

VILI VIITAMÄKI

HIGH-LEVEL SYNTHESIS IMPLEMENTATION OF HEVC INTRA

ENCODER

Master of Science Thesis

Examiner: Ass. Prof. Jarno Vanne
Examiner and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering on 28th
March 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

VILI VIITAMÄKI: High-Level Synthesis Implementation of HEVC Intra Encoder
Tampere University of Technology
Master of Science Thesis, pages 45
October 2018
Master’s Degree Programme in Information Technology
Major: Embedded Systems
Examiner: Assistant Professor Jarno Vanne

Keywords: High Efficiency Video Coding (HEVC), High-Level Synthesis (HLS),
Intra coding, Video encoder, Field programmable gate array (FPGA)

High Efficiency Video Coding (HEVC) is the latest video coding standard that aims to

alleviate the increasing transmission and storage needs of modern video applications.

Compared with its predecessor, HEVC is able to halve the bit rate required for high qual-

ity video, but at the cost of increased complexity. High complexity makes HEVC video

encoding slow and resource intensive but also ideal for hardware acceleration.

With increasingly more complex designs, the effort required for traditional hardware de-

velopment at register-transfer level (RTL) grows substantially. High-Level Synthesis

(HLS) aims to solve this by raising the abstraction level through automatic tools that gen-

erate RTL-level code from general programming languages like C or C++.

In this Thesis, we made use of Catapult-C HLS tool to create an intra coding accelerator

for an HEVC encoder on a Field Programmable Gate Array (FPGA). We used the C

source code of Kvazaar open-source HEVC encoder as a reference model for accelerator

implementation. Over 90 % of the implementation including all major intra coding tools

were implemented with HLS, with the rest being ready made IP blocks and hand-written

RTL components.

The accelerator was synthesized into an Arria 10 FPGA chip that was able to accommo-

date three accelerators and associated interface components. With two FPGAs connected

to a high-end PC, our encoder was able to encode 2160p Ultra-High definition (UHD)

video at 123 fps. Total FPGA resource usage was around 80 % with 346k Adaptive logic

modules (ALMs) and 1227 Digital signal processors (DSPs).

TIIVISTELMÄ

Vili VIITAMÄKI: HEVC intra kooderin toteuttaminen korkean tason synteesillä
Tampereen teknillinen yliopisto
Diplomityö, 45 sivua
Lokakuu 2018
Tietotekniikan DI-tutkinto-ohjelma
Pääaine: Sulautetut Järjestelmät
Tarkastaja: Apulaisprofessori Jarno Vanne

Avainsanat: High Efficiency Video Coding (HEVC), High-Level Synthesis (HLS),
Intra koodaus, Videonpakkaus, Field programmable gate array (FPGA)

High Efficiency Video Coding (HEVC) on viimeisin videonpakkausstandardi, joka on

kehitetty uusien multimediasovellusten kasvaviin tarpeisiin. HEVC:n tavoitteena on puo-

littaa videon tarvitsema bittinopeus edeltävään videonpakkausstandardiin verrattuna hei-

kentämättä kuvanlaatua. HEVC:n suuri kompleksisuus tekee HEVC videon pakkaami-

sesta käytännön sovelluksissa hidasta ja resursseja vaativaa. Tästä johtuen HEVC on hyvä

kandidaatti rautakiihdytettäväksi.

Entistä monimutkaisempien ja kasvavien mallien vuoksi perinteinen RTL (Register-

Transfer Level) tason laitteistokehitys on yhä vaativampaa. High-Level Synthesis (HLS)

-työkalut yrittävät ratkaista tämän nostamalla laitteistokehityksen abstraktiotasoa ja auto-

matisoimalla RTL-tason koodin generoinnin korkeamman tason mallista, kuten esimer-

kiksi C ja C++ koodista.

Tässä työssä käytettiin Catapult-C HLS -työkalua luomaan ohjelmoitavalle logiikkapii-

rille (FPGA) kiihdytin, joka nopeuttaa HEVC:n intra pakkausta. Lähtökohtana työssä

käytettiin Kvazaar HEVC kooderin avointa C kielistä lähdekoodia. Kaikki merkittävim-

mät HEVC:n koodaustyökalut toteutettiin HLS-työkalua käyttäen niin, että FPGA:lla

kyetään suorittamaan kaikki raskas laskenta.

Toteutettu kiihdytin syntesoitiin Arria 10 FPGA piirille. Tälle piirille oli mahdollista si-

sällyttää kolme kiihdytintä rajapintakomponenttien lisäksi. Järjestelmää testattiin käyttä-

mällä kahta FPGA-korttia ja yhteensä kuutta kiihdytintä tehokkaassa testikoneessa. Tällä

kokoonpanoilla saavutimme pakkausnopeudeksi 123 kuvaa sekunnissa, joka on melkein

seitsemän kertaa nopeampi kuin kiihdyttämätön järjestelmä. Kolmella kiihdyttimellä yh-

den FPGA:n resurssikäyttö oli noin 80 %, sisältäen 346k logiikkaelementtiä ja 1227 sig-

naaliprosessoria.

PREFACE

This Master of Science Thesis was written in the Laboratory of Pervasive Computing at

Tampere University of Technology as a part of a research.

I want to thank my examiner Jarno Vanne for providing me the opportunity to work in

the university and for guidance during and before this Thesis. I would also like to thank

Panu Sjövall and all others who help me during this Thesis.

Tampere, 22.10.2018

Vili Viitamäki

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 2

2.1 High-Level Synthesis (HLS) .. 2

2.2 Kvazaar... 3

2.3 Verification... 3

2.4 Design flow .. 4

2.5 Field Programmable Gate Arrays (FPGAs) ... 5

3. HIGH EFFICIENCY VIDEO CODING ... 6

3.1 Overview .. 6

3.2 Intra Prediction ... 8

3.3 Transform ... 9

3.4 Quantization ... 10

3.5 Inverse Transform .. 10

3.6 Entropy Coding .. 11

4. SYSTEM OVERVIEW ... 12

4.1 User Space .. 12

4.2 Kernel Space .. 13

4.3 PCIe and DMAs ... 14

4.4 FPGA Memories .. 15

5. INTRA CODING ACCELERATOR .. 17

5.1 Intra coding control .. 18

5.2 Get Border .. 20

5.3 Intra Prediction ... 22

5.3.1 Control ... 23

5.3.2 Predictions .. 23

5.3.3 Mode selection ... 25

5.3.4 Prediction Buffer .. 26

5.4 Transform ... 27

5.4.1 32-point DCT block ... 27

5.4.2 4-point DST block .. 29

5.5 Quantization & Dequantization .. 30

5.6 Inverse Transform .. 30

5.7 Reconstruction .. 31

5.8 Coefficient Cost.. 32

5.9 CU Stack .. 33

5.9.1 Stack Push .. 34

5.9.2 Stack Pull ... 35

5.10 Transpose ... 36

5.10.1 Transpose Push .. 37

5.10.2 Transpose Pull .. 38

6. ANALYSIS ... 39

6.1 Synthesis results ... 39

6.2 Performance ... 41

6.3 Comparison to Related Work ... 44

7. CONCLUSION ... 45

REFERENCES .. 46

LIST OF ABBREVIATIONS AND SYMBOLS

ALM Adaptive logic module

ALUT Adaptive look-up table

ANSI American National Standards Institute

ASIC Application specific integrated circuit

AVC/H.264 Advanced Video Coding

BAR Base address register

CABAC Context-adaptive binary arithmetic coding

CB Coding block

CTB Coding tree block

CTU Coding tree unit

CU Coding unit

DCT Discrete cosine transform

DMA Direct memory access

DSP Digital signal processor

DST Discrete sine transform

FDQ Frequency dependent quantization

FIFO First in, first out

FPGA Field-programmable gate array

FPS Frames per second

HDL Hardware description language

HEVC/H.265 High Efficiency Video Coding

HLS High-level synthesis

HM HEVC Test Model

HSSI High-speed serial interface

IDCT Inverse discrete cosine transform

IDST Inverse discrete sine transform

IO Input/output

JCT-VC Joint Collaborative Team on Video Coding

LE Logic element

LUT Look-up table

MPEG Moving Picture Experts Group

PB Prediction block

PCIe PCI Express (Peripheral Component Interconnect Express)

PLL Phase-locked loop

PU Prediction unit

QP Quantization parameter

RTL Register-transfer level

SAD Sum of absolute differences

SSD Sum of squared differences

TB Transform block

TU Transform unit

UHD Ultra-high-definition

VCEG ITU-T Video Coding Experts Group

VHDL Very high speed integrated circuit hardware description language

WPP Wave-front parallel processing

1. INTRODUCTION

Internet video traffic is forecast to grow threefold in five years from that of 2015 and

video is estimated to account for 82% of all global consumer Internet traffic by 2020 [1].

This growth comes from new end users and multimedia applications entering the market

but also from higher video dimensions, resolutions, frame rates, and color depths. Despite

the fast progress of network and storage capacities, rapidly increasing volume of video

makes more efficient video compression inevitable.

The latest international video coding standard, High Efficiency Video Coding

(HEVC/H.265) [2] is developed to address the increasing transmission and storage needs.

It aims to halve the bit rate compared with the current mainstream Advanced Video Cod-

ing (AVC/H.264) [3] standard without sacrificing video quality. However, higher com-

pression rate comes at a cost of increased complexity in encoders and decoders. In prac-

tice, the complexity of encoder tends to be at least doubled [4].

Due to complexity of HEVC, encoding a high-quality video is slow and requires a lot of

processing power. Therefore, HEVC encoder is an ideal candidate for hardware acceler-

ation. The target of this Thesis is to speed up Kvazaar HEVC encoder [5] with a hardware

accelerator implemented on Field Programmable Gate Array (FPGA). Kvazaar is an

award-winning open-source HEVC encoder. It is written in low-level C language which

acts as a good starting point for the implementation work.

High-Level Synthesis (HLS) will be used to accelerate hardware development. Hand-writ-

ten Register-Transfer Level (RTL) could offer better results, but it could easily increase

tenfold the development and verification effort required. Implementing a full hardware

encoder is the ultimate goal of the work described in this Thesis, but due to time con-

straints the scope of this Thesis is limited to acceleration of HEVC intra encoding.

The structure of this Thesis is as follows: Chapter 2 introduces HLS, Kvazaar, and applied

design flow and verification strategies. Chapter 3 presents intra encoding in HEVC. Chap-

ter 4 introduces the structure of the accelerator system and Chapter 5 shows the Intra

coding accelerator. Chapter 6 presents the results of the work, including synthesis results

and encoding performance. Finally, Chapter 7 concludes the Thesis.

2. BACKGROUND

This chapter introduces High-Level Synthesis (HLS), Kvazaar, and the used design and

verification flows.

2.1 High-Level Synthesis (HLS)

HLS is an automated design process where RTL hardware description language (HDL)

code is automatically generated from a high-level program code like C or C++ by HLS

tools. This has many advantages compared with traditional HDL design. Most notably

HLS offers faster design and verification times and higher design reusability [6].

A traditional RTL based hardware design flow usually begins by creating executable soft-

ware models from a specification. This model is used to validate and fine-tune the desired

behavior. Once tested, the design of the actual hardware implementation can begin. In an

implementation phase, the used architecture is defined, and the implementation is hand-

written in HDL code for that specific architecture [6]. However, finding a suitable archi-

tecture is not a simple task and hand writing the implementation is error-prone that re-

quires a lot of testing, leading into a cycle of bug reporting and fixing.

