
AAPO ALASUUTARI
PROCESS CONTROL USING PARACONSISTENT LOGIC PRO-
GRAMMING

Master of Science thesis

Examiner: Prof. Esko Turunen
Examiner and topic approved by the
Faculty Council of the Faculty of
Science and Engineering
on 26th September 2018

I

ABSTRACT

AAPO ALASUUTARI: Process Control using Paraconsistent Logic Programming
Tampere University of Technology
Master of Science thesis, 71 pages, 1 Appendix page
October 2018
Master’s Degree Program in Science and Engineering
Major: Mathematics
Examiner: Prof. Esko Turunen
Keywords: paraconsistent, logic programming, process control, finite state automata

In this Master’s thesis the author’s aim is to give model building tools for the tem-
poral paraconsistent logic program called Before-After Extended Vector Annotated
Logic Program with Strong Negation (bf-EVALPSN), originally created by Profes-
sor Kazumi Nakamatsu of the Prefectural University of Hyogo, Japan. The tools
bridge the paraconsistent logic program language with finite state automata.

II

TIIVISTELMÄ

AAPO ALASUUTARI: Prosessihallinta parakonsistentilla logiikalla
Tampereen teknillinen yliopisto
Diplomityö, 71 sivua, 1 liitesivu
Lokakuu 2018
Teknis-luonnontieteellinen koulutusohjelma
Pääaine: Matematiikka
Tarkastajat: Prof. Esko Turunen
Avainsanat: parakonsistentti, logiikkaohjelmointi, prosessiohjaus, tilakone

Tämän diplomityön tavoite on luoda käsitteelliset ja teoreettiset työvälineet Japa-
nin Hyogon prefektuurin yliopistossa, professori Kazumi Nakamatsun kehittämän
Before-After Extended Vector Annotated Logic Program with Strong Negation (bf-
EVALPSN, Ennen-jälkeen, laajennetun vektoriannotaation, vahvalla negaatiolla va-
rustettu logiikkaohjelma) -logiikkaohjelmointikielen mallien rakentamiseen. Nämä
työvälineet yhdistävät kielen äärellisten tilakoneiden teoriaan.

III

PREFACE

This thesis has been a long time coming. The preparatory work began in 2013 under
the tutelage and expert guidance of Professor Kazumi Nakamatsu at the Prefectural
University of Hyogo.

Further work was undertaken under on-and-off during the next few years under
Professor Esko Turunen at the Tampere University of Technology, then again under
Prof. Nakamatsu in 2016. It is clear that this thesis would never have seen the light
of day if it weren’t for the two. My deepest gratitude as well as my apologies for
taking so long in finishing what I started. As it is said: ”The slower it drops.”

Further thanks belong to my friends and family. If it were not for you, I would not
be writing this. Finally I wish to thank Valmet Automation for giving me the final
push that sent me on a course to complete my degree.

Tampere, 10.10.2018

Aapo Alasuutari

IV

CONTENTS

1. Introduction . 1

2. Logic Programming . 4

2.1 Semantics of logic programs . 6

2.2 Annotated logic programs . 11

2.3 Generalised Horn Program . 13

3. bf-EVALPSN . 18

3.1 Interpretation of bf-EVALPSN . 23

3.2 Before-After Relations . 24

3.2.1 Before / After . 27

3.2.2 Disjoint Before / After . 27

3.2.3 Immediate Before / After . 27

3.2.4 Joint Before / After . 27

3.2.5 S-included Before / After . 28

3.2.6 Included Before / After . 28

3.2.7 F-included Before / After . 28

3.2.8 Paraconsistent Before-After . 28

3.3 Before-After Inference Rules . 28

3.3.1 (0,0)-rules . 29

3.3.2 (0,8)-rules . 29

3.3.3 (5,5)-rules . 29

3.3.4 (2,8)-rules . 30

3.3.5 Transitive Before-After Inference Rules 30

4. Model Building . 34

4.1 Transitive Before-After Deduction Rules 35

4.1.1 Disjoint before - db (0,12) . 37

4.1.2 Immediate before - mb (1,11) . 37

V

4.1.3 Joint before - jb (2,10) . 38

4.1.4 S-included before - sb (3,9) . 39

4.1.5 Included before - ib (4,8) . 41

4.1.6 F-included before - fb (5,7) . 42

4.1.7 Paraconsistent before-after - pba (6,6) 42

4.1.8 F-included after - fa (7,5) . 43

4.1.9 Included after - ia (8,4) . 43

4.1.10 S-included after - sa (9,3) . 44

4.1.11 Joint after - ja (10,2) . 45

4.1.12 Immediate after - ma (11,1) . 47

4.1.13 Disjoint after - da (12,0) . 47

4.2 Model to Automata States . 48

4.3 Analysing the Algorithm . 51

5. Applying the Semantics . 54

5.1 Four-Way Traffic Intersection . 54

5.1.1 bf-EVALPSN Traffic Rules . 55

5.1.2 Basic Lane Operation . 56

5.1.3 Lane Operation Order . 60

5.1.4 Building the Automaton . 62

6. Conclusions . 69

Bibliography . 72

APPENDIX A. Table of Transitive Before After Relation Deduction Rules . . 73

VI

LIST OF FIGURES

3.1 Deontic lattice of bf-EVALPSN . 19

3.2 Before-after annotations lattice Tv(12)bf 26

5.1 Four-way intersection . 55

5.2 Crossing points of the intersection . 58

5.3 State graph of the four-way intersection 67

VII

LIST OF TABLES

5.1 Basic lane operation rules . 57

5.2 Crossing points table . 58

5.3 Lane operation forbiddance rules . 59

5.4 Initial events of the system . 62

5.5 Expanded initial events of the system 63

5.6 South starting, definite bf-relations 64

5.7 North starting, definite bf-relations 65

5.8 East, West starting, definite bf-relations 66

VIII

LIST OF ABBREVIATIONS AND SYMBOLS

ALP Annotated Logic Program
bf-EVALPSN Before-After Extended Vector Annotated Logic Program with Strong

Negation
GHC generalised Horn clause
GHP generalised Horn program
SLD resolution Selective Linear Definite clause resolution

The abbreviations and symbols used in the thesis are collected into a list in alpha-
betical order. In addition, they must be explained upon first usage in the text.

1

1. INTRODUCTION

Computer science and programming are young fields that, although originating from
algorithmic problem solving methods that span thousands of years into the early
history of human civilization, only began to fully take form in the latter half of the
20th century. The advent of high-level programming languages has brought forth a
multitude of different paradigms to programming while at the same time obscuring
most of the actual operations done by a computer in order to perform some action.
Thus it has become less and less important for a programmer to know any logic or
know intimately about the inner workings of the machine he works with. Moreover,
computers may seem to many to be mystical boxes where a single command invokes
complex actions as if by magic.

The field of logic programming was formed in the 1970s from research efforts into
theory proving, question-answer systems, and artifical intelligence and given form
by the drive to bring the field of computation into the house of logic. That is to say
that computation can be modeled by logic and by extension programming should be
reasoned about using logic. Further logic programming attempts to unify different
fields of computing such as programming, databases, and artificial intelligence by
finding a logical system general enough to describe all fields of computing. Concur-
rent computation has been shown to not modelable using Turing machines and thus
they exceed the expressivity of traditional logic programming, but this setback has
simply brought about the research of actor and multi-actor models to expand the
field.

Modern logic programming is based upon implication clauses called Horn clauses.
These clauses are used to show deductive rules that form the basis of a given pro-
gram, and consequently a set of clauses is called a Horn program. A clause is formed
by a head and a body, connected with a logical implication from the body to the
head. The body of a clause is formed by conjoining multiple logical statements
whereas the head of a clause must contain at most one statement.

If the body of a clause is empty, then the clause is read as stating a fact. A
clause with an empty head is read as a query, or a statement requirnaking proof or

1. Introduction 2

refutation by the system. In this thesis we will not be answering queries or deriving
proofs for clauses from some program and thus will not be seeing any query clauses.

Instead, this thesis focuses on program model creation. A model of a program is a set
of statements for which all rules of the program are fulfilled. Various different model
semantics exists, including stable model semantics, well-founded model semantics
and least fixpoint model semantics. We will use the stable model semantics and,
when required, perfect model semantics to deal with negation as failure.

The purpose of model creation is to essentially define the answer set of a program
and thus program model creation, specifically stable model semantics, forms the
basis of a form of declarative programming called answer set programming. Given a
program, the stable model or models generated from it correspond with the answer
or answers to the program. This can be used to f.ex. solve difficult search problems.
Program models are also but a small step away away from formal automata and
the resulting models can indeed be used to generate automaton designs to solve the
original program.

The logic programming language that we will use in this thesis is the Before-
After Extended Vector Annotated Logic Program with Strong Negation (abbr. bf-
EVALPSN). It was developed by Professor Kazumi Nakamatsu of the Prefectural
University of Hyogo, Japan [7] and is the latest extension in a long string of logic pro-
gramming languages building on each other, starting with Annotated Logic Program
(abbr. ALP). It has been used in multiple engineering challenges such as factory
pipe control, program livelock and deadlock checking and e-business modeling. [5]
[6]

Bf-EVALPSN, as the name gives a hint of, is a rather complex and involved logic pro-
gramming language first extends classical logic programming languages with para-
consistent logic. This means that the language accepts not only true and false
attributions of truth value but also unknown and inconsistent or contradictory at-
tributions as well. Furthermore, the language is extended with deontic attributions,
giving it the power to talk not only of facts but also of allowance and forbiddance as
well as paraconsistent combinations or even lack of these. Finally, the latest addition
of before-after semantics defines a new functional predicate that allows the language
to describe the temporal relations of ground level atoms. Usually temporal logics
describe temporal relations with regards to possible or inevitable futures and only
on a granularity of ”next” or ”eventually”. Bf-EVALPSN takes a different approach,
describing time as a running integer and temporal relations as possibly overlapping
lengths of time defined by the start and end time of the atom in question.

1. Introduction 3

The focal point presented in this thesis to bf-EVALPSN is the perfect model se-
mantics for bf-EVALPSN. In Nakamatsu’s previous works bf-EVALPSN has been
adapted to on-line process control but the introduction of model creation into bf-
EVALPSN’s toolbox allows the language to be used for off-line process control ver-
ification as well.

4

2. LOGIC PROGRAMMING

Logic programming is a programming paradigm based upon formal logic. Although
its written history begins in the 1970s, the seeds for it were sown beginning in
the 1930s and culminating in the 1960s debate between declarative and procedu-
ral representations of knowledge in Artificial Intelligence research. The procedural
representation of knowledge interprets clauses in a logic program as a procedure,
that is that in order to solve the resultant or head of the clause, the program must
solve all the items in the body of the clause. The declarative approach instead views
the clause as an implication, that is to say that if all the items in the body of a
clause are shown, then the head of the clause is also shown. The difference is that a
declarative interpretation does not dictate how the program should be solved, only
giving rules that must be fulfilled at the end, where as the procedural interpretation
gives only procedures or steps that the program can use.

In the 1970s actual logic computer programming languages began to appear. The
first in the procedural camp was Planner[3]. On the declarative camp this triggered
work that eventually lead to the creation of the programming language Prolog. An
important step on this journey was the development of the SLD resolution inference
rule by Robert Kowalski[4]. It was based upon what was already at the time an
established basis of logic programming; Horn clauses.

A Horn clause is rule-like logical formula made up of a disjunction of literals with
at most one positive literal and any number of negated literals.

¬p ∨ ¬q ∨ . . . ∨ ¬t ∨ u (2.1)

This can also be interpreted and written as an implication, which is by tradition
written in reverse order:

u← p ∧ q ∧ . . . ∧ t (2.2)

2. Logic Programming 5

In this format the literal at the head of the implication arrow is called the head of
the Horn clause, while the conjunction of literals on the right side of the arrow are
called the body. If the body of a clause is empty then the clause is called a fact
statement and if the head of the clause is empty then it is called a goal clause or
query. A Horn clause is definite if it is not a goal clause.

A Horn program is then a set of definite Horn clauses. A Horn program defines the
knowledge of a program, or alternatively the procedures the program can undertake
to answer a query. In addition to this both a computation mechanism and a control
is needed. The control of a logic program is, as the name suggests, used to control
the steps the program takes in searching for an answer to a given query. It could
be, for instance, a depth- or breadth-first search of the query clause’s members or
something else entirely. The computation mechanism of logic programming is a
logical inference system called SLD resolution.

SLD resolution is an inference rule for unifying disparate Horn clauses. The basis
of it is in resolution inference rules. A resolution inference rule is a valid inference
rule where two clauses containing complementary literals produce a new clause. As
an example Modus ponens can be interpreted as a resolution, as

¬p ∨ q, p

q
(2.3)

does readily have two clauses with complementary literals, ¬p∨q and p, and produces
a new clause q. SLD resolution works in the similar vein. Given a goal clause

← A1 ∧ A2 ∧ . . . ∧ An (2.4)

and an input clause

A← B1 ∧ . . . ∧Bm, (2.5)

where A1 and A are unifiable with the substitution θ, SLD resolution produces the
new clause

(← B1 ∧ . . . Bm ∧ A2 ∧ . . . ∧ An)θ. (2.6)

A resolution proof is then a linear sequence of SLD resolutions where each subsequent
resolution uses the previous clause as one of its parent clauses. If the resolution proof

2.1. Semantics of logic programs 6

ends with an empty clause, it means that all of the initial literals of the query have
been solved. This is called a refutation as it refutes the query clause in the sense
that a query with an empty body clause can be interpreted as being an implication
from truth (

∧
B where B is the empty set) to falsehood (

∨
A where A is the empty

set). However, in logic programming the linear sequence of SLD resolutions leading
to an empty clause is interpreted as an answer to the query as it lists the unifications
under which the body of the query resolves to true. This can then be used to answer
eg. questions of variable binding for the given query to be true.

2.1 Semantics of logic programs

The semantics of a Horn program are next defined. To this end let us presume that
we have defined for us the language L used in our program. This means that we
can speak of well-formed formulas in the chosen language. Then we can define the
Herbrand interpretation of a logic program P .

Definition 1 (Herbrand interpretation). Assume P is a logic program. The Her-
brand universe H of P is the set of all well-formed formulas constructed from the
constants and function symbols in L.

The Herbrand base H̃ of P is then the set of all ground atomic formulas of
the form R(t1, . . . , tn) where R is an n-ary relation symbol in L and ti are elements
of the Herbrand universe.

A Herbrand interpretation of P is any subset I ⊆ H̃.

A Herbrand interpretation can be read of as denoting a set of ground atoms that
are true in the interpretation. The truth of a formula is then formally defined as
follows.

Definition 2 (Truth in a Herbrand interpretation). Assume that I is a Herbrand
interpretation for a logic program P . We denote the truth of a formula F in I by
I ⊨ F , or otherwise worded that I satisfies F . The truth of a formula is defined as
follows: as follows:

1. a ground atomic formula R(t1, . . . , tn) is true in I iff R(t1, . . . , tn) ∈ I;
2. a ground atomic negative formula ¬R(t1, . . . , tn) is true in I iff R(t1, . . . , tn) /∈

I;
3. a ground conjunction L1 ∧ . . . ∧ Ln is true in I iff ∀i ∈ [1, n] : Li ∈ I;
4. a ground Horn clause A← B1 ∧ . . . ∧ Bn is true in I iff I ⊭ B1 ∧ . . . ∧ Bn, or

I ⊨ A;

2.1. Semantics of logic programs 7

5. a generalised Horn clause A ⇐ B1 ∧ . . . ∧ Bn is true in I iff every ground
instance, also known as closed instance, Aθ ← B1θ ∧ . . . Bnθ, where θ is a
substitution from the set of variables is true in I

Now that we can speak of truth with regards to an interpretation of a program, we
may begin to talk of models. A model of a logic program is an interpretation that
satisfies all clauses of the program. Thus it is, in essence, a subset of the program’s
Herbrand base H̃ such that for each fact statement in P the head of the clause is in
the model and for each Horn clause in P with a non-empty body, if the body clause
is satisfied by the model then the head must be in the model as well.

The question however is, how can a model be constructed for a given program P?
And moreover, we can see no guarantee that there is only a single model for any
given program. So what kind of models are we interested in, if there are multiple to
choose from? The previous paragraph holds a clue to both those questions. First
lets regard a model in which there exists a formula that is neither the head of a fact
statement, nor the head of a clause otherwise satisfied by the model. Let us even
presume that this formula does not appear in any bodies of Horn clauses satisfied by
the model. (This last part is unnecessary but makes the logic here easier, ignoring
a recursion into the argument.) If we now remove this formula from the model, we
are left with another model that is strictly smaller than the original but should still
definitely be a model.

