSDL files and define the path to them. Hence, discovering services al-

lows to download the WSDL files from the shop floor device.

DPWS client is able to multicast the discovery probe over UDP to all devices avail-

able in the network. This probe can have the filtering by several parameters such as

Universally Unique Identifier (UUID), which is part of WS standard. On the first stage

no filtering is employed, so each DPWS-enabled device will respond on such probe.

This is the first phase.

On the second phase immediately after the new device is found the DPWS Client

starts to search for services hosted on the device. Once the service is found it sends a

response. The response will contain the location of WSDL file which describes services.

Employing standard Java functionality the WSDL file can be downloaded and saved

locally in predefined location.

Figure 15: Sequential diagram of DPWS discovery process triggered by DPWS client

First and second phases may overlap as the communication between the DPWS enti-

ties is asynchronous. The sequential diagrams for both phases can be found onFigure

15. The “deviceSearch()” message on the Figure 15 corresponds to device search probe

which is sent to all devices in the network. It may take different time for devices in the

 34

network to respond to this message so as it is presented on the figure the search for ser-

vices can go same time as search for devices. Search for services is triggered by the

“deviceFound()” response from devices, and is presented in figure as “serviceSearch()”.

The respond for this message “serviceFound(rslt)” contains the service description.

Once this description is parsed the location of WSDL file can be estimated, allowing to

download WSDL for local repository (“downloadWSDL()” on Figure 15).

The name of the WSDL file saved locally should be unique and thus formed by con-

catenation of device IP address and the WSDL file location on device, replacing “/”

characters of file path by “-”, to satisfy the file naming conventions of all main operat-

ing systems (e.g. “192.168.3.1-dpws-ws01”).

4.1.2.2 Device-triggered Discovery

Device-triggered discovery is employed to handle two possible cases: new shop floor

device is introduced in the network, after client-triggered discovery is finished, and de-

vice is removed from the network after it had been discovered.

In first case the added DWPS-enabled device multicasts a Hello message in the net-

work. Once the DPWS Client receives such message it can start same discovery algo-

rithm as in 4.1.2.1. Once the client finds already discovered device it will not try to get

WSDL from it, but if a new device is discovered the WSDL will be retrieved from the

device.

Figure 16: Sequential diagram of DPWS discovery process triggered by device

In second case the on device disconnection the Bye message will be distributed in

network. This message contains information about the device being disconnected, in-

cluding its IP address. As the IP address is a part of name employed to store the WSDL

file locally, all service descriptions related to device can be removed from local folder.

Hence, the device-triggered discovery will update the list of available WSDL files to

match available shop-floor devices.

 35

The sequential diagrams of the both cases of device-triggered discovery activities

are presented on Figure 16. As it can be observed, in response to Hello message from

DPWS-enabled device, the same process of discovery as defined in previous section

takes place. Only difference is that the WSDLs are not overwritten if they are found for

second time. In response to Bye message the DPWS client triggers “deleteWSDL(ip)”

action which removes the WSLDs related to the IP of disappeared device from local

WSDL repository.

4.1.3. Semantic Extraction Module

The running discovery module copies the WSDL files, making them accessible for other

program modules. The semantic extraction module aims to parse these WSDL files to

retrieve the information required for further data integration and computer support of

related configuration and save it as a Java objects which describe the shop floor. As it

was mentioned before, in section 3.1.4, the description of the services should contain

the semantic meaning of the data provided by the services, in order to enable configura-

tion support. Attachment of metadata should be made employing SAWSDL according

to methodology. Hence, extraction of data integration information (parsing WSDL) and

semantic meanings (parsing Semantic Annotations) is the aim of this module of a pro-

gram. The extracted data should be stored in an object model, which later can be easily

transformed to ontology form. The concept of the module is depicted on Figure 17.

Figure 17: Concept for semantics extraction module

Considering the ontology model selected for description of the system, the infor-

mation which has to be presented in the object model should include:

 type of adapter function block, required to obtain the information (for future

use in once the tool will support other WS implementations but DPWS);

 configuration of the adapter instance, required to perform subscription;

 message type associated with instance;

 data sources, with XPath (for mapping);

 semantic values (for configuration support).

 36

Considering named properties describing shop floor devices the object model had been

created. The class diagram of the model can be observed on Figure 18.

Figure 18: Class diagram of factory shop floor devices object model

In order to parse WSDL files with semantic annotations EasyWSDL Toolbox had

been employed. This programming library implements the methods to parse standard

WSDL files of versions 1.1 and 2.0 both. It also includes possible extensions to parse

complex data types and SAWSDL annotations. Unfortunately, current version of

EasyWSDL – 2.1 did not support parsing of WSDL 1.1 with SAWSDL annotations and

complex data types. For this reason extraction of semantic annotation had been imple-

mented using properties of only one extension – complex WSDL parsing, and extracting

the annotation as an attribute of XML element.

The algorithm developed to parse the WSDL with semantic annotations is provided

on Figure 19. In order to parse the semantic annotations for WSDL another recursive

sub-algorithm had been employed. This algorithm is depicted on Figure 20. The recur-

sive approach allows to parse the data types of arbitrary level of granularity.

 37

Start

Read WSDL

Get services

Get first not
parsed service

Not parsed
services exist in

WSDL?

END

YES

Get
Operations

Not parsed
operations exist

in service?
NO

Get first not
parsed operation

YES

Create instance, its conf.
and message type;

update configuration type

Set configuration
 to all instances

Parse semantics of the
elements of the message

NO

Figure 19: Algorithm for WSDL parsing

Start

Get elements

Has not parsed
element?

END

NO

Get first not
parsed el.

YES

Is complex?

Update element
XPath. Go on

next level

Recurtion

YES

Get attribute
“referenceModel”

NO

Has attribute?

Get dummy
semantic value

Get as
semantic value

Create Data source
with XPath and
semantic value

NO

YES

Figure 20: Recursive parsing of elements in SAWSDL

 38

4.1.4. Mapping Module

The information stored in the Java object has to be transferred to the ontology, which

already contains the defined formulae for metrics and KPIs. These formulae are em-

ploying semantics to define types of data used in calculations. The CFBNO ontology

developed by Borja Ramis Ferrer includes the classes required to describe the shop floor

device generated data bridging semantics and data integration related information. Thus

a formula of a metric through semantics explicitly defines the configuration required for

data integration. This ontology model does not consider some required data properties

hence. Needed data properties were added to modified CFBNO(see Figure 21).

The mapping module is employed to transform the Java objects generated by pars-

ing module to modified CFBNO ontology. The modifications had been made to provide

efficient and unambiguous description of adapter based data sources. Data properties

and relations between the classes of modified CFBNO can be observed on Figure 21.

Function Block
Type

Function Block
Instance

Configuration
Instance MessageType Out

itsFunction

BlockInstance

itsCo
nfigu

ratio
n

Insta
nce

hasMessageTypeOut
hasPID

PID
hasJSON

JSON

itsConfiguration

Type

Configuration
Type

hasJSON
Schema

JSON
Schema

hasSourceType

SourceType

hasISA95
Mapping

hasXPath

ISA value

XPath

MessageType Out

PID

hasMessage
TypeOut

hasPID

Class

Data

Object property

Data property

Figure 21: CFBNO: relations between classes and data properties of adapters

On Figure 21 can be observed that in CFBNO there is a class Function Block Type,

which has a property “itsFunctionBlockInstance”. This property is referring to one or

more individuals of Function Block Instance class. FB Instance individual is describing

a possible FB of adapter in PlantCockpit, which has certain configuration and generates

certain messages. The configuration of FB and generated message types are defined by

the properties of the individual.

FB Instance class individuals have a data property “hasPID” which refers to the PID

of a function block. PID of a function block is unique identifier of textual type defining

the type of a PlantCockpit FB. Also individual of FB Instance class describing adapter

has two properties “itsConfigurationInstance” and “hasMessageTypeOut”. Both of these

properties are referring to other individuals.

 39

“ItsConfigurationInstance” property refers to individual Configuration Instance

class. This individual defines configuration of business logic of the instance. It has a

property “itsConfigurationType” which refers to individual of a Configuration Type

class defining the format of possible configurations of FB. The individual of Configura-

tion Type class has a data property “hasJSONSchema”, which defines a schema of

JSON file describing a business configuration of FB. The JSON which fits the schema

defined in schema, is referred by individual of Configuration Instance class by data

property “hasJSON”. The data referred by this property is a JSON string describing

business configuration of the PlantCockpit FB.

As was noted before the individual of FB Instance class describing adapter also has

“itsMessageTypeOut” property. This property refers to individual of a Message Type

Out class. The individuals of Message Type Out class describe the message type of the

notifications generated by adapter. To describe the elementary data particles of the mes-

sages generated by the adapter of defined business logic Message Type individual can

have one or more “hasSource” properties.

