
TERO KESKI-VALKAMA

CARBOOK: A PLATFORM FOR MOBILE AUTOMOTIVE

SERVICES

Master of Science Thesis

Examiner: Professor Ilkka Haikala

Examiner and topic approved in

the Information Technology

Department Council

meeting on 4 June 2008

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

KESKI-VALKAMA, TERO

Carbook: A Platform for Mobile Automotive Services

Master of Science Thesis, 54 pages

July 2008

Major: Software Engineering

Examiner: Professor Ilkka Haikala

Keywords: Internet, car, SOA, Semantic Web

Wireless mobile technologies have triggered a rapid development of secondary

network technologies. One such prominent field of technology is interoperability for

consumer devices. This field is mostly based on XML and Web Services and it in-

cludes technologies such as Universal Plug-and-Play, open media container formats,

open codecs and Rich Internet Application technologies for mobile devices.

Automotive field has been relatively slow and conservative in embracing these new

Internet technologies. This is about to change as European Union and other sub-

stantial players are pressing forward with the safety and environmental technologies

in cars. These technologies depend heavily on wireless Internet connectivity.

As part of this thesis work, I have played a central role in defining the core con-

cept of a distributed framework for mobile automotive services, Carbook System. I

have also outlined the first phase of a shared research environment, Carlab, for these

kinds of services. Carlab is used to demonstrate different technologies in accordance

to Elektrobit’s vision for the future automotive Internet services. Carbook Sys-

tem will be implemented incrementally jointly with the continuation of the Carlab

implementation.

In this master of science thesis I have mapped and evaluated the essential tech-

nologies and created a preliminary outline for Carbook System and a set of services.

The first phase Carlab network topology and emulation of different domains in Car-

book System are also drafted in this thesis work.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

KESKI-VALKAMA, TERO

Carbook: A Platform for Mobile Automotive Services

Diplomityö, 54 sivua

Heinäkuu 2008

Pääaine: Ohjelmistotuotanto

Tarkastaja: Professori Ilkka Haikala

Avainsanat: Internet, auto, SOA, Semantic Web

Langattomat mobiiliteknologiat ovat laukaisseet nopean kehityksen aallon seu-

raavan asteen verkkoteknologioissa. Yksi tällainen näkyvä teknologiakenttä on yh-

teensopivuus kuluttajalaitteiden välillä. Tämä kenttä rakentuu pääosin XML-notaa-

tion ja Web Services -teknologian päälle, ja sisältää teknologioita kuten Universal

Plug-and-Play, avoimia mediasisältö -tiedostomuotoja, avoimia koodekkeja ja Rich

Internet Application -teknologioita kohdennettuna mobiililaitteille.

Autoteollisuus on ollut suhteellisen hidas ja konservatiivinen näiden uusien In-

ternet-teknologioiden käyttöönotossa. Tilanne on kuitenkin muuttumassa, kun Eu-

roopan Unioni ja muut isot toimijat ovat ajamassa turvallisuuteen ja ympäristön-

suojeluun liittyviä teknologioita autoihin. Nämä teknologiat riippuvat voimakkaasti

langattomasta Internet-yhteydestä.

Tässä diplomityössä olen ollut keskeisessä roolissa määrittelemässä Carbook-jär-

jestelmää, hajautettua kehysjärjestelmää mobiileille autopalveluille. Olen lisäksi su-

unnitellut ensimmäisen vaiheen jaetusta tutkimusympäristöstä, Carlabista, tällaisia

palveluita varten. Carlabia käytetään eri tulevaisuuden auto- ja Internet-palveluihin

liittyvien teknologioiden esittelemiseen Elektrobitin tulevaisuusvision ohjaamana.

Carbook-järjestelmä toteutetaan askeleittain Carlabin toteuttamisen rinnalla.

Tässä diplomityössä olen kartoittanut ja arvioinut keskeiset teknologiat sekä lu-

onut hahmotelman Carbook-järjestelmästä ja siihen liittyvistä palveluista. Myös

Carlabin ensimmäisen vaiheen verkkotopologia ja eri Carbook-järjestelmän toimin-

takohteiden emulaatio on ääriviivailtu tässä diplomityössä.

IV

PREFACE

I have written this master of science thesis at Elektrobit Oyj. This thesis is a part

of a larger research effort towards ubiquitous Internet connectivity in cars.

I thank EB director Hannu Hakala for the massive amount of support and guid-

ance he has given to this work. Thanks go also to professor Ilkka Haikala who has

spent a lot of time to get me graduated. I also thank my colleagues and my fiancée

Katja Ristilä for making this work possible.

Tampere, Finland, July 2008

Tero Keski-Valkama

Kärkikuja 2 B 38

33720 Tampere

tel. +358 (0)40 7069 762

V

CONTENTS

1. Introduction . 1

2. Starting Point and Thesis Contribution . 3

2.1 Purpose of Carbook . 3

2.2 Carbook Contribution . 3

3. Recent Trends and Key Technologies . 5

3.1 Internal Automotive Communication Buses 5

3.2 Internet Protocol version 6 . 6

3.3 Wireless Roaming . 7

3.4 Mobile Internet Protocol . 8

3.5 IEEE 802.21 . 10

3.6 Universal Plug-and-Play and Digital Living Network Alliance 11

3.7 Scalable Vector Graphics . 11

4. Web Services . 14

4.1 Servlet Container and Web Services Platform 14

4.2 Web Services Extensions . 15

4.3 Web Services Description Language . 16

4.4 Web Services Choreography Description Language 16

4.5 SOAP and Representational State Transfer 17

4.6 Extensible Messaging and Presence Protocol 18

4.7 Semantic Web . 19

4.8 Independent Software Agents . 20

4.9 Resource Description Framework and Web Ontology Language 21

4.10 Universal Description, Discovery and Integration 22

5. Carbook Directory Service . 23

5.1 Context-Aware Services . 23

5.2 Semantic Service Aggregation . 25

5.3 Trust and Security . 26

5.4 Using the Directory Service . 27

6. Carbook Services . 28

6.1 Service model . 28

6.2 User Interface Service . 29

6.3 Car as a Sensor . 29

6.4 GeoRSS . 31

VI

6.5 Mediaserver . 31

6.6 Fault Codes / Diagnostics . 32

6.7 Social Technology / Messaging . 33

7. Application Runtime Environment . 35

7.1 Car Domain Runtime Environment . 35

7.2 Existing Car Domain Platforms . 36

7.3 Component Technologies . 38

8. User Interface . 39

8.1 Rich User Interfaces . 39

8.2 User Interface Service . 40

8.3 Universal Plug-and-Play . 40

8.4 Software Agent Interface . 41

9. Carlab Implementation . 42

9.1 Mobile IP . 42

9.2 OpenStreetMap Integration . 42

9.3 GPS Trace Extraction from 3G Mobile Phones 43

9.4 Network Topology . 44

9.5 Home Domain and Car Domain . 46

9.6 Next Steps . 47

10. Conclusions . 48

VII

Terms and abbreviations

Term Description

ADAS Advanced Driver Assistance Systems

API Application Programming Interface

B2B Business-to-Business - A segment of eCommerce

related to transactions and business processes di-

vided between multiple participants.

Blog Web-based log of human readable entries that can

be personal or community based.

Bluetooth A technology for short range wireless radio-link

communication between small consumer devices.

CAN Controller Area Network - One of the standard-

ized ways of interconnecting vehicular electronic

systems.

Carbook A concept of the future automotive mobile Internet

services.

Carlab A physical laboratory implementation for testing

automotive mobile technologies.

COSCAR Context-Sensitive Mobile Services for Cars

DLNA Digital Living Network Alliance - International col-

laboration of companies that aims to improve the

interoperability for consumer media applications.

VIII

Term Description

Domain In this thesis, the word “domain” is used to describe

different environments where the user is interfac-

ing Carbook System or different execution envi-

ronments for software. For example: Car domain,

Home domain.

