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ABSTRACT

Matti Molkkari: Advanced Methods in Detrended Fluctuation Analysis with Applications in Com-
putational Cardiology
Master’s Thesis
Tampere University
Science and Engineering, MSc
March 2019

Fractals are ubiquitous in nature. A defining characteristic of fractality is self-similarity; the
phenomenon looks similar when observed at multiple scales, which implies the existence of a
power law scaling relation. Detrended fluctuation analysis (DFA) is a popular tool for studying
these fractal scaling relations. Power laws become linear relationships in logarithmic scales, and
conventionally these scaling exponents are determined by simple linear regression in approxi-
mately linear regions in doubly logarithmic plots. However, in practice the scaling is hardly ever
exact, and its behavior may often vary at different scales.

This thesis extends the fluctuation analysis by introducing robust tools for determining these
scaling exponents. A method based on the Kalman smoother is utilized for extracting a whole
spectrum of exponents as a function of the scale. The method is parameter-free and resistant
to statistical noise, which distinguishes it from prior efforts for determining such local scale ex-
ponents. Additionally, an optimization scheme is presented to obtain data-adaptive segmentation
of approximately linear regimes. Based on integer linear programming model, the procedure
may readily be customized for various purposes. This versatility is demonstrated by applying
the method to a group of data to find a common segmentation that is particularly well-suited for
machine learning applications.

First, the methods are are employed in exploring the details of the scaling by analyzing simu-
lated data with known scaling properties. These findings provide insight into the interpretation of
earlier results.

Second, the methods are applied to the study of heart rate variability. The beating of the heart
follows fractal-like patterns, and deviations in these complex variations may be indicative of car-
diac diseases. In this context DFA is traditionally performed by extracting two scaling exponents,
for short- and long-range correlations, respectively. This has been criticized as an oversimplifica-
tion, which is corroborated by the results of this thesis. The heart rate exhibits richer fractal-like
variability, which becomes apparent in the full scaling spectra. The additional information provided
by these methods facilitate improved classification of cardiac conditions.

Keywords: Detrended fluctuation analysis, Kalman filter, Kalman smoother, integer linear pro-
gramming, heart rate variability, classification

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Matti Molkkari: Trendit poistavan fluktuaatioanalyysin edistyneet menetelmät ja niiden sovellukset
laskennallisessa kardiologiassa
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen, DI
Maaliskuu 2019

Fraktaaleja esiintyy kaikkialla luonnossa. Fraktaalisuuden ominaispiirre on itsesimilaarisuus,
eli ilmiö näyttää samankaltaiselta, kun sitä tarkastellaan useassa eri skaalassa. Tämä johtaa sii-
hen, että ilmiön skaalautuvuus noudattaa potenssilakia. Tällaisia fraktaalisia skaalausrelaatioita
voidaan tutkia trendit poistavan fluktuaatioanalyysin avulla (Detrended Fluctuation Analysis, DFA).
Logaritminen skaala muuntaa potenssilait lineaarisiksi riippuvuuksiksi, ja tavallisesti skaalauseks-
ponentit määritetään logaritmisista kuvaajista lineaarisen regression avulla. Kuitenkaan skaalau-
tuvuus ei lähes koskaan ole täydellistä, ja se voi myös muuttua eri skaaloilla.

Tämä työ laajentaa fluktuaatioanalyysia esittelemällä paranneltuja menetelmiä näiden skaa-
lauseksponenttien määrittämiseen. Kokonainen spektri skaalauseksponentteja skaalan funktiona
määritetään hyödyntämällä Kalman-suodinta. Tämän menetelmän etuja verrattuna aikaisempiin
tapoihin määrittää paikallisia skaalauseksponentteja ovat sen parametrivapaa esitys ja vakaus
myös kohinaisissa tapauksissa. Lisäksi esitetään lineaariseen kokonaislukuoptimointiin perustuva
menetelmä, jonka avulla skaalautuvuudessa voidaan erottaa alueita, jotka noudattavat likimäärin
potenssilakia. Tämän mallin muokkaaminen eri tarpeisiin on myös suoraviivaista. Mallia sovelle-
taan yhteisen segmentaation etsimiseksi datajoukolle, mikä on tarpeen erityisesti koneoppimisen
menetelmiä varten.

Esitettyjen menetelmien avulla tutkitaan ensin simuloituja prosesseja, joiden teoreettinen skaa-
lautuminen tunnetaan. Menetelmien mahdollistama yksityiskohtainen analyysi selittää aikaisem-
pia havaintoja DFA:n käyttäytymisessä.

Menetelmiä sovelletaan myös sykevälivaihtelun fraktaalianalyysiin. Terveen sydämen sykevä-
leissä on fraktaalisia piirteitä, joita eri sairaudet muokkaavat ja hävittävät. Sykevälivaihtelun frak-
taalisuutta on perinteisesti kuvattu lyhyen- ja pitkän kantaman skaalauseksponenteilla. Tätä kah-
den eksponentin mallia on kritisoitu riittämättömäksi, ja tämän työn tulokset vahvistavat tätä nä-
kökulmaa. Skaalauseksponenttispektri paljastaa, että sykevälivaihtelun fraktaalisuus on kahden
eksponentin mallia monimuotoisempaa. Esitetyillä menetelmillä saatava lisäinformaatio mahdol-
listaa aikaisempaa tarkemman sydänsairauksien luokittelun.

Avainsanat: Trendit poistava fluktuaatioanalyysi, Kalman-suodin, lineaarinen kokonaislukuopti-
mointi, sykevälivaihtelu, luokittelu

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

Fractals are ubiquitous in nature[1] and even the beating of the heart follows fractal-like
patterns [2]. In fact, complex variations in the beat rate are characteristic of a healthy
heart, and deviations in this heart rate variability (HRV) may be indicative of cardiac
diseases [3]. The study of such fractal correlations in time series was pioneered by
Hurst with his research of the yearly discharge of river Nile for the purposes of long-
term storage in reservoirs [4]. Hurst’s rescaled range analysis (R/S analysis), and other
traditional methods, rely on the underlaying assumption that the studied time series is
stationary. However, the vast majority of practical time series exhibit non-stationarities,
whose exact form is often unknown.

Detrended fluctuation analysis (DFA), originally developed for exploring power law cor-
relations in DNA sequences [5], attempts to overcome these difficulties by proposing a
systematic procedure for handling unknown trends in the fluctuation analysis of time se-
ries. By computing the mean fluctuations F (s) around least squares polynomial trends at
multiple scales s, the method characterizes power law scaling relations F (s) ∝ sα by their
scaling exponents α [5, 6]. Since its inception, DFA has been widely employed for deter-
mining fractal scaling properties and long-range correlations in time series from multiple
disciplines, such as physics [7], finance [8], medicine [3] and even music [9]. This thesis
provides an up-to-date review of the method and its extensions.

The scaling exponents are conventionally determined by linear regression on a logarith-
mic scale, which transforms the power laws into linear relationships [6]. In practice the
analysis requires subjective consideration, as the scaling is almost never exact and may
vary across the scales. This thesis proposes methods for the systematic determination of
these scaling exponents without any tunable parameters. This is accomplished by con-
sidering a whole spectrum of scaling exponents α(s) as a function of the scale. These
spectra are obtained by solving a probabilistic state space model by the Kalman smoother
[10, 11]. The prospect of such local scaling exponents has been considered before [12–
15], but the earlier approaches are susceptible to noise or rely on adjustable parame-
ters. Additionally, a versatile optimization framework is presented that may be utilized for
segmenting the fluctuation functions into regions that exhibit approximate fractal scaling.
Other procedures also exist for the detection of such scaling regions by rigorous statis-
tical inference [16, 17]. Here the problem is approached from an optimization viewpoint
that is readily customized for different purposes, such as obtaining consistent features for
machine learning. The methods introduced in this thesis were briefly presented by the
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author at Computing in Cardiology 2018 conference [18].

The majority of the research on the properties of the DFA algorithm itself focuses on
its asymptotic behavior and simple linear fitting [6, 19–21]. Therefore the details of the
algorithm are first studied by the alpha spectra. However, for applications the main focus
will be in studying heart rate variability. While it has been long known that the fractal
scaling of the heart rate is altered in diseases [3], it has not yet been fully incorporated into
clinical practices [22]. As heart-related mortality is increasingly common, it is a desirable
aspiration that these methods could eventually enable earlier detection of potentially life-
threatening heart conditions.

The thesis is structured as follows. In Ch. 2 the theoretic prerequisites for understanding
the material are discussed, along with a review of the DFA algorithm. In Ch. 3 the theory
is applied in constructing novel tools for the robust estimation of the DFA scaling exponent
[18]. In Ch. 4 these methods are applied in studying the properties of DFA and analyzing
the fractal scaling in heart rate variability. The thesis is wrapped up by the conclusions of
Ch. 5.
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2 THEORY

This chapter proceeds by a short introduction to the most important concepts for un-
derstanding fractality in time series. The following sections describe how random walk
theory may be employed for characterizing these fractal correlations, which builds up to
detrended fluctuation analysis and culminates in its thorough review. The final sections of
this chapter describe the theoretical machinery necessary for understanding the methods
presented in this thesis for estimating the scaling exponents of DFA.

2.1 Fractality in time series

The concept of fractals appearing in nature is tangible. Their appreciable beauty is ap-
parent at glance, yet there is hidden elegance in the underlying mathematical machinery.
Time series, on the other hand, are collections of numbers representing the observed
quantities xt ordered by the index t. These are usually measurements as a function of
discrete time intervals; however, this is not a requirement, and such sequences are tradi-
tionally called time series, irrespective of whether the independent variable t corresponds
to actual time. The time series may be considered as a realization of an underlying
stochastic process. [1, 23]

Therefore, fractality in time series may not be immediately obvious. A defining character-
istic of fractals is their self-similarity, and it is the statistical self-similarity that is conserved
in fractal time series when scaled by the relation

x(at) ≃ aHx(t), (2.1)

where H is the Hurst parameter and ≃ denotes equivalence in the statistical sense,
i.e., their probability distributions are equal. Time series exhibiting such fractal scaling
relations were first discovered by Hurst, when he was studying variations in the yearly
discharge of river Nile [4].

An important concept in time series analysis is stationarity. Intuitively, the series is station-
ary if its properties, such as the mean and the variance, remain constant in time. Formally,
strictly stationary time series has the property that the joint distributions of (xt1 , . . . , xtn)
and (xt1+τ , . . . , xtn+τ ) are equal for all ti, τ and n. A less prohibiting condition is weak-
sense stationarity1 (WSS), whose definition stipulates first describing the autocovariance

1Also known as wide-sense stationarity, and by some authors as second order stationarity.
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function C(t, s) of a time series. The general form of the autocovariance function is

C(t, s) = E [(xt − µt) (xs − µs)] , (2.2)

where µt and µs are the mean values of the process at the times t and s, respectively.
The process is WSS if the mean µ is constant and the autocovariance only depends on
the lag τ = t− s. Hence the autocovariance function for stationary processes is

C(τ) = E [(xt − µ) (xt+τ − µ)] (2.3)

for all values of t, which implies that also the variance is constant. [23]

Theoretical models for self-similar time series include fractional Gaussian noise (fGn)
and fractional Brownian motion (fBm) [24]. These processes generalize ordinary Gaus-
sian noise and Brownian motion for correlated Gaussian processes. Fractional Brownian
motion with Hurst parameter 0 < H < 1 may be constructed as the moving average of
ordinary Brownian motion dB(t) weighted by the kernel function (t− s)H−1/2. Formally
this is presented as the fractional integral

BH(t)−BH(0) =
1

Γ
(
H + 1

2

){∫ 0

−∞

[
(t− s)H− 1

2 − (−s)H− 1
2

]
dB(s)

+

∫ t

0
(t− s)H− 1

2 dB(s)

}
. (2.4)

The first integral is required to ascertain that the complete history of the process is taken
into account, and that the origin is not overemphasized. The normalization by the gamma
function ensures that the fractional integration converges appropriately to ordinary re-
peated integration. The fBm has autocovariance function given by

CH(t, s) =
σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
, (2.5)

where σ2 is a constant that may be interpreted as the variance of ordinary Gaussian
noise. [24]

The increments BH(t+ τ)−BH(t) of the fBm, called fractional Gaussian noise, are self-
similar with the parameter H and their variance follows the relation

SH(τ) = E [BH(t+ τ)−BH(t)]2 = σ2|τ |2H , (2.6)

which depends only on the lag τ . [24] This quantity S(τ) describing the expectation value
of the squared increments is also known as the variogram for processes with stationary
increments [21].