The “hasSource” property refers to individual of Source Type class. Source Type

individuals are describing semantic meaning and XPath location of elementary data

units of the messages generated by adapter. Semantic meaning of the elementary data

unit is defined by textual ISA-95 meaning of the data which is referred by a data proper-

ty “hasISA95Meaning”. XPath location of the data is referred by “hasXPath” data prop-

erty. XPath is also defined by a textual variable compatible with XPath standard.

To populate this individuals and their data properties describing available shop floor

data adapters this module uses Apache Jena. Populating the ontology the individuals of

the predefined classes are injected in the CFBNO ontology. The individuals in OWL

ontology can be named and not named. A named instance should have a unique name,

while not named individual created by Jena has an automatically generated unique ID.

This makes the not named individuals preferable for ontologies with unpredictable

amount of dissimilar instances, such as generated in the application of the thesis.

The algorithms of population of CFNBO developed for mapping module are pre-

sented on Figure 22. Firstly, as seen from Figure 22a, CFBNO ontology file should be

loaded and a Configuration Type instance configuration should be generated. For

DPWS adapter, the one employed in this thesis, the configuration schema of the adapter

should include the list of all possible events to be subscribed. This Configuration Type

Individual will be referred by all adapter Configuration individuals in ontology. Once

the Configuration Type individual is created, the system should iterate over possible

discovered configurations and map the FB Instances to the ontology. After all possible

FB Instances are created in the ontology the OWL file should be saved.

On Figure 22b, algorithm of creation of a single FB Instance is presented. In this al-

gorithm starts with creation of FB Instance individual, then the “hasPID” data property

is attached to individual, with value corresponding to the FB. On the next stage Individ-

uals of Configuration and Message Type Out classes have to be created and attached to

FB Instance individual by appropriate properties.

 40

The algorithm of creation of Configuration individuals is depicted on Figure 22c.

According to this algorithm, firstly, the unnamed individual of Configuration class is

created. For created individual the “hasJSON” data property is defined with values de-

scribing business logic of a FB instance. Also predefined individual of Configuration

Type class is attached as “itsConfigurationType” property.

START

Load Ontology

Get discovered
Instances

There
are not mapped

instances?

Map first unmapped
instances Java Obj

END

NO

YES

Create FB
Configuration Type

Ontology individuals

Save Ontology

START

END

Create Unnamed
Individual in Ontology

of FB Instance Class

Add PID Data
Property to FB

Instance Individual

Map FB Configuration
Java Object to Ontology

Individual

Map FB Message
Type Java Object

to Ontology
Individual

Add FB Configuration
as property to FB

Instance Individual

Add FB Message Type
as property to FB

Instance Individual

a b

START

END

Create unnamed
individual of FB

Configuration Class

Add JSON with business logic
from Java Object as Data

property of FB Configuration
Individual

Add predefined
Configuration Type

Individual as a property
of FB Configuration

Individual

START

END

Create unnamed
individual of FB

Message Type Class

Add Message Type
Name from Java Object

as a data property

There are not
mapped data

sources?

Map data sources to
ontology

YES

NO

START

END

Create unnamed
individual of FB Data

Source Class

Add Semantic meaning
as a Data property to

Data Source Individual

Add XPath of a Data
Source as a data
property to Data
Source Individual

c d e

Figure 22: Algorithm for CFBNO population; a – algorithm of mapping of found FB

instances to ontology; b – algorithm of mapping of a single FB instance; c – algorithm of

mapping of a FB Instance configuration and configuration type to ontology; d – algorithm

of mapping of a message type of FB instance; e – algorithm of mapping of a data source to

ontology

 41

On Figure 22d the algorithm of mapping of Message Types to proper class individu-

als is presented. In this algorithm after creation of unnamed individual of Message Type

class the “hasName” data property is populated with message type name. After this step

the elements of the message type should be described iteratively by mapping them to

Source Type class individuals.

Finally on Figure 22e presents mapping of message elementary data units to Source

Type class individuals. In this algorithm the firstly unnamed individual of Source Type

individual is created, then its properties “hasISA95Meaning” and “hasXPath” are popu-

lated.

4.1.5. KB Analysis Module

To automate the configuration of the monitoring system the analysis of shop floor de-

vices is required. The analysis should provide required data for data integration which

will allow to calculate the metrics and KPIs.

This analysis is possible because CFBNO contains on the one hand the information

about metrics and KPIs defining which data sources they require and how to manipulate

them to obtain the metric value; on the other hand it contains the descriptions available

data sources, which include data integration required information. Assembling this in-

formation full configuration of the monitoring system can be generated.

To perform the analysis the program at first should discover all metrics defined for

the system in CFBNO. Then it should check each metric on presence of required data

sources in the system (as the data sources of the system are mapped to CFBNO, this

task can also be performed as ontology parsing). For the metrics having all data sources

in the system the procedure of configuration assembly can be applied. On this procedure

the information required for data integration and processing for one metric should be

extracted from CFBNO. All the previous tasks are employing Apache Jena to parse

CFBNO.

The data extracted from CFBNO is placed in a developed Java Object structure of

which is presented on Figure 24. This Java object describes generic configuration re-

quired for data integration. The information required for data integration should include

configuration of adapters to get information from external systems, configuration for

function blocks of monitoring system, to process and visualize data and configuration

for transformation between the blocks. This configuration should be transformed to the

configuration format acceptable by certain monitoring system, which in this case is a

PLANTCockpit.

The algorithms of this program module can be found on Figure 23.

 42

START

END

Get all Ontology
Individuals having PID

of processors

There is not
processed
Individual?

NO

Get first not
processed
individual

YES

Get all Semantic
meanings of required

Data Sources

There is not
processed Data

Source?

Is required
semantic meaning provided by

any of adapters?

YES

YES

Get first not
processed required

semantic meaning of
Data Source

NO
Add the current

ontology Individual to
list of possible

metrics

NO

Figure 23: Algorithm for analysis of KB

On Figure 23 it can be observed that the algorithm of analysis starts with extraction

of all individuals from ontology, which have PID referring to data processor. Each of

extracted processors is able to calculate some metric provided it receives its predefined

inputs. Hence if the data processor can receive all required data from other FBs the met-

ric can be calculated. Current implementation includes the assumption that all metrics

can be calculated employing one data processor FB and several adapter FBs. This limi-

tation can be removed employing recursive analysis – the output of processors which

have all required data sources should be added to list of available data sources and the

analysis algorithm should be repeated until no more new metrics become available.

In the algorithm the processors inputs are being checked to be present as outputs of

other FBs one by one, until all are processed. Input data sources are compared with out-

put ones by their semantic meanings. As can be seen from Figure 23 if all of the input

data sources of processor have at least one matching by semantic meaning output data

source in the system, it is considered that this metric can be calculated in current system

configuration. The metrics which can be calculated are displayed in UI.

4.1.6. FBN Creation

Creation of FBN configuration includes two main steps: firstly, the data integration in-

formation required for metric calculation should be extracted from ontology, secondly,

 43

this information should be formatted in XML document compatible with monitoring

system.

4.1.6.1 Extraction of data integration information

The data extraction aims to create the Java Object which will represent all data integra-

tion information related to configuration of the Function Block Network. This Java Ob-

ject can be observed on Figure 24.

Figure 24: Java Object for FBN configuration

The class diagram presented on Figure 24 is presenting 5 classes. The Function

Block Network is described by Java Object of FBNetwork Class. This object has a tex-

tual property which represents name of the network XML. Also the object describing

FBN can include one or more objects of FBNConnection class. FBNConnection object

describes the message flow between the FB, it has ID and PID of source or destination

Function Block and message filter, which are required to create connection between

FBs. FBNConnection objects are grouped in input connections and output connections

of function blocks which can be assembled in single connection descriptor by matching

the filtering message.

FBN is composed of one or more Java Objects of FBNBlock Class. The FBNBlock

object has textual properties which describe FB ID, PID, businessLogic and business-

LogicSchema. The FBNBlock object is also composed of one or more objects of FBN-

Message class, which describe the message types of the messages related to FB. Among

others FBNMessage objects includes the name of message type and mapped list of mes-

sage elements and their semantic meanings.

FBNTransofrmation class objects may be owned by the objects of FBNBlock ob-

jects. FBNTransformation object describes the message transformations. This descrip-

 44

tion defines the message type to be transformed, message type of transformed message,

XSLT transformation and its name and direction of the message to be transformed.

All the classes mentioned above have the methods required to populate the new ob-

jects.

Process of creation of FBNNetwork Java Object based on the information from

knowledge base has two phases. Firstly, FBNBlock describing the data processor re-

quired to metric calculation and related FBNConnection objects should be created. Then

FBNBlock objects describing adapters required for calculation the metric presented by

processes. Corresponding algorithms are presented on Figure 25 and Figure 26.