DVB Digital Video Broadcasting - International open

standard for digital television.

Ethernet A family of network technologies for LAN connec-

tivity.

FlexRay One of the standardized ways of interconnecting

vehicular electronic systems.

Framework A set of software libraries that encompasses the

application and executes it.

GPS Global Positioning System - USA controlled

satellite-based system to determine geoposition of

the GPS radio signal receiver using time difference

measurements.

GST Global System of Telematics

HSDPA / HSUPA High-Speed Downlink Packet Access / High-Speed

Uplink Packet Access - Technologies developed on

top of UMTS networks to improve user bandwidth.

HTTP Hypertext Transfer Protocol

IX

Term Description

IPC Inter-process Communication

J2EE Java 2 Enterprise Edition

LAN Local Area Network - A wired or a wireless net-

work to interconnect devices situated nearby to

each other.

LIN Local Interconnect Network - One of the standard-

ized ways of interconnecting vehicular electronic

systems.

LTE Long Term Evolution - 4G goal for the UMTS net-

works.

OASIS Organization for the Advancement of Structured

Information Standards

OBD On-Board Diagnostics - An integrated system for

detecting and logging faults in a car.

OSGi OSGi Alliance is a global forum that standardized

a Java-based service platform.

OWL Web Ontology Language

Picocell Cellular base station that covers a small area, anal-

ogous to Wi-Fi access points.

Platform A runtime environment, or a set of APIs to build

software products upon.

RDF Resource Description Framework

RIA Rich Internet Application - Application with a

modern user interface that uses browser as the run-

time environment.

X

Term Description

REST Representational State Transfer - A resource-

oriented implementation style for Web Services.

RPC Remote Procedure Call

RSS RDF Site Summary - A method of providing XML

based feeds of blog entries or news headlines over

the Internet.

RTE Runtime Environment

SOAP A standard protocol for Web Services.

SVG Scalable Vector Graphics - W3C standard for rep-

resenting structured graphics.

Software agent An independent application functioning on behalf

of the user. Software agents are based on Semantic

Web technology. See also: User agent.

Tekes Finnish Funding Agency for Technology and Inno-

vation

Third party services Mainly Internet based services maintained by un-

affiliated providers.

Ubiquitous Computing A future vision, where information technology and

computers are hidden in everyday objects and pro-

vide rich, context-sensitive and interactive services

without desktop computers.

UDDI Universal Description, Discovery and Integration -

A directory of Web Services.

UI User Interface

XI

Term Description

UMTS Universal Mobile Telecommunications System - 3G

long range telecommunications network technology

based on GSM.

UPnP Universal Plug and Play - Technology to intercon-

nect devices in a local area network in an interop-

erable way.

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

USB Universal Serial Bus - A plug-and-play bus to in-

terconnect devices over a wired serial interface.

User agent A client application or device mediating the inter-

actions between the user and the web service, usu-

ally a web browser. See also: Software agent.

V2V Vehicle-to-vehicle - Dynamic ad-hoc communica-

tion system between moving cars.

VII Vehicle Infrastructure Integration - Initiative to

connect vehicles electronically to roadside infras-

tructure so that overall road safety and efficiency

can be improved.

Web Services SOAP-based method of providing services over the

HTTP protocol.

Wi-Fi A wireless technology for local area connectivity

between small devices and computers.

XII

Term Description

WiMAX Worldwide Interoperability for Microwave Access -

long range network technology for wireless devices.

WS-* A family of extensions for Web Services.

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

WSDL-S Web Services Semantics

XML Extensible Markup Language - A general and inter-

operable serialization format for structured data.

1

1. INTRODUCTION

Carbook System is designed to bring Internet-enabled services into cars in a com-

prehensive and integrated way. Carbook System is associated to both the European

Union and Tekes supported efforts towards ubiquitous computing [41], ambient net-

working [2] and intelligent transportation systems [30].

Carbook System is a distributed service platform in a sense that it provides

the Internet-enabled services the necessary environment in which to operate. This

includes, for example, service discovery and binding. Carbook System is also a

software service framework, because it seeks to wrap the services into a consistent

bundle with standard ways of executing the services. In this thesis, Carbook System

can be referred to as Carbook Framework, or Carbook Platform, depending on the

context.

Carbook System contains a number of open source, standardized and freely avail-

able interfaces and technologies, reducing the need to reimplement low level details.

Carbook System is actually more like a selected set of existing technologies orga-

nized into a complete, consistent structure, than something completely new, built

from ground up. This reduces the need to adapt the existing Internet services to

function within Carbook System.

The goal of Carbook System is to provide a comprehensive infrastructure for

car related Internet services, and therefore the scope of the undertaking is massive.

Not only Carbook System includes the end-to-end connectivity, service discovery

and binding, but also a huge semantic domain specification effort to ensure all the

services are integrated to each other. The size of the effort means that the work must

be done in an iterative way, so that every small milestone produces an incremental

improvement to Carbook System.

Carbook System and related technologies will be demonstrated in a series of

proof-of-concept demonstrations. The demonstrations are integrated in an automo-

tive software infrastructure laboratory, Carlab. This thesis work consists of mapping

and evaluating the essential technologies, and the initial implementation of the Car-

lab research environment. The thesis contains descriptions of the core technologies

as well as a closer inspection of the implementation details for Carbook System and

1. Introduction 2

services. This should form a solid foundation for future incremental implementation

and research work. The long term goal of the Carbook research effort is to acquire

strategic competence and intellectual property in relation to this important technol-

ogy field. The Carlab environment enables the competences and technologies to be

developed and demonstrated.

Chapter 2 has a description of the background of the Carbook research effort and

outlines the scope of this thesis work. Chapter 3 features selected key technologies

and identified future trends, that will define the form of the Internet-enabled car

of the future. Chapter 4 continues with a closer look on Web Services technolo-

gies, with special focus on Semantic Web. Chapter 5 features the draft design and

some implementation details for Carbook Directory Service, a service that collects

together the various services in Carbook System. Chapter 6 envisions some central

services that will be enabled by the platform, with future implementation sugges-

tions. Chapter 7 describes the runtime environment that enables services to be

deployed in different domains of the infrastructure. Chapter 8 describes the user

interfaces of Carbook System with focus on technical aspects and implementation

details. Chapter 9 summarizes the status of the implementation of Carbook in Car-

lab. Chapter 10 concludes this thesis with some suggested future research topics.

3

2. STARTING POINT AND THESIS

CONTRIBUTION

This chapter describes the starting point and the scope of the thesis work as it

evolved throughout the associated timespan. Research nature of the Carbook re-

search effort caused it to be strongly self-guided with no strictly defined targets or

milestones. These milestones were, and are, constantly redefined as the direction

becomes clearer.

2.1 Purpose of Carbook

The Carbook research effort is an attempt to find an intersection between differ-

ent future visions in automotive and Internet technologies, and to bring together

separate external research program goals. The name, “Carbook”, is derived from

Facebook, as Web 2.0 and social networking technologies were immediately identi-

fied as the key focus areas. The Carbook research effort was started in the first half

of the year 2008 as a set of small demonstrations and mock-ups to communicate the

goals of the Carbook effort. One of such mock-ups is shown in Figure 2.1. The main

focus of this thesis is on technology evaluation, while the Carlab implementation,

started in this thesis, will be a continuing implementation effort with incremental

demonstrations along the way.

2.2 Carbook Contribution

This thesis work was started with an initial purpose of forming a concept of Carbook.

Additionally it became relevant to map out and evaluate the necessary technologies

for Carbook System, and to design actual implementations for some of the Carbook

services. As the work progressed, more key concerns were identified in this thesis

work, such as device/service interoperability and Web Services technologies.

