
SAKARI LAHTI
INTEGRATION OF PROCESSOR AND SYSTEM-ON-CHIP TOOLS
Master's thesis

Examiners:
Professor Timo D. Hämäläinen,
Dr. Tech. Erno Salminen.
Examiners and topic approved by
the Faculty Council of the Faculty
of Computing and Electrical Engi-
neering on 9 October 2013.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250162104?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
LAHTI, SAKARI: Prosessori- ja system-on-chip-työkalujen yhteiskäyttö
Diplomityö, 60 sivua, 0 liitesivua
Kesäkuu 2014
Pääaine: Ohjelmoitavat alustat ja laitteet
Tarkastajat: Prof. Timo D. Hämäläinen, TkT Erno Salminen
Avainsanat: TTA, TCE, IP-XACT, Kactus2, C-to-VHDL, FPGA, SoC

Siirtoliipaistuun arkkitehtuuriin (engl. transport-triggered architecture, TTA) perustuvat
suorittimet tarjoavat tehokkaan välimallin ratkaisun luotaessa IP-komponentteja Sys-
tem-on-chip -piireihin. TTA-suorittimien avulla suunnittelutyö on huomattavasti vaivat-
tomampaa ASIC-lähestymistapaan verrattuna, ja toisaalta taloudellisempi ja tehokkaam-
pi toteutus on mahdollinen kuin käyttäen yleiskäyttöisiä suorittimia.

Tässä diplomityössä tutkitaan tapoja nopeuttaa suunnitteluvuota käytettäessä TTA-
suorittimia SoC-suunnittelutyössä. Esitetyt vuot yhdistävät “TTA-based Co-design En-
vironment” -työkalupaketin (TCE) käytön Kactus2 IP-XACT-suunnitteluympäristön
kanssa. IP-XACT-standardi ja Kactus2-työkalu helpottavat eri valmistajien tarjoamien
IP-komponenttien toisiinsa yhdistämistä ja konfiguroimista, kun taas TCE-työkalut tar-
joavat nopean ja tehokkaan reitin C-kielestä VHDL:ään.

Tässä työssä esitellään kolme TTA-käyttötapausta: valmiiksi tehtynä kiinteänä kiih-
dyttimenä, yleiskäyttöisenä suorittimena, ja räätälöitynä sovelluskohdistettuna suoritti-
mena. Lisäksi työssä käydään läpi instanssikohtaisen datan käsittelyä IP-XACT:ssa.
Suunnitteluvuot käydään askel askeleelta läpi jokaisen käyttötapauksen osalta, esimerk-
kitapaus esitellään, ja jokaiseen askeleeseen käytetty suunnitteluaika arvioidaan.

Vuot sisältävät 15-18 askelta ja niiden yhteydessä käytetään 8-12:ta eri ohjelmaa kä-
sitellyistä ohjelmistotyökalupaketeista. Jos C-lähdekoodi ja IP-XACT-kirjasto ovat val-
miina, insinööri voi toteuttaa FPGA-pohjaisen monisuoritinlaitteen alle 4 tunnissa ilman
mittavaa aiempaa laitteistosuunnittelukokemusta. Tulosten perusteella esitellään lisäke-
hitysehdotuksia TCE-työkaluihin ja Kactus2:een.

III

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Information Technology
LAHTI, SAKARI: Integration of Processor and System-on-Chip Tools
Master of Science Thesis, 60 pages, 0 Appendix pages
June 2014
Major Subject: Programmable platforms and devices
Examiners: Prof. Timo D. Hämäläinen, Dr. Tech. Erno Salminen
Keywords: TTA, TCE, IP-XACT, Kactus2, C-to-VHDL, FPGA, SoC

Transport-triggered architecture (TTA) processors provide an efficient middle-ground
in creating intellectual property (IP) components for system-on-chip (SoC) designs. Us-
ing TTAs, the design effort is greatly reduced compared to ASIC approach, and a more
economic and efficient implementation is possible than when using a general purpose
processor.

This Thesis examines ways to accelerate the design flow when using TTA processors
in SoC designs. The proposed flows combine the use of the TTA-based Co-design Envi-
ronment (TCE) tool set and Kactus2 IP-XACT design environment. The IP-XACT stan-
dard and the Kactus2 tool make it easy to integrate and configure IP components from
multiple vendors, whereas the TCE tools provide a fast and efficient path from C to
VHDL.

The Thesis presents three use cases for TTA: as a ready-made fixed accelerator, a
general purpose processor, and a tailored application-specific processor. Moreover, man-
agement of instance-specific data in IP-XACT is discussed. For each use case, the de-
sign flows are presented in detail step-by-step, a case example is presented, and the de-
sign time spent on each step is evaluated.

The flows contain between 15 and 18 steps and use between 8 and 12 different pro-
gram tools from the studied tool sets. Provided that C source codes and IP-XACT li-
brary are available, a non-HW oriented engineer can implement an FPGA based multi-
processor product in less than 4 hours. Based on the results, further development sug-
gestions for the TCE tools and Kactus2 are made.

IV

PREFACE

This Master of Science Thesis was written in the Department of Pervasive Computing at
Tampere University of Technology during the fall of 2013 and the spring of 2014. The
bulk of the research took place during the spring of 2012. The research results were
published in the following conference article and this Thesis expands and elaborates
upon the paper:

Lauri Matilainen, Sakari Lahti, Otto Esko, Erno Salminen, Timo D. Hämäläinen. In-
tegration of TTA processor tools to Kactus2 IP-XACT design flow. Norchip, Copen-
hagen, Denmark, November 12-13 2012. 6 pages.

I wish to thank Lauri Matilainen, Joni-Matti Määttä and Antti Kamppi for valuable
help with Kactus2 and Otto Esko and Pekka Jääskeläinen for similar help with the TCE
tools. I am also thankful to my parents and friends for being there and enriching my life
during all these years. Most of all, I am grateful to my supervisor Timo D. Hämäläinen
who was exceptionally patient, friendly and helpful during the struggle to give birth to
this Thesis.

I see great potential in both Kactus2 and the TCE tools. Hopefully, this Thesis pro-
vides at least some modest benefit to their developers.

May 14, 2014

Sakari Lahti

V

CONTENTS

1 Introduction..1
2 Overview of TCE and Kactus2..5

2.1 TCE Overview..5
2.1.1 Principles of a TTA processor...5
2.1.2 TCE tools..7

2.2 Kactus2 overview...9
2.2.1 The IP-XACT/IEEE1685 Standard..11
2.2.2 Kactus2 IP-XACT extensions..14

2.3 About instance management in IP-XACT..17
2.3.1 Creating a new IP-XACT component from a template or draft.....17
2.3.2 Completing instance-specific data into IP-XACT design..............18

2.4 Summary of the Tools..18
3 TTA AS a fixed accelerator IP block..20

3.1 IP block design...22
3.2 SoC design..25

4 TTA as a general purpose processor...26
4.1 Processor design...29
4.2 SoC design..31

5 TTA as an ASIP..33
5.1 Template processor design...36
5.2 ASIP and SoC design...37

6 An illustrative example with crc..39
6.1 Template component creation..39
6.2 Using the component in a SoC design..41

7 Design flow Evaluation..46
7.1 TTA as a fixed accelerator IP block..46
7.2 TTA as a general purpose processor...48
7.3 TTA as an ASIP..50

8 Conclusions..53
8.1 General remarks...53
8.2 Suggestions for future development of the tools..54

8.2.1 Suggested modifications to the TCE tools.....................................55
8.2.2 Suggested modifications to Kactus2 ..55

References...57

VI

LIST OF TERMS AND ABBREVIATIONS

ASIP Application-specific instruction-set processor. A
processor whose instruction set is tailored to benefit a
certain application.

CPU Central processing unit. A hardware component that
processes the instructions of a computer program
performing basic arithmetical, logical and input/output
operations.

Custom FU Custom function unit. An FU that has been customized
to perform a specific task that is not needed in all
TTAs.

DSP Digital signal processing. Mathematical manipulation
of information in discrete form used to modify or
improve it in some way.

FPGA Field-programmable gate array. An integrated circuit
designed to be configured by a designer after
manufacturing.

FU Function unit. A basic component within a TTA
processor performing operations when it is triggered
by incoming data.

GPP General purpose processor. A processor designed for
running arbitrary applications.

GPU Graphics processing unit. An electronic circuit
designed to rapidly manipulate memory to accelerate
the creation of images intended for output to a display.

HDL Hardware description language. A computer language
used to program the structure, design, and operation of
electronic circuits. Examples: VHDL and Verilog.

HLL High-level language. A programming language with
strong abstraction from the details of the HW platform.

HLS High-level synthesis. An automated design process that
interprets an algorithm and creates digital HW that
implements it.

HW Hardware. Any physical digital electronic component.

IP block/component Intellectual property block/component. A reusable HW
component that is the intellectual property of one
party.

IP-XACT An XML format that defines and describes electronic
components and their designs.

VII

IP-XACT library An organized collection of IP-XACT metadata of HW
and SW components and designs saved on disk that
can be accessed from Kactus2.

Kactus2 library See IP-XACT library.

Metadata “Data about data.” Contains concise information about
the important aspects of data.

MP-SoC Multiprocessor SoC. A SoC design that contains
multiple processors.

OSAL Operation set abstraction layer. A database in TCE that
contains the static properties and simulation behavior
of operations.

RISC Reduced instruction set computing. A CPU design
philosophy with relatively few and simple instructions.

RTL Register-transfer level. A design abstraction which
models a synchronous digital circuit in terms of the
flow of digital signals between HW registers.

SoC System-on-chip. An integrated circuit that integrates
all components of an electronic system into a single
chip.

SW Software. Any program or part of program that can be
processed by a CPU.

TCE TTA-based co-design environment. A tool set for
designing and programming customized TTA
processors.

TTA Transport-triggered architecture. A CPU design in
which programs directly control the internal transport
buses of processors.

VLIW Very long instruction word. A processor architecture
designed to take advantage of instruction level
parallelism.

VLNV Vendor-library-name-version. A system for identifying
HW and SW components by their vendor, library,
name and version number.

VLSI Very-large-scale integration. A process of creating an
integrated circuit by combining thousands of
transistors into a single chip.

XML Extensible markup language. A markup language that
defines a set of rules for encoding documents in a
format that is both human- and machine-readable.

VIII

LIST OF FIGURES

Figure 1: A SoC architecture for MPEG-4 encoder with performance profiling support
[2, p. 2]...2
Figure 2: Comparison of choices for implementing an application function....................2
Figure 3: A sample TTA processor architecture [21, p. 11]...6
Figure 4: The TCE design flow [21, p. 9]..7
Figure 5: The general design flow and scope of Kactus2..10
Figure 6: Kactus2 views of the library, SoC design and system design. The SoC design
contains processors, buses and other components from the library. The processors have
SW components mapped to them in the system design where also interprocessor SW
communication channels are defined...11
Figure 7: IP-XACT-based design flow..12
Figure 8: IP-XACT components, design and design configurations...............................13
Figure 9: Component and design hierarchy in IP-XACT..14
Figure 10: Top-level aspects in Kactus2 design flow..14
Figure 11: a) Standard IP-XACT way for including SW. b) Consequence: HW
component library grows...15
Figure 12: a) SW as IP-XACT components and mapping from HW to SW. b)
Consequence: composed designs from generic HW and SW components.....................15
Figure 13: Mapping between HW and SW with system design......................................16
Figure 14: Completing a template component..17
Figure 15: The template processor architecture as seen in ProDe. Input ports with “X”
denote ports that trigger the FU...39
Figure 16: The values given in the ports editor in Kactus2. Only the mandatory values
have been entered for these simple ports...40
Figure 17: The values given in the bus interface editor for the clock bus in Kactus2.....40
Figure 18: The component view of the finished TTA template component....................41
Figure 19: The library (in the left) and the HW design with two TTA instances............42
Figure 20: The Kactus2 views editor for the simple TTA core..43
Figure 21: The system design mapping SW to TTAs. The blue boxes represent the TTAs
and the green boxes the SW...43
Figure 22: The architecture of the TTA customized for CRC calculation.......................44

IX

LIST OF TABLES

Table 1: The various TCE tools used in this work. The tools either have a graphical user
interface (GUI) or execute from the shell command line (CLI). Output file format is also
specified. [21, p. 10]..8
Table 2: Standard IP-XACT objects and Kactus2 extended IP-XACT objects. Objects
that are not relevant to this Thesis are marked with an asterisk......................................16
Table 3: Summary of the TCE tools and Kactus2...19
Table 4: The design flow phases of a fixed accelerator IP block design and integration.
Phases F1-F11 contain the IP block design and phases F12-F15 integration into a SoC
design and implementation on a FPGA...20
Table 5: The design flow phases of a general purpose TTA processor design and
integration. Phases G1-G9 contain the processor design and phases G10-G18 the SoC
design and implementation on a FPGA...27
Table 6: The design flow phases of a template TTA processor creation.........................34
Table 7: The design flow phases of a custom processor creation and integration...........34
Table 8: Time-usage estimations of each phase in the design flow of TTA as a fixed
accelerator IP block (as in Table 4)..46
Table 9: Time-usage estimations of each phase in the design flow of TTA as a general
purpose processor (as in Table 5)..48
Table 10: Time-usage estimations of each phase in the design flow of a template TTA
processor creation (as in Table 6)..50
Table 11: Time-usage estimations of each phase in the design flow of a custom TTA
processor creation and integration (as in Table 7)...51
Table 12: Summary of the properties of the design flows...53

1

1 INTRODUCTION

System-on-chip (SoC) integrates dozens of intellectual property (IP) components into a
single chip, typical applications including telecommunication and multimedia [1]. De-
signing complex SoCs requires an efficient reuse of existing hardware (HW) and soft-
ware (SW) components and modern design tools which enable automation. For exam-
ple, the interface between HW and SW, verification, design space exploration, and prod-
uct data management are very important tasks. At the same time, the required process-
ing requirements are high while the available power budget is very limited, especially in
mobile devices.

