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Siirtoliipaistuun arkkitehtuuriin (engl. transport-triggered architecture, TTA) perustuvat 
suorittimet  tarjoavat  tehokkaan välimallin  ratkaisun luotaessa  IP-komponentteja  Sys-
tem-on-chip -piireihin. TTA-suorittimien avulla suunnittelutyö on huomattavasti vaivat-
tomampaa ASIC-lähestymistapaan verrattuna, ja toisaalta taloudellisempi ja tehokkaam-
pi toteutus on mahdollinen kuin käyttäen yleiskäyttöisiä suorittimia.

Tässä diplomityössä tutkitaan tapoja nopeuttaa suunnitteluvuota käytettäessä  TTA-
suorittimia SoC-suunnittelutyössä. Esitetyt vuot yhdistävät “TTA-based Co-design En-
vironment”  -työkalupaketin  (TCE)  käytön  Kactus2  IP-XACT-suunnitteluympäristön 
kanssa. IP-XACT-standardi ja Kactus2-työkalu  helpottavat eri valmistajien tarjoamien 
IP-komponenttien toisiinsa yhdistämistä ja konfiguroimista, kun taas TCE-työkalut tar-
joavat nopean ja tehokkaan reitin C-kielestä VHDL:ään.

Tässä työssä esitellään kolme  TTA-käyttötapausta: valmiiksi tehtynä kiinteänä kiih-
dyttimenä, yleiskäyttöisenä suorittimena, ja räätälöitynä sovelluskohdistettuna suoritti-
mena.  Lisäksi  työssä  käydään  läpi  instanssikohtaisen  datan  käsittelyä  IP-XACT:ssa. 
Suunnitteluvuot käydään askel askeleelta läpi jokaisen käyttötapauksen osalta, esimerk-
kitapaus esitellään, ja jokaiseen askeleeseen käytetty suunnitteluaika arvioidaan.

Vuot sisältävät 15-18 askelta ja niiden yhteydessä käytetään 8-12:ta eri ohjelmaa kä-
sitellyistä ohjelmistotyökalupaketeista. Jos C-lähdekoodi ja IP-XACT-kirjasto ovat val-
miina, insinööri voi toteuttaa FPGA-pohjaisen monisuoritinlaitteen alle 4 tunnissa ilman 
mittavaa aiempaa laitteistosuunnittelukokemusta. Tulosten perusteella esitellään lisäke-
hitysehdotuksia TCE-työkaluihin ja Kactus2:een.
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Transport-triggered architecture (TTA) processors provide an efficient middle-ground 
in creating intellectual property (IP) components for system-on-chip (SoC) designs. Us-
ing TTAs, the design effort is greatly reduced compared to ASIC approach, and a more 
economic and efficient implementation is possible than when using a general purpose 
processor.

This Thesis examines ways to accelerate the design flow when using TTA processors 
in SoC designs. The proposed flows combine the use of the TTA-based Co-design Envi-
ronment (TCE) tool set and Kactus2 IP-XACT design environment. The IP-XACT stan-
dard and the Kactus2 tool make it easy to integrate and configure IP components from 
multiple vendors, whereas the  TCE tools provide a fast and efficient path from C to 
VHDL.

The Thesis presents three use cases for TTA: as a ready-made fixed accelerator, a 
general purpose processor, and a tailored application-specific processor. Moreover, man-
agement of instance-specific data in IP-XACT is discussed.  For each use case, the de-
sign flows are presented in detail step-by-step, a case example is presented, and the de-
sign time spent on each step is evaluated. 

The flows contain between 15 and 18 steps and use between 8 and 12 different pro-
gram tools  from the studied tool sets. Provided that C source codes and IP-XACT li-
brary are available, a non-HW oriented engineer can implement an FPGA based multi-
processor product in less than 4 hours.  Based on the results, further development sug-
gestions for the TCE tools and Kactus2 are made.
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LIST OF TERMS AND ABBREVIATIONS

ASIP Application-specific instruction-set processor. A 
processor whose instruction set is tailored to benefit a 
certain application.

CPU Central processing unit. A hardware component that 
processes the instructions of a computer program 
performing basic arithmetical, logical and input/output 
operations.

Custom FU Custom function unit. An FU that has been customized 
to perform a specific task that is not needed in all 
TTAs.

DSP Digital signal processing. Mathematical manipulation 
of information in discrete form used to modify or 
improve it in some way.

FPGA Field-programmable gate array. An integrated circuit 
designed to be configured by a designer after 
manufacturing.

FU Function unit. A basic component within a TTA 
processor performing operations when it is triggered 
by incoming data.

GPP General purpose processor. A processor designed for 
running arbitrary applications.

GPU Graphics processing unit. An electronic circuit 
designed to rapidly manipulate memory to accelerate 
the creation of images intended for output to a display.

HDL Hardware description language. A computer language 
used to program the structure, design, and operation of 
electronic circuits. Examples: VHDL and Verilog.

HLL High-level language. A programming language with 
strong abstraction from the details of the HW platform.

HLS High-level synthesis. An automated design process that 
interprets an algorithm and creates digital HW that 
implements it.

HW Hardware. Any physical digital electronic component.

IP block/component Intellectual property block/component. A reusable HW 
component that is the intellectual property of one 
party.

IP-XACT An XML format that defines and describes electronic 
components and their designs.
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IP-XACT library An organized collection of IP-XACT metadata of HW 
and SW components and designs saved on disk that 
can be accessed from Kactus2.

Kactus2 library See IP-XACT library.

Metadata “Data about data.” Contains concise information about 
the important aspects of data.

MP-SoC Multiprocessor SoC. A SoC design that contains 
multiple processors.

OSAL Operation set abstraction layer. A database in TCE that 
contains the static properties and simulation behavior 
of operations.

RISC Reduced instruction set computing. A CPU design 
philosophy with relatively few and simple instructions.

RTL Register-transfer level. A design abstraction which 
models a synchronous digital circuit in terms of the 
flow of digital signals between HW registers.

SoC System-on-chip. An integrated circuit that integrates 
all components of an electronic system into a single 
chip.

SW Software. Any program or part of program that can be 
processed by a CPU.

TCE TTA-based co-design environment. A tool set for 
designing and programming customized TTA 
processors.

TTA Transport-triggered architecture. A CPU design in 
which programs directly control the internal transport 
buses of processors.

VLIW Very long instruction word. A processor architecture 
designed to take advantage of instruction level 
parallelism.

VLNV Vendor-library-name-version. A system for identifying 
HW and SW components by their vendor, library, 
name and version number.

VLSI Very-large-scale integration. A process of creating an 
integrated circuit by combining thousands of 
transistors into a single chip.

XML Extensible markup language. A markup language that 
defines a set of rules for encoding documents in a 
format that is both human- and machine-readable.
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1 INTRODUCTION

System-on-chip (SoC) integrates dozens of intellectual property (IP) components into a 
single chip, typical applications including telecommunication and multimedia [1]. De-
signing complex SoCs requires an efficient reuse of existing hardware (HW) and soft-
ware (SW) components and modern design tools which enable automation. For exam-
ple, the interface between HW and SW, verification, design space exploration, and prod-
uct data management are very important tasks. At the same time, the required process-
ing requirements are high while the available power budget is very limited, especially in 
mobile devices.

In addition to fixed HW accelerators which handle the most demanding processing, 
there are from a few to dozens of programmable processors, and consequently a large 
fraction of design costs are associated with embedded SW. Such a heterogeneous pro-
cessing approach provides an affordable balance between performance and development 
costs.

Figure 1 presents an example of a typical SoC architecture [2]. The SoC implements 
an MPEG-4 video encoder application on FPGA with multiple processors (CPUs) that 
run the application SW, two HW accelerators (ME and DCT-Q-IDCT) for resource-in-
tensive parts of the encoding algorithm, a memory controller, a resource manager (RM) 
to arbitrate the processors' access to the HW accelerators, and a hardware monitor to 
collect data on the performance of the accelerators. In this SoC, the various components 
are connected by an on-chip communication network called HIBI [3] which is imple-
mented by the wrappers connected to each component. Furthermore, the HW accelera-
tors require their own wrappers since they have interfaces that are incompatible with 
HIBI. The wrappers also manage the dataflow considerations to and from the accelera-
tors. Even this relatively simple SoC demonstrates  how the design process can grow 
complex and thus error-prone unless rigorous designing principles are followed with ef-
ficient auxiliary program tools.

Today's SoCs are typically manufactured with 28 nm technology and can contain one 
or  more  central  processing  units  (CPU),  a  graphics processing  unit  (GPU),  internal 
memory blocks, external memory controllers, digital signal processors (DSP), and vari-
ous external interfaces for different industry standards. In addition, application domain 
specific modules and accelerators are common. To give an example of a modern SoC is 
Qualcomm's Snapdragon  800 MSM8974 targeted for smartphones and tablets, which 
contains a 2.3 GHz quad-core CPU, a 450 MHz GPU, a 600 MHz DSP, a 32-bit dual-
channel LPDDR3 memory controller, and radio modules for WiFi, Bluetooth and GPS 
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among other components [4]. This SoC has seen wide use in the mobile devices indus-
try.

Field-programmable gate array (FPGA) is a common SoC platform whose customiz-
ability makes it an attractive option for many design problems. Figure 2 shows the dif-
ferent approaches to implement an application on an FPGA. The starting point is a de-
scription of the application as an executable model in C language that abstracts the com-
munication between application functions. The first, quickest implementation option is 
the compilation of the C code into NIOS [5] or other general purpose processor (GPP). 
If the performance is not satisfactory, the next option is to use an application specific in-
struction-set processor (ASIP), such as a transport-triggered architecture (TTA) proces-
sor [6; 7]. The last and most laborious option is to implement bare HW by converting 
the algorithms into synthesizable register-transfer level (RTL) description with VHDL.

Figure 2: Comparison of choices for implementing an 
application function.

Figure 1: A SoC architecture for MPEG-4 encoder with performance 
profiling support [2, p. 2].
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As a rough estimate, if the GPP should take 1 day, ASIP could take 2 days and RTL 
more than 10 days to implement. Based on a set of experiments, if the performance of 
NIOS is normalized to 1, a TTA can be 4x faster and RTL 2−50x faster [2]. Thus, the 
ASIP approach is often the most practical option since it provides a good effort-perfor-
mance ratio and completely avoids or greatly reduces VHDL coding.

There are plenty of existing SoC design flows, which can be divided into high-level 
synthesis (HLS) approaches and integration environments. In HLS, a designer describes 
the application in a high-level language (HLL) such as C, SystemC or MATLAB, and 
the HLS tool maps this description to HW constructs as efficiently as possible. In addi-
tion to faster time-to-market, another advantage of  these design methodologies is that 
they usually require less  HW design expertise, allowing people with  SW engineering 
skills to produce HW IP components with adequate performance. These flows are some-
times referred to as ”C-to-VHDL”. A popular way of implementing HLS for FPGAs is 
to use soft-core processors with varying degrees of configurability [7; 8; 9; 10; 11]. For 
example, about 4x speedup over basic reduced instruction set computing (RISC) proces-
sor was reported in [10].

Numerous SoC integration environments exist and recently they have started utiliz-
ing the IEEE1685/IP-XACT XML metadata standard as well [12; 13; 14; 15]. The goal 
is to packetize all reusable IPs into a library to simplify integrating and configuring 
them. The necessary information includes, among others, port interfaces, file sets, avail-
able parameters, and optional generator scripts. Tools can then automatically generate a 
structural top-level VHDL, compilation scripts, header files for SW developers, and so 
on. Furthermore, the vendor/library/name/version  (VLNV) identifiers of all IP-XACT 
objects aid in version and product data management. The most important objects are 
component (for example CPU), interface definitions (for example AMBA [16]) and de-
sign which is a hierarchical description of the component instances and their connec-
tions.

