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The rates of intracellular processes are, in general, in constant change in response

to environmental signals and other internal processes. To deal with noise in the

input signals, �ltering and decision-making circuits are needed. Motivated by recent

evidences from in vivo measurements that the rate limiting steps in transcription

initiation are critical in determine RNA and protein numbers, we study the e�ects

of these steps on the behavior of three genetic circuits: a toggle switch, a genetic

amplitude �lter and a genetic frequency �lter. We model these circuits, and from

stochastic simulations, we study the performance of the �lters and the stability of

the switch. We �nd that these features degrade as the transcript levels are lowered.

These e�ects can be alleviated by adding rate limiting steps to the transcription

initiation process. In addition, we show that some features of the �lters, such as

cuto� levels, are a�ected by changes in mRNA production dynamics as well. In

conclusion, our study shows that the kinetics of transcription initiation of the genes

composing these circuits, which are largely determined by the promoter sequence,

can be varied within realistic parameter ranges of values to alter considerably their

behaviors.
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1. INTRODUCTION

All living organisms ensure their existence by maintaining gene expression, the syn-

thesis of mRNA and consequently proteins from the information stored in their

DNA. The synthesis of the �rst product is called transcription. In transcription,

the RNA polymerase binds to the promoter region of the gene and trigger the tran-

scription initiation process to set the promoter to the initiation state. The RNA

polymerase then begins to elongate along the gene sequence and assemble mRNA.

When a termination site on the DNA is recognized, the elongation is terminated

with the release of RNA polymerase and mRNA from the promoter.

Recent evidences suggest that, in organisms such as bacteria, the kinetics of tran-

scription initiation is the key in determining the expression patterns of genes. Once

the promoter closed complex is formed, the RNA polymerase remains at the pro-

moter sequence, preventing the next transcription initiation event to occur until the

open complex is complete[26]. This is a multi-step process[6] that takes a long time

and, thus, plays an important role in determining the mean and noise in mRNA and

consequently protein number. The number and duration of the steps vary between

promoters, even between those with small di�erences in their sequences[24]. Recent

in vivo measurements[18] showed a sub-Poisson production of mRNA when the gene

is induced at weak or medium levels, indicating that the process of transcription ini-

tiation of the promoter involves a sequential mechanism with at least two elementary

steps. The duration of these steps can vary with induction, temperature, etc.

Cells' functions are carried by groups of genes. In each of these, the genes interact

with each other through their proteins to create genetic motifs, which are capable of

more complex patterns of behavior than individual genes. Di�erent topologies result

in di�erent dynamics[41]. Several motifs have been identi�ed. Examples include

genetic switches, which can function as memory circuits; genetic clocks, which can

be used for time keeping and synchronization purposes; and genetic �lters, which

can be used for noise �ltering or computation.

It is unknown to what extent the promoter dynamics, i.e. the kinetics of tran-

scription initiation, a�ects the behavior of the cellular motifs. Here, we examine

how these kinetics a�ect the functionality of motifs performing noise �ltering and

decision making, which are critical for cells to survive in �uctuating environments.

As many essential genes' products, especially those with signaling functions, exist



1. Introduction 2

in low copy numbers, the stochasticity in the molecules' kinetics cannot be ignored

in the dynamics of motifs. It is necessary to assess its e�ect on the mean behav-

ior of the motifs. To capture both the low copy number e�ect and the stochastic

nature of gene expression, we utilize a stochastic approach to model processes. We

model sequence-dependent noise �ltering and decision making genetic circuits by

modeling explicitly the time that each process in transcription initiation takes to

be completed once initiated, rather than modeling the process itself. Thus, the

sequence-dependence of the process is represented in the distribution of the inter-

vals between transcription events.

In the next chapter, the biological background as well as the modeling of the

genetic circuits are provided. We employ two approaches in modeling the intracel-

lular processes: the deterministic approach to predict the dynamics of the chemical

systems qualitatively, and the stochastic approach to assess the system in consider-

ation of molecules' stochastic kinetics and low copy number e�ects. We present the

Stochastic Simulation Algorithm (SSA)[12] through which, we are able to obtain the

systems' realizations with the probability in accordance with the Chemical Master

Equation[14]. Next, we show the model of single gene expression which captures

the sequential-step transcription initiation's kinetics, and the regulation of one gene

to another via its products. Based on these models, we build the models of genetic

circuits as chemical systems. On the account of the promoter delay during tran-

scription initiation, we use the Delayed Stochastic Simulation Algorithm (DSSA)[3],

derived from SSA, to realize the dynamics of the motifs.

The third chapter describes our results on the performance of �ltering and decision-

making systems with di�erent kinetics in transcription initiation. First, we inves-

tigate the e�ects of rate-limiting steps in transcription initiation on the expression

dynamics of individual genes. We study the behavior of three circuits: a toggle

switch[1] with the decision-making function, and two genetic �lters in the amplitude

and frequency domain. For the decision-making system, we evaluate how long the

switch takes to change from one state to another, and the distribution of the inter-

vals between switching events. For genetic �lters, we are interested in the locations

of pass-bands and stop-bands, the quality (e.g, signal attenuation at the pass-bands,

the steepness of the transition bands) and the noise level of the output signal. The

response of the circuits is quanti�ed for a wide range of transcriptional dynamics

that are in accordance with measurements[39, 18]. The simulations are generated

by the Stochastic Genetic Network Simulator (SGNSim) by Andre S. Ribeiro and

Jason Lloyd-Price[33]. The simulation of the deterministic models and the analysis

of the simulation data are performed using MATLAB [25].

The fourth and �nal chapter concludes the thesis with a discussion on the rele-

vance of the results, and with suggestions on the construction of synthetic circuits
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with arbitrary connections.
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2. BACKGROUND

2.1 Chemical kinetics in cells

In this section, we �rst described the means by which chemical reactions are rep-

resented, and how these are utilized to describe elementary biological processes in

cells. Next, we present two models of these processes, one deterministic and the

other stochastic. They provide us with platforms with which we can simulate and

inspect the dynamics of chemical systems.

2.1.1 Representation of chemical reactions

Chemical reactions can be qualitatively represented by reaction equations, which

consist of reactants, products and arrows (usually read as 'yields') indicating the

transformation direction of reactants toward products. Below are typical examples

of reaction equations:

∅ → A (2.1)

A→ ∅ (2.2)

A+B ↔ AB (2.3)

AB → AC (2.4)

AC → A+ C (2.5)

B + A→ B + C (2.6)

The reaction equations 2.1 to 2.6 involve 3 substances: A, B and C. Reaction 2.1

describes the creation of one molecule of substance A, whereas reaction 2.2 indicates

its degradation. Reaction 2.3 describes the formation of complex molecule AB from

one molecule of A and one molecule of B. The bidirectional arrow indicates that this

reaction is reversible: the complex molecule AB can dissipate into separate molecules

of A and B. Reaction 2.4 describes the transformation of complex molecule AB into

AC and reaction 2.5 describes the breakdown of AC into molecules of A and C. If we

put equations from 2.3 to 2.5 into one system, the overall trend is the transformation

of substance A to C with B acting as catalyst, which is equivalent to equation 2.6.

This qualitative representation of all reactions in a system gives us an overview

of the factors a�ecting reactants' dynamics, but fails to predict what the global
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trends are. In the case of more complex systems that involve many reactions and

substances, we usually cannot track the change in substances' molecule numbers or

concentration over time.

2.1.2 Deterministic models

Each reaction has its own kinetics, which represented typically by a reaction rate

equation. It links the reaction rate with reactants' concentration and stoichiometric

coe�cients to determine how frequent a speci�c chemical reaction occurs. Con-

sider a generic chemical equation with no intermediate steps (also called elementary

reaction):

aA+ bB → cC (2.7)

For this reaction, we de�ne the rate equation as follow:

r = k[A]a[B]b (2.8)

whereas [A] and [B] are the concentration of species, and usually measured in

moles per liter (called molarity or M). a and b are the stoichiometric coe�cients

of the balanced equation. They indicate how many molecules of each reactant are

consumed for the reaction to occur. k is the rate coe�cient or rate constant of the

reaction. The value of k depends on the characteristic of the reactant molecules

and the environment conditions such as temperature, surface area, ionic strength

between molecules, ect. r is the reaction rate of the elementary reaction. The value

of r is proportional to the product of the reactants' concentration and the rate

constant, following the law of mass action. We add k above the arrow of chemical

reaction:

aA+ bB
k−→ cC (2.9)

The total number of molecules required for one reaction to occur a+ b is the order

of the chemical reaction. A reaction can be zeroth-order, where the concentrations

of the reactants are constant (e.g, a substance is produced from very stable source,

at a constant rate). In practice, an elementary reaction should not have an order

higher than two, as the chance for three molecules to collide and trigger reaction is

minute. Therefore, it should be decomposed into lower order elementary reactions.