With HLS, an executable model can be used to generate a hardware model. If the execut-

able model is built with HLS, it can also function as source for RTL synthesis. No separate

hardware implementation is needed. Although this will require model to be written with

hardware and tool limitations in mind and will most like require specific hardware related

optimizations. In addition, the same tools can be used to verify design functionality and

the generated RTL code with software test benches. If the underlying architecture changes

later, new RTL can be easily regenerated making the HLS implementation architecture

independent. Even during this work, the design has moved from one FPGA to another a

handful of times and without any changes in code.

In this Thesis, the HLS tool used is Catapult-C version 10.0a [7]. Catapult-C is developed

by Mentor Graphics and it can generate both Very High Speed Integrated Circuit Hard-

ware Description Language (VHDL) and Verilog code from American National Stand-

ards Institute (ANSI) C, C++ and SystemC codes. The other notable HLS tools competing

in the market include Synphony C Compiler from Synopsys [8], Vivado High-Level Syn-

thesis from Xilinx [9] and Intel’s HLS Compiler [10]. Catapult-C was selected by the

project management and the comparison of the HLS tools is outside of the scope of this

Thesis.

2.2 Kvazaar

Kvazaar [5] is an academic open-source HEVC encoder. It has been developed from

scratch in C by Ultra Video Group at Tampere University of Technology. Kvazaar has

five main development goals: 1) coding efficiency close to HEVC Test Model (HM) ref-

erence encoder [11]; 2) easy portability to various platforms; 3) real-time coding speed;

4) optimized computation and memory resources; and 5) well-documented source code

[5].

Since Kvazaar is written in C, a language supported by HLS, it works well as a reference

implementation for the hardware development. For this reason, Kvazaar functions are

used as starting points for hardware blocks and as reference models for verification. Dur-

ing the work done in this Thesis, Kvazaar has been updated multiple times and new up-

dates were periodically included to hardware design as well. The final version used in this

Thesis was v1.2.0.

2.3 Verification

Two kinds of verification strategies were used in this work. Individual modules were

verified against the reference software implementation with Catapult-C and the whole

FPGA system was tested against Kvazaar software implementation.

Catapult-C supports both functional verification and RTL simulation. Functional verifi-

cation is faster, and it is run before synthesis, but it is untimed. The RTL simulation re-

quires full synthesis and system simulation where each signal can be examined with a

wave viewer. The functional verification was found to be sufficient in most cases as the

RTL simulation could not find any new functional errors. RTL simulation was only used

when timing problems, like wrong transaction orders, were discovered.

With Catapult-C, the module-level verification effort becomes minimal since most blocks

required only a small C testbench. The testbenches were mostly wrappers that feed data

to the hardware and software blocks and compare the outputs. The input data was depend-

ent on the module, either values were randomly generated or dumped from Kvazaar. To

further decrease the verification effort, the same testbench were used for both, the func-

tional and RTL level testing.

In the full system testing, the design was synthesized and flashed to an FPGA chip. At

first, Arria V [12] development board was used. With ARM System on Chip (SoC) pro-

cessor, the testing was fast due to a rapid system bootup. Peripheral Component Inter-

connect Express (PCIe) interface and parallel processing could not be tested efficiently

on ARM, so later the testing moved to Arria 10 PCIe card. In both cases, the accelerated

Kvazaar was tested with the same input data as the reference software and differences

were reported, as the results should be identical. During this Quartus Signal Tap tool were

used to inspect internal signals if error were discovered.

2.4 Design flow

Figure 1. Tools in different steps of design flow

In this work HLS design flow from software to hardware, started from Kvazaar source

code that synthesized to RTL with Catapult-C and to the hardware in Quartus, pictured

in Figure 1. Implementation of a hardware block begins by separating the desired func-

tionality from the source code. This is usually almost done as different coding tools are

usually written as separate functions or in some cases a combination of them. First step

to this is to modify the code to work with Catapult-C. This requires rewriting the code to

work as a continuous loop with streaming input and outputs, removing unsupported code

functionality, and optimizing basic operations. Code functionality that cannot be synthe-

sized, like dynamically allocated memory, unbounded function calls, and recursion, are

removed or rewritten to use their static counterparts. Basic optimizations techniques are

used with all blocks. The simplest and usually very efficient optimization was to change

variables to bit-accurate data types. Using this approach, Catapult-C can use smaller op-

erators instead of defaulting to the worst-case scenario. Usually, more innovative optimi-

zation methods were required for the best results, like algorithmic changes or reusing

existing logic.

Next, the modified code is synthesized to RTL code. During this step, the used architec-

ture is specified so that Catapult-C can map logical operations to physical resources. Ar-

rays are mapped to registers or on-chip memories and arithmetic operators to adders, mul-

tipliers or any other resources assigned by the tool. With FPGAs, other more advanced

operations can be also mapped to dedicated hardware resources if available on the chip.

In the third step, the synthesized RTL code is cleaned with a custom Python script. A

code synthesized by Catapult-C uses a lot of generic sub-components with generic names.

When multiple synthesized modules are added to a single project, the generic names can

collide and cause errors. A small custom Python script is used to rename these modules

to avoid inconsistencies with the following tools in the flow.

Along with the HLS generated blocks, readymade IP components from the FPGA vendor

are used to utilize other FPGA resources. These blocks are instantiated and configured in

Quartus Platform Designer. The tools will then automatically handle internal synthesis

and configurations options for these components. The blocks are connected together with

a hand-written VHDL top-level module. As a final step, the system is compiled in Quartus

that generates a bit-file that can be used to program the FPGAs.

2.5 Field Programmable Gate Arrays (FPGAs)

FPGAs are re-programmable logic circuits that are used in hardware development, pro-

totyping and in commercial products. They offer fast development cycles and exhaustive

support for hardware debugging. In this Thesis, the results are based on real FPGA exe-

cutions instead of calculations or simulations.

In this Thesis, the FPGA designs are implemented on readymade FPGA development

boards manufactured by Intel (formerly Altera) and its partners. The development begun

with Cyclone II FPGA in DE2 development board. When more logic elements (LEs) were

needed the development moved to Arria II GX FPGA Development Kit. When the devel-

opment progressed, the lack of an integrated CPU became a limiting factor. Then a Cy-

clone V FPGA on a VEEK board with an ARM Cortex-A9 processor was took to use.

When again more LEs were needed the development moved to Arria V FPGA with the

same ARM processor but with more logic resources.

In the final step, Arria 10 GX FPGA Development Kit was taken in use. The software

processing was moved from onboard CPU to a host PC and the integrated processor was

replaced with a PCIe interface. The final executions were run with commercial Arria 10

PCIe cards.

3. HIGH EFFICIENCY VIDEO CODING

This chapter presents an overview of HEVC and its intra encoding loop.

3.1 Overview

High Efficiency Video Coding (HEVC) is the latest video coding standard developed by

Joint Collaborative Team on Video Coding (JCT-VC) as a collaboration of ISO/IEC Mov-

ing Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG)

[13]. HEVC was published in January 2013 and it is designed to meet the transmission

and storage needs of modern video applications. It aims to halve the bit rate compared

with its predecessor Advanced Video Coding (AVC/H.264) while still sustaining the

same subjective quality. The efficiency comes at a cost of coding complexity. HEVC

encoding and decoding complexities tend to be at least 1.5 times higher than those of

AVC [14].

Figure 2. HEVC encoder model [14].

Like prior video coding standards, HEVC uses hybrid video codec approach pictured in

Figure 2. This model originates from H.261 [15], the first member of the H.26x family of

video coding standards. The hybrid video codec scheme is composed of intra/inter pre-

diction, transform coding and entropy coding.

Encoding operation starts by splitting an image/frame to square blocks that are individu-

ally coded and added to the encoded bit-stream. Actual block coding starts with the pre-

diction phase, where an estimation of the image is generated by using pre-defined predic-

tion methods.

Prediction can be done either by using intra prediction (Pintra) or inter prediction (Pinter)

modes. Intra prediction [16] uses spatial redundancy to compress blocks in individual

pictures. Inter prediction exploits temporal redundancy in video to compress similarities

between different video frames.

The prediction is subtracted from the original source image to generate a residual image

(D) that contains the differences between prediction and the original image. Transform

block (T) transforms the residual image from spatial domain to frequency domain coeffi-

cients (TCOEFFs). In frequency domain, high-frequency components of the video can be

removed in Quantization block (Q) without significant quality loss, since human eye is

less sensitive to the high-frequency components. In the last phase, the Quantized

TCOEFFs and prediction modes are entropy coded (EC) to generate an encoded bit-

stream.

The encoding loop continues with Inverse Quantization (IQ) and Inverse Transform (IT)

phases where quantized TCOEFFs are dequantized and transformed back to spatial do-

main. This generates a reconstructed version of the residual image that is added to the

prediction to generate the final reconstruction image. This corresponds to the image gen-

erated and displayed by the decoder in playback. In encoders, reconstructed image is gen-

erated because it is needed in the following intra and inter prediction phases, so that the

reference picture stays the same in the encoder and the decoder.

In HEVC, a traditional macroblock structure of AVC is replaced with a more flexible

block partitioning scheme with four different coding units: Coding tree unit (CTU), Cod-

ing unit (CU), Prediction unit (PU) and Transform unit (TU). Each of these consists of

one luminance and two chrominance blocks that cover the corresponding block areas:

Coding tree blocks (CTB), Coding blocks (CB), Prediction blocks (PB) and Transform

blocks (TB).

Each video frame is partitioned into CTUs that can be 64 × 64, 32 × 32 or 16 × 16 pixels

in size. Larger sizes usually provide better compression rates [13]. CTU is a quadtree

structure where the root CU can be recursively split into four smaller CUs down to an 8

× 8 -pixel CU. Each CU in the CTU is predicted and transformed individually.

CUs can also be further split into different sized and shaped PUs and TUs for prediction

and transformation phases. In all-intra coding, PUs and TUs are always the same size as

the corresponding CU, despite that the smallest 8 × 8 CU can be further split to four 4 ×

4 -pixel PUs and TUs. Inter coded CUs provide PUs and TUs with more split options,

including non-square shapes, but inter coding is out of the scope of this Thesis.

3.2 Intra Prediction

Figure 3. HEVC intra prediction modes for 8 × 8 PU [13].

In intra coding, the prediction phase exploits a spatial redundancy, i.e., the correlation of

adjacent pixels within one frame. A prediction is calculated by extrapolating neighboring

pixels. In this way, only the prediction mode needs to be encoded in bit-stream as the

prediction can be calculated from previously decoded pixels.

The HEVC has three intra prediction modes: planar, DC and angular. Angular modes

support 33 different angles of prediction, so the total number of different prediction

modes is 35. All prediction modes can be used with all PU sizes, from 4 × 4 to 32 × 32.

Figure 3 displays how different predictions are formed for a sample 8 × 8 PU.

HEVC planar prediction was specified to estimate smooth areas and preserve continuities

along the block edges. It is obtained averaging a horizontal and vertical linear prediction

on sample basis [13]. DC prediction is for a uniform area and it is defined as an average

of the reference samples.

Figure 4. Generation of angular intra prediction [13].