This Thesis combines the two approaches (HLS and SoC integration environments) 
by focusing on enhancing the SW integration in Kactus2 design flow [17; 18; 19] using 
TTA processors.  The approach is based on  the  IP-XACT standard which is originally 
purposed for HW IP block integration. Kactus2 expands on this, allowing capturing for 
example the structure of  the  SW stack, its mapping into processors and memory map 
design. The goal is to help SW engineers to implement FPGA applications by integrat-
ing TTA tools into the Kactus2 IP-XACT design environment.

The TTA tool package developed at the Tampere University of Technology is called 
the TTA-based Co-design Environment (TCE). Previously, there has been no formal re-
search on how to  combine the TCE and Kactus2 design flows. This work considers 
three different use cases of designing and integrating TTA processors with the TCE 
tools and Kactus2. The first case is where the TTA processor is purposed as a fixed ac-
celerator IP block. That is, the processor will perform a single task in the most efficient 
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way and it is not re-programmable. In the second case, the TTA is designed to be a GPP 
similar to NIOS. In the final, and most important case, the TTA is stored in IP library as 
a template component that can be reused and customized as an ASIP.  The aim of the 
Thesis is to provide clear and efficient design flows for integrating the TCE and Kac-
tus2 use in these three cases.

The rest of the work is organized as follows. Chapter 2 provides an overview of  the 
TCE tools and Kactus2. Chapters 3, 4 and 5 present the use cases and the related design 
flows of TTA as a fixed accelerator IP block, GPP and ASIP, respectively. Chapter  6 
contains an illustrative example of the ASIP design flow. Chapter 7 evaluates the design 
flows from the perspective of time-usage, and finally, Chapter  8 provides the conclu-
sions drawn from the work.
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2 OVERVIEW OF TCE AND KACTUS2

This work combines the use of two separately developed, freely available, open-source 
design environments: TTA-based Co-design Environment and Kactus2 used for IP inte-
gration.

2.1 TCE Overview

2.1.1 Principles of a TTA processor

The TCE tools are based on TTA processors [6], which follow the principle that compu-
tation occurs as a side effect of data transports (it can be thought that TTA is an extreme 
version of a RISC processor having only one instruction,  move).  Each function unit 
(FU) within the processor has a specific input port that triggers computation within the 
unit when data arrives in the port. The  FUs are connected by one or more transport 
buses, and each instruction word of a program defines the data transfers within each 
bus. This allows for strong instruction level parallelism like in the very long instruction 
word (VLIW) processors [20]. The number of simultaneous operations within the pro-
cessor is limited only by the number of transport buses. Furthermore, unlike in conven-
tional processors, it is not always necessary to write output back to a register file as the 
output of a FU can be directly sent to the input port(s) of the FU that needs it.  This is 
called software bypassing, which can significantly relieve register file port pressure and 
consequently energy consumption.

Thanks to transport triggering, the control logic of the processor is usually simpler 
than in conventional processors. Many of the control decisions that are normally made 
at run time can be fixed when compiling the program. This, however, means that a pro-
gram compiled for a certain TTA processor is unlikely to work on any other processor 
since the compiled program code assumes a fixed FU and bus architecture.

Figure 3 shows the basic architecture of a TTA processor. The sockets in the Figure 
define which FUs are connected to which transport buses, and furthermore they enable 
and disable the connections within, according to the program that is being run. Essen-
tially, a TTA program is just a set of instructions about which connections are enabled 
on each clock cycle. Data flows based on the currently enabled connections and opera-
tions are triggered within FUs when new data arrives in their triggering input ports.
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The TTA paradigm is ideal for  ASIPs. The processor design model is flexible and 
straightforward as the main tasks are selecting the FUs and their connections, which are 
easy to modify thanks to the TCE tools that are discussed in the next subsection. Cus-
tom  HW accelerators can be created to handle computation-intensive operations, but 
this is not necessary with all applications.

A comparison of performance  between a simple TTA processor and various soft-core 
processors for several applications was performed in [10]. The TTA processor that was 
implemented with the TCE tools and the soft-core processors (NIOS II/f and two Mi-
croBlaze configurations) were synthesized and run on FPGA. The results showed that 
the TTA processor outperformed the soft-core processors provided by major vendors on 
average by a factor of 1.5 to 2 when measuring  speedup but even 4x speedups were 
measured. 

TTA processors are best suited for signal processing and data flow -type applications 
that can be run to completion without external interrupts.  Applications requiring inter-
rupts are difficult to support since moves of one operation can span multiple instruction 
words, so all of the processor state cannot be represented by the registers alone, but also 
includes state inside execution units. Fortunately, the drawbacks of TTAs are usually not 
issues with ASIPs where there is often no need to run multitasking operating systems. 

Figure 3: A sample TTA processor architecture [21, p. 11].
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2.1.2 TCE tools

The TCE tools are being developed at the Department of Pervasive Computing at Tam-
pere University of Technology. Their goal is to enable an effortless design flow of pro-
grammable  TTAs and  to  provide  compilers  for  certain  HLLs (currently  C/C++ and 
OpenCL) to avoid writing arduous assembly code for TTA processors.

Figure 4 shows the TCE design flow which is described in an abbreviated form here. 
More comprehensive information can be found in [21]. 

Figure 4: The TCE design flow [21, p. 9].
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In the first phase, the user creates a starting  point processor architecture using the 
Processor Designer1 tool (ProDe), or selects an existing architecture. He then compiles 
the given HLL program for the processor using a retargetable2 compiler (TCECC).  The 
user can then use a processor simulator program (Proxim or TTASim) to find data about 
cycle  count  and FU utilization among other  things.  Based on this  feedback,  he can 
change the architecture until he finds one with  sufficient performance.  The Automatic  
Design Space Explorer tool (Explore) can be used to partially automate this iterative 
process. After this, he can select the VHDL implementations for the FUs from the HW 
database (HDB) using ProDe.

The same FU can have different implementations in the HDB which decouples the 
functionality and implementation of the FUs. This is a useful property since the data-
base can have different implementations for different FPGA families, among others.

The Processor Generator (ProGe) creates synthesizable VHDL code based on the ar-
chitecture and implementation mapping, and it also includes  the Platform  Integrator 
which can be used to create synthesis settings and integrate the TTA with the memory 
components of a given FPGA board. The  Platform  Integrator can also create an IP-
XACT description of the TTA with the KoskiIntegrator option.

In the last phase, the actual program binaries are generated using the Program Image 
Generator (PIG). It can create plain binary as well as various FPGA vendor specific 
RAM formats. Synthesis and simulation are done using FPGA specific third-party tools. 

Other TCE tools include the Operation Set Abstraction Layer Editor (OSEd) which 
can be used to add information on various custom operations that the FUs may perform 
to the corresponding database. The  HDBEditor is used to modify hardware databases 
that contain the VHDL files of FU implementations.  Estimate can be used to approxi-
mate physical properties of TTAs, such as area, maximum clock frequency and energy 
consumption. Table 1 summarizes the TCE tools.

Table 1: The various TCE tools used in this work. The tools either have a graphical 
user interface (GUI) or execute from the shell command line (CLI). Output file format is  
also specified. [21, p. 10]

Tool Purpose Type Output file(s)

ProDe Define FUs, registers, interconnects of 
TTA core

GUI ADF

TCECC Compile software CLI TPEF

Proxim Simulate TTA cores GUI report

1 Throughout this work, the various TCE tools are identified with italic font.
2 Retargetability means that the compiler needs to know the target architecture which can change from 

compilation to compilation.
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Tool Purpose Type Output file(s)

TTASim Simulate TTA cores CLI report

OSEd Operation set abstraction layer 
database editor

GUI operation 
database

Estimate Estimate physical properties of TTAs CLI report

HDBEditor HW implementation database editor GUI HDB

ProGe / 
generateprocessor

Generate HDL CLI 
(+GUI)

VHDL

PIG / generatebits Generate program image CLI for example 
MIF

Platform Integrator Interface with memories, generate IP-
XACT

CLI XML, project 
files

2.2 Kactus2 overview

Kactus2 is a tool set  for designing embedded products, especially FPGA-based multi-
processor SoCs (MP-SoC) [22]. It uses the IEEE1685/IP-XACT XML metadata and de-
sign methodology, but extends the IP-XACT usage to upper product hierarchies and 
HW/SW abstraction with Multicore Association MCAPI [23].

Kactus2 enables drafting and specifying from scratch block diagram blueprints for 
product boards, chips, SoCs and IPs and get them stored in IP-XACT format. It also al-
lows packetizing IP for reuse and exchange by,  for example creating “electronic data 
sheets” of existing IPs for library as templates and blocks ready for integration. Finally, 
it can be used in designing MP-SoC products by creating HW designs with unlimited hi-
erarchy, and system designs that map SW to HW. Product creation is further supported 
by tools  that  automatically  generate  everything  needed  for  HDL synthesis  and  SW 
build, such as top-level VHDL and Altera Quartus II project files. However, IP function-
ality and binaries/executables cannot be created directly in Kactus2, although there is a 
clear path from Kactus2 to other tools.

Figure 5 depicts the scope of Kactus2 and the key tasks within it. The starting point 
can be formal, executable models or other means of documentation on required func-
tionality. System level design creates HW and SW partitions using for example model 
based tools. HW and SW components are acquired, either by creating new or reusing 
existing ones from a library. Metadata can be used as specification for new components.
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The integration order is following: First HW component integration, then SW archi-
tecture design, mapping of SW components to HW instances, and finally configuring 
both HW and SW components for product creation. The flow describes primarily SoC 
design, but the phases can be applied to other levels of product hierarchy as well. For 
example, when “board” is the outcome, design information is related to PCB schematic, 
layout, part lists, silkscreens, and process-related information like test setups, test pro-
grams and test data patterns.

Figure  6 shows  sample views from Kactus2  related to a SoC design. In the left is 
shown the IP-XACT library that contains all HW and SW components and designs. In 
the middle is the SoC (HW) design containing processors and other components along 
with their connecting buses. In the right is the system design where the processors have 
SW components mapped on them and SW communication channels are defined.  Fur-
thermore, each HW and SW component in the library or in a design can be opened and 
configured separately.

Figure 5: The general design flow and scope of Kactus2.
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2.2.1 The IP-XACT/IEEE1685 Standard

Kactus2  utilizes  the  IP-XACT/IEEE1685  standard  that  was  first  developed  by  the 
SPIRIT Consortium and approved as IEEE1685 in 2009. IP-XACT is an  XML format 
that describes  very-large-scale integration (VLSI) HW IP blocks to enable automated 
configuration and integration through tools.  The scope of IP-XACT is on the IP and 
SoC levels, but in Kactus2 the standard is applied also to other levels, aiming at product 
level information management.

A core concept in IP-XACT is metadata which means data about data content. Kac-
tus2 uses metadata for describing components and designs. Metadata for a component is 
a formal,  vendor- and technology-independent description of the component that in-
cludes references to source files and other related information. Components are in prac-
tice HW blocks and SW code in different abstraction and granularity levels.  For a de-
sign,  metadata is  a formal structural description that includes references to component 
metadata, tools, configurations and other design-related information.