This is because, as defined, the formula we removed did not appear as a fact in
the program, nor did it appear as the head of a true Horn clause, so removing the
formula from the model did not invalidate any immediately obvious requirements
for a model. Furthermore, as we defined that this particular formula did not appear
in any body of a satisfied Horn clause either, removing this formula from the model
does not unsatisfy any previously satisfied Horn clauses either. We can thus be sure
that all Horn clauses in P are still satisfied by this new, strictly smaller model and
the removed formula can thus be regarded as extraneous, perhaps even superfluous
to our model. It comes clear that our models should be as small as possible to avoid
any unnecessary bloat seeping in. This is what is called the least model.

Definition 3 (Herbrand model). A Herbrand interpretation for a logic prgram P

is a Herbrand model if for all clauses F in P , I ⊨ F . If P has a Herbrand model, it
is called consistent.

Definition 4 (Least model). Assume a logic program P is consistent and that M(P)

is the set of Herbrand models of P . Then
∩

I∈M(P) I is a Herbrand model of P , and
more specifically it is the least model of P .

2.1. Semantics of logic programs 8

Knowing how to define the model we want, that is the least model, does not help
with creating one, though. The intersection of all models is one more clue towards
the method of creating it, though. If by narrowing down from the set of all models
we can arrive at the least model, then perhaps building up using the definition of
truth in a Herbrand interpretation we can arrive at a Herbrand model that is the
least model.

Presume we start with an empty set of formulas as our Herbrand interpretation I

for a given program P and we aim to constructively create a model for the program.
The first step is obvious; for any fact statement in P , we must include the head of
that clause in our interpretation. Now we have an interpretation that satisfies all
the facts in P . Looking at the other Horn clauses in P now, there may be ground
clauses for which all the formulas in the body of the clause are satisfiable with the set
of facts alone. It becomes evident that the heads of these clauses must be included
into our interpretation as otherwise the clause would run afoul of Definition 2.4. For
generalised Horn clauses we must determine all ground instances of the clauses and
interpret their truth using the same method as for the ground clauses above.

Adding formulas to the interpretation like this, we work our way up towards an
interpretation that satisfies each and every Horn clause in the program P and only
just. This method cannot, after all, add any formulas into the interpretation without
them being explicitly derived from the definition of truth in a Herbrand interpreta-
tion and the clauses of the given program. No extraneous formulas can appear and
as such, if the program is consistent, we should arrive necessarily at the least model,
or possibly a least model, of the program. This generation of a next interpretation
from a previous interpretation is called the immediate consequence operator TP .

Definition 5 (Immediate consequence operator). Let P be a logic program and I

be a Herbrand interpretation of it. Then the immediate consequence operator TP

over I is defined as

TP (I) := I ∪ {A ∈ H̃ | A← B1 ∧ . . . ∧Bn is a closed instance of a rule in P and
B1, . . . , Bn ∈ I}

As Herbrand interpretations are just sets, we can define a partial order between the
interpretations of a program through set inclusion.

I1 ≤ I2 ⇔ I1 ⊆ I2 (2.7)

2.1. Semantics of logic programs 9

With this definition we can ascertain that for two interpretations I1, I2, I1 ≤ I2

it must be that TP (I1) ≤ TP (I2), as adding more items to the set I1 to get I2

can only cause more Horn clauses to be satisfied and thus further enlarge TP (I2)

in comparison to TP (I1). 1 This property of the function is called monotonicity
and it is the basis of finding the least model of the program P using least fixpoint
semantics.

x is a pre-fixpoint of a function f : I → I, where I is a partially ordered set (poset)
under the ordering ≤, if and only if

f(x) ≤ x, (2.8)

x is a post-fixpoint of f if and only if

x ≤ f(x), (2.9)

and finally x is a fixpoint of f if and only if

f(x) = x. (2.10)

Let us now show that the pre-fixpoints of TP are models of P .

Theorem 1. I is a model of the program P iff TP (I) ≤ I.
Proof: TP (I) ≤ I if and only if for all A ∈ H̃

TP (I) ⊨ A⇒ I ⊨ A.

Using Definition 5 the left side can be stated with regards to a single formula A as

I ⊨ A or {A← Body is a closed instance
of a rule in P and I ⊨ Body}.

Combining this with the original equation, the left side of the or becomes a tautology
and the latter half gives us

{A← Body is a closed instance of a rule in P and I ⊨ Body} ⇒ I ⊨ A.

1This does not necessarily hold if the Horn clauses are non-definitive. If negated literals are
allowed in the bodies of the Horn clauses, then the program must be stratified to show the mono-
tonicity of the immediate consequence operator.

2.1. Semantics of logic programs 10

Combining this all, we have the statement that TP (I) ≤ I if and only if

∀A ∈ H̃ : I ⊨ A or {(A← Body) ∈ P and I ⊨ Body} ⇒ I ⊨ A.

So if I is a pre-fixpoint of TP , then necessarily for all clauses in P , if the body of the
clause is satisfied by I then the head must be satisfied as well. Otherwise the head
alone must be satisfied. This satisfies all clauses in P , forming a Herbrand model.
Further, other formulas not in the heads of clauses may be satisfied by the model,
allowing for not only the least model to fulfill this statement.

As M(P) is a set of sets over the set H̃, it can be viewed as a partially ordered set
where all subsets have a join and meet through normal set operations ∪ and ∩. This
is the definition of a complete lattice and for a complete lattice the Knaster-Tarski
theorem guarantees that the least pre-fixpoint of a function coincides with its least
fixpoint. This combined with Theorem 1 gives us the result that among the least
pre-fixpoint of TP is also the least fixpoint of TP , and it is a model of P .

Theorem 2. Any consistent logic program P has a least model MP , which is
identical to the least fixpoint of TP .

Definition 6 (Upward iteration). The upward iteration of TP is

TP ↑ 0 = ∅, TP ↑ α = TP (TP ↑ (α− 1)), TP ↑ λ = ∪{TP ↑ ν | ν ≤ λ},

where a and ν are successor ordinals and λ is a limit ordinal.

Now we have the necessary knowledge to construct our least model.

Theorem 3. The least model of a program P is the limit of upward iteration of TP

TP ↑ ω =MP .

The least model of a program in unique for any given definite program, that is a
program containing no clauses with negated formulas in the body. Negated formulas
in the head of the clause are naturally not allowed as that would effectively be a
query clause. If a program contains negated formulas in the body, then the search
for a least model is determined by stratification of the program.

A stratified program is such a program that its clauses can be split into numbered
strata, or layers. Then for each positively occurring formula F in the body of a
clause, all clauses with F as the head of the clause (definition of F) occur on either

2.2. Annotated logic programs 11

equal of lower strata. For all negatively occurring formula ¬F in the body of a
clause, all clauses with F as the head of the clause occur on strictly lower strata.
If such a stratification is possible, then a program is called stratified and it has a
unique least model.

2.2 Annotated logic programs

Bf-EVALPSN has its foundations in the field of annotated logic programs. A good
overview into the field is given in [1]. The basic idea of annotated logics is that for-
mulas are bound with annotations. These annotated terms then look something like
A : µ. As an example of annotated logic programs, we will present the paraconsistent
annotated logic PT .

The theory along with soundness and completeness proofs for PT is well established
in various books such as [1]. Here the main points shall be quickly re-established to
show the base on which bf-EVALPSN stands, originally proposed by da Costa, et
al. [2].

A truth value in PT is called an annotation and is attached to each atomic formula
with the truth values constituting an arbitrary fixed finite complete lattice τ with
the ordering ≤ and the negation operator ∼: |τ | → |τ |. We use ⊤ and ⊥ to denote
the top and bottom elements of the lattice, respectively. In addition ∨ and ∧
operators are defined as the least upper bound and the greatest lower bound. We
shall only concern ourselves with a lattice of cardinality larger than 2, making the
logic nontrivial.

Definition 7 (Symbols). The symbols of PT are defined as follows:

1. Propositional symbols: p, q, ...
2. Annotated constants: µ, λ, . . . ∈ |τ |
3. Logical connectives: ∧, ∨, → and ¬.
4. Parentheses: (and).

Definition 8 (Formulas). Formulas are defined recursively according to the follow-
ing rules:

1. If A is a propositional symbol and µ ∈ T is a an annotation, then (A : µ) is a
formula called an annotated atomic formula or annotated atom for short.

2. If F and P are formulas, then (¬F), (F ∧ G), (F ∨ G) and (F → G) are
formulas.

2.2. Annotated logic programs 12

Extraneous parentheses are omitted where no chance of misinterpretation is possible.

The negation ¬ in PT is an epistemic negation, meaning a negation of some type
of truth but not the knowledge of the truth itself. This means that as long as the
lattice ordering ≤ is likewise defined as an epistemic order (the highest element holds
most knowledge, lowest the least), as is usual, then the epistemic negation does not
change the order of elements.

If a ≤ b then ¬a ≤ ¬b. (2.11)

Another negation ¬∗ is defined. This negation is known as the strong or ontological
negation. Ontological refers to existence and thus the ontological negation is usually
used to refute the existence of the formula it is applied on. Another interpretation
is to understand the ontological negation as negating the knowledge represented in
an annotation.

Definition 9 (Strong Negation). Let F be any formula. Then the strong negation
of F is defined as

¬∗F := F → ((F → F) ∧ ¬(F → F)) (2.12)

The strong negation can be read as the existence of F implying a contradiction.

The semantics for PT is defined through interpretations.

Definition 10 (Interpretation). Let ν be the set of all propositional symbols, T be
the set of all annotations and F be the set of all formulas. An interpretation I is a
function

I : ν → T (2.13)

and to each interpretation I we can associate a valuation function

νI : F → {0, 1}. (2.14)

The valuation function is defined as:

1. Let A be a propositional symbol and µ an annotation. Then

νI(A : µ) = 1 iff µ ≤ I(A), else νI(A : µ) = 0,

νI(¬kA : µ) = νI(¬k−1A :∼µ), where k ≥ 1.

2.3. Generalised Horn Program 13

2. Let F be any complex formula. Then

νI(¬F) = 1− νI(F).

Other formulas with logical connectives are valuated as expected.

The paraconsistent logic PT can be proven to be sound and complete. Addition-
ally PT can be extended into a propositional paraconsistent annotated logic QT
which is still sound and complete. The proof for both of these along with the alge-
braic semantics using Curry algebras can be found in [1]. Logic programming with
annotated logics is next given a definition using generalised Horn programs.

2.3 Generalised Horn Program

Paraconsistent logic programming bases on an extension of the same Horn programs
introduced earlier, called generalised Horn programs (GHP). Generalised Horn pro-
grams are made out of, similarly, generalised Horn clauses. The generalisation here
comes from the formulas in the clauses not being Horn clauses in the traditional
sense of containing logical atoms and negations of thereof.

Instead, in generalised Horn clauses, the atoms of the clause can essentially be any-
thing that is Horn-like. In the field of paraconsistent annotated logic programming,
the Horn-like atoms are the annotated atomic formulas. These clauses will later
serve as the basis of bf-EVALPSN programs. Again a complete lattice of annota-
tions τ = ⟨|τ |,≤,∼⟩ is used. Formulas and the strong negation are defined as in the
previous section.

Definition 11 (Generalised Horn Program). A generalised Horn clause (GHC) is
constructed with annotated literals A : µ, Bi : µi and an implication. In the notation
of logic programming an implication is denoted from right to left. The parts of a
GHC

A : µ⇐ B1 : µ1 ∧ . . . ∧Bn : µn

are called the head and the body of the clause respectively, separated by the impli-
cation. A generalised Horn program is a finite set of GHCs.

GHCs are interpreted by a function I from the Herbrand base H̃ of formulas under
consideration to the set of all annotations T .

I : H̃ → T . (2.15)

2.3. Generalised Horn Program 14

Each formula is either satisfied or not by the interpretation I according to the
following definition.

Definition 12 (Satisfaction). We write I ⊨ F to say that I satisfies F . An inter-
pretation I satisfies

1. the general formula F iff I satisfies each of its closed instances, i.e. for each
variable symbol x occurring free in F and each variable term t, the replacement
of occurrences of x by t, the ground formula F (t/x), is satisfied by I,

2. the closed annotated atom A : µ iff I(A) ≥ µ,
3. the closed annotated literal ¬A : µ iff it satisfies A :∼µ,
4. the closed formula (∃x)F iff for some variable free term t, I ⊨ F (t/x),
5. the closed formula (∀x)F iff for every variable free term t, I ⊨ F (t/x),
6. the closed formula F1 ⇐ F2 iff I ⊭ F2 or I ⊨ F1,
7. the closed formula F1 ∧ . . . ∧ Fn iff for all i = 1, . . . , n, I ⊨ Fi,
8. the closed formula F1 ∨ . . . ∨ Fn iff for some 1 ≤ i ≤ n, I ⊨ Fi,
9. the closed formula F ⇔ G iff I ⊨ F ⇐ G and I ⊨ G⇐ F .

An interpretation I satisfies a GHP P if it satisfies every GHC C ∈ P . Then I is
called a model of P .

Definition 13 (Positive Counterpart). If C is a GHC in P then the result of re-
placing all negated literals ¬A : µ in C by A :∼µ is called the positive counterpart
Cpos of C. The GHP P pos in which all GHCs C are replaced by their respective
counterparts Cpos is called the positive counterpart of P .

It is self-evident that the using this definition any epistemic negations in a GHC can
be internalised without affecting the logical meaning of the clause. Thus likewise
any model of P is also a model of Gpos and vice versa.

It is generally known that a logic program can have multiple models. With para-
consistent logic programming it is possible to use fixpoint semantics to define the
least model amongst them. First an order of interpretations is defined.

Definition 14 (Order of Interpretations). Given a GHP P and Herbrand interpre-
tations I1 and I2 the order ≤I is defined as

I1 ≤I I2 iff (∀A ∈ H̃) : I1(A) ≤ I2(A) (2.16)

where H̃ is the Herbrand base of P . Note that the set of interpretations forms a
complete lattice.

2.3. Generalised Horn Program 15

The completeness of the lattice can be briefly shown by taking a Herbrand base
P = {A}, ie. a single atom base. Now as the lattice of possible annotations is a
complete lattice, the interpretation of P is exactly the same lattice as the lattice of
annotations but with each point being, instead of a truth value, a mapping from A

to that truth value. This lattice is then verily seen to be complete and to correspond
completely with the lattice of annotations in terms of order.

Now adding another atom to the base, P = {A, B}, we can view the interpretation
lattice as a point couple [I(A), I(B)]. Both I(A) and I(B) correspond with the
lattice of annotations in terms of order and thus form complete lattices. The com-
bination of these two lattices is then nothing but a Cartesian product I(A)× I(B)

which is evidently a complete lattice.

The immediate consequence operator for a paraconsistent annotated logic with a
complete lattice of annotations is defined. It is a monotone, recursive operator as
expected and needed to establish fixpoint semantics.

Definition 15 (Immediate consequence operator TP). Suppose P is a GHP. Then
TP is a mapping from the Herbrand interpretations of P to the Herbrand interpre-
tations of P defined by

TP (I)(A) = ⊔{µ | A : µ⇐ B1 : µ1 ∧ . . . ∧Bn : µn}

where ⊔ is the least upper bound in τ , the clause is a ground instance of a GHC in
P and I ⊨ B1 : µ1 ∧ . . . ∧Bn : µn.

Since interpretations form a complete lattice it is clear that the above defined TP is
indeed monotonic as intended.

As earlier, a pre-fixpoint for a function f is some x for which under some ordering
⊑ it holds that f(x) ⊑ x. Similarly, as earlier it can be shown that I is a model of
the GHP P if and only if I is a pre-fixpoint, ie. TP (I) ≤ I.

This is readily understandable from taking into account that if I is a model of P then
all GHCs in P must be satisfied. Now operating on I with TP is calculating unions of
each atom’s interpretations in the heads of clauses in P whose body clause is satisfied
by I. This operation may leave out some unsupported annotations (annotations that
do not appear at the head of satisfied clauses) from I, thereby lessening the union
of annotations. This in turn may turn some interpretations of atoms from true to
false but never from false to true. This then guarantees that a generalised Horn
clause whose body was not satisfied will stay unsatisfied, and a Horn clause whose

2.3. Generalised Horn Program 16

body was satisfied either stays unsatisfied or becomes unsatisfied, thus facilitating
only the lessening of the interpretation, never its growth. As any negative atoms
that might’ve been present in the program can (and should have been) also be
removed by converting them to their positive counterparts, we can be sure that all
contradictions in the logic of the program are internalised into the interpretation
lattice. Thus TP (I) is still a a model of P and can be less or equal to I.

From the monotonicity and pre-fixpoint properties of TP it can be shown that TP

has a model. Additionally because the set of interpretations is a complete lattice
the least fixpoint and the least pre-fixpoint coincide, giving the following result.

Theorem 4. Any GHP P has a least model MP . In addition this least model is
identical to the least fixpoint lfp(TP) of TP .

Additional properties of GHPs and TP can be proven but are not immediately rele-
vant to this paper and are thus omitted.

