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Automatic recommendation system as a subject of machine learning has been un-
dergoing a rapid development in the recent decade along with the trend of big data.
Particularly, music recommendation is a highlighted topic because of its commercial
value coming from the large music industry.

Popular online music recommendation services, including Spotify, Pandora and
Last.FM use similarity-based approaches to generate recommendations. In this the-
sis work, I propose a personalized music recommendation approach that is based on
probability estimation without any similarity calculation involved. In my system,
each user gets a score for every piece of music. The score is obtained by combining
two estimated probabilities of an acceptance. One estimated probability is based
on the user’s preferences on timbres. Another estimated probability is the empirical
acceptance rate of a music piece. The weighted arithmetic mean is evaluated to be
the best performing combination function.

An online demonstration of my system is available at www.shuyang.eu/plg/. Demon-
strating recommendation results show that the system works effectively. Through
the algorithm analysis on my system, we can see that my system has good reactivity
and scalability without suffering cold start problem. The accuracy of my recom-
mendation approach is evaluated with Million Song Dataset. My system achieves
a pairwise ranking accuracy of 0.592, which outperforms random ranking (0.5) and
ranking by popularity (0.557). Unfortunately, I have not found any other music
recommendation method evaluated with ranking accuracy yet. As a comparison,
Page Rank algorithm (for web page ranking) has a pairwise ranking accuracy of
0.567 [38].
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PREFACE

This work has been conducted at the Department of Signal Processing of Tampere
University of Technology.

The starting point of my study on music recommendation is an innovative project
sponsored by Nokia. In this project, I implemented a collaborative filtering mu-
sic recommender using random indexing instead of matrix factorization to make a
trade-off between computation complexity and accuracy. Along with the progress of
this project, I had been taking the course Speech Recognition lectured by Tuomas
Virtanen. This course aroused my interest in audio processing and with my per-
sonal aversion against prevailing similarity-based music recommendation services, I
developed the basic idea of the music recommender proposed in this thesis work.

This thesis work is my first publication written in English and also my first one in
Latin alphabet. As is often the case, one meets a lot of difficulties for the first time
and grows stronger after overcoming them. I generally formed an image of what
scientific research is during this thesis work. I draw myself a brief conclusion that
scientific research is not a sport since research is not competition of how fast you
understand and implement an algorithm. More important thing in scientific research
is to follow a normalized manner or called scientific method to draw conclusion and
present .

Finally, I should thank Tuomas Virtanen as my supervisor for reading and correcting
my thesis. Furthermore, hopefully there is a spot of light in my thesis that interests
you.

Zhao Shuyang

Tampere, 02/02/2014
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1. INTRODUCTION

Music recommendation is an interdisciplinary subject, which involves machine learn-
ing and music information retrieval. Following paragraphs talk briefly about the role
and history of automatic recommendation system and the rise of music recommen-
dation as a problem.

Internet is providing a huge amount of information, as is shown by Google statis-
tics that trillion(1010) pages are being indexed in 2011. Search engines enable users
to make specific queries for information. Parallel to search engines, recommendation
systems filter for information that may interest users without specific query. The
core functionality of automatic recommendation systems is be discussed in Section
2.1.2. First recommendation system is an online news recommender called Tapestry
by Goldberg, which emerged in 1992. Nowadays, many large scale e-commercial
sites, including Amazon, Netflix and TiVo run recommendation systems to mine po-
tential purchase interest of their customers to increase their sales. Besides prompt to
sales, recommendation systems also help to build customer loyalty, and to open up
advertising revenues. GroupLens [21] is an early instance of collaborative filtering
recommendation. Collaborative filtering still prevails today, Amazon being using as
an example. Collaborative filtering is generic to all types no matter if the content is
news, movies or music. Content-specific recommendation techniques are also devel-
oped to meet higher requirements of system performance, including accuracy and
scalability.

With the development of digital storage technique and increasing network band-
width in the recent decade, multimedia data started to play an important role on the
internet, which used to be dominated by textual data, especially on mobile devices.
The advancement of online multimedia services raised a challenge on multimedia in-
formation retrieval. ISMIR (International Seminar of Music Information Retrieval)
started in 2000 and is held annually on the topic of music information retrieval. An
example task of music information retrieval is as follows: a user sings a segment of a
song, which is recorded, then the record is used as a request to query for the song title
and the artist. Music information retrieval techniques provide various approaches
that access a wide range of descriptors of music, which makes music-specific rec-
ommendation method very promising. Besides available techniques, there is also a
demand for music-specific recommendation techniques since the magnitude of avail-
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able music nowadays is high. The contemporary music industry worldwide is so
productive that 10,000 new albums and 100,000 pieces of music are registered for
copyright each year [9]. With such many music descriptors provided by music in-
formation retrieval techniques, there are large number of possible solutions to make
music recommendations. To study on the possible solutions, Million Song Dataset
Challenge was raised 2012 under the data science site Kaggle 1 for predicting what
users will listen given their listening history. This contest is well known and their
evaluation rule is widely understood. As is stated in the official publication of Mil-
lion Song Dataset challenge [15], the challenge is a large scale, personalized music
recommendation challenge that is to predict the songs user will listen to. Million
Song Dataset is used to evaluate my system and the evaluation method and the
results are presented in Chapter 5.

1.1 Objectives and Main Results

The main objective of this thesis is to propose a novel music recommendation
method, which is computationally cheap. The system has good reactivity and suffers
no cold start problem. The performance of my recommendation system is evaluated
with ranking prediction metric based on Million Song Dataset. The ranking accu-
racy of my system is 0.592 that clearly outperforms random ranking (theoretically
0.5) and ranking by popularity (0.557). Most music recommendation algorithm is
not evaluated with ranking accuracy so that it is difficult to make comparison. Pair-
wise ranking accuracy is more commonly used for web page ranking. The famous
Page Rank algorithm has a ranking accuracy of 0.567 [38].

1.2 Organization of the Thesis

The thesis starts with background information about techniques related to music
recommendation system in Chapter 2. The background information includes the
typology of automatic recommendation systems, a review of music information re-
trieval techniques, introduction of the Gaussian mixture model (GMM) and several
similarity-based recommendation techniques. Chapter 3 introduces my recommen-
dation approach and its complexity is analyzed in Chapter 4. Chapter 5 evaluates
the performance of my system.

1http://www.kaggle.com
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2. BACKGROUND

This chapter starts with the taxonomy of recommendation system and popular on-
line music recommendation services are discussed after that. Furthermore, a review
on music information retrieval briefly covers a wide range of topics in this area.
MFCCs (Mel-frequency cepstral coefficients) and GMMs are introduced with more
details since they play important role in my recommendation system and some
relative researches. Important music similarity metrics are then introduced since
similarity-based recommendation is the mainstream at present.

2.1 Taxonomy of Recommendation System

A similarity between a recommendation system and a search engine is that they
both help users to filter information. The main difference is that a recommendation
system does not need a specific query that is a must for a search engine. Rao and
Talwar [2] identified 96 recommendation systems on various subjects. To understand
the similarities and differences of diverse recommendation systems, Eric Gaussier
classifies recommendation systems by data sources and functionalists in his doctoral
thesis [32]. My introduction of recommendation system follows this thread.

Before going into details, four important notions need to be explained. A user is
a recognized individual who has an unique identification. The identification could
either be a user name registered by the user or a unique value generated by the
system. An item is a conceptual unit of content in a system and there is usually
metadata describing items. For example, in Amazon an item is a product and in a
music recommendation system an item is a piece of music. A rating is a quantized
review by a user on an item. Rating is also called voting in some cases. The word
access is used when a user acts on an item. Purchase history and listen history are
two instances of access history.

2.1.1 Data Sources

There are basically three types of data sources for recommendation system. They
are rating histories (or access histories), users’ features and items’ features. There
are different rating scales. For example, the 1-5 scale with 5 stars representation is
used by many sites such as Amazon, CNet and hotels.com. Another widely used
rating scale is a binary scale with its presentation of thumb up and thumb down
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meaning like and dislike. Pre-processing is usually required to manage multiple
sources. For example, merging rating data from Amazon and YouTube, a possible
operation could be a transformation mapping {3, 4, 5} from 1-5 scale to True and
{1, 2} to False so that whole rating data is transformed to the binary scale. True
and False stands for like and dislike, which is linked with thumb up and thumb
down action in YouTube.

The access history of items is an alternative to the rating history. The use of access
history is referred to as unsupervised learning in a presentation about Spotify music
recommendation system [39] whereas the use of rating history is called supervised
learning . In the context of music recommendation, the access history is a listen
history that is easier to collect compared to the rating history since users do not
always rate after listening. Million song dataset [14] is an example of listen history
dataset.

Users’ features include socio-demographic data like age, gender and location [19].
Users’ features could also be tags like ‘metal fans’ or ‘fancier of military affairs’
and other descriptors that represents users’ characteristics [2]. Item features include
intrinsic characteristics (e.g. MFCCs), textual descriptions (for example ‘folk music’
and ‘90s’ pop music’) and any other descriptors of an item. Possible descriptive
features for music will be introduced in the next section. Figure 2.1 illustrates the
three types of possible data sources. Users’ and items’ features may be in any data
type, integer, float, text, etc. Pre-processing of data such as replacing text with a
number or boolean is, in most cases, trivial, so that the pre-processing procedure is
not interesting although it is important and time consuming. Since pre-processing
has such a nature, this work will not go into details.

The classical music recommendation typology is based on data sources utilized
in the recommendation system. Collaborative filtering (CF) uses rating matrix [19,
20, 21, 22, 23] and content-based filtering (CBF) uses item features [24, 25, 26, 27].
Hybrid filtering uses both rating matrix and item features [3]. In [2], the notion of
demographic filtering is proposed, which uses scocio-demographic data such as age
and location.