START

Create FBNBlock Java
Object with FB ID, PID,

businessLogic and
BusinessLogicSchema

from ontology

There are
 not processed in

msg types

Get input Message
Types from ontology

Get first not
processed input

msg types

END

NO

YES

Create FBNMessage
Java Obj. with name

of OntMSGType

There
are not processed

data source in input
msg type

Get first not
processed data

source

Add mapped semantic
meaning with the

element to
FBNMessage Java Obj.

YES

Create empty
FBNTransformation to
FBNBlock describing
input message route

Create empty
FBNTransformation to
FBNBlock describing

output message route

NO

Figure 25: Creation of FBNBlock Java Object of processor

On Figure 25 algorithm employed for creation of FBNBlock of data processor is

presented. The algorithm starts with creation of FBNBlock object representing the pro-

cessor FB with generation of ID and extraction of PID, businessLogic and business-

LogicSchema form ontology individual.

As the processor requires one or more data sources to be processed, the FB repre-

senting the processor should have one or more inputs. These inputs should be described

by FBNMessage objects which characterize the message type of the inputs. To create

these objects the Message type individuals should be extracted from ontology. Once the

input message types are extracted from ontology the message types should be processed

one-by-one and FBNMessage objects should be created in FBNBlock object. Each

 45

FBNMessage object should have corresponding FBNTransformation Java Object. In

case of input messages of processors no transformations are required as all transfor-

mations should be implemented on outbound messages of the function blocks. Next step

on creation of the FBNMessage describing the message types is description of its parts

by creation of the map between the message parts and their semantic meanings.

Finally when all the input message types of the FBNBlock are created, the FBN-

Transformation describing output transformation should be created.

START

Create FBNBlock Java Object
with FB ID, PID, businessLogic

and BusinessLogicSchema
from individual

Get adapters providing
semantic meanings required
by procesor from ontology

There are
 not processed in adapter

individuals

Get first not processed
adapter individual

YES

Generate ID for FB

END

NO

Generate output
message name

Generate XSLT
transformation

Create
FBNTransformation for
output message route

Figure 26: Creation of FBNBlocks Java Objects of adapters

On Figure 26 the creation algorithm of FBNBlocks describing adapters is depicted.

From the algorithm it can be seen that firstly the list of adapters required for calculation

of the metric should be extracted from ontology. This extraction is performed by search

for adapters providing the semantic meanings which were defined on creation of

FBNBlock describing the processor.

Once the list of ontology individuals describing adapters is formed, the adapter

FBNBlock should be created. To create FBNBlock objects the iteration through the list

of adapters is performed. On each of the iterations similar steps are performed as the

ones required to creation of the processor FBN, with the difference related to presence

of output messages and related transformations.

On creation of output transformations which are required to map the data from

adapter to message format of processor inputs, XSLT transformation template is re-

quired. This transformation is generated based on the data about location of the value

with required semantic meaning in the output message of adapter and expected location

of this value in input message of the processor.

 46

4.1.6.2 Formatting of data integration information in PlantCock-

pit FBN XML format

Second phase of creation of the FBN XML includes the process of transformation of

data integration information to a specific format of XML file which can be processed by

the FBEC in order to generate a FBN calculating a metric. The schema of FBN XML is

presented on Figure 27.

Figure 27: XSD schema of configuration FBN

As can be observed on figure above, the root element of FBN XML is fbNet-

workScenario, which includes three child elements: fbNetworkName, fb and connec-

tions. First element fbNetworkName is of string type and defines the name to be related

to the FBN in PlantCockpit system. Element fb is an element of a complex type which

defines the configuration of individual function block. In FBN XML the amount of fb

 47

elements is unbounded. Finally connections element is a parent element for the connec-

tion description elements of a complex type.

The data type of fb includes four elements of plain string type and three complex

type elements. The elements of a string type are “fbId” which should define unique id of

function block instance in the system; “fbPid” defines to which type of the function

blocks curecnt instance belongs; “fbBusinessLogic” should specify the business logic of

the FB instance as a JSON string and “fbBusinessLogicSchema” defines the format of a

business logic JSON string. Among the complex type elements there are “inputMes-

sageTypes” and “outputMessageTypes” which enlists the names of input message types

and output message types correspondingly. The last element of FB description “trans-

formations” enlists the transformation definitions presented in XML as the “transfor-

mation” elements of a complex type. The “transformation” element type includes the

“originalMsgType” and “newMsgType” child elements which specify the message

names. “direction” element specifies if the transformation should be applied to input or

output messages. Finally, “transformationXSLT” defines the transformation itself and

“transformationName” is used to identify it.

The child elements of “connections” element - “connection” are employed to define

the message flow in the system. Each “connection” element has 5 child elements: source

and destination IDs (“srcFbInstanceName” , “dstFbInstanceName”), source and destina-

tion PIDs (“srcPID”, “dstPID”) to define the connection explicitly and a “filterMsg”

which defines messages of which type should be delivered from source to destination.

All child elements of the “configuration” are of string data type.

The FBNNetwork Java Object and its parts are implementing a method, which

transforms the FBNNetwork object to XML of the format defined above.

4.2. Use Case implementation

For the use case calculation of production time metric had been employed. This metric

represents duration of manufacturing of a work piece. To calculate this metric the

timestamp of start of the process should be subtracted from timestamp of end of the

process. The formula to calculate the metric is presented in Equation 1.

 (1)

This metric definition should be placed in the CFBNO, together with data required

to configure the FBN for data processing. Employing PLANTCockpit framework, to

calculate production time metric two instances of adapters which will retrieve start and

end timestamps from manufacturing line and one instance of event processor which will

subtract the timestamps will be required. For retrieval of the timestamps the instances of

DPWS adapter will be used and as event processor Esper Function Block will be em-

ployed. Both DPWS adapter and ESPER CEP function blocks are provided by

PLANTCockpit framework.

 48

As it is mentioned in assumptions the configuration of the processor should be de-

fined manually in the ontology. Same time no configuration for DPWS adapters will be

placed in CFBNO, only references on taxonomy defined semantic values. Section 4.2.1

will describe the metric definition.

This metric will be applied to Festo MPS® 500-FMS. For simplicity in this use case

the production process will be limited with feeder and tester stations. The time when the

work piece enters the feeder station should be mapped in system as start timestamp, and

time when the work piece leaves the tester station should be the end timestamp. As was

mentioned in methodology section, the Inico S1000 devices should process their the

input values obtained from the shop floor devices and generate the notifications contain-

ing information for monitoring system (such as start and end timestamps in this case).

The notifications generated by gateway devices should be described in WSDL file of

Inico, and provide semantic descriptions to the message elements employing SAWSDL

specification. In section 4.2.2 the configuration of S1000 required to use them as gate-

way devices for the system will be presented.

Based on information defined in ontology and semantic descriptions attached to

gateway devices, the developed tool will be able to generate the configuration of FBN

for PLANTCockpit framework. Configured system will be able to calculate the defined

metric employing the information delivered to system in notifications from the shop

floor.

4.2.1. Metric definition

To configure the metric in CFBNO the ontology should be created. Protégé 4.2 has been

employed as editor for ontology. Manually in ontology had been defined the FB in-

stance of Esper CEP processor. This configuration included the source types required to

calculate the metric. This source types had attached data properties which specified tax-

onomy defined semantic meanings of data. Configured metric named “calcTime”,

which corresponds to Production Time metric, can be observed in Figure 28.

From Figure 28 it can be observed that “calcTime” metric has a reference on con-

figuration instance “calcTimeConfiguration” which contains business logic of the Esper

CEP FB instance. Also “calcTime” has a reference on two element instances named

“Tester” and “Feeder” which in their turn have references on source type instances

“TSTesterOUT” and “TSFeederIN”. These source types have data properties which

define the semantic meaning of the data which is required to calculate the metric.

 49

Figure 28: Ontology with definition of the production duration metric

4.2.2. Configuration of gateway devices

Inico S1000 the gateway devices selected for this system has to be configured in order

to provide the monitoring system with information from the shop floor. This configura-

tion includes configuration of controller logic which should transform input signals

from the manufacturing equipment to data about manufacturing process. Then this data

should be placed in the messages and sent to the subscribers. To make notification ser-

vices available for monitoring systems it should be defined in WSDL of the device. Al-

so this WSDL should contain semantic information about transmitting data in order to

provide grounds for reasoning for monitoring system.

4.2.2.1 WSDL configuration

The structure of WSDL is already described in Section 2.1.2.1. The service description

should define the all the stated values. In current section only most important decisions

will be outlined. Whole WSDL developed for the use case can be found in Appendix 2.

On Figure 29 the most important parts of created WSDL file of one of the stations

are presented. Going on the bottom of the WSDL file the definition on the port type and

its operations can be found. The operation which provides notification should declare

only output message. In this work for both feeder and tester stations the operation re-

quired to calculate duration of manufacturing of a work piece is named “Transfer-

Event”. The production starts when the work piece is provided to first station and fin-

ishes once it is removed from last one, hence the “TransferEvent” will contain both

timestamps of the beginning of the process and timestamp of its end. The definition of

operation contains the reference to the corresponding message.