If an annotated logic program admits strong negation, then any strongly negated
symbols in bodies of clauses can be handled using stable model semantics similarly
to that of traditional logic programs’. This means that for an interpretation I, for
any strongly negated atom ¬∗F present in the body of a formula for which I ⊨ F , the
formula is removed and any strongly negated atom from which I ⊭ F , the strongly
negated atom is removed from the body of the clause. In this case, the generation of
the interpretation I must be made using stratification of the program as described
in 2.1, with the strata separated by strong negation.

It is worth noting that althought the strong negation in annotated logics is defined
not on annotations but as a formula, it could be devised in terms of annotations
as well. This definition would, however, require changes to the way annotations
are interpretated and thus would make stratification difficult and creation of the
immediate consequence operator possibly impossible. Yet as far as on-line interpre-
tation of the status of a program goes, the satisfaction of a strongly negated atom
may be immediately checked by verifying that the value attributed to the annotated
propositional symbol is not equal or greater than that of the annotation given to it
in the strongly negated atom.

This means that it on-line verification of processes using strongly negated annotated
logics offers very expressive ways to deal with both unknown data, contradictions in
inputs as well as logic of restricted value. It is, for instance, possible to attribute to
a propositional symbol the meaning of pressure in a system and write a verification
rule that begins an emergency shutdown if the pressure is not within set bounds.

2.3. Generalised Horn Program 17

These sorts of capabilities make annotated logic programs highly desirable in a
multitude of engineering solutions.

18

3. BF-EVALPSN

In chapter 2 the basic notions of logic programming and paraconsistent annotated
logics were given. Formulas were formed from a combination of a literal and an
annotation.

A : µ, (3.1)

and benefit was found in the expressiveness of the logic and its possible applications
to, for example, process control. However, many processes as well as most modern
programming is no longer entirely describable using only fixed relations. The need
to reason about the timing of events and processes is a must in many applications.
For this purpose, among others, we show the annotated logic program bf-EVALPSN,
created by Nakamatsu [7], which stands for before-after Extended Vector Annotated
Logic Program with Strong Negation.

In bf-EVALPSN formulas are defined recursively as before but a particular new
literal is also given. This is the bf-literal R. The bf-literal, or before-after literal,
is a functional literal taking three arguments. The first two arguments are ground
literals, usually used to refer to processes, while the third is a time variable. The
bf-literal

R(A,B, t)

is read: ”The before-after relation between A and B at the time t.” Additionally we
define some types of formulas.

Definition 16 (Hyper-literal and complex formulas). A formula of the form

¬kF : µ

where k ≥ 0 and F is a ground level formula is called a hyper-literal formula, or
hyper-literal for short. A formula which is not a hyper-literal is a complex formula.

3. bf-EVALPSN 19

Annotations in bf-EVALPSN are formed from the combination of two vector anno-
tations. The first part is the epistemic tuple (a, b) denoting positive (a) and negative
knowledge (b) that we have already seen in the previous chapter. The second part
is a deontic annotation. These are combined in a fashion that for every deontic
annotation there exists a full epistemic tuple.

The tuple (a, b) belongs to a complete lattice Tv(n) of annotations with a lowest
element ⊥ = (0, 0), highest element ⊤ = (n, n) and a partial order ≤. Similarly
the deontic annotation belongs to a complete lattice Td of annotations with a set of
elements

⊥, α, β, γ, ∗1, ∗2, ∗3, ⊤,

where ∗1 = α∧ β, ∗2 = β ∧ γ and ∗3 = α∧ γ. The partial order is defined naturally
as seen in figure 3.1.

Figure 3.1 Deontic lattice of bf-EVALPSN

Combining these two in the above mentioned fashion we get an 8-tuple of epistemic
tuples:

[(a1, b1)⊥, (a2, b2)α, (a3, b3)β, (a4, b4)γ, (a5, b5)∗1 , (a6, b6)∗2 , (a7, b7)∗3 , (a8, b8)⊤] (3.2)

This presentation of the annotations is of course very cumbersome to write and
could not reasonably be used as a basis for bf-EVALPSN. Instead we use the form
that comes naturally from the cartesian product formula of the two lattices

[Tv(n)× Td] (3.3)

3. bf-EVALPSN 20

Thus a complete annotated atom of bf-EVALPSN is presented as the following:

A : [(a, b), δ] (3.4)

This presentation is reasonable given that in logic programming languages we allow
only well-formed annotations to be used as annotations in clauses. As any annotation
with

δ ∈ {⊥, ∗1, ∗2, ∗3, ⊤}

is not a well-formed annotation, we’re left to deal with only those annotations where

δ ∈ {α, β, γ}

and combinations of these. Combinations would seem to require us to at least use
a format of annotations like

[(a1, b1)α, (a2, b2)β, (a3, b3)γ]

but we regard these to not be well-formed formulas either. Instead we require these
types of combinations to be split into individual annotations where only one of the
three epistemic lattices contains non-zero values (or indeed contain only one non-zero
value) and the atoms annotated with these individual annotations are conjoined by
the logical ∧. In the case where such a combined annotation would be at the head
of a clause, the clause needs to be repeated for each of the individual annotations.

Finally the order of annotations is defined as

[(a, b), σ] ≤ [(c, d), θ]⇔ (a ≤ c) ∧ (b ≤ d) ∧ (σ ≤ θ). (3.5)

This ordering may be slightly unorthodox with regards to the underlying 8-tuple
of epistemic annotations. It, however, makes intuitive sense and clearly defines a
proper complete lattice. We are thus happy with the definition.

The deontic annotations are given natural language meaning as follows. α stands
for epistemic fact or known truth and can be viewed as the default annotation in
the sense that if deontic annotations were removed from the language, then every
interpretation of an atom in the program would traditionally in be interpreted as an
epistemic statement. β stands for obligation or requirement. It is normally used to
state a requirement for the atom in question to receive the stated epistemic anno-

3. bf-EVALPSN 21

tation immediately or very soon. Finally, γ stands for non-obligation or permission
and is used to state permission for a given interpretation to change to the given
epistemic annotation.

Any logical relations between the different deontic meanings is, naturally, part of
the program they’re used in. Bf-EVALPSN as a language itself does not force
any semantics on these relations. Although it may seem useful and natural to, for
example, require that an obligation for the falseness of an atom would imply that
the atom becomes false it is not necessarily that such a forcing would be useful. As
part, it would even remove from the deonticity of the logic by binding an obligation
to the action and thus it becomes clear that such rules must be left alone.

The introduction of the deontic annotations requires us to define new epistemic
negations for bf-EVALPSN. The first of these, ¬1, is defined as

¬1A : [(a, b), δ] := A : [(b, a), δ]. (3.6)

Clearly this negation is an epistemic negation, as no knowledge of the statement
itself is lost. The epistemic annotations are flipped, negative knowledge becomes
positive and vice versa. However, the deontic annotation stays unchanged, as it
does not represent any epistemic quantity of the statement but only the deontic
nature of it.

The second negation is an epistemic negation of the deontic annotations. This
negation negates the ontological, that is moral knowledge of the statement. The
moral negation of fact is still fact, but permission becomes obligation and vice versa.
The epistemic annotation of the statement stays unchanged. The negations of the
deontic annotations are shown separately first.

∼2⊥ := ⊥ (3.7)
∼2α := α (3.8)
∼2β := γ (3.9)
∼2 γ := β (3.10)
∼2 ∗1 := ∗3 (3.11)
∼2 ∗2 := ∗2 (3.12)
∼2 ∗3 := ∗1 (3.13)
∼2⊤ := ⊤ (3.14)

3. bf-EVALPSN 22

With these, the definition of the second epistemic negation ¬2 can be stated as

¬2A : [(a, b), δ] := A : [(a, b),∼2 δ] (3.15)

When the interpretation of bf-EVALPSN is presented later, the formulas and defini-
tions using negation (such as the definition of strong negation and various definitions
concerning the interpretation of negations) should be considered to refer to both or
either of the epistemic negations presented here. For example, the negation of a
complex formula can be done using either of the negations and the interpretation is
the same; if the formula is not satisfied, then its negation is.

Finally we define well-formed formulas for bf-EVALPSN. It is normal in annotated
logic to require that any annotations present in a program are well-formed annota-
tions. Well-formed annotations are a subset of possible annotations that are usually
constrained to show non-contradictory evidence. In our case, well-formed annota-
tions are of the form

[(a, b), δ], where either a or b (not both) is zero and δ ∈ {α, β γ}, (3.16)

and well-formed formulas are then atoms annotated with well-formed annotations
or combinations of thereof.

This requirement is not essential to the language itself, and is actually egregiously
broken by the before-after annotations introduced later. When dealing with normal
annotated atoms, however, the requirement makes natural language reasoning of
the programs simpler. It would make little sense if the program itself was written
to, for example, set some ground atom’s epistemic truth value to ⊤ directly. If the
value becomes ⊤ or otherwise contradictory from multiple input sources declaring
differing data, then the result makes sense. If, however, an atom’s value is set to
be contradictory based on some Horn clause, it makes for a bizarre system where
the knowledge of one atom is decided to be contradictory by some completely other
one.

With this system of annotations bf-EVALPSN is capable of deontic reasoning in
addition to defeasilbe reasoning, and further can express temporal relations while
still retaining all the features of a complete lattice based annotated logic. This
means that, if not strong negations are present in the system, the least model of
the program is unique and easy to construct. And even with strong negations in
the program, model creation is made easy using the strong negation perfect model

3.1. Interpretation of bf-EVALPSN 23

semantics.

3.1 Interpretation of bf-EVALPSN

With the language of bf-EVALPSN set in place, the interpretation of the language
must be defined. As the language consist of vastly more complex literals than
simple constants, the interpretation is likewise much more involved than the simple
interpretation given for PT in the previous chapter.

Definition 17 (Interpretation). An interpretation I for the language L of bf-
EVALPSN consists of a non-empty set, denoted by dom(I) and called the domain
together with

1. a function ηI that maps constants of L to dom(I)

2. a function ζI that assings to each function symbol f or arity n in L a function
from (dom(I))n to dom(I)

3. a function χI that assigns to each predicate symbol of arity n in L a function
from (dom(I))n to τ .

Definition 18 (Variable assignment). Suppose I is an interpretation for L. Then
a variable assignment v for L with respect to I is a map from the set of variable
symbols of L to dom(I).

Definition 19 (Denotation). The denotation dI,v(t) of a term t with reference to
an interpretation I and variable assignment v is defined inductively as follows:

1. If t is a constant symbol then dI,v(t) = η(t).
2. If t is a variable symbol then dI,v(t) = ν(t).
3. If t is a function symbol then dI,v(t) = ζ(f)(dI,v(t1), . . . , dI,v(tn).

Definition 20 (Satisfaction). Let I and ν be an interpretation of L and a variable
assignment with reference to I, respectively. Also suppose that A is a ground literal
and that F , G and H are any formulas whatsoever. Then the satisfaction

I, ν ⊨ F

standing for F being satisfied with regards to interpretation I and a variable assign-
ment ν, is defined as follows:

1. I, ν ⊨ A : µ iff dI, ν(A) ≥ µ.
2. I, ν ⊨ P (t1, . . . , tn) : µ iff ζI(P)(dI, ν(tn)) ≥ µ.
3. I, ν ⊨ ¬kA : µ iff I, ν ⊨ ¬k−1A :∼µ.

3.2. Before-After Relations 24

4. I, ν ⊨ (F ∧G) iff I, ν ⊨ F an I, ν ⊨ G.
5. I, ν ⊨ (F ∨G) iff I, ν ⊨ F or I, ν ⊨ G.
6. I, ν ⊨ (F → G) iff I, ν ⊭ F or I, ν ⊨ G.
7. I, ν ⊨ ¬F iff I, ν ⊭ F where F is a complex formula.
8. I, ν ⊨ ∃H iff for some variable assignment ν

′ such that for all variables y

different from x, ν(y) = ν(y
′
) we have that I, ν

′ ⊨ H.
9. I, ν ⊨ ∀H iff for all variable assignment ν ′ such that for all variables y different

from x, ν(y) = ν(y
′
) we have that I, ν

′ ⊨ H.
10. I ⊨ H iff for all variable assignment ν associated with I, I, ν ⊨ H.
11. I, ν ⊨ s = t iff dI, ν(s) = dI, ν(t).

Let Γ
∪
{H} be a set of formulas. We write ⊨ H and say that H is valid if for every

interpretation I, I ⊨ H. If I ⊨ A for each A ∈ Γ then I is a model of Γ. Finally
H is a semantic consequence of Γ if and only if for any interpretation I such that
I ⊨ G for all G ∈ Γ it is the case that I ⊨ H.

Lemma 1. For any complex formula A and B and any formula F the valuation ν

satisfies the following:

1. ⊨ A ↔ B iff ⊨ A → B and ⊨ B → A.
2. ⊭ (A → A) ∧ ¬(A → A).
3. ⊨ ¬∗A iff ⊭ A.
4. ⊨ ¬F ↔ ¬∗F .

Lemma 2. Let A(t1, . . . , tn) : µ be an annotated atom and µ, λ ∈ |τ |. Then the
following hold:

1. ⊨ A(t1, . . . , tn) : ⊥).
2. ⊨ A(t1, . . . , tn) : µ → A(t1, . . . , tn) : λ iff µ ≥ λ.
3. ⊨ ¬kA(t1, . . . , tn) : µ ↔ ¬k−1A(t1, . . . , tn) :∼µ where k ≥ 0.

3.2 Before-After Relations

The before-after relations of bf-EVALPSN apply solely to the annotated bf-literals,
that is to say literals of the form

R(pi, pj, t) : [(a, b), δ] (3.17)

where pi and pj are ground terms and t stands for some point in time. Although
the ground terms are not be anything more than basic ground terms, it is usual to

3.2. Before-After Relations 25

speak of them as processes. This is because speaking of the bf-relations between to
ground terms only makes sense if the two ground terms both have some definable
temporal span of activity, when they start and when they end.

To define the start and end time of a ground term, we prescribe functions for the
starting and ending of a process.

start(x, t), f inish(x, t) (3.18)

The start function’s valuation starts as false ([(0, n), α] where n is the cardinality
of the complete lattice) and becomes true ([(n, 0), α]) when the process x begins,
whereas the finish function’s valuation starts as false and becomes true when the
process finishes. With these two functional predicates it is possible to keep tabs on
process start and end times, and thus calculate the before-after relations between
processes. The time moment t when start(x, t) becomes true is labeled xs and the
end time is labeled xf for start and finish, respectively.

The number of possible temporal relations between two processes is 15, relating to
their relative start and finish times. The relations are as follows:

• Before (be) / After (af)
• Disjoint Before (db) / After (da)
• Immediate Before (mb) / After (ma)
• Joint Before (jb) / After (ja)
• S-included Before (sb) / After (sa)
• Included Before (ib) / After (ia)
• F-included Before (fb) / After (fa)
• Paraconsistent Before-after (pba)

Thus the annotations of bf-literals, called bf-annotations form a complete bi-lattice
Tv(12)bf . The lattice can be seen in figure 3.2. If further simplicity is wanted, or it
is unreasonable or unnecessary to consider the possibility of two events exactly over-
lapping, then sb, sa, fb, fa and pba annotations can be left out from the annotations,
leading to a complete bi-lattice Tv(7)bf .

The relations and relevant annotations are cleared next. For each relation, with
the exception of the paraconsistent before-after, there are two relations that are
reflections of each other. The first relation mentioned is one that places the first
process x earlier in time than the second process y. Somewhat counter-intuitively the
annotations are in order that the higher the ”negative evidence” of the annotation,

3.2. Before-After Relations 26

Figure 3.2 Before-after annotations lattice Tv(12)bf

the earlier the first process is compared to the second, and the higher the ”positive
evidence”, the earlier the second becomes compared to the first. With the first pair,
both of these annotations will be presented but later on only the relation where x

is earlier than y will written out implicitly.

As mentioned earlier in this chapter, these annotations are not well-formed an-
notations as defined by 3.16. However, this does not pose a problem as all the
annotations can be split into well-formed annotations. As an example the following
(nonsense) formula

R(p2, p3, t) : [(2, 10), α]→ R(p1, p2, t) : [(8, 4), α] (3.19)

can be split into two well-formed formulas that together are entirely equivalent to
the original as shown below. Thus we choose to write out the bf-rules in their
original forms knowing that in an actual implementation the rules will be converted
to well-formed bf-rules.

R(p2, p3, t) : [(2, 0), α] ∧R(p2, p3, t) : [(0, 10), α]→ R(p1, p2, t) : [(8, 0), α] (3.20)
R(p2, p3, t) : [(2, 0), α] ∧R(p2, p3, t) : [(0, 10), α]→ R(p1, p2, t) : [(0, 4), α] (3.21)

3.2. Before-After Relations 27

3.2.1 Before / After

A be / af -relation states that the process x starts before (after) y. Formally means
that the starting time of process x is smaller than that of y, xs < ys. As an
annotation we represent this as

R(x, y, t) : [(0, 8), δ] (3.22)

for be or
R(x, y, t) : [(8, 0), δ] (3.23)

for af.