In addition to fixed HW accelerators which handle the most demanding processing,
there are from a few to dozens of programmable processors, and consequently a large
fraction of design costs are associated with embedded SW. Such a heterogeneous pro-
cessing approach provides an affordable balance between performance and development
costs.

Figure 1 presents an example of a typical SoC architecture [2]. The SoC implements
an MPEG-4 video encoder application on FPGA with multiple processors (CPUs) that
run the application SW, two HW accelerators (ME and DCT-Q-IDCT) for resource-in-
tensive parts of the encoding algorithm, a memory controller, a resource manager (RM)
to arbitrate the processors' access to the HW accelerators, and a hardware monitor to
collect data on the performance of the accelerators. In this SoC, the various components
are connected by an on-chip communication network called HIBI [3] which is imple-
mented by the wrappers connected to each component. Furthermore, the HW accelera-
tors require their own wrappers since they have interfaces that are incompatible with
HIBI. The wrappers also manage the dataflow considerations to and from the accelera-
tors. Even this relatively simple SoC demonstrates how the design process can grow
complex and thus error-prone unless rigorous designing principles are followed with ef-
ficient auxiliary program tools.

Today's SoCs are typically manufactured with 28 nm technology and can contain one
or more central processing units (CPU), a graphics processing unit (GPU), internal
memory blocks, external memory controllers, digital signal processors (DSP), and vari-
ous external interfaces for different industry standards. In addition, application domain
specific modules and accelerators are common. To give an example of a modern SoC is
Qualcomm's Snapdragon 800 MSM8974 targeted for smartphones and tablets, which
contains a 2.3 GHz quad-core CPU, a 450 MHz GPU, a 600 MHz DSP, a 32-bit dual-
channel LPDDR3 memory controller, and radio modules for WiFi, Bluetooth and GPS

2

among other components [4]. This SoC has seen wide use in the mobile devices indus-
try.

Field-programmable gate array (FPGA) is a common SoC platform whose customiz-
ability makes it an attractive option for many design problems. Figure 2 shows the dif-
ferent approaches to implement an application on an FPGA. The starting point is a de-
scription of the application as an executable model in C language that abstracts the com-
munication between application functions. The first, quickest implementation option is
the compilation of the C code into NIOS [5] or other general purpose processor (GPP).
If the performance is not satisfactory, the next option is to use an application specific in-
struction-set processor (ASIP), such as a transport-triggered architecture (TTA) proces-
sor [6; 7]. The last and most laborious option is to implement bare HW by converting
the algorithms into synthesizable register-transfer level (RTL) description with VHDL.

Figure 2: Comparison of choices for implementing an
application function.

Figure 1: A SoC architecture for MPEG-4 encoder with performance
profiling support [2, p. 2].

3

As a rough estimate, if the GPP should take 1 day, ASIP could take 2 days and RTL
more than 10 days to implement. Based on a set of experiments, if the performance of
NIOS is normalized to 1, a TTA can be 4x faster and RTL 2−50x faster [2]. Thus, the
ASIP approach is often the most practical option since it provides a good effort-perfor-
mance ratio and completely avoids or greatly reduces VHDL coding.

There are plenty of existing SoC design flows, which can be divided into high-level
synthesis (HLS) approaches and integration environments. In HLS, a designer describes
the application in a high-level language (HLL) such as C, SystemC or MATLAB, and
the HLS tool maps this description to HW constructs as efficiently as possible. In addi-
tion to faster time-to-market, another advantage of these design methodologies is that
they usually require less HW design expertise, allowing people with SW engineering
skills to produce HW IP components with adequate performance. These flows are some-
times referred to as ”C-to-VHDL”. A popular way of implementing HLS for FPGAs is
to use soft-core processors with varying degrees of configurability [7; 8; 9; 10; 11]. For
example, about 4x speedup over basic reduced instruction set computing (RISC) proces-
sor was reported in [10].

Numerous SoC integration environments exist and recently they have started utiliz-
ing the IEEE1685/IP-XACT XML metadata standard as well [12; 13; 14; 15]. The goal
is to packetize all reusable IPs into a library to simplify integrating and configuring
them. The necessary information includes, among others, port interfaces, file sets, avail-
able parameters, and optional generator scripts. Tools can then automatically generate a
structural top-level VHDL, compilation scripts, header files for SW developers, and so
on. Furthermore, the vendor/library/name/version (VLNV) identifiers of all IP-XACT
objects aid in version and product data management. The most important objects are
component (for example CPU), interface definitions (for example AMBA [16]) and de-
sign which is a hierarchical description of the component instances and their connec-
tions.

This Thesis combines the two approaches (HLS and SoC integration environments)
by focusing on enhancing the SW integration in Kactus2 design flow [17; 18; 19] using
TTA processors. The approach is based on the IP-XACT standard which is originally
purposed for HW IP block integration. Kactus2 expands on this, allowing capturing for
example the structure of the SW stack, its mapping into processors and memory map
design. The goal is to help SW engineers to implement FPGA applications by integrat-
ing TTA tools into the Kactus2 IP-XACT design environment.

The TTA tool package developed at the Tampere University of Technology is called
the TTA-based Co-design Environment (TCE). Previously, there has been no formal re-
search on how to combine the TCE and Kactus2 design flows. This work considers
three different use cases of designing and integrating TTA processors with the TCE
tools and Kactus2. The first case is where the TTA processor is purposed as a fixed ac-
celerator IP block. That is, the processor will perform a single task in the most efficient

4

way and it is not re-programmable. In the second case, the TTA is designed to be a GPP
similar to NIOS. In the final, and most important case, the TTA is stored in IP library as
a template component that can be reused and customized as an ASIP. The aim of the
Thesis is to provide clear and efficient design flows for integrating the TCE and Kac-
tus2 use in these three cases.

The rest of the work is organized as follows. Chapter 2 provides an overview of the
TCE tools and Kactus2. Chapters 3, 4 and 5 present the use cases and the related design
flows of TTA as a fixed accelerator IP block, GPP and ASIP, respectively. Chapter 6
contains an illustrative example of the ASIP design flow. Chapter 7 evaluates the design
flows from the perspective of time-usage, and finally, Chapter 8 provides the conclu-
sions drawn from the work.

5

2 OVERVIEW OF TCE AND KACTUS2

This work combines the use of two separately developed, freely available, open-source
design environments: TTA-based Co-design Environment and Kactus2 used for IP inte-
gration.

2.1 TCE Overview

2.1.1 Principles of a TTA processor

The TCE tools are based on TTA processors [6], which follow the principle that compu-
tation occurs as a side effect of data transports (it can be thought that TTA is an extreme
version of a RISC processor having only one instruction, move). Each function unit
(FU) within the processor has a specific input port that triggers computation within the
unit when data arrives in the port. The FUs are connected by one or more transport
buses, and each instruction word of a program defines the data transfers within each
bus. This allows for strong instruction level parallelism like in the very long instruction
word (VLIW) processors [20]. The number of simultaneous operations within the pro-
cessor is limited only by the number of transport buses. Furthermore, unlike in conven-
tional processors, it is not always necessary to write output back to a register file as the
output of a FU can be directly sent to the input port(s) of the FU that needs it. This is
called software bypassing, which can significantly relieve register file port pressure and
consequently energy consumption.

Thanks to transport triggering, the control logic of the processor is usually simpler
than in conventional processors. Many of the control decisions that are normally made
at run time can be fixed when compiling the program. This, however, means that a pro-
gram compiled for a certain TTA processor is unlikely to work on any other processor
since the compiled program code assumes a fixed FU and bus architecture.

Figure 3 shows the basic architecture of a TTA processor. The sockets in the Figure
define which FUs are connected to which transport buses, and furthermore they enable
and disable the connections within, according to the program that is being run. Essen-
tially, a TTA program is just a set of instructions about which connections are enabled
on each clock cycle. Data flows based on the currently enabled connections and opera-
tions are triggered within FUs when new data arrives in their triggering input ports.

6

The TTA paradigm is ideal for ASIPs. The processor design model is flexible and
straightforward as the main tasks are selecting the FUs and their connections, which are
easy to modify thanks to the TCE tools that are discussed in the next subsection. Cus-
tom HW accelerators can be created to handle computation-intensive operations, but
this is not necessary with all applications.

A comparison of performance between a simple TTA processor and various soft-core
processors for several applications was performed in [10]. The TTA processor that was
implemented with the TCE tools and the soft-core processors (NIOS II/f and two Mi-
croBlaze configurations) were synthesized and run on FPGA. The results showed that
the TTA processor outperformed the soft-core processors provided by major vendors on
average by a factor of 1.5 to 2 when measuring speedup but even 4x speedups were
measured.

TTA processors are best suited for signal processing and data flow -type applications
that can be run to completion without external interrupts. Applications requiring inter-
rupts are difficult to support since moves of one operation can span multiple instruction
words, so all of the processor state cannot be represented by the registers alone, but also
includes state inside execution units. Fortunately, the drawbacks of TTAs are usually not
issues with ASIPs where there is often no need to run multitasking operating systems.

Figure 3: A sample TTA processor architecture [21, p. 11].

7

2.1.2 TCE tools

The TCE tools are being developed at the Department of Pervasive Computing at Tam-
pere University of Technology. Their goal is to enable an effortless design flow of pro-
grammable TTAs and to provide compilers for certain HLLs (currently C/C++ and
OpenCL) to avoid writing arduous assembly code for TTA processors.

Figure 4 shows the TCE design flow which is described in an abbreviated form here.
More comprehensive information can be found in [21].

Figure 4: The TCE design flow [21, p. 9].

8

In the first phase, the user creates a starting point processor architecture using the
Processor Designer1 tool (ProDe), or selects an existing architecture. He then compiles
the given HLL program for the processor using a retargetable2 compiler (TCECC). The
user can then use a processor simulator program (Proxim or TTASim) to find data about
cycle count and FU utilization among other things. Based on this feedback, he can
change the architecture until he finds one with sufficient performance. The Automatic
Design Space Explorer tool (Explore) can be used to partially automate this iterative
process. After this, he can select the VHDL implementations for the FUs from the HW
database (HDB) using ProDe.

The same FU can have different implementations in the HDB which decouples the
functionality and implementation of the FUs. This is a useful property since the data-
base can have different implementations for different FPGA families, among others.

The Processor Generator (ProGe) creates synthesizable VHDL code based on the ar-
chitecture and implementation mapping, and it also includes the Platform Integrator
which can be used to create synthesis settings and integrate the TTA with the memory
components of a given FPGA board. The Platform Integrator can also create an IP-
XACT description of the TTA with the KoskiIntegrator option.

In the last phase, the actual program binaries are generated using the Program Image
Generator (PIG). It can create plain binary as well as various FPGA vendor specific
RAM formats. Synthesis and simulation are done using FPGA specific third-party tools.

Other TCE tools include the Operation Set Abstraction Layer Editor (OSEd) which
can be used to add information on various custom operations that the FUs may perform
to the corresponding database. The HDBEditor is used to modify hardware databases
that contain the VHDL files of FU implementations. Estimate can be used to approxi-
mate physical properties of TTAs, such as area, maximum clock frequency and energy
consumption. Table 1 summarizes the TCE tools.

Table 1: The various TCE tools used in this work. The tools either have a graphical
user interface (GUI) or execute from the shell command line (CLI). Output file format is
also specified. [21, p. 10]

Tool Purpose Type Output file(s)

ProDe Define FUs, registers, interconnects of
TTA core

GUI ADF

TCECC Compile software CLI TPEF

Proxim Simulate TTA cores GUI report

1 Throughout this work, the various TCE tools are identified with italic font.
2 Retargetability means that the compiler needs to know the target architecture which can change from

compilation to compilation.