Angular prediction modes in HEVC are designed to efficiently model different directional

structures typically present in video and image content [13]. In order to calculate the pre-

diction, reference samples from adjacent border are extrapolated to extend to reference

samples from direction of the prediction, pictured in Figure 4 with thin arrows. Prediction

is then calculated by projecting extended border samples to the PU area, as displayed in

Figure 4 with a bold arrow.

As reference-samples, intra prediction uses pixels from the borders from top and left

edges of the PU. If all needed samples are not available, as they could be outside of the

frame or not yet coded due to coding order of the CUs, last valid sample is repeated.

To improve prediction quality, reference samples can also be filtered to smooth out large

steps in sample values. Those could generate undesired directional edges in the prediction

blocks. Filtering is done with a smoothing filter that averages samples with its neighbors.

The decision to use filtering is dependent on PU size, prediction mode and the direction.

3.3 Transform

In the transform phase, the spatial domain residuals are converted to transform domain

frequency coefficients. The transform outputs a transform coefficient matrix, where each

coefficient represents the amplitude of its predefined base frequency. Amplitudes of

lower frequencies are stored in the top-left area of the matrix and higher frequencies at

the bottom right. Typically, images have no or very little high frequency components,

especially after the quantization phase. Meaning that the coefficient matrix usually con-

tains a lot of easily compressible zeroes.

In most video coding standards, including HEVC, only the inverse transforms are speci-

fied by the standard and the exact details of the forward transforms are left to the imple-

menter [13]. Typically, the used forward transforms are transposes of the inverse trans-

forms to achieve near lossless transform coding [17].

HEVC uses two-dimensional (2-D) finite precision integer approximations of two com-

mon transforms: 1) Discrete sine transform (DST) for intra-coded luminance TBs of size

4 × 4 and 2) Discrete cosine transform (DCT) for all other TBs. Both transforms are

separable, they can be computed by applying two 1-D transforms first row-wise and then

column-wise [18]. Increasing transform size from 8 × 8 used in AVC up to 32 × 32 im-

proves coding gain by around 5-7 % but it also introduces the majority of complexity

overhead in HEVC transform coding [18].

3.4 Quantization

In quantization, high frequency components are reduced by dividing transform coeffi-

cients by a Quantization step (Qstep) as

𝑸𝒔𝒕𝒆𝒑(𝑸𝑷) = (𝟐𝟏/𝟔)𝑸𝑷−𝟒. (1)

Quantization parameter (QP) can have values in the range of 0-51 for a standard 8-bit

video. Increasing QP by one means an increase of the quantization step size by approxi-

mately 12 %. An increase of six doubles the quantization step size. The QP value can be

specified by the user or it can be automatically decided and adjusted by the encoder. The

QP value directly relates to the compression ratio and image quality of the encoded video.

Higher QP increases the compression rate and decreases video quality [13].

HEVC also supports frequency dependent quantization (FDQ) where different frequen-

cies are quantized differently according to sensitivity of human vision system (HVS).

Varying quantization is done by using predefined quantization matrixes, where low fre-

quency coefficients are quantized with a finer Qstep and higher frequencies with a greater

Qstep. As a result, FDQ has a negligible effect on the perceived video quality while still

improving the coding performance [19].

Inverse quantization, also called dequantization is performed by multiplying transform

coefficients by a Qstep. This returns quantized coefficients back to transform coefficients

that can be used to generate a reconstructed picture. As with the transform, only inverse

quantization is specified by the HEVC standard and the details of the forward quantiza-

tion are left to the implementer.

3.5 Inverse Transform

The inverse transforms specified by HEVC are similar to their forward transform coun-

terparts: Inverse Discrete Sine Transform (IDST) for intra-coded luminance TBs of size

4 × 4 pixels and Inverse Discrete Cosine Transform (IDCT) for all other TBs.

The core transform in HEVC was designed to be close to the integer approximation of

the base IDCT function but still being efficient on both software and hardware. The effi-

ciency goal was achieved by limiting bit depths and using symmetrical transform matri-

ces. With limited bit depths, multiplications can be performed with 16-bit multipliers

common in hardware. In addition, symmetrical transform matrices share values for dif-

ferent TU sizes so only one transform matrix is needed.

DST has been found to reduce bit-rate by 1 % when coding small intra-coded TBs. The

quality of intra prediction is better near top and left borders [13]. In residual picture, the

amplitude of those samples tends to be lower and higher for samples further from the

edges. The base functions of DST are found to model this effect better and therefore re-

duce bit-rate. For larger block sizes, DCT is shown to outweigh DST and therefore DST

is only used for small luminance TBs [20].

3.6 Entropy Coding

Entropy coding is the last step of the video encoder. In this step, video signal is reduced

to a series of syntax elements that contain properties of the CTUs, CUs, PUs and TUs,

including prediction modes, quantization parameters, transform coefficients, filter modes

and all other parameters required to describe how the video signal can be reconstructed

by the decoder [13]. These elements are ordered and compressed to generate an encoded

video bit-stream.

Entropy coding method used in HEVC is Context-based adaptive binary arithmetic cod-

ing (CABAC), as in AVC. CABAC is a lossless compression technique based on arithme-

tic coding. Compression comes from statistical properties of symbols; more frequent sym-

bols can be coded with less bits and more rare symbols with more bits. The number of

bits is logarithmically proportional to the probability of the symbols [13].

4. SYSTEM OVERVIEW

Figure 5. System overview

Figure 5 shows the partitioning of the encoder. Kvazaar running on a Linux PC handles

CABAC coding, bit-stream generation and other control-intensive coding tools such as

Wave-front Parallel Processing (WPP) and picture-level parallelism. FPGA accelerator

operates at the CTU level and handles the most computationally intensive intra coding

tools including intra prediction, transform, quantization, inverse quantization and inverse

transform.

An FPGA accelerator consists of a PCIe interface, two Direct memory access (DMA)

blocks, on-chip memories with indexers and aligners, Intra coding accelerators and an

IRQ buffer. One FPGA can have multiple accelerators. In those cases, PCIe interface and

IRQ buffer are shared between them but all other components are accelerator specific.

This chapter covers the structure of the FPGA accelerator, including software, drivers and

the hardware interface. Intra coding accelerator, the main unit on FPGA, is explored in

Chapter 5.

4.1 User Space

On the CPU, a slightly modified version of Kvazaar runs as a Linux user space program

that handles input/output (IO), CTU level parallelism and CABAC coding. As input,

Kvazaar can take offline files or live stream directly, e.g., from camera or the network.

Likewise, the output can be written to a file or piped elsewhere. Kvazaar has a few built-

in options for CTU level parallelism, most notably WPP, tiles and processing multiple

frames in parallel. In all cases, parallelization is implemented with a CPU thread pool.

On system startup, Kvazaar generates a pool of worker threads and a separate scheduler

thread that allocates tasks to available workers. A CTU represents the smallest work unit

for a single thread as the CTUs have very little dependencies with each other. Hence, a

numerous CTUs can be processed simultaneously.

Kvazaar was modified to offload a majority of coding tasks to the hardware accelerators

on FPGAs. Instead of processing CTUs in CPU threads, when a worker arrives in the

processing function, it sends its data to the hardware accelerator and sleeps until the ac-

celerator notifies it that the CTU processing is completed. Then, the worker thread con-

tinues as without the FPGA acceleration. As the worker threads sleep while waiting for

then accelerator, a lot of threads can be used effectively.

4.2 Kernel Space

Kvazaar uses a custom Linux kernel module, i.e., a driver to transact with PCIe FPGA

card. The driver hides all complex hardware protocols and registers. It only displays a

simple generic software interface so that the software can operate without knowing about

the underlying hardware. Hardware could be composed of one or more PCIe FPGA cards,

or there could be FPGAs with different interfaces and different number of accelerators

per chip.

Figure 6. Sequence chart of system calls between Kvazaar and a kernel driver

Figure 6 shows the sequence chart of system calls between Kvazaar and the kernel driver.

At first, Kvazaar calls ioctl function to request a free hardware slot from the driver. If

there are hardware slots available, the driver returns an id number of the reserved slot. If

no slot is available, a negative number is returned to indicate an error. In these cases, the

slot reservation can be either tried again later or it can be decided to process the CTU in

software. If the reservation is successful, processing can be unloaded to the hardware.

The reservation is valid for a single CTU computation and is automatically freed after its

completion.

After the slot is reserved, Kvazaar calls a write function of the driver to copy all necessary

data of the processed CTU to the FPGA. The driver combines different data slots into a

single chunk and writes it to consecutive virtual memory addresses in the kernel memory

space. The actual data transfer to the FPGA is done by hardware DMAs in the FPGA in

order to speed up the transfer and save cycles on the CPU. After the data is copied to the

kernel, the driver sends the start address and the length of the data to the DMA through

PCIe Base address registers (BAR) and the DMA starts the transfer. The driver is halted

during the data transfer after which hardware processing can be started.

After the data is written, Kvazaar can call a read function of the driver. The driver checks

whether the data is available. If not, the thread is put to sleep and it waits until the data is

ready. After the CTU processing has completed, the DMA transfer from hardware to ker-

nel memory is automatically started. When all data is transferred back to kernel, the hard-

ware raises a CPU interrupt. The driver catches the interrupt, identifies the task, and

wakes up the sleeping thread. The thread then copies all the data back to Kvazaar memory

structures in the user space memory. The thread is returned from the kernel and the

Kvazaar encoding continues as usual.

4.3 PCIe and DMAs

The CPU - FPGA interface is implemented with PCIe bus. On the FPGA side, the PCIe

bus protocol is handled by Intel’s Arria 10 Hard IP for PCI Express IP Core [21]. The IP

Core is instantiated in Platform Designer where it offers a single Memory Mapped Avalon

(Avalon-MM) interface [22] for accessing the CPU memory.

The PCI Express IP Core is configured to the second fastest configuration option: a PCIe

generation 3.0 with x4 lanes and a 128-bit interface with a 250 MHz application clock.

This configuration gives 31.52 gigabits per second (Gbit/s) bidirectional theoretical

throughput. In our test, we achieved 29.87 Gbit/s throughput with two DMAs reading and

writing simultaneously. That is sufficient for transferring multiple streams of raw Ultra-

high-definition (UHD) video in and out of the accelerator, as one raw 30 frames per sec-

ond (fps) UHD 8-bit 4:2:0 video requires a bandwidth of 3 Gbit/s. The fastest option

would have been a generation 3.0 with x8 lanes. It would increase the interface width to

256 bits and double the bandwidth, but this configuration is not recommended for our

chip by the manufacturer and it would only support Avalon Streaming interface.

Two custom DMA blocks are connected to the PCI Express IP Core, one for both direc-

tions. DMAs are used to reduce CPU load when transferring data through PCIe bus. On

system startup, the kernel module configures the DMAs with base addresses of the allo-

cated memory regions and transfer data lengths over BAR registers on the PCIe bus. The

CPU → FPGA transfer is started by the CPU that writes a CTU id to a DMA reader block.

The DMA reads data from the CPU memory using the configured base address with offset

calculated from the CTU id. Data is then written trough read indexer to the FPGA on-

chip memories. In the opposite direction, the FPGA → CPU transfer is automatically

started by the Intra coding accelerator when CTU processing is completed. After the

DMA writer is ready, an interrupt request is sent to the IRQ buffer. The IRQ buffer raises

a CPU interruption and holds it until it is marked as processed. In the meantime, other

interrupt requests are buffered so none of them is lost.