Figure 7 summarizes the main IP-XACT design steps. The sources are encapsulated 
and separated from the IP description. This means that the HDL source code is embed-
ded via links to the source file in metadata file. IP blocks are assembled together in a de-

Figure 6: Kactus2 views of the library, SoC design and system design. The SoC design 
contains processors, buses and other components from the library. The processors have 
SW components mapped to them in the system design where also interprocessor SW 
communication channels are defined.
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sign, which is a structural description of the system. IP blocks as well as the design it-
self may have generic parameters, which are configured using generators that are typi-
cally scripts. The final configured IP-XACT design can be seen as “instructions” on 
how to create an executable. In Kactus2, IP-XACT metadata is also used backwards as 
specification for a new IP block not yet existing.

IP-XACT objects are XML metadata files representing SoC components, structure, 
and configurations. IP-XACT design environment handles these objects, but not directly 
the source files. The final design including all components and their connections is also 
an object  itself.  IP-XACT objects are uniquely identified and referred to by a  tuple 
{V,L,N,V} stating Vendor-Library-Name-Version. All VLNV tuples are unique, inde-
pendent of what kind of IP-XACT objects they identify. The XML file name and its lo-
cation on disk are not defined themselves.

A SoC design flow may use several models for the same IP block or design, starting 
from high-level abstract models down to implementation accurate models. Typically, 
models are separately stored and each might have a different description language (for 
example UML, SystemC, VHDL). IP-XACT can include all different abstraction level 
descriptions in one metadata object. Instead of several separate objects, there can be 
only one with several options. This helps keeping the library coherent and help automat-
ing the path from specification to implementation. IP-XACT also supports mixed ab-
straction levels at the same time.

An IP-XACT component  is a general placeholder describing all IP block types like 
processors, memories, accelerators and building blocks for buses and various interfaces. 
A component contains independent elements that can be referenced between each other. 

Figure 7: IP-XACT-based design flow.
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Views are used to represent different roles of the component. Example views  include 
“RTL implementation”, “documentation”, “simulation” and “SW implementation.”

Components are connected using bus interfaces, bus definitions, and abstraction def-
initions. Bus interface defines a grouping of ports, with ports allowed to be included in 
multiple different  bus interfaces.  Bus definition specifies general  bus properties like 
whether bus is addressable and what kind of connections are allowed. Abstraction defi-
nition defines logical bus signals and constraints related to them such as bus width and 
direction of logical signals. A port map defines the mapping between physical and logi-
cal signals.

File sets and file set groups are folder and file collections that can be associated to 
views. Example file set groups include “application,” “interrupt,” and “device driver.” 
File sets include information about used tools, description languages and instructions on 
how to handle files.

An IP-XACT design is like a traditional schematic of components. It describes a list 
of component instances, their configuration, and connections to each other. For a design, 
several  design configurations exist for different purposes. Figure 8 illustrates the rela-
tionship between components, designs and design configurations.

A hierarchy of designs is implemented as follows (see also Figure 9):

• IP-XACT designs never refer to other designs. Instead, a design always refers to 
components that are instantiated into design.

• The design must be wrapped inside a component in order to use it as a sub-de-
sign. Thus, an IP-XACT component refers to an IP-XACT design.

• An IP-XACT design can always be used as an IP-XACT component.

Figure 8: IP-XACT components, design and design configurations.
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2.2.2 Kactus2 IP-XACT extensions

IP-XACT was originally purposed for HW descriptions. Kactus2 extends this to use SW 
and system-level descriptions to apply IP-XACT to  its design  flow and  to make IP-
XACT easier to use. Information on these extensions can be found for example in [24] 
and [25], but the key points are summarized below.

The Kactus2 design flow manages three top-level aspects:

• Product hierarchy: This defines the scope of the work.

• Implementation: All objects are categorized according to HW, SW, system (HW 
and SW mappings), and communication abstraction.

• Firmness: Each library object is one of the  following:  Mutables are  reusable 
components that  can be modified. Templates must be saved to a new version 
prior to use. Fixed have all parameters determined for frozen product releases.

Standard IP-XACT elements are used to describe the above top-level aspects. Compari-
son of the original scope of IP-XACT and these aspects is shown in Figure 10.

Figure 9: Component and design hierarchy in IP-XACT

Figure 10: Top-level aspects in Kactus2 design flow.
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A standard IP-XACT HW component may include references to SW through model  
views and file sets pointing to files on disk. In the worst case, a new HW component 
version is needed every time the component is instantiated in a new design with new re-
lated SW (Figure 11). In Kactus2, this is avoided by creating IP-XACT objects also for 
SW components.

With separated HW and SW components, designs can be composed without adding 
design-specific files and elements to HW components as shown in Figure 12. However, 
referencing to SW from HW components is still allowed, but now object references are 
used (references between VLNVs). Using this mechanism, the mapping from HW com-
ponent to SW component is made through SW design. SW design may include only one 
instantiated SW component, or there can be several SW components of its own hierar-
chy.

Figure 11: a) Standard IP-XACT way for including SW. b) Consequence: HW 
component library grows.

Figure 12: a) SW as IP-XACT components and mapping from HW to 
SW. b) Consequence: composed designs from generic HW and SW 
components.
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To instantiate HW and SW components on the same IP-XACT design, a system de-
sign is defined. It is a SW design that includes mappings of SW component instances to 
HW component  instances.  Since  IP-XACT does  not  specify  HW/SW mappings,  a 
model parameter is added to each SW component for the mapping that is configured in 
system design (Figure 13).

To summarize, the mapping of SW to HW can be done either by component hierar-
chical model view specified in a HW component (“from HW to SW”) or by instantiated 
component model parameter specified in a system design (“from SW to HW”). 

Table 2 collects the standard IP-XACT objects and Kactus2 extended IP-XACT ob-
jects together. Objects that are not relevant to this work have been omitted from the ex-
planations in this chapter.

Table 2: Standard IP-XACT objects and Kactus2 extended IP-XACT objects. Objects 
that are not relevant to this Thesis are marked with an asterisk.

IP-XACT standard objects New Kactus2 objects

HW component,  HW design SW component, SW design

HW design configuration API definition* (SW)

Bus definition COM definition* (SW, HW)

Abstraction definition System design  (SW architecture  mapped 
to HW)

Generator chain* System component (SW architecture)

Figure 13: Mapping between HW and SW with system design.
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2.3 About instance management in IP-XACT

The standard IP-XACT integration flow starts from reusable components that are instan-
tiated, connected, and configured in an IP-XACT design. Unfortunately, the standard 
has problems with instance-specific definitions. Although generics and connections are 
well defined, for example address spaces and SW components are not. The basic ques-
tion regards which values to store to the reusable component and which to the instances. 
Two approaches are considered in the following.

2.3.1 Creating a new IP-XACT component from a template or draft

Figure 14 depicts a design process with templates or incomplete components in the be-
ginning. A template is a component that is never used as such in a design; it is like an 
abstract base class in programming.  In this example, the IP-XACT library includes a 
few TTA template components that define only the information common to all instances 
that are generated from them, like generators, and which connection is used with an on-
chip network, and if an external memory interface is used (SRAM or DRAM). User 
makes a copy of the template, gives it a new VLNV, and instantiates it in the HW de-
sign.

Figure 14: Completing a template component.
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Kactus2 also offers an option to ”draft” new components. User just adds  an empty 
component, connects it to others and defines a VLNV identifier. The necessary interface 
types are detected automatically and serve as part of the requirements for the IP devel-
opment team. This is one way of creating a TTA template component for the library.

In Figure 14, source files are added to the new component A_1 later by a component 
specific generator. However, in the worst case the library will contain as many compo-
nents as there are instances in various designs.

2.3.2 Completing instance-specific data into IP-XACT design

Figure 14 also depicts the second approach where instance-specific data is stored to the 
place of the instantiation, that is to the SoC. As a specific example, one can consider the 
address space definition that can be added to master interfaces in IP-XACT. It defines 
what kind of segments the component can access using a certain interface. Thereby, ad-
dress space naturally depends on the design where the component is instantiated.  Ad-
dress space should not be confused with the memory map that describes which registers 
of a component are visible to others, which is usually not instance-specific information.

Again, the designer creates a HW design with all the necessary IPs followed by an 
optional system design phase. The example assumes that template comp A has an empty 
address space defined at first. The segments of the address space are then determined 
based on the other components in the HW design. The complete address space is used in 
SW compilation and stored to a top-level HW component (for example SoC) which 
refers to the HW and system designs. The same principle applies to SW mapping data.

Moreover, if VHDL files of an IP are automatically generated based on a few in-
stance-specific parameters (for example data width, cache size, #FUs), they could be 
stored into the top component’s file set as well. The reusable component holds only the 
generator script, interfaces, parameter list, and documentation. Each instance defines the 
parameter values for the generator which produces  the  implementation files. This ap-
proach encapsulates the TTA-instance-specific values and files to the SoC component 
without augmenting the library with numerous components. 

2.4 Summary of the Tools

Table 3 contains a summary of the primary properties of the TCE tools and Kactus2 for 
quick reference.
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Table 3: Summary of the TCE tools and Kactus2.

TCE tools Kactus2

Purpose Designing and programming 
customized processors based on 
the transport triggered architecture

Designing, specifying and 
managing embedded products, 
especially MP-SoCs.

Platform Linux Linux and Windows

Developer Tampere University of 
Technology

Tampere University of 
Technology

Home page http://tce.cs.tut.fi/index.html http://funbase.cs.tut.fi/#main

License MIT License GPL2 General Public License

Implementation 
language

C, C++, Python C, C++/Qt5

Lines of code 217,000 274,000

The lines of code includes comment lines. The tools are constantly evolving so the 
most current information can be found on their respective web sites.

http://tce.cs.tut.fi/index.html
http://funbase.cs.tut.fi/#main
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3 TTA AS A FIXED ACCELERATOR IP 
BLOCK

Thanks to the TCE tools, one can efficiently develop various fixed TTAs each tailored 
to a certain application. These can be saved to the IP-XACT library, and the integrator 
can drag and drop them into a SoC design like any other IP component. There is only 
minimal if any processor configuration by the user. The processor's IP-XACT compo-
nent metadata includes the VHDL source files for HW, and SW source code and mem-
ory image maps of the program it executes. This use case is natural in a situation where 
the processor design and SoC design are done by a different person, although both can 
be designed by the same engineer as well. The design flow for this use case is described 
after Table 4 which summarizes it.

Table 4: The design flow phases of a fixed accelerator IP block design and integration. 
Phases F1-F11 contain the IP block design and phases F12-F15 integration into a SoC 
design and implementation on a FPGA.