9

Tool Purpose Type Output file(s)

TTASim Simulate TTA cores CLI report

OSEd Operation set abstraction layer
database editor

GUI operation
database

Estimate Estimate physical properties of TTAs CLI report

HDBEditor HW implementation database editor GUI HDB

ProGe /
generateprocessor

Generate HDL CLI
(+GUI)

VHDL

PIG / generatebits Generate program image CLI for example
MIF

Platform Integrator Interface with memories, generate IP-
XACT

CLI XML, project
files

2.2 Kactus2 overview

Kactus2 is a tool set for designing embedded products, especially FPGA-based multi-
processor SoCs (MP-SoC) [22]. It uses the IEEE1685/IP-XACT XML metadata and de-
sign methodology, but extends the IP-XACT usage to upper product hierarchies and
HW/SW abstraction with Multicore Association MCAPI [23].

Kactus2 enables drafting and specifying from scratch block diagram blueprints for
product boards, chips, SoCs and IPs and get them stored in IP-XACT format. It also al-
lows packetizing IP for reuse and exchange by, for example creating “electronic data
sheets” of existing IPs for library as templates and blocks ready for integration. Finally,
it can be used in designing MP-SoC products by creating HW designs with unlimited hi-
erarchy, and system designs that map SW to HW. Product creation is further supported
by tools that automatically generate everything needed for HDL synthesis and SW
build, such as top-level VHDL and Altera Quartus II project files. However, IP function-
ality and binaries/executables cannot be created directly in Kactus2, although there is a
clear path from Kactus2 to other tools.

Figure 5 depicts the scope of Kactus2 and the key tasks within it. The starting point
can be formal, executable models or other means of documentation on required func-
tionality. System level design creates HW and SW partitions using for example model
based tools. HW and SW components are acquired, either by creating new or reusing
existing ones from a library. Metadata can be used as specification for new components.

10

The integration order is following: First HW component integration, then SW archi-
tecture design, mapping of SW components to HW instances, and finally configuring
both HW and SW components for product creation. The flow describes primarily SoC
design, but the phases can be applied to other levels of product hierarchy as well. For
example, when “board” is the outcome, design information is related to PCB schematic,
layout, part lists, silkscreens, and process-related information like test setups, test pro-
grams and test data patterns.

Figure 6 shows sample views from Kactus2 related to a SoC design. In the left is
shown the IP-XACT library that contains all HW and SW components and designs. In
the middle is the SoC (HW) design containing processors and other components along
with their connecting buses. In the right is the system design where the processors have
SW components mapped on them and SW communication channels are defined. Fur-
thermore, each HW and SW component in the library or in a design can be opened and
configured separately.

Figure 5: The general design flow and scope of Kactus2.

11

2.2.1 The IP-XACT/IEEE1685 Standard

Kactus2 utilizes the IP-XACT/IEEE1685 standard that was first developed by the
SPIRIT Consortium and approved as IEEE1685 in 2009. IP-XACT is an XML format
that describes very-large-scale integration (VLSI) HW IP blocks to enable automated
configuration and integration through tools. The scope of IP-XACT is on the IP and
SoC levels, but in Kactus2 the standard is applied also to other levels, aiming at product
level information management.

A core concept in IP-XACT is metadata which means data about data content. Kac-
tus2 uses metadata for describing components and designs. Metadata for a component is
a formal, vendor- and technology-independent description of the component that in-
cludes references to source files and other related information. Components are in prac-
tice HW blocks and SW code in different abstraction and granularity levels. For a de-
sign, metadata is a formal structural description that includes references to component
metadata, tools, configurations and other design-related information.

Figure 7 summarizes the main IP-XACT design steps. The sources are encapsulated
and separated from the IP description. This means that the HDL source code is embed-
ded via links to the source file in metadata file. IP blocks are assembled together in a de-

Figure 6: Kactus2 views of the library, SoC design and system design. The SoC design
contains processors, buses and other components from the library. The processors have
SW components mapped to them in the system design where also interprocessor SW
communication channels are defined.

12

sign, which is a structural description of the system. IP blocks as well as the design it-
self may have generic parameters, which are configured using generators that are typi-
cally scripts. The final configured IP-XACT design can be seen as “instructions” on
how to create an executable. In Kactus2, IP-XACT metadata is also used backwards as
specification for a new IP block not yet existing.

IP-XACT objects are XML metadata files representing SoC components, structure,
and configurations. IP-XACT design environment handles these objects, but not directly
the source files. The final design including all components and their connections is also
an object itself. IP-XACT objects are uniquely identified and referred to by a tuple
{V,L,N,V} stating Vendor-Library-Name-Version. All VLNV tuples are unique, inde-
pendent of what kind of IP-XACT objects they identify. The XML file name and its lo-
cation on disk are not defined themselves.

A SoC design flow may use several models for the same IP block or design, starting
from high-level abstract models down to implementation accurate models. Typically,
models are separately stored and each might have a different description language (for
example UML, SystemC, VHDL). IP-XACT can include all different abstraction level
descriptions in one metadata object. Instead of several separate objects, there can be
only one with several options. This helps keeping the library coherent and help automat-
ing the path from specification to implementation. IP-XACT also supports mixed ab-
straction levels at the same time.

An IP-XACT component is a general placeholder describing all IP block types like
processors, memories, accelerators and building blocks for buses and various interfaces.
A component contains independent elements that can be referenced between each other.

Figure 7: IP-XACT-based design flow.

13

Views are used to represent different roles of the component. Example views include
“RTL implementation”, “documentation”, “simulation” and “SW implementation.”

Components are connected using bus interfaces, bus definitions, and abstraction def-
initions. Bus interface defines a grouping of ports, with ports allowed to be included in
multiple different bus interfaces. Bus definition specifies general bus properties like
whether bus is addressable and what kind of connections are allowed. Abstraction defi-
nition defines logical bus signals and constraints related to them such as bus width and
direction of logical signals. A port map defines the mapping between physical and logi-
cal signals.

File sets and file set groups are folder and file collections that can be associated to
views. Example file set groups include “application,” “interrupt,” and “device driver.”
File sets include information about used tools, description languages and instructions on
how to handle files.

An IP-XACT design is like a traditional schematic of components. It describes a list
of component instances, their configuration, and connections to each other. For a design,
several design configurations exist for different purposes. Figure 8 illustrates the rela-
tionship between components, designs and design configurations.

A hierarchy of designs is implemented as follows (see also Figure 9):

• IP-XACT designs never refer to other designs. Instead, a design always refers to
components that are instantiated into design.

• The design must be wrapped inside a component in order to use it as a sub-de-
sign. Thus, an IP-XACT component refers to an IP-XACT design.

• An IP-XACT design can always be used as an IP-XACT component.

Figure 8: IP-XACT components, design and design configurations.

14

2.2.2 Kactus2 IP-XACT extensions

IP-XACT was originally purposed for HW descriptions. Kactus2 extends this to use SW
and system-level descriptions to apply IP-XACT to its design flow and to make IP-
XACT easier to use. Information on these extensions can be found for example in [24]
and [25], but the key points are summarized below.

The Kactus2 design flow manages three top-level aspects:

• Product hierarchy: This defines the scope of the work.

• Implementation: All objects are categorized according to HW, SW, system (HW
and SW mappings), and communication abstraction.

• Firmness: Each library object is one of the following: Mutables are reusable
components that can be modified. Templates must be saved to a new version
prior to use. Fixed have all parameters determined for frozen product releases.

Standard IP-XACT elements are used to describe the above top-level aspects. Compari-
son of the original scope of IP-XACT and these aspects is shown in Figure 10.

Figure 9: Component and design hierarchy in IP-XACT

Figure 10: Top-level aspects in Kactus2 design flow.

15

A standard IP-XACT HW component may include references to SW through model
views and file sets pointing to files on disk. In the worst case, a new HW component
version is needed every time the component is instantiated in a new design with new re-
lated SW (Figure 11). In Kactus2, this is avoided by creating IP-XACT objects also for
SW components.

With separated HW and SW components, designs can be composed without adding
design-specific files and elements to HW components as shown in Figure 12. However,
referencing to SW from HW components is still allowed, but now object references are
used (references between VLNVs). Using this mechanism, the mapping from HW com-
ponent to SW component is made through SW design. SW design may include only one
instantiated SW component, or there can be several SW components of its own hierar-
chy.

Figure 11: a) Standard IP-XACT way for including SW. b) Consequence: HW
component library grows.

Figure 12: a) SW as IP-XACT components and mapping from HW to
SW. b) Consequence: composed designs from generic HW and SW
components.

16

To instantiate HW and SW components on the same IP-XACT design, a system de-
sign is defined. It is a SW design that includes mappings of SW component instances to
HW component instances. Since IP-XACT does not specify HW/SW mappings, a
model parameter is added to each SW component for the mapping that is configured in
system design (Figure 13).

To summarize, the mapping of SW to HW can be done either by component hierar-
chical model view specified in a HW component (“from HW to SW”) or by instantiated
component model parameter specified in a system design (“from SW to HW”).

Table 2 collects the standard IP-XACT objects and Kactus2 extended IP-XACT ob-
jects together. Objects that are not relevant to this work have been omitted from the ex-
planations in this chapter.

Table 2: Standard IP-XACT objects and Kactus2 extended IP-XACT objects. Objects
that are not relevant to this Thesis are marked with an asterisk.

IP-XACT standard objects New Kactus2 objects

HW component, HW design SW component, SW design

HW design configuration API definition* (SW)

Bus definition COM definition* (SW, HW)

Abstraction definition System design (SW architecture mapped
to HW)

Generator chain* System component (SW architecture)

Figure 13: Mapping between HW and SW with system design.

17

2.3 About instance management in IP-XACT

The standard IP-XACT integration flow starts from reusable components that are instan-
tiated, connected, and configured in an IP-XACT design. Unfortunately, the standard
has problems with instance-specific definitions. Although generics and connections are
well defined, for example address spaces and SW components are not. The basic ques-
tion regards which values to store to the reusable component and which to the instances.
Two approaches are considered in the following.

2.3.1 Creating a new IP-XACT component from a template or draft

Figure 14 depicts a design process with templates or incomplete components in the be-
ginning. A template is a component that is never used as such in a design; it is like an
abstract base class in programming. In this example, the IP-XACT library includes a
few TTA template components that define only the information common to all instances
that are generated from them, like generators, and which connection is used with an on-
chip network, and if an external memory interface is used (SRAM or DRAM). User
makes a copy of the template, gives it a new VLNV, and instantiates it in the HW de-
sign.

Figure 14: Completing a template component.

18

Kactus2 also offers an option to ”draft” new components. User just adds an empty
component, connects it to others and defines a VLNV identifier. The necessary interface
types are detected automatically and serve as part of the requirements for the IP devel-
opment team. This is one way of creating a TTA template component for the library.

In Figure 14, source files are added to the new component A_1 later by a component
specific generator. However, in the worst case the library will contain as many compo-
nents as there are instances in various designs.

2.3.2 Completing instance-specific data into IP-XACT design

Figure 14 also depicts the second approach where instance-specific data is stored to the
place of the instantiation, that is to the SoC. As a specific example, one can consider the
address space definition that can be added to master interfaces in IP-XACT. It defines
what kind of segments the component can access using a certain interface. Thereby, ad-
dress space naturally depends on the design where the component is instantiated. Ad-
dress space should not be confused with the memory map that describes which registers
of a component are visible to others, which is usually not instance-specific information.

Again, the designer creates a HW design with all the necessary IPs followed by an
optional system design phase. The example assumes that template comp A has an empty
address space defined at first. The segments of the address space are then determined
based on the other components in the HW design. The complete address space is used in
SW compilation and stored to a top-level HW component (for example SoC) which
refers to the HW and system designs. The same principle applies to SW mapping data.

Moreover, if VHDL files of an IP are automatically generated based on a few in-
stance-specific parameters (for example data width, cache size, #FUs), they could be
stored into the top component’s file set as well. The reusable component holds only the
generator script, interfaces, parameter list, and documentation. Each instance defines the
parameter values for the generator which produces the implementation files. This ap-
proach encapsulates the TTA-instance-specific values and files to the SoC component
without augmenting the library with numerous components.

2.4 Summary of the Tools

Table 3 contains a summary of the primary properties of the TCE tools and Kactus2 for
quick reference.

19

Table 3: Summary of the TCE tools and Kactus2.

TCE tools Kactus2

Purpose Designing and programming
customized processors based on
the transport triggered architecture

Designing, specifying and
managing embedded products,
especially MP-SoCs.

Platform Linux Linux and Windows

Developer Tampere University of
Technology

Tampere University of
Technology

Home page http://tce.cs.tut.fi/index.html http://funbase.cs.tut.fi/#main

License MIT License GPL2 General Public License

Implementation
language

C, C++, Python C, C++/Qt5

Lines of code 217,000 274,000

The lines of code includes comment lines. The tools are constantly evolving so the
most current information can be found on their respective web sites.

http://tce.cs.tut.fi/index.html
http://funbase.cs.tut.fi/#main

20

3 TTA AS A FIXED ACCELERATOR IP
BLOCK

Thanks to the TCE tools, one can efficiently develop various fixed TTAs each tailored
to a certain application. These can be saved to the IP-XACT library, and the integrator
can drag and drop them into a SoC design like any other IP component. There is only
minimal if any processor configuration by the user. The processor's IP-XACT compo-
nent metadata includes the VHDL source files for HW, and SW source code and mem-
ory image maps of the program it executes. This use case is natural in a situation where
the processor design and SoC design are done by a different person, although both can
be designed by the same engineer as well. The design flow for this use case is described
after Table 4 which summarizes it.