4.4 FPGA Memories

As an input, the Intra coding accelerator requires original source pixels of a CTU and

previously calculated reconstruction pixels from the CTU borders, along with prediction

modes from bordering CUs and CABAC states. Inputs for the accelerator sums to over 6

kB data, which needs to be stored on-chip for fast access. The data is stored to multiple

memory modules with different data widths as required by the different phases of the

coding pipeline.

The accelerator outputs a reconstructed image, transform coefficients, and CU configu-

rations within the CTU. The accelerator produces close to 19 kB of data which is stored

on-chip before it is written to CPU’s memory.

Read- and Write Indexer are located between the memory modules and DMAs. These

indexers handle address translation and separate data stream to different memory mod-

ules. Address translation is needed as the DMAs can only read and write from consecutive

memory addresses but each of the memory modules have their own address spaces. When

the indexers see a read or write request from a DMA they fetch the base address of the

target memory from an internal look-up table and add it to the DMA write- or read ad-

dress. With the corrected address, accessing the memory modules are automatically han-

dled by the Avalon-MM interconnect.

RAM aligners are located between the memory modules and the Intra coding accelerator.

They are used to change data widths of the memories to match the widths needed by the

accelerator. The hardware supports mixed width memory modules with read and write

ports of different size, but the memory controllers are limited to a maximum data bus

width ratios of one to four. On the DMA side, the memories have a 128-bit wide data bus

required by the PCIe interface. On the accelerator side, when the required data width is

within the supported range i.e. 128, 64 or 32-bits, normal memories with mixed width

ports were used. Otherwise, additional RAM aligners were added to convert bus widths

down to a required size.

5. INTRA CODING ACCELERATOR

Figure 7. Block diagram of Intra coding accelerator

The Intra coding accelerator implements the intra search, generates transform coefficients

and reconstruction images for CBs, and performs mode decisions on CTU level. It is

configured with the following search parameters: 1) the CTU reference pixels and 2) re-

construction pixels and predictions modes from its left and top borders. After the search

is completed, the accelerator sends an interrupt signal to the DMA block that starts data

transfer and notifies the CPU. Figure 7 shows the structure of the Intra coding accelerator.

This chapter explores the Intra coding accelerator and its sub-blocks one by one. The

main sub-blocks are a Intra coding control block, IP block, transform, quantiza-

tion/dequantization, inverse transform, reconstruction, coefficients cost, CU stack, and

finally a transpose block that is used in multiple locations within the coding pipeline.

5.1 Intra coding control

Figure 8. Block diagram of Intra coding control block

The CTU level coding control in Kvazaar combines intra coding with inter coding and

many other coding tools not supported in hardware. Kvazaar software also uses software

tools like recursion, which makes the software implementation unusable in hardware.

Therefore, a new coding control was written for the hardware accelerator. A new control

block uses the tools from the software implementation, but it was written from scratch

with hardware limitations and parallel processing in mind.

The structure of the new Intra coding control block is pictured in Figure 8. It consists of

four sub-blocks: Initialization, Scheduler, Start and End blocks and a program memory.

The control block is built like a CPU, that is, CTU encoding is split into smaller steps that

are preformed one after another. Different steps are described with different instructions

with which we can write programs to encode CTUs.

STR Initialize CTU and start the program

IP Perform intra search, build reconstruction for a PU and store it on a stack

CMP Compare cost values of CUs in stack and select the best

END End current program and send CPU interruption

Table 1. Intra Coding instruction set

The control block was implemented as an instruction-based system to offer improved

configurability and scalability. The basic operations of the four available instructions are

covered in Table 1. STR instruction starts a new program, IP instruction calculates a pre-

dictions for a given CU, CMP instruction compares CUs in the stack, and END instruction

ends the current program.

Execution of these instruction are split into two parts. Some of the operations are executed

in the Start block before the intra coding pipeline and the rest after the pipeline in the End

block. Along with the type, each instruction contains other operation parameters and a

skip address. The parameters carry other processing information like block size and co-

ordinates. The skip address is used to tell where to move in case of processing of unnec-

essary instructions is skipped.

The Initialization block is the first part of the control block . It receives CTU configuration

from the CPU and selects or generates the program needed to process the CTU. To avoid

generating a new program for every CTU and thus increasing latency, the control block

has a few prebuild programs saved on read only memory for most common CTU config-

urations. If a configuration does not match a prebuild program, the Initialization block

generates a new program for the specified configuration dynamically and saves it in the

program memory. Once the program, prebuild or dynamically generated is ready, the

starting address of the selected program along with its configuration is sent to the Sched-

uler block.

The main task of the Scheduler block is to schedule instructions when running multiple

programs in parallel. After receiving the configuration, the scheduler reads the instruction

from the starting address and stores it into an internal cache. The cache contains latest

instructions from all running programs which can be either in active or inactive state. For

all active instructions, the scheduler calculates a priority numbers and selects the one with

the highest priority. The selected instruction is sent to the Start block for processing and

a cached copy is changed to an inactive state.

The instructions are prioritized to maximize the efficiency of the coding pipeline. Due to

the structure of the pipeline, the CBs of different size will move at different speeds. Larger

CBs will create congestion behind them and reduce efficiency. To minimize this, the CBs

of the same size are processed in sets. This method is used for the IP instructions. Other

instructions have very little effect on the pipeline and thus have a small fixed priority.

Figure 9. Configuration vector used in intra prediction pipeline

The Start block is at the beginning of the intra coding pipeline. Its main purpose is to start

processing of the CBs in the pipeline with the IP instructions received from the Scheduler.

For the IP instructions, the Start block builds a configuration vector pictured in Figure 9

and sends it to the Get Border block. This vector contains all parameters required through-

out the pipeline until the End block. The CTU id, depth, color and the coordinates are

generic parameters used by most of the blocks in the coding pipeline. Lambda is utilized

by the SAD block where it is replaced by the selected prediction mode. The scaled QP

used in the quantization phase. After the instruction is processed, it is forwarded to the

End block for further processing.

The STR and CMP instructions require no processing in the Start block and like IP in-

structions they are forwarded to the End block. The END instruction ends the program.

With it, the Start block sends a completion signal to the DMA writer, which then starts

data transfer and notifies the CPU. The END instructions are not forwarded to the End

block.

The End block is at the end of the coding pipeline. Its two main tasks are calculating cost

values for CBs and comparing the cost values to select CUs for the final CTU configura-

tion. The first instruction to arrive in the End block is the STR instruction, which is used

to clear old cost values from the cache and reset the CTU state. With IP instructions, the

End block first waits until it receives results from the pipeline. Then, it calculates a cost

value for a CB and stores it to an internal cache. If the CB is of the smallest size config-

ured or the CB is deemed good enough not to search alternatives, the CU Stack is notified

to write the CB to the output memory. As the END instructions are already dropped in

the Start block, the third and final instruction type is the CMP instruction. With it, the

stored cost values are compared and the best CU configuration is selected. If the selected

configuration is not already written in the output memory, the CU Stack is notified again

to overwrite it with the selected configuration.

After each instruction, the End block sends an instruction completed signal with a skip-

flag to the scheduler. The flag is used to indicate if the CU was deemed good enough and

the scheduler should skip the search for alternative CUs. If this flag is set, the scheduler

reads the skip address field from the cached instruction and moves to that address accord-

ingly. Otherwise, the next instruction is read from the following address, stored into the

cache, and marked as active. The process continues until the program is terminated with

the END instruction.

5.2 Get Border

The Get Border block is the first block in the intra coding pipeline. It generates reference

pixels for the intra prediction from CTU reference borders and previously calculated CUs.

The block receives the configuration information (the block size and CU coordinates)

from the control block. Get Border block then generates reference borders by using pixels

from the CTU borders or from the previously calculated CUs. If no border pixels are

available the last available pixel or a constant value is used instead. The referenced bor-

ders are built and sent to IP block at the rate of four pixels per cycle. The bandwidth is

limited by the used memory widths.

In Kvazaar, the reference pixels are fetched from the CTU borders and the output recon-

struction memory array. In hardware, the CTU borders are stored into two separate mem-

ories. The border pixels are written by the driver and they could be accessed as in soft-

ware. Fetching the reference pixels coming from the reconstruction picture from the full

output memory is inefficient. The output memory is implemented with a dual port

memory, where one port is used by the CU Stack for writing and the other port by the

DMA for moving data to CPU memory. The memory modules support two ports at max-

imum so adding more ports would require duplicating the whole memory.

Although possible, reading multiple reference pixels from the output memory is ineffi-

cient. It either limits throughput or consumes excess memory and logic cells. Reading

multiple pixels from the top border can easily be done with a wider memory interface as

the pixels are next to each other. Instead, the pixels from the left border are in different

rows and can only be read one at a time. To read left border as fast as the top border, the

output memory would need to be duplicated in transposed order.

Figure 10. Content of three buffers memories.

To reach an adequate throughput, a new method to save and read the top and left borders

was developed. Three buffer memories were added between the Get Border and CU Stack

blocks. Two 64 pixels per CTU deep memories for the last calculated pixels from bottom

and right borders, and one extra memory to store bottom right pixels from all 4 × 4 re-

gions.

In the buffers, the bottom and right border pixels of each CU are stored to their x and y

coordinates. Due to the CU coding order, no longer needed pixels are overwritten by those

of the following CUs and only the latest pixels are stored. The only exceptions for this

are the bottom right pixels from the 4 × 4 regions that are occasionally overwritten before

they are used. Example of this case is highlighted in Figure 10 with a purple pixel. To

solve this the bottom right pixels are stored separately in a third memory.

5.3 Intra Prediction

Figure 11. Block diagram of Intra Prediction block.

The IP block calculates and selects the best prediction for a given CB. It does this by

generating prediction images for all modes and selecting the mode closest to the reference

image. Figure 11 depicts the structure of IP block. The IP block is composed of IP Control

block, SAD block and 18 parallel prediction blocks with ping-pong input buffers used to

compute all 35 prediction modes in parallel. The prediction modes are calculated with

five different prediction modules: planar (mode 0), DC (mode 1), positive angular (modes

2-9, 27-34), negative angular (modes 11-25), and zero angle (modes 10, 26). This IP block

is an improved version of the IP block presented in [23] and [24].

5.3.1 Control

The IP control block receives PB configuration data and the reference pixels from the Get

Border block. Before sending the reference pixels to the prediction blocks, the control

block filters them. As doing it once on control block saves resources compared with per-

forming filtering individually in prediction blocks. Filtering is done in real time while

receiving new data at the same speed, four pixels at a time. Depending on the mode and

the CB, either the filtered or the unfiltered pixels are written to prediction blocks ping-

pong memories. After all pixels are read, filtered, and written to memories, the IP control

block wakes up the prediction blocks and the SAD block by sending them their configu-

ration data. Along with the common parameters of the PB size and an CTU id, each pre-

diction block has its own configuration parameters, which are dependent on prediction

mode.

The ping-pong memories in the prediction blocks are used to pipeline the IP block so that

the control block can filter reference pixels from the next PB while prediction blocks are

still calculating predictions from the previous PBs. Synchronization and overflow protec-

tion between the control block and prediction block are handled with handshaking signals

in configuration channels. The channels are implemented by first in, first out (FIFO)

buffers. The ping-pong memories are configured to allow for two PBs more than the

FIFO’s depth, one reserved for reading (by the prediction blocks) and the other for writing

(by the control block). If the FIFO is full, the control block cannot write configuration

data and is blocked until prediction blocks finish and start the next PB by reading a new

configuration from the FIFO.