# Phase Input Tools Output

F1 SW application 
design and testing 
on a PC or reuse

Application 
specification 
documents or 
reused code

SW code 
writing tools, 
testing 
environment

Platform-independent 
SW source code

F2 Initial TTA 
processor design

HW 
specification 
documents, 
requirements of 
SW

ProDe Initial processor ADF

F3 Program 
compilation for 
initial TTA

Initial processor 
ADF, source 
code files

TCECC Initial TPEF

F4 Design space 
exploration

Initial ADF, 
Initial TPEF

Proxim, 
TTASim, ProDe, 
TCECC, OSEd, 
Explore

Final processor ADF
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# Phase Input Tools Output

F5 C code modification 
and compilation for 
TTA

Platform-
independent SW 
source code

SW code 
writing tools, 
TCECC

TTA-tailored C 
source code files, 
final TPEF

F6 Optional: VHDL 
implementation for 
FUs if not already in 
HDB

FU 
requirements

VHDL writing 
tools, 
HDBEditor

VHDL files for FUs, 
edited HDB

F7 FU implementation 
mapping

Final ADF, 
HDB

ProDe IDF

F8 Estimation of 
physical properties

Final ADF, IDF, 
final TPEF

Estimate Estimation results

Either F9 if the estimation results are satisfactory or back to F4 if not

F9 Either F9.a or F9.b

F9.a Processor, memory 
controller, and top-
level entity 
generation with 
Platform Integrator

Final ADF, IDF, 
final TPEF, 
memory 
specifications

Platform 
Integrator

Top-level and 
hierarchical VHDL 
files of the processor 
and memory 
controllers, top-level 
entity VHDL, FPGA 
synthesis project files

F9.b.1 Manual processor 
generation

Final ADF, IDF ProGe Top-level and 
hierarchical VHDL 
files of the processor

F9.b.2 Manual memory 
controller 
generation

Memory 
specifications

VHDL writing 
tools or target 
platform's 
memory 
controller 
generator

Memory controllers' 
VHDL files

F9.b.3 Manual top-level 
entity VHDL 
generation

Top-level 
VHDL files of 
the processor 
and memory 
controllers

VHDL writing 
tools

Top-level entity 
VHDL

F10 Memory image 
generation

Final ADF, Final 
TPEF

PIG Instruction and data 
memory images in 
chosen format

F11 Either F11.a or F11.b

F11.a IP-XACT 
component creation 
(if KoskiIntegrator 
was not used in F9)

All files created 
in the previous 
steps, 
documentation

Kactus2 
component 
creation wizard

IP-XACT component 
of the TTA in library
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# Phase Input Tools Output

F11.b IP-XACT 
component 
augmentation (if 
KoskiIntegrator was 
used in F9)

IP-XACT file 
created by 
KoskiIntegrator, 
all files created 
in the previous 
steps, 
documentation

Kactus2 Augmented IP-
XACT component of 
the TTA in library

F12 SoC design IP-XACT files 
of the TTA and 
other 
components in 
the design

Kactus2 Kactus2 HW design

F13 Top-level VHDL 
generation of the 
HW design

Kactus2 HW 
design

Kactus2 Top-level VHDL of 
the HW design

F14 FPGA synthesis 
project file 
generation

Kactus2 HW 
design

Kactus2 (for 
Quartus II) or 
target platform's 
SoC designing 
program

FPGA synthesis 
project files

F15 FPGA synthesis and 
programming

All the VHDL 
files, memory 
image files, 
FPGA synthesis 
project files

FPGA synthesis 
and 
programming 
tools

The entire design 
synthesized and 
programmed on 
FPGA

3.1 IP block design

The initial part of the flow is the same as in Section 2.1.2, but it is described in more de-
tail here.  An even more detailed description can be found in [21], along with informa-
tion on how to use the various tools mentioned here.

The flow begins with writing or reusing a C program code that performs the speci-
fied functionality of the accelerator block. The code doesn't need to be customized for 
TTA at this point, and indeed it should be tested on a workstation PC for correct func-
tionality.  If in the final product, the processor takes external input from for example a 
program running on another processor,  it should be provided by the program itself at 
this  point. In other words,  the external I/O is  emulated in the program. If  possible, 
dummy values may be used.

When the SW code is ready, a starting point architecture of the TTA is created. This 
is done using the ProDe tool. The starting point architecture should contain at least the 
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minimum resources required to run the program. External I/O functionality can be omit-
ted at this point. The end result is saved in an architecture definition file (ADF).

In the next phase, the program is compiled  for the architecture using the  TCECC 
compiler. The C source code files and the ADF file are given as parameters to the com-
piler, and the compiled TTA program is saved in  the  TTA program exchange format 
(TPEF) file. This is not a bit image that can be run on a physical platform, but it is used 
in simulating the program on the target TTA.

There are two instruction set simulator options, either  Proxim that has a graphical 
user interface or TTASim which is command-line based. Both provide statistics about the 
cycle counts and utilization of FUs. The  designer then modifies the TTA architecture 
based on the simulation results and specified performance and resource-usage require-
ments. The basic optimization options include modifying the algorithm itself  at code 
level, adding more resources to the TTA (FUs, register files, buses), and adding custom 
operation  FUs to the TTA.  Details on performing these optimizations are outside the 
scope of this work but they can be found in [21, Section 3.1]. This design space explo-
ration is an iterative process where different TTA architectures are created and tested 
until a satisfactory one is found. The Explore tool can be used to partially automate this 
process.

The designer should add any FUs related to external HW (for example various exter-
nal I/O components) to the  architecture at this point. If their implementation does not 
yet exist, he needs to add the related custom operations to the TCE's operation set ab-
straction layer (OSAL) using OSEd, map them to FUs and create the VHDL implemen-
tation of the FUs.

After finding a suitable architecture, the C code needs to be modified to be run on the 
TTA processor. Specifically, any input and output to/from the processor's internal cus-
tom FUs and I/O units needs to be handled in the C code using macros defined in the 
“tceops.h” library that includes a corresponding macro for each operation in OSAL. The 
modified code is compiled to create the final TPEF file.

The next phase is to create a VHDL implementation of the processor. First, each FU 
in the TTA needs to  be mapped to a HW implementation.  The implementations are 
stored in  the  TCE's  HW database (HDB). There can be several different implementa-
tions for the same FU that differ in resource usage and target platform.  If some FUs 
don't have an implementation in the HDB, they must be created by writing the VHDL 
and adding information on them to the HDB using the HDBEditor tool. The implemen-
tation mapping is performed using ProDe, and the result is saved in the implementation 
definition file (IDF). 

With the implementation mapping, it is possible to use the Estimate tool to provide 
estimates on the energy consumption, die area, and maximum clock rate of the TTA. 
The final ADF, IDF and TPEF files are given as input parameters to the Estimate tool. If 
the output report contains unsatisfactory results, the flow returns to design space explo-
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ration where  the architecture, SW code and/or FU implementations are modified until 
the results improve,  whereupon the designer can move on to the processor generation 
phase.

The TCE tools contain the Platform Integrator that is part of the ProGe tool. It sup-
ports automated integration of TTA cores to different FPGA platforms. The design flow 
divides in two parts here, depending on whether there is support for the target platform 
in the Platform Integrator.

If  the Platform Integrator can be used, the final phases of the processor generation 
are rather straightforward.  The user invokes the command-line  version of the ProGe 
tool and gives to it as parameters the ADF, IDF and TPEF files, and parameters defining 
target platform and the type of instruction and data memory used. The  Platform Inte-
grator saves the processor's VHDL implementation files in a specified folder, creates 
memory controller VHDL, a top-level entity and even project files for FPGA synthesis 
with default pin-mappings. It should be noted that if the Platform Integrator is used, the 
processor's  internal  component  implementations  must  be  selected  from  the  plat-
form-specific  options in  the  HDB.  Currently, there is  Platform  Integrator support for 
Altera's Stratix II DSP Pro board and Stratix III FPGA Development Kit board. The 
Platform  Integrator can also create an Altera SOPC Builder [26] component from  a 
TTA processor, and a HIBI bus compatible processor.

If the  Platform Integrator does not support the target platform,  then  the processor, 
the memory controllers, and the top-level VHDL entity must be created manually. The 
processor is  generated either directly  using ProDe or  with the command-line  ProGe 
tool. The ADF and IDF files are given as parameters and the VHDL implementation of 
the processor is saved in the target directory by the tool.  The memory controllers, and 
the top-level entity connecting the TTA to the memory controllers and containing ports 
for external signals are created by hand. Another option is to use the Platform Integra-
tor anyway, and then modify the automatically generated files to support the target plat-
form.

The PIG tool is used to create a bit image of the program which can be uploaded to 
the target platform's memory for execution.  It is invoked from the command-line with 
the “generatebits” command, and the ADF and TPEF file and the chosen instruction and 
data memory formats are given as parameters. 

The Platform Integrator has an option that generates the IP-XACT file of the proces-
sor automatically. This KoskiIntegrator adds all the relevant data to the IP-XACT ex-
cept for file sets containing  source code and other documentation files  which must be 
manually added with Kactus2. When KoskiIntegrator, which requires Altera FPGA and 
HIBI support, cannot be used, Kactus2 can create the IP-XACT file with an integrated 
component creation  wizard.  The user adds the relevant files (VHDL, program code, 
documentation, and so on) to the file sets and writes a description of the component in 
the corresponding field. The IP-XACT component is then automatically created based 
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on the top-level VHDL component. The created component is saved in the IP-XACT li-
brary for integration and use in designs. There, it is seen as any fixed IP block. All TTA 
instances created from the same component are identical and run the same code.

3.2 SoC design

The use of the previously created TTA IP block component  is straightforward in Kac-
tus2. The SoC designer simply drags and drops the component from the library to his 
HW design and connects it to other components. Its functionality is fixed so the only 
customization can be done on SoC level.

The top-level VHDL file of the HW design is created automatically by the Kactus2 
VHDL generator. Kactus2 also creates the FPGA synthesis file automatically for Al-
tera's Quartus II program. If it is not used, the project file must be created using the tar-
get platform's SoC designing program. The entire design is now ready to be synthesized 
and programmed on FPGA using the platform-specific tool.
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4 TTA AS A GENERAL PURPOSE 
PROCESSOR

In this use case, the TTA processor is used like any GPP. Hence, in the library it is an 
IP-XACT component which includes a CPU element but not a fixed program image. 
The processor is instantiated in a HW design and SW code is mapped to it in a Kactus2 
system design. Existing SW code can be reused from the library or  it can be created 
from scratch. Once the SW code is mapped to the TTA instances, the TCECC and PIG 
tools are invoked for each processor-program pair to generate program images.

Each processor instance has identical HW, but may execute individual code. A de-
signer  may  later  modify  and  recompile  the  code.  Instance-specific  SW-related  data 
(mappings, files, configurations) are stored into a Kactus2 system design, whereas HW-
related data (VHDL, generics, connections to other components) are saved in a Kactus2 
HW design. Note that native IP-XACT does not allow an instance-specific definition of 
SW, which could easily explode the number of CPU components (see Section 2.2.2).

In this use case, the TTA processor designer, the SW programmer, and the SoC de-
signer can be the same person or each part may be implemented by a different engineer 
or group. Especially in the latter case, comprehensive auxiliary documentation is  vital 
and should be included in the file sets  of the components.  For example, the processor 
designer should write a document that describes how to use any custom FUs in C code 
or include this information in the “description” field of the processor's IP-XACT com-
ponent.

The design flow is summarized in Table 5 and explained in more detail after it. Many 
of the phases are similar to the ones in the previous chapter so they are not explained in 
as much detail here.
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Table 5: The design flow phases of a general purpose TTA processor design and 
integration. Phases G1-G9 contain the processor design and phases G10-G18 the SoC 
design and implementation on a FPGA.