Table 4: The design flow phases of a fixed accelerator IP block design and integration.
Phases F1-F11 contain the IP block design and phases F12-F15 integration into a SoC
design and implementation on a FPGA.

Phase Input Tools Output

F1 SW application
design and testing
on a PC or reuse

Application
specification
documents or
reused code

SW code
writing tools,
testing
environment

Platform-independent
SW source code

F2 Initial TTA
processor design

HW
specification
documents,
requirements of
SW

ProDe Initial processor ADF

F3 Program
compilation for
initial TTA

Initial processor
ADF, source
code files

TCECC Initial TPEF

F4 Design space
exploration

Initial ADF,
Initial TPEF

Proxim,
TTASim, ProDe,
TCECC, OSEd,
Explore

Final processor ADF

21

Phase Input Tools Output

F5 C code modification
and compilation for
TTA

Platform-
independent SW
source code

SW code
writing tools,
TCECC

TTA-tailored C
source code files,
final TPEF

F6 Optional: VHDL
implementation for
FUs if not already in
HDB

FU
requirements

VHDL writing
tools,
HDBEditor

VHDL files for FUs,
edited HDB

F7 FU implementation
mapping

Final ADF,
HDB

ProDe IDF

F8 Estimation of
physical properties

Final ADF, IDF,
final TPEF

Estimate Estimation results

Either F9 if the estimation results are satisfactory or back to F4 if not

F9 Either F9.a or F9.b

F9.a Processor, memory
controller, and top-
level entity
generation with
Platform Integrator

Final ADF, IDF,
final TPEF,
memory
specifications

Platform
Integrator

Top-level and
hierarchical VHDL
files of the processor
and memory
controllers, top-level
entity VHDL, FPGA
synthesis project files

F9.b.1 Manual processor
generation

Final ADF, IDF ProGe Top-level and
hierarchical VHDL
files of the processor

F9.b.2 Manual memory
controller
generation

Memory
specifications

VHDL writing
tools or target
platform's
memory
controller
generator

Memory controllers'
VHDL files

F9.b.3 Manual top-level
entity VHDL
generation

Top-level
VHDL files of
the processor
and memory
controllers

VHDL writing
tools

Top-level entity
VHDL

F10 Memory image
generation

Final ADF, Final
TPEF

PIG Instruction and data
memory images in
chosen format

F11 Either F11.a or F11.b

F11.a IP-XACT
component creation
(if KoskiIntegrator
was not used in F9)

All files created
in the previous
steps,
documentation

Kactus2
component
creation wizard

IP-XACT component
of the TTA in library

22

Phase Input Tools Output

F11.b IP-XACT
component
augmentation (if
KoskiIntegrator was
used in F9)

IP-XACT file
created by
KoskiIntegrator,
all files created
in the previous
steps,
documentation

Kactus2 Augmented IP-
XACT component of
the TTA in library

F12 SoC design IP-XACT files
of the TTA and
other
components in
the design

Kactus2 Kactus2 HW design

F13 Top-level VHDL
generation of the
HW design

Kactus2 HW
design

Kactus2 Top-level VHDL of
the HW design

F14 FPGA synthesis
project file
generation

Kactus2 HW
design

Kactus2 (for
Quartus II) or
target platform's
SoC designing
program

FPGA synthesis
project files

F15 FPGA synthesis and
programming

All the VHDL
files, memory
image files,
FPGA synthesis
project files

FPGA synthesis
and
programming
tools

The entire design
synthesized and
programmed on
FPGA

3.1 IP block design

The initial part of the flow is the same as in Section 2.1.2, but it is described in more de-
tail here. An even more detailed description can be found in [21], along with informa-
tion on how to use the various tools mentioned here.

The flow begins with writing or reusing a C program code that performs the speci-
fied functionality of the accelerator block. The code doesn't need to be customized for
TTA at this point, and indeed it should be tested on a workstation PC for correct func-
tionality. If in the final product, the processor takes external input from for example a
program running on another processor, it should be provided by the program itself at
this point. In other words, the external I/O is emulated in the program. If possible,
dummy values may be used.

When the SW code is ready, a starting point architecture of the TTA is created. This
is done using the ProDe tool. The starting point architecture should contain at least the

23

minimum resources required to run the program. External I/O functionality can be omit-
ted at this point. The end result is saved in an architecture definition file (ADF).

In the next phase, the program is compiled for the architecture using the TCECC
compiler. The C source code files and the ADF file are given as parameters to the com-
piler, and the compiled TTA program is saved in the TTA program exchange format
(TPEF) file. This is not a bit image that can be run on a physical platform, but it is used
in simulating the program on the target TTA.

There are two instruction set simulator options, either Proxim that has a graphical
user interface or TTASim which is command-line based. Both provide statistics about the
cycle counts and utilization of FUs. The designer then modifies the TTA architecture
based on the simulation results and specified performance and resource-usage require-
ments. The basic optimization options include modifying the algorithm itself at code
level, adding more resources to the TTA (FUs, register files, buses), and adding custom
operation FUs to the TTA. Details on performing these optimizations are outside the
scope of this work but they can be found in [21, Section 3.1]. This design space explo-
ration is an iterative process where different TTA architectures are created and tested
until a satisfactory one is found. The Explore tool can be used to partially automate this
process.

The designer should add any FUs related to external HW (for example various exter-
nal I/O components) to the architecture at this point. If their implementation does not
yet exist, he needs to add the related custom operations to the TCE's operation set ab-
straction layer (OSAL) using OSEd, map them to FUs and create the VHDL implemen-
tation of the FUs.

After finding a suitable architecture, the C code needs to be modified to be run on the
TTA processor. Specifically, any input and output to/from the processor's internal cus-
tom FUs and I/O units needs to be handled in the C code using macros defined in the
“tceops.h” library that includes a corresponding macro for each operation in OSAL. The
modified code is compiled to create the final TPEF file.

The next phase is to create a VHDL implementation of the processor. First, each FU
in the TTA needs to be mapped to a HW implementation. The implementations are
stored in the TCE's HW database (HDB). There can be several different implementa-
tions for the same FU that differ in resource usage and target platform. If some FUs
don't have an implementation in the HDB, they must be created by writing the VHDL
and adding information on them to the HDB using the HDBEditor tool. The implemen-
tation mapping is performed using ProDe, and the result is saved in the implementation
definition file (IDF).

With the implementation mapping, it is possible to use the Estimate tool to provide
estimates on the energy consumption, die area, and maximum clock rate of the TTA.
The final ADF, IDF and TPEF files are given as input parameters to the Estimate tool. If
the output report contains unsatisfactory results, the flow returns to design space explo-

24

ration where the architecture, SW code and/or FU implementations are modified until
the results improve, whereupon the designer can move on to the processor generation
phase.

The TCE tools contain the Platform Integrator that is part of the ProGe tool. It sup-
ports automated integration of TTA cores to different FPGA platforms. The design flow
divides in two parts here, depending on whether there is support for the target platform
in the Platform Integrator.

If the Platform Integrator can be used, the final phases of the processor generation
are rather straightforward. The user invokes the command-line version of the ProGe
tool and gives to it as parameters the ADF, IDF and TPEF files, and parameters defining
target platform and the type of instruction and data memory used. The Platform Inte-
grator saves the processor's VHDL implementation files in a specified folder, creates
memory controller VHDL, a top-level entity and even project files for FPGA synthesis
with default pin-mappings. It should be noted that if the Platform Integrator is used, the
processor's internal component implementations must be selected from the plat-
form-specific options in the HDB. Currently, there is Platform Integrator support for
Altera's Stratix II DSP Pro board and Stratix III FPGA Development Kit board. The
Platform Integrator can also create an Altera SOPC Builder [26] component from a
TTA processor, and a HIBI bus compatible processor.

If the Platform Integrator does not support the target platform, then the processor,
the memory controllers, and the top-level VHDL entity must be created manually. The
processor is generated either directly using ProDe or with the command-line ProGe
tool. The ADF and IDF files are given as parameters and the VHDL implementation of
the processor is saved in the target directory by the tool. The memory controllers, and
the top-level entity connecting the TTA to the memory controllers and containing ports
for external signals are created by hand. Another option is to use the Platform Integra-
tor anyway, and then modify the automatically generated files to support the target plat-
form.

The PIG tool is used to create a bit image of the program which can be uploaded to
the target platform's memory for execution. It is invoked from the command-line with
the “generatebits” command, and the ADF and TPEF file and the chosen instruction and
data memory formats are given as parameters.

The Platform Integrator has an option that generates the IP-XACT file of the proces-
sor automatically. This KoskiIntegrator adds all the relevant data to the IP-XACT ex-
cept for file sets containing source code and other documentation files which must be
manually added with Kactus2. When KoskiIntegrator, which requires Altera FPGA and
HIBI support, cannot be used, Kactus2 can create the IP-XACT file with an integrated
component creation wizard. The user adds the relevant files (VHDL, program code,
documentation, and so on) to the file sets and writes a description of the component in
the corresponding field. The IP-XACT component is then automatically created based

25

on the top-level VHDL component. The created component is saved in the IP-XACT li-
brary for integration and use in designs. There, it is seen as any fixed IP block. All TTA
instances created from the same component are identical and run the same code.

3.2 SoC design

The use of the previously created TTA IP block component is straightforward in Kac-
tus2. The SoC designer simply drags and drops the component from the library to his
HW design and connects it to other components. Its functionality is fixed so the only
customization can be done on SoC level.

The top-level VHDL file of the HW design is created automatically by the Kactus2
VHDL generator. Kactus2 also creates the FPGA synthesis file automatically for Al-
tera's Quartus II program. If it is not used, the project file must be created using the tar-
get platform's SoC designing program. The entire design is now ready to be synthesized
and programmed on FPGA using the platform-specific tool.

26

4 TTA AS A GENERAL PURPOSE
PROCESSOR

In this use case, the TTA processor is used like any GPP. Hence, in the library it is an
IP-XACT component which includes a CPU element but not a fixed program image.
The processor is instantiated in a HW design and SW code is mapped to it in a Kactus2
system design. Existing SW code can be reused from the library or it can be created
from scratch. Once the SW code is mapped to the TTA instances, the TCECC and PIG
tools are invoked for each processor-program pair to generate program images.

Each processor instance has identical HW, but may execute individual code. A de-
signer may later modify and recompile the code. Instance-specific SW-related data
(mappings, files, configurations) are stored into a Kactus2 system design, whereas HW-
related data (VHDL, generics, connections to other components) are saved in a Kactus2
HW design. Note that native IP-XACT does not allow an instance-specific definition of
SW, which could easily explode the number of CPU components (see Section 2.2.2).

In this use case, the TTA processor designer, the SW programmer, and the SoC de-
signer can be the same person or each part may be implemented by a different engineer
or group. Especially in the latter case, comprehensive auxiliary documentation is vital
and should be included in the file sets of the components. For example, the processor
designer should write a document that describes how to use any custom FUs in C code
or include this information in the “description” field of the processor's IP-XACT com-
ponent.

The design flow is summarized in Table 5 and explained in more detail after it. Many
of the phases are similar to the ones in the previous chapter so they are not explained in
as much detail here.

27

Table 5: The design flow phases of a general purpose TTA processor design and
integration. Phases G1-G9 contain the processor design and phases G10-G18 the SoC
design and implementation on a FPGA.