2.1.2 Functionality of Recommendation System

Another typology is based on the core function of the recommendation systems. It
would be of great importance to design a proper functionality to meet users’ demand,
however few studies have been made about the functionality of recommendation
system. Gaussier [32] proposed four essential core functions of recommendation
systems.
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User 1 User 2 ... User N

Item 1 3 5 ... 3

Item 2 5 2 ... 3

... ... ... ... ...

Item M 1 4 ... 4

N Users

25 19 ... 51

Locatio
n

(39.667, 
116.477) ... (61.480, 

23.775)

gender 1 0 ... 1

... ... ... ... ...

Users’ 
Feature 

I
0.10 0.77 ...

M
 Item

s

Age

0.34

Length Occurre
nce rate

Release 
year ... Feature 

T

68 0.109 1999 ... 6.33

110 0.007 2010 ... 2.19

... ... ... ...

59 0.113 2003 ... 0.15

T Items’ features

I U
sers’ feature

...

Rating Matrix Items’ Feature 
Matrix

Users’ Feature 
Matrix

Collaborative 
filtering

Content-based 
filtering

Hybrid filtering Demographic 
filtering

Figure 2.1: Example of data sources and corresponding recommendation system classifica-
tions.

Rating prediction A rating predicting system tries to minimize cost function
of predictive error (r̂ − r). Mean absolute error (MSE) or root mean square error
(RMSE) are conventionally used as the cost function.

Rank prediction Rank predicting system tries to maximize the number of correct
ranking pairs. For example, ground truth ranking order of five items is [a, b, c, d, e].

There are

(
2

5

)
= 10 pairs, e.g. [b, c] and [a, e]. If predicted ranking is [a, c, b, e, d],

the number of correct ranking pairs is |{[a, c], [a, b], [a, e], [a, d], [c, e], [c, d], [b, e], [b, d]}| =
8.

Contextual recommendation Contextual recommendation is also called item-
to-item similarity based recommendation. One example is related videos on YouTube
that is a list of top similar videos to the video that is being browsed. Another exam-
ple is playlist radio on Spotify, which takes playlist as a query and randomly plays
a song that is very similar to at least one r the songs in the sample playlist.
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Top-N Personalized recommendation This type of recommendation systems
recommend N items with a top personalized utility score calculated from an utility
function f(u, i). Personalized recommendation is an opposite to contextual recom-
mendation since personalized utility function takes an user as the input whereas
contextual recommender is based on item-to-item similarity.

As the earliest emerging recommendation functionality, rating prediction has
many instances including Movielens1. Movielens requires new users to rate for at
least 15 movies to generate rating predictions and the system ranks movies by rating
or predicted rating value. Movielens system uses blue stars for actual ratings and
red stars for predicted ratings, and ranks movies by predicted ratings.

One important application of rank prediction is the ranking of a search result. For
example, Taobao is an e-commerce site that ranks products based on user profile.
The details of the rank prediction algorithm of Taobao are not available but person-
ally I suspect Taobao to run demographic filtering since geographic distance between
an user and a seller has an influence on result ranking. An important publication of
rank predicting recommendation is “Social ranking: Finding relevant content in Web
2.0” [35], which ranks query results by social tags. This work describes a system
that users query with a set of tags and the result is ranked using a collaborative
filtering method by calculating user-to-user similarity and tag-tag similarity.

Contextual recommendation has wide industrial use. Amazon started to use item-
to-item contextual recommendation for products since 2003. The recommendation
shows on product preview page with its name “Customers Who Bought This Item
Also Bought” and Amazon also recommends by associative mining, by which the
result is called “Frequently Bought Together”. Last.fm runs a radio service that
allows users to query by a sample song and randomly plays songs that are similar
to the sample. Besides the radio service, Last.fm also recommends artists that are
similar to users’ favorite artists. YouTube provides both contextual recommendation
and personalized recommendation. The contextual recommendation shows on the
right side of a video playing page and personalized recommendation shows on a
homepage with the title “Recommended for you”.

The task of Million Song Challenge is not covered in the above-mentioned four
functionalities. In general, the task of Million Song Challenge is access prediction.
Million Song Dataset launched a challenge in the April of 2012. It gives a full
listening history for one million users and half of the listening history for 110,000
users (10,000 in the validation set, 100,000 in the test set). The challenge is to
predict the missing half. The task is to predict music pieces that a user will listen
to in the future regardless of whether the user would like them.

1www.movielens.org
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2.2 Popular Music Recommendation Services and My Ap-
proach

Pandora, Last.fm and Spotify are referred as popular recommendation services in
some publications [14, 15]. Furthermore, they are discussed and compared by many
non-academic blog authors on the internet. Pandora recognizes 65 million active
users and Spotify has 24 million in 2013. In 2012, Last.fm claimed 51 million
accounts. All of above mentioned 3 music intelligence services have basically two
functions. One is called radio and another is similar artist recommendation. Radio
means randomly playing music pieces of based on a query sample. In Pandora
and Last.fm the radio playlist is generated responding to a query of an example
artist so that radio playlist is random music pieces by similar artists. Their radio
is referred sometimes by artist radio, whereas Spotify takes an example playlist as
input to generate a radio playlist. Generally speaking, all of these three most popular
music recommenders do similarity-based contextual recommendation. Arguments on
similarity-based recommendation leads me to my different philosophy of doing music
recommendation, which is introduced in Section 3.1.

2.3 Music Information Retrieval

Music Recommendation involves both the study of automatic recommendation and
music information retrieval. Music information retrieval (MIR) is an interdisci-
plinary field of science that involves musicology, psychology signal processing and
machine learning. Besides music recommendation, the application of MIR also in-
cludes music transcription (audio to MIDI), music generation (automatic composi-
tion and synthetization), genre classification, instrument recognition and so on.

The starting question before retrieving the information must be “What informa-
tion music contains?”. We all know that human decodes speech signal into semantic
information and sometimes also emotional information, but how about music? The
answer may varies from an expert to expert. Stephen Downie listed seven facets of
music information in Annual Review of Information Science and Technology [43].
They are pitch, temporal, harmonic, timbral, editorial, textual and bibliographic
facets. For a single tone, there are three features: loudness, pitch and timbre. Pitch
and timbre facets deal with pitch and timbre, whereas loudness along with dura-
tion falls into temporal facet. The harmonic facet studies polyphony that is two
or more pitches occurring simultaneously. The editorial facet includes fingerings,
ornamentation, etc. The lyrics of a song belong to the textual facet and peripheral
information out of content of music such as song title, lyric author and release date
are classified as the bibliographic facet.
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2.3.1 Pitch Fact

Pitch is defined as “the perceived quality of a sound that is chiefly a function of its
fundamental frequency in—the number of oscillations per second” [8]. Human per-
ception of pitch interval is approximately logarithmic with respect to fundamental
frequency. An octave is the interval between one musical pitch and another with
half or double its frequency. For example, the interval between 100 Hz and 200
Hz is an octave. Furthermore, the interval between 500 Hz and 1000 Hz is also
an octave. A tradition in western music is to divide an octave into 12 equal semi-
tones. As an example, a piano has 88 keys playing musical pitches with ascending
order from left to right with step of 1 semitone per key. Helmholtz pitch notation
uses (C,C#, D#, E, F, F#, G,G#, A,A#, B) to represent 12 semitones and this
representation system is widely used by musicians across the world. MIDI tuning
standard (MTS) [42] maps a fundamental frequency to a semitone level by as

p = 69 + 12× log2

(
f

440Hz

)
, (2.1)

where p is the semitone levels and f is the frequency. Equation (2.1) sets a reference
at 440 Hz frequency as middle A for 69th semitone level and calculates semitone
levels of other frequencies with the reference.

A series of pitches, for instance (EEFGGFED. . . ), forms a melody. In Harvard
dictionary of music, the definition of melody is a linear succession of musical tones
that the listener perceives as a single entity [8]. However, the word “melody” is
sometimes ambiguous since the word may refer to both pitch series and the duration
of each pitch in some cases in daily use. In this thesis, the word “melody” is used as
it is defined in Harvard dictionary of music. Melody is an important identification
of a music work. Two pieces of music audio are recognized as the same song if
their melody is basically same and they are recognized as different versions for
using different instruments or in different lyrics. Unpitched percussion instrument
produces non-melodic music and such kind of percussive music is identified by its
rhythm.

With such a nature, pitch (or called chromatic feature in some research) is used for
music recognition research. Pitch series is commonly called progression in the field
of music. From recommendation point of view, the pattern of progression, as the
core part of most music pieces, necessarily associates with preference of listeners.
Thus, it would be a direct solution to recommend music by its melodic pattern.
However, no publication has been found that studies recommendation by melodic
patterns.
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2.3.2 Temporal Facet

Rhythmic information including tempo, meter, duration and accent falls under tem-
poral facet. Tempo indicates the speed of music, which is usually measured by BPM
(beats per minute). Accent, in the context of music, means emphasis placed on a
music note, which can be either monophonic pitch or polyphonic harmonic. Meter
as a music term means the regular repeating structure of accent. Common examples
of metric structures are duple meters and triple meters. Duple meter means that ac-
cents are placed on the first beat of every two beats and triple meter means accents
are placed on the first beat of every three beats. Rhythmic information is also very
important component of music. The importance may vary with music culture. For
example, in the traditional Chinese music culture, the rhythm is less important than
in modern music since many Chinese music books record only pitch series without
restricting rhythm and it is up to performers to improvise on rhythmic part. How-
ever, temporal information in modern music is clearly important and relevant to
listeners’ preference. A basic temporal feature to utilize on music recommendation
is BPM. For example, beats per minute (BPM) can be used as in a demographic
filtering with the hypothesis that teenagers like fast music whereas seniors like slow
music. It is also reasonable to take meter of music into account for recommendation.