These are continuous-time processes, but in practice they must be sampled at discrete
intervals. Therefore, without the loss of generality, the discrete increment process may
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Figure 2.1. Illustration of fractional Gaussian noise and Brownian motion. (a) Examples
of fractional Gaussian noises with various Hurst parameters H and unit variance. The
series are generated by the Davies-Harte method utilizing the same random seed. (b)
Fractional Brownian motions corresponding to the examples of fGn. (c) The same fBm,
except normalized to zero mean and unit variance.

be defined as BH(t)−BH(t− 1), leading to the following autocovariance function

CH(τ) =
σ2

2

(
|τ + 1|2H − 2|τ |2H + |τ − 1|2H

)
. (2.7)

Ordinary uncorrelated Gaussian noise, also known as white noise, is recovered for H =

1/2. The correlations are negative for 0 < H < 1/2, implying antipersistent increments.
Conversely, for persistent increments with 1/2 < H < 1 the correlations are positive,
and the series

∑
τ CH(τ) diverges, which is conventionally associated with long-range

dependence. [21, 24]

Examples of fGn and fBm with different Hurst parameters H are shown in Fig. 2.1.
The tendency for similar values is clearly enhanced as the Hurst parameter is increased
from the uncorrelated threshold of H = 1/2. Likewise the affinity for opposite values is
increased as the parameter is decreased. This can be observed as the super- or subd-
iffusion of the corresponding random walks. Alternatively the diffusion rate may be nor-
malized, in which case persistent walks are characterized by smoother paths, compared
to the jaggedness of antipersistent walks.

Another class of fractional noises considered in this thesis are 1/fβ noises, whose power
spectral densities (PSD) obey the asserted scaling as a function of the frequency f . The
fGn may be shown to exhibit asymptotic scaling in the frequency domain describable by
the exponent β. However, as the fBm is non-stationary process it does not have a unique
well-defined description in this realm. [24, 25]
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2.2 Random walks and fluctuation analysis

The self-similarity of a signal implies that there exists a quantity of interest F (s) that
exhibits power law scaling

F (s) ∝ sα (2.8)

as a function of the scale s, described by the scaling exponent α. Fluctuation analysis
(FA) [26] considers, as the name suggests, fluctuations of the signal from its mean and
their scaling behavior. Intuitive justification for the method may be derived from random
walk theory.

Let us consider a time series xt consisting of normally distributed independent and un-
correlated random numbers with the mean µ and variance σ2:

xt ∼ N (µ, σ2). (2.9)

A random walk may be constructed from the series by interpreting the elements xt as the
increments between consecutive steps of the walk. The mean µ must first be subtracted
to remove the bias caused by it. The random walk time series Yt is then obtained as the
cumulative sum of the increments:

Yt =
t∑

i=1

(xi − µ) . (2.10)

The expectation value of this walk is clearly zero

E [Yt] = E

[
t∑

i=1

(xi − µ)

]
=

t∑
i=1

(E [xi]− µ) =

t∑
i=1

(µ− µ) = 0, (2.11)

as expected due to the symmetry about the mean. However, the expectation value for
the square of the series is non-zero

E
[
Y 2
t

]
= E

⎡⎣( t∑
i=1

(xi − µ)

)2
⎤⎦ = tσ2, (2.12)

which is equal to the variance as the mean has been subtracted2. This yields the well
known result for the root mean square displacement of an uncorrelated random walker√

E
[
Y 2
t

]
∝ t

1
2 , (2.13)

which is a power law scaling relation with α = 1/2. However, if the increments xi − µ

are correlated, then these consecutive steps are more likely to be towards the same
direction, resulting in hastened diffusion of the walker indicated by α > 1/2. Conversely,

2Computing this is more tedious, but utilizing the rule for the sum of two independent Gaussian variables
yields the result by induction.
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the enhanced probability for opposite steps with anticorrelated increments suppresses
the progress of the walker and leads to scaling exponents α < 1/2. This effect can be
observed in Fig. 2.1 where the Hurst parameter H is equal to this exponent α.

In fluctuation analysis the time series is similarly interpreted as the increments of a ran-
dom walk [26]. The analysis proceeds by constructing a fluctuation function F (s), which
corresponds to the root mean square displacement of Eq. (2.13). In this context the
scale s is understood as the number of steps taken by the random walker. The resulting
fluctuation function

F (s) =

√
E
[
(Yt+s − Yt)

2
]

(2.14)

is readily interpreted as the root mean square displacement at the scale s. The expecta-
tion value is usually computed by dividing the time series into non-overlapping windows
of length s, over which the squared differences are averaged [27].

The analysis so far has assumed that the time series is stationary, so that the expectation
value in Eq. (2.14) is independent of t. In practice trends are usually present in the
time series, which may result in spurious detection of long-range correlations. Often the
trends and their characteristic time scales are unknown, further complicating the analysis.
Detrended fluctuation analysis [5] attempts to overcome this problem by detrending the
integrated profile Yt in each window. This detrending is usually performed by computing
a least squares fit of a low order polynomial to the profile, which is then subtracted.

More formally, the detrending procedure within each window w of length s yields the mean
squared fluctuations F 2

s,w defined by

F 2
s,w =

1

s

∑
t∈w

[Yt − fs,w(t)]
2, (2.15)

where fs,w is the trend within that particular window. These squared fluctuations cor-
respond to the variance if the detrended profiles have means equal to zero within the
windows. The zero mean condition is automatically fulfilled by least squares detrending
polynomials. The variance directly characterizes the squared displacement of random
walkers. Therefore the connection to random walks is preserved by the fluctuation func-
tion defined as

F (s) =
√
E
[
F 2
s,w

]
, (2.16)

where the expectation value is obtained by averaging over all the windows for each scale
separately. The purpose of the detrending is to ensure that this expectation value is
independent of the window w, which will be further discussed in Sec. 2.3.2.

At this point a brief digression is in order to discuss the computation of the average
scaling behavior of many samples. A naïve approach would be to simply calculate the
fluctuation function for each sample, as per Eq. (2.16), and then compute the average
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from these. However, the result will be biased with the importance of larger fluctuations
diminished. This is because the expectation value is supposed to be taken from the
squared fluctuations. Taking the square root is the final operation, so that the fluctuations
are expressed in the same units as the original time series. Therefore, the mathemati-
cally correct method is to compute the expectation value in Eq. (2.16) with the squared
fluctuations of Eq. (2.15) from all the samples. The matter is complicated by the implicit
assumption that each sample is drawn from the same process with the same parameters.
In reality there almost always exists individual variability between samples, and samples
consisting of values of larger magnitude would dominate the calculation, as would longer
samples. Consequently some sort of normalization technique may be required when
dealing with practical data.

The final step in the analysis consists of determining the scaling exponent α from the
fluctuation function that has been computed at multiple scales. Power laws of the form
described by Eq. (2.8) may be determined from doubly logarithmic plots of the fluctuation
function versus the scale, as any power law scaling would become linear when observed
on logarithmic scale.

These steps of the algorithm—computation of the fluctuation function, detrending, and in
particular robust determination of the scaling exponent—will be discussed in more detail
in the forthcoming sections of the thesis.

2.3 Detrended fluctuation analysis

Detrended fluctuation analysis was originally developed as a response to criticism citing
non-stationarities as the possible cause for the long-range correlations discovered in DNA
sequences [5]. The traditional DFA formulation [5, 6] is described below, complemented
by simple statistical error measure for the fluctuation function [18].

The algorithm proceeds by constructing the integrated profile Yt, analogous to the random
walk time series of Eq. (2.10), as the cumulative sum

Yt =

t∑
i=1

(xt − ⟨x⟩) t = 1, . . . , N , (2.17)

where ⟨x⟩ denotes the mean of the series. The profile Yt is then divided into Ns contigu-
ous non-overlapping windows at various scales s. For every window size s the local trend
fs,w(t) is determined in each window w by least squares polynomial regression. The
algorithm is conventionally denoted by DFAn, where n is the degree of the detrending
polynomial [6].

The squared fluctuations F 2
s,w, corresponding to the variance, within each window are

given by Eq. (2.15). For notational convenience, let µs and ϵs denote the mean and its
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standard error, respectively, of the squared fluctuations over all windows of size s

µs =
⟨
F 2
s,w

⟩
ϵs =

√
Var[F 2

s,w]

Ns
. (2.18)

The fluctuation function F (s) and its error estimate3 ∆F (s) may then be expressed as

F (s) =
√
µs ∆F (s) ≈ ϵs

2
√
µs

. (2.19)

It should be noted that this error estimate only quantifies the statistical error in determining
the mean from finite sample size, and is disconnected from any possible systematic errors
present in the algorithm. Power laws F (s) ∝ sα are conveniently determined from the
corresponding logarithmic quantities, and these shall be denoted by tildes:

F̃ (s̃) = log10
√
µs ∆F̃ (s̃) ≈ ϵs

µs ln 100
s̃ = log10 s. (2.20)

The DFA algorithm is graphically illustrated in Fig. 2.2.

2.3.1 Fluctuation function

Conventionally the fluctuation function is calculated by utilizing non-overlapping windows
when computing the squared fluctuations. This is problematic particularly for larger win-
dow sizes, as the number of available windows is restricted by the length of the time
series. Allowing the windows to overlap permits statistics with larger sample size, but
introduces new types of errors: the squared fluctuations are not independent from each
other anymore, and the outermost elements of the time series do not contribute equally
to the result.

Another complication arises from the reality that most window sizes do not exactly divide
the length of the time series. Therefore it has become customary to repeat the windowing
procedure from the other end of the record as well, in order not to disregard any data.
However, in doing so correlations are introduced amongst the squared fluctuations. The
largest window size is not recommended to exceed N/4 when utilizing this bidirectional
windowing procedure. [6] It is advisable to inspect the fluctuation function for outliers and
judge its statistical accuracy on case-by-case basis.

It is, however, possible to derive analytical expression for the expectation value of the
square of the fluctuation function that does not depend on any windowing procedure. For
stationary signals this expectation value may be expressed as a weighted sum of the
autocovariance function[20, 21], and for non-stationary processes with stationary incre-
ments as a weighted sum of the variogram[21]. Following the approach in Ref. [21], the

3The propagation of error ∆x through function f(x) is approximated by

∆f(x) ≈
⏐⏐⏐⏐∂f(x)∂x

⏐⏐⏐⏐∆x
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Figure 2.2. Illustration of the traditional DFA method. (a) An example of a time series
consisting of fractional Gaussian noise with Hurst parameter H = 0.9. (b) The integrated
profile of the example time series. Trends are determined in non-overlapping windows at
various scales by least squares polynomial fitting. In this figure linear detrending of DFA1
is illustrated with window sizes of 20 (blue), 40 (orange) and 100 (green). Fluctuations
in each window are defined as the mean squared difference from the local trend, which
corresponds to the variance. (c) The fluctuation function at each scale s is the square root
of the expectation value of the squared fluctuations at that scale. The scaling exponent
α may be estimated as the slope of the fluctuation function on a doubly logarithmic plot
by simple linear regression. As explained in the text, the fluctuation function exhibits
bias at the shorter scales and becomes statistically unreliable at larger scales, which
necessitates judicious decision about suitable fitting ranges.

weight function G(j, s) is compactly written as the sum of matrix elements

G(j, s) =

s−j∑
k=1

ak,k+j , (2.21)

where ak,k+j are the elements of the following matrix

A = D⊤
(
I−B⊤(BB⊤)−1

B
)
D (2.22)

with I ∈ Rs×s as the identity matrix. The elements of matrix D ∈ Rs×s are defined as

di,j =

⎧⎨⎩1 i ≤ j

0 otherwise
, (2.23)

which causes left multiplying a column vector by D to yield a row vector of cumulative
sums. Detrending by n-th degree polynomials is accomplished by the design matrix B ∈
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Rn+1×s of ordinary least squares regression. That is, the k-th row of B is defined as