Phase Input Tools Output

G1 TTA processor
architecture design

Processor
specification
documents or
reused ADF

ProDe Initial processor ADF

G2 Design space
exploration

Initial ADF,
processor
specification
documents, test
program source
codes

Proxim,
TTASim, ProDe,
TCECC, OSEd,
Explore

Final processor ADF

G3 Optional: VHDL
implementation for
FUs if not already
in HDB

FU
requirements

VHDL writing
tools,
HDBEditor

VHDL files for FUs,
augmented HDB

G4 FU implementation
mapping

Final ADF,
HDB

ProDe IDF file

G5 Estimation of
physical properties

Final ADF, IDF,
test program
source codes

Estimate,
TCECC

Estimation results

Either G6 if the estimation results are satisfactory or back to G2 if not

G6 Either G6.a or G6.b

G6.a Processor
generation with
Platform Integrator

Final ADF, IDF,
dummy program
TPEF file

Platform
Integrator

Top-level and
hierarchical VHDL
files of the processor
and memory
controllers, top-level
entity VHDL

G6.b.1 Manual processor
generation

Final ADF, IDF ProGe Top-level and
hierarchical VHDL
files of the processor

G6.b.2 Manual memory
controller
generation

Memory format
specifications

VHDL writing
tools or target
platform's
memory
controller
generator

Memory controllers'
VHDL files

28

Phase Input Tools Output

G6.b.3 Manual top-level
VHDL generation

Top-level
VHDL files of
processor and
memory
controllers

VHDL writing
tools

Top-level VHDL
entity integrating the
processor and
memory controllers

G7 Documentation
writing

Processor
specifications,
data from
previous steps

Document
writing tools

Processor's user
reference document

G8 Either G8.a or G8.b

G8.a IP-XACT
component creation
(if KoskiIntegrator
was not used in G6)

All the files
created in the
previous steps

Kactus2
component
creation wizard

IP-XACT component
of the TTA in the
library

G8.b IP-XACT
component
augmentation (if
KoskiIntegrator was
used in G6)

IP-XACT file
created by
KoskiIntegrator,
all the files
created in the
previous steps

Kactus2 Augmented IP-
XACT component of
the TTA in the library

G9 CPU definition IP-XACT
component of
the TTA

Kactus2 IP-XACT component
of the TTA with CPU
definition

G10 SoC HW design IP-XACT
components of
the TTA and
other
components in
the design

Kactus2 Kactus2 HW design

G11 SW application
design and testing
on a PC or reuse

Application
specification
documents or
reused code

SW code
writing tools,
testing
environment

Platform-independent
SW source code

G12 SW source code
modification for
TTA

Platform-
independent SW
source code

SW code
writing tools

TTA-tailored SW
source code files in
SW components in
the library

G13 SoC system design Kactus2 HW
design, SW IP-
XACT
components

Kactus2 Kactus2 system
design

29

Phase Input Tools Output

G14 Program
compilation

Processor ADF,
SW source code
files

TCECC TPEF files

G15 Program memory
image generation

ADF, TPEF files PIG Instruction and data
memory images in
specified format

G16 Top-level VHDL
generation of the
HW design

Kactus2 HW
design

Kactus2 Top-level VHDL of
the HW design

G17 FPGA synthesis
project file
generation

Kactus2 HW
design

Kactus2 (for
Quartus II) or
target platform's
synthesis tool

FPGA synthesis
project files

G18 FPGA synthesis and
programming

All the VHDL
files, memory
image files,
FPGA synthesis
project files

FPGA synthesis
and
programming
tools

The entire design
synthesized and
programmed on
FPGA

4.1 Processor design

The flow begins now with processor architecture design. The architecture is created
with the ProDe tool either from scratch or by modifying an existing architecture in the
library. Since the processor is intended to run various different applications that are
likely unknown to the processor designer, similar performance optimization as was ob-
served in the design flow of Chapter 3 cannot be reproduced. However, there probably
exist some general specifications on the cost and performance of the processor which
can be used in the designing. The performance can be tested for example by running test
programs on the simulated processor. The test programs should be selected according to
the intended purpose of the processor. For example, if the processor is targeted for DSP
purposes, then a program performing DSP computation should be used. If, on the other
hand, it is a true GPP, then several different application domains should be used in the
testing. The test programs are compiled for the processor using the TCECC tool, and
Proxim and TTASim tools are used for processor simulation yielding data on cycle count
and FU utilization. The processor architecture is iteratively modified and tested, possi-
bly with the help of the Explore tool, until a satisfactory one is found, and the end result
is saved in an ADF file.

Next, a VHDL implementation of the processor is created. Each FU is mapped to a
HW implementation in the HDB using the ProDe tool. Several different mappings can
be created corresponding to different target platforms. For FUs lacking a VHDL imple-

30

mentation, one must be created and information on them is saved in the HDB using the
HDBEditor tool. The mappings are saved as IDF files.

With the implementation mappings, some further testing can be done. The TCE tools
include Estimate that gives estimates on energy consumption, die area and maximum
clock rate of TTA designs. The tool takes the processor's ADF and IDF files as input for
area and clock rate estimation, and also a sample compiled program file for energy con-
sumption estimation. If the results of estimation do not match the requirements, the ar-
chitecture can be modified again or more efficient VHDL implementations can be writ-
ten.

The processor's connected and synthesizable VHDL implementation is created using
either ProDe or the command-line ProGe. The ADF and IDF files are given as parame-
ters, and the output is a hierarchical VHDL description of the processor in target direc-
tory. This step is merged with the next one if the Platform Integrator tool is used since
the integrator creates the connected processor VHDL automatically.

The next step is to create memory controller units for instruction and data memory if
they are intended to reside on-chip. These can be handwritten VHDL or the target plat-
form may have a creation wizard for memory controllers. A top-level VHDL connecting
the memory controllers to the TTA core is then written. Alternatively, the TCE tools
may include a Platform Integrator for the target platform that performs these steps auto-
matically. When using the Platform Integrator, a SW application in TPEF format is
needed as input parameter. In either case, whether using the Platform Integrator or not,
this phase locks the memory type format which should be mentioned in the processor
documentation. The relative directory to which the program memory images of the pro-
cessor's application should be saved must also be specified in the documentation along
with their required file names.

Since the processor can be utilized by a different engineer than who designed it, it is
imperative to write documentation on its usage. Besides general information on the pro-
cessor's performance and cost characteristics, instructions on how to utilize any FUs that
are invoked by macros in C code should be included. A list of all the items that should
be mentioned in the processor documentation is shown here for reference.

• Target platform

• Targeted purpose if any

• Die area

• Maximum clock frequency

• Special FUs

• I/O ports

• Macros that are used in C code when utilizing FUs

• Relative path of the directory for program image files

• Format of the instruction and data memory files

31

• Name of the instruction and data memory files

The final step in the processor design part of the flow is to create its IP-XACT de-
scription. The KoskiIntegrator may be used when utilizing the Platform Integrator, or
alternatively one can use the component creation wizard in Kactus2. The KoskiIntegra-
tor does not add any information to the file sets so it must be added in Kactus2 when
that option is used. When using the component creation wizard, all the files related to
the processor's implementation and documentation are added to the file sets by the user,
and its IP-XACT description is otherwise automatically created from the top-level
VHDL file. Some or all parts of the processor documentation may also be added to the
“description” field of the component. If the processor has multiple implementations for
various platforms, then a different file set should be created for each one. They can be
further differentiated by creating a separate view for each implementation. The IP-
XACT component is then saved to the library with a unique VLNV identifier.

An address space definition is next added to the component in Kactus2 by opening it
for manual editing. Dummy values can be used since actual values can be known only
when the component is instantiated in a design. This is done in order to be able to add a
CPU definition to the component which needs an associated address space. The CPU
definition is required for mapping SW components to the TTA component in Kactus2
system designs. After adding the CPU definition, the component is ready in the library.

4.2 SoC design

The processor is now ready to be used in Kactus2 HW and system designs by the SoC
designer. The usage is as follows. First, a HW design is created and the TTA compo-
nents are instantiated and connected in it along with any other components from the li-
brary. Next, SW applications, which are reused or written from scratch, are mapped to
the TTA instances in a system design with all instance-specific SW-related data saved in
the system design to prevent bloating the library. If new SW is created, the correspond-
ing SW components are added to the library before mapping.

If the program source code was reused and not already targeted for the TTA proces-
sor on which it is mapped, the SoC designer needs to modify it accordingly. This means
inserting macros in the code when a custom FU is used or an external I/O operation is
performed using a FU that is not implicitly utilized by a related C language function.
For example, the printf() function is mapped to a FU operation by default, so this step
can be omitted for it. The processor documentation should contain the pertinent user in-
formation.

Next, the source code is compiled into TPEF format using TCECC and giving the
source code files and the processor's ADF file as input parameters. A bit image of the
compiled program is then created using PIG. The memory image formats are selected
according to information in the processor documentation, and output is saved in the

32

specified directories with the specified file names. Consequently, each processor will
run the correct program. The designer then adds the memory image files to the file sets
in the system design.

There is one caveat when instantiating the same processor multiple times in the same
HW design. By default, they all have the same VHDL implementation including entity
and program image names. Thus, if they run different programs, the VHDL needs to be
copied and modified so that each processor has a unique entity name and the program
images either have different file names or reside in different directories.

The final SoC design can now be saved in the IP-XACT library. Kactus2 creates the
top-level VHDL file from the HW design, and also the FPGA synthesis project files if
using Altera's Quartus II program for synthesis. If not, the project file can be created us-
ing the target platform's corresponding application. All the files needed for FPGA syn-
thesis and programming are now in the library.

33

5 TTA AS AN ASIP

This use case utilizes the potential of the tool set maximally. Instead of using a given
processor from the IP-XACT library, the user generates a custom processor for his C
code using a template processor as a starting point architecture.

First, the user connects the selected starting point TTAs from the IP-XACT library
into the SoC design using Kactus2. Then, he creates a system design, mapping SW to
each TTA processor. Next, he performs an architecture exploration for each TTA proces-
sor instance based on the mapped C code. This can be a manual process using the pro-
cessor simulators in the TCE tools or partially automated with the Explore tool.

 When using Explore, the user defines limits, for example the maximum application
run-time, or a minimum clock frequency that provide targets for the exploration. The
tool automatically iterates over various TTA architectures, and retargetable compiler and
simulator produce cycle-accurate evaluation of the cycle count. The exploration termi-
nates when a maximum number of iterations is reached or upon finding an adequate per-
formance-cost trade-off. At least dozens or hundreds of TTA configurations can be ex-
plored within an hour or so. The tool lists a ranking of architecture candidates, from
which the user may choose one.

The TTA instances in the SoC design are replaced with the ones found in exploration.
Finally, the TCE Compiler, Platform Integrator and Program Image Generator tools are
used to generate the files needed in FPGA synthesis of the processors.

The key point here is to keep the number of library items small. There are only a few
different template TTAs in the library and more data are stored into the SoC component
and a TTA copy linked to it. Otherwise, the amount of views in the template TTAs could
grow unmanageably high if there was one for each instance in each SoC design where it
is instantiated.

In this use case, the designer considerations are largely the same as in the previous
chapter. The HW template creator, the SW designer and the SoC designer can be the
same or different individuals. Cooperation between the designers is implicit to the de-
sign flow thanks to the documentation and library management capabilities of Kactus2.
Compared to the previous design flows, the SoC designer needs more HW expertise,
since he must customize and create implementation for the processor template. How-
ever, unless custom FUs need to be created, no VHDL expertise is required.

The design flow phases are summarized in Tables 6 and 7, and a more detailed expla-
nation follows them. Since the design flow comprises of many of the same steps and

34

uses the same tools as in the previous two chapters, some details have been omitted that
were presented earlier.

Table 6: The design flow phases of a template TTA processor creation.

Phase Input Tools Output

T1 Template TTA
processor
architecture design

Processor
specification
documents

ProDe Template TTA ADF

T2 Template TTA
documentation
writing

Processor
specification
documents,
ADF

Document
writing tools

Template TTA
documentation

T3 IP-XACT component
creation for the
template TTA

Specified in
T3.1-T3.3

Kactus2 Template TTA
component in the
library

T3.1 Bus interface
creation

Processor
specification
documents

Kactus2 Bus interface
definitions in the
component

T3.2 File set creation Template TTA
ADF,
documentation

Kactus2 File sets in the
component

T3.3 Address space
creation and CPU
definition

None needed Kactus2 Address space and
CPU definitions in
the component

Table 7: The design flow phases of a custom processor creation and integration.

Phase Input Tools Output

A1 SW application
design and testing
on a PC or reuse

Application
specification
documents or
reused code

SW code
writing tools,
testing
environment

Platform-independent
SW source code
components in the
library

A2 SoC-specific TTA
component
creation

Template TTA
in the library

Kactus2 SoC-specific copy of
the template TTA in
the library

35

Phase Input Tools Output

A3 SoC HW design
creation

IP-XACT
components of
the TTA and
other
components in
the design

Kactus2 Kactus2 HW design

A4 TTA component
view creation

SoC-specific
TTA component

Kactus2 SoC-specific TTA
component with
instance-related
views

A5 SoC system design
creation

Kactus2 HW
design, SW
components

Kactus2 System design view
in the HW component

A6 C code
modification for
TTA

Platform-
independent SW
source code,
template TTA
documentation

SW code
writing tools

TTA-tailored source
code files

A7 TTA architecture
optimization for
application SW

Template ADF,
TTA-tailored
source code files

Proxim,
TTASim, ProDe,
TCECC, OSEd,
Explore

Final TTA ADF files,
final TPEF files

A8 Optional: VHDL
implementation for
FUs if not already
in HDB

FU
requirements

VHDL writing
tools,
HDBEditor

VHDL files for FUs,
augmented HDB

A9 FU implementation
mapping

Final TTA ADF
files, HDB

ProDe IDF files

A10 Estimation of
physical properties

Final ADF, IDF,
final TPEF

Estimate Estimation results

Either A11 if the estimation results are satisfactory or back to A7 if not

A11 Either A11.a or A11.b

A11.a Processor
generation with
Platform
Integrator

ADF, IDF,
TPEF files

Platform
Integrator

Top-level and
hierarchical VHDL
files of the processors
and memory
controllers, top-level
VHDL entity

A11.b.1 Manual processor
generation

ADF, IDF files ProGe Top-level and
hierarchical VHDL
files of the processors

36

Phase Input Tools Output

A11.b.2 Manual memory
controller
generation

Memory format
specifications

VHDL writing
tools or target
platform's
memory
controller
generator

Memory controllers'
VHDL files

A11.b.3 Manual top-level
VHDL generation

Top-level
VHDL files of
the processors
and memory
controllers

VHDL writing
tools

Top-level VHDL files
integrating the
processors and
memory controllers

A12 Program memory
image generation

ADF, TPEF files PIG Instruction and data
memory images in
specified format

A13 Top-level VHDL
generation of the
HW design

Kactus2 HW
design

Kactus2 Top-level VHDL of
the HW design

A14 FPGA synthesis
project file
generation

Kactus2 HW
design

Kactus2 (for
Quartus II) or
target platform's
synthesis
program

FPGA synthesis
project files

A15 FPGA synthesis
and programming

All the VHDL
files, memory
image files,
FPGA synthesis
project files

FPGA synthesis
and
programming
tools

The entire design
synthesized and
programmed on
FPGA

5.1 Template processor design

In this use case, one or more starting point architectures are created in the IP-XACT li-
brary. This is only necessary once and is not considered to be part of the integration
flow. Different architectures can be created with ProDe and documentation on their
properties, limitations and intended usage should be written. For each architecture, a
template IP-XACT component is created using the component creation wizard in Kac-
tus2. This allows their integration into HW designs even though they don't have VHDL
implementation yet.