The Carbook effort was started in this thesis work, to be incrementally imple-

mented in geographically distributed virtual and physical laboratory environment,

Carlab. Carlab is a newly created environment that aims to emulate different do-

mains in the automotive Internet service infrastructure. Carlab will include mock-

2. Starting Point and Thesis Contribution 4

Figure 2.1: A mock-up for the Carbook concept

ups for home environment and car environment. The home environment will ap-

proximate a normal home of the end-user with modern home theatre equipment

and ADSL Internet connectivity. The car environment will consist of a front part

of a real car with heterogenous wireless Internet connectivity. These domains will

be used in testing and demonstrating Carbook System. Design and partial imple-

mentation of the first phase of the Carlab environment was done in connection to

this thesis. In practise, Carbook and Carlab are an inseparable, conjoined pair of

concepts.

At the time of writing, Carlab is still under work, in relation to the actual layout

of the laboratory space, and to the network topology to enable Internet services. The

incremental implementation of Carbook System has been started and is expected to

continue branching to many directions, as different implementations are being tried,

tested and compared.

5

3. RECENT TRENDS AND KEY

TECHNOLOGIES

Carbook System in whole is a web-enabled platform for mobile Internet services and

independent software agents with support for both heterogenous terminal devices

and special automotive user interfaces. Therefore, the key technologies identified

in this research are in relation to modern web technologies and platforms, auto-

mobile communication buses, Semantic Web, independent software agents, device

interconnectivity and interoperability, and mobile Internet.

This chapter outlines various key technologies and future trends. It is assumed

that the reader is somewhat familiar with basic Internet technologies such as XML,

HTTP and TCP/IP. Technologies closely associated with Web Services are described

in Chapter 3.

3.1 Internal Automotive Communication Buses

Internal car electronic control units, ECUs, are interconnected by a car area commu-

nication bus. This bus is designed for small microcontrollers and simple electronic

devices that do not have advanced capabilities. The car area communication bus is

often based on either LIN (Local Interconnect Network, [9]), CAN (Controller Area

Network, [8]) or FlexRay [3] standards.

LIN can provide data rates of up to 160kb per second, and is the cheapest and

the lightest alternative of all three. CAN can handle data rates of up to 1 Mbit per

second, being the standard most prevalent in the industry at the moment. CAN

is also generally more expensive to implement than LIN bus. The new standard

FlexRay can provide up to 10 Mbit per second date rates and is more expensive

than CAN, and is not yet widely adopted. After the year 2008, it is required that

all cars sold in the USA use ISO 15765-4 signaling [4], which is a variant of CAN.

In addition to the communication bus for the ECUs inside the car, other related

buses have also been standardized, for example ISO 11992 [5], which defines a com-

munication bus between towing and towed vehicles, and ISO 22902 [6], which defines

the automotive multimedia interface.

3. Recent Trends and Key Technologies 6

Traditionally the automakers have been defensive in providing information about

the internal car interfaces, such as on-board diagnostics (OBD). However, this is

changing rapidly as legislation in the USA and in European Union will require the

manufacturers to make these interfaces public. For example, the European Com-

mission Directive 2002/80/EC [1] will require the automakers to provide interface

information about the OBD systems upon request. Similar legislation to boost in-

teroperability has been enacted in the USA.

Standard CAN buses do not have capacity to handle real-time video streams from

cameras, and therefore this data is usually streamed over a different bus, such as

Ethernet. The protocols over these buses have not yet been standardized in the

automotive context, and it is not yet clear how tapping into the video feeds can be

accomplished in practice.

Interfacing with the sensor and OBD data in the CAN bus is done through an

OEM provided “smart gateway”, which functions as a firewall between the safety-

critical CAN bus and non-critical Internet-facing systems. In practice, it is expected

that many automakers have deployed a Global System of Telematics (GST) compli-

ant application server with a telematics API that can be used as platform for a small

adapter application that publishes the relevant data to the applications running in

the car runtime environment. An Internet-facing Web Service application can then

perform aggregation, fusion, windowing, filtering and compression of data that can

then be further published to a service provider.

3.2 Internet Protocol version 6

Current Internet is mainly based on Internet Protocol version 4, which was the

first version of the Internet Protocol that was widely deployed. Global migration

to Internet Protocol version 6, commonly shortened to IPv6, is underway due to

scalability limitations present in the IPv4. For example, the pool of unallocated

IPv4 addresses is forecasted to be completely exhausted between years 2010 and

2011. Always-on mobile devices with permanent IP addresses are a strong driving

force in the migration. The larger address pool also enables more efficient routing.

The frame header structure for the IPv6 Protocol is depicted in Figure 3.1. There

are many enhancements over IPv4 in IPv6, such as stateless address auto-config-

uration. This is a way of configuring network parameters to nomadic hosts with

no state information maintained in the router. Stateless address auto-configuration

is a clear enhancement over stateful Dynamic Host Configuration Protocol which

centrally maintains states for each of the address leased to hosts in the network.

3. Recent Trends and Key Technologies 7

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

BIT 40 128 16 20 24 28 32

0

64

128

192

256

Figure 3.1: Frame header for Internet Protocol version 6 packets

Multicast is included in the base specification of IPv6, which guarantees the

availability of the feature in IPv6 networks. Multicast is a way of transmitting

identical data packets to a group of recipients so that the packets are sent only once

over each packet link. The packets are only duplicated at the routers if recipients are

reachable over different links. This greatly enhances the routing efficiency in IPv6

networks and makes possible a wide range of services depending on broadcast-type

content such as high-definition Internet television.

In practice, IPv6 will enable full end-to-end connectivity, not only for cars, but

also for the other Internet connected devices used in the mobile car context. How-

ever, cellular and other wireless networks do not yet have flat architectures necessary

for seamless Internet connectivity or the necessary capacity to handle the envisioned

amount of wireless Internet traffic. These problems are expected to be solved in near

term by the operators, as the need for these features grows.

IPv6 has features related to Quality-of-Service and mobility that are especially

relevant in mobile wireless applications. Wireless roaming and Mobile IP are de-

scribed in more detail in the following sections.

3.3 Wireless Roaming

Roaming in wireless networks is one of the key aspects of mobility. Roaming means

that the Internet connections and calls that the mobile device has created are not

severed when the mobile device switches access points. Roaming enables the user

to move within the wireless network freely.

Traditional solutions for enabling roaming functionality are generally implemented

within the same access network. For example, GPRS/UMTS gives to the mobile

device a stable IP address that does not change as the access point changes. This is

3. Recent Trends and Key Technologies 8

implemented by network infrastructure that handles the complex routing task be-

tween the mobile device and the Serving GPRS Support Node router at the edge of

the mobile operator network. This kind of roaming solution is know as “horizontal

roaming”, where the mobile device can roam within the area of the same network.

This has also been implemented in IEEE 802.11, where the mobile device can roam

between different access points without losing connections, as long as the access

points belong to the same subnet.

Network agnostic roaming between different networks, for example between cel-

lular network and WLAN network, is called “vertical roaming”. Methods for vertical

roaming have been standardized in Mobile Internet Protocol (IETF RFC 3775, [10])

for generic handover mechanisms and IEEE 802.21 for increased focus on Quality-

of-Service aspects.

3.4 Mobile Internet Protocol

Mobile IP for IPv6 [45, 46] (IETF RFC 3775 [10]) is an extension built on top of

IPv4 and IPv6 that allows the network interface to retain an externally stable IP

address while the actual IP address used in routing changes as the mobile device

changes access point. This is based on a home IP address where a home agent,

functioning as a router, keeps track of the current IP address of the mobile device

and routes the packets accordingly. The mobile device updates its new IP address to

the home agent every time the IP address changes. This process is termed binding in

the Mobile IP terminology, and the mobile device performs it by sending a binding

update message to the home agent. The remote server where the mobile device is

connecting to is called the “correspondence node”.

Currently, router that is called an “Mobile IP router” is, as a rule, a Mobile IPv4

router.