Bk =
[
1k−1 2k−1 . . . sk−1

]
. (2.24)

Defining Xs,w ∈ Rs to be a column vector containing the elements of the time series in
window w at the scale s allows the squared fluctuations to be written as

F 2
s,w =

1

s
X⊤

s,wAXs,w (2.25)

=
1

s

s∑
k=1

s∑
j=1

ak,jxw+kxw+j (2.26)

= − 1

2s

s∑
k=1

s∑
j=1

ak,j (xw+k − xw+j)
2 . (2.27)

Taking the expectation value of Eq. (2.26) yields

E
[
F 2
s,w

]
=

1

s

s∑
k=1

s∑
j=1

ak,jC(w + k,w + j), (2.28)

where C(w + k,w + j) is the autocovariance function. If the process is assumed to be
stationary, then

C(w + k,w + j) = C(0, w + j − (w + k)) := C(τ) (2.29)

with τ = j − k being the lag. Thus the expectation value is independent of the window w

and may be written as

E
[
F 2(s)

]
=

1

s

⎡⎣C(0)G(0, s) + 2
s−1∑
j=1

G(j, s)C(j)

⎤⎦ . (2.30)

Alternatively, applying the expectation operator to Eq. (2.27) and assuming the stationar-
ity of the increments gives

E
[
F 2(s)

]
= −1

s

s−1∑
j=1

G(j, s)S(j), (2.31)

where S(j) is the variogram. [21]

These relations may also be utilized for computing the expected theoretical fluctuation
functions for processes with known autocovariance function or variogram, e.g. for frac-
tional Brownian motion. Furthermore, these expressions facilitate proving the correct
asymptotic scaling of the fluctuation function in these cases [21]. In this thesis these an-
alytical methods are utilized in studying the detailed scaling of fGn and fBm in Ch. 4.1,
along with comparison to numerical experiments employing the proposed new methods.
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2.3.2 Detrending

Traditional fluctuation analysis fails to find intrinsic scaling relations in the presence of
non-stationarities, as they would result in an asymptotic scaling exponent of unity. There-
fore, detrending may be considered the most important feature of DFA, as it is precisely
the aspect that sets the method apart from earlier approaches, and permits meaningful
fractal correlation analysis of non-stationary time series. In applications it is important
to distinguish the difference between external and intrinsic non-stationarities. [28] For
example, the diffusion-like drift in fractional Brownian motion is intrinsic to the process,
whereas the variations in heart rate due to different activities can be considered as re-
sponses to external stimuli. Contrary to the criticism about the failure of DFA to remove
the drift in fBm [29], it may instead be considered as a crucial advantage of the method
to correctly characterize this intrinsically non-stationary process [28].

Conventionally the detrending is performed by ordinary least squares fits of polynomials
to the segmented profile of the time series. Zeroth order detrending corresponds to the
removal of the mean in Eq. (2.15), which then reduces to ordinary variance. This DFA0
formulation is therefore essentially equivalent to the conventional fluctuation analysis with
the same limitations4.

Linear detrending has been shown to be sufficient for obtaining the correct scaling expo-
nents for fBm time series [21, 28]. Higher orders of detrending retain this correct scaling
asymptotically with large window sizes [30]. The minimum detectable DFA scaling expo-
nent is always zero, but the maximum αmax depends on the degree n of the detrending
polynomial and is given by [30]

αmax = n+ 1. (2.32)

As the detrending is performed for the integrated profile of the time series, DFAn corre-
sponds to removing polynomial trends of degree n − 1 in the original time series. It can
be shown that this piecewise detrending does indeed recover the scaling exponent that
would characterize the time series in the absence of the external polynomial trend [21].

It is enthralling to contemplate how exactly does the detrending process allow non-sta-
tionarities to be properly considered. It can be shown that a sufficient, but probably not
necessary, condition for the correct scaling of the fluctuation function is that the windowed
variances F 2

s,w are equal in expectation value at each scale. Therefore, the purpose of
the detrending is to make each window statistically equivalent. The detrending procedure
in Eq. (2.15) is additive, so it can be hypothesized that the underlying assumption in
DFA is that the removal of superimposed least-squares polynomial trends is sufficient to
ascertain this statistical equivalence. [28]

4The variance is, however, a more robust estimator for the root mean square displacement of a random
walker than the literal displacement of Eq. (2.13), which allows the analysis to be performed on shorter time
series.
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While necessary, the detrending also introduces artifacts to the analysis. The most
pronounced effects arise in the smallest windows, where the fluctuations are underes-
timated. If the time series exhibits scaling then this bias may be corrected. A modified
fluctuation function Fmod(s) with the bias corrected may be computed by

F 2
mod(s) =

F 2(s)

K2
α(s)

, (2.33)

where K2
α(s) is the correction function. Further complications arise as this function de-

pends on the scaling exponent α. The correction term may be computed by assuming
that the scaling relation F 2(s∞) ∝ s2α∞ holds for sufficiently large window size s∞. With
this assumption the correct scaling is restored by

K2
α(s) =

E
[
F 2(s)

]
s2α∞

E [F 2(s∞)] s2α
. (2.34)

If the theoretical autocovariance function or variogram is known for the underlying pro-
cess, then these expectation values may be computed by Eq. (2.30) or (2.31), depending
whether the process is stationary or non-stationary with stationary increments. [21] If the
analytical formulation for these quantities is not available, then these expectation values
may be approximated by ensemble averages of shuffled time series [6]. Attempts have
also been mode to modify the detrended variance computation in such a manner as to
remain unbiased [31].

The detrending is conventionally performed by polynomials, but other approaches have
been studied as well. Recently detrending moving average (DMA) has been established
as a good alternative to the polynomial DFA [32]. Empirical mode decomposition (EMD)
has also been employed for the detrending process [33]. The detrending step of the
algorithm is essential for intrinsic non-stationarities, but the removal of external trends
may be performed before the fluctuation analysis as well. This is particularly fruitful if
the trend is known a priori. Even in the case of unknown trends this may sometimes be
useful. An interesting approach is offered in Ref. [34], where the learning capabilities of
echo state networks (ESN) are leveraged to distinguish the more predictable components
of the time series as trends.

2.3.3 Scaling exponent

Once the fluctuation function has been computed, its scaling properties are quantified
by scaling exponents. Self-similar processes exhibit power law scaling F (s) ∝ sα as
a function of the scale s. For many processes, including fGn and fBm, the fluctuation
function only approaches the exact scaling asymptotically in the large scale limit [21]. In
more complex processes, and particularly with real experimental data, the scaling may
be limited to certain ranges of scales. Different scales may also display distinct scaling,
and the crossover scales over which the behavior changes may yield information about
the underlying dynamical process.
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Further complications arise from finite size effects present in the fluctuation function, as
the sample size is very small for the largest scales, resulting in unreliable statistics with
large confidence intervals. The detrending process itself is also found to introduce bias
to the fluctuation function, especially at the smaller scales. Conventionally the scaling
exponent is determined from a doubly logarithmic plot of the fluctuation function, which
transforms the power law into linear relationship and permits the application of simple
linear regression, which was illustrated in Fig. 2.2. Furthermore, this least-squares fitting
may be misleading for determining power law behavior [35]. As a result of the aforemen-
tioned intricacies, the determination of the scaling exponent is a non-trivial task.

Many techniques exist for the detection of crossover points and the subsequent deter-
mination of approximately linear regimes in the fluctuation function. The most rigorous
methods rely on piecewise linear regression and statistical inference to determine the
number and location of the crossover points [16, 17]. Another particularly intriguing strat-
egy involves expressing the fluctuation function as a linear combination of power law
functions [36]. This thesis examines an integer linear programming scheme for determin-
ing the optimal segmentation, which will be presented in Sec. 3.2.

The problem of determining strictly scaling regions in the fluctuation function may be cir-
cumvented by considering a whole spectrum of exponents α(s) as a function of the scale.
As logarithmically transformed power law relations are straight lines, the local scaling ex-
ponent could be estimated as the derivative of the logarithmic fluctuation function [12, 14].
However, direct numerical differentiation can be very noisy, particularly for shorter time
series whose fluctuation functions suffer from statistical uncertainties due to the small
sample size. Smoother local estimates could be acquired by, for example, utilizing short
linear fitting windows moving over the scales [15], or applying some filtering, such as the
alpha-beta filter [13]. The problem with these methods is that they rely on hand-picked
parameters, usually chosen in an ad hoc manner. This thesis considers a parameter-free
approach based on the Kalman smoother, which will be introduced in the succeeding
chapter.

Different applications of DFA have also adopted specialized conventions for the determi-
nation of the scaling exponents. Particularly in the context of heart rate variability, two
scaling exponents, one for short- and another for long-range correlations, are usually
extracted from the fluctuation function [2]. However, the extent of these ranges is subjec-
tive, and different data sets may suggest conflicting crossover regions, leading to criticism
about the validity of this traditional two-range model [13–15].

The DFA scaling exponent is also related to many other quantities describing similar
scaling relations in other domains. In Hurst’s seminal work on long-range correlated
processes, the increment process is characterized by an exponent obtained from his
rescaled range analysis [4]. This Hurst parameter H and the associated stochastic pro-
cesses, fGn and fBm, were rigorously studied by Mandelbrot and van Ness [24]. For fGn,
the Hurst parameter is asymptotically equal to the DFA scaling exponent. For fBm, the
relation α = H + 1 holds asymptotically [21].
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Table 2.1. Interpretation of the DFA scaling exponent.

Scaling exponent Interpretation Stationarity

0 < α < 1/2 Anticorrelated

Stationary
α = 1/2 White noise

1/2 < α < 1 Correlated

α = 1 Pink noise

1 < α < 11/2 Anticorrelated increments
Non-stationary,

stationary incrementsα = 11/2 Brownian motion

11/2 < α < 2 Correlated increments

Fourier methods are also common in time series analysis. Specifically, scaling properties
may be discovered in the power spectral density (PSD), S(f) ∝ f−β, which describes
the amount of power5 associated with the frequency f . The PSD scaling exponent β is
related to the DFA scaling exponent by β = 2α−1. [25, 30] Comparison of PSD and DFA
results is further complicated by non-trivial distortion in the relationship between the DFA
scales s and PSD frequencies f . As the order of the DFA is increased, the frequencies
f correspond to progressively larger scales s. Similarly signals with smaller PSD scaling
exponents β shift the frequencies f towards increasing scales s as well. [30]

For wide-sense stationary processes the Wiener-Khinchin theorem holds, which tells that
the autocovariance function and power spectral density are Fourier transform pairs [37].
This implies that the autocovariance function C(τ) also exhibits scaling C(τ) ∝ τ−γ with
γ = 1− β. Therefore the DFA scaling exponent is related to these other exponents by

α =
1

2
(β + 1) (2.35)

α = 1− 1

2
γ. (2.36)

As the DFA method is based on random walk theory, it is intrinsically linked to diffusion.
The scaling exponent is essentially equal to the anomalous diffusion exponent, except
that instead of measuring standard deviation, the diffusion exponent characterizes vari-
ance, and hence their usual definitions differ by a factor of two [38].

The cumulative summation of Eq. (2.10) may be repeated for the profile Yt, in which
case the original profile becomes the increment time series. This increases the scaling
exponent by one each time the time series is “integrated” in such manner. Conversely,
a “differentiated” time series may be constructed by x′t = xt+1 − xt, which reduces the
exponent by one. [27] These techniques may be utilized for transforming the time series
to have scaling exponents in the detectable range of [0, n+ 1].

In light of this discussion, the interpretation of the scaling exponent is summarized in Table
5The squared value of the time series, which corresponds to actual power density in certain physical

systems



16

2.1. One must be careful in drawing too strong conclusions from the scaling exponent, as
these interpretations are only asymptotically valid for strictly scaling time series, such as
fGn, fBm or 1/fβ noises. In practice these are hardly ever exact models for the studied
processes, and therefore one cannot conclude that a measured exponent of, e.g. 1.2

implies that the process is fBm with Hurst parameter H = 0.2. Another often encountered
process is pink noise whose PSD follows 1/f relation. By Eq. (2.35) this implies α = 1.
The cumulative summation procedure can be further repeated for even higher values of
α. The qualitative interpretation remains the same, that is, for each integral interval the
lower and upper halves correspond to originally anticorrelated or correlated increments,
respectively.