5.3.2 Predictions

All prediction blocks operate in parallel and predict four pixels per clock cycle, i.e., 32 ×

32 block is predicted in 256 cycles and 16 × 16 block in 64 cycles. The Planar and DC

blocks have the same structure. They both have a duplicated ping-pong memory to sup-

port two read ports with a data width of four pixels. With two read ports, both blocks can

predict four pixels in parallel. The configuration vector for planar prediction contains last

pixels from top and left borders. They are used to calculate the prediction. The DC pre-

diction block has a dc value in its configuration vector and it only performs post-pro-

cessing for the borders. The dc value is calculated in the control block to reduce latency

as it can be effectively calculated in parallel while filtering the reference pixels.

The angular predictions are usually interpreted as a single prediction mode. However, the

hardware implementation was split into three different modules according to direction of

the prediction angle: positive angles, negative angles and zero angles. This way, the extra

complexity could be removed from the simpler modes.

In Kvazaar, horizontal angular predictions (numbered from 19 to 34) are calculated as

their vertical counterparts but with their left and top borders swapped. This generates

correct pixels but in transposed order. In software, the outputs of the horizontal modes

are flipped, but adding a transpose block at the end of all horizontal modes in hardware

would require a lot extra logic and memory. It would also notably increase the latency of

the prediction phase. To avoid the transpose operation, the algorithm for horizontal modes

was redesigned to calculate pixels in transposed order. The new design did require more

logic than that for the vertical modes as the algorithm cannot take benefit of relations of

pixels in the same rows. The increase in logic was still notably less than adding an extra

transpose block and it had no effect on latency.

Together with the redesigned logic for horizontal predictions, the corresponding vertical

prediction modes were implemented in the same design as one double prediction block.

These predictions make use of the same borders and have the same but opposite prediction

angles so they can share the same control logic. This way, all angular blocks, except mode

18 which does not have a pair, predict two modes simultaneously. For example, modes 2

and 34 are equal distance from the middle, i.e., 18 - 2 = 34 – 18 so they are predicted

parallel in one block.

The zero angle prediction block is the simplest one of the three implementations. It has

the same duplicated ping-pong memory interface as the Planar and DC blocks. It calcu-

lates the prediction symmetrically for modes 10 and 26 by projecting the reference sam-

ples to the CB area and applying a smoothing filter to boundary samples to reduce dis-

continuities along the block boundaries.

The positive angle prediction block is used to calculate modes 2-9 and 27-34. It requires

thirteen single-pixel ports to the ping-pong memory, 8 for vertical prediction and 5 for

horizontal prediction. With dual-port memories, where one port is used for writing, thir-

teen ports are generated by instantiating thirteen copies of the ping-pong memory with a

shared write port. The prediction is calculated with a weighted average of two reference

pixels and it is implemented with a dual-multiplication digital signal processor (DSP)

from HLS DSP library. As the prediction is a projection from the border, the weights and

the used reference pixels depend on the projection angle and the location of the pixels.

The total weights of the weighted average always sum to 32 so the division operation is

implemented with a shift of five.

Figure 12. Projection. (a) Positive edges. (b) Negative angles with border extension.

A prediction block for the negative angles is the most complex of the three. The block

requires the same thirteen single-pixel read ports and the prediction is calculated as in the

block for positive angles. The difference comes from the used pixels. The positive angles

only use pixels from one border whereas the negative angles use both borders. With neg-

ative angles, the side border is extended to the main border before the projection, as pic-

tured in Figure 12. This mapping is not one to one, as the moved pixels depend on the

prediction angle. In hardware, pixels are not moved but cross referenced. If the position

of pixels is negative a new index number is read from a lookup table and pixel is read

from that index in the other border.

5.3.3 Mode selection

The SAD block selects the used prediction mode for luminance PBs by calculating and

comparing Sum of Absolute Differences (SAD) and entropy coding cost values of all

modes. The SAD is used as a measure of image quality whereas the entropy cost values

estimate how many bits are needed to code the prediction mode into bitstream. The en-

tropy coding values are usually insignificant compared with SAD values and they only

affect the mode decision when two predictions are very close to each other.

The entropy costs are calculated first since there is a small latency in pixel generation.

Three entropy coding values are used for each PB. They are calculated by multiplying a

fixed entropy cost by a software-defined lambda value, which is derived from the QP.

The cost values are then added to SAD calculations. With each prediction mode, one of

three entropy coding selected as base cost depending if the mode is one of the preferred

modes or not.

For SAD calculations, the block receives four pixels per cycle and it simultaneously reads

the reference pixels from an on-chip memory. All calculations are performed in parallel

after which predicted and reference pixels are sent to the Prediction Buffer. A mode with

the smallest cost is selected and the Prediction Buffer is notified. The comparisons are

implemented as recursive template functions, which are adopted from Catapult-C design

examples. It is synthesized to a comparison tree.

The above mode decision is only used for luminance PBs. The chrominance PBs inherit

the luminance prediction mode saved in the internal registers. The same prediction mode

is also used in hardware implementation as it is default behavior of Kvazaar in all presets.

5.3.4 Prediction Buffer

A prediction Buffer has three purposes: 1) buffer all predictions while SAD block is cal-

culating the cost values and selecting the prediction mode; 2) generate the residual image

from the selected prediction and the original reference picture; and 3) change the pipeline

data width from four pixels to 32 pixels.

To achieve these goals, the Prediction Buffer is composed of two blocks and an interme-

diate memory array between them. Input side of the buffer writes data to the memory

array while output side reads data from the memory array and generates residual image.

The memory array is a set of 36 mixed-width memories between the two blocks. The

memories have a 32-bit write port and a 256-bit read port. The input side receives four

pixels from all predictions and the reference image in parallel from a 1152-bit wide data

bus coming from the SAD block. The data is written to memory array with a matching

data rate of four pixels pre-cycle in parallel to all 36 memories.

After selecting the used prediction mode, the SAD block notifies the Prediction Buffer.

The output side of the buffer starts reading the pixels of the selected mode and the refer-

ence picture. It calculates the residual image by subtracting the prediction from the orig-

inal image. The mixed-width memories operate on a larger data bus so 32 pixels can be

read and computed in parallel. The calculated residuals are sent to the Transform block

for further processing. The prediction and reference images are forwarded to the recon-

struction block as they are needed in calculating the final reconstruction image.

5.4 Transform

Figure 13. Block diagram of Transform block

A transform architecture is pictured in Figure 13. It is composed of three main parts: 1)

two 32-point DCT blocks; 2) a separate 4-point DST block for 4 × 4 luminance TBs; and

3) a transpose block for row-column transpositions between the DCT blocks. In addition,

the design contains small control blocks in input and output. The transpose block is cov-

ered in Chapter 5.10.

The input block reads 32 9-bit residual values from 288-bit input channel. Luminance 4

× 4 TBs are redirected to the 4-point DST block whereas all other inputs are sent to the

32-point DCT block. Output values from the first DCT are row-column transposed in the

Transpose block and sent to the second DCT block for a complete 2-D transformation.

Output block collects the results from the DST or DCT block (depending on the TB) and

outputs the transform coefficients to Quantization phase.

In the earlier stages of the work, a single DCT block was used and data was looped back

to the same DCT block through the Transpose block. This approach reduces logic and

DSPs, but the loopback would force transform phase to block the coding pipeline during

the second round of the DCT. This resulted in a noticeable drop in throughput.

5.4.1 32-point DCT block

The 32-point DCT block performs 1-D transform in a three-step pipeline. First recursive

even-odd decomposition, secondly multiplication between the transform matrices and

odd vectors, and finally accumulation and scaling of the individual multiplication prod-

ucts to 16-bit coefficients.

The algorithm used for the 1-D transform is a well-known even-odd decomposition algo-

rithm, a.k.a., Partial Butterfly algorithm [18]. It decomposes the input and core transform

matrices to half of their sizes according to even and odd rows/columns, respectively. The

algorithm allows an N-point transform to be computed for even and odd cases separately

with two N/2-point transforms that reduce the number of arithmetic operations needed for

the full transform. The same algorithm is also used in Kvazaar and it implements the same

functionality as in HEVC reference encoder (HM) [11].

Four Partial Butterfly algorithms were combined to a single function with selectable block

size N × N, where N ϵ {4, 8, 16, 32}. To improve performance in hardware, the algorithm

was modified to transform multiple rows/columns in parallel if the block size is smaller

than 32 × 32. This improves performance as 32/N rows/columns are transformed in par-

allel, e.g., 8 × 8 TBs can be processed in only two parts.

The recursive even-odd decomposition in the first stage of the DCT is implemented as a

recursive template function that is synthesized to an adder tree. The adder tree was built

for the largest block size. In order to reuse it for smaller block sizes, input vectors need

to be reordered to match the structure of the adder tree. The order only depends on the

block size, so the reordering can be implemented with a four-port mux.

In the second stage, the odd vectors are multiplied with the transform matrices. The mul-

tiplication stage was also built for 32 × 32 TBs. To reuse it with smaller TBs, input vectors

need to be reordered again to match the structure of the multiplication stage.

At first, all multiplications were mapped to DSP blocks to save logic cells. Catapult-C

and Quartus can automatically map multiplications to DSP blocks, but they cannot take

the most out of the DSPs. For example, a single DSP in Arria 10 can calculate two 18-bit

multiplications and add them together [25]. The automatic mapping was unable to detect

this and therefore the number of DSPs was doubled.

In Catapult-C, DSP usage could be manually improved by using a library developed by

Altera and Mentor graphics [26]. The library contains functions for the most common use

cases for DSPs together with some extra DSP features. In DCT, sum of two multiplica-

tions mode was used to reduce the number of DSPs. The logic usage could be further

reduced by using coefficient banks in the DSPs, but there was no a ready-made library

implementation for that and it was not studied further.

In the final stage of the DCT, the individual products of matrix multiplication are added

together and scaled to 16-bits. In addition, the output vector has to be reordered back to

the original order.

Mapping all multiplications to DSPs allowed two Intra coding accelerators to fit into a

single Arria 10 FPGA. Even with two accelerators, there were a surplus of unused logic

and DSP usage became a limiting factor. Transform and Inverse Transform took the most

of the DSPs, with a single DCT/IDCT block consuming 172 DSPs. With two accelerators

and two DCT/IDCT blocks per transform, 1376 out of 1518 DSPs were used for trans-

forms only.

To fit a third accelerator to a single FPGA, reduction of DSP usage was required. Values

of the transform matrices are constant, but matrix itself is selected by the block size.

Hence, the multiplication is performed by multiplying input value by one of the four con-

stant coefficients. Smaller block sizes have many zeroes in their matrices as the number

of multiplication operations performed for a given block size is (N/2)2. For example, TB

of size 32 × 32 requires 256 multiplications whereas four parallel 8 × 8 rows/columns

require only 64.

Figure 14. Example of optimization methods used to reduce the number of DSPs. On

case b) DSP is replaced by constant multiplier and mux

In this work, we have only exploited this approach when three of the four coefficients are

zero. Multiplication by a constant is significantly smaller than a full multiplier and it can

be implemented in hardware with adders and shifters. This way, we were able to replace

100 DSPs per DCT block with a simple constant multiplier and a mux, like pictured in

Figure 14. Alternatively, more DSPs could be saved by using them when there are two or

three no-zero confidents, but it would offer notably diminishing returns with even larger

logic usage.