# Phase Input Tools Output

G1 TTA processor 
architecture design

Processor 
specification 
documents or 
reused ADF

ProDe Initial processor ADF

G2 Design space 
exploration

Initial ADF, 
processor 
specification 
documents, test 
program source 
codes 

Proxim, 
TTASim, ProDe, 
TCECC, OSEd, 
Explore

Final processor ADF

G3 Optional: VHDL 
implementation for 
FUs if not already 
in HDB

FU 
requirements

VHDL writing 
tools, 
HDBEditor

VHDL files for FUs, 
augmented HDB

G4 FU implementation 
mapping

Final ADF, 
HDB

ProDe IDF file

G5 Estimation of 
physical properties

Final ADF, IDF, 
test program 
source codes

Estimate, 
TCECC

Estimation results

Either G6 if the estimation results are satisfactory or back to G2 if not

G6 Either G6.a or G6.b

G6.a Processor 
generation with 
Platform Integrator

Final ADF, IDF, 
dummy program 
TPEF file

Platform 
Integrator

Top-level and 
hierarchical VHDL 
files of the processor 
and memory 
controllers, top-level 
entity VHDL

G6.b.1 Manual processor 
generation

Final ADF, IDF ProGe Top-level and 
hierarchical VHDL 
files of the processor

G6.b.2 Manual memory 
controller 
generation

Memory format 
specifications

VHDL writing 
tools or target 
platform's 
memory 
controller 
generator

Memory controllers' 
VHDL files
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# Phase Input Tools Output

G6.b.3 Manual top-level 
VHDL generation

Top-level 
VHDL files of 
processor and 
memory 
controllers

VHDL writing 
tools

Top-level VHDL 
entity integrating the 
processor and 
memory controllers

G7 Documentation 
writing

Processor 
specifications, 
data from 
previous steps

Document 
writing tools

Processor's user 
reference document

G8 Either G8.a or G8.b

G8.a IP-XACT 
component creation 
(if KoskiIntegrator 
was not used in G6)

All the files 
created in the 
previous steps

Kactus2 
component 
creation wizard

IP-XACT component 
of the TTA in the 
library

G8.b IP-XACT 
component 
augmentation (if 
KoskiIntegrator was 
used in G6)

IP-XACT file 
created by 
KoskiIntegrator, 
all the files 
created in the 
previous steps

Kactus2 Augmented IP-
XACT component of 
the TTA in the library

G9 CPU definition IP-XACT 
component of 
the TTA

Kactus2 IP-XACT component 
of the TTA with CPU 
definition

G10 SoC HW design IP-XACT 
components of 
the TTA and 
other 
components in 
the design

Kactus2 Kactus2 HW design

G11 SW application 
design and testing 
on a PC or reuse

Application 
specification 
documents or 
reused code

SW code 
writing tools, 
testing 
environment

Platform-independent 
SW source code

G12 SW source code 
modification for 
TTA

Platform-
independent SW 
source code

SW code 
writing tools

TTA-tailored SW 
source code files in 
SW components in 
the library

G13 SoC system design Kactus2 HW 
design, SW IP-
XACT 
components

Kactus2 Kactus2 system 
design



29

# Phase Input Tools Output

G14 Program 
compilation 

Processor ADF, 
SW source code 
files

TCECC TPEF files

G15 Program memory 
image generation

ADF, TPEF files PIG Instruction and data 
memory images in 
specified format

G16 Top-level VHDL 
generation of the 
HW design

Kactus2 HW 
design

Kactus2 Top-level VHDL of 
the HW design

G17 FPGA synthesis 
project file 
generation

Kactus2 HW 
design

Kactus2 (for 
Quartus II) or 
target platform's 
synthesis tool

FPGA synthesis 
project files

G18 FPGA synthesis and 
programming

All the VHDL 
files, memory 
image files, 
FPGA synthesis 
project files

FPGA synthesis 
and 
programming 
tools

The entire design 
synthesized and 
programmed on 
FPGA

4.1 Processor design

The flow begins now with processor architecture design. The architecture is  created 
with the ProDe tool either from scratch or by modifying an existing architecture in the 
library.  Since the processor is  intended to run various different  applications that are 
likely unknown to the processor designer, similar performance optimization as was ob-
served in the design flow of Chapter 3 cannot be reproduced. However, there probably 
exist some general  specifications on the cost and performance of the processor which 
can be used in the designing. The performance can be tested for example by running test 
programs on the simulated processor. The test programs should be selected according to 
the intended purpose of the processor. For example, if the processor is targeted for DSP 
purposes, then a program performing DSP computation should be used. If, on the other 
hand, it is a true GPP, then several different application domains should be used in the 
testing.  The test programs are compiled for the processor  using the  TCECC tool, and 
Proxim and TTASim tools are used for processor simulation yielding data on cycle count 
and FU utilization. The processor architecture is iteratively modified and tested, possi-
bly with the help of the Explore tool, until a satisfactory one is found, and the end result 
is saved in an ADF file.

Next, a VHDL implementation of the processor is created. Each FU is mapped to a 
HW implementation in the HDB using the ProDe tool. Several different mappings can 
be created corresponding to different target platforms. For FUs lacking a VHDL imple-
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mentation, one must be created and information on them is saved in the HDB using the 
HDBEditor tool. The mappings are saved as IDF files.

With the implementation mappings, some further testing can be done. The TCE tools 
include  Estimate that gives estimates  on energy consumption, die area and maximum 
clock rate of TTA designs. The tool takes the processor's ADF and IDF files as input for 
area and clock rate estimation, and also a sample compiled program file for energy con-
sumption estimation. If the results of estimation do not match the requirements, the ar-
chitecture can be modified again or more efficient VHDL implementations can be writ-
ten.

The processor's connected and synthesizable VHDL implementation is created using 
either ProDe or the command-line ProGe. The ADF and IDF files are given as parame-
ters, and the output is a hierarchical VHDL description of the processor in target direc-
tory. This step is merged with the next one if the Platform Integrator tool is used since 
the integrator creates the connected processor VHDL automatically.

The next step is to create memory controller units for instruction and data memory if 
they are intended to reside on-chip. These can be handwritten VHDL or the target plat-
form may have a creation wizard for memory controllers. A top-level VHDL connecting 
the memory controllers to the TTA core is then written. Alternatively, the TCE tools 
may include a Platform Integrator for the target platform that performs these steps auto-
matically.  When using  the Platform  Integrator,  a SW application  in TPEF format is 
needed as input parameter. In either case, whether using the Platform Integrator or not, 
this phase locks the memory type format  which should be mentioned in the processor 
documentation. The relative directory to which the  program memory images of the pro-
cessor's application should be saved must also be specified in the documentation along 
with their required file names.

Since the processor can be utilized by a different engineer than who designed it, it is 
imperative to write documentation on its usage. Besides general information on the pro-
cessor's performance and cost characteristics, instructions on how to utilize any FUs that 
are invoked by macros in C code should be included. A list of all the items that should 
be mentioned in the processor documentation is shown here for reference.

• Target platform

• Targeted purpose if any

• Die area

• Maximum clock frequency

• Special FUs

• I/O ports

• Macros that are used in C code when utilizing FUs

• Relative path of the directory for program image files

• Format of the instruction and data memory files
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• Name of the instruction and data memory files

The final step in the processor design part of the flow is to create its IP-XACT de-
scription. The KoskiIntegrator may be used  when utilizing the  Platform Integrator,  or 
alternatively one can use the component creation wizard in Kactus2. The KoskiIntegra-
tor does not add any information to the file sets so it must be added in Kactus2 when 
that option is used. When using the component creation wizard, all the files related to 
the processor's implementation and documentation are added to the file sets by the user, 
and  its  IP-XACT description  is  otherwise  automatically  created  from the  top-level 
VHDL file. Some or all parts of the processor documentation may also be added to the 
“description” field of the component. If the processor has multiple implementations for 
various platforms, then a different file set should be created for each one. They can be 
further  differentiated  by creating  a  separate  view for  each  implementation.  The IP-
XACT component is then saved to the library with a unique VLNV identifier. 

An address space definition is next added to the component in Kactus2 by opening it 
for manual editing. Dummy values can be used since actual values can be known only 
when the component is instantiated in a design. This is done in order to be able to add a 
CPU definition to the component which  needs an associated address space. The CPU 
definition is required for mapping SW components to the TTA component in Kactus2 
system designs. After adding the CPU definition, the component is ready in the library.

4.2 SoC design

The processor is now ready to be used in Kactus2 HW and system designs by the SoC 
designer.  The usage is as follows. First, a  HW design is created and the TTA compo-
nents are instantiated and connected in it along with any other components from the li-
brary. Next, SW applications, which are reused or written from scratch, are mapped to 
the TTA instances in a system design with all instance-specific SW-related data saved in 
the system design to prevent bloating the library. If new SW is created, the correspond-
ing SW components are added to the library before mapping.

If the program source code was reused and not already targeted for the TTA proces-
sor on which it is mapped, the SoC designer needs to modify it accordingly. This means 
inserting macros in the code when a custom FU is used or an external I/O operation is  
performed using a FU that is not implicitly utilized by a related C language function. 
For example, the printf() function is mapped to a FU operation by default, so this step 
can be omitted for it. The processor documentation should contain the pertinent user in-
formation.

Next, the source code is compiled into TPEF format using  TCECC and giving the 
source code files and the processor's ADF file as input parameters. A bit image of the 
compiled program is then created using PIG. The memory image formats are selected 
according to information in the processor documentation, and output is saved in the 
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specified directories with the specified file names.  Consequently,  each processor will 
run the correct program. The designer then adds the memory image files to the file sets 
in the system design.

There is one caveat when instantiating the same processor multiple times in the same 
HW design. By default, they all have the same VHDL implementation including entity 
and program image names. Thus, if they run different programs, the VHDL needs to be 
copied and modified so that each processor has a unique entity name and the program 
images either have different file names or reside in different directories.

The final SoC design can now be saved in the IP-XACT library. Kactus2 creates the 
top-level VHDL file from the HW design, and also the FPGA synthesis project files if 
using Altera's Quartus II program for synthesis. If not, the project file can be created us-
ing the target platform's corresponding application. All the files needed for FPGA syn-
thesis and programming are now in the library.
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5 TTA AS AN ASIP

This use case utilizes the potential of the tool set maximally.  Instead of using a given 
processor from the  IP-XACT library, the user generates a custom processor for his C 
code using a template processor as a starting point architecture.

First,  the  user connects the  selected starting point  TTAs from the  IP-XACT library 
into the SoC design using Kactus2.  Then, he creates a system design, mapping SW to 
each TTA processor. Next, he performs an architecture exploration for each TTA proces-
sor instance based on the mapped C code. This can be a manual process using the pro-
cessor simulators in the TCE tools or partially automated with the Explore tool.

 When using Explore, the user defines limits, for example the maximum application 
run-time, or  a  minimum clock frequency that provide targets for the exploration.  The 
tool automatically iterates over various TTA architectures, and retargetable compiler and 
simulator produce cycle-accurate evaluation of the cycle count. The exploration termi-
nates when a maximum number of iterations is reached or upon finding an adequate per-
formance-cost trade-off. At least dozens or hundreds of TTA configurations can be ex-
plored within an hour or so. The tool lists a ranking of architecture candidates, from 
which the user may choose one.

The TTA instances in the SoC design are replaced with the ones found in exploration. 
Finally, the TCE Compiler, Platform Integrator and Program Image Generator tools are 
used to generate the files needed in FPGA synthesis of the processors.

The key point here is to keep the number of library items small. There are only a few 
different template TTAs in the library and more data are stored into the SoC component 
and a TTA copy linked to it. Otherwise, the amount of views in the template TTAs could 
grow unmanageably high if there was one for each instance in each SoC design where it 
is instantiated.

In this  use case, the designer considerations are largely the same as in the previous 
chapter.  The HW template creator,  the  SW designer and  the  SoC designer can be the 
same or different individuals. Cooperation between the designers is implicit to the de-
sign flow thanks to the documentation and library management capabilities of Kactus2. 
Compared to the previous design flows, the SoC designer needs more HW expertise, 
since he must customize and create implementation for the processor template. How-
ever, unless custom FUs need to be created, no VHDL expertise is required.

The design flow phases are summarized in Tables 6 and 7, and a more detailed expla-
nation follows  them.  Since the design flow comprises of many of the same steps and 
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uses the same tools as in the previous two chapters, some details have been omitted that 
were presented earlier.

Table 6: The design flow phases of a template TTA processor creation.