2.3.4 Multifractality

The time series may also exhibit more complex behavior than what can be described
by merely considering the correlations at different scales. The scaling may also vary
throughout the time series, even in a very complex manner across different interwoven
subsets. This kind of multifractality can be understood to be a consequence of broad
probability density function for the values of the time series, or due to different corre-
lations amongst the smaller and larger fluctuations. Conventional tools of multifractal
analysis, such as the partition function formalism, suffer from complications arising from
non-stationarities. [39, 40]

Multifractal detrended fluctuation analysis (MF-DFA) was developed to tackle these prob-
lems [40]. Ordinary monofractal DFA estimates the fluctuation function directly from the
mean of the variances of Eq. (2.15). For MF-DFA the averaging procedure is altered to
obtain separate fluctuation functions for smaller and larger fluctuations. This is accom-
plished by raising these variances to different powers before calculating the mean, and
then transforming the mean back to the correct dimensions by the corresponding inverse
power6. Thus the fluctuation function is computed by

Fq(s) =
(
E
[(
F 2
s,w

) q
2

]) 1
q , (2.37)

where q is the multifractality order. [40] Looking at the expression, it is clear that for pos-
itive q, the larger the multifractality order, the bigger the contribution of larger variances
F 2
s,w is to the mean. Conversely for negative values of q, smaller variances become

more and more dominant with decreasing multifractality order7. Setting q = 2 recovers
the ordinary monofractal DFA. For q = 0 the outer exponent diverges, and the following

6One must remember that the F 2
s,w are variances, hence the imbalance by a factor of 2 in the denominator.

7As a practical observation there are usually numerical issues for negative values of q in the smallest
windows, where the variances are the smallest and the number of windows is the highest. Particularly
chains of (almost) equal values in the time series are problematic.
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logarithmic averaging procedure must be employed [40]

F0(s) = exp

[
1

2
E
[
ln
(
F 2
s,w

)]]
. (2.38)

To facilitate the computation of statistical error estimates for this multifractal formalism,
the following auxiliary variables are introduced

ξq,s,w =

⎧⎨⎩
(
F 2
s,w

) q
2 q ̸= 0

ln
(
F 2
s,w

)
q = 0

. (2.39)

Let µq,s and ϵq,s denote the mean and its standard error, respectively, of these variables
over all windows w of length s

µq,s = ⟨ξq,s,w⟩ ϵq,s =

√
Var[ξq,s,w]

Ns
. (2.40)

Analogously to ordinary DFA, the multifractal fluctuation functions and their error esti-
mates may then be expressed as

Fq(s) =

⎧⎨⎩(µq,s)
1
q q ̸= 0

e
1
2
µq,s q = 0

∆Fq(s) ≈

⎧⎨⎩1
q (µq,s)

1
q
−1

ϵq,s q ̸= 0

1
2e

1
2
µq,sϵq,s q = 0

. (2.41)

By considering each value of q separately, the scaling exponent may be determined by
the same techniques as in monofractal DFA. However, the additional dependence on q

allows more comprehensive analysis by considering for example the surfaces spanned
by the scaling exponent α(s, q) as a function of the scale and the multifractal order [41].
The MF-DFA algorithm utilized in this thesis is summarized in Algorithm 2.1.

2.4 Bayesian inference

Let us consider a probabilistic state space model of a system, described by its hidden
state xk ∈ Rn at the time step k, following the probability distribution

xk ∼ p(xk|xk−1). (2.47)

The system is Markovian in the sense that its evolution only depends on the previous
state. A measurement of the system yields the results yk ∈ Rm described by the proba-
bility distribution

yk ∼ p(yk|xk). (2.48)

However, the quantity of interest is the probability distribution of the hidden state of the
system, given the measurements, which can be calculated by Bayes’ rule

p(xk|yk) =
p(yk|xk)p(xk)

p(yk)
. (2.49)
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Algorithm 2.1 Multifractal detrended fluctuation analysis.
1. Let xt be a time series with N elements.
2. Calculate the profile Yt of the time series

Yt =

t∑
i=1

(xi − ⟨x⟩) t = 1, . . . , N , (2.42)

where ⟨x⟩ is the mean of the time series.
3. Windowing

(a) Decide a suitable set of different window sizes S.
(b) For each scale s ∈ S divide the profile Yt into ⌊N/s⌋ contiguous non-

overlapping segments Ws of length s, starting from the first element of the
profile. If the window size s does not exactly divide the length N of the time
series, repeat the segmentation from the opposite end of the profile as well.

4. Detrending
(a) Decide a suitable type of detrending function.
(b) In each window w ∈ Ws for all scales s ∈ S perform a least squares fit of

the detrending function fs,w(t) to the profile Yt and calculate the detrended
variance F 2

s,w in the segment:

F 2
s,w =

1

s

∑
t∈w

[Yt − fs,w(t)]
2 (2.43)

5. Calculate the mean fluctuations with the desired multifractal orders q.
(a) Let

ξq,s,w =

{(
F 2
s,w

) q
2 q ̸= 0

ln
(
F 2
s,w

)
q = 0

(2.44)

(b) Calculate the means µq,s and their standard errors ϵq,s

µq,s = ⟨ξq,s,w⟩w∈Ws
ϵq,s =

√
Var[ξq,s,w]w∈Ws

|Ws|
, (2.45)

where the mean and the variance are calculated over all segments w ∈ Ws for
each scale s, and |Ws| is the number of elements in Ws.

(c) Compute the mean fluctuations Fq(s) and the error estimates ∆Fq(s):

Fq(s) =

{
(µq,s)

1
q q ̸= 0

e
1
2
µq,s q = 0

∆Fq(s) ≈

{
1
q (µq,s)

1
q
−1

ϵq,s q ̸= 0
1
2e

1
2
µq,sϵq,s q = 0

(2.46)
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Bayesian filtering attempts to estimate the state of the system at time step k, given all the
past measurements up to the current time step k ≤ T , to produce the posterior distribution
p(xk|y1:k). Bayesian smoothing attempts to estimate the state of the system at time step
k, given all the measurements8, to produce the posterior distribution p(xk|y1:T ). The
direct application of the Bayes’ rule for calculating these distributions, especially for real-
time applications, may be nigh intractable for general models. [42] The Kalman filter
provides a computationally light recursive solution to linear models disturbed by normally
distributed noise [10].

2.4.1 Kalman filter

The notation and exposition in this section closely follows that of Ref. [42]. The Kalman
filter[10] assumes linear models for the state evolution and measurements, disturbed by
Gaussian noise. Thus the state of the system xk evolves from the previous state by

xk = Ak−1xk−1 + qk−1, (2.50)

where Ak−1 ∈ Rn×n is the state transition matrix, and qk−1 ∼ N (0,Qk−1) describes the
process noise with covariance matrix Qk−1 ∈ Rn×n. The measurement model is similarly
linear, with the hidden state xk yielding the measurement yk given by

yk = Hkxk + rk, (2.51)

where Hk ∈ Rm×n is the measurement model matrix, and rk ∼ N (0,Rk) describes the
measurement noise with covariance matrix Rk ∈ Rm×m. The linearity of the equations
ensures that given a normally distributed prior distribution x0 ∼ N (m0,P0), the filtering
and smoothing posterior distributions remain Gaussian.

The Kalman filter is a recursive closed form solution for the filtering distribution p(xk|y1:k) =

N (mk,Pk), which is outlined below [10, 42]. Let us assume a normally distributed previ-
ous state xk−1 ∼ N (mk−1,Pk−1) with mean mk−1 and covariance Pk−1. The predicted
current state of the system x̂k ∼ p(xk|xk−1,y1:k−1) = N (m̂k, P̂k) can then be obtained
by propagating the previous distribution through the state evolution model described by
Eq. (2.50). The predicted mean m̂k and covariance P̂k of the current state are then given
by

m̂k = Ak−1mk−1 (2.52)

P̂k = Ak−1Pk−1A
⊤
k−1 +Qk−1. (2.53)

However, this prediction does not yet take into account the measurement yk at the current
step.

The Kalman filter attempts to minimize the mean squared error of the estimate, which
8Obvious limitations may apply to procuring measurements from the future in real-time applications.
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is equivalent to minimizing the trace of the posterior distribution covariance Pk. This is
accomplished by calculating the difference between the measurement predicted by x̂k

and the actual measurement yk, and then adjusting the prediction to the direction of the
difference by an amount that minimizes the mean squared error. [10, 42]

The difference between the measurement and its prediction is called innovation. The
measurement model, Eq. (2.51), then leads to the following expressions for the innovation
mean vk and covariance Sk:

vk = yk −Hkm̂k (2.54)

Sk = Rk +HkP̂kH
⊤
k . (2.55)

The minimum mean squared error estimate can then be expressed in terms of the optimal
Kalman gain Kk, computed from the innovation covariance by

Kk = P̂kH
⊤
k S

−1
k . (2.56)

Now the updated posterior distribution mean mk and covariance Pk are given by

mk = m̂k +Kkvk (2.57)

Pk = P̂k −KkSkK
⊤
k , (2.58)

which optimally incorporate the information provided by the current measurement into the
estimate. [10, 42] The Kalman filter is summarized in Algorithm 2.2.

Algorithm 2.2 The Kalman filter.
1. Choose a prior distribution x0 ∼ N (m0,P0) and set k = 1.
2. Recursively calculate p(xk|y1:k) = N (mk,Pk) from the previous estimate.

(a) Predict step:

m̂k = Ak−1mk−1 (2.59)

P̂k = Ak−1Pk−1A
⊤
k−1 +Qk−1 (2.60)

(b) Update step:

vk = yk −Hkm̂k (2.61)

Sk = Rk +HkP̂kH
⊤
k (2.62)

Kk = P̂kH
⊤
k S

−1
k (2.63)

mk = m̂k +Kkvk (2.64)

Pk = P̂k −KkSkK
⊤
k (2.65)

3. Set k = k + 1 and repeat from step 2 for every new measurement.
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2.4.2 Kalman smoother

The smoothing distribution p(xk|y1:T ) = N (ms
k,P

s
k) can be computed with backwards

recursion from the filtering distributions [42]. This algorithm is known as the Rauch–
Tung–Striebel (RTS) smoother [11], or sometimes just as the Kalman smoother. For the
final step T the filtering and smoothing distributions naturally coincide, and that serves
as the starting point for the backwards recursion. Thus we set ms

T = mT , Ps
T = PT ,

and consider the step k < T . The state evolution model would then predict the following
mean and covariance for the succeeding, already calculated step:

m̂s
k+1 = Akmk (2.66)

P̂s
k+1 = AkPkA

⊤
k +Qk. (2.67)

Analogously to the Kalman filter update step, this prediction and the already calculated
smoothing distribution at the succeeding step are utilized to optimally adjust the cur-
rent step filtering estimate to recursively include the information from all the succeeding
measurements from the filtering distributions. With the help of the gain matrix Gk, the
smoothing distribution mean and covariance for the current step can by computed by

Gk = PkA
⊤
k P̂

−1
k+1 (2.68)

ms
k = mk +Gk(m

s
k+1 − m̂k+1) (2.69)

Ps
k = Pk +Gk(P

s
k+1 − P̂k+1)G

⊤
k . (2.70)

Whereas the filtering distribution can be updated with just a simple recursion step for each
measurement, the smoothing distribution requires full backwards recursion calculation
whenever a new measurement is obtained. [42] The Kalman smoother is summarized in
Algorithm 2.3.

Algorithm 2.3 The Kalman smoother.
1. Calculate the filtering distributions p(xk|y1:k) = N (mk,Pk) for all k ≤ T with the

Kalman filter.
2. Set ms

T = mT , Ps
T = PT and k = T − 1.