This relation does not say anything about the end times of the two processes. Thus
the relation can be understood as giving imperfect knowledge.

3.2.2 Disjoint Before / After

A db / da relation means that the first process finishes before (after) the second one
starts. Formally for db this can be stated as xf < ys or as an annotation represented
as

R(x, y, t) : [(0, 12), δ]. (3.24)

3.2.3 Immediate Before / After

An mb / ma relations means that the second process starts the moment the first fin-
ishes. Formally for mb this can be stated as xf = ys or as an annotation represented
as

R(x, y, t) : [(1, 11), δ]. (3.25)

3.2.4 Joint Before / After

A jb / ja relation means that the two processes overlap in time such that the first
process starts and finishes first but the second process starts before the first one has
finished. Formally for jb this can be stated as xs < ys < xf < yf or as an annotation
represented as

R(x, y, t) : [(2, 10), δ]. (3.26)

3.3. Before-After Inference Rules 28

3.2.5 S-included Before / After

An sb / sa relation means that the first process starts before the second but they
end at the same time. Formally for sb this can be stated as xs < ys < xf = yf or as
an annotation represented as

R(x, y, t) : [(3, 9), δ]. (3.27)

3.2.6 Included Before / After

An ib / ia relation means that the second process starts and finishes between the
first process starting and finishing. Formally for ib this can be stated as xs < ys <

yf < xf or as an annotation represented as

R(x, y, t) : [(4, 8), δ]. (3.28)

3.2.7 F-included Before / After

An fb / fa relation means that the two processes start at the same time and the
second process finishes before the first one. Formally for fb this can be stated as
xs = ys < yf < xf or as an annotation represented as

R(x, y, t) : [(5, 7), δ]. (3.29)

3.2.8 Paraconsistent Before-After

A pba relation means that the two processes start and finish at the same time.
Formally this can be stated as xs = ys < xf = yf or as an annotation represented
as

R(x, y, t) : [(6, 6), δ]. (3.30)

3.3 Before-After Inference Rules

As earlier given, bf-EVALPSN record the start and end times of processes using
special function symbols start and end. Calculating the bf-relations from this data,
while simple, would require pairwise comparisons between each pair of process atoms.

3.3. Before-After Inference Rules 29

This would take way too much time, even if it was cut down by half by utilizing the
¬1 epistemic negation to avoid doing two comparisons between each pair of atoms
(R(x, y, t) and R(y, x, t)).

To avoid the exponential growth in processing needed, bf-EVALPSN defines basic
and transitive inference rules with which one can reason about temporal relations
between processes. In [7] these rules are introduced in more detail via giving exam-
ples of how they would run in a system as it computes each state online. We shall
here only show the broad outline of both the basic rules that govern the system.

In the following, let pi and pj be some processes. At the beginning neither of them
has yet started. We shall then explain all the possible bf-annotations that can occur
between these two processes during the runtime of the system. Again only the
before-side of the rules are presented, as the after-side is simply the negation of the
first.

3.3.1 (0,0)-rules

Suppose that neither process has yet started and thus the annotation associated
with R(pi, pj, t) is (0, 0). There are two possibilities in this case. Either one process
starts before the other, leading to annotation before (0, 8) or after (8, 0), or both
processes start at the same time, leading to greatest lower bound of fa, fb and pba
which is (5, 5).

3.3.2 (0,8)-rules

Suppose that pi has already started. If pi finishes and pj does not start at the same
time, then the annotation should become db (0, 12). If pj starts at the same moment
then the annotation is mb (1, 11). If process pj finishes before pi has finished then
the annotation becomes the greatest lower bound of jb, sb and ib which is (2, 8)

3.3.3 (5,5)-rules

Suppose that the processes have started at the same time. If now pi finishes before pj
the annotation should become sb (5, 7). If the order is reversed then the annotation
becomes sa (7, 5) and if the processes finish at the same time then the annotation
becomes pba (6, 6).

3.3. Before-After Inference Rules 30

3.3.4 (2,8)-rules

Suppose that process pi has started before process pj starts and process pj has
started before pi finishes. If now pi finishes first then the annotation becomes jb
(2, 10). If the processes finish at the same time then the annotation becomes fb
(3, 9) and if process pj finishes first then the annotation becomes ib (4, 8).

Naturally we see that from any of the given lower bounds, all of the before-after
annotations included within that bound are accessible and logically sound. These
basic rules give the backbone of the before-after reasoning system. The true strength,
however, comes from the transitive rules.

3.3.5 Transitive Before-After Inference Rules

Next we shall delve into the transitive rules. We shall add a process pk into our
considerations. The question at hand is that given the bf-relations between processes
pi and pj, and pj and pk at some point in time then what is the relation between
processes pi and pk? These transitive rules answer that question and are used to
minimize the computations the system needs to do at each time step in order to
keep tabs of bf-relations.

In [7] the rules are given in a simple format with just two bf-literals implying a
third. This is enough for a simple implementation of bf-EVALPSN but a rigorous
language meant for model building cannot work with just that. The problem is that
these simple representations of the rules are too general and can often be applied in
any or nearly any situation. The resulting annotations would be nonsensical.

As an example, the simplest rule to be looked at is of a situation where pi has
already started but is the only one of the three processes to have done so. In this
situation the transitive rule given in [7] is

R(pi, pj, t) : [(0, 8), α] ∧R(pj, pk, t) : [(0, 0), α]→ R(pi, pk, t) : [(0, 8), α]. (3.31)

But from Lemma 2.1 the R(pj, pk, t) : [(0, 0), α] is always satisfied (the absence of
knowledge is always a known deontic fact) and as such can be left out from the rule:

R(pi, pj, t) : [(0, 8), α]→ R(pi, pk, t) : [(0, 8), α]. (3.32)

3.3. Before-After Inference Rules 31

This rule would be madness, however. It would apply to all possible situations
where a bf-relation be or higher is found for some pair of processes, and that then
any third process is always after the earlier process of the two. It would apply even
if the third process had actually ended already way before the pair of processes on
the left side of the rule began. This should indeed not be the case and thus these
rules need additional specifications to keep them from being as generally applicable
as they currently are. For this end we use the start and finish time predicates from
3.18.

Using these predicates we rewrite the rules as exclusive, or maximal. The rule 3.31
thus becomes

R(pi, pj, t) : [(0, 8), α] ∧R(pj, pk, t) : [(0, 0), α] ∧ start(pj, t) : [(0, n), α]∧
start(pk, t) : [(0, n), α]→ R(pi, pk, t) : [(0, 8), α]. (3.33)

All the inference rules shall now be listed in a simplified format using with the added
start and finish literals left out and the bf-literals likewise simplified to only their
epistemic knowledge levels, that is the bf-annotations. Thus

R(pi, pj, t) : [(n1, n2), α] ∧R(pj, pk, t) : [(n3, n4), α]∧
start(pi, t) : µ1 ∧ start(pj, t) : µ2 ∧ start(pk, t) : µ3 ∧
finish(pi, t) : λ1 ∧ finish(pj, t) : λ2 ∧ finish(pk, t) : λ3

→ R(pi, pk, t) : [(n5, n6), α]

(3.34)

is listed as

(n1, n2) ∧ (n3, n4)→ (n5, n6). (3.35)

The inference rules are nested within each other in such a way that a nested rule of
a lower level may be applied only after the parent rule has been applied on the same
triple of processes at an earlier point in time. That is to say that the rule TR1− 1

can be applied at a time t only if the rule TR1 has already been applied at some
t′ < t to the same processes, or formally using a rule predicate eg.

3.3. Before-After Inference Rules 32

TR1(pi, pj, pk, t)

that is set as true for a triplet of processes on the same exact premises as the
corresponding rule, in this case TR 1, is applied. Then any subsequent rules, in
the above example for instance TR 1-3, also require the preceding rule prefix to be
true for the same triplet of processes. These prefixes are left out of the simplified
format.

Transitive bf-Inference Rules

TR 0: (0, 0) ∧ (0, 0)→ (0, 0)

TR 1: (0, 8) ∧ (0, 0)→ (0, 8)

TR 1-1: (0, 12) ∧ (0, 0)→ (0, 12)

TR 1-2: (1, 11) ∧ (0, 8)→ (0, 12)

TR 1-3: (1, 11) ∧ (5, 5)→ (1, 11)

TR 1-4: (2, 8) ∧ (0, 8)→ (0, 8)

TR 1-4-1: (2, 10) ∧ (0, 8)→ (0, 12)

TR 1-4-2: (4, 8) ∧ (0, 12)→ (0, 8)

TR 1-4-3: (2, 8) ∧ (2, 8)→ (2, 8)

TR 1-4-3-1: (2, 10) ∧ (2, 8)→ (2, 10)

TR 1-4-3-2: (4, 8) ∧ (2, 10)→ (2, 8)

TR 1-4-3-3: (2, 8) ∧ (4, 8)→ (4, 8)

TR 1-4-3-4: (3, 9) ∧ (2, 10)→ (2, 10)

TR 1-4-3-5: (2, 10) ∧ (4, 8)→ (3, 9)

TR 1-4-3-6: (4, 8) ∧ (3, 9)→ (4, 8)

TR 1-4-3-7: (3, 9) ∧ (3, 9)→ (3, 9)

TR 1-4-4: (3, 9) ∧ (0, 12)→ (0, 12)

TR 1-4-5: (2, 10) ∧ (2, 8)→ (1, 11)

TR 1-4-6: (4, 8) ∧ (1, 11)→ (2, 8)

TR 1-4-7: (3, 9) ∧ (1, 11)→ (1, 11)

TR 1-5: (2, 8) ∧ (5, 5)→ (2, 8)

TR 1-5-1: (4, 8) ∧ (5, 7)→ (2, 8)

TR 1-5-2: (2, 8) ∧ (7, 5)→ (4, 8)

TR 1-5-3: (3, 9) ∧ (5, 7)→ (2, 10)

TR 1-5-4: (2, 10) ∧ (7, 5)→ (3, 9)

TR 2: (5, 5) ∧ (0, 8)→ (0, 8)

TR 2-1: (5, 7) ∧ (0, 8)→ (0, 12)

TR 2-2: (7, 5) ∧ (0, 12)→ (0, 8)

TR 2-3: (5, 5) ∧ (2, 8)→ (2, 8)

3.3. Before-After Inference Rules 33

TR 2-3-1: (5, 7) ∧ (2, 8)→ (2, 10)

TR 2-3-2: (7, 5) ∧ (2, 10)→ (2, 8)

TR 2-3-3: (5, 5) ∧ (4, 8)→ (4, 8)

TR 2-3-4: (7, 5) ∧ (3, 9)→ (4, 8)

TR 2-4: (5, 7) ∧ (2, 8)→ (1, 11)

TR 2-5: (7, 5) ∧ (1, 11)→ (2, 8)

TR 3: (5, 5) ∧ (5, 5)→ (5, 5)

TR 3-1: (7, 5) ∧ (5, 7)→ (5, 5)

TR 3-2: (5, 7) ∧ (7, 5)→ (6, 6)

The transitive rules TR1−4−2, TR1−4−3−2, TR1−4−6, TR1−5−1, TR2−2,
TR2− 3− 2, TR2− 5, and TR3− 1 do not result in a definite before-after relation,
despite having no subsequently applicable transitive rules listed. These rules all end
up at a state where the relation between the first and third processes is solvable
using one of the basic inference rules. Thus one of those basic inference rules is to
be applied to find the final before-after relation being sought.

These rules conclude the basic engine of bf-EVALPSN. With these concepts and rules
it is possible to construct complex generalised Horn programs expressing temporal
logic on a realtime-like level of accuracy. The language is also capable of expressing
deontic notations of permission and obligation, as well as of course normal annotated
logic.

34

4. MODEL BUILDING

Building stable models from annotated logic programs is a solved problem.[8] There
is no question of whether EVALPSN can or cannot be for model building, as any
general annotated logic necessarily allows for least model semantics. Even the usage
of strong negation does not cause problems, as the strong negation can be dealt with
using stratification and thus perfect model semantics become usable with EVALPSN.

The question in for this thesis is how to build models from bf-EVALPSN programs.
As a general question there is little doubt if it is possible or not. In general, bf-
EVALPSN’s before-after relations only extend upon the EVALPSN language and
the added temporal dimension is dealt away as just another variable in the formulas.
But even though the question of ”can it be done” is easily answerable in the positive,
the question of ”how can it be done” does not have an immediately obvious answer.

A naïve approach would take all time points t of the system and go through them in
order, trying to build a separate model for each time point. Yet this would soon run
into problems with the fact that bf-relations do not, in general, specify the moment
of time when they become active. Unless the program is written with only fixed
points of time it is mostly meaningless to look at the time points as a progression
of integers from 0 to some N that is known in advance where for each t ∈ [0, N] a
known event occurs.

Most likely the program is written only as some promises of processes following each
other in some sequence but nothing about the actual points of time they occur on.
In this situation most of the time points t hold absolutely no special meaning, and
only on some specific time points that cannot be known in advance does anything
of interest to the system happen. This is what real time systems mostly look like
anyway.

This thesis here proposes a system to deduce those specific time points of interest
in advance from the program. This does not mean that we divine the exact time
point that an event occurs but instead we deduce from the program the sequence of
time points that will occur during the run time of the program. In most interesting

4.1. Transitive Before-After Deduction Rules 35

programs it is likely that no single sequence can be inferred and instead the possible
sequences spread out as a tree into possible futures. The final part in the system is
then, naturally, to map this tree into formal automata.

4.1 Transitive Before-After Deduction Rules

In the previous chapter the basic and transitive inference rules of bf-EVALPSN were
outlined. Those rules can be used to reason about a system at runtime, updating
information about the system’s state online as new information becomes available.
It is also used to transfer real knowledge into knowledge at the logic language level.
These, however, do not aid us in deducing information about the capabilities and
pitfalls of a system as it is described to us as a collection of clauses.

The basic deductive rules of bf-EVALPSN were outlined in the previous section.
The natural next step we must take is to explore the impact of bf-clauses cause
on the model to be built from a Horn program. In the transitive inference rules
it was possible to only reason about a smaller set of bf-EVALPSN relations, essen-
tially choosing to always view bf-relations from the earlier process’ direction, thus
only acting on the ‘before‘ side of bf-EVALPSN relations. When acting in the de-
ductive side of transitive bf-EVALPSN rules, it is not possible to choose preferable
bf-EVALPSN relations to reason with. Instead, we must do deduction on those
rules that we’re given. The only reasonable expectation we can choose is that for
any triple of processes, Pr1, Pr2 and Pr3, there always exists some way to connect
the three temporally for if there is none, then we can split the three processes into
two sets, one of which has no temporal relations with the other and these two can
thus be reasoned about separately.

Furthermore, as we are interested in building a model of the system from a set
of rules we are given about it, we do not cocern with imperfect bf-relations nor
about the exact moment of time at which these rules become true. We only concern
ourselves with rules that our system is eventually forced to conform to. This means
that when writing these deduction rules we can do away with both the deontic
annotation as well as the time parameter in the bf-relation. The deontic annotation
can be done away with because only the annotation of fact, α, is used in the rules as
only the factual state of the system impacts our further deductions on what the state
of the system will eventually be. The time parameter for the bf-EVALPSN relation
can, again, be omitted as the exact time when a rule becomes true is generally
not important to our rules. We say generally because the expectation is that most
bf-relation rules given to a system are actually existential with regards to the time
parameter, that is to say that they do not define an exact time when the rule

4.1. Transitive Before-After Deduction Rules 36

becomes true but posit that there is a time when the rule will become true and thus
due to the nature of bf-EVALPSN relations will be true when the system reaches a
‘terminal‘ position. The rules are then likewise written with an implied existential
time parameter. If the system is given bf-relations that are not existential, they can
either be universal which makes no sense and should be removed, or they can state
the time parameter exactly. An exact time parameter will simply create a set point
of time in the system that can help in other comparisons but otherwise does not
change the implications in comparison to the existential rule. Thus the deduction
rules are given in the format

R(Pr1, P r2) : (a, b) ∧R(Pr2, P r3) : (c, d)→ R(Pr1, P r3) : (e, f) (4.1)

Each bf-EVALPSN relation must now be compared with every other to come up
with all the possible transitive before-after deduction rules for bf-relations. As ex-
haustively outlining all the rules would be too intensive, only the head and body
of a deduction rule clause are given for each rule. Each rule has a body contain-
ing two bf-EVALPSN formulas, one pertaining to the bf-relation between processes
some Pr1 and Pr2, the other to that of Pr2 and Pr3. Finally the head of the clause
establishes the resultant bf-relation of Pr1 and Pr3 deducible from the body.