2.3.3 Timbral Facet

Timbre is defined as “an attribute of sensation in terms of which a listener can judge
that two sounds having the same loudness and pitch are dissimilar” [30] by American
Standards Association. It is timbre that makes piano sound different from violin
and makes my voice different from others. What acoustic features contribute to
timbre? The answer is not simple and exact. The definition in the beginning of this
paragraph assigns all acoustic features else than pitch and loudness to be timbre
and some acousticians claim timbre to be “the psychoacoustician’s multidimensional
waste-basket category for everything that cannot be labeled pitch or loudness" [29].
In synthetization, harmonics and envelope are two most influential concepts for
timbre and they are widely used for timbre modulation in sound synthetization.
Figure 2.2 and 2.3 show harmonics and envelope of piano and trumpet. From these
figures, it is easy to spot some remarkable points that trumpet has rich harmonic
components and piano has a longer decay time. For the analysis of timbre, mel-
frequency cepstral coefficients (MFCCs) are a type of commonly used features in
audio recognition and will be reviewed in 2.4.

Harmonics Harmonics are the set of frequencies produced by sinusoidal motion
of an oscillating system. Both wind instruments such as trumpets and string in-
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struments such as violins have large number of harmonics. An acoustic source that
oscillates with multiple normal modes is called harmonic source. The frequency of
the fundamental mode is called fundamental frequency. Harmonics are multiples
of the fundamental frequency. Pitch value is determined by the fundamental fre-
quency. Fundamental frequency component is usually but not always strongest in
magnitude.
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Figure 2.2: Harmonic spectrum of piano and trumpet.

Envelope Envelope, in the context of sound synthetization, is a time-amplitude
function to modulate amplitude of sound change over time. An evidence that en-
velope contributes to timbre is that if the same single tone produced by piano and
violin, are edited so that the beginning and the end of the tone are removed, they
would sound similar. One method to calculate the envelope of a signal is low-pass
filtering after rectifying. In Figure 2.3, audio signals produced by a piano and a
trumpet are shown in blue and their envelope detected by full wave rectification and
Butterworth low-pass filtering are marked red. A common model for electric music
synthesizer is the ADSR model that describes the amplitude change of a single tone
with four phases: attack, decay, sustain and release. Illustration of the ADSR enve-
lope model is shown in Figure 2.3. Variations of ADSR, e.g. AHDSR (attack, hold,
decay, sustain, release) and DAHDSR (delay, attack, hold, decay, sustain, release),
use additional envelope modulating parameters.

In Figure 2.4, A stands for attack time, which is the time after driving force is
imposed on the oscillating system and before the time that the oscillating amplitude
starts to decrease. D stands for decay time, which is the time after the decrease of
oscillating and before the oscillating amplitude reduce to a sustain level. S stands
for the sustain level of oscillation when the driving force holds. R is the release time
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Figure 2.3: Envelope of piano and trumpet calculated with full wave rectification and
Butterworth low-pass filter.

between the remove of driving force and the stop of the oscillation.

2.3.4 Other facets

Other facets in music information retrieval research have not yet been much studied
for music recommendation so that this subsection introduces them in a brief way.
Harmonic facet should be distinguished from concept of harmonics in timbre.

Harmony Harmony in musicology means that two or more pitches sound at the
same time. The word ‘chord’ is more often used when three or more pitches sound
simultaneously. For instance, the C major triad’s is noted, C-E-G. The study of
harmony has been the central part of Western classical music. The detection of a
chord is simply polyphonic version of pitch detection and such technique is used
in music recognition [17, 18] and music game, e.g. Wild Chord by Ovelin. Wild
Chord is an Ipad game that instructs guitar practicers to play a series of chords
with timeline and detect their correctness. A chord progression pattern, as well
as single tone progression pattern might be potential for music recommendation.
However, most modern popular music only use chords for accompaniment, which is
unlikely to be an important aspect of music for user preference.
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Figure 2.4: ADSR parameters [40].

Editorial facet Editorial part of music contributes to the variations among ver-
sions of a single music work. Editorial part mainly includes fingering, ornaments
and dynamics. Different music performers play the same music work with different
finger and hand positions, which is the fingering information. Modification is made
on music to make it more beautiful or effective or to demonstrate the abilities of
the interpreter [8]. Examples of ornaments are mordent and appoggiatura. A mor-
dent is a rapid alternation from indicated note to the note above and back to the
indicated note. The word “note” is used in the context of seven-note system. An
appoggiatura adds a short pause in the middle of a musical note. Dynamics refers to
the relative change of sound volume over the music play. A paragraph of music may
be more emphasized and louder in one version than another. Editorial information
may indicate the culture background of a music play but I consider it too detailed
for music recommendation.

Textual facet Textual information of music or simply say lyrics is another facet
of music information. Attitude and idea hide behind the semantic information of
a piece of music. One may like songs that glorify sportsmanship or warriorship,
whereas another prefers to listen to something with rebellious mind. Such infor-
mation is reflected in lyrics so that textual information of music is also a potential
source for music recommendation.

Bibliography facet Bibliographic information of music lies out of the content
of audio signal, which is commonly called music metadata in some publications
[14, 33, 34]. It includes song title, composer, release date, social tags and so on.
Among them, social tags are most studied for music recommendation [33, 34]. The
main advantage of metadata is its compactness compared with features extracted
from audio. The disadvantage is that it requires data integrity and heavy load of
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pre-processing work including manual work (manual tagging).

2.4 MFCC

The timbre modulation in the synthetization side of audio processing was briefly in-
troduced in 2.2.3, but for the analysis or recognition side, timbre feature is described
with different techniques. Among those timbre describing techniques, MFCC is the
most popular one. This section introduces MFCC in details.

MFCC is an abbreviation of Mel Frequency Cepstral Coefficient. MFCC extrac-
tion of a piano audio signal of 43 seconds is used as an example to introduce the
procedures of MFCC extraction. Figure 2.5 shows an example of an original piano
signal.
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Figure 2.5: An example of a piano signal.

2.4.1 Frames

A frame is a sequence of audio signal samples in a time window. In order to avoid
sharp edges at start and end of a frame, a smoothing window is commonly imposed
on each frame before spectral analysis. Figure 2.6 illustrates 3 consecutive frames
from the 43-second piano signal. The length of a frame is 100 ms and every frame
has a 50 ms overlap with the previous one.
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Figure 2.6: 100 ms length with 50 ms overlap, a Hamming window and Hamming windowed
frames.
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2.4.2 Energy Spectral Density

Energy spectral density is also called power spectrum, which represents energy on
a certain frequency. It is obtained by taking the DFT (Discrete Fourier Transform)
of windowed frames and calculating the square of absolute DFT value. The DFT is
calculated as

X(k) =
N∑
n=1

x(n)e−j2πkn 1 ≤ k ≤ K, (2.2)

where n represents the index of a sample ranging over the length N of a frame. K
is the length of the DFT. x(n) and X(k) are thus time-domain amplitude of nth
sample and frequency domain amplitude of kth sinusoidal component, respectively.
Energy spectral density P (k) of the kth component is calculated as

P (k) = |X(k)|2. (2.3)

Figure 2.7 shows energy spectral density of frames shown in Figure 2.6.
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Figure 2.7: Energy spectral densities of three consecutive frames of piano signal.

2.4.3 Mel Scale

Human perception of sound frequency is not linear. Humans are more sensible for
changes in pitch at low frequencies than at high frequencies. The Mel-scale formula
maps measured frequency to human perceived value, so that Mel-scaled frequency
better emulates the cochlea of a human. The Mel-scaling function converts frequency
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f in Hz to Mel scale as

M(f) = 1125log(1 +
f

700
). (2.4)

A Mel-spaced filterbank is a set of triangular filters that wraps energy spectral
density into filterbank energies.

Figure 2.8 shows an example of filterbank for sampling rate at 44100.
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Figure 2.8: The magnitude response of a Mel-filterbank containing 20 filters.

2.4.4 Cepstrum

The name "cepstrum" was derived by reversing the first four letters of "spectrum".
The short-time cepstrum was defined as the results obtained by computing power
spectrum of the logarithm of the power (or amplitude) spectrum [5] in 1963. Cep-
stral analysis was originally used for pitch and voiced-unvoiced detection [4]. Cep-
strum pitch determination is particularly effective because the effects of the vocal
excitation (pitch) and vocal tract (formants) are additive in the logarithm of the
power spectrum and thus clearly separate [4]. Noll writes the continuous cepstrum
equation as

C(t) =
∣∣F−1 {log(|F {f(t)}|2)

}∣∣2 (2.5)

in [4]. In the implementation of MFCC calculation, the cepstral value is convention-
ally calculated by the discrete cosine transform (DCT) of a logarithm of filterbank
energy values. Figure 2.9 visualizes 13-dimensional MFCC values of the example of
piano signal used in this section.
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Figure 2.9: MFCC values of the 43-second piano audio signal.

2.5 Gaussian Mixture Model

Gaussian mixture model (GMM) is a probabilistic model that represents a set of data
samples (either scalars or multidimensional vectors) being generated by a mixture
of a finite number of Gaussian distributions. Gaussian distributions in a GMM are
called mixture components. The Gaussian distribution density function of a vector
x is calculated as

pt(x) =
1

(2π)(N/2)|Σt|(1/2)
exp(−1

2
(x− µt)TΣ−1t (x− µt)). (2.6)

Weights of components in a mixture model sum to one as

T∑
t

φt = 1. (2.7)

Probability density function of the whole Gaussian mixture model is thus

p(x) =
T∑
t

φtpt(x). (2.8)

Notations used in Equation (2.6)-(2.8) are specified as below:
T denotes number of mixture components .
t is the index of a mixture component.
φi=1...T denotes weights for each mixture components.
µi=1...T denotes mean values for each mixture components.
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Σi=1...T denotes the covariance matrix of each mixture components.
pi=1...T (x) denotes the probability density function of each mixture component.
p(x) denotes the probability density function of the whole mixture model.

Covariance is a statistical measure of how variables of observations depend on
each other. Given a data set that is represented by a matrix X, the co-variance
value between ith and jth dimension is calculated as

Σi,j = E[(xi − µi)(xj − µj)] = Σj,i, (2.9)

where E means expectation. As is easily seen from Equation(2.9), covariance matrix
is always symmetric. When every dimension of data is independent from each other,
or say different features do not co-vary at all, the co-variance matrix is diagonal.