Next, we inspect the dynamics of a solution with N species from X1 to XN and
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M reactions: the jth reaction is described as follow:

N∑
i=1

sijXi
kj−→

N∑
i=1

rijXi (2.10)

kj is the rate constant of the j
th reaction. sij and rij indicates how many molecules

of substance Xi are consumed/produced via jth reaction. E�ectively, there are

Sij = rij−sij molecules of Xi created after each jth reaction occurs. Sij are elements

of the matrix S, size of N by M , called the stoichiometric matrix.

The reaction rates are calculated as follow:

rj =
N∑
i=1

[Xi]
sij (2.11)

rj constitute the reaction rate vector r, length of M . Note that stoichiometric

coe�cients sij, rij are not necessarily positive integers. Leaving them zero indicates

the absence of the species in the reaction. Sij can take positive (corresponding to

production of Xi via jth reaction), negative (degradation of Xi via jth reaction) or

zero (no changes) values.

[Xi(t)] denotes the concentration of species Xi at time t. We are interested in the

change in the concentration vector function [X(t)] to fully describe the kinetics of the

chemical system. Assuming that the solution's volume goes to in�nity, the number of

reactant molecules also goes to in�nity, if maintaining �nite species concentrations.

r(t) is the value of reaction rate vector at time t, calculated from the vectors [X(t)]

and k. For each reaction, we calculate the yielding rate of each species Xi as follow:

[yielding rate of Xi] = [reaction rate] × [number of Xi molecules produced]

The total yielding rate of a species in the system equals the sum of yielding rates

in all reactions. Thus, we derive a formula that deterministically characterizes the

changes in [X(t)] over time ∂[X(t)]/∂t:

∂[X(t)]

∂t
= S.r(t) = f([X(t)]) (2.12)

The general equation 2.12 is also called the Ordinary Di�erential Equation (ODE).

The derivatives are ordinary because they only apply to functions of independent

variables. The partial derivative value of a species' concentration at a speci�c time

can take any real value, either positive, negative or zero. The set of di�erential

equations ∂[X(t)]/∂t = f([X(t)]) allow us to study the time evolution of [X(t)] as

its solution.

We take an example of a simple system with a zeroth-order protein production
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(2.13) and a �rst order protein degradation (2.14).

∅ kP−→ (2.13)

P
dP−→ ∅ (2.14)

The protein molecule is denoted by P, and the protein concentration in cell is [P].

From equation 2.12, we have:

∂[P (t)]

∂t
= kP − dP [P (t)] (2.15)

Given at time t0, there is no protein in the system, the protein concentration over

time has the solution:

[P (t)] =
kP
dP

(1− e−(t−t0)×dP ) (2.16)

It is noted that the system reaches the stationary phase when [P (t)] = kM/dM ,

corresponding to ∂[P (t)]/∂t = 0. If the initial protein concentration is di�erent

from this limit, it will take an in�nitely long time for the concentration to reach this

stationary phase.

The deterministic model may give us some information on the dynamics trend of

molecule numbers in the system, and particularly useful when assessing processes

with a population approach. Nevertheless, cells' volume is limited within the mem-

brane. Some essential genes' products, especially ones with signaling functions,

exist in cell only in low copy number. Their concentrations, the unit of which is

molecules over liter, are therefore discrete and not uniform from cells to cells. The

deterministic time evolution of substances' quantities may di�er greatly from prac-

tice. Additionally, we cannot evaluate the �uctuations in the substance quantities

arise from the random movement of molecules in solution, which is ignored when

employing the deterministic ODE model.

2.1.3 Stochastic models

In this section, we present a model that captures both the e�ects from low copy

numbers and the stochastic nature of chemical reactions. First, we study the kinetics

of molecules in a solution based on the following assumptions:

• The system is well-stirred and of constant volume V.

• The system is in thermal equilibrium at constant temperature T.

• Reactions occur only when two or more molecules collide, while most collisions

do not lead to reactions.
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The �rst assumption requires that the spatial distribution of one species' molecules

is uniform within the volume V . Also, the position of molecules is independent of

each other, no matter whether they are of the same species or not. The second

assumption indicates every molecule in the solution has independent, normally-

distributed velocity, with mean equal kBT/m. kB is the Boltzmann constant[20], T

is the solution's absolute temperature and m is mass of molecule. The third assump-

tion ensures the system follows Maxwell-Boltzmann statistics, when the temperature

is high enough but reactant density (excluding the �uid density) is low enough[20].

These assumptions allow us to ignore individual molecules' position and velocity, and

adopt a probabilistic approach. Instead of predicting the exact molecule number of

each substance xi(t), we �nd their probability density π(xi)(t).

The stochastic form for equation 2.10 is therefore written as follow:

N∑
i=1

sijXi
cj−→

N∑
i=1

rijXi (2.17)

The reaction constant cj is "reaction probability per time unit" instead of "reac-

tion rate", indicating how likely the reaction jth is to happen given the reactants'

molecule number at a given time. Its value can be calculated from the collision rate,

Maxwell's velocity, and the reaction probability when collisions between reactants

happen. The propensity function, instead of rate equation, is de�ned as:

aj(x) = cj.h(x) (2.18)

aj(x)dt indicates the probability for the jth reaction to occur in the in�nitesimal

time window [t, t + dt). h(x) is the number of possible reactant combinations of a

reaction at a given time, with x the reactants' molecule number vector. Because the

propensity function at a speci�c time depends only on the current state rather than

previous ones, we can consider the system dynamics as a Markov process, where

each reaction marks a change in state.

Assuming the state probability of the system at time t: P (x, t|x0, t0), we can

calculate P (x, t + dt|x0, t0) the probability of the system in state x at time t + dt

from propensity functions:

P (x, t+ dt|x0, t0) = P (x, t|x0, t0).P (no reaction in [t, t+ dt))+ (2.19)

M∑
j=1

(x− Sj, t|x0, t0).P (one reaction jth in [t, t+ dt))

When there is no reaction in the window [t, t + dt), the system's state does not

change. When one among M reactions occurs, the new probability is updated with
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the probability of the previous state P (x− Sj, t|x0, t0) and its propensity function.

We �nd that:

P (one reaction jth in[t, t+ dt)) = aj(x− Sj)dt (2.20)

P (no reaction in[t, t+ dt)) = (1−
M∑
j=1

aj(x))dt (2.21)

From equations 2.20 and 2.21, we can rewrite equation 2.19 as follow:

P (x, t+ dt|x0, t0) = P (x, t|x0, t0).(1−
M∑
j=1

aj(x))dt (2.22)

+
M∑
j=1

(x− Sj, t|x0, t0).aj(x− Sj)dt

The system dynamics therefore is described by the taking the �rst derivative of

equation 2.22:

∂P (x, t|x0, t0)

∂t
= lim

dt→0

P (x, t+ dt|x0, t0)− P (x, t|x0, t0)

dt
(2.23)

= lim
dt→0

∑M
j=1 (x− Sj, t|x0, t0).aj(x− Sj)dt− P (x, t|x0, t0).(

∑M
j=1 aj(x))dt

dt

Equation 2.23 is commonly known as the �rst order Chemical Master Equation

(CME)[14], describing the time-evolution of probability of a chemical system to

occupy each one of the discrete space of states. It provides the basis to �nd the

state probability of a system at a speci�c time given its initial conditions, which is

usually intractable using analytical or numerical approaches[13].

It was observed and proved mathematically that with very large number of reac-

tants' molecules and reaction volume, the stochastic model's results converge to that

of the deterministic model[21]. However, when the molecule numbers are limited,

the stochastic results, even in mean, stray far from the deterministic ones. In these

results, not only the trends but also �uctuations in reactant number are considered,

thus making the stochastic approach preferable when evaluating a chemical system.