# Phase Input Tools Output

T1 Template TTA 
processor 
architecture design

Processor 
specification 
documents

ProDe Template TTA ADF

T2 Template TTA 
documentation 
writing

Processor 
specification 
documents, 
ADF

Document 
writing tools

Template TTA 
documentation

T3 IP-XACT component 
creation for the 
template TTA

Specified in 
T3.1-T3.3

Kactus2 Template TTA 
component in the 
library

T3.1 Bus interface 
creation

Processor 
specification 
documents

Kactus2 Bus interface 
definitions in the 
component

T3.2 File set creation Template TTA 
ADF, 
documentation

Kactus2 File sets in the 
component

T3.3 Address space 
creation and CPU 
definition

None needed Kactus2 Address space and 
CPU definitions in 
the component

Table 7: The design flow phases of a custom processor creation and integration.

# Phase Input Tools Output

A1 SW application 
design and testing 
on a PC or reuse

Application 
specification 
documents or 
reused code

SW code 
writing tools, 
testing 
environment

Platform-independent 
SW source code 
components in the 
library

A2 SoC-specific TTA 
component 
creation

Template TTA 
in the library

Kactus2 SoC-specific copy of 
the template TTA in 
the library
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# Phase Input Tools Output

A3 SoC HW design 
creation

IP-XACT 
components of 
the TTA and 
other 
components in 
the design

Kactus2 Kactus2 HW design

A4 TTA component 
view creation

SoC-specific 
TTA component

Kactus2 SoC-specific TTA 
component with 
instance-related 
views

A5 SoC system design 
creation

Kactus2 HW 
design, SW  
components

Kactus2 System design view 
in the HW component

A6 C code 
modification for 
TTA

Platform-
independent SW 
source code, 
template TTA 
documentation

SW code 
writing tools

TTA-tailored source 
code files

A7 TTA architecture 
optimization for 
application SW

Template ADF, 
TTA-tailored 
source code files

Proxim, 
TTASim, ProDe, 
TCECC, OSEd, 
Explore

Final TTA ADF files, 
final TPEF files

A8 Optional: VHDL 
implementation for 
FUs if not already 
in HDB

FU 
requirements

VHDL writing 
tools, 
HDBEditor

VHDL files for FUs, 
augmented HDB

A9 FU implementation 
mapping

Final TTA ADF 
files, HDB

ProDe IDF files

A10 Estimation of 
physical properties

Final ADF, IDF, 
final TPEF

Estimate Estimation results

Either A11 if the estimation results are satisfactory or back to A7 if not

A11 Either A11.a or A11.b

A11.a Processor 
generation with 
Platform 
Integrator

ADF, IDF, 
TPEF files

Platform 
Integrator

Top-level and 
hierarchical VHDL 
files of the processors 
and memory 
controllers, top-level 
VHDL entity

A11.b.1 Manual processor 
generation

ADF, IDF files ProGe Top-level and 
hierarchical VHDL 
files of the processors
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# Phase Input Tools Output

A11.b.2 Manual memory 
controller 
generation

Memory format 
specifications

VHDL writing 
tools or target 
platform's 
memory 
controller 
generator

Memory controllers' 
VHDL files

A11.b.3 Manual top-level 
VHDL generation

Top-level 
VHDL files of 
the processors 
and memory 
controllers

VHDL writing 
tools

Top-level VHDL files 
integrating the 
processors and 
memory controllers

A12 Program memory 
image generation

ADF, TPEF files PIG Instruction and data 
memory images in 
specified format

A13 Top-level VHDL 
generation of the 
HW design

Kactus2 HW 
design

Kactus2 Top-level VHDL of 
the HW design

A14 FPGA synthesis 
project file 
generation

Kactus2 HW 
design

Kactus2 (for 
Quartus II) or 
target platform's 
synthesis 
program

FPGA synthesis 
project files

A15 FPGA synthesis 
and programming

All the VHDL 
files, memory 
image files, 
FPGA synthesis 
project files

FPGA synthesis 
and 
programming 
tools

The entire design 
synthesized and 
programmed on 
FPGA

5.1 Template processor design

In this use case, one or more starting point architectures are created in the IP-XACT li-
brary. This is only necessary once and is not considered to be part of the  integration 
flow. Different architectures can be created with  ProDe and documentation on their 
properties, limitations and intended usage should be written.  For each architecture, a 
template IP-XACT component is created using the component creation wizard in Kac-
tus2. This allows their integration into HW designs even though they don't have VHDL 
implementation yet.

 After creating the IP-XACT components, they are further edited in Kactus2.  For 
each component, bus interfaces need to be defined to allow connection to other compo-
nents in Kactus2 HW designs. This includes adding bus definitions and mapping them 
to abstraction definitions from the library. File sets are also created by the user but they 



37

contain only the ADF file and documentation at this point. Alternatively, documentation 
can be fitted in the “description” field of the component. Each component also requires 
an address space definition. This is necessary so that Kactus2 understands that it is a 
CPU component that is visible in a system design. Address space depends on the design 
where the component is instantiated so dummy values can be used here. Finally, the user 
defines a CPU for the component and references the address space in it. The component 
is then saved in the library for use and customization as an ASIP.

5.2 ASIP and SoC design

The  integration  flow begins with SW design. The application can be reused or newly 
written. It should be tested for correct functionality on a workstation PC before retarget-
ing for TTA. Each unique application SW package is saved in the IP-XACT library as a 
SW component with the source code files in the file sets.

Next, a HW design is created with Kactus2. The TTA template component saved in 
the library is not itself instantiated in the design. Instead, a copy of it is created and that 
copy is used in the design, and in that design only. The reason for this is tied to library 
management. If the original component was used, it could eventually contain an un-
wieldy amount of views, one for each instance in each design where it was used. On the 
other hand, if a new component was created for each instance, the library would explode 
with copies of the component. The solution is thus to create one copy for each design 
where it is used, and create instance-specific views in the copies.

After creating the copy, the designer instantiates and connects  the copied  template 
TTAs into his HW design along with other components and saves the design in the IP-
XACT library as a new component. For each instance of the TTA component in the de-
sign, a new view is created for it in Kactus2. These views are later linked to file sets re-
ferring to the instance's implementation. In the HW design, the user links instances  to 
their respective views. A system design mapping the SW applications to TTA instances 
in the HW design is then created with Kactus2 and saved in the library as a system view 
of the component generated in the previous step.

Since  the  TTAs may contain  custom FUs that  need  to  be  invoked with  specific 
macros, the application source code must next be modified accordingly. The processor 
documentation should contain information about the presence of these FUs and on their 
usage with macros. After source code modification, it is compiled for the corresponding 
TTAs using TCECC.

Now, that the processors have applications mapped to them, their architecture can be 
explored for  efficiently  running  the  programs.  This  can  be  done  using  Proxim or 
TTASim as in  the  previous chapters  and the  Explore tool can be used  to help  as de-
scribed in the beginning of this chapter. The SW source code is modified and compiled 
for the final architectures,  and the SW components' file sets are augmented with these 
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files in the library. New views referencing the TTA-specific file sets should also be cre-
ated in the SW components so that they can be linked to the SW instances in the system 
design. Any new custom FUs created are added to the HDB.

After finding efficient architectures for the processors, their VHDL implementation 
is generated using the ProDe and ProGe tools. The FUs of each processor are mapped 
to their implementations in the HDB and the mappings are saved as IDF files. The Esti-
mate tool is next used to estimate the physical properties of the processors, and design 
space exploration is resumed if the results are not good enough. The memory controllers 
and  the  top-level VHDL files are created using the  Platform Integrator tool if it  sup-
ports the target platform. Otherwise, the memory controllers and the top-level VHDL of 
the TTAs must be created manually. The implementation files are saved in the file sets 
of the TTA component created for the design. Each instance has its own file set where 
the corresponding files are included.

Next, the memory images of the SW applications are created using the PIG tool. This 
tool is invoked for each processor-application pair. The created files are saved in the file 
sets corresponding to the processor instance on which they are used.

The top-level VHDL file of the HW design can now be created using the Kactus2 
VHDL generation tool along with Quartus II project files, if applicable, using the Kac-
tus2 project file generator. The design is now ready to be synthesized and programmed 
on a FPGA.
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6 AN ILLUSTRATIVE EXAMPLE WITH 
CRC

In this chapter, a use case of the design flow described in Chapter 5 (ASIP) is presented 
to illustrate the details one encounters when working with the TCE tools and Kactus2 
within the framework of the flows presented in this Thesis. The design presented is 
rather simple to keep focus on the flow instead of the intricacies of the design. A simple 
TTA processor template with custom FUs enabling real-time clock and printing to stan-
dard output is first created in the IP-XACT library. The processor template is then used 
for an application that counts a 32-bit cyclic redundancy check (CRC) [27] for a block 
of data and prints the result to the standard output. Two processor implementations are 
created: One is used as such from the template in the library and the other is modified to 
run the application faster. Both implementations  are instantiated in a SoC design  for 
synthesis on a FPGA.

6.1 Template component creation

First, the template TTA processor is created using ProDe. Figure 15 shows the architec-
ture as presented in  ProDe. The processor contains only a load/store unit  (LSU), an 
arithmetic-logical unit  (ALU), two register files  (RFs), a global control unit  (GCU),  a 
FU for real-time clock (rtc_timer) and a FU that can print to the standard output (stdout) 
of the platform. There is only one transport bus and the processor is fully connected. 
The architecture is saved in an ADF file.  This processor template can be used for any 
application that requires timer and printing capabilities.

Figure 15: The template processor architecture as seen in ProDe. Input ports with “X” 
denote ports that trigger the FU.
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Next, the processor template is saved in the IP-XACT library using Kactus2. This is 
done with the component creation wizard. A unique VLNV identifying the component is 
given (in this case: SL/ip.cpu/TTA_template/1.0). The IP-XACT file of the component 
is now in the library under the folder indicated by the VLNV values, but it requires fur-
ther editing. First, its external ports and bus interfaces are defined in Kactus2. The pro-
cessor has only two ports: clock and reset.  No explicit port  for the standard output is 
needed thanks to the implementation that will be selected for the stdout FU which uti-
lizes Altera's JTAG UART [28, Chapter 5] to send the output to PC. 

 The port data is entered in the opened component's port editor as shown in Figure 
16.  A bus interface is created for both ports. In this case, standard bus definitions and 
abstraction definitions for clock and reset ports already exist in the library so they don't 
have to be created. The bus interface editor with the values for the clock bus is shown in 
Figure 17. The physical clock port is mapped to the bus interface in the “Port maps” tab.

Figure 16: The values given in the ports editor in Kactus2. Only the mandatory values  
have been entered for these simple ports.

Figure 17: The values given in the bus interface editor for the clock bus in Kactus2.
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The file sets editor is opened next where a single file set “TCEFiles” is created, and 
the ADF file is added to the file set. Then, an address space is created in the correspond-
ing editor and it is mapped to a CPU in the CPU editor, so that Kactus2 knows that this 
is a CPU component. Since this TTA processor doesn't control any external components, 
the address space can be left empty. Finally, a short description of the processor is writ-
ten in the component's description field for user reference. For a more complex proces-
sor, a documentation file should be written and added to the file sets. The component is 
now ready for use in the library.

Figure 18 shows the finished TTA template component view in Kactus2. The entries 
in bold font on the left contain information that was added to the component.