It is faster to train a GMM with diagonal covariance matrices than full covari-
ance matrices. In practical use, some works [27, 28] use diagonal-covariance GMM
to model music pieces. In [27], a diagonal-covariance GMM is used to represent
music pieces and Earth Mover Distance (EMD) is used to determine music-music
similarity. Examples of using full-covariance GMMs to represent music pieces are [3]
and [24]. Among music similarity metrics evaluated in [24], a good result is obtained
by representing music pieces with a single Gaussian with full covariance matrix and
using Kullback-Leibler divergence to determine the music-music similarity.

Below is an example to explain GMM. Given a data set of body height and weight
of 200 adults as is shown in the left plot of Figure 2.10, let us build a probabilistic
model on it. The simplest idea is to train a two-variable Gaussian so that right plot
of Figure 2.10 is obtained. The black contour plot is an equal likelihood contour
of trained two-variable Gaussian distribution. Furthermore, common sense is that
males and females each take about 1/2 of the population and they have different
probability distribution on height and weight. With such knowledge, a mixture
model with two components of equal weights φ1 = φ2 = 0.5 is trained as illustrated
on the left plot of Figure 2.11 which uses diagonal covariance matrices. Another
common sense tells me that height and weight are not independent to each other,
since taller guys are more likely to be heavier. The right plot of Figure 2.11 shows
the mixture model with full covariance matrices.
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Figure 2.10: GMM example: 200 samples of weight and height data and equal likelihood
contour plot of a two-variable Gaussian distribution.

Figure 2.11: GMM example: Equal likelihood contour plots from components of mixtures
and whole mixtures with of diagonal covariance matrices (left) and full covariance matrices
(right).

Parameters of a GMM include mixture weights, mean of vectors and covariance
matrices. They are commonly optimized through the EM algorithm that is an
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iterative algorithm, which modifies parameters in every iteration to increase the
likelihood of training material until the likelihood converges.

2.6 Similarity Function

As is discussed in Section 2.2, three popular music recommendation services (Pan-
dora, Last.fm, Spotify) use similarity-based recommendation for their radio and
artist-to-artist recommendation. Thus it is important to review similarity func-
tions or distance functions applied in both collaborative-filtering and content-based
methods.

In collaborative filtering, there are mainly two categories. They are memory-
based and model-based. KNN (K-nearest neighbours) rating prediction is a typical
memory based approach which can be traced back to as early as 1994 [21]. In
the recent decade, there are many model-based methods developed, e.g. Bayesian
network and latent Dirichlet allocation based models. However, KNN is still most
used and studied in collaborative filtering recommendation. KNN involves similar-
ity functions. Pearson correlation and Jaccard similarity are most used similarity
functions in KNN rating prediction.

2.6.1 Pearson Correlation

In [21], the Pearson correlation function is used to calculate user-user similarity
score and then the similarity score is used to predict user-item rating value. The
Pearson correlation is applied on a rating matrix and can be used to calculate both
user-user similarity and item-item similarity. The Pearson correlation value between
two users x and y is calculated as

sim(x, y) =

∑
i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)√ ∑
j∈Ixy

(rx,j − r̄x)2
∑
k∈Ixy

(ry,k − r̄y)2
, (2.10)

where Ixy is the set of items that rated by both x and y. rx,i is the rating value of user
x on item i. j and k are used similarly. This technique is easy to implement and easy
to understand, so that it is the most popular technique. It is commonly introduced
in machine learning textbooks and courses. Matrix factorization methods such as
SVD (singular value decomposition) might be applied to reduce the computational
complexity when the rating matrix is large. If the number of items is denoted as
m and number of users is denoted as n, it takes O(m × n2) to generate the whole
similarity matrix.
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In a KNN approach, an user-item rating is predicted as

r̂u,i = r̄u +

∑
u′∈U

sim(u, u′)(ru′,i − r̄u′)∑
u′∈U

sim(u, u′)
, (2.11)

where U is a neighbourhood of K users that are most similar to user u. In Equation
(2.11), user-user similarity is used but it is also possible to use item-item similarity.

2.6.2 Jaccard Similarity

Another important similarity for collaborative filtering is the Jaccard similarity.
This similarity is originally a similarity measure for two sample sets. The Jaccard
similarity between two sets is defined by the ratio of the cardinality of their inter-
section to the cardinality of their union:

J(A,B) =
|A ∩B|
|A ∪B|

, (2.12)

where A and B are two sample sets. In collaborative filtering, the Jaccard similarity
between two music pieces A and B is defined by the number of users who rated both
music pieces divided by number of users who rated either A or B. Rating prediction
can be furthermore calculated from Equation (2.11). The time complexity of the
Jaccard similarity is the same to the Pearson correlation.

2.6.3 Cosine Similarity

Cosine similarity is cosine of the angle between two vectors. Cosine similarity can
be used on both ratings or item feature vectors. In [35], cosine similarity is used
to calculate tag-to-tag similarities and user-to-user similarities in its social ranking
algorithm. Cosine similarity between two vector represented-items or users x and y

are calculated as

sim(x, y) = cos(x,y) =
x · y

||x|| × ||y||
=

∑
i∈I
xiyi√∑

i∈I
x2i

√∑
i∈I
y2i

, (2.13)

where I is the dimensionality of vectors and xi, yi is the ith element of vector x and
y. If x and y are two users in collaborative filtering system, their similarity is the
cosine of the angle between their sums of vectors of all items they both rate. If x

and y are two items in a content-based system, the cosine similarity is the cosine of
the angle between their feature vectors.
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2.6.4 Kullback–Leibler Divergence and Earth Mover Distance

Dmitry in [24] discussed several content-based music similarity metrics. Among
them, one timbre-based metric is the Kullback–Leibler (KL) divergence based on
single-Gaussian MFCC modeling. KL divergence is a non-symmetric measure of
difference between two probability distributions. The KL divergence between two
GMMs is not analytically tractable, nor does any efficient computational algorithm
exist [31]. Dmitry uses a single Gaussian with a full covariance to model each music
piece [24] . In [27], Earth mover distance is used to determine the distance between
GMMs from KL divergence of every single Gaussian pairs between two GMMs [25].

The KL divergence between two univariate probability distributions is calculated
as

DKL(P‖Q) =

∫ ∞
−∞

ln

(
p(x)

q(x)

)
p(x) (2.14)

=

∫ ∞
−∞

ln(p(x))p(x)−
∫ ∞
−∞

ln(q(x))p(x) (2.15)

= −E(ln q(x)) + E(ln p(x)), (2.16)

where P and Q are two probability distributions and x is a variable. Equation
(2.15)-(2.16) are two forms of the KL divergence. Equation (2.16) is called the
closed form of KL-divergence, where E stands for expectation of a probability density
function. In the special case of multivariate normal distributions, the KL divergence
is calculated as

DKL(P‖Q) =
1

2

(
Tr
(
Σ−1P ΣQ

)
+ (µQ − µP )>Σ−1Q (µQ − µP )− k − log

(
det ΣP

det ΣQ

))
,

(2.17)

where Tr means the trace of a matrix and T means transpose of matrix. ΣP and ΣQ

denote the covariance matrices of multivariate normal distributions P and Q. µP
and µQ denote the means of P and Q. In [24], a symmetric music-music similarity
is approximated as:

d(P,Q) = 2(DKL(P‖Q) +DKL(Q‖P )) (2.18)

= Tr(Σ−1P ΣQ) + Tr(Σ−1Q ΣP ) + Tr((Σ−1P + Σ−1Q )(µP − µQ)(µp − µQ)T )− 2NMFCC

(2.19)

whereNMFCC is the number of MFCCs, that is, the dimensionality of feature vectors.
Earth Mover Distance (EMD) can be used to evaluate similarity from two set of
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distances. EMD is proposed to determine music-music distances based on GMMs in
[27]. NMFCC term in Equation (2.19) is removed since it is constant if the system
extracts features from all music pieces in the same way. Thus, the distance between
two components pi and qj in mixture P and Q is calculated as

dpi,qj = Tr(
Σpi

Σqj

) + Tr(
Σqj

Σpi

) + Tr((µpi − µqj)2(
1

Σpi

+
1

Σqj

)). (2.20)

A set of coefficients fpi,qj ≥ 0 are calculated to minimize a cost function

W =
M∑
i=1

N∑
j=1

dpi,qjfpi,qj , (2.21)

with following constrains:

fij ≥ 0 (2.22)
N∑
j=1

fij ≤ wpi (2.23)

M∑
i=1

fij ≤ wqj (2.24)

M∑
i=1

N∑
j=1

fij = min(
M∑
i=1

wpi ,
N∑
j=1

wqj) (2.25)

where wpi and wqj are component weights of pi and qj respectively. The coefficients
fij are called flows and the cost function W is called work. With an optimized flow,
the Earth Mover Distance is defined by the work value normalized by the sum of
flows as

EMD(P,Q) =

M∑
i=1

N∑
j=1

dpi,qjfpi,qj

M∑
i=1

N∑
j=1

fpi,qj

. (2.26)
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3. METHOD

In this chapter, the method of my recommendation system is introduced. Back-
ground techniques such as Gaussian Mixture Model and MFCC have been intro-
duced in Chapter 2. The fundamental thinking of my recommendation system is
discussed in Section 3.1. An overview of my recommendation system is made in
Section 3.2. Details of components of my recommendation system is introduced in
Section 3.3-3.7.

3.1 Fundamental Hypothesis

Some similarity metrics that are used in automatic recommendation systems have
been introduced in Section 2. Most of the studies about automatic recommendation
are made on similarity-based techniques. However, when a real human recommends,
individuals make recommendations in their own unique way and similarity-based
recommendation does not seem to be overwhelmingly popular. Taking my father
as an example, I asked him how he would recommend music for me. The answer
was that he would recommend alternative and progressive music since I had an
exploring personality. This is apparently not a similarity-based recommendation
method since it does not even take into account what music I have listened to.
My father’s method is based on the hypothesis that types of personality are linked
with styles of music. Collaborative filtering similarity-based recommendation is
generally based on the hypothesis that music pieces that are liked by similar groups
of users share similar preference from other users. This hypothesis uses empirical
evidence to make predictions so that it seems to be reliable. Content and similarity
based recommendation suggests that the similarity in music content leads to similar
preferences from users. The following paragraphs discuss my personal observations
on commercial music and arrive at my hypothesis, upon which my recommendation
method is based on.