Cell is, however, far from a typical chemical system. First, it is based overwhelm-

ingly on carbon compounds: from such macro-molecules as DNA, mRNA, proteins,

lipids, to simple ones as carbohydrates, vitamins[5]. Second, it is highly complex,

involving zillions of molecules, capable of interacting with each other to form the

metabolic network. Any biological processes though simplest cannot be treated as

one but a sequence of elementary reactions. With the stochastic approach, though

o�ering more information on the system dynamics (e.g �uctuations), an appropriate
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modeling strategy is required to gain results of relevance and avoid the explosion of

the parameter range.

2.2 Stochastic simulation

2.2.1 Stochastic simulation algorithm

Obtaining an analytical solution to Chemical Master Equation (CME) is computa-

tional challenging and usually intractable especially for complex systems involving

a large number of substances. The generation of the probability densities is calcu-

lated on the continuous time scale, which is vulnerable to error when performed on

a digital computer. The Stochastic Simulation Algorithm (SSA)[12, 14] is employed

to address the problems.

The SSA numerically simulates the underlying Markov process that the CME

describes using random sampling. A single simulation of the system over time exe-

cutes explicitly a single possible sequence of reactions, yielding a single realization

in the possible state space of the system with the appropriate probability density.

The acquisition of the result is simple and generally inexpensive with current digital

computers. However, to characterize the system dynamics, one is usually interested

in the probability density described by the CME, thus, multiple realizations are

generated and analyzed together to approximate the real density. The creation of

multiple trajectories to yield an exact estimation can become expensive in time and

data storage. Nevertheless, SSA is still a preferred approach which allows the user

to allocate resource consumption to achieve a certain level of approximation.

Another reason that supports the preference of SSA is that, by studying the

dynamics of substances in single trajectories, one can infer information about the

trends as well as dependence of substances' quantity unobtainable by CME. For

example, robust oscillation with �uctuation in its period, when averaged, become

damped oscillation. The information about the mean and noise in period is therefore

not extractable.

Unlike CME which tracts the time evolution of the probability density at �xed

rates, SSA realizes the time evolution of substance number with random rates drawn

from a distribution. The distribution, which describes the density that the next

reaction in the system is the jth reaction and will occur in an in�nitesimal time

interval [t+ τ, t+ τ + dτ), is dependent of the temporal system's state x at time t.

We divide the interval [t, t+ τ) into k smaller windows of size ϵ = τ/k. It is required

that no reactions occur in any of these windows, and the jth reaction occurs in the
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time window [t+τ, t+τ+dτ). From equation 2.20 and 2.21, we have the distribution:

Pτ,j(τ, j;x, t)dτ = (1−
M∑
j=1

aj(x)ϵ)
k(aj(x)dτ) (2.24)

We denote a(x) =
∑M

j=1 aj(x) the sum of all reactions' �uxes. Dividing the

equation sides by dτ , taking the limit dτ → 0, we have:

Pτ,j(τ, j;x, t) = (1− a(x)ϵ)kaj(x) (2.25)

= (1− a(x)τ/k)kaj(x)

which takes the limit when k →∞:

Pτ,j(τ, j;x, t) = aj(x)exp(−a(x)τ) (2.26)

= a′j(x)a(x)exp(−a(x)τ)

where a′j(x) = aj(x)/a(x) is the normalized �ux of reaction jth. The term a(x)exp(−a(x)τ)
represents the exponential distribution of the probability of one reaction occurs at

time t+ τ . The normalized �ux a′j(x) indicates how likely it is the jth reaction.

Equation 2.26 is the basis for the realization of SSA: for any state x in the

system's state space, we can calculate the time τ for the next reaction to occurs by

inversing the distribution a(x)exp(−a(x)τ), and identify this reaction from a′j(x).

The inverse transformation is performed using a pair of uniform random numbers

r1, r2 ∼ U [0, 1). We can draw τ and j from the following equations:

τ = −a(x)−1ln(1− r1) (2.27)

j = j′such that

j′−1∑
i=1

a′i(x) ≤ r2 <

j′∑
i=1

a′i(x) (2.28)

We have the outline to implement the algorithm. From any given state (x, t), we

calculate τ , j from (x) and update the system with the new state x + Sj at time

t+τ . Sj is the stoichiometric vector indicating the changes in molecule numbers after

one reaction jth occurs. Therefore, from the initial state (x0, t0), we can generate

one trajectory describing the time evolution of substances' molecule numbers. The

algorithm is executed in the following steps:

1. Initialize the step n = 0, time: tn ← t0 and state: xn ← x0

2. Calculate aj(xn) and a(xn) from the current state xn

3. Generate r1,r2 from uniform distribution [0,1)
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4. Calculate τ and j from equations 2.27 and 2.28

5. Perform reaction Rj: Update tn+1 = tn + τ , xn+1 = xn + Sj

6. Set n = n+ 1. Return to steps 2

During the simulation based on the algorithms, the record of all (xn, tn) is main-

tained, giving a complete realization of the system' state dynamics described by

CME. The trajectory is usually re-sampled at �xed time intervals to make the anal-

ysis of multiple trajectories more convenient.

2.2.2 Delayed stochastic simulation algorithm

One drawback of SSA derived by Gillespie is that it is not possible to model non-

elementary (or non-exponential) processes. In the biological context, many complex

reactions such as transcription initiation, translation. . . are sequential, usually time

consuming, and thus cannot be ignored. One usually have to break them into or

approximate them with sequences of elementary reactions:

A
c0−→ I1

c1−→ ...
cn−1−−−→ In

cn−→ B (2.29)

Such approximation, however, requires to identify the rate of each steps, mak-

ing the number of free parameters in the model increases drastically, especially for

processes with little noise. Furthermore, the increase in number of reactions and

reactants also makes the simulation computationally and storage expensive.

A method to address the problem was proposed by Bratsun et. al.[3] and gener-

alized for multiple delayed products by Roussel and Zhu[35]. As the intermediary

products I1 to In do not play any other role in the system, reaction 2.29 is shorten

to the delayed form:

A
c0−→ B(τB) (2.30)

The delay term τB represents the time elapsed of the transformation from I1 to B,

that is, the molecule B is released at τB after the reaction consuming A. τB can have

arbitrary probability densities, prede�ned by user rather generated by convolving the

densities of elementary reactions. The system is therefore semi-Markovian: the next

state does not only depend on the current but also on the previous ones. However,

the �rst reaction rule as applied to the original SSA remains the same, with the

release of the delayed product considered one reaction.

The outline of the Delayed SSA (DSSA), derived by extending the SSA is as

follow:

1. Initialize the step n = 0, time: tn ← t0 and state: xn ← x0
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2. Calculate aj(xn) and a(xn) from the current state xn

3. Calculate τ and j from equations 2.27 and 2.28

4. If there are delayed products released in the time interval [t, t+ τ ]:

(a) Release the delayed product xi with closest release time t′. Update tn+1 ←
t′, xn+1(i) ← xn(i) + 1

(b) Set n = n+ 1. Return to step 2

5. Perform reaction Rj by updating tn+1 = tn + τ , textbfxn+1 = textbfxn + Sj

6. Set n = n+ 1. Return to steps 2

In the scope of this thesis, the stochastic simulations are performed with SGNS

Stochastic Simulator[33] written by Andre S. Ribero and Jason Lloyd-Price.

2.3 Single gene expression

Upon division, the daughter cells inherit not only the material from their parent but

also its instructions to survive. These instructions are stored in a macromolecule

called DNA (Deoxyribonucleic Acid) using the language of nucleotides and replicated

accurately through cell division.

The central dogma of molecular biology, as claimed by Marshall Nirenberg, can

be recapitulated as "DNA makes RNA makes protein". The �rst process is referred

as transcription, and the second translation. The genetic information of DNA is

stored in sequences called genes. In transcription, the RNA polymerase (RNAP)

transcribes a gene on DNA and assembles a messenger RNA (mRNA) as a single-

stranded copy of that gene. In translation, the mature mRNA is bound and read

by ribosomes to synthesize proteins or other genetic products. Translation and

transcription play a major role in determining the dynamics of gene expression,

which, in this context, is described by the protein dynamics. They a�ect not only

the e�ective rate of protein production but also its �uctuations over time, the cell

to cell diversity and thus, cannot be excluded from the model of gene expression.