 After creating the IP-XACT components, they are further edited in Kactus2. For
each component, bus interfaces need to be defined to allow connection to other compo-
nents in Kactus2 HW designs. This includes adding bus definitions and mapping them
to abstraction definitions from the library. File sets are also created by the user but they

37

contain only the ADF file and documentation at this point. Alternatively, documentation
can be fitted in the “description” field of the component. Each component also requires
an address space definition. This is necessary so that Kactus2 understands that it is a
CPU component that is visible in a system design. Address space depends on the design
where the component is instantiated so dummy values can be used here. Finally, the user
defines a CPU for the component and references the address space in it. The component
is then saved in the library for use and customization as an ASIP.

5.2 ASIP and SoC design

The integration flow begins with SW design. The application can be reused or newly
written. It should be tested for correct functionality on a workstation PC before retarget-
ing for TTA. Each unique application SW package is saved in the IP-XACT library as a
SW component with the source code files in the file sets.

Next, a HW design is created with Kactus2. The TTA template component saved in
the library is not itself instantiated in the design. Instead, a copy of it is created and that
copy is used in the design, and in that design only. The reason for this is tied to library
management. If the original component was used, it could eventually contain an un-
wieldy amount of views, one for each instance in each design where it was used. On the
other hand, if a new component was created for each instance, the library would explode
with copies of the component. The solution is thus to create one copy for each design
where it is used, and create instance-specific views in the copies.

After creating the copy, the designer instantiates and connects the copied template
TTAs into his HW design along with other components and saves the design in the IP-
XACT library as a new component. For each instance of the TTA component in the de-
sign, a new view is created for it in Kactus2. These views are later linked to file sets re-
ferring to the instance's implementation. In the HW design, the user links instances to
their respective views. A system design mapping the SW applications to TTA instances
in the HW design is then created with Kactus2 and saved in the library as a system view
of the component generated in the previous step.

Since the TTAs may contain custom FUs that need to be invoked with specific
macros, the application source code must next be modified accordingly. The processor
documentation should contain information about the presence of these FUs and on their
usage with macros. After source code modification, it is compiled for the corresponding
TTAs using TCECC.

Now, that the processors have applications mapped to them, their architecture can be
explored for efficiently running the programs. This can be done using Proxim or
TTASim as in the previous chapters and the Explore tool can be used to help as de-
scribed in the beginning of this chapter. The SW source code is modified and compiled
for the final architectures, and the SW components' file sets are augmented with these

38

files in the library. New views referencing the TTA-specific file sets should also be cre-
ated in the SW components so that they can be linked to the SW instances in the system
design. Any new custom FUs created are added to the HDB.

After finding efficient architectures for the processors, their VHDL implementation
is generated using the ProDe and ProGe tools. The FUs of each processor are mapped
to their implementations in the HDB and the mappings are saved as IDF files. The Esti-
mate tool is next used to estimate the physical properties of the processors, and design
space exploration is resumed if the results are not good enough. The memory controllers
and the top-level VHDL files are created using the Platform Integrator tool if it sup-
ports the target platform. Otherwise, the memory controllers and the top-level VHDL of
the TTAs must be created manually. The implementation files are saved in the file sets
of the TTA component created for the design. Each instance has its own file set where
the corresponding files are included.

Next, the memory images of the SW applications are created using the PIG tool. This
tool is invoked for each processor-application pair. The created files are saved in the file
sets corresponding to the processor instance on which they are used.

The top-level VHDL file of the HW design can now be created using the Kactus2
VHDL generation tool along with Quartus II project files, if applicable, using the Kac-
tus2 project file generator. The design is now ready to be synthesized and programmed
on a FPGA.

39

6 AN ILLUSTRATIVE EXAMPLE WITH
CRC

In this chapter, a use case of the design flow described in Chapter 5 (ASIP) is presented
to illustrate the details one encounters when working with the TCE tools and Kactus2
within the framework of the flows presented in this Thesis. The design presented is
rather simple to keep focus on the flow instead of the intricacies of the design. A simple
TTA processor template with custom FUs enabling real-time clock and printing to stan-
dard output is first created in the IP-XACT library. The processor template is then used
for an application that counts a 32-bit cyclic redundancy check (CRC) [27] for a block
of data and prints the result to the standard output. Two processor implementations are
created: One is used as such from the template in the library and the other is modified to
run the application faster. Both implementations are instantiated in a SoC design for
synthesis on a FPGA.

6.1 Template component creation

First, the template TTA processor is created using ProDe. Figure 15 shows the architec-
ture as presented in ProDe. The processor contains only a load/store unit (LSU), an
arithmetic-logical unit (ALU), two register files (RFs), a global control unit (GCU), a
FU for real-time clock (rtc_timer) and a FU that can print to the standard output (stdout)
of the platform. There is only one transport bus and the processor is fully connected.
The architecture is saved in an ADF file. This processor template can be used for any
application that requires timer and printing capabilities.

Figure 15: The template processor architecture as seen in ProDe. Input ports with “X”
denote ports that trigger the FU.

40

Next, the processor template is saved in the IP-XACT library using Kactus2. This is
done with the component creation wizard. A unique VLNV identifying the component is
given (in this case: SL/ip.cpu/TTA_template/1.0). The IP-XACT file of the component
is now in the library under the folder indicated by the VLNV values, but it requires fur-
ther editing. First, its external ports and bus interfaces are defined in Kactus2. The pro-
cessor has only two ports: clock and reset. No explicit port for the standard output is
needed thanks to the implementation that will be selected for the stdout FU which uti-
lizes Altera's JTAG UART [28, Chapter 5] to send the output to PC.

 The port data is entered in the opened component's port editor as shown in Figure
16. A bus interface is created for both ports. In this case, standard bus definitions and
abstraction definitions for clock and reset ports already exist in the library so they don't
have to be created. The bus interface editor with the values for the clock bus is shown in
Figure 17. The physical clock port is mapped to the bus interface in the “Port maps” tab.

Figure 16: The values given in the ports editor in Kactus2. Only the mandatory values
have been entered for these simple ports.

Figure 17: The values given in the bus interface editor for the clock bus in Kactus2.

41

The file sets editor is opened next where a single file set “TCEFiles” is created, and
the ADF file is added to the file set. Then, an address space is created in the correspond-
ing editor and it is mapped to a CPU in the CPU editor, so that Kactus2 knows that this
is a CPU component. Since this TTA processor doesn't control any external components,
the address space can be left empty. Finally, a short description of the processor is writ-
ten in the component's description field for user reference. For a more complex proces-
sor, a documentation file should be written and added to the file sets. The component is
now ready for use in the library.

Figure 18 shows the finished TTA template component view in Kactus2. The entries
in bold font on the left contain information that was added to the component.

6.2 Using the component in a SoC design

The application is a C program that counts a 32-bit CRC for a block of data and prints
the result to the standard output. The source code contains three files: “main.c” for a
simple main program, “crc.c” that contains the function calculating the CRC value and
“crc.dat” that contains a precalculated look-up table for making the algorithm faster.
The contents of the source code files themselves are not relevant to this work. The cor-
rect functionality of the program has been tested on a workstation PC prior to reuse in a

Figure 18: The component view of the finished TTA template component.

42

TTA, and it has been saved to the library as a SW component (SL/sw/crc/1.0) with the
source code files in the file sets.

The template TTA component is not used itself in the SoC design for reasons de-
scribed in Chapter 5, so a copy of it is created for instantiation. This copy is given a new
VLNV (SL/ip.cpu/TTA_CRC/1.0). A new HW design is then created in Kactus2
(SL/soc/crc/1.0) where the new component is instantiated. In this case, it is used twice
since the intent is to compare the performance of a simple and a more complex custom
processor in counting the CRC. The external ports for clock and reset signals are created
and connected to the TTA components. The library and design now look like in Figure
19.

Since the TTA component is instantiated twice in the HW design, two different views
are created for it using the views editor in Kactus2. The views differ in name, descrip-
tion, model name and file set references. The views editor for the simple TTA core is
shown in Figure 20. Each TTA's file set is also added at this point to the component so
that they can be referenced in the views. The model names will later be used as the en-
tity names when generating top-level VHDL files for the processor cores. In the Kac-
tus2 HW design, the instance names are linked to the corresponding views.

Figure 19: The library (in the left) and the HW design with two TTA instances.

43

The system design mapping the SW applications to the instantiated processors is cre-
ated next using the Kactus2 component creation wizard. In this case, the system design
is simple and shown in Figure 21. Both processors run the same application and there
are no inter-processor communication channels. The system design is not saved as a
new component but as a system view to the HW design component. This keeps the li-
brary compact and it is clear which HW design the system design is linked to. Together
they form a complete SoC design description.

Next, the application source code is modified for running on a TTA processor. In this
case, there is the real-time clock FU that is invoked with specific macros. Macros for

Figure 20: The Kactus2 views editor for the simple TTA core.

Figure 21: The system design mapping SW to TTAs. The blue boxes represent the
TTAs and the green boxes the SW.

44

starting and stopping the clock and yielding the elapsed time are added to the program.
Furthermore, the standard printf() function is replaced with an iprintf() function that
drops support for printing floating point values but is much faster on a TTA. The pro-
gram is then compiled for TTA using the TCECC tool resulting in a TPEF file. The
modified source code files and the TPEF file are saved in the SW component's file sets,
with a new file set being created for the TTA-tailored program. A new view referencing
this file set is also created for the SW component. In the system design, the created view
is selected for the SW component instances.

In this example, one of the processors is customized to run the application more effi-
ciently. The design space exploration for this is outside the scope of this work but its de-
scription can be found in [21, Section 3.1]. The end architecture is shown in Figure 22.
The differences to the initial architecture include a new custom FU (REFLECTER) that
performs a reflection operation for input bit-pattern needed by the CRC algorithm, and
three additional transport buses allowing instruction-level parallelism [29, Chapter 2]. A
VHDL implementation for the reflecter FU is also written and saved in the HDB. The
source code is modified and compiled to use the new custom FU, but the unmodified
source code and TPEF file are also retained since they are used by the simpler TTA in-
stance.

The TTA cores need a VHDL implementation which is created next. First, implemen-
tations are selected for the FUs using ProDe. At this point, the target platform must be
known since each platform may have a different implementation for certain FUs. Once
each FU is mapped to an implementation from the HDB, the mapping is saved as an
IDF file. The VHDL is now ready to be generated. In this case, the target platform is Al-
tera Stratix II DSP Pro board which has Platform Integrator support. For both proces-
sors, the corresponding ADF, IDF and TPEF files are given as parameters to the ProGe.
The model names that were used in the instance-specific views are passed as parameters
to be names of the top-level VHDL entities. Other given parameters include the instruc-
tion and data memory types. The output from the generator contains the VHDL files im-

Figure 22: The architecture of the TTA customized for CRC calculation.

45

plementing the processor cores, memory controller units and top-level entities linking
them together. These are saved to the file sets of the TTA component in the library with
a separate file set for each processor instance in the design.

The program images are generated for each processor using PIG, with the ADF and
TPEF files given as parameters. The generated instruction and data memory image files
are saved in the file sets corresponding to their TTA instances. The design-specific TTA
component in the library is now complete.

The top-level VHDL file of the HW design instantiating the processors is automati-
cally generated by invoking the Kactus2 tool purposed for this task. It simply instanti-
ates the processors and connects them to the external ports. The processor instances ref-
erence the model names in the instance-specific views so that they are linked to the cor-
rect VHDL implementations. This VHDL file is saved to the file sets of the HW design.
The Quartus II project files can now be created using the generator tool in Kactus2, fol-
lowing which FPGA synthesis and programming is straightforward. When run on
FPGA, the time each processor used for the CRC calculation could be printed on Al-
tera's Nios2-terminal tool running on a workstation PC connected to the FPGA's JTAG
UART port.