From personal experience, I observed such a phenomenon on modern commercial
music that for most artists, people are impressed by only a few pieces from them. It
is very common that a popular music consumer can name two representative music
pieces for 20 artists whereas it is hard to find one who can remember all records from
a single artist. Music pieces from the same artist, especially the same album, are
supposed to have similar content, since they often share the same vocalist and same
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set of musical instruments. However, music consumers do not often have similar
preference on music from music pieces in the same album. Such a phenomenon makes
the hypothesis that similar content in music leads to similar preference questionable.
Thus I am not convinced by using content similarity as the only recommendation
criteria. I discussed that collaborative filtering similarity-based recommendation
seems to be reliable since it utilizes the empirical evidence to make prediction on
user preference. How about a recommendation method that is based on probability
estimation taking music content as data source? With such a question, I come up
with my method and test on it in this thesis. Next two paragraphs are some of my
thinking on music as a basis of my method.

Music is a form of art with sound and silence as medium. As an art form, the
appreciation of music is rather complicated. How good is a piece of music? The
answer could be either objective or subjective. Evidences can be easily found for
both side. Beethoven is, by all classes of all nations, regarded as a great composer,
which shows the objective side of music preference. However, heavy metal is loved
by some people but is considered to be nothing but disturbing by some others. That
is the subjective side of music preference. What aspects of information makes the
evaluation of music objective, and what makes it subjective?

I illustrate my point of view with an example. “Canon in D Major” is a well-
know piece of classical music and is performed solely with many instruments such
as pianos, violins and electric guitars. I can see a large variance on the preferences
of editions among different listeners whereas I found very low variance on the pref-
erence of the melody (temporal information is included with the term melody in
this paragraph) since I found no one who simply dislikes “Canon in D Major”. Here
I propose a hypothesis that the preference on melody does not vary much among
individuals whereas the preference on timbres vary greatly among individuals.

With such a hypothesis, my method estimates the subjective taste of timbres
from users and furthermore uses the estimated user-timbre preference to estimate
the probability that a specific user accepts a piece of music. Another probability of
an acceptance is estimated objectively for all users by the relative frequency that a
piece of music is accepted. Two estimated probabilities are combined to give a score
for each user on each music piece, by which music pieces are ranked for personalized
recommendation. Detailed operations are introduced in following sections in this
chapter.

3.2 System Overview

Section 3.1 introduced the basic idea of my recommendation system and this section
introduces the basic structure of it. Figure 3.1 shows the flowchart of the system.
As is seen in the flowchart, there are two inputs. They are music audios and records
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of ratings or listening history. Features are extracted from audio signals through
Echo Nest API (Section 3.3.1). A generic GMM is trained from a large amount
of features (ideally all feature vectors extracted). With the generic GMM, every
piece of music is represented by a timbre weight vector (Section 3.3.2 and 3.3.3).
The binarizer is used to handle different data sources, the output of the binarizer is
called binary rating data (Section 3.4). User timbre preference is estimated based on
their binary ratings and timbre weights of music pieces that they rated (Section 3.5).
For not-rated music pieces, their likelihood of being accepted is based on their timbre
weights and the user-timbre preference of the user. Another probability estimation
of an acceptance is calculated by the relative frequency of the music being accepted
(Section 3.6). The two estimated probabilities are combined and the combined value
is called utility score (Section 3.7).
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Music audios

ENT feature 
vectors

GMM trainer

A generic 
GMM
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Music timbre 
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Figure 3.1: Data flow chart of my recommendation system.

3.3 Music Timbre Weight

As is introduced in the 2.1.1, hybrid recommendation systems use rating history
(or listening history) and item features as recommendation sources. In this hybrid
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recommendation system, the timbre weight of music is used as an item feature.
In a broad sense, feature extraction transforms original input data into a reduced
representation based on its nature. In this system, the audio signal of a music piece
is transformed to a 64-dimensional weight vector. The process involves three steps
as is shown in Figure 3.1: timbre feature extraction (Echo Nest timbre), training a
generic Gaussian model and calculating probabilistic alignment for feature vectors
and a sum based on the bag-of-words model.

Figure 3.2 illustrates the music timbre weight values for three music pieces. Fin-
landia is a symphony composed by Sibelius whereas Nemo and Amaranth are two
songs from band Nightwish that is a melodic metal band active at the present age.
Finlandia as a typical symphony concert consists of orchestral instruments such as
violins, cellos, French horns, trumpets and a harp. Nemo and Amaranth consist of
a long duration of drums, female vocals, electric guitars, an electric bass and a syn-
thesized piano. Nemo itself has a small portion of violin and environmental sound
effects of thunder weather. Briefly speaking, Nemo and Amaranth use two similar
sets of instruments whereas Finlandia uses a very different set of instruments. Thus,
Nemo and Amaranth are expected to have similar timbre weight values and Finlan-
dia should have a much different timbre weight vector. Figure 3.3 shows a table of
some timbre weight values of above-mentioned music pieces for a comparison. From
the table, we can see that Nemo and Amaranth have, in most cases, closer timbre
weight value to each other except Timbre 26 (probabilistic alignment of 26th com-
ponent in generic GMM). A possible explanation is that both Nemo and Finlandia
contain violins whereas Amaranth does not.

3.3.1 Echo Nest Timbre

Echo Nest is a commercial music intelligence service site that provides HTTP API to
access their music analyzer. A non-paid account is limited to 120 queries per minutes
to the analyzer whereas a business account can query unlimited times. Echo Nest
analyzer provides diverse music descriptors including timbre, pitch and loudness
in dynamic time segment. Time length of each time segment is called duration.
Duration of each segment typically ranges from 200 ms to 400 ms. Figure 3.4 shows
an example of Echo Nest features.

As is seen in Figure 3.4, both Echo Nest pitches and timbre has 12 dimensions.
For pitches, 12 dimensions represent 12 semitones. For Echo Nest timbre (ENT), it
is explained in their official document that those values are high level abstractions
of the spectral surface, ordered by degree of importance [16]. Musil studies human
music cognition and discusses about the choice of such long frame length and low
number of dimensions of ENT in [12]. Bertin-Mahieux describes Echo Nest timbre
as MFCC-like features [14]. MFCCs were reviewed in the Section 2.4.
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Figure 3.2: Timbre representation for Amaranth, Nemo and Finlandia.

The evaluation of my recommendation method is made using Million Song Dataset
[14] and the audio features of Million Song Dataset are from Echo Nest. Thus I in-
clude Echo Nest timbre as a part of my method, however other timbre features such
as MFCCs can be used as alternatives.

3.3.2 Generic GMM

With the ENT vectors calculated from Echo Nest analyzer, the next step is to estab-
lish a generic GMM with 64 timbre centroids so that timbre features are mapped to
probabilistic alignments of timbre distributions. For this purpose, a generic GMM
with 64 full-covariance components is trained from feature vectors with a large set
of music pieces. An earlier use of a generic GMM in music recommendation is seen
in [3]. The training set should include as many types of instruments and vocal
styles as possible so that the model is a generic model of music timbre. Each timbre
distribution in the generic model is thus generated by a frequent seen combina-
tion of music instruments and vocals. Equations (2.6)-(2.8) show how to estimate
probability with a GMM.
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Figure 3.3: Some timbre weights value for Amaranth, Nemo and Finlandia.
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Figure 3.4: Example of Echo Nest features.

3.3.3 Bag-of-words Model

The use of the term “bag of words” can be traced back to a linguistic article [7] in
1954. The bag of words model is, originally, a simplifying representation of a docu-
ment in natural language processing. With this model, a document is represented as
the count of a collection of words, regardless of the positions of the words. Recently,
the bag-of-words model has become a widely used model in multimedia information
retrieval. The bag-of-words model is extended to information retrieval e.g. to a
bag-of-words image classifier, which classifies an image by sum of classification score
of each block [10].

With the bag-of-words model, a music piece is represented by a 64-dimensional
timbre weights vector. A timbre weight is the mean of posterior probabilities of a
timbre distribution from all feature vectors of a music piece. The timbre weights
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are calculated as

wm,t =
1

Im

Im∑
i=1

pt(f(m, i))

p(f(m, i))
, (3.1)

where wm,t is the weight of tth component (timbre distribution) in music piece m
and Im is the number of frames for music piece m. The ith feature vector of music
piece m is denoted as f(m, i). The estimated probabilities from tth Gaussian and
whole GMM are represented with pt(f(m, i)) and p(f(m, i)), respectively.

3.4 Data Binarization

As is shown in Figure 3.1, rating or listening history data is binarized. The results
of binarization is called binary rating data in this thesis no matter if it is derived
from rating data or listening history data. The demonstration of my system uses
binary scale rating whereas the system evaluation is based on Million Song Dataset,
which uses listening history. Binarization makes my method working for both data
sources. Here we define ru,m = 1 as acceptance and ru,m = 0 as reject in the binary
rating scale. If there is no information available of user u on misc piece m, the value
is defined to be null ru,m = null.

3.5 User-timbre Preference

User-timbre acceptance probabilities are used as parameters to estimate the prob-
ability of a user to accept a music piece. An estimated user-timbre acceptance
probability is called user-timbre preference for simplicity.