It is possible that a rule will not have a definite bf-relation solution. For instance
it may be that the result is (0, 0) or ⊥, that is to say that all bf-relations are
possible. It may also be that only some bf-relations are possible but they cannot be
all represented by a single annotation without including extra annotations that are
not valid possible solutions. In these cases the head of the rule clause shows multiple
annotations separated by ∨. However, that is not a valid GHC head and when the
rule is to be used in an actual system, the annotations must be converted to their
greatest lower bound. This despite the greatest lower bound also satisfying other bf-
relations that are not truly possible from the setting. The reason for showing only the
possible annotations and leaving out the impossible ones in the rule representation
is that this information will be used later to create a separate model for each of the
possible annotations.

We shall go through the deduction rules so that each following subsection defines the
bf-relation between Pr1 and Pr2, and within is a list of clauses with each possible
bf-relation of Pr2 and Pr3 used in the rule body in order. An overview of the rules
is interspersed within the list. The rules are condensed into sets represented by the
greatest lower bound when possible

4.1. Transitive Before-After Deduction Rules 37

4.1.1 Disjoint before - db (0,12)

The first process starts and finishes before the second.

• R(Pr1, P r2) : (0, 12) ∧R(Pr2, P r3) : (0, 5)→ R(Pr1, P r3) : (0, 12)

As long as the third process starts after or at the same time as the second, the
relation between the disjoint before first process and the third process is always
likewise disjoint before.

• R(Pr1, P r2) : (0, 12) ∧R(Pr2, P r3) : (8, 1)→
R(Pr1, P r3) : (0, 10) ∨ (5, 7) ∨ (8, 4)

Once the start time of the third process is freed from the bound of the starting
time of the second, then we instantly lose our definite knowledge of the bf-relation
between the two. The choices become that either the first is still disjointly before, is
immediately before, jointly before or f-included before the third process if the start
time of the third process is at least not before the start time of the first, or included
after if the third process starts before the first.

• R(Pr1, P r2) : (0, 12) ∧R(Pr2, P r3) : (12, 0)→ R(Pr1, P r3) : (0, 0)

Finally if the third process is disjointly before the second process, then we cannot
deduce anything about the relation between the first and the third process.

4.1.2 Immediate before - mb (1,11)

The first process finishes immediately as the second process starts.

• R(Pr1, P r2) : (1, 11) ∧R(Pr2, P r3) : (0, 8)→ R(Pr1, P r3) : (0, 12)

Again as expected, when the third process comes after the second, the resulting
annotation is a disjoint before.

• R(Pr1, P r2) : (1, 11) ∧R(Pr2, P r3) : (5, 5)→ R(Pr1, P r3) : (1, 11)

If the start times of the second and third process coincide, then the annotation
becomes immediate before.

• R(Pr1, P r2) : (1, 11) ∧R(Pr2, P r3) : (8, 2)→
R(Pr1, P r3) : (2, 10) ∨ (5, 7) ∨ (8, 4)

When the start time of the third process is released form the bound of the second

4.1. Transitive Before-After Deduction Rules 38

process’ start time, we see the annotation become joint before, f-included before or
included after.

• R(Pr1, P r2) : (1, 11) ∧R(Pr2, P r3) : (11, 1)→
R(Pr1, P r3) : (3, 9) ∨ (6, 6) ∨ (9, 3)

• R(Pr1, P r2) : (1, 11) ∧R(Pr2, P r3) : (12, 0)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 2)

If the second process is immediately after the third, then the annotation becomes
s-included after or before, or paraconsistent before-after. Finally if the third process
is disjointly before the second process, the annotation can be included before, f-
included before or joint after.

4.1.3 Joint before - jb (2,10)

The first process starts before the second and finishes after the second starts but
before it finishes.

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (0, 1)→ R(Pr1, P r3) : (0, 12)

If the third process starts after or as the second is ending then the relation between
the first and third is clearly disjoint before.

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (2, 9)→ R(Pr1, P r3) : (0, 10)

If the third is jointly or s-included after the second, then the resultant relation can
either be disjoint, immediate or joint before.

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (4, 8)→ R(Pr1, P r3) : (0, 8)

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (5, 6)→ R(Pr1, P r3) : (2, 10)

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (2, 8)

If the third process is included within the second (included after) then the result
can be anything between disjoint before and included before, effectively resulting in
the before relation be.

If the third process is f-included after or paraconsistent before-after the second, its
starting time is the same as the second process and its finishing time is after (fa) or
equal (pba) of the second, thus resulting in the joint before relation. In the f-included
before relation the finishing time is before the second process and thus the resulting
relation can be joint before, s-included before or included before.

4.1. Transitive Before-After Deduction Rules 39

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (8, 4)→
R(Pr1, P r3) : (2, 10) ∨ (5, 7) ∨ (8, 4)

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (9, 3)→
R(Pr1, P r3) : (2, 10) ∨ (5, 7) ∨ (8, 4)

If the second process is included or s-included within the third, meaning that the
third process starts before the second and finishes later (ia) or at the same time (sa),
then the relation between the first and third can be joint before, f-included before
or included after. This somewhat bizarre trio occurs relatively often in annotations.
Essentially it describes the situation where one process is known to end after the
other and they are known to overlap each other, but the process finishing after the
other has an otherwise unbound start time.

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (10, 2)→ R(Pr1, P r3) : (2, 2)

If both the first and third processes are jointly before the second (in the rule written
as ’second is jointly after third’) then we only know that their finish times are
within the running time of the second process and their start times are before the
second process starts. This makes disjoint before / after and immediate before
/ after relations between the first and third process impossible but otherwise any
bf-relation is possible.

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (11, 1)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 2)

• R(Pr1, P r2) : (2, 10) ∧R(Pr2, P r3) : (12, 0)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 0)

If the third process is immediately before the second, it means that the third process
finishes before the first. Their start times may still have any order and thus the
resulting bf-relation is a combination of included before (first process starts first,
finishes after), f-included after (first and third processes start together, first finishes
after) and joint after (first process starts, finishes after). If the third process is
disjointly before the second, then it is also possible that the third process finishes
at the same time as the first starts, or even before that. Thus the immediate after
and disjoint after relations get added to the mix.

4.1.4 S-included before - sb (3,9)

The first process starts before the second process and they finish at the same time.

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 12)

4.1. Transitive Before-After Deduction Rules 40

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (1, 11)→ R(Pr1, P r3) : (1, 11)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (2, 10)→ R(Pr1, P r3) : (2, 10)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (3, 9)→ R(Pr1, P r3) : (3, 9)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (4, 8)→ R(Pr1, P r3) : (4, 8)

In s-included before the finish times of the two processes coincide and the first
process starts before the first. Thus as long as the third process is strictly after the
second, then the resulting bf-relation between the first and third process is exactly
the same as the second and third.

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (2, 10)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (6, 6)→ R(Pr1, P r3) : (3, 9)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (4, 8)

When the start times of the second and third process are bound together, then if
the third process finishes after the second the relation between the first and third
becomes joint before. If the third process finishes before the second, then the relation
becomes included before. Of course, as usual, if the second and third process coincide
completely then the relation between the first and third is the same as the first and
second processes.

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (8, 4)→
R(Pr1, P r3) : (2, 10) ∨ (5, 7) ∨ (8, 4)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (9, 3)→
R(Pr1, P r3) : (3, 9) ∨ (6, 6) ∨ (9, 3)

If the second process is included within the third, then the relation between the first
and third can be either joint before, f-included before, or included after. If both first
and third are s-included before the second, it means that the first and third processes’
finish times coincide. Thus they may either be themselves s-included before or after
each other, or completely coincide in paraconsistent before-after relation.

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (10, 1)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 2)

• R(Pr1, P r2) : (3, 9) ∧R(Pr2, P r3) : (12, 0)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 0)

If the third process is immediately or jointly before the second, then the relation
between the first and third can be included before, f-included after or joint after,
same as with the previous joint before relationship. And similarly, when disjoint
after is considered, the immediate after and disjoint after relations become possible

4.1. Transitive Before-After Deduction Rules 41

between Pr1 and Pr3.

4.1.5 Included before - ib (4,8)

The first process starts before and finishes after the second.

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 8)

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (1, 10)→ R(Pr1, P r3) : (2, 8)

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (3, 8)→ R(Pr1, P r3) : (4, 8)

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (2, 8)

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (6, 5)→ R(Pr1, P r3) : (4, 8)

When the second process is included within the first and the relation between Pr2

and Pr3 is at most f-included after (the processes start at the same time, Pr3

finishes first) then the third process is always strictly after the first. If start time of
the third process is disjoint from the finish of the second, then any strictly before
relation between Pr1 and Pr3 is possible. If the start time is bound between the
start or finish of Pr2 without binding the finish time (mb, jb, fb) then immediate
and disjoint before become impossible. If both the start and finish time of Pr3 are
bound within Pr2 one way or another (sb, ib, pba, fa) then the resulting relation
between Pr1 and Pr2 is necessarily included before.

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (2, 2)

If the second process is included within both the first and the third processes, then
the relation between Pr1 and Pr3 can be anything except disjoint and immediate
before / after.

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (9, 1)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 2)

• R(Pr1, P r2) : (4, 8) ∧R(Pr2, P r3) : (12, 0)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 0)

Again if the relation between Pr2 and Pr3 is such that the start time of Pr3 is
unbound with relation to Pr2 but the finish time is bound to the start time of it,
then the relation between Pr1 and Pr3 can included before, f-included after or joint
after, and if the finish time is likewise unbound then immediate and disjoint after
become possible.

4.1. Transitive Before-After Deduction Rules 42

4.1.6 F-included before - fb (5,7)

The first and second processes start at the same time and the first process finishes
before the second.

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (0, 11)→ R(Pr1, P r3) : (0, 12)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (2, 9)→ R(Pr1, P r3) : (0, 10)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (4, 8)→ R(Pr1, P r3) : (0, 8)

If the third process is disjointly or immediately after the second, then the resultant
relation is of course disjoint before. When the third process starts within the runtime
of Pr2 it becomes possible for the resultant relation to be immediate or joint before
as well. Then if the third process is included within the run time of the second, then
Pr1 is known to be before Pr3 and nothing more.

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (5, 6)→ R(Pr1, P r3) : (5, 7)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (5, 5)

If the start times of Pr2 and Pr3 coincide, then if the third process finishes after or
at the same time as the second the resultant relation is necessarily f-included before.
Else it can also be paraconsistent before-after or f-included after.

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (8, 3)→ R(Pr1, P r3) : (8, 4)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (10, 2)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (11, 1)→ R(Pr1, P r3) : (11, 1)

• R(Pr1, P r2) : (5, 7) ∧R(Pr2, P r3) : (12, 0)→ R(Pr1, P r3) : (12, 0)

If Pr3 contains Pr2 within its run time, then necessarily also Pr1 is contained within
it. If the third process is jointly before the second, then the first process is either
included after, s-included after or joint after the third. Finally if immediate after
and disjoint after relations between Pr2 and Pr3 also map into the relation between
Pr1 and Pr2 as Pr1 and Pr2 share their start time.

4.1.7 Paraconsistent before-after - pba (6,6)

If Pr1 and Pr2 completely coincide in their run times, then the bf-relation between
Pr2 and Pr3 will also be the bf-relation between Pr1 and Pr3.

4.1. Transitive Before-After Deduction Rules 43

4.1.8 F-included after - fa (7,5)

The first and second processes start at the same time and the first process finishes
after the second.

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 8)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (1, 10)→ R(Pr1, P r3) : (2, 8)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (3, 8)→ R(Pr1, P r3) : (4, 8)

When the third process is disjointly after the second, it is known to be after the first.
If it comes immediately or jointly after the second, then it can be joint, s-included
or included after the first. If it comes s-included after or included after the second,
then it is known to be included within the first process.

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (5, 5)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (6, 5)→ R(Pr1, P r3) : (7, 5)

If both the second and third processes are f-included before / after or paraconsistent
before-after each other it means that Pr1 and Pr3 share their starting time. If the
third process finishes after the second (fb) then the resultant relation is any of f-
included before, paraconsistent before-after or f-included after. If Pr3 finishes at the
same time or before as Pr2, then the result is f-included after.

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (9, 2)→ R(Pr1, P r3) : (10, 2)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (11, 1)→ R(Pr1, P r3) : (11, 1)

• R(Pr1, P r2) : (7, 5) ∧R(Pr2, P r3) : (12, 0)→ R(Pr1, P r3) : (12, 0)

If the second process is included within the third, then the first is either included,
s-included or joint after of Pr3. If Pr2 finishes at the same time as or within, and
starts after Pr3, then the relation between Pr1 and Pr3 is joint after. Finally if Pr3

is immediately or disjointly before Pr2, then the same relation exists between Pr3

and Pr1.

4.1.9 Included after - ia (8,4)

The first process starts after the second and finishes before the second finishes, being
completely subsumed within the second.

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (0, 11)→ R(Pr1, P r3) : (0, 12)

4.1. Transitive Before-After Deduction Rules 44

If the third process starts immediately or disjointly after the second, then the relation
between Pr1 and Pr3 is disjoint before.

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (2, 9)→
R(Pr1, P r3) : (0, 10) ∨ (5, 7) ∨ (8, 4)

If the third process starts between the second process starting and finishing, and
finishes either at the same time or after the second, then the relation between Pr1

and Pr2 can be disjoint before, immediate before, joint before, f-included before or
included after.

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (4, 8)→ R(Pr1, P r3) : (0, 0)

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (5, 6)→ R(Pr1, P r3) : (8, 4)

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (8, 0)

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (8, 3)→ R(Pr1, P r3) : (8, 4)

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (10, 2)→ R(Pr1, P r3) : (8, 0)

If the third process is likewise included within the second, then the relation between
Pr1 and Pr3 is completely unknown. If the start times of Pr2 and Pr3 coincide
and Pr3 finishes either at the same time as Pr2 or after it, then it also includes Pr1

within itself, giving the relation included after. If, however, Pr3 finishes before Pr2

in this setting, then know only that the relation between Pr1 and Pr3 is after.

Again if Pr3 finishes at the same time as Pr2 and starts before it, then it also
includes Pr1 within itself, and if Pr3 is jointly before Pr2 then it is known to be
before Pr1.

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (11, 1)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (8, 4) ∧R(Pr2, P r3) : (12, 0)→ R(Pr1, P r3) : (12, 0)

If Pr3 finishes before or as Pr2 starts, then the relation between Pr1 and Pr3 is
disjoint before.

4.1.10 S-included after - sa (9,3)

The first process starts after the second process and they finish at the same time.

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 12)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (1, 11)→ R(Pr1, P r3) : (1, 11)

When the third process is immediately or disjointly after the second, the same
relation exists between Pr3 and Pr1.

4.1. Transitive Before-After Deduction Rules 45

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (2, 10)→
R(Pr1, P r3) : (2, 10) ∨ (5, 7) ∨ (8, 4)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (3, 9)→
R(Pr1, P r3) : (3, 9) ∨ (6, 6) ∨ (9, 3)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (4, 8)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 0)

If Pr2 is jointly before Pr3, meaning that the finish time of Pr3 is after the finish
of and the start time is included within Pr2, then Pr1 is either joint before, f-
included before or included after Pr3. If all three processes share an end time and
Pr1 and Pr3 start after Pr2, then their relation is one of s-included after/before, or
paraconsistent before-after. If Pr3 is included within Pr2 then the resulting relation
can be either likewise included before, f-included after (Pr1 and Pr3 start at the
same time, Pr1 finishes after), or any of joint, immediate or disjoint after.

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (8, 4)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (6, 6)→ R(Pr1, P r3) : (9, 3)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (10, 0)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (8, 4)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (9, 3)→ R(Pr1, P r3) : (9, 3)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (10, 2)→ R(Pr1, P r3) : (10, 0)

If Pr2 and Pr3 start at the same time and Pr3 finishes after, then Pr1 is included
after Pr3. If, however, Pr3 finishes before, then Pr1 can be joint after, immediate
after or disjoint after Pr3. If Pr3 includes Pr2 then it necessarily also includes Pr1.
Similarly if Pr3 is s-included before Pr2 then it is likewise s-included before Pr1,
and if it is included before Pr2 then it is joint before, immediate before or disjoint
before Pr1.

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (11, 1)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (9, 3) ∧R(Pr2, P r3) : (12, 0)→ R(Pr1, P r3) : (12, 0)

Finally if Pr3 finishes before or as Pr2 starts, then Pr1 is disjoint after Pr3.

4.1.11 Joint after - ja (10,2)

The first process starts after the second starts but before it finishes, and finishes
only after the second has finished.

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 8)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (1, 11)→ R(Pr1, P r3) : (2, 8)

4.1. Transitive Before-After Deduction Rules 46

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (2, 10)→ R(Pr1, P r3) : (2, 2)

If Pr3 starts after Pr2 has already finished then Pr1 is before Pr3 but nothing else
can be known about their relation. If Pr3 starts as Pr2 finishes, then Pr1 is joint,
s-included or included before Pr3, and if both Pr1 and Pr3 are joint after Pr2 then
the relation between the two of them can be anything except disjoint or immediate
before / after.