As can be observed on Figure 29, the message definition provides the link on the el-

ement of the message which in its turn defined message schema. In case of “Trans-

ferMessage” through “TransferMsg” the “TransferMsgElementType” can be declared.

 50

This element type schema defines format of the message sent with notification. The

message will contain such elements as “Direction”, “StationID” and a “Timestamp”.

The timestamp contains additional semantic meaning, which in case of feeder station

defines that this timestamp refers to start of production:

Figure 29: Parts of WSDL file

<element ref="tns:Timestamp" sawsdl:modelReference="isa95:ProductionStartTime"/>

For the tester station in this use case the semantic value would be ProductionEnd-

Time.

4.2.2.2 Device logic for notification generation

For realization of the use case scenario Inico S1000 devices should provide the notifica-

tions on work piece transition in and out of workstation, which represent production

start time and end time. The RTU devices were directly connected to the sensors of the

workstations the sensors changes of which are corresponding to the changes of status of

the work pieces. This allowed notification generation without any complex logic.

The state diagram representing notifications generation actions in reference to states

of the workstation can be observed on Figure 30.

Figure 30: State diagram of the WorkStation

On state diagram Workstations (WS) can be in three main states: Ready, Working

and Busy. State Ready represents the system being able to receive a new work piece

 51

(WP) and start to process it. After system is started it automatically is assumed to be in

Ready state. Once the WP is received in start position (SP) by the WS it changes its

status to Processing and sends the Production start notification. After the processing of

WP is finished the work piece is moved in end position (EP) of the WS and the station

changes its state to Busy. When system becomes Busy it sends notification representing

end of processing of a work piece in WS. As soon as WP will be removed from the EP

of workstation the station returns to Ready state.

 52

5. RESULTS

In this chapter the results of the use case implementation and research in general will be

presented.

5.1. Use Case

During execution of the use case in the thesis project the manufacturing line attached

Inico devices has been successfully discovered. On changes of the configuration of the

shop floor the repository of WSDL files which represents the shop floor configuration

had been updated correspondingly. WSDL file for the feeder station as example of

WSDL with semantics employed in use case can be found in Appendix 2.

The WSDL semantics had been successfully extracted, parsed, processed and

mapped to ontology (which did not have any instances of data source class). The

SPARQL query which shows the data sources in populated CFBNO with corresponding

semantic meanings and XPath of data source in parent messages is presented in Table

12. The results of query contain two data sources with defined semantic meanings (Pro-

ductionStartTime, ProductionEndTime). These semantic meanings were retrieved from

semantic annotations of WSDL and are used in analysis for possible metrics in current

system configuration.

Table 12: SPARQL query of populated CFBNO ontology and part of corresponding

result

SPARQL query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX onto: <http://www.plantcockpit.eu/ontologies/functionblock_network.owl#>

SELECT ?Data_Source ?Semantic_Meaning

 WHERE { ?Data_Source onto:hasISA95Mapping ?Semantic_Meaning }

Data_Source Semantic_Meaning XPath

Analysis of the ontology provided correct list of available metrics which were avail-

able for calculation in current configuration of the shop floor devices. Finally, genera-

 53

tion of the FBN XML has been performed successfully, providing the proper configura-

tion for the PLANTCockpit system, for metric calculation. Automatically generated

FBN XML can be found in Appendix 1.

Figure 31: FBEC with deployed network for use case

On Figure 31 which depicts the deployed FBN for metric calculation three named

above function blocks can be observed. FB0 is Esper CEP data processor and FB1 and

FB2 are DWPS adapters. Automatically generated function block network was able to

calculate the duration of manufacturing of a work piece based on notifications received

from DPWS devices as it was expected.

5.2. Concepts and learnings

As a result of this thesis work a solution for a problem defined in 1.2 has been devel-

oped. Most importantly this solution responds to the stated questions.

 How to synchronize monitoring system with shop floor?

For synchronization of the monitoring system with shop floor in this thesis follow-

ing technical solution is offered. On shop floor level either devices immediately or em-

ploying gateway devices should implement DPWS technology. DPWS technology of-

fers dynamic, event triggered expression of changes in industrial data sources. Imple-

mentation of DPWS notification listeners can provide the data required to map the state

of the shop floor to a knowledge base. The ontology has been used in the offered solu-

tion as a knowledge base. This set of tools, technologies and approaches allows to syn-

chronize the status of the shop floor with the world model used in monitoring system.

 How to calculate the metrics to be displayed in monitoring system minimis-

ing customization of monitoring system?

Conceptually, to remove a need for customization the system should provide deep

configuration options. Especially is important to separate business logic from functional

logic, and allow user to configure the business logic without a need of system recompi-

lation. In terms of reusability of the system the functionality should be distributed be-

tween the loosely-coupled modules. This approach can be achieved employing FB con-

cept. Hence to minimize the system customization and thus to reuse more the system

 54

component and simplify their maintenance function blocks concept should be used in

the monitoring system.

 How to define metrics for the monitoring system so that configuration of

the monitoring system can be performed automatically?

Employing FB concept (provided all required FB types are created) any metric cal-

culation can be realized using FB network. FB network is the function block instances

and connections between them, hence creation of the function block network, which

uses existing FB types requires only configuration of the FBs and connections. There-

fore, definition of the metric should unambiguously describe the FBN configuration.

Firstly, this definition is proposed to provide description of the data processor FB,

which should contain metadata about configuration of the FB and describe required data

sources. In this thesis for simplicity the metadata about configuration included the con-

figuration itself, but obviously the metadata can be more abstract.

Secondly, following description of adapters is offered in this thesis: the adaptor FB

description should contain technical details about data extraction and semantic meaning

of the data provided by the adapter. Employing semantic description in the devices

which can be exposed to the system the available adapter descriptions can be generated

automatically.

Finally, it is offered to generate the connections based on the matching pairs of se-

mantic meanings of adapter generated data and the ones of data sources of data proces-

sors.

With proposed approach, automated generation of the FBN configuration is possible

employing definition of the metrics and the metadata placed in the shop floor devices.

As storage for extracted data about adapters and metrics definition the ontology is pro-

posed to be used, as it provides high expressivity, reasoning mechanisms and can be

dynamically extended for more complex data processing.

 How to analyse current status of the system in order to provide configura-

tion for monitoring system?

As the status of the shop floor devices is mapped in the ontology, analysis of system

status can be performed using data from ontology. This analysis should provide the sys-

tem with a list of the predefined metrics which can be calculated in current status of the

system. For metric to be calculated it should have all required data sources which are

provided by the shop floor devices. Mapping of data sources required and available se-

mantic meanings of the data is employed. Hence the analysis of the current status

should be analysis of the ontology for metrics for which all data sources are available in

the ontology. To extract data from ontology to Java Objects Apache JENA had been

used and later the analysis logic had been implemented in the program.

 55

6. CONCLUSIONS

In this chapter the research will be concluded and possible future work to extend bene-

fits of proposed solution will be offered. Also final thoughts about this thesis work will

be presented.

6.1. Thesis conclusions

Contemporary enterprise information systems, such as industrial monitoring systems,

require extensive amount of manual configuration on set up. Standardization and unifi-

cation of data access partially simplifies technical side of configuration process, but still

high level of expertise is required from the person who will configure the system. This

expertise is in combination of knowledge about production process and data integration.

Employing attachment of device description from manufacturing process point of view

and algorithms to process these descriptions, one can automate the configuration pro-

cess. The approach for such automatic configuration was developed in this thesis.

From analysed theoretical background, implementation and use case it was conclud-

ed that for the dynamic system recognition in non-intrusive industrial monitoring sys-

tem knowledge extraction, representation and analysis are required. Recapitalization of

main decisions is offered in next paragraph.

Knowledge extraction from factory shop floor devices requires dynamic, expressive

and acceptable on industrial device level set of technologies to store metadata about

device and extract data from it on demand. DPWS as a technology bringing WS func-

tionality to device level, is providing dynamic discovery of devices, protocol for data

and metadata extraction. Extensibility of WSDL files which are lying in the base of WS

allows introduction of more detailed, device specific metadata about devices employing

SAWSDL. This set of technologies covers data and metadata extraction from shop floor

devices. Knowledge representation requires a KB, which will contain the representation

of real world system. This KB should hold knowledge about metrics which theoretically

can be required in the system and also information about available data sources (for

example from shop floor level). OWL ontologies can be employed as a KB for the de-

veloped system. As ontology model the CFBNO ontology offered by Borja Ramis Fer-

rer in his thesis was modified and employed. To populate and analyse the OWL ontolo-

gy Apache JENA API was used.