Since the e�ect of �uctuations and correlation between mRNA and protein num-

bers on the protein dynamics is non-negligible, the stochastic chemical kinetics ap-

proach is employed. Furthermore, any cellular processes, due to the number and size

of involving entities, are complex multi-step. The reading and assembling of mRNA

from DNA, for examples, are conducted sequentially on a gene of hundreds to thou-

sands of nucleotides. A model that includes all series of elementary reactions will

be over-detailed and become a burden for its computation as well as interpretation.

Here, we select from simpli�ed models featuring most time-consuming sub-processes
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Figure 2.1: The synthesis of mRNA (M) and protein (P) from DNA: Transcription

is performed by the enzyme RNA polymerase (RNAP) from the Transcription Starting

Site (TSS). While mRNA is being elongated, ribosomes bind to the ribosome binding sites

(RBS) and translate proteins from the template. The proteins only become functional

upon folding.

that capture the variability and correlations in the gene expression on the overall.

The series of elementary reactions are replaced with time delayed reactions[11].

Several models to capture the dynamics of gene expression have been proposed,

from the simplest one that describes the protein production as a �rst order reaction[17],

single-step transcription-translation[34], to very detailed ones with reactions at nu-

cleotide and cordon levels[31]. . . To inspect the key stochasticity of gene expression

computation, we choose the model of gene expression that separates transcription

(2.31) and translation (2.32)[43]:

Pr +RNAP
kP−→ Pr(τ1) +RNAP (τ2) +M(τ3) (2.31)

M + r
kP−→M + r(τr) + P (τP ) (2.32)

In reaction equation 2.31, one RNA polymerase, denoted by RNAP , binds to the

promoter region of the gene, denoted by Pr and initiates transcription. The proba-

bility rate constant for the binding is represented by kM , the product of reaction is

one mRNA molecule and the break-down of RNA polymerase - promoter complex.

τ1 denotes the reaction delay of promoter region after transcription initiation. This

delay is accounted by several transformations of DNA sequence around the tran-

scription start site, making it available for elongation[9] and then, for new RNA

polymerase binding. τ2 represents the RNA polymerase residence time on the DNA

strand. τ3 is the time elapsed from initiation to mRNA (M) availability for trans-

lation. In eukaryote cells, the chromosome is kept in nucleus, where transcription

occurs. The completely transcribed mRNA is processed and travels to the rough en-
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doplasmic reticulum[9] where ribosomes attach to its ribosome binding sites (RBS)

and initiate translation. This extra time is also included in τ3. Note that the gene in

the model exists at single-copy level: there is only one mRNA produced after each

transcription event.

Reaction equation 2.32 describes the translation of mRNA by ribosomes (r) to

produce proteins (P ). τr and τP denote the delay of ribosome and protein release

after the translation initiation. There is no occupied time of mRNA because it

has multiple ribosome binding sites, allowing more than one ribosome to bind to

simultaneously.

In Prokaryote cells, the lack of nucleus couples transcription and translation[28].

During transcriptional elongation, the un�nished mRNA is already available for

ribosome binding and translation. Thus, we consider the mRNA delay no longer

than promoter delay:τ1 = τ3. Furthermore, due to RNAPs and ribosomes abundance

in cell, we consider their molecule number �xed and omit them in the initiation rates.

Finally, we have a simpli�ed model of transcription and translation as follow:

Pr
∞−→ Pr(τ) +M(τ) (2.33)

M
kP−→M + P (2.34)

The lifespan of mRNA is generally limited within minutes and �ts well with

exponential distribution[2]. Proteins with a much longer half life, which can elapse

several cell cycles, have their concentration diminished through cell elongation and

division. Their decaying process is shown as a �rst-order reaction[16]:

M
dM−−→ ∅ (2.35)

P
dP−→ ∅ (2.36)

The term decay does not necessarily indicate the disappearance of the molecule

in the cell. When a molecule ceases to function properly, is metabolized or trans-

ported out of the system, the number of the functional molecules of that species is

diminished by one.

By looking at the mechanism how genes express, we �nd that noise is intrinsic.

There are several sources of noise that a�ect the dynamics of molecule numbers:

the kinetics and functional durations of entities, the transcription and translation

elapsed time are not deterministic. The resulted �uctuations cannot be hidden due

to low copy number e�ect. A high noise level, though in some extent granting cell

�exibility when coping with changes in the environment, reduces cell �tness[40].

A higher variance in gene expression widens the range of protein dynamics: over

expression leads to waste of cell materials and energy for unnecessary synthesis,
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while the lack of proteins can put several subsequent cellular processes on hold.

2.4 Rate-limiting steps

Because mRNAs exist in cell only at low copy number, gene expression is strongly

correlated with the temporal mRNA number, the dynamics of which is determined

by the transcription rate and mRNA half-lives[2]. While the degradation rate of

mRNAs may regulate the transient changes in abundance in response to environ-

mental stresses, the transcription initiation's dynamics governs the mRNA level in

both mean and �uctuation.

In bacteria, transcription initiation at the promoter region is found to comprise

sequential rate limiting steps[27]:

Pr +RNAP
slow←−→ Pr.RNAP

rapid←−−→ Prc
rapid←−−→ I1 (2.37)

rapid←−−→ I2
rapid←−−→ I3

rapid←−−→ Pro
rapid−−−→ Prinit

Prinit
rapid−−−→ Pr +RNAP +M (2.38)

The set of reactions 2.37 is the detailed model of the process. First, RNA poly-

merase di�uses along the DNA template until reaching TSS to form the promoter-

polymerase closed complex (Prc). This complex undergoes imsomerizations (I1, I2

and I3), which only become rate limiting at low temperature. RNA polymerase then

unwinds the DNA strand at TSS to form the open complex (Pro)[6, 36]. Once, the

promoter is set into initiation state (Prinit), RNA polymerase begins to elongate

along the gene sequence and assemble mRNA 2.38. When a termination site on the

DNA is recognized, the elongation is terminated with the release of RNA polymerase

and mRNA from the promoter.

The durations of these rate-limiting steps vary under di�erent conditions of

temperature[27], Mg2+ concentration[19] and other metabolites. In vivo measure-

ments showed that the elongation time only last tens of seconds, even in case of

transcriptional pauses[15], compared to transcription intervals on the order of thou-

sands seconds. Thus, the delay at TSS is mostly accounted for the intervals between

mRNA productions.

To quantify the kinetics of each promoter, we use τ ∼ Γ(α, λ−1/α), which denotes

that the promoter delay τ is drawn from a gamma distribution with the shape of

α and rate of λα. The total mean duration of all rate-limiting steps is therefore

λ−1. In this sense, the transcription initiation comprises α rate-limiting steps, each

with the duration of (λα)−1. Even if the sequential steps in practice are unequal in

duration, the gamma distribution is still a good approximation. If the steps are of

the same order of magnitude, they can be considered approximately equal and, else,
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fast steps can be neglected. Only the longest steps of the same order are considered

signi�cant.

The kinetics of transcription initiation is found to vary from promoters to pro-

moters, even for ones with slight di�erences in their sequences. In an experiment[24]

on a panel of promoter sequences derived from the lac promoter of E.coli, the tran-

scription initiation process on these promoters is interrupted at di�erent steps and

to various extent. The regulators are found to a�ect only the �rst stable complex

between RNAP and promoter, while the promoter governs mainly the conversion of

the closed complex to the open complex.

2.5 Gene networks

2.5.1 Gene regulation

Gene expression is not spontaneous. Despite RNAP and ribosomes abundance, not

all genes on the chromosome are transcribed constantly over time. There are sev-

eral mechanisms that can a�ect a gene's output yield or even stop its expression

completely. The promoter secondary and ternary structure can be altered, thus re-

stricting its interaction with RNAP and impeding mRNA production. mRNA upon

transcribed can be falsely processed or blocked by molecules other than ribosomes,

which forbids translation[4]. Those mechanisms grant cells capability to adjust their

behavior in respond to internal or external signals. In this thesis, we only discuss

the governing of gene expression by transcription factors.