3. Recursively calculate p(xk|y1:T ) = N (ms
k,P

s
k)

m̂s
k+1 = Akmk (2.71)

P̂s
k+1 = AkPkA

⊤
k +Qk (2.72)

Gk = PkA
⊤
k P̂

−1
k+1 (2.73)

ms
k = mk +Gk(m

s
k+1 − m̂k+1) (2.74)

Ps
k = Pk +Gk(P

s
k+1 − P̂k+1)G

⊤
k (2.75)

4. Set k = k − 1 and repeat from step 3 until k = 0.
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3 METHODS

This chapter describes methods for the robust estimation of the DFA scaling exponent.
The first section proposes a method for determining alpha spectra α(s) as a function
of the scale. The method is based on a probabilistic state space model that is solved
by Kalman smoother. The latter section presents a versatile optimization scheme for
obtaining segmentation of the logarithmic fluctuation function into approximately linear
regions. This thesis provides an extended exposition of the subject that was presented at
the Computing in Cardiology 2018 conference [18].

3.1 Probabilistic state space model

The alpha spectra are estimated from the logarithmic fluctuation functions F̃ (s̃). The
model considers how the scaling exponent varies as a function of the logarithmic window
sizes s̃. Therefore, the following notation is adopted. Let s̃k denote the utilized logarithmic
DFA window sizes in ascending order with F̃k = F̃ (s̃k) and ∆F̃k = ∆F̃ (s̃k).

The scaling exponent to be estimated, α(s̃), is equivalent to the first derivative of the loga-
rithmic fluctuation function F̃ (s̃) with respect to the logarithmic window sizes s̃. Denoting
this differentiation by a prime yields the relation α(s̃k) = F̃ ′

k. The scaling exponent is as-
sumed to remain approximately constant between adjacent window sizes, except for tiny
perturbations derived from the data. These perturbations are applied to this derivative
F̃ ′
k. Alternatively, the perturbations may be applied to higher order derivatives, in which

case the order of the derivative is also considered the order of the underlaying model.
Thus the hidden states xk of the model for the first and second order models are

x
(1)
k =

[
F̃k F̃ ′

k

]⊤
(3.1)

x
(2)
k =

[
F̃k F̃ ′

k F̃ ′′
k

]⊤
, (3.2)

where the superscript in parenthesis denotes the order of the model. The measurements
yk = F̃k are simply the logarithmic fluctuation function values calculated by DFA. These
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lead to the following state transition and measurement model matrices

A
(1)
k =

⎡⎣1 hk+

0 1

⎤⎦ H(1) =
[
1 0

]
(3.3)

A
(2)
k =

⎡⎢⎢⎢⎣
1 hk+

1
2h

2
k+

0 1 hk+

0 0 1

⎤⎥⎥⎥⎦ H(2) =
[
1 0 0

]
. (3.4)

Here hk+ = s̃k+1 − s̃k are the forward differences of the window size at k. The error es-
timate of the fluctuation function is readily utilized as the measurement noise covariance
by

Rk =
[
∆F̃ (s̃k)

]2, (3.5)

which is now simply a scalar.

Deriving a good estimate for the process noise is the most ambiguous aspect of the
model. A particular approach taken here assumes constant magnitude of the noise
across the different window sizes. The magnitude of the fluctuations that the perturbed
derivative experiences is approximated by a weighted sample variance of a finite differ-
ence approximation of the said derivative. The following central difference schemes with
non-uniform spacing [43] are considered1:

ˆ̃F ′
k ≈

h2k−F̃k+1 +
(
h2k+ − h2k−

)
F̃k − h2k+F̃k−1

hk−hk+
(
hk+ + hk−

) (3.6)

ˆ̃F ′′
k ≈

2hk−F̃k+1 − 2
(
hk+ + hk−

)
F̃k + 2hk+F̃k−1

hk−hk+
(
hk+ + hk−

) , (3.7)

where hk− = s̃k − s̃k−1 are the backward differences of the logarithmic window size at k.
The error arising from the uncertainty in the fluctuation function may then be estimated
by

∆ ˆ̃F ′2
k ≈

[
1

hk−hk+
(
hk+ + hk−

)]2[(h2k−∆F̃k+1

)2
+
(
h2k+ − h2k−

)2
∆F̃ 2

k +
(
h2k+∆F̃k−1

)2 ]
(3.8)

∆ ˆ̃F ′′2
k ≈

[
2

hk−hk+
(
hk+ + hk−

)]2[(hk−∆F̃k+1

)2
+
(
hk+ + hk−

)2
∆F̃ 2

k +
(
hk+∆F̃k−1

)2 ]
, (3.9)

The boundaries are considered by assuming that the function continues linearly.
1Setting h = hk− = hk+ recovers the standard central difference approximations.
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The weighted sample variance σ̂2 of the derivatives is computed with the weights taken to
be inversely proportional to these squared error estimates. This variance estimates the
magnitude of the nudges that the perturbed derivative experiences between logarithmic
window sizes, leading to the following process noise covariances:

Q
(1)
k = σ̂2

⎡⎣1
3h

3
k+

1
2h

2
k+

1
2h

2
k+

hk+

⎤⎦ (3.10)

Q
(2)
k = σ̂2

⎡⎢⎢⎢⎣
1
20h

5
k+

1
8h

4
k+

1
6h

3
k+

1
8h

4
k+

1
3h

3
k+

1
2h

2
k+

1
6h

3
k+

1
2h

2
k+

hk+

⎤⎥⎥⎥⎦ . (3.11)

Finally an estimate is required for the prior distribution N (m0,P0). This may simply be
estimated from the first data points:

m
(1)
0 =

⎡⎣F̃1

ˆ̃F ′
1

⎤⎦ P
(1)
0 =

⎡⎣∆F̃ 2
1 0

0 ∆ ˆ̃F ′2
1

⎤⎦ (3.12)

m
(2)
0 =

⎡⎢⎢⎢⎣
F̃1

ˆ̃F ′
1

ˆ̃F ′′
1

⎤⎥⎥⎥⎦ P
(2)
0 =

⎡⎢⎢⎢⎣
∆F̃ 2

1 0 0

0 ∆ ˆ̃F ′2
1 0

0 0 ∆ ˆ̃F ′′2
1

⎤⎥⎥⎥⎦ . (3.13)

The Kalman filter and smoother may then be applied to the specified model to obtain the
filtering and smoothing posterior distributions N (mk,Pk) and N (ms

k,P
s
k).

3.2 Linear programming model

Let us consider the problem of optimally segmenting the logarithmic fluctuation function
F̃k into approximately linear regimes. The problem is considered in two parts. First the
optimal segmentation is solved for fixed numbers of segments N . The optimal value for
this number is then sought from these solutions.

The algorithm proceeds by computing all the possible linear regression fits to the loga-
rithmic fluctuation function. If desired, additional requirements could be enforced for the
fitted lines, such as minimum length. Let n be the number of linear fits and RSSi be
the residual sum of squares of the i-th fit. The optimal segmentation minimizes the total
residual sum of squares. The optimization problem is approached from integer linear pro-
gramming2 (ILP) viewpoint. In linear programming the objective function and constraints
are linear, and furthermore in ILP the variables are constrained to be integers. [44]

2Linear optimization is called linear programming for historical reasons.



25

The ILP problem may be stated as follows:

argmin
x

c⊤x c ∈ Rn x ∈ {0, 1}n, (3.14)

where the components xi of the binary vector x indicate whether the i-th fit is utilized in
the segmentation. The components ci of the coefficient vector c are the residual sum of
squares RSSi of the linear regression fits. The optimization constraints are expressed
with the help of auxiliary variables aik, defined to be equal to unity if the i-th fit covers
the k-th window size and zero otherwise. The constraints are then given by the following
equations

n∑
i=1

aik = 1;
n∑

i=1

xi = N , (3.15)

where the former relations ensure that each point in the fluctuation function is covered
by exactly one linear fit, and the latter relation ensures that the solution consists of the
desired number of linear fits N . The problem is then readily solved by any existing integer
linear programming suite, such as the open source GNU Linear Programming Kit (GLPK).

Choosing an optimal value for the number of linear segments, N , is a partial and subjec-
tive decision. The approach taken here proceeds as follows. Let RSS(N) denote the total
residual sum of squares of the optimal segmentation with N segments. This residual is
trivially reduced by increasing the number of segments. We seek a solution that consists
of as few segments as admissible for equitable segmentation. Therefore, we consider
the desirability D(N) of a solution to be inversely proportional to the number of segments
and the total residual sum of squares:

D(N) ∝ 1

N · RSS(N)
. (3.16)

The solution is considered optimal when it maximizes this quantity. Graphical illustration
of this algorithm is presented in Fig. 3.1.

This optimization scheme may be performed separately for each fluctuation function or
simultaneously to a group of fluctuation functions, provided that they all have been calcu-
lated at compatible window sizes. In the latter case the residual sum of squares RSSij

of the i-th fit in the j-th fluctuation function are summed over all the fluctuation functions
when computing the coefficients as ci =

∑
j RSSij .

An example of these methods for the alpha spectra and optimal segmentation is shown
in Fig. 3.2, where the methods are applied to real data. By visual inspection it can be
noticed that the resulting linear segmentation is sensible and the estimated alpha spectra
smoothly follows the noisy fluctuation function.
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Figure 3.1. Illustration of the optimal segmentation algorithm. First all the possible linear
regression fits to the logarithmic fluctuation function are computed at all possible scales.
For illustrative purposes only some of the fits are depicted. The solution with N fits and
the lowest total residual sum of squares RSS(N) is obtained by integer linear program-
ming. The number of segments N is chosen by maximizing the quantity 1/

[
N ·RSS(N)

]
.

The input time series for computing the fluctuation function by DFA1 is a snippet of RR
intervals from the database of Ref. [45]
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Figure 3.2. Example of the new methods for determining the scaling exponents. The 1st
order model is utilized for computing the alpha spectra by Kalman smoother. The error
bounds for the alpha spectra are calculated from the posterior distribution covariance
matrix. The error bounds for the linear segmentation denote the standard error of the
linear regression estimate. The input time series for computing the fluctuation function by
DFA1 is a snippet of RR intervals from the database of Ref. [45].
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4 APPLICATIONS AND RESULTS

4.1 Validation of the methods

4.1.1 Artificial test data

Consistent evaluation of the methods requires a reliable algorithm for generating artificial
time series with known scaling exponents. The simulation of 1/fβ noises with arbitrary
exponents β is straightforward by the so-called Fourier filtering algorithm. The technique
proceeds by generating uncorrelated normally distributed random numbers, and then en-
forcing the desired power law scaling in the Fourier frequency space [46]. The procedure
is described in Algorithm 4.1.

Time series generated in such a manner may be considered to be pure 1/f noises by
construction, but they are only approximations to fractional Gaussian noises and Brown-
ian motions. The method also suffers from inaccuracies arising from periodic effects and
singularity in the autocovariance function [47]. Several methods exist for the exact gener-
ation of fGn and fBm, and the algorithm considered here was introduced by Davies and
Harte [48]. The method, presented in Algorithm 4.2, also relies on Fourier transforms for
the computation of eigenvalues of a circulant matrix, resulting in one of the most efficient
algorithms for their generation, as the Fast Fourier Transform can be exploited [48, 49].

Algorithm 4.1 The Fourier filtering algorithm for generating 1/fβ noises.
1. Generate N independent normally distributed random numbers ui for 1 ≤ i ≤ N .
2. Compute the Fourier transform of ui to obtain the Fourier transform coefficients ci

and the corresponding frequencies fi.
3. Compute scaled coefficients by c′i = |fi|−

β/2ci to enforce the desired scaling.
4. Perform inverse Fourier transform of the scaled coefficients c′i to obtain a sample of

1/fβ noise.

4.1.2 Numerical results

As was discussed in Sec. 2.3.2, the detrending in DFA introduces bias to the fluctuation
function and consequently to the estimated scaling exponents. In case of fGn and fBm the
analytical autocovariance function, Eq. (2.7), and variogram, Eq. (2.6), are known. This
permits the computation of the theoretical expected DFA fluctuation function for these
processes, as described in Sec. 2.3.1. The scaling exponent is then obtained by differ-
entiating the logarithmic fluctuation function with respect to the logarithmic window sizes.
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Algorithm 4.2 The Davies-Harte algorithm for generating fGn and fBm.
1. To generate a sample of length N , compute the autocovariances CH(n) of fGn with

the desired Hurst parameter H by Eq. (2.7) for 0 ≤ n ≤ N and set1

αk =

{
CH(k) 0 ≤ k ≤ N

CH(2N − k) N + 1 ≤ k ≤ 2N − 1
(4.1)

for 0 ≤ k ≤ 2N − 1.
2. Compute the Fourier transform of αk and denote it by λk. These λk correspond to

the eigenvalues of the circulant matrix whose first row is αk. These eigenvalues are
real and non-negative by construction.