6.2 Using the component in a SoC design

The application is a C program that counts a 32-bit CRC for a block of data and prints 
the result  to the standard output. The source code contains three files: “main.c” for a 
simple main program, “crc.c” that contains the function calculating the CRC value and 
“crc.dat” that contains a precalculated look-up table for making the algorithm faster. 
The contents of the source code files themselves are not relevant to this work. The cor-
rect functionality of the program has been tested on a workstation PC prior to reuse in a 

Figure 18: The component view of the finished TTA template component.
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TTA, and it has been saved to the library as a SW component (SL/sw/crc/1.0) with the 
source code files in the file sets.

The template TTA component is not used itself in the SoC design  for reasons de-
scribed in Chapter 5, so a copy of it is created for instantiation. This copy is given a new 
VLNV  (SL/ip.cpu/TTA_CRC/1.0).  A new  HW  design  is  then  created  in  Kactus2 
(SL/soc/crc/1.0) where the new component is instantiated. In this case, it is used twice 
since the intent is to compare the performance of a simple and a more complex custom 
processor in counting the CRC. The external ports for clock and reset signals are created 
and connected to the TTA components. The library and design now look like in Figure 
19.

Since the TTA component is instantiated twice in the HW design, two different views 
are created for it using the views editor in Kactus2. The views differ in name, descrip-
tion, model name and file set references. The views editor for the simple TTA core is 
shown in Figure 20. Each TTA's file set is also added at this point to the component so 
that they can be referenced in the views. The model names will later be used as the en-
tity names when generating top-level VHDL files for the processor cores.  In the  Kac-
tus2 HW design, the instance names are linked to the corresponding views.

Figure 19: The library (in the left) and the HW design with two TTA instances.
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The system design mapping the SW applications to the instantiated processors is cre-
ated next using the Kactus2 component creation wizard. In this case, the system design 
is simple and shown in Figure 21. Both processors run the same application and there 
are no inter-processor communication channels. The system design is not saved as a 
new component but as a system view to the HW design component. This keeps the li-
brary compact and it is clear which HW design the system design is linked to. Together 
they form a complete SoC design description.

Next, the application source code is modified for running on a TTA processor. In this  
case, there  is the real-time clock FU that is invoked with specific macros.  Macros for 

Figure 20: The Kactus2 views editor for the simple TTA core.

Figure 21: The system design mapping SW to TTAs. The blue boxes represent the 
TTAs and the green boxes the SW.
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starting and stopping the clock and yielding the elapsed time are added to the program. 
Furthermore, the standard  printf() function is replaced with an  iprintf() function that 
drops support for printing floating point values but is much faster on a TTA. The pro-
gram is then compiled for TTA using  the  TCECC tool  resulting in a TPEF file.  The 
modified source code files and the TPEF file are saved in the SW component's file sets, 
with a new file set being created for the TTA-tailored program. A new view referencing 
this file set is also created for the SW component. In the system design, the created view 
is selected for the SW component instances.

In this example, one of the processors is customized to run the application more effi-
ciently. The design space exploration for this is outside the scope of this work but its de-
scription can be found in [21, Section 3.1]. The end architecture is shown in Figure 22. 
The differences to the initial architecture include a new custom FU (REFLECTER) that 
performs a reflection operation for input bit-pattern needed by the CRC algorithm, and 
three additional transport buses allowing instruction-level parallelism [29, Chapter 2]. A 
VHDL implementation for the reflecter FU is also written and saved in the HDB. The 
source code is modified  and compiled to use the  new custom FU, but the unmodified 
source code and TPEF file are also retained since they are used by the simpler TTA in-
stance.

The TTA cores need a VHDL implementation which is created next. First, implemen-
tations are selected for the FUs using ProDe. At this point, the target platform must be 
known since each platform may have a different implementation for certain FUs. Once 
each FU is mapped to an implementation from the HDB, the mapping is saved as an 
IDF file. The VHDL is now ready to be generated. In this case, the target platform is Al-
tera Stratix II DSP Pro board which has Platform Integrator support. For both proces-
sors, the corresponding ADF, IDF and TPEF files are given as parameters to the ProGe. 
The model names that were used in the instance-specific views are passed as parameters 
to be names of the top-level VHDL entities. Other given parameters include the instruc-
tion and data memory types. The output from the generator contains the VHDL files im-

Figure 22: The architecture of the TTA customized for CRC calculation.
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plementing the processor cores, memory controller units and top-level entities linking 
them together. These are saved to the file sets of the TTA component in the library with 
a separate file set for each processor instance in the design.

The program images are generated for each processor using PIG, with the ADF and 
TPEF files given as parameters. The generated instruction and data memory image files 
are saved in the file sets corresponding to their TTA instances. The design-specific TTA 
component in the library is now complete.

The top-level VHDL file of the HW design instantiating the processors is automati-
cally generated by invoking the Kactus2 tool purposed for this task. It simply instanti-
ates the processors and connects them to the external ports. The processor instances ref-
erence the model names in the instance-specific views so that they are linked to the cor-
rect VHDL implementations. This VHDL file is saved to the file sets of the HW design. 
The Quartus II project files can now be created using the generator tool in Kactus2, fol-
lowing  which  FPGA synthesis  and  programming  is  straightforward.  When  run  on 
FPGA,  the time each processor used for the CRC calculation could be printed on Al-
tera's Nios2-terminal tool running on a workstation PC connected to the FPGA's JTAG 
UART port.
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7 DESIGN FLOW EVALUATION

While making this Thesis, several Kactus2 and TCE use cases were carried out. Based 
on them, an estimation of the time taken by each phase in the design flows has been 
formed. The estimated times assume a reasonably experienced user who is familiar with 
the tools. Both Kactus2 and the TCE tools can be executed on Linux on a standard PC 
computer or alternatively Kactus2 can be run on Windows and the TCE tools on a Linux 
virtual machine as the author did. Setting up both tools is straightforward and is counted 
as a non-recurring task.

7.1 TTA as a fixed accelerator IP block

Time-usage evaluation of the use case where TTA is treated as a fixed accelerator IP 
block (Chapter  3) is  shown in Table  8.  The time taken by SW design  from scratch 
(phase F1) is not dependent on the design flow and greatly varies by the application so 
it is not counted against the time used in the flow. However, if SW is reused from the li -
brary, little time is consumed.

Table 8: Time-usage estimations of each phase in the design flow of TTA as a fixed 
accelerator IP block (as in Table 4).

# Phase Time

F1 SW application design and testing 
on a PC or reuse

Dependent on application or < 5 min

F2 Initial TTA processor design 15 min

F3 Program compilation for initial 
TTA

< 5 min

F4 Design space exploration 20 min to few hours

F5 C code modification and 
compilation for TTA

< 5 min to 1 h depending on the size of 
source code and the amount of custom FU 
usage

F6 Optional: VHDL implementation 
for FUs if not already in HDB

30 min to few hours per FU

F7 FU implementation mapping 5 min
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# Phase Time

F8 Estimation of physical properties 10 min

Either F9 if the estimation results 
are satisfactory or back to F4 if 
not

N/A

F9 Either F9.a or F9.b N/A

F9.a Processor, memory controller, and 
top-level entity generation with 
Platform Integrator

< 5 min

F9.b.1 Manual processor generation < 5 min

F9.b.2 Manual memory controller 
generation

10 min to 1 h

F9.b.3 Manual top-level entity VHDL 
generation

20 min

F10 Memory image generation < 5 min

F11 Either F11.a or F11.b N/A

F11.a IP-XACT component creation (if 
KoskiIntegrator was not used in 
F9)

10 min

F11.b IP-XACT component 
augmentation (if KoskiIntegrator 
was used in F9)

10 min

F12 SoC design 15 min + 2 min/component

F13 Top-level VHDL generation of the 
HW design

1 min

F14 FPGA synthesis project file 
generation

1 min with Kactus2 or 10 min with 
platform-specific program

F15 FPGA synthesis and programming Dependent on the target platform and size 
of the design

Minimum total time Approx. 1 h 40 min + 2 min/component

Designing the initial processor is fast in ProDe as is compiling the program for the 
architecture  (phases  F2  and F3).  Design space  exploration (phase  F4),  on the  other 
hand, can take more or less time depending on how strict the performance requirements 
are and how many FUs and transport buses can be added to the TTA. Moreover, design-
ing custom operations and implementing them in program code can take hours. C code 
modification for TTA (phase  F5) takes  from  a few minutes to an hour based on the 
amount of source code and custom FU usage. In the best case, with no custom FUs, this 
phase can be skipped. If new custom FUs were created during design space exploration, 



48

they need VHDL implementation (phase  F6) which can take anywhere from half an 
hour to several hours to write for each custom FU.

Phases F7 to F11 consist of creating the processor IP block from the source files gen-
erated in the previous steps. Thanks to the automated tools, this takes only about half an 
hour with Platform Integrator support or two to three times more if it cannot be used.

Counted together, phases  F1 to  F11, which consist the TTA IP block creation, take 
little more than one hour in the best case scenario where the SW application is ready in 
the library, no custom FUs are added in the design space exploration and Platform Inte-
grator can be used. At most, the entire design flow can take a few work days if exten-
sive design space exploration is performed with various custom FUs created to speed up 
the processor. This is still fast when compared to an approach where the whole IP block 
is created manually in VHDL without using SW running on a processor.  On the other 
hand, while using a GPP would take less time, it would suffer from the problems of us-
ing more die area, performing worse and consuming more energy.

The  integration  of  the  TTA IP block in  SoC designs  is  effortless using  Kactus2 
(phases F12-F15). It should take less than an hour even for relatively large designs as-
suming that everything is ready in the library. FPGA synthesis and programming can 
take anywhere from few minutes to hours depending on the target platform and size of 
the design.

7.2 TTA as a general purpose processor

Table 9 provides the estimation of time used in the design flow where TTA is used as a 
GPP (Chapter 4). Many of the phases and their time consumption are the same as in the 
previous case. Documentation writing (phase G7) is a new phase that takes from one to 
few hours depending on how formal the document has to be and whether there is a doc-
ument template available. In the SoC design part of the flow, most phases are repeated 
for each processor instance in the design,  so the time usage has a linear correlation to 
the amount of processor  instances.  The time spent for the system design (phase  G13) 
additionally depends on whether MCAPI channels, which require some configuration, 
are used.

Table 9: Time-usage estimations of each phase in the design flow of TTA as a general 
purpose processor (as in Table 5).

# Phase Time

G1 TTA processor architecture 
design

15 min

G2 Design space exploration 20 min to few hours



49

# Phase Time

G3 Optional: VHDL implementation 
for FUs if not already in HDB

30 min to few hours per FU

G4 FU implementation mapping 5 min

G5 Estimation of physical properties 10 min

Either G6 if the estimation results  
are satisfactory or back to G2 if 
not

N/A

G6 Either G6.a or G6.b N/A

G6.a Processor generation with 
Platform Integrator

< 5 min

G6.b.1 Manual processor generation < 5 min

G6.b.2 Manual memory controller 
generation

10 min to 1 h

G6.b.3 Manual top-level VHDL 
generation

20 min

G7 Documentation writing 1 to 3 hours

G8 Either G8.a or G8.b N/A

G8.a IP-XACT component creation (if 
KoskiIntegrator was not used in 
G6)

10 min

G8.b IP-XACT component 
augmentation (if KoskiIntegrator 
was used in G6)

10 min

G9 CPU definition < 5 min

G10 SoC HW design 15 min + 2 min/component

G11 SW application design and testing 
on a PC or reuse

Dependent on application or < 5 min per 
processor

G12 SW source code modification for 
TTA

< 5 min to 1 h per processor depending on 
the size of source code and the amount of 
custom FU usage

G13 SoC system design 1 to 10 min per processor depending on the 
complexity of the SW stack and MCAPI 
channels

G14 Program compilation < 5 min per processor

G15 Program memory image 
generation

< 5 min per processor

G16 Top-level VHDL generation of 
the HW design

1 min
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# Phase Time

G17 FPGA synthesis project file 
generation

1 min with Kactus2 or 10 min with a  
platform-specific program

G18 FPGA synthesis and 
programming

Dependent on the target platform and size 
of the design

Minimum total time Approx. 2 h 30 min + 2 min/component + 
20 min/processor

All in all, the processor design (phases  G1 to G9) can take a couple of hours for a 
simple processor with no design space exploration, or closer to a day for a complex pro-
cessor with many newly-implemented custom FUs. SoC design (phases  G10 to  G18) 
takes less than an hour for a small design with one processor, or a few hours at maxi-
mum for a large system with many processors and SW applications. Again, SW imple-
mentation is not counted against the time taken by the design flow.