To allow transcription initiation by RNAP, the promoter must be set to a speci�c

state. In this ON state, we say the gene is activated. In the OFF state, the gene is

repressed and do not produce mRNA. The state of promoter is decided by operator

sites that are located around the promoter region on DNA. Those sites, when inter-

acting with certain molecules, change the structure of promoter along with its state.

During transcription initiation, due to the large size of RNA polymerase, it overlaps

the the whole promoter protecting the operator state from interactions with other

molecules.

While the promoter is not occupied by RNA polymerase, there are several factors

capable of speci�cally binding to the operator region, thus changing the promoter

state:

Pr +R
kassoc−−−→ Pr.R (2.39)

In reaction 2.39, the promoter's operator site interacts with one regulator molecule

R forming an operator-regulator complex. This complex may change the promoter

structure, block RNAP polymerases physically or actively attract them to the tran-

scription starting site, resulting in the change in promoter rate of transcription ini-
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tiation and consequently the gene expression level. If transcription is inhibited upon

binding, the regulator is called repressor. If the regulator promulgates transcription,

it is called activator.

Reaction 2.39 is reversible: The bound regulator R can escape from the operator

region intactly with certain probability:

Pr.R
K.kassoc−−−−−→ Pr +R (2.40)

with kassoc the association rate constant in 2.39. K is the disassociation constant

indicating the disassociation over association rate ratio. As many regulators are

proteins, the lifespan of which is usually much longer (in hours) than the disassoci-

ation time ((K.k)−1), we ignore the degradation of the binding regulator. Because

it is generally not known how the transcription factors regulate the gene expression,

we assume that each step is a�ected in an equivalent manner. The mean dura-

tion of the promoter delay is thus dependent of the transcription factors' quantity:

λ = kMf(R). kM is the maximum rate of mRNA production when the gene is

fully induced. f(R) is the regulation function determined by the regulator molecule

number, taking values from 0 to 1.

To simplify the model, we assume the binding of regulatory proteins is much faster

than the rate of transcription, that is kassoc → ∞ while K is kept unchanged. It is

clear that the expectation of operator regulator complex E[Pr.R] = (1+(K.R−1)−1)

with given regulator number p. Thus, the regulation function is set as:

f(R) = (1 + (K.R−1)+d)−1 i� R is an activator (2.41)

f(R) = (1 + (K.R−1)−d)−1 i� R is a repressor (2.42)

d denotes the Hill coe�cient, determining how steep the transition between the

ON and OFF states is. As many proteins are known to function in a dimeric form[42]

or regulate genes through cooperative bindings, we use d=2 in all following cases. It

is notable that the disassociation constant K is a good indication of the regulatory

e�ciency of the transcription factor: f(R = K) = 1/2. If K is small, the regulation

is strong and vice versa.

If the gene is regulated by two regulators A and B, the combined regulation

function is the product of two individual regulation functions:

fAB(A,B) = fA(A)fB(B) (2.43)
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2.5.2 Motifs

Individual genes have a limited set of possible dynamical behaviors. In practice,

genes rarely function separately. By connecting multiple genes' expression together,

cell can perform more complex and highly non-linear functions[41]. More complex

patterns of behaviors, such as making decisions or counting time, require genetic

motifs, which are groups of genes interacting with each other via their products.

If the protein of gene A is gene's B activator, gene A is said to activate gene B.

The activation is indicated by a pointing arrow:

Figure 2.2: Activation of gene B by gene A.

Gene A is said to repress gene B if the �rst's product is the latter's repressor.

The repression is represented by a dashed arrow:

Figure 2.3: Repression of gene B by gene A.

A gene can also be self-regulated, that is its product is also its regulator:

Figure 2.4: Self activation of gene A.

The activation or repression of one gene to another is considered a directed con-

nection. The chromosome of simple organisms such as E.coli contains thousands of

genes with intracellular interactions forming a highly complex regulatory network.

The signal can travel from one node to another via multiple overlapping pathways,

under di�erent modi�cations: it can be delayed, relayed (through activation) or re-

versed (through repression). . . As a result, the output gene expression dynamics is

far di�erent from that of the input signal. The formation of the gene network with

connections gives rise to intracellular complex behaviors, somehow limited by the

�uid environment that situates them.
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Despite the number of genes and interactions, each function in cell is usually

governed by one small group of genes. Those genes interact with each other, form-

ing a small genetic circuit. The circuit's patterns, or motifs, which are repeated

throughout the network[29], and determine the expression dynamics of constituent

genes[41]. Qualitatively, we �nd genetic circuits' behavior similar to that of their

electrical analog counterparts. Thus, motifs earn the the corresponding names, such

as amplitude or frequency �lters, clocks, switches. . .

Figure 2.5: Toggle switch.

Figure 2.6: 3-gene repressilator.

In �gure 2.5, gene A and gene B strongly repress each other. If gene A is ON, its

high protein level keeps gene B OFF, which allows gene A to express even more. On

the other hand, if gene A is OFF, gene B is turned ON and becomes the dominating

gene. The system is either in one of the two states, and can �ip from one state to

another randomly. The circuit is thus called toggle switch[1]. Figure 2.6 shows the

topology of the repressilator: the system contains 3 genes repressing one another,

forming a closed loop. Each gene in the system switches between ON and OFF states

successively, leading to the oscillation in its protein level. Though it is unknown

whether cell employs the exact patterns in nature, such multi-stability (e.g, the

existence of multiple stable �xed points) and clock behavior in gene expression have

been observed in a wide range of organisms, from bacteria, plants, and animals.

There have been attempts[10, 8]to construct genetic circuits in vivo in E.coli

with a certain percentage of the population expressing the desired behavior. The
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general strategy to assemble the circuits is to de�ne the connections from the known

promoter-regulator pairs. The performance of the circuits is determined not only

by the kinetics and e�ciency of the regulators but also by the sequence-dependent

kinetics of the promoters. In the next chapter, we demonstrate the impact of the

promoter kinetics on the behavior and performance of the �ltering and decision

making circuits.
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3. RESULTS

3.1 Single gene expression

We study the e�ect of rate limiting steps in transcription initiation, determined

by the promoter sequence, on the expression of single genes. Namely, we vary the

number of steps α and the duration of each steps λ−1; while maintaining the kinetics

of other processes; we observe how the level of gene products (mRNA, protein) in

mean number and �uctuation changes with di�erent transcription initiation kinetics.

We observe the system behavior in the case of full induction, that is the gene is

always on. We assume that the steps in transcription initiation are equal, thus the

total promoter delay follows a Gamma distribution Γ(α, λα) with the shape of α

and mean duration of λ−1 (as described in section 2.4). The expected protein level

corresponding to the length of those steps is µ′ = λ/dMkP/dP = λ/kMµ.

Unless stated otherwise, the parameters of gene expression are set as follow:

dM = (5min)−1, kM/dM = 5, dP = 60min−1, kP/dP = 100. The expected protein

number is µ = kM/dMkP/dP = 500. The parameters are selected in accordance with

in vivo measurements in E-coli.[39, 2]. For each pair of values (α,λ), we simulate

the model in 5 × 106 s using the DSSA. At the start of the simulation, there is no

mRNA and protein in the system.

Shown in �gure 3.1 is a system trajectory in the �rst 2× 104 s, with alpha = 4,

λ/kM = 0.05. Each mRNA degrades before the release of the next one, indicat-

ing that the proteins are produced in a bursty manner. Due to the slow protein

degradation rate (small dP ), the protein number are still maintained positive over

time and loosely correlated with the mRNA production intervals. The protein num-

ber is very di�erent from the result of the ODE model, which has the solution

P (t) = λ/kM × 500× exp(−t× dP ).

We inspect the dynamics of molecule numbers when the system is in the steady

state. Figure 3.2 shows the protein level with di�erent rate limiting steps. As we

increase the duration of mRNA production intervals, the mRNA level decreases

along with the protein level. From the stochastic simulation, the measured mean

protein matches that of the deterministic model µ′ = µλ/kM = 500× λ/kM .