3.5.1 Parameter Estimation

The goal of this step is to estimate user-timbre preference with empirical probabili-
ties. The empirical probability or relative frequency of a user to like a timbre is the
ratio of the sum of timbre weights in music pieces that the user accepted to the sum
of timbre weights in music pieces that user has listened. The estimated statistical
parameter of user u likes timbre t is denoted as qu,t. This parameter is estimated as:

s+u,t =
∑

{m|ru,m=1}

wm,t (3.2)

su,t =
∑

{m|ru,m 6=null}

wm,t (3.3)

qu,t =
s+u,t

su,t
. (3.4)
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Here s+ and s are two sums. s+u,t is the sum of timbre weights for every piece of
music that user u accepted. su,t is the sum of timbre weights for every piece of music
that there exists a binary rating on it from the user u. In another word, su,t is the
sum of timbre weights for every piece of music that user u has listened.

Figure 4.6 shows an example with four users and four pieces of music. Music
audios are modeled with three distributions of timbre. Let us take the preference
of user 3 on timbre 2 as an example. User 3 has listened to three pieces of music.
Their binary rating values are shown r3,1 = 0, r3,2 = 0, r3,3 = null and r3,4 = 1 in
the red frame in Figure 3.5. User 3 accepted only music 4 whose weight on timbre 2
is 0.1 so that the positive timbre sum is s+3,2 = w4,2 = 0.1. Along with positive rate
on music 4, user 3 disliked music 1 and music 2 so that s3,2 = w1,2 + w2,2 + w4,2 =

0.3 + 0.5 + 0.1 = 0.9. The estimated user-timbre preference of user 3 on timbre 2 is
therefore q3,2 = s+3,2/s3,2 = 0.1/0.9 = 0.111.

User 1 User 2 User 4

Music 1 1 null 0 1

Music 2 1 0 0 null

Music 3 null 0 null 0

Music 4 0 1 1 0

Timbre 
1

Timbre 
2

Timbre 
3

0.1 0.3 0.6

0.2 0.5 0.3

0.3 0.0

0.5 0.1 0.4

0.7

User 3

User 1

User 2

User 3

User 4

Timbre 
1

Timbre 
2

Timbre 
3

0.375 0.889 0.692

0.357 0.111 0.571

0.111 0.308

0.077 0.429 0.600

0.625

Rating Matrix
(R)

Timbre Weight 
Matrix(W)

User-timbre 
preference 
matrix(Q)

Estimate by 
empirical 
probability

Figure 3.5: User-timbre preference estimated by binary ratings and timbre weights.

From the example above, we are going to derive the matrix form of parameter
estimation. Rating matrix is defined so that each row corresponds to a piece of music
and each column corresponds to a user. An element ru,m in the rating matrix is the
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binary rating value (or rm,u = null when the rating is missing) for the corresponding
user u and music m. The rating matrix is denoted as R. Two matrices are generated
from rating matrix: a positive rating matrix and an existing rating matrix. Positive
rating matrix Rp is obtained by filling missing values of rating matrix with zeros.
Existing rating matrix Re is obtained by setting all existing value in rating matrix
with one and fill missing values with zeros. Following this rule, Rp and Re that
are derived from the rating matrix in above example is shown below. W stands for
timbre weight matrix, where rows correspond to music pieces and columns respond
to timbres. An element in the timbre weight matrix is the timbre weight value wm,t.

Rp =


1 0 0 1

1 0 0 0

0 0 0 0

0 1 1 0

 Re =


1 0 1 1

1 1 1 0

0 1 0 1

1 1 1 1

 W =


0.1 0.3 0.6

0.2 0.5 0.3

0.7 0.3 0.0

0.5 0.1 0.4


Given above three matrices, the user-timbre preference matrix Q is estimated

through
Q = (Rp

TW)./(Re
TW), (3.5)

where T stands for transpose and ./ means element-by-element division. Elements in
the timbre preference matrix are the estimated user-timbre acceptance probability
qu,t.

When a user listened to music pieces with only a narrow range of timbres, a
problem is seen for user-timbre preference estimation. For example a user liked nine
violin solos and disliked one violin solo without rating on any other type of music.
As a result, the timbre weight sum of other timbres would be very small random-like
value so that the estimated timbre preference would be inaccurate. To address this
problem, users are assumed to have universal musical experience with all types of
timbre. The method is to make padding with average timbre weight to smooth the
user-timbre acceptance probability estimation. Average timbre weight wM,t is mean
of timbre weight vectors of whole dataset of music as follows:

wM,t =
∑
m∈M

wm,t/|M |, (3.6)

where M is set of all music pieces in the system.
Another benefit to use the padding is to get different timbre preference values

for those users who have only positive or only negative ratings. In practice, some
users are more inclined to give positive ratings or vice versa. The extreme situation
of inclined rating is that some users always like and never dislike, which makes all
user-timbre preference estimated to 1, making the parameters non-sense. Padding
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operations is done by
s̃+u,t = s+u,t + αwM,t (3.7)

s̃u,t = su,t + βwM,t, (3.8)

where s̃ means padded timbre weight sum. Two padding factors α and β are mul-
tiplied to average timbre weight. The default user-timbre preference probability
value when there is no evidence on a timbre is determined by α/β < 1. The higher
this ratio is, the less smooth comparison between high preferable and low preferable
timbres.

3.5.2 Acceptance Probability Prediction

The conditional probability that a user accepts a music can be formed from a gen-
erative model through the Bayes’ rule, with timbres as a hidden variables:

p(ru,m = 1) =
∑
t∈T

pm(t)p(ru,m = 1|t), (3.9)

where p(ru,m = 1) stands for the probability of user u accepts music piece m. The
probability that music m generates timbre t is pm(t). The probability that a user
accepts a timbre is assumed to be always the same no matter what music the user
listens to so that for the same u and t, p(ru,m = 1|t) is independent of m. Let us
use r̂u,m to denote the estimated probability that user u likes music m with a set of
T timbres as hidden variables. The probability is estimated as

r̂u,m =
∑
t∈T

wm,tqu,t, (3.10)

where pm(t) is estimated with the timbre weight wm,t discussed in Section 3.2 and
the probability that a user likes a timbre is estimated with user-timbre preference
qu,t discussed in Section 3.4.1. The matrix form of this process is as

R̂ = QWT (3.11)

where R̂ is the matrix of estimated probability r̂u,m. Q and W are user-timbre
preference matrix and timbre weight matrix respectively.

Figure 3.6 continues the example used in Figure 3.5. It takes the user-preference
matrix obtained and the timbre weight matrix used in Figure 3.5 as input to predict
the probability of an acceptance.
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Figure 3.6: Predicted probability of acceptance by user-timbre preference.

3.6 Music Acceptance Rate

Acceptance probability prediction from merely the user-timbre preference is not
comprehensive, since there are many other aspects of music that affect the user
acceptance. Instead of trying to estimate the effect of other aspects on the preference
of an individual user, the acceptance rate of music (relative frequency of positive
ratings) is used as a supplement to the estimation with user-timbre preference.
Music acceptance rate is a simple probability estimation of all users to accept a
music piece from empirical probability. For example, two piano solo pieces may
have very similar timbre weights but one is a master piece whereas the other is
played by an amateur. The acceptance rate can help making a difference in such a
condition. Music acceptance rate is calculated as

rm =
|{u|ru,m = 1}|
|{u|ru,m 6= null}|

, (3.12)

where |{u|ru,m = 1}| is the number of users who accepted music m and |{u|ru,m 6=
null}| is the number of users that there exists ratings from them on music m. The
matrix of music acceptance rate is calculated as

R = [(Rp · 1)./(Re · 1)] · 1T , (3.13)



3. Method 35

where R has every column the same and the mth element of every column is rm.
Rp and Re have been defined in Section 3.4.1. 1 represents an all-one column
vector with the length of the column numbers of the matrix that it multiplies and ./
represents matrix element-wise division. Figure 3.7 shows the operation with above
example.

Rating
Matrix(R)

Acceptance 
Rate 
Matrix(R)

User 1 User 2 User 4

Music 1 1 null 0 1

Music 2 1 0 0 null

Music 3 null 0 null 0

Music 4 0 1 1 0

User 3 Average

Music 1 0.667

Music 2 0.333

Music 3 0.000

Music 4 0.500

User 1 User 2 User 4

Music 1 0.667 0.667 0.667 0.667

Music 2 0.033 0.033 0.033 0.033

Music 3 0.000 0.000 0.000 0.000

Music 4 0.500 0.500 0.500 0.500

User 3

Average

Acceptance 
Rate(r)

Figure 3.7: Calculation of music acceptance rate matrix.

A low number of ratings on a music piece may lead to an extreme estimation, as
music 3 in the example. The discounting method (Good-Turing smoothing) [36] is
used to deal with over-estimation of low-counted words in trigram model in natural
language processing. Similarly, a smoothed counting is adopted in this work for
a practical reason. The smoothing method assumes that every piece of music is
accepted by at least one person and rejected by one person in the world. In another
words, there is no piece of music of 0 or 100 percent probability to be accepted with
the smoothing estimation. The smoothing method used in my system is as:

rm =
|{u|ru,m = 1}|+ 1

|{u|ru,m 6= null}|+ 2
. (3.14)

The smoothing method makes padding with one extra positive rating and one extra
negative rating. One advantage of such discounting is that estimated probability
value can be given value 0.5 when no rating data is available. Another advantage
is that for music that has all positive or negative ratings, the estimated acceptance
probabilities are distinguished by the number of ratings. For instance, music A gains
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5 positive ratings without negative rating and music B gains 10 positive ratings and
also no negative rating. In this case, modified average rating of B is 11/12 = 0.917

higher than that of A, 6/7 = 0.857.