46

7 DESIGN FLOW EVALUATION

While making this Thesis, several Kactus2 and TCE use cases were carried out. Based
on them, an estimation of the time taken by each phase in the design flows has been
formed. The estimated times assume a reasonably experienced user who is familiar with
the tools. Both Kactus2 and the TCE tools can be executed on Linux on a standard PC
computer or alternatively Kactus2 can be run on Windows and the TCE tools on a Linux
virtual machine as the author did. Setting up both tools is straightforward and is counted
as a non-recurring task.

7.1 TTA as a fixed accelerator IP block

Time-usage evaluation of the use case where TTA is treated as a fixed accelerator IP
block (Chapter 3) is shown in Table 8. The time taken by SW design from scratch
(phase F1) is not dependent on the design flow and greatly varies by the application so
it is not counted against the time used in the flow. However, if SW is reused from the li -
brary, little time is consumed.

Table 8: Time-usage estimations of each phase in the design flow of TTA as a fixed
accelerator IP block (as in Table 4).

Phase Time

F1 SW application design and testing
on a PC or reuse

Dependent on application or < 5 min

F2 Initial TTA processor design 15 min

F3 Program compilation for initial
TTA

< 5 min

F4 Design space exploration 20 min to few hours

F5 C code modification and
compilation for TTA

< 5 min to 1 h depending on the size of
source code and the amount of custom FU
usage

F6 Optional: VHDL implementation
for FUs if not already in HDB

30 min to few hours per FU

F7 FU implementation mapping 5 min

47

Phase Time

F8 Estimation of physical properties 10 min

Either F9 if the estimation results
are satisfactory or back to F4 if
not

N/A

F9 Either F9.a or F9.b N/A

F9.a Processor, memory controller, and
top-level entity generation with
Platform Integrator

< 5 min

F9.b.1 Manual processor generation < 5 min

F9.b.2 Manual memory controller
generation

10 min to 1 h

F9.b.3 Manual top-level entity VHDL
generation

20 min

F10 Memory image generation < 5 min

F11 Either F11.a or F11.b N/A

F11.a IP-XACT component creation (if
KoskiIntegrator was not used in
F9)

10 min

F11.b IP-XACT component
augmentation (if KoskiIntegrator
was used in F9)

10 min

F12 SoC design 15 min + 2 min/component

F13 Top-level VHDL generation of the
HW design

1 min

F14 FPGA synthesis project file
generation

1 min with Kactus2 or 10 min with
platform-specific program

F15 FPGA synthesis and programming Dependent on the target platform and size
of the design

Minimum total time Approx. 1 h 40 min + 2 min/component

Designing the initial processor is fast in ProDe as is compiling the program for the
architecture (phases F2 and F3). Design space exploration (phase F4), on the other
hand, can take more or less time depending on how strict the performance requirements
are and how many FUs and transport buses can be added to the TTA. Moreover, design-
ing custom operations and implementing them in program code can take hours. C code
modification for TTA (phase F5) takes from a few minutes to an hour based on the
amount of source code and custom FU usage. In the best case, with no custom FUs, this
phase can be skipped. If new custom FUs were created during design space exploration,

48

they need VHDL implementation (phase F6) which can take anywhere from half an
hour to several hours to write for each custom FU.

Phases F7 to F11 consist of creating the processor IP block from the source files gen-
erated in the previous steps. Thanks to the automated tools, this takes only about half an
hour with Platform Integrator support or two to three times more if it cannot be used.

Counted together, phases F1 to F11, which consist the TTA IP block creation, take
little more than one hour in the best case scenario where the SW application is ready in
the library, no custom FUs are added in the design space exploration and Platform Inte-
grator can be used. At most, the entire design flow can take a few work days if exten-
sive design space exploration is performed with various custom FUs created to speed up
the processor. This is still fast when compared to an approach where the whole IP block
is created manually in VHDL without using SW running on a processor. On the other
hand, while using a GPP would take less time, it would suffer from the problems of us-
ing more die area, performing worse and consuming more energy.

The integration of the TTA IP block in SoC designs is effortless using Kactus2
(phases F12-F15). It should take less than an hour even for relatively large designs as-
suming that everything is ready in the library. FPGA synthesis and programming can
take anywhere from few minutes to hours depending on the target platform and size of
the design.

7.2 TTA as a general purpose processor

Table 9 provides the estimation of time used in the design flow where TTA is used as a
GPP (Chapter 4). Many of the phases and their time consumption are the same as in the
previous case. Documentation writing (phase G7) is a new phase that takes from one to
few hours depending on how formal the document has to be and whether there is a doc-
ument template available. In the SoC design part of the flow, most phases are repeated
for each processor instance in the design, so the time usage has a linear correlation to
the amount of processor instances. The time spent for the system design (phase G13)
additionally depends on whether MCAPI channels, which require some configuration,
are used.

Table 9: Time-usage estimations of each phase in the design flow of TTA as a general
purpose processor (as in Table 5).

Phase Time

G1 TTA processor architecture
design

15 min

G2 Design space exploration 20 min to few hours

49

Phase Time

G3 Optional: VHDL implementation
for FUs if not already in HDB

30 min to few hours per FU

G4 FU implementation mapping 5 min

G5 Estimation of physical properties 10 min

Either G6 if the estimation results
are satisfactory or back to G2 if
not

N/A

G6 Either G6.a or G6.b N/A

G6.a Processor generation with
Platform Integrator

< 5 min

G6.b.1 Manual processor generation < 5 min

G6.b.2 Manual memory controller
generation

10 min to 1 h

G6.b.3 Manual top-level VHDL
generation

20 min

G7 Documentation writing 1 to 3 hours

G8 Either G8.a or G8.b N/A

G8.a IP-XACT component creation (if
KoskiIntegrator was not used in
G6)

10 min

G8.b IP-XACT component
augmentation (if KoskiIntegrator
was used in G6)

10 min

G9 CPU definition < 5 min

G10 SoC HW design 15 min + 2 min/component

G11 SW application design and testing
on a PC or reuse

Dependent on application or < 5 min per
processor

G12 SW source code modification for
TTA

< 5 min to 1 h per processor depending on
the size of source code and the amount of
custom FU usage

G13 SoC system design 1 to 10 min per processor depending on the
complexity of the SW stack and MCAPI
channels

G14 Program compilation < 5 min per processor

G15 Program memory image
generation

< 5 min per processor

G16 Top-level VHDL generation of
the HW design

1 min

50

Phase Time

G17 FPGA synthesis project file
generation

1 min with Kactus2 or 10 min with a
platform-specific program

G18 FPGA synthesis and
programming

Dependent on the target platform and size
of the design

Minimum total time Approx. 2 h 30 min + 2 min/component +
20 min/processor

All in all, the processor design (phases G1 to G9) can take a couple of hours for a
simple processor with no design space exploration, or closer to a day for a complex pro-
cessor with many newly-implemented custom FUs. SoC design (phases G10 to G18)
takes less than an hour for a small design with one processor, or a few hours at maxi-
mum for a large system with many processors and SW applications. Again, SW imple-
mentation is not counted against the time taken by the design flow.

Compared to designing the system without processors, from ASIC principles, the
time saved is tremendous. For more complex applications, it is not even realistic to
consider an ASIC approach.

A comparison to using a more traditional GPP is more appropriate. The benefits here
are that the library can contain dozens of processors directed for various application do-
mains which allows selecting an efficient processor for the application at hand. The pro-
cessors are also easy to design in-house which avoids any licensing fees.

7.3 TTA as an ASIP

Tables 10 and 11 provide the estimation of time used in the design flow where TTA is
used as an ASIP (Chapter 5). Table 10 shows the time usage of the template processor
generation and Table 11 of its customization and integration to a SoC design. Many of
the phases are the same as in the previous design flows with similar time usage.

Table 10: Time-usage estimations of each phase in the design flow of a template TTA
processor creation (as in Table 6).

Phase Time

T1 Template TTA processor
architecture design

15 min

T2 Template TTA documentation
writing

15 min to 1 h

T3 IP-XACT component creation for
the template TTA

< 5 min

51

Phase Time

T3.1 Bus interface creation 5 min/bus

T3.2 File set creation < 5 min

T3.3 Address space creation and CPU
definition

< 5 min

Minimum total time Approx. 40 min + 5 min/bus

Table 11: Time-usage estimations of each phase in the design flow of a custom TTA
processor creation and integration (as in Table 7).

Phase Time

A1 SW application design and
testing on a PC or reuse

Dependent on application or < 5 min per
processor

A2 SoC-specific TTA component
creation

< 5 min

A3 SoC HW design creation 15 min + 2 min/component

A4 TTA component view creation 1 min/processor instance

A5 SoC system design creation 1 to 10 min per processor instance
depending on the complexity of SW stack
and MCAPI channels

A6 C code modification for TTA < 5 min to 1 h per processor instance
depending on the size of source code and
the amount of custom FU usage

A7 TTA architecture optimization
for application SW

20 min to few hours per processor
configuration

A8 Optional: VHDL
implementation for FUs if not
already in HDB

30 min to few hours per FU

A9 FU implementation mapping 5 min/processor configuration

A10 Estimation of physical
properties

10 min/processor configuration

Either A11 if the estimation
results are satisfactory or back
to A7 if not

N/A

A11 Either A11.a or A11.b N/A

A11.a Processor generation with
Platform Integrator

< 5 min

52

Phase Time

A11.b.1 Manual processor generation < 5 min

A11.b.2 Manual memory controller
generation

10 min to 1 h

A11.b.3 Manual top-level VHDL
generation

20 min

A12 Program memory image
generation

< 5 min per processor instance

A13 Top-level VHDL generation of
the HW design

1 min

A14 FPGA synthesis project file
generation

1 min with Kactus2 or 10 min with a
platform-specific program

A15 FPGA synthesis and
programming

Dependent on target platform and size of
the design

Minimum total time Approx. 30 min + 2 min/component + 15
min/processor instance + 35 min/processor
configuration

Creating a template processor takes little time, on the order of one hour. Thus, many
different processor templates can be quickly created and saved in the library.

The time taken by SoC designing using template TTAs depends on the number of
TTA instances and on whether they use the same or different final processor architecture
and FU implementations. A design with only one processor with no new custom FUs
created for it takes little more than one hour. A complex design with multiple processors
and custom configurations could take tens of hours to complete.

Comparison to other implementation methods is quite similar as in the GPP design
flow. An ASIC approach would probably be too difficult and time-consuming to attempt
with any but the simplest of applications. Against a traditional GPP processor imple-
mentation, this method provides processors that are better suited to the target applica-
tions and are free of licensing fees. Compared to the previous use case, the ASIP ap-
proach puts more design burden on the shoulders of the SoC designer since he creates
the processors' internal implementation as well, but the end result is better optimized for
the applications.

53

8 CONCLUSIONS

8.1 General remarks

This work presented three new design flows that integrate the use of the TCE tools and
Kactus2 when creating MP-SoC FPGA designs. In the first case, a TTA was designed as
a fixed accelerator IP block, running predefined program code. In the second case, the
TTA was designed as a GPP with no pre-mapped SW, and in the third case as an ASIP
where the final processor architecture and program code are decided during SoC inte-
gration. In all the cases, the design flows also showed how to integrate the TTA in SoC
designs using Kactus2. All the design flows utilize between 8 and 12 different program
tools from Kactus2 and the TCE tools depending on target platform and whether custom
FUs are created.

Table 12 contains the summary of the relevant aspects from each design flow. The
fixed accelerator IP block option provides the best performance but least customizabil-
ity, whereas a GPP can be reused for a wide range of applications but offers the worst
performance and highest area and energy cost. ASIP stands between these two options
in terms of customizability, performance and cost.

Table 12: Summary of the properties of the design flows.

Fixed accelerator GPP ASIP

Purpose To create a fixed
accelerator IP block in
the IP-XACT library and
reuse it in SoC designs.

To create a soft-core
GPP in the IP-XACT
library that can run SW
applications and reuse it
in SoC designs.

To create a processor
template in the IP-
XACT library that can
be tailored for SW
applications and reuse it
in SoC designs.

Example Fixed IP block to
calculate a 32-bit CRC

GPP with standard
output and streaming I/O
capabilities, but without
support for interrupts.

ASIP for efficiently
running video encoding
applications

Customizability None SW SW and HW

54

Fixed accelerator GPP ASIP

Number of phases in
the design flow

15 18 3 for creating a template
TTA + 15 for
customization and
integration

Approx. minimum
design and
integration time

1 h 40 min + 2
min/component

2 h 30 min + 2
min/component + 20
min/processor

30 min + 2
min/component + 15
min/processor instance +
35 min/processor
configuration

Pros Simple to design and
reuse, very efficient for
its task

Simple to design and
reuse, usable for wide
range of applications

Simpler to design than
ASIC, efficient for its
task

Cons No customizability,
performs only one task

Weaker performance,
higher area cost and
energy consumption
than with the other
options

Not as widely usable as
a GPP, reuse requires
some HW expertise

The presented design flows shorten design time, decrease error-prone tasks, and offer
product data management capabilities for a product’s entire life cycle. For example,
without an integrated design flow the SW code running on a TTA would be ”just files on
disk,” whereas now they can be stored in the IP-XACT library, described with metadata,
and referred uniquely from other designs. This simplifies creating derived products later
on. Designers can easily browse older designs, check the used versions and parameter
values, see where a certain component has been instantiated, and auto-generate com-
bined documentation throughout the whole product including SW, HW and mapping in-
formation.