3. Generate independent normally distributed random numbers Uℜ
k and Uℑ

k to com-
pute

wk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

λk
2NUℜ

k k = 0, N√
λk
4N

(
Uℜ
k + iUℑ

k

)
1 ≤ k ≤ N − 1√

λk
4N

(
Uℜ
2N−k − iUℑ

2N−k

)
N + 1 ≤ k ≤ 2N − 1

(4.2)

for 0 ≤ k ≤ 2N − 1.
4. Compute the Fourier transform of wk and denote it by zk.
5. (a) xk = zk is a sample of fGn for 0 ≤ k ≤ N − 1.

(b) xk =
∑k

i=0 zi is a sample of fBm for 0 ≤ k ≤ N − 1.

The derivation is carried out by the finite difference scheme of Eq. (3.6) to avoid cum-
bersome analytical differentiation. As these functions behave smoothly, this numerical
scheme is justified and expected to introduce negligible error.

These results are illustrated in Fig. 4.1(a). For ease of visualization the results are plotted
as deviation from the expected asymptotic scaling. This asymptotic scaling exponent is
equal to the Hurst parameter for fGn, and for fBm it is equal to the Hurst parameter plus
one. The scaling exponent is overestimated in small window sizes for fGn (0 < α <

1). While the behavior of the deviation stays approximately constant for persistent noise
(1/2 < α < 1), the deviation begins to extend to larger window sizes at an accelerating
pace as the noise gets more and more antipersistent (0 < α < 1/2). The author is not
aware of other work that studies the theoretical scaling exponent as a function of the
window size, but these findings are in agreement with the consensus that there exists a
bias at the small scales and that DFA becomes less accurate with strongly anticorrelated
data.

The behavior becomes more peculiar when transitioning into the fBm regime (1 < α < 2).
Motions with anticorrelated increments (1 < α < 11/2) exhibit a prominent dip in the
scaling exponent that extends to scales over 1000 for Hurst parameters close to zero.
This is a striking result that has consequences for reliable classification of processes with
scaling exponents close to unity. A single scaling exponent obtained from a simple linear
regression is particularly prone to misclassification in this instance. On the other hand,

1Some sources [49] mention setting αN = 0 instead of CH(N). However, this may cause the algorithm
to fail for H close to 1 with short sample lengths, as some of the eigenvalues in step 2 may be negative.
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Figure 4.1. The deviation of the DFA scaling exponent from asymptotic behavior for frac-
tional Gaussian noise (fGn) and fractional Brownian motion (fBm). Fractional Gaussian
noises have asymptotic DFA scaling exponents 0 < α < 1 equal to the Hurst parameter
H. Fractional Brownian motions have asymptotic DFA scaling exponents 1 < α < 2 with
the relationship to the Hurst parameter given by α = H + 1. In (a) the theoretical DFA
fluctuation functions have been computed by Eq. (2.30) and Eq. (2.31), utilizing the exact
autocovariances and variograms of fGn and fBm, respectively. The scaling exponent is
computed by finite difference approximation from the fluctuation function, yielding theo-
retical deviation from the asymptotic scaling behavior. Simulated results in (b) and (c) are
obtained by computing 10 000 realizations of fGn and fBm by the Davies-Harte method
for each value of the Hurst parameter. The scaling exponents have been calculated by
the Kalman smoother method with 2nd order state space model. In (b) only a single
fluctuation function has been computed from the 10 000 realizations that includes the
squared fluctuations of Eq. (2.15) from all the realizations. In (c) the fluctuation functions
are separately computed for each realization, and the scaling exponent is the average
from all the fluctuation functions. This averaging process is observed to introduce bias
particularly at the larger window sizes, as the significance of rarer larger fluctuations is
diminished.

utilizing the full alpha spectra may allow more informed decision to be made, as the details
and shape of the curve will differ for fGn and fBm with the scaling exponent close to unity.
For persistent increments (11/2 < α < 2) the scaling exponent is again overestimated at
the smallest scales, with the effect becoming stronger with increasing Hurst parameter.
Curiously, the pure Brownian motion (α = 11/2) is the least biased member in the family
of fGn/fBm processes.

The validity of the alpha spectra obtained by the Kalman smoother is verified by com-
paring the spectra obtained from simulated data to these theoretically predicted values.
Instances of fGn and fBm are simulated by the Davies-Harte method, which produces
samples with exact covariance structure for these processes. For each value of the Hurst
parameter 10 000 samples of length N = 1000 are generated to obtain sufficient statisti-
cal accuracy. Two different methods are considered when averaging over the samples. In
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the first approach only a single fluctuation function is computed that includes the squared
fluctuations of Eq. (2.15) from all the realizations. Alternatively fluctuation functions are
calculated for each sample, from which the alpha spectra are estimated and then aver-
aged. As discussed in Sec. 2.2, this latter approach is mathematically wrong, but may
yet still be the preferred solution when studying actual data in practice.

The results with single fluctuation function for each sample are shown in Fig. 4.1(b),
and these are in an excellent concordance with the theoretical prediction. Slight noise
is visible in the results, particularly at the very largest scales with the scaling exponent
close to unity. This is most likely a finite size statistical effect, and no systematic bias is
observed that would arise from the Kalman smoother method. All of the simulated results
utilize the 2nd order state space model in the Kalman smoother method, as it was found
to produce smoother estimates.

As is observed in Fig. 4.1(c), and anticipated by theoretical arguments, averaging over
the fluctuation functions introduces bias. The scaling exponent is underestimated, relative
to the expected value, as the significance of larger fluctuations is diminished. While the
bias is evident, its magnitude does not exceed 0.1 for scales less than the generally
recommended maximum value N/4.

The Davies-Harte method produces exact samples of fGn and fBm, which in part is also
experimentally verified by the results of Fig. 4.1(b). It has been shown that these pro-
cesses exhibit asymptotic scaling in the frequency domain that corresponds to 1/f noises.
However, it is not clear how exact scaling in the frequency domain, as enforced by the
Fourier filtering method, corresponds to the DFA scaling exponent as the function of the
DFA scale. This question is of practical interest as in the literature Fourier filtering is pos-
sibly the most popular method for generating artificial test data for DFA. Sometimes even
conclusions are drawn with the assumption that these Fourier filtering samples represent
fGn and fBm [6, 19, 27, 40]. The differences in the scaling behavior for these time series
generation methods are illustrated in Fig. 4.2.

It is immediately clear that the 1/f noises generated by Fourier filtering in Fig. 4.2(b) do not
correspond to exact fGn and fBm. The periodicity of the Fourier transform introduces bias
at the largest scales, and the correct asymptotic scaling is only reached for pure white
noise. The effect of the periodicity could be compensated by generating longer samples
and discarding elements from the beginning and the end. This is only mildly effective, and
even a 1000-fold increase in length does not restore the expected asymptotic scaling.
A possible reason for the too small scaling exponents in the α > 1 regime could be
due to the fact that the autocovariance function obtained as the Fourier transform of
the power spectral density is always stationary by construction. The small increase in
the bias at the very largest scales in the anticorrelated regime does get eliminated by the
longer sampling. The very prominent bias across all the scales for anticorrelated samples
explains the claims that DFA is not very accurate for highly anticorrelated time series, as
many of these studies utilized Fourier filtering for their synthetic data [50].
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Figure 4.2. The deviation of the DFA scaling exponent from asymptotic behavior for
different time series generation methods. Exact fGn and fBm by the Davies-Harte method
(a), long-range correlated data by Fourier filtering (b), and direct Fourier filtering for the
increment process with 0 < α ≤ 1 and cumulative sum of this increment process for
1 < α ≤ 2 (c). In each case 10 000 realizations are simulated for each value of the
asymptotic scaling exponent α. The scaling exponents are calculated as explained in the
caption for Fig. 4.1(b).

Discrete fBm is constructed as the cumulative sum of fGn. Similar approach for 1/f noises
of Fourier filtering is considered in Fig. 4.2(c), where direct Fourier filtering is utilized for
the increment process with 0 ≤ α < 1, and the cumulative sum of these increments for
1 ≤ α < 2. It would appear that the dip in the scaling exponent at the small scales of
non-stationary processes with antipersistent increments is a side effect of the cumulative
summation. This raises further questions how transforming the input time series by taking
differences or by repeated cumulative summation affects the details of the scaling, partic-
ularly at the smallest scales. The scaling at the larger window sizes remains consistent,
regardless whether the time series were constructed by cumulative summation.

For practical purposes it is not only important that the mean scaling exponents converge
to the correct values, but also their variance should be minimal across different realiza-
tions of the same stochastic process. The standard deviations of the scaling exponents
are shown in Fig. 4.3. The standard deviation is estimated by simulating 10 000 samples
for each value of the asymptotic scaling exponent with the three discussed methods for
generating the time series. The fluctuation function is computed separately for each sam-
ple, in order to be able to obtain alpha spectra for each sample. The alpha spectra are
estimated by the Kalman smoother as before, from which the standard deviation is calcu-
lated for each window size. There is no appreciable variation amongst the different time
series generation methods. As expected, the standard deviation increases with increas-
ing window sizes, as the number of available non-overlapping windows is reduced. The
standard deviation decreases towards the extremal detectable DFA1 scaling exponents
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Figure 4.3. The standard deviations of the scaling exponents with different time series
generation methods. Exact fGn and fBm by the Davies-Harte method (a), long-range cor-
related data by Fourier filtering (b), and direct Fourier filtering for the increment process
with 0 < α ≤ 1 and the cumulative sum of this increment process for 1 < α ≤ 2 (c).
In each case 10 000 realizations are simulated for each value of the asymptotic scaling
exponent α. The scaling exponents are calculated as explained in the caption for Fig.
4.1(c).

0 and 2, which is understandable, as at the extremes there is less room for variation.
There is less deviation for stationary processes, particularly for the most antipersistent
fGn, when compared to the non-stationary processes. Maximal standard deviation is
found in non-stationary processes with antipersistent increments.

The effect of the order of DFA detrending on the variance is studied in Fig. 4.4. The
variance is found to increase with increasing order of DFA. Keep in mind that the maxi-
mum scaling exponent that can be detected by DFAn is n + 1, and larger exponents will
saturate at this value. This explains the low variance regions for the larger exponents for
DFA0 and DFA1. The effect of DFA order is further studied in Figs. 4.5 through 4.7 for the
different time series generation methods, together with the consequences of the biased
computation of the averages. The results are compatible with the previous knowledge
that increasing the order of the DFA increases the bias in the fluctuation function. How-
ever, the behavior near the maximal detectable exponent complicates this conclusion.
Fourier filtered samples appear to better approach asymptotic scaling with increasing or-
der of DFA. The bias introduced by improper averaging procedure can be dangerous for
interpreting results of numerical experiments, if it is not properly acknowledged.
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Figure 4.4. The standard deviations of the scaling exponents with different orders of
DFA. For each value of the asymptotic scaling exponent 10 000 realizations of fGn are
simulated by the Davies-Harte method. For 0 < α < 1 the fGn with Hurst parameter
H = α are utilized directly. For 1 < α < 2 cumulative sums of fGn with H = α − 1 are
utilized, resulting in fBm. For 2 < α < 3 the cumulative summation is carried out twice,
corresponding to integrated fBm with H = α − 2. The scaling exponents are calculated
as explained in the caption for Fig. 4.1(c).
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Figure 4.5. Comparison of DFA results for fGn as the increment process with different
orders of DFA. In the upper panels only single fluctuation functions have been computed
for each value of α, as described in the caption for Fig. 4.1(b). In the lower panels average
scaling exponents have been calculated as described in the caption for Fig. 4.1(c).
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Figure 4.6. Comparison of DFA results for Fourier filtering with different orders of DFA.
In the upper panels only single fluctuation functions have been computed for each value
of α, as described in the caption for Fig. 4.1(b). In the lower panels average scaling
exponents have been calculated as described in the caption for Fig. 4.1(c).
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Figure 4.7. Comparison of DFA results for Fourier filtering and cumulative summation
with different orders of DFA. In the upper panels only single fluctuation functions have
been computed for each value of α, as described in the caption for Fig. 4.1(b). In the
lower panels average scaling exponents have been calculated as described in the caption
for Fig. 4.1(c).
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4.2 Heart rate variability

The beating of the heart is regulated by the autonomic nervous system. Heart beats
are not precisely regular, and complex variations are characteristic of a healthy heart.
Alterations in this heart rate variability (HRV) may be indicative of various cardiovascular
diseases and reflect the state of the autonomic nervous system. [3, 51] Intense physical
exercise has also been found to profoundly influence HRV [52].