3.7 Combine and Rank

We have estimated the probability that a user accepts a music piece in two ways.
The first estimation uses timbres as hidden variables and the second one simply
uses the music acceptance rate. Now we need to decide a function to combine
these two estimated probability so that music pieces are ranked to users. The
function value is called utility score or full utility score in this thesis. An requirement
for the combination function is that it should increase along with both estimated
probabilities. In the evaluation, weighted arithmetic mean

fu,m =
w1r̂u,m + w2rm

w1 + w2

, (3.15)

weighted geometric mean

fu,m = w1+w2

√
(r̂u,m)w1(rm)w2 , (3.16)

and weighted harmonic mean

fu,m =
w1 + w2

w1/r̂u,m + w2/rm
, (3.17)

are tested.
To avoid giving the same recommendation playlist when a user repeats recommen-

dation requests, a recommendation pool is used. A recommendation pool consists of
top ranked music pieces for a user. When a user requests recommendation, a subset
is randomly selected from recommendation pool and responded as a playlist. The
size of recommendation pool should be much larger than playlist. For example, 10
pieces of music are recommended from a pool of top 100 ranked music pieces.
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4. ALGORITHM ANALYSIS

This chapter starts with the introduction on the storage management of my system
running as an online service. Furthermore, this chapter discusses how the system
meets common operational requirements of an automatic recommendation system.
Common notations in this chapter is as below:

Symbol Meaning
U the number of users in system
M the number of music pieces
T the number of Gaussians in the generic GMM
E the total number of ratings
K the number of songs that the recommendation is based on

Table 4.1: Notations of sizes of recommendation systems.

4.1 Storage Management

The complexity of an algorithm is dependent on how the storage of data is managed.
In both my system and item-to-item similarity based recommendation systems, there
is important core data with two indexes. For my system, there are binary ratings
with indexes of users and music pieces, timbre weights with indexes of music pieces
and timbres and user-timbre preferences with indexes of users and timbres. For a
item-to-item similarity based system, there is music-to-music similarity data with
a pair of music as indexes. I consider two ways to manage these data (there is
possible better ways that I do now know) . One is to use a matrix representation
stored with a sequence of consecutive physical addresses so that an element in the
matrix is searched in constant time. The drawback is that the data structure is
not incremental for both dimensions. For a m × n matrix, it takes O(m × n) to
resize to (m + 1) × (n + 1) due to the shifting of elements. The second way is a
list representation managed by a database management system: in each row, two
indexes are two indexed columns and the value is stored in another column. With
such representation, a query costs O(log(mn)) or O(log(m) + log(n)) for an element
in m × n rows of records. The advantage is its incrementality since no shifting is
required when the size of data enlarges.

For ratings and item-to-item similarities, matrix representation is proper to use
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only when their sizes are fixed. This leads to the discussion of two options for
updating the system with newly available music pieces and ratings. One is to update
the system as an time-scheduled activity so that ratings and similarities from fixed
number of users and music pieces can be stored in matrix representation and searched
constantly. When the system updates, new matrices are constructed. Another
option is to update instantly. For this purpose, ratings and similarities are needed
to be managed in list representation in database management system to keep an
dynamic size of the data set.

One advantage for my system is that core data in my system can be stored
in a matrix representation with dynamic number of users and music pieces. The
number of timbres is constant and small (T = 64 in my system) so that timbre
weights and user-timbre preferences has one dimension with constant number. For
example, when one user and one piece of music is added to the system. The size of
timbre weight matrix and the user-timbre preference matrix become (M + 1) × T
and (U + 1) × T , respectively. On the contrast, rating matrix and music-to-music
similarity matrix become (M + 1)× (U + 1) and (M + 1)× (M + 1), respectively.

There is also other information needed for my system and they are stored along
with timbre weights and user-timbre preferences.The number of ratings that a user
made is needed to update user-timbre preference. The number of ratings made on a
music piece is needed to update music acceptance rate and music acceptance rate is
needed to calculate full utility score. Music acceptance rate, the number of ratings
made to a piece of music and number of ratings a user made are stored in additional
columns in the two incremental matrices.

4.2 Scalability and Reactivity

Scalability is the ability to cope with a growing number of data. Scalability depends
on the computation complexity of the system. Reactivity is the ability of the sys-
tem to keep up with recent changes. In music recommendation, reactivity includes
changing recommendation result as new ratings and newly added music pieces avail-
able. From the discussion about the two options to update a system, we can easily
conclude that a system that updates instantly has better reactivity than a system
that updates time-scheduled. Table 4.2 and Table 4.3 summarize complexities with
the two options for my system, item-to-item similarity based collaborative filter-
ing system and item-to-item similarity based content-based system. The highlight
is that my method is computationally cheap when the system updates with newly
available ratings and music pieces instantly.

Let us consider the computation cost to update a system instantly. For a collab-
orative filtering system, keeping the similarity matrix updated with a newly added
rating is so costly that θ(M × U) is needed to recalculate Pearson (could be pos-
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sibly Cosine or Jaccard) similarity values between newly rated item and all other
items. For my system, since the timbre weights and user-timbre preferences are
stored in a matrix representation, a search or a update runs in constant time. Since
the search for the music timbre weights and the update of user-timbre preferences
is made on T timbres, the computation cost to update with a rating is θ(T ). The
acceptance rate of the corresponding music piece is also updated in constant time.
For a content-based system, update with rating is not needed.

When a piece of music is added to my system, T timbre weights are calculated
from T timbre distributions. For a collaborative filtering system, newly added pieces
cannot be recommended and nothing is needed to do with it. For content-based sys-
tem, the similarities between the new piece and all other pieces need to be calculated
and added into database. The computation cost is θ(M log(M)).

When a user requests a recommendation, my system needs to calculates the utility
score of all music pieces and select top ranked pieces. For every single piece of music,
calculating a utility score costs θ(T ). The computation cost for all utility scores of
given the user is θ(T ×M). Finding top ranked pieces costs O(M) with selection
algorithm [37]. The total cost to make a recommendation with my system is thus
analyzed to θ(T ×M). For an item-to-item similarity based system, the similarities
are stored in a list representation in the database so that it costs log(M) to query
for a piece. For finding similarities between a music piece and all other music pieces,
the computation cost is θ(M log(M)). Finding top similar pieces costs θ(M) with
the selection algorithm. If the system recommends top similar pieces to K pieces
that a user accepts, the total cost is θ(K ×M × log(M)).

My system Item-to-item CF Item-to-item CB
Add a rating θ(T ) θ(M × U)

Add a music piece θ(T ) θ(M × log(M))

A recommendation θ(T ×M) θ(K ×M × log(M)) θ(K ×M × log(M))

Table 4.2: Time complexity comparison between my recommendation system, item-to-item
similarity based collaborative filtering systems and item-to-item similarity based content-
based systems with instant updates.

For recommendation systems that update time-scheduled, the set of users and
the set of music pieces in a system is fixed during a update. The output of a
time-scheduled update is a cache of what music pieces should be recommended to
each user, by which a recommendation can be made to a user in constant time.
For my system, timbre weights, user-timbre preferences and music acceptance rates
updates with every rating. Since it takes θ(T ) to update with a rating, it takes
θ(T ×E) to calculate timbre weights, user-timbre preferences and music acceptance
rates. The matrix of utility scores is calculated as is introduced in Chapter 3 that
θ(T ×M × U) is needed (Mainly the matrix multiplication between two matrices
with sizes of M × T and T × U , respectively). Picking top ranked music pieces for
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each user costs O(M × U). Since E ≤ M × U , the time complexity of my system
to calculate all recommendations from user ratings is thus θ(T ×M × U). For a
collaborative filtering system, calculating similarity matrix from rating matrix costs
θ(M2 × U) and picking top similar music pieces to K pieces that are accepted by
each user costs O(K ×M ×U). Since K is a small constant, the total computation
cost is analyzed to θ(M2 × U). For a item-to-item similarity based content-based
system, θ(M2) is needed to calculate similarities between every pair of music pieces
and it takes also O(K ×M × U) to pick music pieces for users. The computation
cost is analyzed to O(M2 + K ×M × U) and Ω(M2) for a item-to-item similarity
based content-based recommendation system to calculated all recommendations.

My system Item-to-item CF Item-to-item CB
Time complexity θ(T ×M × U) θ(M2 × U) Ω(M2)

Table 4.3: Time complexity comparison between my recommendation system, item-to-item
similarity based collaborative filtering systems and item-to-item similarity based content-
based systems to calculate all recommendations as time-scheduled update.

4.3 Cold Start

In the beginning of a recommendation service when only limited rating (or listen
history) data is available, the system needs to be able to provide useful recommen-
dations. This is a big challenge for a collaborative filtering recommendation system
since its recommendations are based on ratings of other users. However, in my sys-
tem, ratings of other users are utilized only for obtaining the acceptance rate. If
there is only one user in the system, a meaningful recommendation by pure user-
timbre preference score would be made. From the evaluation result shown in the
next chapter that ranking accuracy of pure user-timbre preference score is about
0.56, and after taking the acceptance rate into account, the ranking accuracy is
improved to 0.59. Pure content-based recommendation suffers no cold start.

When a new music piece is added to the system, a collaborative filtering system
cannot give a similarity value between new piece and another piece until one user
gives rating to both of them. A content-based recommendation system does not use
ratings so that there is no computation needed to deal with new ratings and a new
music piece is available for recommendation.

Another thing to mention is the possibility to get a recommendation as an anony-
mous user. My system is a personalized one so that it needs ratings from the user
itself. Songs with top acceptance rate will be recommended to anonymous users or
users that have not rated yet. The cold start problem described in this section is
summarized in Table 4.4.
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My system CF CB
Works without any rating data 3 3

Performance improves with more ratings 3 3

Recommend newly added music 3 3

Table 4.4: Starting performance comparison between my recommendation system, item-
to-item similarity based collaborative filtering systems and item-to-item similarity based
content-based systems.
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5. EVALUATION

The evaluation is conducted using Million Song Dataset, which comes from LabROSA
and is used on Million Song Challenge, that is, an awarding contest held on Kaggle.
The evaluation tests ranking accuracy of my system.

5.1 Dataset

The Million Song Dataset is a freely-available collection of audio features and meta-
data for one million contemporary popular music tracks [14]. Figure 3.4 shows an
example of audio features contained in Million Song Dataset. Metadata of Million
Song Dataset such as lyrics, song level tags are not used in my recommendation
method. Besides audio features, play count data is also used. Some statistics of
play count data in Million Song Dataset is shown in Table 5.1.