In Mobile IPv4 there are two methods for routing. First, the packets going out

from the mobile device to the correspondence node are routed directly, but the reply

packets are routed through the home agent. This is known as “triangular routing”

(Figure 3.2) and it is based on spoofing the sender address in the IP packets as the

IP address of the home agent. Because of the nature of this spoofing, it sometimes

causes the core network to drop the packets prematurely based on seemingly incor-

rect sender address. This is why most of the Mobile IP implementations offer the

transparent routing option (Figure 3.3), where both the incoming and the outgoing

traffic is routed through the home agent, which is non-optimal. In any case, Net-

work Address Translation (NAT) like functionality is needed to maintain numerous

3. Recent Trends and Key Technologies 9

Home Agent Internet Server

Mobile Device

reply

request

with spoofed

sender address

Figure 3.2: Triangular routing

Home Agent Internet Server

Mobile Device

reply

request

Figure 3.3: Transparent routing

mobile devices. This makes mobile servers and direct connections between mobile

devices problematic in Mobile IPv4.

Mobile IPv6 has some advantages against Mobile IPv4 as Mobile IPv6 uses a

special Mobility field in the packet headers to enable the mobile device to update

its address directly to the correspondence nodes, as shown in Figure 3.4. The cor-

respondence nodes then authenticate the new IP address of the mobile device by

using the “Return Routability Procedure”. This means that the mobile device will

prove to the correspondence node that both of the two IP addresses are routed to

the mobile device. The authentication is required to prevent an attacker of spoofing

the mobile IP address to gain access to the mobile session, or denial-of-service. This

procedure of authenticating the nomadic IP address is detailed in the IETF RFC

3775 - Mobility Support in IPv6 [10]. It should be noted that bulk of the traffic

will be routed directly between the mobile device and the correspondence node, not

through the home router, as is the case of IPv4.

The most important difference between Mobile IPv4 and Mobile IPv6 is that

Mobile IPv6 enables mobility for servers, and seamless connectivity between mobile

devices.

Home Agent Internet Server

Mobile Device

request with

Home Agent

address as

destination

option and

return

routability

reply

address

update

return routability

return

routability reply

Figure 3.4: Internet Protocol version 6, optimized routing

3. Recent Trends and Key Technologies 10

Since Mobile IP is not a proper standard, nor is it widely deployed at the time

of writing, it is expected that the implementations wary considerably and interop-

erability issues are expected. However, because of the nature of Mobile IPv6, it is

possible to fall back to the process of routing all the packets through the home agent

if the destination is otherwise unreachable. This makes the special roaming routing

completely transparent to the core network and to the correspondence agents, while

falling back to non-optimal routing case.

There exists a push towards flat architectures in future cellular networks and

therefore lighter roaming technologies, such as Mobile IPv6, warrant closer exami-

nation. IP mobility support in 3GPP2 networks is already based on Mobile IPv4.

Internet connectivity in cars is visioned as being network agnostic in such a way

that different wireless networks and technologies can be used as they are available,

possible even simultaneously. Some of the wireless networks might be nomadic,

which means that they have no integrated roaming support. This means that the

IP address changes when the access point changes. The IP address also changes

inevitably when one radio access technology is switched dynamically to another for

example from GPRS/UMTS to WiMAX. Mobile IP technologies enable roaming

while the actual IP address changes, thus providing completely network agnostic

roaming.

Mobile IP has a Network Mobility extension [12] that enables whole networks to

roam between access points. This functionality is a central aspect of the related

IST Ambient Network project sponsored by European Commission within the Sixth

Framework Programme. Network Mobility will be needed in car domain networks

that have a single, changing Point-of-Attachment to the Internet. Additionally there

is some work underway to enable fast handovers in Mobile IP in IETF RFC 4068

[11]. A free Linux implementation exists for fast handovers in Mobile IP [32]. Fast

handovers in roaming are critical for real-time applications such as Voice-over-IP.

3.5 IEEE 802.21

Mobile IP is a rather simple technology with almost no special network infrastruc-

ture required. It can also work transparently so that externally no handovers are

visible. However, Mobile IP does not handle real-time traffic and Quality-of-Service

gracefully. For example, the handover initiation is not specified in the Mobile IP

RFC. These concerns have caused a new standard, IEEE 802.21 [7], to be created

which enables QoS-based soft “vertical handovers” with QoS and handover initia-

tion processes between heterogenous networks. Unlike the Mobile IP technology,

3. Recent Trends and Key Technologies 11

IEE 802.21 requires special support from the network infrastructure. IEEE 802.21

compliant infrastructure is projected to be deployed between years 2009 and 2010

[43]. The scale of future deployment is not yet known, and Mobile IP provides a

convenient fallback sacrificing soft handovers.

3.6 Universal Plug-and-Play and Digital Living Network Al-

liance

Universal Plug-and-Play (UPnP, [27]) is an interoperability standard for different

multimedia devices. The standard constitutes a couple of different device profile

standards that determine how the devices will be discovered and controlled in a

local area network. The discovery domain of the UPnP devices is usually a local

area wireless network. One of the important new features of the UPnP-protocol is

the device’s capability to offer a web user interface for the purpose of controlling the

device.

At the moment, most of the UPnP-compliant devices are targeted to trusted

local area network connectivity, and the lack of security and authentication layer

in the UPnP stack makes it inconvenient to offer services outside the local area

network. It is evident that the UPnP will evolve in near-term towards Internet-

enablement utilizing IPv6 and Web Services extensions. Devices Profile for Web

Services (DPWS, [26]) is a successor of UPnP that is completely aligned with Web

Services technology, and therefore DPWS is fully Internet-enabled technology.

Digital Living Network Alliance (DLNA, [28]) is a global collaborative group of

companies. Digital Living Network Alliance has developed a set of interoperability

guidelines and a conformance certification process on top of UPnP-standards. There

are many DLNA-compliant devices in the market, for example Nokia N95 mobile

multimedia computer.

3.7 Scalable Vector Graphics

Scalable Vector Graphics (SVG, [20]) is an XML based web standard for describing

vector, or object, graphics as serialized, human-readable strings. SVG 1.1 is a

W3C recommendation. The difference between raster graphics and vector based

graphics is that raster images are represented by an array of pixel values, while

vector images are represented by a tree structure of objects. This lack of concept of

a pixel causes vector graphics to be infinitely zoomable, and therefore particularly

3. Recent Trends and Key Technologies 12

Figure 3.5: Scalable Vector Graphics sample image

Listing 3.1: SVG serialization for Figure 3.5

<?xml version ="1.0" standalone ="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1// EN"

"http :// www.w3.org/Graphics/SVG /1.1/ DTD/svg11.dtd">

<svg width ="100%" height ="100%" version ="1.1"

xmlns ="http ://www.w3.org /2000/ svg">

<circle cx ="35" cy ="35" r="20" stroke =" black"

stroke -width ="3" fill="blue" />

<circle cx ="65" cy ="35" r="20" stroke ="blue"

stroke -width ="2" fill="red" />

<circle cx ="50" cy ="55" r="20" stroke ="red"

stroke -width ="1" fill=" black" />

</svg >

useful in certain applications. It is also possible to associate some semantics, or

meaning, to structures in the image, which is not possible with raster images.

The vector images are shown by rendering them on the target medium pixel-by-

pixel, as raster images. Figure 3.5 gives an example of a SVG image rendered to

target medium, which is either paper or computer display, depending on whether

this thesis is an electronic, or printed on paper. The SVG serialization of the image

is given in Listing 3.1.

SVG graphics are especially useful, as they can be naturally composed together,

and therefore they make a great data visualization tool. For example, it is trivial to

draw line based data on a map to visualize a region of the world. The existing SVG

3. Recent Trends and Key Technologies 13

graphics can also be dynamically modified, for example by changing line width or

color, to visualize selections and other user interface features.