HRV is studied by analyzing the intervals between subsequent heart beats. These inter-
vals are most accurately obtained from the electrocardiogram (ECG), which is a recording
of the electrical activity in the heart as a function of time. The components present in a
typical ECG are described in Fig. 4.8. The locations of the beats are usually determined
from the R peaks of the QRS complexes, which are the most prominent features of the
ECG and correspond to the depolarization of the ventricles. [51, 53] For the purposes of
this thesis, the interbeat intervals (IBI) are defined as the RR intervals between adjacent
R peaks. Their variability may be quantified by several standardized measures in both
the time- and frequency-domain. Some examples include the standard deviation of all
the intervals, or the power in specific frequency ranges, respectively. [51] However, more
sophisticated tools of time series analysis must be utilized to fully appreciate the complex
fractal-like variations in the beat rate. Straightforward application of the tools is compli-
cated by non-stationarities present in the heart beat recordings. These non-stationarities
give rise to trends that can be accounted for, at least to some extent, by detrended fluctu-
ation analysis, which has become a popular tool for analyzing HRV [2, 3, 13–15, 18, 54].

Conventionally the analysis has been performed by extracting two scaling exponents from
linear fits, for short- (α1) and longe-range (α2) correlations respectively [2]. However, the
extent of these ranges is subjective and the linear two-range model potentially disregards
additional information present in the data. This approach has previously been criticized as
an over-simplification, and alternative methods have been proposed [13–15, 18, 54]. The
tools presented in this thesis are utilized for analyzing the fractal scaling of RR intervals
in different cardiac conditions.

4.2.1 Data and methods

The effect of various heart conditions on the fractal scaling behavior of RR intervals is
studied by utilizing the publicly available databases of PhysioBank [56]. To establish a ref-
erence baseline, the fractal scaling behavior is studied in healthy subjects. The following
pathological conditions are investigated: congestive heart failure (CHF), atrial fibrillation
(AF), and episodic ST segment variation (ST ep.). Examples of RR intervals from patients
with different cardiac conditions are shown in Fig. 4.9, where subtle differences in their
correlations may be observed. All of the examples appear to display at least approximate
self-similarity across the different scales. The CHF case exhibits higher short-term vari-
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Figure 4.8. Illustration of electrocardiogram. The P wave is associated with the depo-
larization of the atria. The QRS complex represents ventricular depolarization, and the T
wave results from the repolarization of the ventricles. [53] Based on real ECG from Ref.
[55].

ability and anticorrelations than the healthy example. The overall variability appears to
be suppressed in the AF example. However, detailed correlations are next to impossible
discern by the eye, and therefore statistical tools are necessary for accurate quantitative
assessment.

The following databases of long-term ECG recordings are utilized in the study: “The MIT-
BIH Normal Sinus Rhythm Database” (nsrdb [55]), “Normal Sinus Rhythm RR Interval
Database” (nsr2db [57]), “The BIDMC Congestive Heart Failure Database” (chfdb [58,
59]), “Congestive Heart Failure RR Interval Database” (chf2db [45]), “The Long-Term AF
Database” (ltafdb [60, 61]), and “The Long-Term ST Database” (ltstdb [62, 63]). These
databases are summarized in Table 4.1.

Table 4.1. PhysioBank databases utilized in the thesis.

Database Condition Number of
subjects

Sampling
frequency

(Hz)

nsrdb Healthy 18 128

nsr2db Healthy 54 128

chfdb CHF 15 250

chf2db CHF 29 128

ltafdb AF 84 128

ltstdb ST ep. 86 250

The already annotated beats of the aforementioned databases are utilized for the analy-
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Figure 4.9. Illustration of heart rate variability and fractal scaling. Shown are examples
of RR interval recordings from the PhysioBank[56] data at multiple scales for healthy (a),
congestive heart failure (b), and atrial fibrillation (c).

sis, removing the necessity of detecting the beats from ECGs. The annotations consist of
the time and type of the beat. Therefore the RR intervals are obtained as the difference in
time between consecutive annotated beats. This raw time series may require preprocess-
ing before the analysis to remove artifacts. The most common type of artifact arises when
beats or entire segments of the ECG are missing, resulting in erroneously long intervals.
Other, more subtle, errors may also be present in the data due to spurious detection of
the QRS complexes. These are filtered by enforcing minimum and maximum limits for
the intervals and their variation between adjacent beats. The intervals are rejected if they
fall outside 200–1500 ms range, or if the difference between adjacent intervals is greater
than 333 ms.

The DFA fluctuation functions are computed in 100 logarithmically distributed window
sizes of 3–30 000 beats. The effect of non-stationarities is studied by performing DFA
with detrending orders 0, 1, 2 and 3. The detrending procedure in conventional DFA is
limited to local polynomial fits that disregard the global behavior of the time series. The
ability of DFA to cope with complex non-linear trends is also disputed [29]. Therefore
explicit detrending of the time series prior to the DFA procedure is also experimented
with. The trend is determined with a moving median filter with kernel sizes of 51, 101 and
501 beats.

The scaling exponent α is determined from the fluctuation functions with three methods:
the traditional linear fits in short (4–16 beats) and long (16–64 beats) range regimes, the
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optimal linear segmentation applied to the whole dataset at once, and the alpha spectra
obtained with the Kalman smoother. The optimal segmentation is performed for both the
whole range of 3–30 000 beats and in the 3–64 beat range for better comparison with
the traditional two-range approach. The minimum window size is 3 beats, as it is the
minimum number of points for which the linear detrending does not trivially remove all
variation. This also enhances the view into the bias at the smallest scales. These scaling
exponents are then utilized as features in the classification task of identifying the different
cardiac conditions. The classification is performed by various algorithms available in
the scikit-learn Python module [64]. Hyperparameters are optimized with a simple grid
search.

4.2.2 Results on heart rate variability

The scaling exponents obtained by the traditional segmentation into short- (4–16 beats)
and long-range (16–64 beats) regimes are shown in Fig. 4.10(a). Shown are the results
obtained by the direct application of DFA1. The explicit detrending by the moving median
filter has minor impact on the results with 51 beats wide kernel. For larger kernel sizes
the effect is minimal. The scaling behavior is very similar for healthy individuals and for
those suffering from ST episodes, and distinguishing these from each other would be
next to impossible by merely analyzing the fractal scaling of RR intervals. On the other
hand, congestive heart failure and atrial fibrillation show distinctive scaling, both from
each other and from the healthy and ST episode classes. This is in agreement with
previous research about the subject [3].

The optimal linear segmentation is performed simultaneously for all the fluctuation func-
tions to obtain consistent feature vectors for the classification. The results in the 3–64
beat range are shown in Fig. 4.10(b) for comparison with the two-range model. The first
segment consists of only 2 beats due to steep increase in the scaling exponents because
of the bias in the fluctuation function at the smallest windows. Curiously the distribution
for AF becomes quite concentrated in this segment, albeit having long tails. This could
be helpful for classification, which is later confirmed by the results in Fig. 4.15(a). Also
CHF appears to be more distinct from the healthy and ST episode cases in the first two
segments, which is affirmed by the classification results. In the longer scale segments the
AF scaling exponents remain at approximately 0.8, while all the other conditions appear
to converge to values slightly above 1.0. It is not immediately clear why the 5th segment
appears in the optimal segmentation. While the medians are approximately equal within
the last two segments, the distributions are thinner in the final segment, which may be
enough to embolden the algorithm for splitting the segments. The results suggest that
the shortest scale is the most important for cardiac classification. This may, at least in
part, be understood by extrinsic trends in the heart rate masking the intrinsic scaling to
some extent at longer scales.

The segmentation is also performed for fluctuation functions calculated on the extended
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Figure 4.10. Scaling exponents of different cardiac conditions in the 3–64 beat range.
The distributions are illustrated by so-called letter-value plots[65]. The largest box depicts
the middle 50 % of the data. Each pair of subsequent smaller boxes depicts 50 % of the
remaining data. The boxes are drawn until the estimated 95 % confidence intervals for the
middle percentile in them would leak into the neighboring boxes. The remaining samples,
indicated by dots, are consider outliers. The widths of the boxes are proportional to the
number of samples inside them. The median is denoted by the black line. Traditional
short- and long-range scaling exponents are shown in (a) and the optimal segmentation
in (b). The scaling exponents are estimated from DFA1 fluctuation function.

3–30 000 beat range. For such long scales detrending is increasingly important. There-
fore explicit detrending is also considered, which is accomplished by determining the
trend by a moving median filter with 101 beats wide kernel. The optimal segmentation
with such detrending is illustrated in Fig. 4.11. The desirability plateaus at 3 segments
but rises to the optimum at 5 segments. This may look confusing considering the pairs
of nearly identical average slopes at the extremities of the fluctuation functions in Fig.
4.11(b). However, one must keep in mind that the segmentation simultaneously takes
into account the individual variability of each fluctuation function, which may not be obvi-
ous in averages.

The distributions for the individual scaling exponents are presented in Fig. 4.12(a) for
the actual RR intervals and in Fig. 4.12(b) for these detrended RR intervals. In (a) the
shortest range (3–19 beats) scaling exponents are very similar to those of the traditional
short-range alphas. However, the next range extends quite a bit further than the traditional
long-range regime, and the separation between the groups is reduced. At even larger
scales the groups remain approximately merged. The variance is also increased in the
largest segment, possibly due to the statistical uncertainties in the fluctuation function.
These findings support the hypothesis for the preeminence of the shorter scales. This is
evident in the plummeting classification scores in Fig. 4.15(c), especially for CHF.

The situation is altered by the explicit detrending. The first two segments are very sim-
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Figure 4.11. Optimal segmentation for detrended RR intervals in the 3–30 000 beat
range. The RR intervals are detrended by a moving median filter with 101 beats wide
kernel. In (a) the total RSS and desirability are shown relative to their maximum values.
In (b) the individual fluctuation functions are shown by the semi-transparent black lines.
The thick colored lines depict the optimal segmentation, and their slopes are the averages
of the corresponding slopes in the individual fluctuation functions. The fluctuations are
computed by DFA1.

ilar to the traditional short- and long-range results. In fact the classes are slightly more
discernible in the corresponding larger scale (16-77 beats) segment. The detrending
removes correlations in the mid-range (85–1156 beats) segment that includes the char-
acteristic scale (101 beats) of the filtering kernel. At larger scales the correlations are
restored but they remain stationary and the classes are more distinct than without de-
trending. This suggests that the detrending is successful at least to some extent. The
classification results of Fig. 4.15(d) are quite similar to the two-range model, except that
particularly the CHF cases become easier to distinguish.

The shared segmentation is useful for classification. However it could be beneficial to
perform the analysis separately for different cardiac conditions to establish characteristic
crossovers and segments. Additionally, individual segmentation could yield distributions
for these traits.

The most interesting results are revealed by the full alpha spectra obtained by the Kalman
smoother methods. The spectra for different orders of DFA are shown in Fig. 4.13. It is
immediately clear that the non-stationary nature of the RR intervals cannot be analyzed
by traditional non-detrending fluctuation analysis methods, including DFA0. Increasing
the order of the DFA also increases the bias in small windows, and also the strength
of the “oscillations” in the spectra are enhanced, along with variance. The peaks of the
oscillations also shift slightly to larger scales as the order of DFA is increased. This
distortion in DFA scale is theoretically predicted [30], which complicates the interpreta-
tion of crossovers in DFA. The spectra of CHF patients is particularly intriguing and two
exponents are clearly not sufficient to fully describe it.