5.4.2 4-point DST block

The 4 × 4 luminance TBs are transformed in 4-point DST block that operates in parallel

with the 32-point DCT block. The DST block is built of four parallel 1-D row-transform

blocks that are connected back to each other in transposed order for a second transform.

The 4 × 4 transpose requires no external components as it is possible to cross-wire the

outputs and inputs of the block.

The DST is performed by a fast DST algorithm instead of full matrix multiplication. The

same algorithm is used in Kvazaar encoder. The algorithm produces the same result but

with less arithmetic operations. Since only one TB size is supported, all multiplications

in DST are with constant values. These multiplications are not mapped to DSPs but only

logic cells are used instead.

As a small extra coding tool, the block also supports transform skip. As the name suggest,

in this mode the transform phase is skipped. This is implemented by forwarding the re-

sidual pixels without any operations in the upper half of the 32-coefficient wide output

vector.

5.5 Quantization & Dequantization

Quantization block performs both quantization and dequantization of transform coeffi-

cients. Although they are different operations, they were implemented in one block be-

cause they share the same overall structure and can have a shared control. The Quantiza-

tion block receives data from the Transform block. It outputs quantized coefficients to the

Coefficient Cost block and dequantized coefficients to the Inverse Transform block. The

input configuration vector contains scaled QP value used to define the quantization level.

Both quantization and dequantization are done by multiplying coefficients by a scaler

value, that is derived from scaled QP values and rounding the output. DSPs were used for

multiplications. Even though each DSP has two multipliers, the DSP libraries do not sup-

port the use of two multipliers individually. Therefore, the second multiplier was used for

rounding. In hardware, rounding is performed by adding one and chopping the result.

Rounding with the DSPs was done by adding the rounding factor to the second input of

the DSP and one for its multiplier. This way, the end adder in the DSPs is used to add the

rounding factor to output of the first multiplier.

The quantization and dequantization operate with individual coefficients so the system

can be scaled up to process as many coefficients as needed. With 32 parallel processing

units, 32 DSPs were used by the Quantization block and the other 32 by the Dequantiza-

tion block.

5.6 Inverse Transform

Inverse transform shares the same top-level architecture as forward transform. It is built

of three main parts: 1) two 32-point IDCT blocks; 2) a separate 4-point IDST block for 4

× 4 luminance TBs; and 3) the same Transpose block, which is used in forward transform

for row-column transpositions between the 1-D IDCT blocks.

The Inverse Transform has been developed along with the forward transform through the

same development steps. First, only one 1-D IDCT block was used, but a second one was

added later for better performance. The DSP usage in IDCT was also reduced by mapping

constant multiplications to logic cells. Due to the differences in transform matrixes, DSP

usage could only be reduced to 90 DSP per IDCT compared with 72 in DCT.

The 32-point IDCT block uses the Partial Butterfly algorithm [18] implemented in three-

stage pipeline as in the 32-point DCT block. In the first stage, DSPs are used to multiply

the input with transform matrices as described in Chapter 5.4.1. A second stage includes

three addition/subtraction levels to compose the final even vector from the decomposed

even and odd vectors. Lastly, the third stage finalizes the 1-D transform by combining the

even and odd vectors and by scaling the final result to 16-bit signed residuals. To support

multiple parallel rows with smaller block sizes, the inputs in each stage are reordered to

match the structure of the stage. After the first 1-D transform, the intermediate data is

transposed in the Transpose block and sent to the second IDCT block to complete the 2-

D transform.

In parallel with the 32-point IDCT block, a separate 4-point 2-D IDST block is used for

4 × 4 luminance CBs. The IDST block performs the full 2-D transform internally without

any external transpose. As with the 4-point DST block, IDST uses the fast DST algorithm

instead of full matrix multiplication to reduce the number of arithmetic operations needed.

The support for transform skip was also added by forwarding the residuals without any

operations in the upper half of the output vector.

5.7 Reconstruction

The Reconstruction block receives the reconstructed residual pixels from the Inverse

Transform block. It also accesses the original and predicted pixels from the FIFOs from

the Prediction Buffer. The block uses residual pixels and a prediction to generate the final

reconstruction image as on the decoder side. Original pixels are used to simultaneously

calculate the Sum of Squared Differences (SSD) value between the reconstruction and the

original image.

A reconstruction is calculated by adding the residual to the prediction pixel by pixel. In

the case of overflow, the output is clipped to the maximum or minimum value. Pixels

have no dependencies with each other, so as many pixels as needed can be calculated in

parallel. The input from the Inverse Transform contains 32 coefficients and the Recon-

struction block was built for that.

With the smallest 4 × 4 luminance CBs, an input vector from the Inverse Transform block

contains two CBs. The lowest half contains a normal CB and the top half contains the

respective transform skip candidate for it. In reconstruction calculations, an ability to du-

plicate the lower half of the prediction to the upper half was added to cover this special

case.

SSD is used as an image quality metric in the Intra coding control block since the encoder

selects the best configuration as a function of the image quality and the number of con-

sumed bits. Estimates for the coding cost are calculated later in the Coefficient Cost block,

which is covered in the next section.

SSD is calculated by deducting reconstruction from the original image, squaring the dif-

ferences in pixel values, and adding them all together. The 4 × 4 luminance CBs require

SSD to be calculated in two halves, as separate SSD values are needed for both CBs. For

other CBs, the full SSD is produced by adding the two halves together. As an output, all

three values, the two halves and the combined sum, with the reconstruction image are

sent to the CU Stack.

Squaring operation in SSD calculations requires multipliers that were manually mapped

to DSPs in the DSP library. In this case, multiply-accumulate mode was used. With two

input ports, the DSPs calculate SSD in sixteen parts which are combined to the required

three SSD values by summing DSP outputs together.

5.8 Coefficient Cost

The Coefficient Cost block calculates the coding cost of the CB in the encoded bitstream.

Kvazaar software uses actual CABAC coding method to calculate the exact number of

consumed bits. However, the CABAC is a complex operation with numerous steps. It

requires a lot of extra information about the states of the CTU and CB being coded. Using

CABAC in hardware is impractical as it would require all this extra data to be transferred.

In addition, the operations in CABAC are serial in nature and it would be hard to accel-

erate it in hardware. For these reasons, a more hardware-friendly algorithm was needed

to estimate the cost of coding CBs.

A new, more hardware-friendly linear algorithm was provided by the Kvazaar software

team. The algorithm uses five different parameters found from quantized transform coef-

ficients: total sum of coefficients, number of non-zero coefficient groups, number of co-

efficients with value of zero or one, and the index number of the last non-zero coefficient

group. Different weights are predefined for each parameter and for each CB size. The

final cost estimation is calculated by multiplying each parameter with its weight and

added together. Analysis of the algorithm is out of the scope of this Thesis, but it is known

to produce slightly worse results than CABAC as it only estimates the cost coding.

Although the new algorithm was more hardware friendly, it still had a few impracticalities

for hardware implementation. For that, the algorithm was converted from floating point

to fixed point format. With fourteen decimal bits, errors were limited to occasional off-

by-one errors. As the floating point model was already an estimate, the small errors were

acceptable.

Another issue is data availability. In Kvazaar software, all data is ready at the beginning

of the algorithm and easily accessible in any order. To perform better in hardware, the

algorithm was updated to operate in streaming mode. Instead of all data being available

all the time, data is processed in slices of fixed size. As the data was originally processed

in order of the coefficient groups, extra operations were required to find order and group

numbers for all coefficients. These were implemented with lookup tables mapped to read

only memories in hardware.

The input coming from the Quantization block is in transposed order due to the transpose

in the Transform phase. The order had no effect on the quantization phase and was ig-

nored there. However, the Coefficient Cost block requires data in natural order. To trans-

pose the input, an extra Transform block was added between the Quantization block and

the Coefficient block. The lookup tables in the algorithm could also be modified to sup-

port transpose order but the transpose is still required sooner or later.

Like in software, the hardware implementation of the Reconstruction block processes the

smallest 4 × 4 luminance CBs in pairs: normal and transform skip. For this reason, the

Coefficient Cost block calculates the cost values for the two halves independently. Unlike

the SSD computation on the Reconstruct block, combining two cost values was non-triv-

ial and required extra operations as the group numbers are mixed.

5.9 CU Stack

The CU Stack is an output buffer where CUs are stored temporarily before writing them

to output memory. Buffering is needed because the final CU configuration can only be

determined in the end after comparing all options. The other option would be to regener-

ate the selected CUs, but it would introduce extra overhead on the coding pipeline and

reduce the system overall throughput.

Figure 15. Block diagram of CU Stack

The CU Stack is pictured in Figure 15. It is built from three sub-blocks: Stack Push, Stack

Pull and intermediate memory modules between them. The push and pull are hierarchical

HLS blocks with their own sub-blocks. The intermediate memories are instantiated in top

level RTL design. The hierarchical structure is used to make both parts operate in parallel

without either one blocking the other one.

The buffers store one CU of each size for 16 CTUs. This way, all CUs have a reserved

buffer slot assigned by their size and CTU id. The next co-located CU of the same size in

the same CTU will overwrite the old one in the buffer. This policy follows the computa-

tional order of the CTU quadtree. The CUs are either flushed or discarded before moving

to the next one of the same size.

5.9.1 Stack Push

The Stack Push block is located in the intra coding pipeline. It receives reconstruction

pixels and the SSD values from the Reconstruction block. In addition, it gets quantized

transform coefficients and cost values from the Coefficient Cost block. It writes the pixels

and coefficients to the reserved slots in the buffer memory and simultaneously collects

pixels of the bottom and right borders to the separate vectors. After all pixels and coeffi-

cients are written, the border vectors are sent to a hierarchical sub-block that writes them

to the corresponding buffers. Lastly, the SSD and cost values are sent to the Intra coding

control block to signal the completion of the CB processing.

The Stack Pull block is in the other side of the buffer memories. It has no direct connec-

tion to the Stack Push and it receives its configuration data from the Intra coding control.

The control block instructs the stack in two cases: 1) when processing in the CTU quad-

tree moves up and a larger CU is selected; and 2) after generating CBs of the smallest

configured size. The first case is issued by a CMP instruction and the control block selects

a CU configuration from two or more possible combinations. The second case is about

automatic flushing of the smallest CBs. It is required since the borders of the CB must be

in the memory before processing of the next one can begin. Automatic flushing also offers

a small performance boost in cases where the smallest CUs are selected since they are

already in output. In other cases, they will be overwritten by larger CUs.

5.9.2 Stack Pull

After the control block has decided the CUs to the output, it sends the Stack Pull block

the respective instructions. The pull block starts reading the CU from the main buffer and

writing it into the output memory. While writing the CU, the pull block performs two

additional operations: transforming reconstruction from slices to rows and reordering co-

efficients to Z-order.

Figure 16. Slices to columns transform for 4 x 4 CB

Reconstructions in the buffer are stored as slices of 32 pixels. The output memory is an

array of 64 × 64 pixels. A 32-pixel wide data bus maximizes speed when writing the

largest CUs. The large data bus requires smaller CUs to be shifted to a correct location

and byte enables to assign writes to the correct pixels, as pictured in Figure 16. Catapult-

C supports byte enabled memory interfaces, but it is limited to four enable signals. In a

32-pixel wide bus, a minimum of 8 byte-enable signals are needed with 4 × 4 CUs. A

workaround for this is to add an extra output signal HLS model along with the normal

memory interface, connect it to byte-enable port of the memory and manually time it to

match memory writes.