In the context of Carbook System, SVG is expected to be heavily used on mash-

ups of cartographic and geographic data, for example in drawing GPS tracks and

positions of interest on top of the base layer map. Rich capabilities of SVG enable

visually impressive graphical user interfaces maintaining strict platform and display

medium independence.

14

4. WEB SERVICES

Web Services is a way of deploying Internet-enabled services utilizing XML-based

technologies to enable easy integration and wide interoperability between different

services. Web Services technology is widely used in enterprise systems, because it

enables relatively painless integration with well-defined interfaces for the Internet-

enabled services. This chapter will outline the most essential Web Services tech-

nologies and their use in the Carbook framework.

4.1 Servlet Container and Web Services Platform

Figure 4.1 illustrates a typical configuration of a Web Services platform. On top of

the operating system, a web server and a database are deployed. The web server

handles and relays incoming HTTP-requests and usually handles some basic authen-

tication and logging functionality. The web server alone is able to serve static or

simple dynamic web pages. The database is used to store the data of the service,

and it is usually deployed to a separate physical server, or to a cloud of servers.

The Java 2 Enterprise Edition (J2EE) servlet container handles service compo-

nent life cycles and maintenance functions. The J2EE servlet container registers

itself to the web server to listen the HTTP requests. The servlets deployed in a

servlet container will often need to use database connections, which are usually

Operating System

Web server

J2EE servlet container

Web Services engine
e.g. Apache Axis2

e.g. Apache Tomcat

Database
e.g. Apache e.g. MySQL

e.g. Linux

Web Services

Figure 4.1: A typical platform for Web Services

4. Web Services 15

TCP + IPv4/IPv6

HTTP

SOAP, WSDL, XML Schema

WS−Addressing, WS−Policy

WS−Security, WS−*

Network

Web Server

Web Services

Web Services

Extensions

Figure 4.2: Protocol stack for Web Services

maintained by the servlets themselves. The servlet container itself does not gen-

erally need a database to function. Apache Tomcat includes a HTTP-server of its

own, so the Apache web server is not strictly necessary for the example configura-

tion. However, it is possible to use a separate web server for performance reasons

as depicted in Figure 4.1.

On top of the servlet container, it is possible to deploy a Web Services engine

as a servlet. The Web Services engine handles the life cycles and management of

different Web Services and provides them Web Services functionality.

The general protocol stack is outlined in Figure 4.2. Internet connectivity is

handled by TCP/IP, but in some cases such as in Devices Profile for Web Services,

UDP/IP can also be used. The web server accepts HTTP connections from clients.

These HTTP connections contain SOAP Web Services Remote Method Invocation

calls and other Web Services messages. Web Services have a number of extension

protocols that enable specific functionality in addition to the basic Web Services

capabilities.

4.2 Web Services Extensions

Web Services standard is extensible by nature, and many extensions have been

created. Some of these extensions are WS-Security, WS-Reliability, WS-Reliable-

Messaging, WS-Addressing, WS-Transaction and Web Service Semantics. These are

often referred to as WS-* specifications.

While the pure WSDL is supposedly a serialization-agnostic description language,

the WS-* extensions are as a rule strongly bound to SOAP serialization.

WSDL describes the syntax for web services, while leaving the service seman-

tics outside the specification. Consequently, two different web services might have

exactly similar WSDL interfaces, but they might be for two completely different

purposes. For example, if a service takes a value of type xsd:string as a parame-

ter returning a value of type xsd:float, it does not give any hints for independent

4. Web Services 16

software agents about the purpose of the service. One such service might be for

getting stock quotes, and another for checking prices of products. Web Service

Semantics (WSDL-S, [15]) extension, WSDL-S, enables semi-automatic processes,

application integration and independent software agents by providing the semantics

for the WSDL-defined web service interfaces. WSDL-S is partly based on the work

done in OWL-S standardization, and in fact these two standards are overlapping.

Both of the standards provide a method of communicating the semantics of a web

service to independent software agents, but WSDL-S is a standardized extension to

WSDL, and so it is better integrated into Web Services than OWL-S standard.

4.3 Web Services Description Language

Web Services Description Language [13], WSDL, is a core component of Web Ser-

vices technology. WSDL defines an XML-based language for defining the syntactic

interfaces for Web Services.

WSDL interface specifications are often automatically generated from the pro-

gram source code, or the other way around, the program source code is generated

from the WSDL interface specification. Automatically creating WSDL interfaces

from the source code has a downside of causing unstable interfaces that can change

with a change in the source code or when a tool to create the interface is upgraded

or changed. This is categorically against the idea of the interfaces being indepen-

dent of the internal implementations of the composing components and this makes

automatic generation of the interfaces inadvisable. However, there are reasons for

choosing bottom-up approach, for example, to integrate some existing systems into

the enterprise architecture, to remove the need for the developers to learn and use

multiple different languages for a single application, or to speed up the development

cycle in projects that do not need extremely stable interfaces between the services.

This is often the case in the small in-house web application projects.

4.4 Web Services Choreography Description Language

Web Services Choreography Description Language [14], WS-CDL, is an XML-based

language for describing interactions, or choreography, between different business par-

ties when web services are divided between multiple participants. Examples of such

divided web services include credit card transactions, travel agents and Business-

to-Business e-processes. WS-CDL offers an unambiguous way to communicate the

technical requirements for the divided services, enables automatic validation of busi-

4. Web Services 17

ness logic and reduces dependencies and constraints between the business partners

and between the web service platforms used.

Carbook System aggregates together a large number of web services of variable

complexity from different third party providers. These services are often directly

coupled with the business processes of the companies offering them. Sometimes the

business process spans multiple companies working together to offer the service, and

thus the service is actually divided between independent parties. One example of

this kind of division could be a service for ordering car accessories by mail. The

complex business process might consist of an intermediary service that gives the

user a list of compatible accessories filtered by user preferences. This service might

then confirm the user identity from a specialized service, and relays the order with

relevant information to a third company which provides the actual accessories. The

third company will need to charge the user by negotiating payment with a financial

institution, and then mail the order using the services of a logistic company. The

company providing accessories might later pay a monthly commission for the cus-

tomers acquired through the intermediary company. When the complete business

process spanning multiple companies is automated, it will benefit from a formal

description of the interface agreements between the companies.

4.5 SOAP and Representational State Transfer

SOAP was once an acronym for Simple Object Access Protocol, but this was dropped

with version 1.2 for being misleading. According to Sanjiva Weerawarana, a speaker

in Google Tech Talks: “SOAP never had anything to do with object access, it was

not a protocol, it was a message format and it certainly isn’t simple” [52] .

SOAP is created for decentralized and distributed environment for the purpose

of exchanging information in an interoperable manner. SOAP is based on XML and

has two main parts:

• header, that is the metadata associated with the body, and

• body, that contains the actual message.

SOAP is a core part of Web Services technology.

Representational State Transfer, REST, is a convention of structuring web ser-

vices as a collection of stateless resources with common interfaces. This structure

was introduced in 2000 in the doctoral dissertation of Roy Fielding [42]. Web ser-

vices structured so that they follow Fielding’s REST principles, are commonly called

RESTful. RESTful web service resources have a Uniform Resource Identifier and

4. Web Services 18

they are generally used through HTTP even if this is not strictly necessary. The

resources implement a subset of four different actions commonly mapped to HTTP

methods with the same names: POST, GET, PUT and DELETE. These methods

are related to CRUD-operations (Create, Read, Update and Delete) commonly used

in databases. It should be noted that only the HTTP get is used in HTML links

and HTML forms use both HTTP get and HTTP post methods. The PUT and

DELETE methods [50] are not currently included in the HTML standard, while

there is a clear need of adding them. At the moment, the PUT and DELETE meth-

ods are triggered using scripts or applets embedded in HTML documents such as

JavaScript in AJAX.