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (3, 9)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 2)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (4, 8)→
R(Pr1, P r3) : (4, 8) ∨ (7, 5) ∨ (10, 0)

If Pr3 starts after and finishes at the same time as Pr2, then it is possible that it is
either completely included within Pr1, starts at the same time as Pr1 and finishes
before it, or starts before Pr1 and finishes while Pr1 is running. If Pr3 finishes
before Pr2, then it is also possible that Pr3 finishes right at the time Pr1 starts or
before that time. Thus the possibilities are included before, f-included after, joint
after, and for R(Pr2, P r3) : (4, 8), immediate after, and disjoint after.

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (6, 6)→ R(Pr1, P r3) : (10, 2)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (10, 0)

If Pr3 starts at the same time as and finishes after Pr2, then the relation between
Pr1 and Pr3 can either be joint after, s-included after or included after. If Pr2

finishes after Pr3, then the relation becomes either joint after, immediate after, or
disjoint after.

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (9, 3)→ R(Pr1, P r3) : (10, 2)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (10, 2)→ R(Pr1, P r3) : (10, 0)

• R(Pr1, P r2) : (10, 2) ∧R(Pr2, P r3) : (11, 0)→ R(Pr1, P r3) : (12, 0)

If Pr2 is included within Pr3, then Pr1 is either included after, s-included after, or
included after Pr3. If Pr2 and Pr3 finish at the same time and Pr3 starts before Pr2

then the relation between Pr1 and Pr3 is then necessarily joint after. If instead Pr3

finishes after Pr2 starts and before it finishes, then the relation is either disjoint,
immediate or joint after. Finally if Pr3 finishes as or before Pr2 starts, then the
relation between Pr1 and Pr3 becomes necessarily disjoint after.

4.1. Transitive Before-After Deduction Rules 47

4.1.12 Immediate after - ma (11,1)

The first process starts right as the second process finishes.

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 8)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (1, 11)→ R(Pr1, P r3) : (5, 5)

If the third process starts after the second finishes, then the relation between the
first and third is before and nothing more specific can be stated. If the third process
starts as the second finishes, then the first and third processes start at the same time
and the relation becomes f-included before or after, or paraconsistent before-after.

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (2, 10)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (3, 9)→ R(Pr1, P r3) : (11, 1)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (4, 8)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (6, 6)→ R(Pr1, P r3) : (11, 1)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (7, 5)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (8, 2)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (9, 3)→ R(Pr1, P r3) : (11, 1)

• R(Pr1, P r2) : (11, 1) ∧R(Pr2, P r3) : (10, 0)→ R(Pr1, P r3) : (12, 0)

The rest of the relations are simple: If the finish time of Pr3 is only bound to be after
the finish time of Pr2 (jb, fb, ia), then the relation is one of joint after, s-included
after and included after. If the finish time is the same as the finish time of Pr2

(sb, pba, sa), then the relation is immediate after. Finally if the finish time of Pr3

is bound to be before the finish time of Pr2 (ib, fa, ja, ma, da) then the relation
between Pr1 and Pr2 is disjoint after.

4.1.13 Disjoint after - da (12,0)

The second process finishes before the first process starts.

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (0, 12)→ R(Pr1, P r3) : (0, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (1, 10)→ R(Pr1, P r3) : (8, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (3, 8)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (5, 7)→ R(Pr1, P r3) : (8, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (6, 5)→ R(Pr1, P r3) : (12, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (8, 4)→ R(Pr1, P r3) : (8, 0)

• R(Pr1, P r2) : (12, 0) ∧R(Pr2, P r3) : (9, 0)→ R(Pr1, P r3) : (12, 0)

4.2. Model to Automata States 48

If the second process is before both the first and third processes, then the first and
third process may have any relation whatsoever. Otherwise, as far as the finish
time of the third process is after the second process’s finish time then the relation
between the first and third processes is after, and otherwise the relation is disjoint
after.

4.2 Model to Automata States

Imagine that we have a stratifiable bf-EVALPSN program P . Now when we want to
apply the immediate consequence operator TP on the program to find a least model,
we run into a problem. Atoms that, for instance, are true on such time points t that
some process is active can only be said to be just that, true on those time points. But
unless we know these time points beforehand, we can say nothing about the actual
time. To know this, we would need to deduce the timings of the system. Luckily
for us, it is possible to do this using our previously outlined deductive bf-rules. For
every pair of bf-relations in the program with one process shared between them, we
use one of the deduction rules to gather bf-relation data of the other processes. Of
note here is that although our rules were written from the presumption that the
shared process between the two bf-relations in the rules occur once as the second
and once as the first process in a relation, it is easy to avoid this requirement as
bf-relations are asymmetric relations. That is, the following holds:

If R(Pr1, P r2, t) : [(a, b), δ] then R(Pr2, P r1, t) : [(b, a), δ]. (4.2)

This means we can always flip either one of the relations to fit it into one of the
deduction rules. With these deduction rules we work through the program’s bf-
relations with the goal of establishing a definite bf-relation between each pair of
processes. Our aim is to determine all the possible states that the system can have
with regards to the processes present in the system. Once these are known we can
create a complete model for each of these states of the program.

Before we do this, however, we may as well use the immediate consequence operator
TP to the program before we start dividing it into states. Even though the resulting
model from this action will not tell us much with regards to the temporal relations,
it will still be a a complete model of the program in the logic programming sense.
It satisfies every clause in the program, as guaranteed by the stratification and the
upward iteration on the program. This model does serve to give us some information
on the system, showing which bf-relations are fulfilled and a basic clue on how the

4.2. Model to Automata States 49

system may run. However, it is not easy to process. The information comes, at its
core, as a list of annotated atoms. It does not outline any clear view of how the
program runs. To improve the visibility into the system’s run time, we then begin
our work using the transitive bf-relation deduction rules.

This step is best done as a simple width-first application of the rules for each triple
of processes. If no rule can be applied for a given triple, it is marked for later
processing. Once all triples are processed once, the marked triples are reprocessed
with the new information gained from the previous round of applications. The same
cycle of processing and marking is repeated until no new information is gained on
two sequential rounds.

If after this our system has only definite bf-relations, we can rest easy as our system is
completely synchronous and building an automaton representation for the program
can proceed without any further steps. If, however, there are indefinite bf-relations
remaining in the program it means that the program has asynchronous parts to it,
having multiple possible routes that it may take during the run time, and as such to
anticipate all possible states of the system we must begin splitting the model into
alternate models for each possible bf-relation.

To split the model, choose one indefinite bf-relation in the system, giving preference
to

1. hints given by the program defintion, such as a group of processes from which
the earliest process is chosen from,

2. those relations known to occur earlier in the program (eg. two indefinite sba
relations exist, but one is known to be disjointly before Prx while the other is
known to be disjointly after it),

3. those relations with the least number of possible definite bf-relations (eg. sba
(3,3) has three, sb (3,9), pba (6,6), and sa (9,3), while jba has 9, from jb (2,10)
to ja (10,2)),

4. preferring lower ’after’ values and higher ’before’ values of the bf-relations
(referring to the (a, b) lattice of the bf-relations with a here being called ’after’
value and b being called ’before’ value, thus eg. sba (3,3) takes precedence over
fba (5,5) while both have the same number, 3, of possible definite bf-relations).

Having chosen an indefinite bf-relation, replace the previous model with a set of mod-
els where for each definite bf-relation possible for the chosen relation a new model
exists with indefinite bf-relation replaced with the definite relation. We mark this
model with the definite bf-relation that distinguishes it. Then for each new model,
use the immediate consequence operator to iterate upwards until a new least model

4.2. Model to Automata States 50

is found. If one or more of these new models still contains indefinite bf-relations,
we continue the splitting and these models are marked with a concatenation of the
parent model’s label and the definite bf-relation that replaces the chosen indefinite
one. An example label would then be such as

R(Pr1, P r2, T) : [(11, 1), α], R(Pr2, P r3, T) : [(4, 8), α]. (4.3)

This way we should end up with a set of models containing only definite bf-relations,
each labeled with a list of bf-relations chosen during the creation of the model. Each
of these models can then be converted into an automata-like state and transition
tree with only one branch from beginning to end. The following algorithm is done
for each alternative model in turn.

Theorem 5 (Translation of definite bf-EVALPSN Program into Formal Automa-
ton). Let Prn, n ∈ N be a finite set of processes, R be a set of bf-EVALPSN rules
on Prn all relatable to each other, and P be a set of EVALPSN formulas related to
the processes. Presume that the bf-EVALPSN rules are in order from the earliest to
the latest in terms of bf-relations and no indefinite relations remain in R. Now for
each rule R in the set, in order of earliest to latest, the following steps are taken:

1. The starting and finish times of the two processes in the rule are nominated
as ti with i being the next unused integer in the set of all time points.

2. List the times in order along with a note on what happens at that point of
time, marked with start(Prn) for a process starting, or finish(Prn) for a
process finishing.

3. For each new interval between two set time points assign a state name SK with
K being the concatenation of processes state changes preceding the state. (eg.
start(Pr1), start(Pr2), f inish(Pr2))

4. For each acceptable state, add to a ledger of models, the zero state being
S∅ = TP and other states being f.ex. Sstart(Pr1) = TP∪{start(Pr1)} according to
which processes have started and finished preceding the state.

From the bf-rule application previously we know the sets of started processes and
finished processes to be unchanging for the whole duration of each state, as if a
process started or finished during the state then the state should have been split
into two separate states earlier. Thus we can drop out the time variable t from the
bf-relations, and start and finish function literals in the state. As the creation of
the alternate models is somewhat an implementation specific system, it is allowed
for the program to set certain acceptability categories for the resultant states. A
fairly normal category would be, for instance, to accept only such states which do

4.3. Analysing the Algorithm 51

not contain such active processes that are marked as forbidden from being active
during the state using a deontic literal. A more strict version of this would be to only
allow such states for which the state transition event (eg. start(Pr2)) has explicit
permission set in the system using a deontic literal.

It is possible that some time variables in the system still cannot be unified into our
system of states but we will leave those complications to a later discussion. Thus
we should have a state program with only definite bf-relations with no dependency
to the exact time of the system, a set of started and finished processes, and normal
EVALPSN formulas. This combination should still be stratifiable according to our
premise, given that we have not added any strongly negated literals, and thus up-
wards iteration will find us a least model, or show that the current state is already
a least model.

Once all models are translated to states, take all states from all models and combine
them into one automaton by taking all coinciding states across the trees, and for
every state collect all incoming and outgoing state transitions from the different
trees based on the timings marked down in step 2 above. When selecting coinciding
trees we should be selecting based on the contents of the state but ignore the bf-
EVALPSN start and finish functional literals. This is both to try and limit the
number of states in the resultant automaton and to make sure that we do not end
up with two states that are functionally equivalent but differ in what kind of a route
the system has taken to reach the state. While the routing is an important feature,
it is already contained in the state transitions and thus is not needed in the states
themselves.

Once the states are combined and the state transitions are marked down, we should
have a formal automaton described by the set of states, with the state transitions
describing the transition function, the localised start and finish functional literals
forming the alphabet of the automaton, and the zero state S∅ being both the start
state and the only accept state.

4.3 Analysing the Algorithm

The outline for the algorithm for translating a bf-EVALPSN program into an au-
tomaton was given in the previous section. The premise of the algorithm was said
to be a stratifiable bf-EVALPSN program and this premise certainly needs to be
fulfilled for the algorithm to be at all usable, given the requirement of upwards it-
eration of the program. A further requirement that was hinted at but not outright
mentioned is the forbiddance of complex use of the time parameter in annotated

4.3. Analysing the Algorithm 52

atoms of the program P . To give an example, the following clause

∃t∀t′ > t : A(t
′
) : [(1, 0), α]← B(t) : [(1, 0), α] (4.4)

cannot really be unified with the states generated from the algorithm. The state
division works based on bf-relations, which do not contain knowledge of the length
of a time periods. The clause 4.4 seems to suggest a bf-relation connection between
A and B where B at least starts before A starts. But where the temporal relation of
the two may be expressible using bf-literals, there is no way to express the knowledge
that A should become true on the next time point after B. Effectively this sort of
explicit use of the time parameter may force the system into new states that the
algorithm cannot divine.

Furthermore, it is possible that during the run of the algorithm more bf-relations
are uncovered. Take for instance the following program:

R(Pr1, P r2, t) : [(1, 11), α]←
R(Pr1, P r3, t) : [(1, 11), α]←
R(Pr3, P r4, t) : [(0, 12), α]← R(Pr2, P r3, t) : [(7, 5), α]

R(Pr3, P r4, t) : [(1, 11), α]← R(Pr2, P r3, t) : [(6, 6), α]

R(Pr3, P r4, t) : [(1, 11), α]← R(Pr2, P r3, t) : [(5, 7), α]

(4.5)

This program describes system where first a process Pr1 starts, followed immediately
by Pr2 and Pr3. The end times of these two are not specifically defined (a classic
asynchronous parallel process) and can thus their bf-relation can be either f-included
before, paraconsistent before-after, or f-included after. Now the program states that
if process Pr2 finishes at the same time or before Pr3, then a fourth process Pr4

starts immediately as Pr3 finishes. If, however, Pr2 finishes after Pr3, then Pr4

starts disjointly after Pr3.

In this program our initial model can give us no information on the relation between
Pr4 and any other process. It might even be argued on that basis that Pr4 is com-
pletely disjoint from the rest of the program although this is obviously not the case.
Only through the application of the algorithm will we find the two different possible
bf-relations between Pr3 and Pr4, which also incidentally opens up three possible
relations between Pr2 and Pr4 (disjoint before, immediate before and included be-
fore). This obviously means that after using the algorithm we end up with new

4.3. Analysing the Algorithm 53

states that have not been added to the ledger of states yet as well as new indefinite
bf-relations that have not yet been split into definite alternate models. Through
this it is clear that the outlined algorithm should actually be considered rather a
part of the upwards iteration of the program P instead of a separate algorithm that
is done in addition to it.

The upwards iteration of a bf-EVALPSN program could be described as a two step
process where first a given model is upwards iterated using TP until a least model
is found, then if needed the model is split into (hopefully) definite models from the
earliest known indefinite bf-relation and the process is began anew from each definite
model thus created.

It becomes quite clear that in a general case the algorithm is not in any way tractable
and can cause us to recurse into a tree of nearly infinite splitting models, the number
of which could be cubic to the size of the input ruleset. Yet this sort of input
would only happen in the case where all of the processes can start and end at
nearly any time and with little or no regard to each other. This sort of a system
would essentially be a chaotic random system and the correct tool to describe such
a system is something completely other than logic programming. Looking at the
table of deduction rules given in appendix A, most of the indeterminate rules only
define a set of 3 to 5 possible definite bf-relations and a large majority of the rules
give definite relations. Thus it is clear that most of our programs should still be
relatively easy to translate with the algorithm.

54

5. APPLYING THE SEMANTICS

In the previous chapter we created an algorithm for creating a perfect model, or more
accurately models in the form of an automata, from a given bf-EVALPSN program
P . In this chapter the algorithm will be used to model a four-way traffic intersection.
We aim to show that the algorithm works and generates a readable, reasonable
automaton from the program that can be used to easily verify the system’s veracity
and the completeness of the process control.

A traffic intersection is chosen as an example due to its general simplicity and ease
of understanding without any deep context knowledge.

5.1 Four-Way Traffic Intersection

Let us imagine a four-way traffic intersection of two roads going North-South and
East-West. Let the road towards north and south be five lanes, west be three lanes,
and east be just two lanes wide. Inbound from the north are three lanes with the
eastern lane used solely for turning east, the middle lane a forwards heading one and
the western lane both for heading south and west. Inbound from the west are two
lanes, the northern one turning north while the southern lane allows both driving
forwards due east and turning due south. From the south there are three inbound
lanes, one for turning right towards east and heading north, one lane only heading
north, and one turning due west. Finally from the east there is only one inbound
lane heading to all directions. The lanes left unmentioned are outgoing lanes with
differing inbound lanes using them. These relationships will be covered later.

As can be seen from the figure 5.1, the intersection is quite complicated. With
nine incoming lanes, six outgoing lanes and 14 different headings the intersection
becomes hard to control by any finer methods than a strict round robin of entry-exit
directions with extra turns for crosswise turning traffic. This is the usual way an
intersection such as this is organised with North-South and East-West directions
taking turns in using the intersection while in between crosswise traffic, for example
coming from south and turning west, is given a turn.

5.1. Four-Way Traffic Intersection 55

Figure 5.1 Four-way intersection

Four-way traffic signal intersections have been the topic of extensive research due
to their vital importance in urban traffic as well as their heavy effect on urban
congestion and delay. Many alternative control systems have been put forth. Our
attempt here is to firstly model the intersection. Second to that comes the aim of
designing a new control logic for the traffic flow.

5.1.1 bf-EVALPSN Traffic Rules

We begin by modeling the basics of the intersection. First thing is to assign an
atom to each lane. The lanes shall be assigned names by their direction from the
centre of the intersection and a running index counted from the middle of the road.
Additionally lanes are named differently with inbound or entering lanes denoted by
E and outbound or exit lanes denoted by X.