From the stochastic simulation result, we observe a signi�cant amount of noise

in the gene expression, far di�erent from deterministic one (in which the noise level

equals zero). Figure 3.3 shows the quanti�cation of noise in mRNA and protein
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Figure 3.1: A simulation trajectory of molecules numbers with α = 4, λ/kM = 0.05:
The time series (solid lines) are shown in comparison with the expected protein number,

calculated from the deterministic model (dash line).
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Figure 3.2: Mean protein level vs rate limiting steps: the mean protein level is not

a�ected by changing the number of steps but decrease with increasing duration of steps.

number: mRNA Fano factor indicates the dispersion of the distribution, or how

spread the probability density of the intervals between mRNA productions and

degradations is. For protein noise, we are interested in the variance over mean

square (CVS) value, which shows how spread the probability density of the protein

number is. CVS is also a good indication of how noisy the regulation of one gene to
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Figure 3.3: Noise level in mRNA and protein number: The mRNA noise is indicated

by the Fano factor σ2/µ. The protein noise is indicated by variance over mean square (CVS)

value σ2/µ2.

another is.

If there is only one rate limiting step in transcription initiation (α = 1), the

mRNA number follows a Poission distribution with the Fano factor of approximately

1. As we increase the number of steps, there is less noise in transcription initiation,

the mRNA level becomes more sub-Poisson resulting in less variance in protein

number. Because of the noise in mRNA degradation, even in the limit α→∞ (the

promoter delay reaches constant), there is always noise in mRNA number with the

Fano factor's lower bound of 0.5[30]. Due to the �rst-order translation, the protein

number is always super-Poissonian.

The noise level is also dependent of the level of expression: with smaller values

of λ/kM corresponding to lower mRNA and protein levels, the low copy number

e�ect becomes more critical leading to an increase in the Fano factor of mRNA (left

�gure), the increase in the variance over mean square is even more drastic (right

�gure).

We should note that despite the noise reduction in mRNA number by increasing

the number of steps, the reduction in protein noise only become observable at low

expression level, when the mRNA and protein numbers are correlated. Increasing

the transcription rate, which makes the system more deterministic, results in a much
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more stable expression level. With α = 4, λ/kM = 0.01, the CVS in protein number

is 1.3, greater than that (CVS=0.35) of α = 1, λ/kM = 0.05.

3.2 Toggle switch

We start by investigating how the behavior of the toggle switch is a�ected by the

kinetics of transcription initiation. The system comprises two genes A and B mu-

tually repressing each other, as shown in �gure 2.5. When one gene expresses, its

proteins keep the expression of the other gene low and restricts the repression by

this gene on itself. Such positive feedback of gene expression leads to the system's

multistability[38], which forces gene expressions to stay at the current state, or noisy

attractor[32] rather switching to another one.

The 2-gene circuit's stability is classi�ed into two classes: bistability and unista-

bility. The system is said to be bistable if the mean expression levels of the two genes

at stationary phase (when the system does not change the state) are di�erent. If the

two genes' expressions are equal at stationary phase, the system is unistable. The

circuit then loses the capacity to make decisions. For deterministic model, one usu-

ally use the number of stable �xed points with zero yielding rates (equation 2.12)

to classify the system's stability[10, 23]. However, for stochastic models with in-

trinsic noise, the deterministic conclusion on the circuit stability does not always

apply. Di�erent transcription kinetics can yield di�erent protein dynamics with the

same mean molecule number but di�erent in the noise level. Most importantly, the

switching events can occur in the stochastic model.

In this section, we quantify the switch stability by calculating the mean time τTS

for the system to switch from one state to another. As the gene product numbers

are more stable, the system are expected to �ip less frequently, toward not �ipping

at all: τTS →∞. For unistable system, we easily see that τTS → 0.

The regulation of one gene to another is characterized by the disassociation con-

stant K = 0.05µ′. The small value of K ensures a strong level of repression, making

bistability easier to achieve[23]. The transcription initiation of two genes are mod-

eled as follow:

PrA
∞−→ PrA(τ(PB)) +MA(τ(PB)) (3.1)

PrB
∞−→ PrB(τ(PA)) +MB(τ(PA)) (3.2)

in which τ(P ) ∼ Γ(α, αλf(P )). f(P ) is the regulation function in equation 2.42.

In �gure 3.4, the switching behavior of the toggle switch is shown. The time series

of protein number of the two genes (left sub�gure) is �lled with separate black and

gray sections of di�erent widths, indicating bistability and random switching: when

one gene expresses, the other gene is turned o�. The protein number distribution
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Figure 3.4: One realization of the switch (left), and probability density of protein

numbers (right) with α = 4, λ/kM = 0.05

(right sub�gure) of each gene is bimodal, with two modes at 0 and 25. The small

probability of the protein number between the two modes imply the fast transition

from one state to another, once the �ipping decision is made.

We de�ne the system's state by comparing the protein levels between the two

genes. The system is in state A if the protein number of gene A is greater than

that of gene B and vice versa. If the protein numbers of the two genes are equal,

the system state is set to its most recent state. From the time series of the system's

state, we calculate the distribution of switching intervals (�gure 3.5).

We �nd that a large proportion of intervals have very small values. This is due

to the intrinsic noise in gene expression, causing short intervals in the transition

phase when the protein numbers of two genes are approximately equal. We �lter

the intervals for larger values and �nd that their distribution curve resemble that of

exponential distribution. The switching events are therefore random and considered

single-step. We estimate the expected value of switching intervals τTS by �tting its

probability density with an exponential curve.

Figure 3.6 shows the stability of the switch with di�erent transcription initiation

kinetics. When λ/kM = 0.1, the high expression rate of the dominating gene results

in a low noise level in its protein number and accordingly the repression on the
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Figure 3.6: Expected switching interval (τTS) with di�erent transcription initia-

tion kinetics: For λ/kM = 0.1, τTS →∞, the system never �ips.

other gene (from �gure 3.3). The system does not change its state during the whole

simulation (in 1e7 seconds), thus, the expected switching interval goes to in�nity. As
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we increase the duration of the steps (by decreasing λ/kM), τTS decreases drastically.

For λ/kM as small as 0.01, the low copy number e�ect makes the repression of the

dominating gene on the other one extremely noisy. The system is no longer bistable.

The recorded switching events are only due to local noise in the protein number;

their intervals are therefore small. Note that, with K proportional to µ′, the circuit

is still bistable in the deterministic model.

The system loss in stability can be compensated partially by increasing the num-

ber of steps in transcription initiation: τTS increases slightly with increasing values

of α. Nevertheless, with α beyond 3, the e�ect is negligible.

The toggle switch is an autonomous system: the switching behavior is attained

with only two genes, without external signals. The motif is found to control many

processes critical to cells such as the lysogenic-lytic path decision of cells infected

with bacterio-phage lambda[37]. The decision system comprises two genes CI and

Cro repressing each other via two promoters λPR and λPRM .When The CI gene

is activated, the infected cell is in the lysogenic path, still capable of reproduction

(along with the viral genetic material) without apparent defections. In normal condi-

tions, the system is known to stay lysogenic as long as 108 cell cycles. Under certain

changes in the environment, e.g the rise in temperature, the system becomes unsta-

ble. When a �ipping event occurs, Cro gene expresses, allowing the transcription of

lysis genes that destroy the host's membrane and resolve it into viral replications.

The motif also plays an important role in establishing cell types, enhancing cell to

cell diversity. To determine the duration of the lysogenic path, or the stability of

the types, it is necessary to identify the dynamics of the switches controlling the

processes. The multiple rate limiting steps characterizing the constituent promoters

should be taken into account.

3.3 Amplitude �lter

We study the behavior of a �lter system, that responses only to input signals within

a certain range of amplitude. A genetic motif capable of behaving as a biphasic

amplitude �lter should trigger the expression of the output gene only for a narrow

range of input gene product level, namely its molecular concentration. The region

of inputs with active output is referred as the passband, the non-active regions are

called stopbands.

The genetic amplitude �lter consists of an input gene A with controllable expres-

sion, one output gene D and two intermediary genes B and C. Gene A activates the

expression of gene B and C; gene B activates the expression of gene D while gene C

represses it (�gure 3.7). The motifs is used to explain the narrow range of induction

triggering the expression of Xbra in Xenopus laevis[7]. With the relative expression

level of gene A acting as an input parameter, we investigate the expression dynamics
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of gene D with di�erent transcription initiation kinetics of intermediary genes.