A large portion of the traditional web services are “accidentally RESTful” in a

sense that they conform weakly to the REST principles without implementing them

fully. This is because of the fact that the REST is derived from the way HTTP and

the web work today, while SOAP is an additional layer built on top of the HTTP.

SOAP and REST are partly complementary and overlapping Web Services tech-

nologies for interaction between a user agent (a browser) and a web service. It does

not cause a considerable overhead to support both the REST and SOAP interac-

tion models. WSDL, WS-CDL and WSDL-S can be used seamlessly with both the

SOAP and RESTful services. It is also possible to structure SOAP Web Services to

be completely RESTful, that is, a service can be structured as a resource. The main

difference between SOAP and REST is that SOAP is meant for Service Oriented

Architectures and REST is meant for Resource Oriented Architectures. Commonly

accepted guidelines as to when it is better to use the one or the other have not yet

emerged.

4.6 Extensible Messaging and Presence Protocol

Extensible Messaging and Presence Protocol (XMPP/Jabber, [21, 22, 23]) is an In-

stant Messaging (IM) protocol that is freely extensible through XML. This protocol

has been born for use in Jabber IM network, but has found rich applications else-

where as well. Nowadays, the protocol is competing with HTTP as a transport layer

for service oriented architectures.

XMPP has gathered growing interest as a Web Service transport [24, 53, 54].

One of the key players that has invested heavily in XMPP is Google. Google uses

XMPP as a base for it’s IM and VoIP-services [35].

The primary use for XMPP is Instant Messaging, and there are many public

Jabber servers in the Internet for this purpose. They generally provide transporting

4. Web Services 19

service to other IM networks such as ICQ, so that the user presence is delegated

to multiple IM networks simultaneously. This means that the user is available for

messaging in multiple IM networks at the same time. Many companies have their

own, private XMPP/Jabber servers to facilitate internal instant messaging.

HTTP provides a traditional, client-server foundation for web services. Client-

server architecture does not scale well in P2P (Peer-to-Peer) style environments,

because the HTTP lacks one critical ability: The ability to push data to clients.

This disability has led to polling style interaction, that can rapidly saturate net-

works. HTTP-based services are usually based on opening new connections for

every interaction, because the connections are often targeted to different servers.

This often causes unnecessary overhead.

XMPP allows persistent connections between P2P partners, and this makes al-

most real-time messaging possible. The connections are always on, and the messag-

ing between clients is asynchronous, which removes the need for polling.

The communications between the service and clients goes through the XMPP

server, so that XMPP is not really a pure-blooded P2P technology. However, XMPP

is often used to communicate references to sidechannel datastreams (for example,

HTTP hyperlinks), which can be used to transfer data straight from service to clients

without the XMPP server in the middle. This makes the routing between nodes

more optimal for bulk data, allowing direct P2P-connections. However, firewall

considerations should be taken into account, as clients might block different types

of sidechannel data. Sometimes, it is possible to send large chunks of data through

the XMPP server, when all the more efficient methods are blocked.

4.7 Semantic Web

Semantic Web has been the main goal of web standardization work done at W3C

organization lead by Tim Berners-Lee. Semantic Web is an evolutive step forward

from the current “syntactic web” towards decentralized information. The vision of

Semantic Web is to make the web browseable not only by humans, but also by

independent software agents. Semantic Web will enable advanced discovery and

aggregation of global services and resources. Semantic Web will be mainly built on

RDF and Web Services.

Semantic Web in full will not realize in many years yet, but the technologies

developed are already extremely useful in integrating services of a limited domain

together. For example, the Dublin Core ontology is already widely used in document

formats and web pages. Carbook System will be structured so that it will both speed

4. Web Services 20

up the adoption of Semantic Web technologies, and gain advantage from the aspect

of automatic integration and aggregation of services. It would seem that the next

step in several fields, such as knowledge management, media interoperability and

ad-hoc networking would be exploiting the Semantic Web technologies to achieve

higher levels of abstraction, interoperability and seamless integration.

The domain specific ontologies that enable Semantic Web functionality in Car-

book System consists of an open set of several independent domains, for example:

• road topology,

• road regulations,

• points-of-interest and routes-of-interest for communities,

• tourism and information,

• entertainment and events,

• media, and

• weather.

Some of these domains are already sufficiently described by existing semantic models,

but it is expected that new ontologies are needed. The continuous work should

concentrate on searching and reusing existing semantic models and augmenting them

as needed. Creating new ontologies should be the final option, when sufficient models

do not exist yet.

4.8 Independent Software Agents

Independent software agent has many definitions, in this thesis it will be defined

as a software application that works on behalf of the user towards a clearly defined

goal by utilizing the services and resources it encounters while crawling the web.

These software agents may be simple applications running on any static platform,

for example on a mobile device or on a server of a service provider. The agents

may be shared between multiple different users, particularly in the case where the

goals of the different users are not in conflict. The independent software application

also may or may not migrate and multiply between different runtime platforms to

accomplish goals.

Software agents have been used mainly in web search engines, but are increasingly

gaining new opportunities as the web is evolving more semantic traits. In Carbook

System, the independent software agents are seen as a tool to reduce the direct

dependence on user input in the Carbook services. This frees the user to concentrate

4. Web Services 21

for example on driving while the independent software agents are working on behalf

of the user.

In principle, the independent software agents are seen as method of raising the ab-

straction level of the human-machine interaction. Instead of selecting the keywords

“weather in Tampere” and entering them to Google, and then browsing through the

search results and linked web pages, perhaps the user could only state an intention

to show weather information, which the agent could then find in different formats

applicable to the car domain context. For example, the weather could then be shown

as an overlay on top of navigational map, or spoken by synthesized speech.

The real power of independent software agents comes from truly independent

action; For example the agent might constantly search different map overlays from

Carbook Service Directory and different other sources. These overlays can then be

aggregated to a browseable form available to the user. Similar agents could browse

Internet radio stations and RSS news feeds to find interesting content for the user.

4.9 Resource Description Framework and Web Ontology Lan-

guage

Resource Description Framework (RDF, [16]) and Web Ontology Language (OWL,

[17, 18, 19]) are languages for describing web ontologies, endorsed by World Wide

Web Consortium. Actually, OWL is a general knowledge representation language

often serialized in RDF/XML syntax, while the RDF was originally created to be

a metadata description language, now used to represent general knowledge also.

RDF represents knowledge in triples of subject, predicate and object. OWL ontolo-

gies consist of axioms that enable making complex inferences about the individuals

(classes) and their properties. In a way, OWL provides an inference engine that can

be used with RDF described resources.

The basic principle behind Semantic Web is that the information is structured

as resources, as opposed to documents in the syntactic web, that have associated

semantics included which makes all the information connected to each other in

meaningful ways. Resources are not necessarily reachable over the Internet, but

they can still be referred to from Semantic Web. This enables automated reasoning

through web query languages so that it is possible for the user to make complex

searches into the global knowledge pool and for the independent software agents to

perform advanced tasks on behalf of the user.

The common view towards Semantic Web technology has been somewhat pes-

simistic, and many big hurdles have been identified along the way before the final

4. Web Services 22

vision of Semantic Web will realize. However, it has been noted that while the final

vision of Semantic Web will still take years to materialize, the standardization work

done already is very useful for example in service oriented architectures making the

integration of complex systems with multiple independent participants manageable.

4.10 Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI, [25]) is an OASIS standard

with a number of stable implementations that aims to enable locating web services

by robust queries against rich metadata.

A UDDI server can be thought as a phone book that enables searching electronic

Web Services descriptions and associated metadata, such as information about the

service provider. UDDI registration consists of three parts:

• white pages, for address and contact information of the provider,

• yellow pages, for industrial classification according to standard taxonomies,

and

• green pages, for technical interfacing and binding information about the ser-

vices provided by the business (WSDL).

It is possible to use UDDI directories only as electronic phone book replacements

with no Web Services bindings, but in this thesis, it is necessary to concentrate

specifically to electronic, Internet-enabled services.