Set of technologies and models mentioned above can be employed in contemporary

factories and taking into account the trend of increasing capabilities and decreasing of

smart devices this approach should be even more applicable in future. Described ap-

proach requires creation definitions of metrics to be calculated in the system as well as

 56

to describe the shop floor devices. These tasks can be executed by different specialists

on demand, can be reused in different manufacturing systems or their configurations

and most importantly, drastically, decreases amount of work and level of expertise re-

quired on industrial monitoring system set up.

6.2. Future work

The solution defined in this work had been implemented as a software tool and tested on

a real system. As the result of testing the system was able to connect to the shop floor

devices and dynamically track the changes on manufacturing system configuration. The

tool was able to parse the ontology and to find all metrics which are defined in the sys-

tem. On analysis the developed tool was capable to find all metrics which can be calcu-

lated in following configuration of the shop floor. Furthermore, the FBN configuration

file was generated based on predefined metric definition and ontology instances created

on synchronization with manufacturing system. This configuration was successfully

deployed to PLANTCockpit monitoring system and the metric was calculated correctly.

The goal of the thesis work was achieved, thou there are number of issues where the

solution can be improved.

 Firstly, more abstract definition of the metric will be preferable, as it will al-

low to implement the mechanism of generation of business logic for dissimi-

lar data processors not only Esper CEP ones. This improvement will offer

more reusability of the system in cost higher computation resources em-

ployed.

 Secondly, analysis of the ontology can be performed employing SPARQL

querying language. Usage of SPARQL can offer more readability for the

analysis algorithm, reducing its maintenance costs. Also querying will allow

to modify the analysis algorithm without need to recompile code, thou for

current task the analysis algorithm does not need to be modified as long as

ontology model is not changed. Hence usage of SPARQL can introduce

more reusability and related benefits of cost reduction, while slightly reduc-

ing performance of the system.

 Thirdly, the ontology side can be improved, to be able to analysis more de-

tails about shop floor devices such as their topology, hierarchy and so on.

This approach can provide more possibilities to describe data sources and

thus to define the data for metrics more explicitly. Perspective from this

point of view is Semantic Web Rule Language (SWRL).

6.3. Final considerations

In this thesis work the contemporary studies applicable to research topic had been stud-

ied, analysed and based on results methodology dynamic system recognition for non-

intrusive monitoring systems based on semantic models had been offered. According to

 57

this methodology the system employing the dynamic system recognition had been de-

veloped. Developed system was tested in real test bed and has proved that it provides

expected functionality. Hence the task of research had been achieved.

During research in theoretical background required for this thesis dissimilar scien-

tific and technical sources had been studied. This study allowed to create general ap-

proach for development of dynamic system recognition tool, thou this approach was

corrected on development as new technical problems took place. Finally after applica-

tion of the concept and developed tool to real manufacturing system on testing provided

even more ideas for improvement of the concept, which had been concluded in section

6.2.

 58

REFERENCES

[1] “EU Manufacturing Industry: What are the Challenges and Opportunities for the

Coming Years?” 26-Apr-2010.

[2] “Manufacturing, value added (% of GDP) | Data | Graph.” [Online]. Available:

http://data.worldbank.org/indicator/NV.IND.MANF.ZS/countries/1W-EU-US-JP-

CN?display=graph. [Accessed: 30-Jul-2013].

[3] “Manufacturing statistics - NACE Rev. 2 - Statistics Explained.” [Online]. Availa-

ble:

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Manufacturing_stati

stics_-_NACE_Rev._2. [Accessed: 30-Jul-2013].

[4] European Union, European Commission, and Directorate-General for Enterprise

and Industry, EU industrial structure 2011: trends and performance. Luxembourg:

Publications Office of the European Union, 2011.

[5] “SOA and Web Services.” [Online]. Available:

http://www.oracle.com/technetwork/articles/javase/soa-142870.html. [Accessed:

30-Jul-2013].

[6] “Home - Sirena 2003 - 2005.” [Online]. Available: http://www.sirena-itea.org/.

[Accessed: 15-Mar-2013].

[7] “Home - Soda - 2006.” [Online]. Available: http://www.soda-itea.org/. [Accessed:

15-Mar-2013].

[8] “Web Services for Devices (WS4D).” [Online]. Available: http://ws4d.e-

technik.uni-rostock.de/. [Accessed: 15-Mar-2013].

[9] “Home - Socrades.” [Online]. Available:

http://www.socrades.eu/Home/default.html. [Accessed: 15-Mar-2013].

[10] “SOA4D Forge: Welcome.” [Online]. Available: https://forge.soa4d.org/. [Ac-

cessed: 15-Mar-2013].

[11] “Inico Technologies.” [Online]. Available: http://www.inicotech.com/about.html.

[Accessed: 30-Jul-2013].

[12] “PlantCockpit: Home.” [Online]. Available: http://www.plantcockpit.eu/. [Ac-

cessed: 15-Mar-2013].

[13] S. Iarovyi, J. Garcia, and J. L. M. Lastra, “An approach for OSGi and DPWS in-

teroperability: Bridging enterprise application with shop-floor,” in 2013 11th IEEE

International Conference on Industrial Informatics (INDIN), 2013, pp. 200–205.

[14] “BatchControl.com: Now This is Exciting!” [Online]. Available:

http://www.batchcontrol.com/s95/s95.shtml. [Accessed: 30-Jul-2013].

[15] A. Florea, J. A. G. I. Montemayor, C. Postelnicu, and J. L. M. Lastra, “A cross-

layer approach to energy management in manufacturing,” in 2012 10th IEEE In-

ternational Conference on Industrial Informatics (INDIN), 2012, pp. 304–308.

[16] V. Vasyutynskyy, C. Hengstler, J. McCarthy, K. G. Brennan, D. Nadoveza, and A.

Dennert, “Layered architecture for production and logistics cockpits,” in 2012

IEEE 17th Conference on Emerging Technologies Factory Automation (ETFA),

2012, pp. 1–9.

 59

[17] G. Hohpe, Enterprise integration patterns: designing, building, and deploying

messaging solutions. Boston: Addison-Wesley, 2004.

[18] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-Oriented

Computing: State of the Art and Research Challenges,” Computer, vol. 40, no. 11,

pp. 38–45, 2007.

[19] M. H. Valipour, B. Amirzafari, K. N. Maleki, and N. Daneshpour, “A brief survey

of software architecture concepts and service oriented architecture,” in 2nd IEEE

International Conference on Computer Science and Information Technology,

2009. ICCSIT 2009, 2009, pp. 34–38.

[20] “Microsoft, IBM, SAP To Discontinue UDDI Web Services Registry Effort | SOA

World Magazine.” [Online]. Available: http://soa.sys-con.com/node/164624. [Ac-

cessed: 17-Oct-2013].

[21] “Web Services Architecture.” [Online]. Available: http://www.w3.org/TR/ws-

arch/. [Accessed: 15-Mar-2013].

[22] “OASIS Web Services Dynamic Discovery (WS-Discovery) Version 1.1.”

[Online]. Available: http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-

discovery-1.1-spec-os.html. [Accessed: 17-Oct-2013].

[23] “Web Service Definition Language (WSDL).” [Online]. Available:

http://www.w3.org/TR/wsdl. [Accessed: 17-Oct-2013].

[24] “WSDL portType.” [Online]. Available:

http://www.w3schools.com/wsdl/wsdl_ports.asp. [Accessed: 02-Sep-2013].

[25] “Web Services Eventing (WS-Eventing).” [Online]. Available:

http://www.w3.org/Submission/WS-Eventing/. [Accessed: 17-Oct-2013].

[26] “SOA and EDA: Using events to bridge decoupled service boundaries.” [Online].

Available: http://searchsoa.techtarget.com/tip/SOA-and-EDA-Using-events-to-

bridge-decoupled-service-boundaries. [Accessed: 30-Jul-2013].

[27] K. Walzer, J. Rode, D. Wunsch, and M. Groch, “Event-driven manufacturing: Uni-

fied management of primitive and complex events for manufacturing monitoring

and control,” in IEEE International Workshop on Factory Communication Sys-

tems, 2008. WFCS 2008, 2008, pp. 383–391.

[28] G. I. Montemayor and J. Andres, “A Complex Event Processing System for Moni-

toring of Manufacturing Systems,” Mar. 2012.

[29] S. Ortiz, “Getting on Board the Enterprise Service Bus,” Computer, vol. 40, no. 4,

pp. 15–17, 2007.

[30] A. Otto and K. Hellmann, “IEC 61131: A general overview and emerging trends,”

IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 27–31, 2009.

[31] J. L. M. Lastra, Function Blocks for Industrial-process Measurement and Control

Systems: IEC-61499 Introduction and Run-time Platforms. Tampere University of

Technology, 2004.

[32] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan, A. Valentini, L.

Ferrarini, T. Strasser, J. L. Martinez-Lastra, and F. Auinger, “Usability and In-

teroperability of IEC 61499 based distributed automation systems,” in 2006 IEEE

International Conference on Industrial Informatics, 2006, pp. 31–37.