When compared to other design methods, several advantages were found. Against
pure ASIC implemented in HDL, there is a significant reduction in design time. Further-
more, for more complex applications, an ASIC approach is not even feasible in most
cases. On the other hand, it was found that while using a traditional GPP would save
somewhat in design effort, the TTA approach allows for a more efficient design with
improved performance and reduced die area and energy consumption, while avoiding li-
censing fees. The methods described in this work thus offer a good middle-ground be-
tween the ASIC and GPP approaches, manifesting advantages from both.

8.2 Suggestions for future development of the tools

The TCE tools and Kactus2 have been developed separately within different research
groups and their integrated use has not been a major consideration in either group. The
KoskiIntegrator is the only notable tool which has been designed with the integrated use
in mind, but even it has not been kept up to date as Kactus2 has added extensions to the
IP-XACT standard.

55

The presented design flows would greatly benefit from new properties in both the
TCE tools and Kactus2 as shown below. It is estimated that 10% to 20% cuts to the time
taken by going through the design flows could be achieved with such new features in
the tools, and more importantly, the added automation would reduce the risk of errors in
keeping files referenced to the correct designs. Indeed, the file juggling between the two
tool sets is currently the greatest hindrance in the efficient use of the design flows. The
suggestions below aim to provide ways to fix this.

8.2.1 Suggested modifications to the TCE tools

The KoskiIntegrator is the existing bridge between the TCE tools and Kactus2. How-
ever, there are a couple of limitations to it. First, it does not create file set information. A
file set containing the ADF and IDF files and the VHDL files of the processor should be
added to the IP-XACT description. Second, the KoskiIntegrator requires a HIBI com-
patible load/store unit in the processor. This seems like an unnecessary restriction and
should be removed.

The Platform Integrator would benefit from support to more platforms. Of course, it
is infeasible to add support for every platform in existence, so a good solution would be
a configurable Platform Integrator where one could enter platform-dependent key pa-
rameters with a graphical user interface.

8.2.2 Suggested modifications to Kactus2

As it is, the TCE tools and Kactus2 are completely separate program suites and no inter-
operability is possible between them. Thus, files must be handled in the two tool sets in
turns which can be cumbersome and prone to errors. The suggestion is that most TCE
tools could be invoked directly from Kactus2 in the following manner.

• The TCECC compiler could be invoked from a Kactus2 system design. The sys-
tem design maps SW on processor instances, so it would be natural to invoke the
compiler there for a selected mapping. The compiler uses the SW source code
files and the processor's ADF file which can be found in the corresponding file
sets. The user would enter compilation parameters in Kactus2 as well.

• ProDe could be launched from Kactus2 by selecting an ADF file in the library.
The chosen ADF file would be opened in ProDe. After launching ProDe in this
way, any generated IDF file could be added to the file set of the ADF file by user
selection.

• ProGe and Platform Integrator could be invoked from Kactus2. The user would
select the ADF file and a corresponding IDF file, enter parameters and launch
ProGe which would run on background and automatically add the generated im-
plementation files to a file set defined by the user.

56

• PIG could be invoked from a Kactus2 system design by selecting a processor in-
stance with mapped SW components. Kactus2 would automatically give the cor-
responding ADF and TPEF files to the PIG tool and the user would enter other
parameters from Kactus2. The created program image files would be added to
the specified file set.

With these additions to Kactus2, there would be little need to explicitly invoke the
TCE tools by the user and most of the design flow could be operated from Kactus2 en-
vironment. The notable exception are the design space exploration tools which are often
used in an iterative manner and involve several different programs from the TCE tools,
and thus are more naturally used outside the context of Kactus2.

When implementing these features to Kactus2, special care should be placed on con-
sidering file sets and views and how they relate to different TTA instances. Otherwise,
wrong files could be involved when invoking the tools. It should also be noted that Kac-
tus2 must be run on Linux when invoking the TCE tools from it since the TCE tools do
not support the Windows operating system.

57

REFERENCES

[1] International technology road map for semiconductors [WWW]. 2011 edition, sys-
tem drivers. [accessed on 11.5.2014]. Available at:
http://www.itrs.net/Links/2011ITRS/Home2011.htm.

[2] Rasmus, A., Kulmala, A., Salminen, E. & Hämäläinen, T.D. IP Integration overhead
analysis in system-on-chip video encoder. 2007 IEEE workshop on design and diagnos-
tics of electronic circuits and systems (DDECS), Krakow, Poland, April 11-13, 2007.
Gliwice, Poland 2007, INTERPRINT s.c. pp. 333-336.

[3] Salminen, E. On design and comparison of on-chip-networks. Ph. D. Dissertation.
Tampere 2010. Tampere University of Technology, Publication 872. 230 p.

[4] Snapdragon 800 processors [WWW]. Qualcomm, Inc. [accessed on 11.5.2014].
Available at: http://www.qualcomm.com/snapdragon/processors/800.

[5] Nios II Processor [WWW]. Altera Corp. [accessed on 11.5.2014]. Available at:
http://www.altera.com/devices/processor/nios2/ni2-index.html .

[6] Corporaal, H. Microprocessor architectures: From VLIW to TTA. Chichester, Eng-
land 1998, John Wiley & Sons. 407 p.

[7] Jääskeläinen, P., Guzma, V., Cilio, A. & Takala, J. Codesign toolset for applica-
tion-specific instruction-set processors. Multimedia on Mobile Devices, San Jose, Cali-
fornia, USA, January 29-30, 2007. pp. 65070X-1 - 10.

[8] Jones, A.K., Hoare, R., Kusic, D., Fazekas, J. & Foster, J. An FPGA-based VLIW
processor with custom hardware execution. 13Th international symposium on field-pro-
grammable gate arrays, Monterey, CA, USA, February 20-22, 2005. New York, NY,
USA 2005, ACM. pp. 107–117.

[9] Dimond, R., Mencer, O. & Luk, W. Application-specific customisation of multi-
threaded soft processors. Computers and Digital Techniques, IEE Proceedings
153(2006)3, pp. 173-180.

http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.qualcomm.com/snapdragon/processors/800
http://www.itrs.net/Links/2011ITRS/Home2011.htm

58

[10] Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C.S., Takala, J. & Martinez, J.I.
Customized exposed datapath soft-core design flow with compiler support. Field Pro-
grammable Logic and Applications (FPL), Milano, Italy, August 31-September 2, 2010.
pp. 217-222.

[11] Xtensa customizable processors [WWW]. Cadence Design Systems, Inc. [accessed
on 11.5.2014]. Available at: http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-cus-
tomizable.

[12] Kruijtzer, W., van der Wolf, P., de Kock, E., Stuyt, J., Ecker, W., Mayer, A., Hustin,
S., Amerijckx, C., de Paoli, S. & Vaumorin, E. Industrial IP integration flows based on
IP-XACT standards. Design, Automation and Test in Europe, Munich, Germany, March
10-14, 2008. pp. 32-37.

[13] El Mrabti, A., Petrot, F. & Bouchhima, A. Extending IP-XACT to support an MDE
based approach for SoC design. Design, Automation and Test in Europe, Nice, France,
April 20-24, 2009. pp. 586-589.

[14] Perry, T.P., Walke, R. & Benkrid, K. An extensible code generation framework for
heterogeneous architectures based on IP-XACT. Southern Conference on Programmable
Logic (SPL), Cordoba, Argentina, April 13-15, 2011. pp. 81-86.

[15] 1685-2009 - IEEE Standard for IP-XACT, Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tool Flows [WWW]. IEEE. [accessed on 11.5.2014].
Available at: http://standards.ieee.org/findstds/standard/1685-2009.html.

[16] AMBA [WWW]. ARM, Ltd. [accessed on 11.5.2014]. Available at:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html.

[17] Matilainen, L., Kamppi, A., Määttä, J.-M., Salminen, E. & Hämäläinen, T.D. KAC-
TUS2: IP-XACT/IEEE1685 compatible design environment for embedded Multiproces-
sor System-on-Chip products. Tampere 2011, Tampere University of Technology, Re-
port 37, 2011.

[18] Matilainen, L., Lehtonen, L., Määttä, J-M., Salminen, E. & Hämäläinen, T.D. Sys-
tem-on-chip deployment with MCAPI abstraction and IP-XACT meta-data. 2012 Inter-
national Conference on Embedded Computer Systems (SAMOS), Samos, Greece, July
16-19, 2012. pp. 209-216.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.amba/index.html
http://standards.ieee.org/%EF%AC%81ndstds/standard/1685-2009.html
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

59

[19] Kactus2 [WWW]. Tampere University of Technology. [accessed on 11.5.2014].
Available at: http://funbase.cs.tut.fi/

[20] Fisher, J. Very long instruction word architectures and the ELI-512. Annual Inter-
national Symposium on Computer Architecture, New York, NY, USA, 1983. pp. 140-
150.

[21] TTA-based Co-design Environment v1.9 User Manual [Online document]. Tam-
pere University of Technology, Department of Computer Systems. Published on
25.10.2006, last updated on 24.1.2014 [accessed on 11.5.2014]. Available at:
http://tce.cs.tut.fi/user_manual/TCE.pdf.

[22] Wolf, W., Jerraya, A.A. & Martin, G. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27(2008)10, pp. 1701-1713.

[23] Multicore Communications API [WWW]. The Multicore Association. [accessed on
11.5.2014]. Available at: http://www.multicore-association.org/workgroup/mcapi.php.

[24] Kamppi, A., Matilainen, L., Määttä, J.-M., Salminen, E. & Hämäläinen, T.D. Ex-
tending IP-XACT to embedded system HW/SW integration. 2013 International Sympo-
sium on System-on-Chip, Tampere, Finland, October 23-24, 2013. Tampere 2013, Ju-
venes Print. 8 pages.

[25] Kamppi, A., Määttä, J.-M., Matilainen, L., Salminen, E. & Hämäläinen, T.D. Kac-
tus2: Extended IP-XACT metadata based embedded system design environment. Em-
bedded Systems Week / MeCoES: Metamodeling and Code Generation for Embedded
Systems workshop, Tampere, Finland, October 7, 2012. pp. 17-22.

[26] SOPC Builder Support [WWW]. Altera Corp. [accessed on 11.5.2014]. Available
at: http://www.altera.com/support/software/system/sopc/sof-sopc_builder.html

[27] Ramabadran, T.V. & Gaitonde, S.S. A tutorial on CRC computations. Micro, IEEE
8(1988)4, pp. 62-75.

[28] Quartus II Handbook Version 9.1 Volume 5: Embedded Peripherals [Online docu-
ment]. 2009 [accessed on 12.5.2014]. Available at:
http://www.altera.com/literature/hb/qts/archives/quartusii_handbook_9.1.2.pdf

http://www.altera.com/literature/hb/qts/archives/quartusii_handbook_9.1.2.pdf
http://www.altera.com/support/software/system/sopc/sof-sopc_builder.html
http://www.multicore-association.org/workgroup/mcapi.php
http://tce.cs.tut.fi/user_manual/TCE.pdf
http://funbase.cs.tut.fi/

60

[29] Hennessy, J.L. & Patterson, D.A. Computer Architecture: A Quantitative Approach.
4Th edition. San Francisco, CA, USA 2006, Morgan Kaufmann. 704 pages.

	1 Introduction
	2 Overview of TCE and Kactus2
	2.1 TCE Overview
	2.1.1 Principles of a TTA processor
	2.1.2 TCE tools

	2.2 Kactus2 overview
	2.2.1 The IP-XACT/IEEE1685 Standard
	2.2.2 Kactus2 IP-XACT extensions

	2.3 About instance management in IP-XACT
	2.3.1 Creating a new IP-XACT component from a template or draft
	2.3.2 Completing instance-specific data into IP-XACT design

	2.4 Summary of the Tools

	3 TTA AS a fixed accelerator IP block
	3.1 IP block design
	3.2 SoC design

	4 TTA as a general purpose processor
	4.1 Processor design
	4.2 SoC design

	5 TTA as an ASIP
	5.1 Template processor design
	5.2 ASIP and SoC design

	6 An illustrative example with crc
	6.1 Template component creation
	6.2 Using the component in a SoC design

	7 Design flow Evaluation
	7.1 TTA as a fixed accelerator IP block
	7.2 TTA as a general purpose processor
	7.3 TTA as an ASIP

	8 Conclusions
	8.1 General remarks
	8.2 Suggestions for future development of the tools
	8.2.1 Suggested modifications to the TCE tools
	8.2.2 Suggested modifications to Kactus2