UDDI will be in a central role in Carbook Service Directory, where the Web

Services can be naturally indexed, searched and advertised. In practice, a UDDI

directory service implementation, such as jUDDI, can be deployed as a servlet on

top of a servlet container, for example Apache Tomcat. In the Carbook context,

it will be necessary to create a custom taxonomy of automotive domain electronic

services instead of using existing Yellow pages taxonomies, such as the North Amer-

ican Industry Classification System (NAICS), the Standard Industrial Classification

(SIC), or the United Nations Standard Products and Services Code (UNSPCS).

23

5. CARBOOK DIRECTORY SERVICE

The service-oriented Carbook architecture needs to be scalable, decentralized and

robust. The services are aggregated together from various sources, one of which is

Carbook Directory Service. This directory service in turn collects together services

that have certain trustworthiness, and are safe for the user to interact with. It also

serves as an open portal into Carbook System.

Because of Carbook Directory Service, these services will form a consistent bundle

that is easy to navigate and use even in the constrained in-car environment using

heterogenous terminal devices.

5.1 Context-Aware Services

Carbook System shown in Figure 5.1 consists of services that are made available

over the Internet. Carbook Directory Service enables services to be integrated into

a consistent, dynamically structured bundle.

To facilitate the context-aware and inter-domain services, the car domain service

environment is associated with the corresponding home service environment and the

services provided by the automaker in the Internet. For example, all the music and

movies shared in the home domain are implicitly available in the car through home

domain media services. The car fault diagnostics, sensors and logs are available

through the car domain services. The automaker and third party service providers

might offer some extra services such as route finding, traffic alerts and RSS feeds

that are available over the Internet. All these services are accessible by the user over

the Internet and collected together by Carbook Directory Service.

Carbook Directory Service publishes the lists of services and maintains associa-

tions between different domains. In principle, one user has a Carbook identity and

associations to number of domains, for example to user’s home and car. A number

of users can associate to same domains, in other words, the domains of the users can

overlap. Associations between domains are user specific. In practice, the association

has two of mechanisms.

5. Carbook Directory Service 24

INTERNET

CarBook Directory Server Service Providers

Home DomainCar Domain

Figure 5.1: Carbook System

Firstly, the implicit association comes through the act of accessing the service

through different domains. The Internet-based service maintains its state even if it

is accessed using different methods. This means that, for example, the files down-

loaded to a media service are available to all the domains for playing back. Implicit

association is based on user identity, which associates the different sessions together

in standard Internet services.

Secondly, the service gets extended user identity information if it needs it, from

Carbook Directory Service, which includes the list of associated domains with access

descriptors. This access descriptor is actually a list of IP-addresses with relevant

metadata, such as the type of domain in question, to enable the service to contact

the services provided by the different user domains. This could be used for example

to make an Internet call or send a chat message to a certain user so that the call

or the message is routed to all the associated domains at once. This also enables

the user to connect to and to use the services provided by, for example, the car

domain, while interfacing Carbook System from his home. Access to the extended

user information is, of course, controlled.

The linkage between the user identity information, and the associated car domain,

and the home domain, also separates the domains from each other so that the

services can become context-aware, and that different set of services can be offered

to different domains (Figure 5.2). In essence, Carbook Directory Service will offer

5. Carbook Directory Service 25

Car Domain:

(Mobile IP)

Services:

−Weather

−GeoRSS

−Traffic statistics

−File storage

−Mobile IP router(s)

Services:

−Carbook Directory Service

−RDF Ontology + XML Schemas

−Identification, certification

−Maintenance

Infrastructure Domain:

(centralized)

Service Domain:

(distributed)

Home Domain:

(ISP)

Functions:

−PnP, DLNA media gateway

−Drag−and−drop fileserver

−Zero−configuration networking

−Home−Car Mobile VPN

Functions:

−Mobile IP client

−Carbook Agent

−User interface service

 (car domain specific UI)

−Sensor/OBD feeds

−UPnP, DLNA media gateway

−Zero−configuration networking

−Home−Car Mobile VPN

Run−time platforms:

−Mobile devices

−OSGi/EB RTE Home

 Server

−Home computer

Run−time platforms/HMI:

−Mobile devices

−OSGi/EB RTE Vehicle

 Computer Unit

Internet

Figure 5.2: Carbook domains

different views to different users and to different contexts. This necessitates that

the domain of the user of the service, whether the user is a human being or a

software agent, is known by the service. In practice, this information can be given

when connecting to the service. Additionally, this requires a taxonomy of different

domains, albeit a simple one in this case, and easily implemented using ontologies.

Implicit context-sensitivity can be implemented using local data storage and internal

services that are visible only locally, inside the domain.

The domains are also separated by encapsulating the internal services so that

they are externally invisible. This means that domains have an external interface

for the services made available to the Internet and to other domains. Access control

is implemented using standard authentication and security measures.

5.2 Semantic Service Aggregation

It is expected that there will be a great number of services available to the end

user from a multitude of different service providers. These services can build upon

each other, and provide meta services on top of existing services, for example, by

providing a centrally maintained list of streaming media services. Administrating

these manually with traditional methods simply will not be feasible or scalable in the

long term. This necessitates the use of Semantic Web technologies where possible

to aggregate and fuse the services together forming a consistent whole.

Carbook Directory Service is based on RDF, WSDL, Web Services and XML. Car-

book Directory Service stores and makes available a set of WSDL service descriptors,

5. Carbook Directory Service 26

through UDDI, that can be dynamically browsed by the user or by independent soft-

ware agents. The WSDL service descriptors are added into the system by different

parties, for example the end-user may add services to be privately available in the

home, in the car and over the Internet. Third-party service providers can add their

own applications into the system so that they are globally browseable by all the

users.

Every service in Carbook Directory Service is represented by a WSDL service

descriptor and associated metadata, stored in a UDDI system. Every service itself

is an ordinary Web Service that can be hosted anywhere on the Internet, including

the car domain and the home domain.

Semantic Carbook RDF ontology is used to describe the service semantics so that

the service descriptors can be effectively searched, aggregated and used by crawlers.

This is necessary to facilitate independent software agents that remove some of the

burden of interaction from the user who needs to concentrate in driving. This also

enables more seamless integration of heterogenous services.

5.3 Trust and Security

Carbook Directory Service is centrally administered by Carbook Directory Server.

This Carbook Directory Server maintains a trusted certificate database with access

permissions. For example, a certified service provider is able to add globally visible

services and applications to Carbook Directory Service, while a single user can add

applications and services for private use only. The architecture is open in a sense

that applications and services are freely available on the Internet, and the user does

not need to adhere to the Carbook provider maintained list of trusted services.

The service provider signs the service descriptions with the certificate granted to

it. The Internet Web Service itself does not need to be in any relation to the service

description provider, and any Web Service is in principle directly integratable into

Carbook System without any modifications just by providing the semantic Web

Service descriptor to the UDDI directory. Also, while a certification process is

necessarily needed for the service providers to receive a revocable but retransmittable

certificate, services and applications can be added to the directory freely by any

certified party. For example the case of user installing a new service into Carbook

System might be simply downloading a service descriptor from the non-certified

service provider and uploading this into Carbook Directory Service. This makes the

service bookmarked for this user through self-certification.

5. Carbook Directory Service 27

5.4 Using the Directory Service

There are multiple use cases for Carbook Directory Service, most essential being

the service browsing case. The availability of other use cases, such as maintaining

the list of services, domain associations and user identities, is based on roles in the

system. Access to different functions and views are limited and filtered according

to user role and identity.

Users and independent software agents are able to browse and discover these

services and compose a user specific list of bookmarked services that form the basic

application tree for the user. Carbook Directory Server maintains this user specific

list of bookmarked services so that the view to these services is persistent and

available to the user in different domains.

Every user has always the minimal set of services that are built-in to the system.