Thus the inbound lanes are

1. ES1, the west heading southern inbound lane,
2. ES2, the north heading southern inbound lane,
3. ES3, the north and east heading southern inbound lane,
4. EE, the south, west and north heading eastern inbound lane,
5. EN1, the east heading northern inbound lane,
6. EN2, the south heading northern inbound lane,
7. EN3, the south and west heading northern inbound lane,
8. EW1, the north heading western inbound lane, and
9. EW2, the east and south heading western inbound lane,

5.1. Four-Way Traffic Intersection 56

and the outbound lanes are similarly called

1. XS1, the east-side southern outbound lane,
2. XS2, the west-side southern outbound lane,
3. XE, the eastern outbound lane,
4. XN1, the west-side northern outbound lane,
5. XN2, the east-side northern outbound lane, and
6. XW , the south-side western outbound lane.

We shall define a literal active(x, t) which, when true, means that at a time t a
particular inbound or outbound lane x is being used and thus has active traffic flow.
The literal is defined for the entry lanes E using the bf-EVALPSN start and finish

literals as follows:

∀e ∈ E, n : active(x, t) : [(n, 0), α]← start(x, t) : [(n, 0), α]∧finish(x, t) : [(0, n), α]
(5.1)

For outbound lanes we leave the active status unbound from the start and finish

literals, as we will not be defining bf-relations for the exit lanes. Instead their active
status will be defined by dependencies from inbound lanes using them.

5.1.2 Basic Lane Operation

For each lane we define a basic operational structure through dependencies. Out-
going lanes are active only when there is an incoming lane using that particular
outgoing lane. Thus these lanes depend on incoming lanes.

Incoming lanes on the other hand are tied together so that lanes that move traffic in
the same direction must be active at the same time. For example if there is one lane
moving traffic south to north it stands to reason that at the same time the other
south to north heading lane should be active.

Now beginning with a simple example we take the ES2 entry lane coming from the
south, heading due north. This lane routes to the west-side northern exit lane XN1.
Thus our first dependency statement is

active(XN1, t) : [(1, 0), α]← active(ES2, t) : [(1, 0), α]. (5.2)

This is read as the outbound lane being used if the inbound lane is used. Here we

5.1. Four-Way Traffic Intersection 57

Table 5.1 Basic lane operation rules

Lane Rules
ES1, active(XW2, t) : [(1, 0), α]← active(ES1, t) : [(1, 0), α]
South to West
ES2, active(XN1, t) : [(1, 0), α]← active(ES2, t) : [(1, 0), α]
South to North
ES3, active(XN2, t) : [(1, 0), α]← active(ES3, t) : [(1, 0), α]
South to North and East active(XE, t) : [(1, 0), α]← active(ES3, t) : [(1, 0), α]
EE, active(XS1, t) : [(1, 0), α]← active(EE, t) : [(1, 0), α]
East to All active(XW1, t) : [(1, 0), α]← active(EE, t) : [(1, 0), α]

active(XN2, t) : [(1, 0), α]← active(EE, t) : [(1, 0), α]
EN1, active(XE, t) : [(1, 0), α]← active(EN1, t) : [(1, 0), α]
North to East
EN2 active(XS1, t) : [(1, 0), α]← active(EN2, t) : [(1, 0), α]
North to South
EN3 active(XS2, t) : [(1, 0), α]← active(EN3, t) : [(1, 0), α]
North to South and West active(XW2, t) : [(1, 0), α]← active(EN3, t) : [(1, 0), α]
EW1, active(XN1, t) : [(1, 0), α]← active(EW1, t) : [(1, 0), α]
West to North
EW2, active(XE, t) : [(1, 0), α]← active(EW2, t) : [(1, 0), α]
West to East and South active(XS2, t) : [(1, 0), α]← active(EW2, t) : [(1, 0), α]

are

Additionally, this mid-southern entry lane is must be bound together with the east-
side southern entry lane. This particular lane heads towards north and east. Since
both of these lanes head north they must run at the same time as we decided above.
This relation will not, however, be coded into our basic lane operation rules but will
instead be codified using bf-relations later.

With these basic rules defined we look into forming some forbiddances. Lanes that
clearly cross paths should not be run at the same time. There are exceptions to
this, for instance in this particular intersection we might allow the east entry lane
to run at the same time with the western entry lanes, with cars simply waiting for
their turn to turn crosswise over the intersection.

These crossing points are of vital importance in determining which lanes are haz-
ardous to each other.

We shall write out the crossing points into a table for readability in table 5.2. In
the table we mark with a light grey colour those lanes that despite crossing each
other do not pose a threat to traffic safety. These mainly include lanes that merely
converge from different directions to the same exit lane. These will definitely cause

5.1. Four-Way Traffic Intersection 58

Figure 5.2 Crossing points of the intersection

Table 5.2 Crossing points table

EE EN1 EN2 EN3 EW1 EW2 ES1 ES2 ES3
EE X X X X X X X X

EN1 X X X X X
EN2 X X X X
EN3 X X X X
EW1 X X X X X X
EW2 X X X X X X X
ES1 X X X X X
ES2 X X X X
ES3 X X X

some congestion on the exit lane but the convergence itself is not hazardous. We
readily see that the only eastern entry lane crosses with every single other lane in
the intersection. This is a clear warning sign of congestion for that lane.

With this table we are ready to write out our forbiddance rules. We will only forbid
outright crossing of lanes now but omit the eastern entry lane at first due to need
of special handling.

The eastern entry lane is problematic as a naïve set of forbiddance rules would forbid
the lane from ever running with any other lane. This is definitely a possible choice
for the intersection to be built upon and would then keep the eastern lane usage
mostly congestion free and most importantly safe under all circumstances. However,
this would come at a cost to the throughput of other lanes in the intersection. Here
we choose to accept some risk and congestion on the eastern lane and allow the lane
to run alongside some other lane that it crosses with in a less dangerous fashion.

5.1. Four-Way Traffic Intersection 59

Table 5.3 Lane operation forbiddance rules

Lane Forbiddance Rules
EN1 active(EW1, t) : [(0, 1), β]← active(EN1, t) : [(1, 0), α]

active(EE, t) : [(0, 1), β]← active(EN1, t) : [(1, 0), α]
active(ES2, t) : [(0, 1), β]← active(EN1, t) : [(1, 0), α]
active(ES3, t) : [(0, 1), β]← active(EN1, t) : [(1, 0), α]

EN2 active(EW1, t) : [(0, 1), β]← active(EN2, t) : [(1, 0), α]
active(EW2, t) : [(0, 1), β]← active(EN2, t) : [(1, 0), α]
active(EE, t) : [(0, 1), β]← active(EN2, t) : [(1, 0), α]
active(ES1, t) : [(0, 1), β]← active(EN2, t) : [(1, 0), α]

EN3 active(EW1, t) : [(0, 1), β]← active(EN3, t) : [(1, 0), α]
active(EW2, t) : [(0, 1), β]← active(EN3, t) : [(1, 0), α]
active(EE, t) : [(0, 1), β]← active(EN3, t) : [(1, 0), α]
active(ES1, t) : [(0, 1), β]← active(EN3, t) : [(1, 0), α]

EW1 active(EN1, t) : [(0, 1), β]← active(EW1, t) : [(1, 0), α]
active(EN2, t) : [(0, 1), β]← active(EW1, t) : [(1, 0), α]
active(EN3, t) : [(0, 1), β]← active(EW1, t) : [(1, 0), α]
active(ES1, t) : [(0, 1), β]← active(EW1, t) : [(1, 0), α]

EW2 active(EN2, t) : [(0, 1), β]← active(EW2, t) : [(1, 0), α]
active(EN3, t) : [(0, 1), β]← active(EW2, t) : [(1, 0), α]
active(ES1, t) : [(0, 1), β]← active(EW2, t) : [(1, 0), α]
active(ES2, t) : [(0, 1), β]← active(EW2, t) : [(1, 0), α]
active(ES3, t) : [(0, 1), β]← active(EW2, t) : [(1, 0), α]

ES1 active(EN2, t) : [(0, 1), β]← active(ES1, t) : [(1, 0), α]
active(EN3, t) : [(0, 1), β]← active(ES1, t) : [(1, 0), α]
active(EE, t) : [(0, 1), β]← active(ES1, t) : [(1, 0), α]
active(EW1, t) : [(0, 1), β]← active(ES1, t) : [(1, 0), α]
active(EW2, t) : [(0, 1), β]← active(ES1, t) : [(1, 0), α]

ES2 active(EN1, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]
active(EE, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]
active(EW2, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]

ES3 active(EN1, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]
active(EE, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]
active(EW2, t) : [(0, 1), β]← active(ES2, t) : [(1, 0), α]

EE active(EN1, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]
active(EN2, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]
active(EN3, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]
active(ES1, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]
active(ES2, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]
active(ES3, t) : [(0, 1), β]← active(EE, t) : [(1, 0), α]

5.1. Four-Way Traffic Intersection 60

This is the more commonly adopted approach with the completely crossing entry
lane usually sharing the intersection with the opposite side entry lanes. This forces
cars to wait in the intersection for crossing traffic, hindering the flow but in exchange
doing away with a the east-reserved turn from the intersection usage.

5.1.3 Lane Operation Order

We move into the temporal order of lane operation. Before we’ve already set down
rules to ensure that certain lanes cannot be used at the same time and that others
will always run with each other. The next thing to consider is the order the lanes
take in operating.

Given that our system should not, initially, make any hard choices on when eg.
crosswise turning lanes should operate and instead leave that decision to be made
using the forbiddance rules, it makes sense to define only that the bf-relation of
turning lanes to their neighbouring lanes should be between paraconsistent before-
after (lanes are active at the same time) and immediate after (turning lanes operate
immediately after their neighbours). Thus we set

R(ES2, ES1, T) : [(6, 1), α]←
R(EN2, EN1, T) : [(6, 1), α]←
R(EW2, EW1, T) : [(6, 1), α]←

(5.3)

where T is again the ”terminal” time of the system, meaning that these bf-relations
will eventually be fulfilled. Additionally we set the conjoined lanes’ bf-relations:

R(ES2, ES3, T) : [(6, 6), α]←
R(EN2, EN3, T) : [(6, 6), α]←

(5.4)

With regards to the other lanes we do not want to decide what order they will
operate in. The program should allow all operation orders to be possible and only
set some constraints on how the lanes operate with regards to each other. In our
case we want to set the constraint that inbound directions operate immediately after
each other or at the same time. To show this constraint in bf-EVALPSN we shall
define two sets, one of inbound direction’s activity finishing lanes Gf and one of
their activity starting lanes Gs.

5.1. Four-Way Traffic Intersection 61

Gf := {ES1, EE, EN1, EW1} (5.5)

Gs := {ES2, EE, EN2, EW2} (5.6)

These sets are chosen based on the order of individual lanes operating order within
the inbound direction. For example, ES2 is known to start (as is ES3) at the very
least at the same time or earlier than ES1 while the latter is known to finish as the
last of three lanes coming from the south.

Now for each tuple (Gf , Gs) we want to set that if the bf-relation between the two
lanes is not already known to be disjointly or immediately after, or paraconsistent
before-after (the starting lane started and finished earlier or starts and finishes at
the same time as the finishing lane) then their bf-relation should be either immediate
or disjoint before.

∀(EX , EY) ∈(Gf , Gs) : R(EX , EY , T) : [(0, 11), α]←
¬∗R(EX , EY , T) : [(6, 6), α] ∧ ¬∗R(EX , EY , T) : [(11, 0), α]

(5.7)

With these rules we have now successfully joined each of our lane literals to one
another through some bf-clause or another. The conjoining bf-clauses in (5.4) bind
the ”secondary” (from the viewpoint of our rules, not from the intersections’) lanes
together with the primary lane of the inbound direction, while the turning lanes are
bound to the ”primary” lanes with the bf-clauses in (5.3), and finally the primary
lanes are bound to one-another using the bf-relations from (5.7), possibly with a
turning lane acting as an intermediary.

We are finally only missing a hint to start our bf-relation splitting. For this we use
an existentially quantified rule we impose on the system. This rule acts to give the
start of our program some orientation by defining some singular inbound direction’s
activity starting lane that is, for all other activity starting lanes, either at most
f-included paraconsistent before-after them:

∃(EX ∈ Gs)∀(EY ∈ Gs) : (R(EX , EY , T) : [(0, 5), α]) (5.8)

Now as Gs only contains four lanes, we have a much simpler start phase to our model

5.1. Four-Way Traffic Intersection 62

Table 5.4 Initial events of the system

Initial events
start(ES2, t1), start(ES3, t1)

start(EE, t1)
start(EN2, t1), start(EN3, t1)

start(EW2, t1)

splitting. Before this rule it might have seemed like we would need to try every single
inbound lane as a potential ”starter” in our initial split. Now can begin building the
automaton that models our four-way traffic intersection with a tractable amount of
starting models.

5.1.4 Building the Automaton

As we now begin to build our automaton according to the section 4.2 our first
step is to search for a least model using the immediate consequence operator TP .
Fortunately or unfortunately, this is very simple as the only rules we can gain come
from the conjoined lanes and their turning lanes:

R(ES3, ES1, T) : [(6, 1), α]←
R(EN3, EN1, T) : [(6, 1), α]←

(5.9)

All of our information is, essentially, behind indefinite bf-relations and as such we
need to begin splitting the indefinite model into more definite models. To do this we
begin with the hint given to us in (5.8). It gives us four alternative initial models,
each choosing one inbound lane to be the earliest lane in the system to active. This
then gives us the means to take the first step in the splitting.

Now for each starting lane it is possible that some other lane or lanes start at the
same time. We will informally walk through these next.

For the southern entry lane it is possible that the west-turning southern lane, or
the northern lanes (not including the turning lane), not both, start together with
it. The western and eastern lanes are forbidden from being active according to the
forbiddance rules in Table 5.3. The reverse works for the northern entry lane.

The eastern lane can start together with the western entry lane. The western entry
lane can start together with either the eastern lane or the north turning western lane

5.1. Four-Way Traffic Intersection 63

Table 5.5 Expanded initial events of the system

Initial events
start(ES2, t1), start(ES3, t1)

start(ES1, t1), start(ES2, t1), start(ES3, t1)
start(ES2, t1), start(ES3, t1), start(EN2, t1), start(EN3, t1)

start(EE, t1)
start(EE, t1), start(EW2, t1)
start(EN2, t1), start(EN3, t1)

start(EN1, t1), start(EN2, t1), start(EN3, t1)
start(EW2, t1)

start(EW1), start(EW2, t1)

but not both. These further expands our possible of initial events in the system.

Now we need to begin finishing the activity of our initially active lanes. The northern
and southern inbound lanes, if started at the same time, likewise need to finish at
the same time.

If a turning lane started with the northern or southern inbound lanes, those may
finish before the neighbouring lane finishes, as it finishes or after it finishes. If the
turning lane did not start at the same time, it may still start while the neighbouring
lane is running (except for the forbiddances outlined above) and then may similarly
finish before, at the same time, or after the neighbouring lane does.

The eastern and western lanes if started at the same time may only finish at the same
time, both being inbound direction starting lanes that were bound to be either active
at the exact same time, or immediately or disjointly before / after one-another. The
western lane also has the turning lane that may start with it, or until immediately
as it finishes. The ending time of that is similarly quite free with possibilities being
before the western lane finishes, as it finishes or after it finishes.

Finally the northern and southern turning lanes, if they have not started yet, may
start before the neighbouring lanes finish or as they finish. Thus our next first
veritable set of actual definite bf-relations divined from the system become as shown
in Tables 5.6, 5.7, and 5.8 in abbreviated format.