The coefficients are written to the bitstream in z-order which is also used as the format of

the output memory. Compared with slices-to-rows transform, z-ordering is a much sim-

pler operation. The Z coordinate is calculated from x and y coordinates and coefficients

are written to the consecutive addresses. Only one byte enable signal is needed to mask

the write of 4 × 4 CUs.

A separate Border Pull block is implemented to write right and bottom borders to the

border memory which is used by the Get Border block. Extra buffers for the borders ac-

celerate the transfer. They are needed by the Intra Prediction block when generating the

following CUs. There is no handshaking between the buffer and the intra prediction phase

since buffer pixels are written out as fast as possible. In addition, an extra memory is used

to store every fourth pixel from both borders, i.e., the bottom right-most pixel from every

4 × 4 block. The bottom right-most pixels are duplicated to a third memory to cover spe-

cial cases where they are overwritten in normal border memories.

5.10 Transpose

The Transpose block performs row-column transpose for a square N × N block, where N

ϵ {4, 8, 16, 32}. It operates on a constant data rate of 32 samples per cycle. The Transpose

is used as a sub-block in three different locations: between the 1-D transforms in Trans-

form and Inverse Transform blocks as well as in between the Quantization and Coeffi-

cient Cost blocks.

The Transpose block is built of three sub-blocks: Transpose Push, Transpose Pull and a

storage array between them. The push block writes data to the memory array and the pull

block reads data from the array. The memory array is a collection of 32 parallel memory

modules with individual read and write ports.

Figure 17. Visualization of pixel placement in 8 × 8 variant of transpose block.

A 8 × 8 sample of the used transpose block is pictured in Figure 17. It shows how samples

are placed in the memory array. Numbers in each cell represent x and y coordinates of an

8 × 8 block when all samples are written into the memory.

5.10.1 Transpose Push

The input to the Transpose block goes to the push block that receives a slice of 32 samples

per cycle. Depending on the block size, the slice contains from one to eight rows as the

slice can contain up to two 4 × 4 blocks. Before writing data into the memory array, the

push block has to move samples to correct memory modules and calculate the write ad-

dresses for each memory. To move samples, the input slice is rotationally shifted left by

its index number, i.e., the first slice is not shifted at all, the second slice is shifted by one

place, the third one by two places, and so on.

Simultaneously, the write addresses are calculated by deducting the slice numbers from

the column numbers of each sample. Using the column number causes writes to happen

diagonally and reducing the slice number shifts writes left. If the slice contains multiple

columns the addresses are bit masked to keep values in range. Lastly, an offset value is

added to each address. The offset value moves blocks forward and makes the memory to

operate as a circular buffer. This allows the Transpose block to operate as a FIFO buffer.

After the whole block is written to the memory, the pull block is notified that the memory

is ready, and it can start reading the data.

5.10.2 Transpose Pull

Figure 18. Transposing a slice containing multiple rows (8 × 8 block in 16 × 16 trans-

pose block)

The pull block is less complex, and it does not require individual read addresses for each

memory. Instead, one read address is enough for all memories since the reads are directed

to the consecutive addresses. The slices were shifted left in the push block, so the pull

block reverses this operation by shifting each slice right by its index number. The last

step before outputting the transposed slice is sample reordering. When a slice contains

only one row no reordering is required as seen in Figure 17. But, when a slice contains

multiple rows the output is mixed and reordering is needed as seen in Figure 18. As the

order only depends on the block size, the reordering is simply implemented as a four-port

mux.

6. ANALYSIS

This chapter shows the synthesis results of the FPGA accelerator, performance numbers

and compares them to related works.

6.1 Synthesis results

Table 2. Synthesis summary of the accelerator with three Intra coding accelerators.

Synthesis Summary

Family Arria 10

Device 10AX115N3F40E2SG

Logic utilization (ALMs) 346 342 / 427 200 (81 %)

Total registers 427 569 / 854 400 (51 %)

Total pins 35 / 826 (4 %)

Total block memory bits 21,566,288 / 55,562,240 (39 %)

Total M20K Blocks 2 713 / 2 713 (100 %)

Total DSP Blocks 1 227 / 1 518 (81 %)

Total HSSI RX channels 8 / 48 (17 %)

Total HSSI TX channels 8 / 48 (17 %)

Total PLLs 50 / 112 (45 %)

ALMs used for memory 14 180

Timing Analyzer Fmax 0 ℃ 225,65 MHz

Timing Analyzer Fmax 100 ℃ 186,22 MHz

Quartus Prime Version 17.1.0 Build 590 SJ Standard Edition

Our design with three Intra coding accelerators was synthesized into an GT 1150 class

Arria 10 FPGA [27]. The summary of the synthesis results is displayed in Table 2. A

complete design utilizes over 346k Adaptive Logic Modules (ALMs), i.e., it consumes

more than 80 % of the available logic. Likewise, over 80 % of the available DSPs and

over half of the registers were used. Notably, all M20K memory modules [27] were uti-

lized so some of the memories were mapped to ALMs. Quartus reports that extra 14k

ALMs were used instead of memory bits due to the lack of available M20K controllers,

but this number only covers ALMs used as memory. With the memory controllers, the

actual consumption is close to 18k ALMs.

The High-speed serial interface (HSSI) channels and most of the phase-locked loops

(PLLs) are used by the PCIe interface. The accelerator uses only one clock, so it needs

only a single PLL. Quartus reports 186 MHz at 100 ℃ and up to 225 MHz at 0 ℃ for the

maximum operating frequency. These numbers are higher than the 175 MHz target fre-

quency, at which the system was verified to function properly.

Table 3. Block-level synthesis results of the one Intra Coding Accelerator

 ALMs Registers Memory Bits M20K DSPs

Total 108 802 133 635 3 476 096 663 409

Intra coding control 7 114 10 598 311 936 21 5

Initialization 219 264 0 0 0

Scheduler 1 032 1 014 0 0 0

Start 166 301 0 0 0

End 5 625 8 945 0 0 5

Intra Prediction 26 017 43 783 1 361 920 454 0

Get Border 536 703 0 0 0

Control 399 470 0 0 0

Planar 476 482 4 096 2 0

DC 137 232 4 096 2 0

Zero Angle 170 260 0 2 0

Negative Angle 938 1 136 26 624 13 0

Positive Angle 622 755 53 248 13 0

SAD 4 351 7 964 0 0 0

Prediction Buffer 8 337 19 595 589 824 231 0

Transform 26 107 31 761 65 536 32 144

32-point DCT 9 135 11 866 0 0 72

4-point DST 2 910 2 266 0 0 0

Transpose 3 617 2 256 65 536 32 0

Quantization 5 035 4 148 0 0 64

Inverse Transform 28 023 30 035 65 536 32 180

32-point IDCT 9 777 10 470 0 0 90

4-point IDST 3 154 2 355 0 0 0

Transpose 3 613 2 269 65 536 32 0

Reconstruction 1 315 2 052 0 0 16

Coefficient Cost 4 733 3 807 196 608 45 0

Transpose 3 681 2 398 196 608 45 0

Get Cost 1 029 1 370 0 0 0

CU Stack 3 430 5 819 1 605 632 79 0

Stack Push 1 619 3 588 0 0 0

Stack Pull 1 811 2 231 0 0 0

The shared PCIe interface consumes 4k ALMs and 5k registers. With each accelerator,

input and output memories take 367 Kbits of memory and 291 M20K memory controllers.

In total, 64 controllers are used for reference/reconstruction images and 104 for transform

coefficients. High M20K block usage comes from the need to store 16 CTUs for parallel

processing and wide data busses required for fast access. With three accelerators, the in-

put and output memories consume in total 1.1 Mbits of memory and 883 M20Ks. Each

Intra coding accelerator takes around 108k ALMs, 130k registers, 3.5 Mbits of memory,

663 M20K, and 409 DSPs in optimal conditions.

The distribution of resources in the Intra coding accelerator are displayed in Table 3. The

largest blocks of the design are the intra prediction and both transforms, each one taking

around a quarter of the used logic. The remaining 25 % of the logic is divided between

the control, quantization, reconstruction, coefficient cost and CU stack.

The intra prediction also takes over two third of the used M20K controllers. Around half

of them is used for parallel access in the prediction blocks and the other half in the Pre-

diction Buffer. Out of the 16 angled prediction blocks, 15 requires 13 M20Ks each and

last one for the mode 18 requires 8 M20Ks. This requirement results from the random-

access pattern, which prevents exploiting larger data widths. The high controller usage in

the Prediction Buffer results from the opposite problem. The M20K has a maximum data

width of 40 bits [27] and memory buses larger than that are implemented with parallel

controllers. The super wide 9216-bit (36 × 256-bit) memory interface of the Prediction

Buffer requires 231 memory controllers. FIFOs for reference picture and prediction are

also located within the intra prediction block requiring 7 M20Ks each. Aside from the

intra prediction, memories are mainly used in the CU stack and transpose blocks.

Most of the used DSP blocks are taken by the double DCT and IDCT blocks in the trans-

form blocks. After optimizations, one DCT takes 72 DSPs and one IDCT takes 90 DSPs.

This leaves 291 DSPs unused in the device. They could be used in the DST or IDST

blocks or in the prediction blocks. Using more DSPs could save some logic but could also

negatively affect timing due to routing challenges.

6.2 Performance

Table 4. Test-PC setup

Test PC

CPU Intel E5-2699 v4 (22 × 2.2 GHz)

FPGA 2 × Arria 10 Nallatech 385A

Memory 64 GB DDR4 ECC 2400 MHz

Storage 512 GB SATA 3.0 SSD

OS Ubuntu 16.4

Encoder Kvazaar v.1.2.0

The synthesized FPGA image was flashed into two Arria 10 FPGA on Nallatech 385A

PCIe cards that were added to test PC. The test-PC is powered by a 22-core Intel E5-2699

v4 Xeon CPU running at 2.2 GHz. The CPU is paired with 64 GB of EEC DDR4 RAM

and a fast 512 GB solid-state drive. Ubuntu 16.04 LTS was used as an operating system.

Table 5. Kvazaar coding configuration

Feature Ultrafast w/ 32 × 32

Profile Main

Bit depth 8

Color format 4:2:0

Coding mode Intra

Coding unit sizes 32 × 32, 16 × 16 and 8 × 8

Prediction unit sizes 32 × 32, 16 × 16 and 8 × 8

Transform unit sizes 32 × 32, 16 × 16 and 8 × 8

IP modes All (Planar, DC and 33 Angular)

Intra search Full

Transform Integer DCT and DST

Mode decision Sum of Absolute Differences

Parallelization Wave-front, Tiles

SAO Disabled

Sign hide Disabled

Rate Control Disabled

RDO Disabled

RDOQ Disabled

Encoding was benchmarked with the modified version of Kvazaar v1.2.0 using ultrafast

preset with 32 × 32 CUs. The 32 × 32 CUs were enabled as their effect on coding speed

on hardware is negligible. The other coding tools and settings are displayed in Table 5.

In this configuration, the hardware accelerator handles most of the work and the software

processing is limited to entropy coding and data handling with picture-level parallelism.

Using other presets would introduce coding tools not implemented on hardware so they

should be handled by the software. It would increase the CPU load and performance

would be limited by the CPU. With ultrafast setting, the 22-core Xeon is capable of full

hardware utilization with two FPGAs and performance is only limited by the hardware.