The number of patients is sufficient to attain accurate averages but individual variability
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Figure 4.12. Scaling exponents of different cardiac conditions in the optimally segmented
3–30 000 beat range. The distributions are illustrated by so-called letter-value plots[65].
The largest box depicts the middle 50 % of the data. Each pair of subsequent smaller
boxes depicts 50 % of the remaining data. The boxes are drawn until the estimated 95
% confidence intervals for the middle percentile in them would leak into the neighboring
boxes. The remaining samples, indicated by dots, are consider outliers. The widths of
the boxes are proportional to the number of samples inside them. The median is denoted
by the black line. In (a) the DFA1 fluctuation function is computed from the actual RR
intervals and in (b) the RR intervals were explicitly detrended by a moving median filter
with 101 beat wide kernel.

is relatively large, which is expected to complicate classification and diagnosis. It should
be noted that the average scaling is computed from the individual fluctuation functions
of each patient. As was discussed in Sec. 2.2 this is a biased average. This may be
justified by the observation in Fig. 4.11 that the individual fluctuation functions span
almost two orders of magnitude at each scale. Therefore if a common fluctuation function
was calculated the weighting for different patients would vary wildly.

Whether the analysis is performed by consider all beat-to-beat intervals or merely normal-
to-normal interval is not found to significantly affect the average scaling behavior. Like-
wise, the mean alpha spectra are virtually equivalent for the 1st and 2nd order Kalman
smoother models. However, individual spectra are smoother when utilizing the 2nd order
model.

As it is uncertain whether the polynomial detrending in DFA is suitable for unknown trends,
the RR intervals are also explicitly detrended by the moving median filter. The mean
alpha spectra of the different cardiac conditions are illustrated in Fig. 4.14 with different
kernel sizes for this filter. It is interesting to notice that the detrending removes long
range correlations for scales roughly the size of the kernel. However, after this crossover
point the different cardiac conditions become more clearly separated than without the
detrending. This raises the question whether this is a real effect that has been hidden by
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Figure 4.13. Alpha spectra of different cardiac conditions with different orders of DFA.
The darker shaded areas bounded by the solid lines denote the standard error of the
mean, and the lighter regions enclosed by the dashed lines indicate the standard devia-
tion. The order of the DFA is varied across the panels, and shown are results for DFA0
(a), DFA1 (b), DFA2 (c) and DFA3 (d).

the non-stationarities in the RR intervals, or merely an artifact arising from the method.

The compelling consideration is whether these methods facilitate better classification of
the cardiac conditions. Support vector machines with radial basis functions[64] provided
overall the most consistent classification results from the considered algorithms. These
results are summarized by Matthews correlation coefficients (MCC) in Fig. 4.15. For a
binary classification problem the MCC is defined as

MCC =
T0T1 − F0F1√

(T0 + F0) (T0 + F1) (T1 + F0) (T1 + F1)
, (4.3)

where T0 and T1 are the numbers of correct predictions for the two classes, and similarly
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Figure 4.14. Alpha spectra of different cardiac conditions with explicitly detrended RR
intervals. The darker shaded areas bounded by the solid lines denote the standard error
of the mean, and the lighter regions enclosed by the dashed lines indicate the standard
deviation. In (a) the analysis has been performed on the actual RR intervals and in the
other panels the RR intervals are first detrended by a moving median filter with a window
lengths of 51 (b), 101 (c) and 501 (d) beats.

F0 and F1 for their incorrect predictions. The MCC is limited to the interval between
−1 and 1. A value of 1 means perfect classification, 0 implies no better than random
prediction, and −1 indicates complete misclassification. The advantage of MCC over
simpler statistics, such as the percentage of correctly classified samples (accuracy), is
that it is a consistent measure even when the sizes of the two classes are imbalanced.
[66, 67] While the MCC may be considered a good compromise, there is no perfect
statistic for summarizing the full confusion matrix by a single number. As an example,
the complete classification results by the 1st order Kalman smoother alpha spectra are
shown in Fig. 4.16.
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As can be seen in Fig. 4.15(a), the more complete analysis by the methods of this thesis
suggests that even in the 3–64 beat range there is more information available than what
is attainable by the traditional two-range scheme. Both of the new methods outperform
the traditional method. On average the Kalman smoother alpha spectra surpasses the
optimal segmentation, which is expected by the virtue of the spectra containing more
features for classification. It varies across the classification pairs whether the 1st or 2nd
order Kalman smoother model is better. This may be understood due to the smoother
spectra of the 2nd order model occasionally suppressing noise and sometimes actual
features.

When the explicit detrending is applied in Fig. 4.15(b) the results are somewhat mixed,
as it benefits the classification for some pairs and hinders for others. Particularly the
overall classification is enhanced for the optimal segmentation but deteriorated for the
Kalman smoother methods. This may hint that for classification purposes the shorter
range scaling is more important, as the density of features is larger at the longer scale for
the Kalman smoother alpha spectra due to the logarithmic scale. This is further exacer-
bated by the mutual removal of long-range correlations close to the 100 beat regime due
to the detrending.

Utilizing the whole range of 3–30 000 beats for classification reveals the intriguing obser-
vation in Fig. 4.15(c) that the results are actually worsened2. This corroborates the signif-
icance of the shorter scale for classification. However, employing the explicit detrending
results in substantial improvement in Fig. 4.15(d). A captivating interpretation for this
would be that the clearer distinction revealed by the detrending in the longest ranges of
scaling in Fig. 4.14 is a real phenomenon. This is plausible as any extrinsic variations
in the heart rate would result in non-stationarities which could be reasonably assumed to
keep the scaling exponent slightly above one. Therefore the explicit detrending could be
expected to reveal the intrinsic long-range correlations for the different cardiac conditions.

The relevance of the detrending, and the most appropriate method for doing so, remains
an open research question. The results also strongly imply that certain ranges of scales
are notably more important for classification, and consequently may be considered char-
acteristic features of these cardiac conditions. While the shortest scale seems to be the
most important, additional research is required to determine the most informative ranges
of scaling. This kind of feature selection is a hot topic in machine learning [68].

As another example for future research, the new methods may also be utilized for the
accurate study of the dynamical changes in the scaling behavior. An example of such an
alpha landscape is shown in Fig. 4.17, which illustrates the daily fluctuations in the fractal
scaling of heart rate variability. Physical exercise and sleep phases are discernible.

2The short- and long-range scaling exponents are still extracted from the same ranges as before, so those
results remain the same, except for small variations due to less window sizes being present for the linear
regression instead of the full 4–64 beat range.
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Figure 4.15. Matthews correlation coefficients for binary classification of cardiac con-
ditions by their fractal scaling. The classification is performed by support vector ma-
chines with radial basis functions and the hyperparameters are optimized by a simple
grid search. Different methods for estimating the scaling exponents are shown on the
horizontal axis as follows: traditional short- and long-range (i), optimal linear segmen-
tation (ii), 1st order Kalman smoother (iii), and 2nd order Kalman smoother (iv). The
panels (a) and (b) show the results when the maximum scale is limited to 64 beats for
consistency with the traditional short- and long-range scaling exponents, and in (b) the
explicit detrending is performed prior to the DFA by the moving median filter with 101
beats wide kernel. In panels (c) and (d) the maximum scale is 30 000 beats, and the
explicit detrending is again employed in (d).
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Figure 4.16. Confusion matrices for binary classification of cardiac conditions by their
fractal scaling. The features utilized for the classification are the alpha spectra obtained
by the 1st order Kalman smoother method in the 3–64 beat range. The results are illus-
trated as relative confusion matrices where the rows correspond to the correct classes
and the columns are the predicted classes. Above each matrix also the accuracy (Acc.)
and the Matthews correlation coefficient (MCC) are shown.
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5 CONCLUSIONS

The methods developed and described in this thesis are found to be useful tools for
deciphering the DFA scaling exponents. Particularly the alpha spectra obtained by the
Kalman smoother is useful for uncovering details in the scaling behavior that would re-
main hidden from simple linear regression estimates. The advantages of this Kalman
smoother alpha spectra estimator over earlier approaches, such as local-scale exponents
[14] and the alpha-beta filter [13], are its parameter-free implementation and robustness
in the presence of statistical noise in the fluctuation functions.

The method for finding optimal linear segmentations is practical when complete alpha
spectra would be largely redundant and only a few point estimates would suffice. Other
segmentation methods exist that provide mathematically more rigorous approach to de-
termining crossovers in the fluctuation function [16]. The versatility of the linear integer
programming framework may, however, be beneficial by providing easily customizable
approach that can be adapted to include additional constraints. An example of this is
already presented, as the method is readily generalized to handle groups of fluctuation
functions to provide globally optimal segmentations. This is attractive for, e.g., acquiring
mutually consistent feature vectors for machine learning applications. The optimization
procedure could also be modified by attempting to maximize the Matthews correlation co-
efficients of the classification task instead of minimizing for the squared residuals of linear
regression. This could be more beneficial from diagnosis and feature selection point of
view.

It is also clear that the fractal scaling of RR intervals is not sufficient for distinguishing all
cardiac conditions, such as ST episodes. Therefore other time series from ECGs could
also be exploited for the analysis, such as QT or ST intervals. Such approaches could
also benefit from additional investigation by detrended cross-correlation analysis [69] or
transfer entropy studies [70]. The classification of the heart diseases in this thesis is
largely exploratory to demonstrate the viability of the new methods. A far more sophis-
ticated foray into this field is warranted. Integrating the methods of this thesis into an
all-encompassing cardiac health diagnostics package is an ambition for tomorrow.

After establishing its validity, the Kalman smoother method for the alpha spectra may
be utilized for various purposes in future studies. For instance, it may be employed for
extracting temporal landscapes of the scaling exponent both as a function of the scale and
time. As was seen in Fig. 4.17, physical exercise leaves a distinct mark in the scaling.
This is encouraging for applications in sports analytics. Another possibility arises in the
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feasibility of obtaining better estimates for the Hurst surfaces of multiscale multifractal
analysis [41].

Previous studies may also have overlooked insights hidden in the details that would be
revealed by the techniques of this thesis. It was noticed that patients suffering from
congestive heart failure exhibit peculiar scaling in their heart rate variability that warrants
further research. The results also suggest that detrending in the context of HRV could
benefit from additional study. Specifically, it would appear that explicit detrending of the
RR intervals enhances the discernibility of long range correlations in different cardiac
conditions. This alludes that the piecewise polynomial detrending embedded in DFA is
not sufficient for eliminating external trends in the heart rate.

The alpha spectra is an invaluable tool for verification of simulated results when com-
bined with the analytical expressions [21] for the expected DFA fluctuation function. This
provided key insight into the characteristics of different time series generation methods.
Proper care must be taken if conclusions are to be drawn from numerical experiments
with simulated data. It is plausible that the limitations of Fourier filtering have contributed
to the belief that DFA is not particularly accurate for highly anticorrelated time series.

The theoretical results of Ref. [21] may be useful starting point for obtaining analytical
expressions for the variance of the DFA fluctuation function, and expanding them for the
detrended multifractal and cross-correlation formalisms could be fruitful. Current analysis
could already be enhanced by studying the expected behavior of the fluctuation function
across all the scales for different processes. Combined with the alpha spectra, it may be
possible to devise an iterative correction for the bias in the fluctuation function. Another
possibility is to change the viewpoint and consider the inverse problem: Employing ro-
bust estimation procedure for the autocovariance function from the fluctuation function.
However, this is not trivial, as it is ill-posed problem that requires regularization due to the
corresponding linear system being underdetermined.

It is worth noting that while this thesis focuses on applications in computational cardiology,
the methods themselves are generally applicable to time series analysis, and even more
universally to any tasks that depend on estimating local slopes of some variable. In
particular DFA is intimately linked to diffusion, and the enhanced analysis aided by the
theoretical understanding of the fluctuation function may provide a robust framework for
the investigation of the omnipresent diffusion processes.

Perhaps the most important conclusion to be drawn from experimenting with the alpha
spectra is that the details of the fractal scaling as a function of the scale are important,
and that these details may be neglected if only considering asymptotic behavior. The
analysis so far has barely scratched the surface and raises more interesting research
questions than it has been able to answer. As a final note, the implemented methods will
be published as open source software at a later date in accordance to the principles of
open science.
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