With this data we can proceed to sketch out the first states of our process. For
these states we shall use the previously defined active literal to notate our states.
We note that from the tables’ data that a few basic state types crop up in the
different possible paths that the system may take. These are:

1. A forward heading lane alone with a conjoined lane if one exists,

5.1. Four-Way Traffic Intersection 64

Table 5.6 South starting, definite bf-relations

Events Before-After Relations of Interest
t1 : st(ES2), st(ES3) R(ES2, ES1) : (1, 11)

t2 : fi(ES2), f i(ES3), st(ES1) EX ∈ Gs : R(ES2, EX) : (0, 12)
t3 : fi(ES1)

t1 : st(ES2), st(ES3) R(ES2, ES1) : (2, 10)
t2 : st(ES1) EX ∈ Gs : R(ES2, EX) : (0, 12)

t3 : fi(ES2), f i(ES3)
t4 : fi(ES1)

t1 : st(ES2), st(ES3) R(ES2, ES1) : (3, 9)
t2 : st(ES1) EX ∈ Gs : R(ES2, EX) : (0, 11)

t3 : fi(ES2), f i(ES3), f i(ES1)
t1 : st(ES2), st(ES3) R(ES2, ES1) : (4, 8)

t2 : st(ES1) EX ∈ Gs : R(ES2, EX) : (0, 11)
t3 : fi(ES1)

t4 : fi(ES2), f i(ES3)
t1 : st(ES1), st(ES2), st(ES3) R(ES2, ES1) : (5, 7)

t2 : fi(ES1), f i(ES2) EX ∈ Gs : R(ES2, EX) : (0, 12)
t3 : fi(ES3)

t1 : st(ES1), st(ES2), st(ES3) R(ES2, ES1) : (6, 6)
t2 : fi(ES1), f i(ES2), f i(ES3) EX ∈ Gs : R(ES2, EX) : (0, 11)
t1 : st(ES1), st(ES2), st(ES3) R(ES2, ES1) : (7, 5)

t2 : fi(ES3) EX ∈ Gs : R(ES2, EX) : (0, 11)
t3 : fi(ES1), f i(ES2),
t1 : st(ES2), st(ES3), R(ES2, ES1) : (1, 11)
st(EN2), st(EN3) R(ES2, EN2) : (6, 6)

t2 : fi(ES2), f i(ES3), f i(EN2), R(ES1, EN1) : (6, 6)
fi(EN3), st(ES1), st(EN1) EX ∈ Gs − {EN2} : R(ES2, EX) : (0, 12)
t3 : st(ES1), f i(EN1) EX ∈ Gs − {ES2} : R(EN2, EX) : (0, 12)

2. A forward heading lane with a neighbouring turning lane,
3. A forward heading lane with the opposite forward heading lane(s),
4. A turning lane alone,
5. A turning lane with the opposite turning lane,

As an example the second item in table 5.6 can be divided into three states:
Sactive(ES2),active(ES3) which is a forward heading lane with a conjoined lane, then
Sactive(ES1),active(ES2),active(ES3) which is a forward heading lane with a conjoined lane
and neighbouring turning lane, then finally Sactive(ES1) which is a turning lane alone.

If we regard our current knowledge of the system as ”final”, then we may write
out the general transitions allowed between the aforementioned general states under
some circumstances. Of these general states, number 1 can transition to number 2
or 4, or may be a ”final” state. Number 2 may transition into number 1 or 4, or

5.1. Four-Way Traffic Intersection 65

Table 5.7 North starting, definite bf-relations

Events Before-After Relations of Interest
t1 : st(EN2), st(EN3) R(EN2, EN1) : (1, 11)

t2 : fi(EN2), f i(EN3), st(EN1) EX ∈ Gs : R(EN2, EX) : (0, 12)
t3 : fi(EN1)

t1 : st(EN2), st(EN3) R(EN2, EN1) : (2, 10)
t2 : st(EN1) EX ∈ Gs : R(EN2, EX) : (0, 12)

t3 : fi(EN2), f i(EN3)
t4 : fi(EN1)

t1 : st(EN2), st(EN3) R(EN2, EN1) : (3, 9)
t2 : st(EN1) EX ∈ Gs : R(EN2, EX) : (0, 11)

t3 : fi(EN1), f i(EN2), f i(EN3)
t1 : st(EN2), st(EN3) R(EN2, EN1) : (4, 8)

t2 : st(EN1) EX ∈ Gs : R(EN2, EX) : (0, 11)
t3 : fi(EN1)

t4 : fi(EN2), f i(EN3)
t1 : st(EN1), st(EN2), st(EN3) R(EN2, EN1) : (5, 7)

t2 : fi(EN2), f i(EN3) EX ∈ Gs : R(EN2, EX) : (0, 12)
t3 : fi(EN1)

t1 : st(EN1), st(EN2), st(EN3) R(EN2, EN1) : (6, 6)
t2 : fi(EN1), f i(EN2), f i(EN3) EX ∈ Gs : R(EN2, EX) : (0, 11)
t1 : st(EN1), st(EN2), st(EN3) R(EN2, EN1) : (7, 5)

t2 : fi(EN1) EX ∈ Gs : R(EN2, EX) : (0, 11)
t3 : fi(EN2), f i(EN3)

be may be a ”final” state. Number 3 may only transition into number 5, or also
number 4 in a sense (east-west combined traffic transitions to only western turning
lane). Number 4 is only ever a ”final” state, as is number 5.

We shall next outline the different types of state transitions the system holds. Each
type of state transition is given a natural language explanation of what the transition
corresponds with in the intersection. In the following listing F shall stand for the
currently understood ”final” state of the system.:

1→ 2 : The forward heading traffic is joined by the neighbouring turning lane. The
turning lane must not have ran already.

1→ 4 : The forward heading traffic ceases in favour of the neighbouring turning lane.
The turning lane must not have ran already.

1→ F : The forward heading traffic ceases. The turning lane must have already ran,
and thus the system reaches a final position.

2→ 1 : The turning lane traffic ceases, while forward heading traffic keeps going. The
turning lane has thus ran.

2→ 4 : The forward heading traffic ceases, while turning traffic keeps going. After the

5.1. Four-Way Traffic Intersection 66

Table 5.8 East, West starting, definite bf-relations

Events Before-After Relations of Interest
t1 : st(EE) EX ∈ Gs : R(EE, EX) : (0, 11)
t2 : fi(EE)

t1 : st(EE), st(EW2) R(EE, EW2) : (6, 6), R(EW2, EW1) : (1, 11)
t2 : fi(EE), f i(EW2), st(EW1) EX ∈ Gs : R(EE, EX) : (0, 12)

t3 : fi(EW1) EX ∈ Gs : R(EW2, EX) : (0, 12)
t1 : st(EW2) R(EW2, EW1) : (1, 11)

t2 : fi(EW2), st(EW1) EX ∈ Gs : R(EW2, EX) : (0, 12)
t3 : fi(EW1)
t1 : st(EW2) R(EW2, EW1) : (2, 10)
t2 : st(EW1) EX ∈ Gs : R(EW2, EX) : (0, 12)
t3 : fi(EW2)
t4 : fi(EW1)
t1 : st(EW2) R(EW2, EW1) : (3, 9)
t2 : st(EW1) EX ∈ Gs : R(EW2, EX) : (0, 11)

t3 : fi(EW1), f i(EW2)
t1 : st(EW2) R(EW2, EW1) : (4, 8)
t2 : st(EW1) EX ∈ Gs : R(EW2, EX) : (0, 11)
t3 : fi(EW1)
t4 : fi(EW2)

t1 : st(EW1), st(EW2) R(EW2, EW1) : (5, 7)
t2 : fi(EW2) EX ∈ Gs : R(EW2, EX) : (0, 12)
t3 : fi(EW1)

t1 : st(EW1), st(EW2) R(EW2, EW1) : (6, 6)
t2 : fi(EW1), f i(EW2) EX ∈ Gs : R(EW2, EX) : (0, 11)
t1 : st(EW1), st(EW2) R(EW2, EW1) : (7, 5)

t2 : fi(EW1) EX ∈ Gs : R(EW2, EX) : (0, 12)
t3 : fi(EW2)

turning lane ceases the system will reach a final position.
2→ F : Both the forward heading and turning traffic ceases. The system has reached

a final position.
3→ 5 : The forward heading traffic on both sides ceases, giving way to turning lanes

on both sides. If only one side has a turning lane, this transition is effectively
a 3→ 4 transition.

4→ F : The turning lane traffic ceases. The forward heading lane must have already
ran, and thus the system reaches a final position.

5→ F : The turning lane traffic on both sides ceases. The forward heading lanes on
both sides must have already ran, and thus the system reaches a final position.

From this we can quite easily write out a state graph for the possible states of the
system thus far. This graph is shown in 5.3 with the state transition types shown.

5.1. Four-Way Traffic Intersection 67

On the graph the diamonds show that the joined state is one of the ”final” states
that we have so far

Figure 5.3 State graph of the four-way intersection

Although one would think that there is still a lot of work to do in decrypting the
bf-EVALPSN program into all the possible states of the automaton, it turns out we
have actually already calculated all the states. A critical look at the program shows
that although the order of the states does have dependencies in the states that the
program has already encountered, the actual contents of the states do not change.
Effectively the ”final” states mentioned above can be understood as allowing a re-
transition from the zero state S∅ to such a state for which none of the inbound lanes
active in that state have yet ran during the course of the program. Or if we wish to
rid of the requirement to run all lanes ones during one ”round” of the program, we
could rewrite some of the bf-EVALPSN clauses in the program to truly finish once
a ”final” state is reached. In this case it would be useful to also bind the choice of
the first state transition (from the initial state) to some sensory input with eg. the
aim of choosing the most congested lane.

With the state graph and the tables of state data it is now possible to do upwards
iteration to resolve various questions regarding the various states of the program. As

5.1. Four-Way Traffic Intersection 68

an example, it would be possible to resolve which exit lanes are used in each of the
different states using the previously defined active relation of exit lanes to certain
input lanes. Or if we defined a new incoming functional literal to denote which
inbound lanes use a given outbound lane, we could use the states to quickly and
easily determine for each state if some outbound lane is being used by dangerously
many inbound lanes at the same time.

We leave the actual upwards iteration of individual states out of this thesis as the
work is mainly mechanical applying of the transitive bf-relation deduction rules,
program clauses and basic transitive bf-relation rules onto the various states. As
earlier mentioned, upwards iteration to create a least model is not a new or unsolved
problem. Rather the focus is and has been to take bf-relations and map the infor-
mation contained therein into a more readable format, formal automaton states to
be exact.

69

6. CONCLUSIONS

The aim of this thesis has been to show bf-EVALPSN to be a powerful annotated
logic program for use in process control modelling. The system has previously been
used to do active process control and verification successfully but the modelling of
these control systems has been outside the scope of the program.

In the previous chapters we have shown the theoretic frame of reference within
which bf-EVALPSN works, outlining the focal results of using annotated logics to
do logic programming. Further the complete definition of bf-EVALPSN with its
rather complex and vast vector annotation system has been shown in a level of
detail that has not been seen in likely any published paper on the system. This has
been thanks to direct conversations with professor Kazumi Nakamatsu, the creator
of bf-EVALPSN.

Arguably bf-EVALPSN has been shown here to be a capable, albeit somewhat heavy
or even unwieldy tool for logic programming model building. At the same time some
problems in the system have come up. One problem with model building using
bf-EVALPSN was the question of annotation representation. With online process
verification using bf-EVALPSN one question has largely gone unasked. That is, how
to represent the value of A when the following two bf-clauses exist in the system:

A : [(1, 0), α]←
A : [(0, 1), β]⇐

(6.1)

That is A is true but is obligated to be false. The literal representation format would
suggest the interpretation of A in this case to be

I(A) = [(1, 1), ∗1] (6.2)

but this naïve combination of the two values would cause all sorts of weird effects.

6. Conclusions 70

For instance now the query

← A : [(0, 1), α] (6.3)

would be answered in the affirmative. The correct answer for the complete rep-
resentation of annotations in bf-EVALPSN was the 8-tuple representation shown
in (3.2). Naturally as annotated logic programming only deals with well-formed
annotations, these complete annotations are not needed at all normally. However,
when modelling is the aim the actual representation of data as annotations becomes
very important. At the very least if the theoretical basis of the system is to be
outlined then it is needed. This information has likely not been published in any
article on bf-EVALPSN before and as such finding the information required direct
communications with the author.

Another problem with the system is of course the problem that this thesis took to
resolve. That is the question of mapping integer time points into some more easily
readable format. This has not been a relevant question posed to bf-EVALPSN until
now. As such the creation of even a passable imitation of an algorithm for translating
the bf-relations into distinct states needed to be done completely from scratch. The
result is definitely not pretty and the algorithm itself is one only in the broadest
of definitions. A proper mathematical algorithm would require much more rigorous
research into the basis of bf-EVALPSN as well as a proper, formal definition of all
the steps and eg. hints given to the algorithm by the program.

Nevertheless, as the author of this algorithm I believe it to be a good first step to
a formal definition of bf-EVALPSN as a modellable logic program. The intuitionist
logic that builds the algorithm are at least well-founded in the theory of stratifiable
logic programs, perfect model semantics, automata theory, and the transitive bf-
relation deduction rules. Which brings up the next problem point that this thesis
solves in bf-EVALPSN.

The bf-relation inference rules given in section 3.3 are only written from the view-
point of a machine looking at a bf-EVALPSN program as it is running. No deduction
rules for bf-relations have previously been laid out as far as the author knows. Cal-
culating out all the possible transitive deduction rules then given in section 4.1 was
then a relatively arduous task that needed to be done on the road to model building
using bf-EVALPSN.

At the end of all this, the system for deduction and model building in bf-EVALPSN

6. Conclusions 71

created in this thesis is one more tool in the already massive system that is the para-
consistent (or more accurately non-alethic), deontic, temporal, annotated logic pro-
gram named Before-After Extended Vector Annotated Logic Program with Strong
Negation, or bf-EVALPSN for short. The shortcomings of this new tool are many
and the result of no other than the author, yet it would be hasty to reject it alto-
gether on that basis. Rather, this new tool should be welcomed as an opportunity
to work to make bf-EVALPSN into a more robust, rigorously defined logic program.
The program is already a forerunner into the complex world of multi-paradigm logic
programs. Any and all progress made towards the hardening and the expansion of
the program’s capabilities should be met with enthusiasm.

72

BIBLIOGRAPHY

[1] J. M. Abe, S. Akama, and K. Nakamatsu, Introduction to
Annotated Logics: Foundations for Paracomplete and Para-
consistent Reasoning (Intelligent Systems Reference Library).
Springer, 2015. [Online]. Available: https://www.amazon.com/
Introduction-Annotated-Logics-Paracomplete-Paraconsistent/dp/331917911X?
SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=
xm2&camp=2025&creative=165953&creativeASIN=331917911X

[2] N. da Costa, V. Subrahmanian, and C. Vago, “The paraconsistent logic pτ ,”
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 37,
pp. 139–148, 1991.

[3] C. Hewitt, “Planner: A language for proving theorems in robots,” in Interna-
tional Joint Conference on Artificial Intelligence, 1969.

[4] R. Kowalski, “Predicate logic as programming language,” in IFIP Congr., vol. 74,
01 1974, pp. 569–574.

[5] K. Nakamatsu, “Application of paraconsistent annotated logic program evalpsn
to intelligent control/safety verification,” in 2017 6th International Conference
on Reliability, Infocom Technologies and Optimization (Trends and Future Di-
rections) (ICRITO), 09 2017, pp. 113–113.

[6] K. Nakamatsu, J. Abe, and S. Akama, Paraconsistent Annotated Logic Program
EVALPSN and Its Applications. Springer, 06 2015, vol. 94, pp. 39–85.

[7] ——, “Paraconsistent annotated logic program evalpsn and its application to
intelligent control,” in New Approaches in Intelligent Control, 06 2016, vol. 107,
pp. 337–401.

[8] K. Nakamatsu, J. Abe, and A. Suzuki, “Annotated semantics for defeasible
deontic reasoning,” in Rough Sets and Current Trends in Computing, Second
International Conference (RSCTC), 01 2000, pp. 470–478.

https://www.amazon.com/Introduction-Annotated-Logics-Paracomplete-Paraconsistent/dp/331917911X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=331917911X
https://www.amazon.com/Introduction-Annotated-Logics-Paracomplete-Paraconsistent/dp/331917911X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=331917911X
https://www.amazon.com/Introduction-Annotated-Logics-Paracomplete-Paraconsistent/dp/331917911X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=331917911X
https://www.amazon.com/Introduction-Annotated-Logics-Paracomplete-Paraconsistent/dp/331917911X?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=331917911X

73

APPENDIX A. TABLE OF TRANSITIVE BEFORE
AFTER RELATION DEDUCTION RULES

	Introduction
	Logic Programming
	Semantics of logic programs
	Annotated logic programs
	Generalised Horn Program

	bf-EVALPSN
	Interpretation of bf-EVALPSN
	Before-After Relations
	Before / After
	Disjoint Before / After
	Immediate Before / After
	Joint Before / After
	S-included Before / After
	Included Before / After
	F-included Before / After
	Paraconsistent Before-After

	Before-After Inference Rules
	(0,0)-rules
	(0,8)-rules
	(5,5)-rules
	(2,8)-rules
	Transitive Before-After Inference Rules

	Model Building
	Transitive Before-After Deduction Rules
	Disjoint before - db (0,12)
	Immediate before - mb (1,11)
	Joint before - jb (2,10)
	S-included before - sb (3,9)
	Included before - ib (4,8)
	F-included before - fb (5,7)
	Paraconsistent before-after - pba (6,6)
	F-included after - fa (7,5)
	Included after - ia (8,4)
	S-included after - sa (9,3)
	Joint after - ja (10,2)
	Immediate after - ma (11,1)
	Disjoint after - da (12,0)

	Model to Automata States
	Analysing the Algorithm

	Applying the Semantics
	Four-Way Traffic Intersection
	bf-EVALPSN Traffic Rules
	Basic Lane Operation
	Lane Operation Order
	Building the Automaton

	Conclusions
	Bibliography
	APPENDIX A. Table of Transitive Before After Relation Deduction Rules