Users 1,019,318
Songs 384,546
Play counts 48,373,586

Table 5.1: Statistics of Million Song Dataset.

The user-song play counts matrix H is exemplified as

H =



0 0 1 10 0

1 1 0 0 5

0 4 0 0 0

1 0 1 0 1

1 0 0 1 2

1 1 2 0 0


,

where a row corresponds to a user and a column corresponds to a song, and the
value is how many times the user listen to the song.

The binarization on the play counts is done as follows: If a user listens to a song
for only one time, it is considered that the user rejects that song since the user
does not choose that song again. If a user listen to a song for multiple times, it
is considered that the user accepts that song. After such a operation, above listen
history matrix is transformed to a binary rating matrix R with missing values as
shown below.



5. Evaluation 43

R =



null null 0 1 null

0 0 null null 1

null 1 null null null

0 null 0 null 0

0 null null 0 1

0 0 1 null null


It must be noted that such a transformation brings noise to the data. For example,
a user might enjoy a song and listen to it often in his own music playing device but
the user plays it only once on the online service. Such a noise might have negative
impact on the evaluation result. Although play counts data is not an ideal source,
Million Song Dataset is still chosen for the evaluation because it is the only large
dataset that contains both audio features and user-music interaction data.

5.2 Ranking Accuracy

To study the performance of a top-N personalized recommender, an objective exper-
iment is more effective than observational studies. An experiment that investigates
the feedback of a randomized group of users on their top-N items is an ideal evalu-
ation for the performance of a top-N personalized recommender. However, it costs
too much labour time to collect enough amount of experimental results. The prob-
lem of an observational study on a top-N personalized recommender is the sparsity
of a dataset. As is shown in Table 5.1, Million Song Dataset has 48 373 586 play
counts and 1 019 318 users. On average, a user has about 48 records of play counts.
If top 100 music pieces out of the total 384 546 music pieces are recommended, the
expected number of recommended music pieces that has been played by a user in
the test set is approximately 0.004. The observational study fails with such a small
number of top-N items being tested.

To better utilize the observations in the dataset, ranking prediction is chosen to
evaluate the system. Thus, all ratings from a user in the test set instead of only
ratings on top-N items are evaluated. The ranking accuracy metric is calculated as
follows: for every user, their ratings in the test set are compared pair wise. The
pairs are divided into 3 groups: A set of contradictory pairs C− consists of pairs
where preference order between system ranking and user ranking is contradictory.
A set of corporate pairs C+ consists of pairs where preference order between system
ranking and user ranking conform. Unused pairs Cu consists of pairs where either
system or user ranks two items the same. The ranking accuracy is calculated as

Accuracy =
C+

C+ + C−
. (5.1)

It is important to notice that the ranking accuracy is not an very pertinent eval-
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uation for my top-N recommendation system. Since only top-N items are recom-
mended, the ranking of other items are in fact irrelevant to the system performance.
However, all rankings are taken into account in the evaluation because of the rating
sparsity discussed earlier in this section.

5.3 Results

I put two out of every three play counts from each user into the training set and
put the rest into the test set. Heuristically, I found out that the ranking accuracy
does not vary much when the number of users in the test set is large enough. For
time saving purpose, I use only users with more than 100 ratings in the test set
to make the evaluation. To test on three combination functions (arithmetic mean,
geometric mean and harmonic mean) that is discussed in Section 3.7, I test different
weight pairs of (w1, w2), where w1 is the weight for the estimated probability based
on user-timbre preference and w2 is the weight for acceptance rate. When only
acceptance rate is used, w1 = 0 and when only the estimated probability based on
timbre is used, w2 = 0. Ranking accuracy is tested with following weight pairs:
(w1 = 0, w2 = 1), (w1 = 1, w2 = 4), (w1 = 1, w2 = 2), (w1 = 1, w2 = 1), (w1 =

2, w2 = 1), (w1 = 4, w2 = 1), (w1 = 8, w2 = 1) and (w1 = 1, w2 = 0).

Function \w1

w2
0 0.25 0.5 1 2 4 8 ∞

Arithmetic mean 0.568 0.580 0.581 0.585 0.589 0.592 0.589 0.559
Geometric mean 0.568 0.580 0.582 0.585 0.589 0.591 0.585 0.559
Harmonic mean 0.568 0.580 0.582 0.585 0.588 0.589 0.586 0.559

Table 5.2: Ranking accuracy using weighted arithmetic mean, weighted geometric mean
and harmonic mean as combination function. The result is ordered by relative weights of
timbre-based estimated probability and acceptance rate ascending from left to right.

As is seen in the Table 5.2, three combination functions have similar performance
in ranking prediction. The best performance comes from a relative weight of 4.
Ranking accuracy of random recommendation and recommending by popularity is
calculated for comparison.

Ranking by Ranking Accuracy
Popularity 0.557
Random 0.502

Table 5.3: Ranking accuracy of random ranking and ranking by popularity.
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5.4 Examples of recommendation results

The evaluation based on Million Song Dataset provides the statistics about the
performance of my system. It is also important to investigate on the instances of
recommendation results. Since Million Song Dataset provides only audio features
and the artists in Million Song Dataset are mostly from U.S. and are not familiar to
me, I manually collected a small dataset to demonstrate recommendation results.

The dataset contains 189 pieces of music from 40 top popular artists from Finland
according to Echo Nest popularity statistics. The url of the demonstration page is
http://shuyang.eu/plg. Links of all music pieces are external and some links are
already broken. There are 448 ratings collected from my friends. In the demonstra-
tion, 8 top ranked pieces are ordered by utility score. The combination function is
the geometric mean (not weighted) of the two estimated probabilities. The demon-
stration system was built before my evaluation with Million Song Dataset when I
had no idea about the choice of combination function.

Table 5.4 shows statistics of some artists in the demonstration dataset. The
genres of the artists are derived from Wikipedia. Music pieces from metal bands
take a large proportion in the demonstration dataset but the dataset still covers
music pieces with a wide range of genres.

Name of Artist Number of pieces Genre
Nightwish 25 symphonic power metal
Amberian Dawn 4 symphonic metal
Eternal Tears of Sorrow 4 symphonic death metal
Stratovarius 8 power metal
Sentenced 11 melodic death metal
Fintroll 15 folk metal
Apocalyptica 20 neoclassic metal
Jean Sibelius 3 classic
Anna Puu 7 pop female singer
Mari Boine 6 female folk
Mirel Wagner 2 female folk
Rubik 7 Indie pop
Satellite Stories 4 Indie pop
PMMP 6 pop rock
Luomo 5 electronic
Lordi 8 hard rock
H.I.M 4 rock

Table 5.4: Statistics of some artists in the demonstration dataset.
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In Section 3.3 we have discussed the instrument compositions of Amaranth and
Finlandia. Here we start the investigation from rating these two pieces. I simply
give a positive rating to Finlandia and a negative rating to Amaranth. The recom-
mendation results based on such a rating history is shown as Figure 5.1. Three of
8 recommendations are from the neoclassic metal band Apocalyptica. These three
pieces mainly consists of cellos. And the other two pieces from Sibelius are also rec-
ommended. The reason that it ranks after Ruska and Beautiful is their low rate of
acceptance. “Bakom varje fura”, the fourth recommended piece consists of multiple
wind instruments without singing. The seventh recommended piece Mourun consists
of drums and an electric guitar playing single pitch melody. “Beaiveldttas Butterfly”
is a piece of Shamanic music that consists of a female singer and a Shamanic drum.
As a summary, because of Amaranth is disliked, timbres related to human voice are
estimated to be less preferable and symphonic timbres are estimated to be more
preferable so that such a recommendation results are given.

Figure 5.1: An example of recommendation results.

Now, we are going to like a piece with female vocal and check the recommenda-
tions. I added a positive rating on the female pop music “Nopeimmat junat” by Anna
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Figure 5.2: An example of recommendation results.

Puu to my rating history and the recommendations are shown in Figure 5.2. We
see that first two recommendations remain the same since my preference of cellos is
still estimated high. Following recommendations are music pieces that have a female
vocalist and light accompaniment except Finlandia as the sixth recommendation.
Mirel Wagner uses a single acoustic guitar as accompaniment and the seventh and
eighth recommendations are from Anna Puu, the artist of the newly liked piece.
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6. SUMMARY AND CONCLUSION

In this thesis work, a hypothesis on the consumers’ preferences of modern popular
music is proposed based on my personal observations that the preferences of timbral
information in music vary greatly among individuals whereas the preferences of
melodic information in music vary slightly among individuals.

A method of automatic music recommendation system is proposed based on my
hypothesis. The recommendation system takes audio signal and rating data as
input and outputs personalized recommendations. Each user gets a score for every
piece of music and top ranked music pieces are selected as candidates. A random
recommendation is made among candidates. The score used for ranking combines
two estimated probabilities of an acceptance. One estimated probability is based
on the estimation of users’ preferences on timbres. Another estimated probability is
the empirical probability that a piece of music is accepted.

The method addresses well traditional problems of automatic recommendation
systems such as reactivity and cold start. An demonstration of my method as an
online service is available at http://shuyang.eu/plg. From the investigation on the
recommendations result using the demonstration dataset, the system well meet my
expectation of the way it is supposed to recommend. The recommendation accuracy
is evaluated based on Million Song Dataset using the criteria of pairwise ranking
accuracy. Several combination functions for the two estimated probabilities are
tested. The best ranking accuracy is achieved with a weighted arithmetic mean
function as a combination function. Compared to the ranking accuracy of random
ranking (theoretically 0.5, experimentally 0.502) and ranking by popularity (0.557),
my recommendation system clearly outperforms them (0.592). Unfortunately, I have
not found any other music recommendation system evaluated with ranking accuracy.
Ranking accuracy is more commonly used in the evaluation of web page ranking.
The famous Page Rank algorithm has an accuracy of 0.567 [38].

As a conclusion, I would say that my recommendation system is a practical choice
for a real-time online music recommendation task.
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