Figure 3.7: Amplitude �lter: Gene A acts as the input to the �lter, gene C and D

along with the regulatory connections between genes compose the �lter, represented by

the dashed box. The protein level of gene D acts as the output.

The transcription dynamics of the gene D is characterized by: αD = 2, λD = kM .

The parameters of the output gene are kept constant to avoid direct e�ects of rate

limiting steps on the protein number at single gene level. We simulate the model

with varying shape α′ and rate λ′ of genes B and C. We set KBD = 0.25µ′, KCD =

0.1µ′, in which µ′ is the protein level of gene B and C in case of full induction.

The di�erence in the dissociation constants results in a biphasic response. To vary

the mean input level, we de�ne the relative expression level of gene A as follow:

p = K−1
ABPA = 0.1K−1

ACPA ∝ PA.

For the deterministic model, there is no �uctuation in molecules' numbers. The

protein numbers of constituent genes at steady state are:

PB = µ′(1 + (KAB/PA)
d)−1 = µ′(1 + p−d)−1 (3.3)

PC = µ′(1 + (KAC/PA)
d)−1 = µ′(1 + (10p)−d)−1 (3.4)

PD = µ(1 + (KBD/PB)
d)−1(1 + (PC/KCD)

d)−1 (3.5)

From the above equations, we see that PD is a direct function of p, independent

of µ′. The deterministic results is therefore una�ected by the number of steps α′,

or their durations (αλ)−1; it is a good approximation for high expression levels

(µ′ →∞).

Figure 3.8 shows the regulation functions of gene A directly on gene B and C, and

indirectly on D. The functions, taking the relative expression level p of the input

gene as an argument, indicate the possibility of the genes in the active state. We

can calculate the expected protein level of constituent genes proportional to their

activation probability.
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With very small amount of input proteins (p ≪ 1), gene B is not activated,

and does not produce any proteins. Consequently, there is no output signal as the

output gene is not induced. With unrestrained amount of input proteins (p ≫ 1),

the output gene, though induced by gene B's proteins, is repressed completely by

the abundance of proteins of gene C. The input regions with very large and small

values of p are thus the system stopbands. Only when p is of the same order as 1,

the expression of gene D is allowed. The output level is maximized at p = 1.

We simulate the stochastic model with the relative input level p ranging from

0.01 to 100, for 107 s with the sampling interval of 10 s. We study how much it

deviates from the deterministic response with varying values of the shape and rate of

transcription. The mean output level of the output gene D is presented in �gure 3.9.

As expected, the curve from stochastic simulations resembles the curve in �gure 3.8,

with the output maximized with a speci�c value of input. Lowering the value of α′,

which causes more noise in the expression of intermediary genes, results in slight

degradation in performance in terms of the response of the �lter. That is, the

maximum output protein level is lowered, and the transitions between the basspand

and the stopbands become less steep. In addition, the increased noise makes the

passband to shift toward a higher input level, since the distributions resulting from
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the model tend to have right skew.
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Figure 3.9: Amplitude �lter mean response as a function of relative input level

p, in comparison with the deterministic response (black): The stochastic model is

simulated with varying numbers of steps (indicated by the light intensity), and the duration

of each step (indicated by the hue) in transcription initiation.

As we vary the mean duration of steps in transcription initiation λ′, the mean ex-

pression levels µ′ of the constituent genes decrease. Noise derived from the low copy

number e�ect propagates to the output gene's transcription initiation and lowers the

output product level when the input is in the passband even further, qualitatively

similar to the case of lower values of α′. With λ′/kM = 0.01, changing α′ from 2 to

1 reduces the output peak value by 10%; changing α′ from 3 to 1, the reduction is

12%. Figure 3.9 also shows that the change in the �lter's performance resulted from

adjusting rate-limiting steps' durations is more signi�cant than adjusting the num-

ber of steps. With decreasing values of λ′/kM from 1 to 0.01, α′ = 3, the maximized

protein number of gene D is lowered by 40%. However, on the right stopband, the

leakiness in the repression of gene C over gene D occurs as the noise in the repressor

number increases. The output gene expression is therefore still allowed at low level

even in this stopband.

Note that not only the quality of the �lter but also its passband location are

a�ected by the transcription dynamics of gene B and gene C: With longer dura-
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tions of rate-limiting steps, the position of the passband is slightly shifted toward

higher relative input level. The shift resulted from increasing the number of steps

is negligible.
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Figure 3.10: Noise in the response σ2
P /µP of the output gene D as a function

of the relative input level p, with di�erent kinetics in transcription initiation:

di�erent levels of brightness denote di�erent shape parameter α′. The changes in the

response noise are nonlinear and more drastic with low mean levels.

Due to the stochasticity of our model, we study the �uctuation in the output

production level, as a function of the input gene level p. The noise in the output

protein is not, as expected from the results on the single gene expression, monoton-

ically dependent on the output level. From �gure 3.10, we also observe the noise

ampli�cation in the transitions between the passband and stopbands. As λ/kM de-

creases, the increasing noise in the number of regulators (PB and PC) makes the

output protein number unpredictable when p's value is close to 10−0.5 and 100.5. For

small values of p, gene D does not express, corresponding to the output protein Fano

factor of 1. For large values of p, due to the leakiness in the output gene expression,

the level of variability in the second stop band is raised with decreasing λ/kM .

Figure 3.10 also shows that the increase in number of steps in transcription ini-

tiation can suppress the noise in the output gene expression level. For p = 1 and

λ/kM = 0.01, the ouput protein's variance over mean ratio is reduced by 16% when

α increases from 1 to 2, and 21% when α increases from 1 to 3. It is notable that

the changes from altering α is limited, compared to adjusting the value of λ.
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3.4 Frequency �lter

In this section, we study another motif that performs �ltering in the frequency

domain. It is previously known that changes in the transcriptional kinetics can

a�ect the period's duration and robustness of genetic oscillators[22], so we expect

those changes a�ect the performance of �lters derived from circuits as well.

3.4.1 3 gene-Repressilator

We �rst investigate the behavior of a genetic clock comprising 3 genes that represses

one another forming a closed loop. The circuit is therefore called repressilator, in

which gene A represses gene B, gene B represses gene C and gene C represses gene

A (see �gure 2.6).

When gene A is on, its products inhibit the expression of gene B, which in turn

allows the expression of gene C. As gene C's product reaches a certain level, gene A

is repressed, with decreasing protein number. The products of the constituent genes

are thus with negative feedback. Also, because of the slow protein dynamics, char-

acterized by the protein degradation rates, the feedback is delayed by a considerable

amount of time, leading to oscillation in the protein number of those genes.

In our stochastic model, we have 3 identical genes with the same expression ki-

netics as described in section 3.1. The disassociation constants are set to KAB =

KBC = KCA = 0.05µ′. The three genes repress one another using the same reg-

ulation scheme, as in section 3.2. Figure 3.11 shows a time series of the protein

numbers PA, PB and PC , which exhibit oscillation, for α = 4, λ/kM = 1.

For each pair of values (α, λ), we simulate one cell with the simulation time of 108

s, and the sampling interval of 50 s. We calculate the autocorrelation of the protein

numbers of each constituent gene over time, as a function of lag time. Should the

protein numbers oscillate, their autocorrelation function oscillates with the same

frequency and consequently, its spectral power is concentrated to the harmonics

of 1/TABC . By analyzing the oscillation of this function, we can conclude on the

oscillation period TABC in mean and CV 2 of the constituent genes' protein numbers

over time. The results are shown in �gure 3.12 and 3.13.

Figure 3.13 shows a decay in the circuit's oscillation robustness as the dura-

tion and noise of transcription initiation increases. For λ/kM = 1, the CV 2 of the

recorded periods is ∼ 0.05. For λ/kM = 1, the CV 2 of the periods is ∼ 0.7. Regard-

ing the mean period of the repressilator, we observe that the oscillation frequency

is minimized at λ/kM ∼ 10−1.4. With lower values of λ, the intrinsic �uctuations in

protein numbers become the determinant of the circuit's dynamics, resulting to lower

values of measured periods. Note that, in this case, proteins of genes are produced

slowly in bursts and decay before another burst occurs, which leads to a seemingly
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Figure 3.11: The protein numbers of gene A, B and C in a single cell over time,

for α = 4, λ/kM = 1
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Figure 3.12: Mean period of the repressilator with di�erent kinetics in transcrip-

tion initiation: the intensities of the lines correspond with values of shape parameters

α

oscillating behavior. We can consider the range of λ marking the maximum mean

period value toward in�nity is the functional band of the repressilator.