[33] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent Automation:

State-of-the-Art Review,” IEEE Trans. Ind. Inform., vol. 7, no. 4, pp. 768–781,

2011.

[34] A. Dennert, A. Gossling, J. Krause, M. Wollschlaeger, and A. M. Henao Montoya,

“Vertical data integration in automation based on IEC 61499,” in 2012 9th IEEE

International Workshop on Factory Communication Systems (WFCS), 2012, pp.

99–102.

 60

[35] A. W. Colombo, F. Jammes, H. Smit, R. Harrison, J. L. M. Lastra, and I. M.

Delamer, “Service-oriented architectures for collaborative automation,” in 31st

Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005,

2005, p. 6 pp.–.

[36] J. M. L. AW Colombo, “An approach to develop flexible & collaborative factory

automation systems (FLEXCA),” Teti Red Proc. 4th CIRP Int. Semin. Intell. Com-

put. Manuf. Eng. CIRP ICME3904 June 30-July 2 2004 Sorrento Italy, 2011.

[37] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture for Distributed

Publish/Subscribe Middleware in Electronics Production,” IEEE Trans. Ind. In-

form., vol. 2, no. 4, pp. 281–294, Nov. 2006.

[38] I. M. Delamer and J. L. M. Lastra, “Loosely-coupled Automation Systems using

Device-level SOA,” in 2007 5th IEEE International Conference on Industrial In-

formatics, 2007, vol. 2, pp. 743–748.

[39] A. Lobov, J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M. Lastra, “Service

oriented architecture in developing of loosely-coupled manufacturing systems,” in

6th IEEE International Conference on Industrial Informatics, 2008. INDIN 2008,

2008, pp. 791–796.

[40] G. Candido, F. Jammes, J. B. de Oliveira, and A. W. Colombo, “SOA at device

level in the industrial domain: Assessment of OPC UA and DPWS specifications,”

in 2010 8th IEEE International Conference on Industrial Informatics (INDIN), Ju-

ly, pp. 598–603.

[41] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service Infrastructure for Re-

al-time Embedded Networked Devices: A service oriented framework for different

domains,” in International Conference on Networking, International Conference

on Systems and International Conference on Mobile Communications and Learn-

ing Technologies, 2006. ICN/ICONS/MCL 2006, 2006, pp. 43–43.

[42] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski, “WS4D: Toolkits for

Networked Embedded Systems Based on the Devices Profile for Web Services,” in

2012 41st International Conference on Parallel Processing Workshops, Los

Alamitos, CA, USA, 2010, vol. 0, pp. 1–8.

[43] A. Cannata, M. Gerosa, and M. Taisch, “SOCRADES: A framework for develop-

ing intelligent systems in manufacturing,” in IEEE International Conference on

Industrial Engineering and Engineering Management, 2008. IEEM 2008, 2008,

pp. 1904–1908.

[44] L. M. S. de Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and D. Savio,

“SOCRADES: A Web Service Based Shop Floor Integration Infrastructure,” in

The Internet of Things, C. Floerkemeier, M. Langheinrich, E. Fleisch, F. Mattern,

and S. E. Sarma, Eds. Springer Berlin Heidelberg, 2008, pp. 50–67.

[45] Z. Yang, J.-B. Zhang, R. Gay, L. Zhuang, and H. M. Lee, “Building a Semantic-

Rich Service-Oriented Manufacturing Environment,” in Web Information Systems

Engineering – WISE 2005, A. H. H. Ngu, M. Kitsuregawa, E. J. Neuhold, J.-Y.

Chung, and Q. Z. Sheng, Eds. Springer Berlin Heidelberg, 2005, pp. 623–632.

[46] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge

sharing?,” Int. J. Hum.-Comput. Stud., vol. 43, no. 5–6, pp. 907–928, Nov. 1995.

[47] “Theoretical Foundations of Ontologies,” in Ontological Engineering, Springer

London, 2004, pp. 1–45.

[48] L. LIU and M. T. ÖZSU, Eds., “Ontologies,” in Encyclopedia of Database Sys-

tems, Springer US, 2009, pp. 1959–1959.

 61

[49] S. Borgo and P. Leitão, “Foundations for a Core Ontology of Manufacturing,” in

Ontologies, R. Sharman, R. Kishore, and R. Ramesh, Eds. Springer US, 2007, pp.

751–775.

[50] J. L. M. L. Omar J. López Orozco, “Using semantic web technologies to describe

automation objects.,” IJMR, vol. 1, pp. 482–503, 2006.

[51] J. L. M. Lastra and I. M. Delamer, “Ontologies for Production Automation,” in

Advances in Web Semantics I, T. S. Dillon, E. Chang, R. Meersman, and K.

Sycara, Eds. Springer Berlin Heidelberg, 2009, pp. 276–289.

[52] J. L. M. Lastra, I. M. Delamer, and F. Ubis, Domain Ontologies for Reasoning

Machines in Factory Automation. ISA, 2010.

[53] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra, “Semantic

Web Services framework for manufacturing industries,” in IEEE International

Conference on Robotics and Biomimetics, 2008. ROBIO 2008, 2009, pp. 2104–

2108.

[54] B. Ramis Ferrer, “An ontological approach for modelling configuration of factory-

wide data integration systems based on IEC-61499,” Jun. 2013.

[55] M. Schleipen, R. Drath, and O. Sauer, “The system-independent data exchange

format CAEX for supporting an automatic configuration of a production monitor-

ing and control system,” in IEEE International Symposium on Industrial Electron-

ics, 2008. ISIE 2008, 2008, pp. 1786–1791.

[56] O. Sauer, “Trends in Manufacturing Execution Systems,” in Proceedings of the 6th

CIRP-Sponsored International Conference on Digital Enterprise Technology, G.

Q. Huang, K. L. Mak, and P. G. Maropoulos, Eds. Springer Berlin Heidelberg,

2010, pp. 685–693.

[57] R. Drath, “Let’s talk AutomationML what is the effort of AutomationML pro-

gramming?,” in 2012 IEEE 17th Conference on Emerging Technologies Factory

Automation (ETFA), 2012, pp. 1–8.

[58] R. Drath, A. Luder, J. Peschke, and L. Hundt, “AutomationML - the glue for seam-

less automation engineering,” in IEEE International Conference on Emerging

Technologies and Factory Automation, 2008. ETFA 2008, 2008, pp. 616–623.

[59] S. Faltinski, O. Niggemann, N. Moriz, and A. Mankowski, “AutomationML: From

data exchange to system planning and simulation,” in 2012 IEEE International

Conference on Industrial Technology (ICIT), 2012, pp. 378–383.

[60] T. Holm, L. Christiansen, M. Goring, T. Jager, and A. Fay, “ISO 15926 vs. IEC

62424 #x2014; Comparison of plant structure modeling concepts,” in 2012 IEEE

17th Conference on Emerging Technologies Factory Automation (ETFA), 2012,

pp. 1–8.

[61] P. D. W. Marquardt, J. M. D. Ing, A. W. D. Ing, and D. A. Yang, “Related Work

on Ontologies for Engineering Applications,” in OntoCAPE, Springer Berlin Hei-

delberg, 2010, pp. 369–390.

[62] S. Berger, G. Grossmann, M. Stumptner, and M. Schrefl, “Metamodel-Based In-

formation Integration at Industrial Scale,” in Model Driven Engineering Lan-

guages and Systems, D. C. Petriu, N. Rouquette, and Ø. Haugen, Eds. Springer

Berlin Heidelberg, 2010, pp. 153–167.

[63] P. T. PhD and C. G. Dr, “Trends in Automation,” in Springer Handbook of Auto-

mation, P. S. Y. Nof, Ed. Springer Berlin Heidelberg, 2009, pp. 127–143.

[64] H. O. Unver, “An ISA-95-based manufacturing intelligence system in support of

lean initiatives,” Int. J. Adv. Manuf. Technol., vol. 65, no. 5–8, pp. 853–866, May

2012.

 62

[65] D. L. Nastasie, A. Koronios, and A. Haider, “Integration Through Standards – An

Overview of Internal Information Standards for Engineering Asset,” in Definitions,

Concepts and Scope of Engineering Asset Management, J. E. Amadi-Echendu, K.

Brown, R. Willett, and J. Mathew, Eds. Springer London, 2010, pp. 239–258.

[66] “IBM Emerging Technologies - jStart - On The Horizon - Semantic Enrichment,”

19-Jan-2012. [Online]. Available: http://www-

01.ibm.com/software/ebusiness/jstart/semantic/. [Accessed: 07-Aug-2013].

[67] A. Hinze, R. Heese, A. Schlegel, and M. Luczak-Rösch, “User-Defined Semantic

Enrichment of Full-Text Documents: Experiences and Lessons Learned,” in Theo-

ry and Practice of Digital Libraries, P. Zaphiris, G. Buchanan, E. Rasmussen, and

F. Loizides, Eds. Springer Berlin Heidelberg, 2012, pp. 209–214.

[68] J. Cardoso, J. A. Miller, and S. Emani, “Web Services Discovery Utilizing Seman-

tically Annotated WSDL,” in Reasoning Web, C. Baroglio, P. A. Bonatti, J.