Compared to designing the system without processors,  from ASIC principles, the 
time saved is tremendous. For more complex applications, it  is not even realistic to 
consider an ASIC approach.

A comparison to using a more traditional GPP is more appropriate. The benefits here 
are that the library can contain dozens of processors directed for various application do-
mains which allows selecting an efficient processor for the application at hand. The pro-
cessors are also easy to design in-house which avoids any licensing fees. 

7.3 TTA as an ASIP

Tables 10 and 11 provide the estimation of time used in the design flow where TTA is 
used as an ASIP (Chapter 5). Table 10 shows the time usage of the template processor 
generation and Table 11 of its customization and integration to a SoC design. Many of 
the phases are the same as in the previous design flows with similar time usage.

Table 10: Time-usage estimations of each phase in the design flow of a template TTA 
processor creation (as in Table 6).

# Phase Time

T1 Template TTA processor 
architecture design

15 min

T2 Template TTA documentation 
writing

15 min to 1 h

T3 IP-XACT component creation for 
the template TTA

< 5 min
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# Phase Time

T3.1 Bus interface creation 5 min/bus

T3.2 File set creation < 5 min

T3.3 Address space creation and CPU 
definition

< 5 min

Minimum total time Approx. 40 min + 5 min/bus

Table 11: Time-usage estimations of each phase in the design flow of a custom TTA 
processor creation and integration (as in Table 7).

# Phase Time

A1 SW application design and 
testing on a PC or reuse

Dependent on application or < 5 min per 
processor

A2 SoC-specific TTA component 
creation

< 5 min

A3 SoC HW design creation 15 min + 2 min/component

A4 TTA component view creation 1 min/processor instance

A5 SoC system design creation 1 to 10 min per processor instance 
depending on the complexity of SW stack 
and MCAPI channels

A6 C code modification for TTA < 5 min to 1 h per processor instance 
depending on the size of source code and 
the amount of custom FU usage

A7 TTA architecture optimization 
for application SW

20 min to few hours per processor 
configuration

A8 Optional: VHDL 
implementation for FUs if not 
already in HDB

30 min to few hours per FU

A9 FU implementation mapping 5 min/processor configuration

A10 Estimation of physical 
properties

10 min/processor configuration

Either A11 if the estimation 
results are satisfactory or back 
to A7 if not

N/A

A11 Either A11.a or A11.b N/A

A11.a Processor generation with 
Platform Integrator

< 5 min
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# Phase Time

A11.b.1 Manual processor generation < 5 min

A11.b.2 Manual memory controller 
generation

10 min to 1 h

A11.b.3 Manual top-level VHDL 
generation

20 min

A12 Program memory image 
generation

< 5 min per processor instance

A13 Top-level VHDL generation of 
the HW design

1 min

A14 FPGA synthesis project file 
generation

1 min with Kactus2 or 10 min with a  
platform-specific program

A15 FPGA synthesis and 
programming

Dependent on target platform and size of 
the design

Minimum total time Approx. 30 min + 2 min/component + 15 
min/processor instance + 35 min/processor 
configuration

Creating a template processor takes little time, on the order of one hour. Thus, many 
different processor templates can be quickly created and saved in the library.

The time taken by SoC designing using template TTAs depends on the number of 
TTA instances and on whether they use the same or different final processor architecture 
and FU implementations. A design with only one processor with no new custom FUs 
created for it takes little more than one hour. A complex design with multiple processors 
and custom configurations could take tens of hours to complete.

Comparison to other implementation methods is quite similar as in the GPP design 
flow. An ASIC approach would probably be too difficult and time-consuming to attempt 
with any but the simplest  of applications. Against a traditional  GPP processor imple-
mentation, this method provides processors that  are better suited to the target applica-
tions and  are free of licensing fees. Compared to the previous use case, the ASIP ap-
proach puts more design burden on the shoulders of the SoC designer since he creates 
the processors' internal implementation as well, but the end result is better optimized for 
the applications.
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8 CONCLUSIONS

8.1 General remarks

This work presented three new design flows that integrate the use of the TCE tools and 
Kactus2 when creating MP-SoC FPGA designs. In the first case, a TTA was designed as 
a fixed accelerator IP block, running predefined program code. In the second case, the 
TTA was designed as a GPP with no pre-mapped SW, and in the third case as an ASIP 
where the final processor architecture and program code are decided during SoC inte-
gration. In all the cases, the design flows also showed how to integrate the TTA in SoC 
designs using Kactus2. All the design flows utilize between 8 and 12 different program 
tools from Kactus2 and the TCE tools depending on target platform and whether custom 
FUs are created.

Table  12 contains the summary of  the  relevant aspects from each design flow.  The 
fixed accelerator IP block option provides the best performance but least customizabil-
ity, whereas a GPP can be reused for a wide range of applications but offers the worst  
performance and highest area and energy cost. ASIP stands between these two options 
in terms of customizability, performance and cost.

Table 12: Summary of the properties of the design flows.

Fixed accelerator GPP ASIP

Purpose To create a fixed 
accelerator IP block in 
the IP-XACT library and 
reuse it in SoC designs.

To create a soft-core 
GPP in the IP-XACT 
library that can run SW 
applications and reuse it 
in SoC designs.

To create a processor 
template in the IP-
XACT library that can 
be tailored for SW 
applications and reuse it 
in SoC designs.

Example Fixed IP block to 
calculate a 32-bit CRC

GPP with standard 
output and streaming I/O 
capabilities, but without 
support for interrupts.

ASIP for efficiently 
running video encoding 
applications

Customizability None SW SW and HW
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Fixed accelerator GPP ASIP

Number of phases in 
the design flow

15 18 3 for creating a template 
TTA + 15 for 
customization and 
integration

Approx. minimum 
design and 
integration time

1 h 40 min + 2 
min/component

2 h 30 min + 2 
min/component + 20 
min/processor

30 min + 2 
min/component + 15 
min/processor instance + 
35 min/processor 
configuration

Pros Simple to design and 
reuse, very efficient for 
its task

Simple to design and 
reuse, usable for wide 
range of applications

Simpler to design than 
ASIC, efficient for its 
task

Cons No customizability, 
performs only one task

Weaker performance, 
higher area cost and 
energy consumption 
than with the other 
options

Not as widely usable as 
a GPP, reuse requires 
some HW expertise

The presented design flows shorten design time, decrease error-prone tasks, and offer 
product data management capabilities for  a  product’s entire life cycle.  For example, 
without an integrated design flow the SW code running on a TTA would be ”just files on 
disk,” whereas now they can be stored in the IP-XACT library, described with metadata, 
and referred uniquely from other designs. This simplifies creating derived products later 
on. Designers can easily browse older designs, check the used versions and parameter 
values, see where a certain component has been instantiated, and auto-generate com-
bined documentation throughout the whole product including SW, HW and mapping in-
formation.

When compared to other design methods, several advantages were found.  Against 
pure ASIC implemented in HDL, there is a significant reduction in design time. Further-
more, for more complex applications, an ASIC approach is not even feasible in most 
cases. On the other hand, it was found that while using a traditional GPP would save 
somewhat in design effort, the TTA approach allows for a more efficient design with 
improved performance and reduced die area and energy consumption, while avoiding li-
censing fees. The methods described in this work thus offer a good middle-ground be-
tween the ASIC and GPP approaches, manifesting advantages from both.

8.2 Suggestions for future development of the tools

The TCE tools and Kactus2 have been developed separately within different research 
groups and their integrated use has not been a major consideration in either group. The 
KoskiIntegrator is the only notable tool which has been designed with the integrated use 
in mind, but even it has not been kept up to date as Kactus2 has added extensions to the 
IP-XACT standard.
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The presented design flows would greatly benefit from new properties in both the 
TCE tools and Kactus2 as shown below. It is estimated that 10% to 20% cuts to the time 
taken by going through the design flows could be achieved with such new features in 
the tools, and more importantly, the added automation would reduce the risk of errors in 
keeping files referenced to the correct designs. Indeed, the file juggling between the two 
tool sets is currently the greatest hindrance in the efficient use of the design flows. The 
suggestions below aim to provide ways to fix this.

8.2.1 Suggested modifications to the TCE tools

The KoskiIntegrator is the existing bridge  between the TCE tools  and Kactus2. How-
ever, there are a couple of limitations to it. First, it does not create file set information. A 
file set containing the ADF and IDF files and the VHDL files of the processor should be 
added to the IP-XACT description. Second,  the  KoskiIntegrator requires  a  HIBI com-
patible load/store unit in the processor. This seems like an unnecessary restriction and 
should be removed.

The Platform Integrator would benefit from support to more platforms. Of course, it 
is infeasible to add support for every platform in existence, so a good solution would be 
a configurable  Platform Integrator where one could  enter platform-dependent key pa-
rameters with a graphical user interface. 

8.2.2 Suggested modifications to Kactus2 

As it is, the TCE tools and Kactus2 are completely separate program suites and no inter-
operability is possible between them. Thus, files must be handled in the two tool sets in 
turns which can be cumbersome and prone to errors. The suggestion is that most TCE 
tools could be invoked directly from Kactus2 in the following manner.

• The TCECC compiler could be invoked from a Kactus2 system design. The sys-
tem design maps SW on processor instances, so it would be natural to invoke the 
compiler there for a selected mapping. The compiler uses the SW source code 
files and the processor's ADF file which can be found in the corresponding file 
sets. The user would enter compilation parameters in Kactus2 as well.

• ProDe could be launched from Kactus2 by selecting an ADF file in the library. 
The chosen ADF file would be opened in ProDe. After launching ProDe in this 
way, any generated IDF file could be added to the file set of the ADF file by user 
selection.

• ProGe and Platform Integrator could be invoked from Kactus2. The user would 
select the ADF file and a corresponding IDF file, enter parameters and launch 
ProGe which would run on background and automatically add the generated im-
plementation files to a file set defined by the user.
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• PIG could be invoked from a Kactus2 system design by selecting a processor in-
stance with mapped SW components. Kactus2 would automatically give the cor-
responding ADF and TPEF files to the PIG tool and the user would enter other 
parameters from Kactus2. The created program image files would be added to 
the specified file set.

With these additions to Kactus2, there would be little need to explicitly invoke the 
TCE tools by the user and most of the design flow could be operated from Kactus2 en-
vironment. The notable exception are the design space exploration tools which are often 
used in an iterative manner and involve several different programs from the TCE tools, 
and thus are more naturally used outside the context of Kactus2.

When implementing these features to Kactus2, special care should be placed on con-
sidering file sets and views and how they relate to different TTA instances. Otherwise, 
wrong files could be involved when invoking the tools. It should also be noted that Kac-
tus2 must be run on Linux when invoking the TCE tools from it since the TCE tools do 
not support the Windows operating system.
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