The performance of the accelerator was tested with 8-bit UHD 4:2:0 YUV test sequences

shared by Ultra Video Group [28]. The sequences contain different video content from

static content to slowly and fast moving objects and views.

The performance tests were run with six different hardware configurations including one

or two FPGA cards with one to three accelerators per FPGA. For all configurations, each

test sequence was encoded three times and the results were averaged to get rid of random

variation.

Table 6. HEVC coding speed of UHD video with different number of Intra coding ac-

celerators

 Software Single FPGA, accelerators Two FPGAs, accelerators

Sequence
(2160p)

 1 2 3 2 4 6

Speed
(fps)

Speed
(fps)

Speed
(fps)

Speed
(fps)

Speed
(fps)

Speed
(fps)

Speed
(fps)

Beauty 17 25 49 64 50 96 125

Bosphorus 20 27 53 65 54 102 127

HoneyBee 17 26 50 64 51 98 124

Jockey 21 29 54 65 58 104 126

ReadySetGo 19 27 52 64 53 99 123

ShakeNDry 16 22 44 63 45 85 115
YachtRide 18 26 51 64 51 98 123

Average 18 26 50 64 52 97 123

Average coding speed of the software only encoding was 18 frames per second (fps).

With one FPGA and one accelerator, the speed was increased by 45 % to 26 fps. The

relatively low performance increase is caused by hardware limitation of 16 parallel CTUs.

If there are less hardware slots than CPU processing threads, some threads stall while

waiting for hardware. With less powerful CPU, the relative performance increase would

be higher.

With two accelerators, coding performance was increased by 175 % to over 50 fps. There

is no difference between two accelerators split into one or two FPGAs as the PCIe inter-

face is capable of handling data transfers for 32 CTUs.

With more than two accelerators, the system scales somewhat linearly up to 585 % per-

formance boost or 123 fps with 6 accelerators on two FPGAs. Performance increase slows

down with 3 accelerators on a single FPGA as the data rate on the PCIe interface starts

reaching the maximum supported data rate.

6.3 Comparison to Related Work

Table 7. Comparison of the designed and prior-art HEVC intra encoders

Architecture Technology Frequency Performance Cells DSPs

Zhu et al. [29] TSMC 90 nm 357 MHz 1080@44 fps 2 296k gates -

Pastuszak et al. [30] TSMC 90 nm 200/400 MHz 2160@30 fps 1 086k gates -

Pastuszak et al. [30] Arria II 100/200 MHz 1080@30 fps 93k ALUTs 481

Atapattu et al. [31] Zyng ZC706 140 MHz 1080@30 fps 84k LUTs 34

Miyazawa et al. [32] 3x FPGA N/A 1080@60 fps N/A N/A

This Thesis CPU + Arria 10 175 MHz 2160@64 fps 552k ALUTs 1227

Table 7 tabulates the characteristics of the encoder developed in this work and existing

HEVC intra encoders on Application specific integrated circuits (ASICs) and FPGAs. For

more straightforward comparison, our accelerator is configured to use only one FPGA.

From the related HEVC encoders, the real-time coding speed of the ASIC-based HEVC

intra encoder in [29] is limited to 1080p at 44 fps. The HEVC intra encoder in [30] sup-

ports real-time 2160p video encoding on ASIC but the respective FPGA implementation

is limited to 1080p resolution. Similarly, the FPGA-based HEVC intra encoder in [31] is

restricted to 1080p resolution. The intra/inter HEVC encoder in [32] is able to encode

1080p at 60 fps with a custom board of three separate FPGA chips. Higher resolutions

are also supported but not without increasing the number of boards and chips.

The accelerator developed in this work is the fastest one of the compared encoders. It

more than doubles the performance over that of the second fastest. Miyazawa et al. do not

disclose the size of their encoder but compared with others, our accelerator is the largest

one and uses more DSPs than the others. However, comparing Look-up tables (LUTs),

Adaptive look-up tables (ALUTs), ALMs and ASIC gates is difficult because of different

technologies. Our encoder also requires a high-performance CPU to function effectively.

7. CONCLUSION

The main objective of this Thesis was to accelerate HEVC encoding with an FPGA hard-

ware accelerator. The accelerator was implemented using Catapult-C HLS design flow

instead of a traditional RTL approach. HLS offered notably faster process from software

model to the hardware implementation. This made design and verification times more

acceptable for project of this size.

To implement the accelerator, multiple different coding tools from HEVC were imple-

mented with HLS. The most notable blocks of the accelerator were the intra prediction

and transforms blocks. A fully custom control structure was also developed for the accel-

erator to enable its parallelization. Although some parts of the accelerator were developed

before the start of this Thesis, all parts were at least improved during this work. Either

resource consumption was optimized or performance increased.

The hardware - software interface was also developed for the accelerator. On hardware,

the interface was implemented with Intel PCIe block using custom DMAs and memory

structure. On software side, the designed interface included a custom Linux kernel mod-

ule and a modified Kvazaar software interacting with the accelerator.

The accelerator achieved an encoding speed of 64 fps with one FPGA and 123 fps with

two FPGAs for 2160p video. Compared with related works, the designed accelerator

achieved the fastest coding speeds, although also being the largest.

To increase encoding speed further, CABAC and others coding tools should also be im-

plemented on FPGA. This way, the accelerator could be converted to a standalone en-

coder that does not require a separate CPU.

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Forecast and Methodology, 2015-2020,

Jun. 2016.

[2] High Efficiency Video Coding, document ITU-T Rec. H.265 and ISO/IEC

23008-2 (HEVC), ITU-T and ISO/IEC, Apr. 2013.

[3] Advanced Video Coding for Generic Audiovisual Services, document ITU-T Rec.

H.264 and ISO/IEC 14496-10 (AVC), ITU-T and ISO/IEC, Mar. 2009.

[4] M. Viitanen, J. Vanne, T. D. Hämäläinen, M. Gabbouj, and J. Lainema, “Com-

plexity analysis of next-generation HEVC decoder,” in Proc. IEEE Int. Symp.

Circuits Syst., May 2012.

[5] Kvazaar HEVC encoder [Online]. Available: https://github.com/ul-

travideo/kvazaar

[6] M. Fingeroff, High-Level Synthesis Blue Book. Mentor Graphics Corporation,

2010.

[7] Catapult: Product Family Overview [Online]. Available: http://ca-

lypto.com/en/products/catapult/overview

[8] Synphony C Compiler [Online]. Available: https://www.synopsys.com/imple-

mentation-and-signoff/rtl-synthesis-test/synphony-c-compiler.html

[9] Vivado High-Level Synthesis [Online]. Available: https://www.xilinx.com/prod-

ucts/design-tools/vivado/integration/esl-design.html

[10] Intel® High Level Synthesis Compiler [Online]. Available: https://www.in-

tel.com/content/www/us/en/software/programmable/quartus-prime/hls-com-

piler.html

[11] HM (HEVC Test Model) [Online]. Available: https://hevc.hhi.fraunhofer.de/

[12] Arria V Device Overview [Online]. Available: https://www.intel.com/con-

tent/dam/www/programmable/us/en/pdfs/literature/hb/arria-v/av_51001.pdf

[13] V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding (HEVC).

Springer, 2014.

[14] J. Vanne, M. Viitanen, T. D. Hämäläinen, and A. Hallapuro, “Comparative rate-

distortion-complexity analysis of HEVC and AVC video codecs,” IEEE Trans.

Circuits Syst. Video Technol., vol. 22, no. 12, Dec. 2012, pp. 1885-1898

[15] H.261: Codec for audiovisual services at n x 384 kbit/s, document ITU-T Rec.

H.261, Nov. 1988.

[16] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra coding of the

HEVC standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

Dec. 2012, pp. 1792-1801.

[17] A. Fuldseth, G. Bjøntegaard, M. Budagavi, and V. Sze “Core transform design

for HEVC,” Document JCTVC-G495, Geneva, Switzerland, Nov. 2011.

[18] M. Budagavi, A. Fuldseth, G. Bjøntegaard, V. Sze, and M. Sadafale, “Core

transform design in the High Efficiency Video Coding (HEVC) standard,” IEEE

J. Select. Topics Signal Process., vol. 7, no. 6, Dec. 2013, pp. 1029-1041

[19] L. Braatz, L. Agostini, B. Zatt, and M. Porto, “A multiplierless parallel HEVC

quantization hardware for real-time UHD 8K video coding”, in Proc. IEEE In-

ternational Symposium on Circuits and Systems, Baltimore, Maryland, USA,

May 2017.

[20] A. Saxena and F. C. Fernandes, “DCT/DST-Based transform coding for intra

prediction in image/video coding,” IEEE Transactions on Image Processing, vol.

22, no. 10, pp. 3974-3981, Oct 2013.

[21] Arria 10 Hard IP for PCI Express IP Cores [Online]. Available: https://www.in-

tel.com/content/dam/www/programmable/us/en/pdfs/litera-

ture/ug/ug_a10_pcie.pdf

[22] Avalon® Interface Specifications [Online]. Available: https://www.in-

tel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_ava-

lon_spec.pdf

[23] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-level synthesis

design flow for HEVC intra encoder on SoC-FPGA,” in Proc. Euromicro Symp.

Digit. Syst. Des., Funchal, Madeira, Portugal, Aug. 2015.

[24] P. Sjövall, V. Viitamäki, A. Oinonen, J. Vanne, T. D. Hämäläinen, and A.

Kulmala, “Kvazaar 4K HEVC intra encoder on FPGA accelerated Airframe

server,” in Proc. IEEE Workshop Signal Process. Syst., Lorient, France, Oct.

2017.

[25] Intel Arria Native Fixed Point DSP IP Core User Guide [Online]. Available:

https://www.intel.com/content/www/us/en/programmable/documenta-

tion/kly1418710866787.html

[26] Designing High-Performance DSP Hardware - Using Catapult C Synthesis and

the Altera Accelerated Libraries [Online]. Available: https://www.intel.com/con-

tent/dam/www/programmable/us/en/pdfs/literature/wp/wp-01039.pdf

[27] Intel® Arria® 10 Device Overview [Online]. Available: https://www.in-

tel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-

10/a10_overview.pdf

[28] Test Sequences [Online]. Available: http://ultravideo.cs.tut.fi/#testsequences

[29] J. Zhu, Z. Liu, D. Wang, Q. Han, and Y. Song, “HDTV1080p HEVC Intra en-

coder with source texture based CU/PU mode pre-decision,” in Proc. Asia and

South Pacific Design Automation Conf., Singapore, Jan. 2014.

[30] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of the

H.265/HEVC intra encoder,” IEEE Trans. Circuits Syst. Video Technol., vol. 26,

no. 1, Jan. 2016, pp. 210-222.

[31] S. Atapattu, N. Liyanage, N. Menuka, I. Perera, and A. Pasqual, “Real time all

intra HEVC HD encoder on FPGA,” in Proc. IEEE Int. Conf. on Application-

specific Syst., Architectures and Processors, London, Jul. 2016, pp. 191-195.

[32] K. Miyazawa, H. Sakate, S. Sekiguchi, N. Motoyama, Y. Sugito, K. Iguchi, A.

Ichigaya, and S. Sakaida, “Real-time hardware implementation of HEVC video

encoder for 1080p HD video,” in Proc. Picture Coding Symposium, San Jose,

California, USA, Dec. 2013, pp. 225-228.