Małuszyński, M. Marchiori, A. Polleres, and S. Schaffert, Eds. Springer Berlin

Heidelberg, 2008, pp. 240–268.

[69] “Semantic Annotations for WSDL Working Group.” [Online]. Available:

http://www.w3.org/2002/ws/sawsdl/. [Accessed: 08-Aug-2013].

[70] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL: Semantic Annota-

tions for WSDL and XML Schema,” IEEE Internet Comput., vol. 11, no. 6, pp.

60–67, 2007.

[71] “OASIS Web Services Discovery and Web Services Devices Profile (WS-DD) TC

| OASIS.” [Online]. Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=ws-dd. [Accessed: 15-Mar-2013].

 63

APPENDIX 1: USE CASE FBN XML
<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<fbNetworkScenario>

 <fbNetworkName>calcTime</fbNetworkName>

 <fb>

 <fbId>FB0</fbId>

 <fbPid>pid_eu.plant.plant_fb_Esper</fbPid>

 <fbBusinessLogic>{ "EsperConfigura-

tion":{"CEPServiceName":"FB0","EventProcessingQuery":{"queryStatement":"SELEC

T\nTester.TSTesterOUT - Feeder.TSFeederIN as Dura-

tion\nFROM\nTester.win:length(1) as Tester,\nFeeder.win:length(1) as Feed-

er"},"InputMessageDefinitions":{"InputMessage":[{"elements":{"Element":[{"Name":"

TSTesterOUT","SampleValue":"123123123123112"}]},"rootElementName":"Tester"},

{"ele-

ments":{"Element":[{"Name":"TSFeederIN","SampleValue":"123123123123121"}]},"r

ootElementName":"Feeder"}]}}}</fbBusinessLogic>

 <fbBusinessLogicSchema>{"type":"object","$schema": "http://json-

schema.org/draft-03/schema","id": "#","required":false,"properties":{ "EsperConfigura-

tion": { "type":"object", "id": "EsperConfiguration", "required":false, "properties":{

"CEPServiceName": { "type":"string", "id": "CEPServiceName", "required":false },

"EventProcessingQuery": { "type":"object", "id": "EventProcessingQuery", "re-

quired":false, "properties":{ "queryStatement": { "type":"string", "id": "queryState-

ment", "format":"text", "_inputex": { "rows":3, "cols":70, "description": "Event Pro-

cessing Language Query expected " } , "required":false } } }, "InputMessageDefini-

tions": { "type":"object", "id": "InputMessageDefinitions", "required":false, "proper-

ties":{ "InputMessage": { "type":"array", "id": "InputMessage", "required":false,

"_inputex": {"description": "Input message declaration " } , "items": { "type":"object",

"id": "0", "required":false, "properties":{ "elements": { "type":"object", "id": "ele-

ments", "required":false, "properties":{ "Element": { "type":"array", "id": "Element",

"required":false, "items": { "type":"object", "id": "0", "required":false, "properties":{

"Name": { "type":"string", "id": "Name", "required":false }, "SampleValue": {

"type":"string", "id": "SampleValue", "required":false } } } } } }, "rootElementName":

{ "type":"string", "id": "rootElementName", "required":false } } } } } } } }

}}</fbBusinessLogicSchema>

 <inputMessageTypes>

 <inputMessageType>Feeder</inputMessageType>

 <inputMessageType>Tester</inputMessageType>

 </inputMessageTypes>

 <outputMessageTypes>

 <outputMessageType>FB0_OUT</outputMessageType>

 </outputMessageTypes>

 <transformations>

 64

 <transformation>

 <originalMsgType>Feeder</originalMsgType>

 <newMsgType/>

 <transformationName/>

 <transformationXSLT/>

 <direction>INPUT</direction>

 </transformation>

 <transformation>

 <originalMsgType>Tester</originalMsgType>

 <newMsgType/>

 <transformationName/>

 <transformationXSLT/>

 <direction>INPUT</direction>

 </transformation>

 <transformation>

 <originalMsgType>FB0_output</originalMsgType>

 <newMsgType/>

 <transformationName/>

 <transformationXSLT/>

 <direction>OUTPUT</direction>

 </transformation>

 </transformations>

 </fb>

 <fb>

 <fbId>FB1</fbId>

 <fbPid>pid_eu.plant.plant_fb_dpws_adapter</fbPid>

 <fbBusinessLog-

Log-

ic>{"DPWSConfig":{"subscribe":{"string":["192.168.1.4;http://www.fast.tut.fi/iarovyi/

thesis/TesterServicePortType/TransferEvent"]}}}</fbBusinessLogic>

 <fbBusinessLogicSchema>{"type":"object","$schema":"http://json-schema.org/draft-

03/schema","id":"#","required":false,"properties":{"DPWSConfig":{"type":"object","id

":"DPWSConfig","title":"DPWSConfig","required":false,"properties":{"subscribe":{"ty

pe":"object","id":"subscribe","required":false,"properties":{"string":{"type":"array","titl

e":"Subscribe","id":"stringArray","required":false,"items":{"type":"string","title":"Actio

n","_inputex": { "description": "NOTE! Currently only one action can be subscribed by

each instance of the adapt-

er"},"choices":[{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterService

Port-

Type/TransferEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/Tester

ServicePort-

 65

Type/OperatorEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/Tester

ServicePort-

Type/EnergyEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterS

ervicePort-

Type/AlarmEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterSe

rvicePort-

Type/WorkStationStatusEvent"},{"value":"192.168.3.45;http://www.fast.tut.fi/iarovyi/t

he-

sis/FeederServicePortType/TransferEvent"},{"value":"192.168.3.45;http://www.fast.tut.

fi/iarovyi/thesis/FeederServicePortType/OperatorEvent"},{"value":"192.168.3.45;http://

www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/EnergyEvent"},{"value":"192.16

8.3.45;http://www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/AlarmEvent"},{"val

ue":"192.168.3.45;http://www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/WorkSta

tionStatusEvent"}],"id":"string","required":false}}}}}}}}</fbBusinessLogicSchema>

 <inputMessageTypes/>

 <outputMessageTypes>

 <outputMessageType>192-168-1-4_TransferEvent</outputMessageType>

 </outputMessageTypes>

 <transformations>

 <transformation>

 <originalMsgType>192-168-1-4_TransferEvent</originalMsgType>

 <newMsgType>Tester</newMsgType>

 <transformationName>192-168-1-

4_TransferEvent2Tester13</transformationName>

 <transformationXSLT><?xml version="1.0"?> <xsl:stylesheet ver-

sion="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:template

match="/"><Tester><TSTesterOUT><xsl:value-of se-

lect="/TransferMsg/Timestamp"/></TSTesterOUT></Tester></xsl:te

mplate></xsl:stylesheet></transformationXSLT>

 <direction>OUTPUT</direction>

 </transformation>

 </transformations>

 </fb>

 <fb>

 <fbId>FB2</fbId>

 <fbPid>pid_eu.plant.plant_fb_dpws_adapter</fbPid>

 <fbBusinessLog-

Log-

ic>{"DPWSConfig":{"subscribe":{"string":["192.168.3.45;http://www.fast.tut.fi/iarovyi

/thesis/FeederServicePortType/TransferEvent"]}}}</fbBusinessLogic>

 66

 <fbBusinessLogicSchema>{"type":"object","$schema":"http://json-schema.org/draft-

03/schema","id":"#","required":false,"properties":{"DPWSConfig":{"type":"object","id

":"DPWSConfig","title":"DPWSConfig","required":false,"properties":{"subscribe":{"ty

pe":"object","id":"subscribe","required":false,"properties":{"string":{"type":"array","titl

e":"Subscribe","id":"stringArray","required":false,"items":{"type":"string","title":"Actio

n","_inputex": { "description": "NOTE! Currently only one action can be subscribed by

each instance of the adapt-

er"},"choices":[{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterService

Port-

Type/TransferEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/Tester

ServicePort-

Type/OperatorEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/Tester

ServicePort-

Type/EnergyEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterS

ervicePort-

Type/AlarmEvent"},{"value":"192.168.1.4;http://www.fast.tut.fi/iarovyi/thesis/TesterSe

rvicePort-

Type/WorkStationStatusEvent"},{"value":"192.168.3.45;http://www.fast.tut.fi/iarovyi/t

he-

sis/FeederServicePortType/TransferEvent"},{"value":"192.168.3.45;http://www.fast.tut.

fi/iarovyi/thesis/FeederServicePortType/OperatorEvent"},{"value":"192.168.3.45;http://

www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/EnergyEvent"},{"value":"192.16