We also observe that by increasing the number of steps, we can, in a limited
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Figure 3.13: CV 2 of the period

degree, compensate the loss of robustness in oscillation when lowering the value of

λ. From 3.12, we observe a change in the mean period of the circuits as α increases

from 1 to 4. Additionally, the functional band of the circuit is widened. For α = 1,

the circuit only exhibits oscillation with λ/kM greater than ∼ 10−1.3; while for α = 4,

oscillation is established with λ/kM greater than ∼ 10−1.5.

3.4.2 Frequency �lter with di�erent transcription initiation

kinetics

We constructed a motif than can perform a low-pass frequency �ltering composed

of four genes (A through D). This �lter suppresses highly transient signals while

letting slowly varying signals to pass though. Such a motif would �lter out fast

�uctuations in the number of regulatory molecules acting as the �lter's input. The

structure of the �lter is shown in �gure 3.14. Gene D is the input gene, required

to enable the expression of gene A. Three genes A, B and C repress one another

creating the repressilator with the clock behavior as in section 3.4.2.

When a periodic signal PD is applied, the behavior of this circuit should vary,

depending on the frequency of the signal. When the signal is of high frequency,

the �uctuation of the input signal does not last long to enough to have signi�cant

impact on the expression gene A before the next �uctuation occurs. The feedback

loop should be the main responsible for the frequency content of the output. For low

frequencies, the input signal will disconnect the feedback loop periodically, and lower
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Figure 3.14: The frequency �lter circuit

frequencies, including that of PD , are introduced in the output. It is expected that

the modulated circuit would have a synchronization point where the input frequency

and that of the repressilator are equal. Additionally, the phase in oscillation of the

output signal (PC) is shifted to match the input signal's phase.

To simplify the model, we consider the regulation of the gene D to gene A fol-

lowing a Hill function, with the coe�cient d′ →∞. That is, the regulation becomes

boolean, with a threshold of KDA. We omit the expression model of gene A, and as-

sociate the frequency of the input signal to the frequency of this regulation, denoted

by X ∈ B switching between 0 and 1. It is notable when X is constant and equal to

1, the output signal PC oscillates with the repressilator's autonomous period TABC

as described in section 3.4.1.

Next, we apply an unbiased Boolean square wave to X, that is X's value �ip

between 0 and 1 every �xed interval T/2. We set X(t) = 0 for the time t in

[kT, (k + 1/2)TX) with any integer k, and X(t) = 1 otherwise. The input signal's

period and frequency is therefore TX and fX = 1/TX . The autocorrelation function

of X is a triangular wave of the same frequency. By using Fourier transform, we �nd

the spectral power density (PSD) of the autocorrelation function, which indicates

how much of the signal power per unit frequency is concentrated around certain

frequency. Speci�cally, the PSD of X at frequency fX is 4π−2.

We measure the power spectral density the output PC at the frequency fX , in

comparison with that of the input signal X. The spectral power value indicates how

e�ective the input's frequency fX propagates to the output gene's expression. An

example is shown in �gure 3.15 , with the input PSD plotted for reference. The

circuit's response, corresponding with λ/kM = 0.05 indicates a low-pass behavior

in the frequency domain. Frequencies lower than those corresponding to the mean

period of the three-gene sub-motif when functioning independently (TABC , see �g-
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ure 3.12) are slightly attenuated. Frequencies higher than 1/TABC are �ltered out

from the PSD of the output autocorrelation function. The transition band is located

at frequency 1/TABC . As we increase the number of steps in transcription initiation

without a�ecting the total duration of steps, we observe only slight variations in

the performance of the �lter. The attenuation of the frequency in the passband is

reduced, while the positions of the bands remain una�ected.
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Figure 3.15: Power spectral density of the frequency �ltering motif: Power spectral

density of the frequency �lter as a function of the input frequency. Di�erent levels of gray

denote di�erent shape parameter α. The simulations were performed with λ/kM = 0.05.
The dashed black line represents the PSD of the input X at the input frequency, which

equal 4π−2.

Next, we vary the duration of steps in transcription initiation with di�erent values

of λ. We simulate the model in 108 s, with sampling intervals of 60 s, for each set

of < α, λ, fX >. The result is shown in �gure 3.16. With lower transcription

rates, the noise in mRNA productions and protein levels are increased, leading to

the degradation in the �lter performance. The steepness of the transition band is

lowered. The output frequency components corresponding to the input frequencies

are attenuated drastically even in the pass band. With changing values of λ, the

oscillation period of the 3-gene sub-motif when functioning independently varies,

resulting in the shift in the position of the �lter's cuto� frequency.

Finally, we assessed quantitatively the e�ects on the output of having di�erent
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Figure 3.16: Power spectral density of the frequency �ltering motif for various

transcription rates: Power spectral density of the frequency �lter as a function of the

input frequency, for various shapes α and rates λ of transcription. The changes by varying

α are generally nonlinear and more drastic with low mean levels. The dashed black line

represents the PSD of the input X at the input frequency, which equal 4π−2.

values of α, for each expression ratio of the input gene. For λ/kM = 0.01, increasing

α from 1 to 2 causes the magnitude of the PSD in the passband to increase by

236.0%. Increasing α from 1 to 3, increases the PSD by 275.1%. With larger values

of λ/kM , the di�erences by adjusting α are smaller. In particular, for λ/kM = 0.05,

the increases are 32.5% and 41.9%. For λ/kM = 1, these di�erences are of the order

of 7%.
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4. DISCUSSION

In this thesis, we investigated the range of dynamics of a few genetic motifs as a

function of the kinetics of transcription initiation of their constituent promoters. We

selected three genetic motifs: a toggle switch and two �lters in the amplitude and

frequency domain; and we studied the behavior of these decision-making and noise-

�ltering circuits as chemical systems. With the recent evidence on the relevance

of the sequence-dependent rate-limiting steps in transcription initiation on RNA

numbers, we assessed the performance of these three circuits when making use of

di�erent promoter kinetics, which can be characterized by the number and durations

of the sequential, rate-limiting steps.

As the dynamics of RNA and protein numbers of real genetic systems are stochas-

tic, and signi�cantly di�er from deterministic models, the motifs were expected to

function di�erently from their ideal behavior. By employing the stochastic approach,

we built the model of single gene expression, with sequential steps in transcription

initiation, and applied it to the circuit models. The sequence-dependence of pro-

moter kinetics is modeled by the time that each sub-process is set to take to be

completed. With each set of parameters describing the transcription kinetics of

the constituent genes, we simulated the systems using the DSSA and compared the

circuits' dynamics with ODE models.

We found that by prolonging the duration of the steps in transcription initiation,

the low copy number e�ect on the expression of constituent genes becomes more

drastic, leading to the degradation of the genetic �lters' performance. As for the

toggle switch, with lower expression rate of the constituent genes, the switching

events are more frequent but the discrimination between the system's noisy attrac-

tors becomes harder. The multi-step nature of the process, by lowering the noise in

mRNA production intervals, can compensate for the low copy noise to some limited

extent. We suggest that natural low-expressing genes may employ a multi-step tran-

scription process to achieve higher robustness for their composing motifs' behavior.

We also found that the transcriptional kinetics can a�ect the characteristics of

the �ltering circuits. With increasing noise in the expression of the amplitude �lter'

constituent genes, the location of the �lter's pass-bands are shifted toward higher

input value. For the frequency �lter, the cuto� frequency that separates the pass-

band and the stop-band is found to be adjustable, with changing the transcriptional
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steps' total duration as �crude tuning�. Changing the number of transcriptional

steps, though with limited e�ect in comparison with that on the steps' duration, is

non-negligible and can be employed as ��ne tuning�.

In conclusion, both number and kinetics of steps in transcription initiation are

strongly a�ected by the promoter sequence. Changes in this sequence on the con-

stituent genes of motifs is likely one of the a degrees of freedom of their evolutionary

process in natural organisms. This fact also suggests the possibility of construction

of synthetic circuits with arbitrarily wired connections.
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