8.3.45;http://www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/AlarmEvent"},{"val

ue":"192.168.3.45;http://www.fast.tut.fi/iarovyi/thesis/FeederServicePortType/WorkSta

tionStatusEvent"}],"id":"string","required":false}}}}}}}}</fbBusinessLogicSchema>

 <inputMessageTypes/>

 <outputMessageTypes>

 <outputMessageType>192-168-3-45_TransferEvent</outputMessageType>

 </outputMessageTypes>

 <transformations>

 <transformation>

 <originalMsgType>192-168-3-45_TransferEvent</originalMsgType>

 <newMsgType>Feeder</newMsgType>

 <transformationName>192-168-3-

45_TransferEvent2Feeder13</transformationName>

 <transformationXSLT><?xml version="1.0"?> <xsl:stylesheet ver-

sion="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"><xsl:template

match="/"><Feeder><TSFeederIN><xsl:value-of se-

lect="/TransferMsg/Timestamp"/></TSFeederIN></Feeder></xsl:tem

plate></xsl:stylesheet></transformationXSLT>

 <direction>OUTPUT</direction>

 </transformation>

 67

 </transformations>

 </fb>

 <connections>

 <connection>

 <srcPID>pid_eu.plant.plant_fb_dpws_adapter</srcPID>

 <srcFbInstanceName>FB2</srcFbInstanceName>

 <dstPID>pid_eu.plant.plant_fb_Esper</dstPID>

 <dstFbInstanceName>FB0</dstFbInstanceName>

 <filterMsg>Feeder</filterMsg>

 </connection>

 <connection>

 <srcPID>pid_eu.plant.plant_fb_dpws_adapter</srcPID>

 <srcFbInstanceName>FB1</srcFbInstanceName>

 <dstPID>pid_eu.plant.plant_fb_Esper</dstPID>

 <dstFbInstanceName>FB0</dstFbInstanceName>

 <filterMsg>Tester</filterMsg>

 </connection>

 </connections>

</fbNetworkScenario>

 68

APPENDIX 2: FEEDER WORK STATION WSDL
<?xml version="1.0" encoding="UTF-8" ?>

 <definitions name="FestoStationService" target-

Namespace="http://www.plantcockpit.eu/fast/festo"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://www.plantcockpit.eu/fast/festo"

 xmlns:wse="http://schemas.xmlsoap.org/ws/2004/08/eventing"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl"

 xmlns:isa95="http://www.w3.org/2002/ws/sawsdl/spec/ontology/purchaseorder">

 <types>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.plantcockpit.eu/fast/festo"

 xmlns:tns="http://www.plantcockpit.eu/fast/festo"

 elementFormDefault="qualified">

 <xs:element name="StationId" type="xs:string"/>

 <xs:element name="Timestamp" type="xs:long"/>

 <xs:element name="WorkpieceId" type="xs:string"/>

 <xs:element name="Response" type="xs:string"/>

 <xs:element name="Status" type="xs:string"/>

 <xs:simpleType name="WorkstationStatusCode">

 <xs:restriction base="xs:token">

 <xs:enumeration value="READY" />

 <xs:enumeration value="STARTING" />

 <xs:enumeration value="STARTED" />

 <xs:enumeration value="IDLE" />

 <xs:enumeration value="PROCESSING" />

 <xs:enumeration value="WAITING" />

 <xs:enumeration value="STOPPING" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="WorkpieceStatusCode">

 <xs:restriction base="xs:token">

 <xs:enumeration value="TRANSFERIN" />

 <xs:enumeration value="PROCESSING" />

 <xs:enumeration value="WAITING" />

 <xs:enumeration value="TRANSFEROUT" />

 69

 <xs:enumeration value="NO_WORKPIECE" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="OperatorInputCodeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="START" />

 <xs:enumeration value="STOP" />

 <xs:enumeration value="RESET" />

 <xs:enumeration value="EMERGENCY_STOP" />

 <xs:enumeration value="AUTO_MANUAL_SWITCH" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="WorkstationStatusType">

 <xs:sequence>

 <xs:element ref="tns:StationId"/>

 <xs:element ref="tns:Status"/>

 <xs:element ref="tns:Timestamp"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="OperatorInputType">

 <xs:sequence>

 <xs:element ref="tns:StationId"/>

 <xs:element name="Type" type="tns:OperatorInputCodeType"/>

 <xs:element name="Value" type="xs:string"/>

 <xs:element ref="tns:Timestamp"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="WorkstationEventType">

 <xs:sequence>

 <xs:element ref="tns:StationId"/>

 <xs:element name="EventType" type="xs:string"/>

 <xs:element name="Value" type="xs:string"/>

 <xs:element ref="tns:Timestamp"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="WorkstationAlarmType">

 <xs:sequence>

 70

 <xs:element ref="tns:StationId"/>

 <xs:element name="AlarmType" type="xs:string"/>

 <xs:element name="Value" type="xs:string"/>

 <xs:element ref="tns:Timestamp"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="WorkpieceStatusType">

 <xs:sequence>

 <xs:element ref="tns:StationId"/>

 <xs:element ref="tns:WorkpieceId"/>

 <xs:element name="Status" type="tns:WorkpieceStatusCode"/>

 <xs:element ref="tns:Timestamp"

sawsdl:modelReference="isa95:ProductionStartTime"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="WorkpiecePropertiesType">

 <xs:sequence>

 <xs:element ref="tns:StationId"/>

 <xs:element ref="tns:WorkpieceId"/>

 <xs:element name="EventType" type="xs:string"/>

 <xs:element name="Details" type="xs:string"/>

 <xs:element ref="tns:Timestamp"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="WorkstationStatus" type="tns:WorkstationStatusType"/>

 <xs:element name="OperatorInput" type="tns:OperatorInputType"/>

 <xs:element name="WorkstationEvent" type="tns:WorkstationEventType"/>

 <xs:element name="WorkpieceStatus" type="tns:WorkpieceStatusType"/>

 <xs:element name="WorkpieceProperties" type="tns:WorkpiecePropertiesType"/>

 <xs:element name="WorkstationAlarm" type="tns:WorkstationAlarmType"/>

</xs:schema>

 </types>

 <message name="WorkstationStatusMessage">

 <part name="status" element="tns:WorkstationStatus"/>

 </message>

 71

 <message name="OperatorInputMessage">

 <part name="input" element="tns:OperatorInput"/>

 </message>

 <message name="WorkpieceStatusMessage">

 <part name="status" element="tns:WorkpieceStatus"/>

 </message>

 <message name="WorkstationEventMessage">

 <part name="event" element="tns:WorkstationEvent"/>

 </message>

 <message name="WorkstationAlarmMessage">

 <part name="event" element="tns:WorkstationAlarm"/>

 </message>

 <message name="WorkpiecePropertiesMessage">

 <part name="event" element="tns:WorkpieceProperties"/>

 </message>

 <message name="TransferInMessage">

 <part name="tin" element="tns:WorkpieceId"/>

 </message>

 <message name="TransferInResponseMessage">

 <part name="tin" element="tns:Response"/>

 </message>

<portType name="FestoStationServicePortType" wse:EventSource="true">

 <operation name="TransferIn">

 <input message="tns:TransferInMessage"/>

 <output message="tns:TransferInResponseMessage"/>

 </operation>

 <operation name="WorkstationStatus">

 <output message="tns:WorkstationStatusMessage"/>

 </operation>

 <operation name="WorkstationEvent">

 <output message="tns:WorkstationEventMessage"/>

 </operation>

 72

 <operation name="WorkstationAlarm">

 <output message="tns:WorkstationAlarmMessage"/>

 </operation>

 <operation name="OperatorInput">

 <output message="tns:OperatorInputMessage"/>

 </operation>

 <operation name="WorkpieceStatus">

 <output message="tns:WorkpieceStatusMessage"/>

 </operation>

 <operation name="WorkpieceProperties">

 <output message="tns:WorkpiecePropertiesMessage"/>

 </operation>

</portType>

<binding name="FestoStationServicePortType"

type="tns:FestoStationServicePortType">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />

 <operation name="TransferIn">

 <soap:operation style="document" />

 <wsdl:input>

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="WorkstationStatus">

 <soap:operation style="document" />

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="WorkstationEvent">

 <soap:operation style="document" />

 73

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="WorkstationAlarm">

 <soap:operation style="document" />

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="OperatorInput">

 <soap:operation style="document" />

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="WorkpieceStatus">

 <soap:operation style="document" />

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

 <operation name="WorkpieceProperties">

 <soap:operation style="document" />

 <wsdl:output>

 <soap:body use="literal" />

 </wsdl:output>

 </operation>

</binding>

 <service name="FestoStationService" sawsdl:modelReference="isa95:FEEDER">

 <port name="FestoStationServicePortType" bind-

ing="tns:FestoStationServicePortType">

 <soap:address location="http://192.168.2.62:80/dpws/ws01" />

 </port>

 </service>

 </definitions>