On top of these services, there might be some default services pre-bookmarked for

the user by the automaker, or by a third-party service provider.

The built-in services are needed to manage the service bookmarks and applica-

tions in the system and to provide an initial user experience with a possibility of

customizing the bookmarks and services heavily to suit the tastes and preferences

of individual users.

The directory service will provide a dynamic tree view of the available and book-

marked services to the user, where the services can be directly interacted with. In

practice, the services can provide a rich Internet application, or plain HTTP user

interface that can be accessed through the Carbook Directory Service user interface.

Some services might have a known Web Service interface type, such as streaming

media services, that can use predefined user interface. This means that these basic

service types can be more seamlessly integrated into the desktop or operating system

user interface. The subject of user interfaces in Carbook System is discussed further

in the Chapter 7.

28

6. CARBOOK SERVICES

Carbook includes different kinds of services that are discovered through Carbook

Directory Service. Modelling the system as a collection of services makes the system

extremely scalable. New services can be easily created on top of existing services

by combining them in new ways. All services are made available in the Internet

as Web Services to facilitate platform independence and maximum flexibility. The

Representational State Transfer (REST) model and SOAP are supported and used

side-by-side for the Carbook services and the services are published by Carbook

Directory Server with Web Services Description Language (WSDL) and semantic

metadata. This chapter outlines preliminary visions of the services provided and

drafts some of the implementation details.

Implementor of the described services should take into account the relevant se-

curity considerations, such as user identity protection, security of communication

channels, and protection against the misuse of systems. However, these considera-

tions are left outside the scope of this thesis.

6.1 Service model

The services function either independently in the background, launching events or

logging data, or are query-response oriented passive services. Active services can be

turned on and off by the user or by a software agent representing the user through

the service interface. When functioning independently, the services can be thought

as agents that are functioning on behalf of the user. Extensive use of independent,

user authorized agents is needed to free the user from any and all unnecessary

interaction, where this interaction may pose a safety risk while driving.

Services in Carbook System are divided into:

• user created services, and

• third party services.

User created services are home domain or car domain based services that are either

deployed and activated by the user or are integrated into the system. These services

provide a Web Services interface that is accessible over the Internet. These services

6. Carbook Services 29

can be limited to be used by the user so that the services normally accessible in

home domain only become accessible though the associated car domains also. This

is the case with the home domain media service that makes available the UPnP

stored media files to the associated car domains. The first-party services can also

be used by third party service providers for example for the purpose of gathering

sensor data from the cars. The initiative for the user to provide such data might be

receiving a value-added service from the service provider in return.

6.2 User Interface Service

Services that are intended to be used by people can provide Rich Internet Application

(RIA) User Interfaces over HTTP. This makes the services available for users through

commonplace heterogenous Internet terminals.

For a richer set of interactivity that is normally not possible with RIA, the service

can also bind to a domain specific User Interface Provider Services. There should

be User Interface Provider Services inside the car to provide services access to spe-

cialized user interface devices such as IC card readers, webcams and microphones

for speech input. These are especially necessary in contrived Car Domain, where it

cannot be expected that the user can access the services using the normal keyboard-

/mouse input model. In-car user interfaces must be designed to require minimal

amount of concentration to use so that they do not pose unnecessary safety risks to

the user. The actual implementations of these interfaces will be heavily influenced

by the automakers, and are expected to vary considerably between different makes

and models of cars. The user interfaces of Carbook System are discussed further in

the Chapter 7.

6.3 Car as a Sensor

Modern cars can have tens of sensors and this number is bound to go sharply up in

near future. These sensors include fault sensors, temperature sensors, fuel level sen-

sor, cameras, speedometer, odometer, GPS receiver and other sensors. Car measures

its environment and its internal state actively, generating a constant data stream.

This data could be useful for a variety of purposes, such as fault diagnostics, travel

diaries, weather and traffic forecasting, and reality harvesting. Figure 6.1 shows an

example of a stored GPS track being imposed on a map from OpenStreetMap [34].

This GPS track can be used to create new map content. Car as a Sensor service is

6. Carbook Services 30

Figure 6.1: GPS track of a vehicle imposed on a map from OpenStreetMap

a car domain service that makes all this data available on request. The Car as a

Sensor service can also trigger different alerts based on preconfigured conditions.

Logs of data, stored fault codes or data streams can be queried from the Internet

by any parties that are authorized to do so. For example, some geolocation services

might need a constant access to user’s GPS coordinates to deduct the road the user

is driving on and use this information to filter notifications the user has subscribed.

The Car as a Sensor service is also made available wirelessly in-car. For example, it

is possible to watch any integrated camera feed using a wireless mobile terminal by

a car passenger.

Media type services such as camera feeds are made available in-car using UPnP

and DLNA technology so that they are freely available to any device supporting these

protocols. Tunneling these sensor feeds to the user’s home domain is automatic and

requires no special interfaces.

Offering Car as a Sensor services without restrictions to the Internet and to

third-party service providers may pose a security and privacy risk, and so a separate

Internet facing interface is required. The Car as a Sensor service is visible to the

Internet as a web service that accepts connections from the Internet with access

restrictions. For example, the car manufacturer might have retransmittable remote

access to the car sensors over the Internet, so remote fault diagnostics become pos-

6. Carbook Services 31

Figure 6.2: Google Maps map of Tampere with overlaid GeoRSS

sible. It should be possible for the user to grant explicit permissions to third parties

to read these feeds and logs.

6.4 GeoRSS

The current de facto GeoRSS technology is the Keyhole Markup Language (KML,

[31]) developed by Google Inc. This makes it possible to bind the RSS (RDF Site

Summary) entries to certain locations so that they are shown only when they are

visible on the map region shown. This functionality is demonstrated in Google Maps

in Figure 6.2. The KML is mainly interesting to the user in laying a selected set

of GeoRSS feeds on top of a navigation map. Carbook System provides a way for

the GeoRSS feeds to be discovered and subscribed over the Internet by leveraging

Semantic Web technologies.

6.5 Mediaserver

Carbook System handles media sharing by connecting heterogenous media sources

through a defined set of services. Primarily, two different types of sharing are con-

sidered:

• media streaming between domains, and

6. Carbook Services 32

• file synchronization between domains.

A drag-and-drop service for moving files such as documents and music files be-

tween domains is planned as a separate service. This service would receive the files

from the user through a web interface in a drag-and-drop manner into different di-

rectories representing the different domains. When the associated domain becomes

online the next time, the contents of the directories will be synchronized into the

local storage space in the said domain. This service will enable the user to move

documents and media files between different domains. This service can be naturally

implemented using Web-based Distributed Authoring and Versioning (WebDAV,

[29]).

Additionally, UPnP and DLNA compliant home media systems offer a plug-and-

play media streaming service. UPnP packets can be selectively tunneled between the

different domains to make the user media stored in a home media center available in

the car while driving. UPnP compliant devices used in the car domain can discover

the media streaming services locally even though they are actually remote. Remote

tunneling may cause latency and bandwidth issues that would not be evident in a

real local area network, and this may necessitate filtering out some of the UPnP

streams that would require either high bandwidth or low latency. This could also

be solved by pre-buffering, or downloading the streamed music or video locally to

the car, possibly filling up the otherwise silent delays with locally existing content.

6.6 Fault Codes / Diagnostics

Practically every modern car has some fault diagnostics integrated with fault codes

that can be downloaded from the car by a mechanic at a licensed car repair shop.

In addition to normal OBD fault codes, other information can also be relevant to

diagnosing problems, for example:

• car / owner information, service book, mileage,

• route logs,

• fuel consumption logs, and

• user created diary of servicing and fault related events.

This diagnostic information is made available to the Internet using a dedicated

in-car service that listens queries or sends triggered alarm messages to pre-specified

service providers. This information can be then read by the user or by the car

mechanic authorized by the user.

6. Carbook Services 33

6.7 Social Technology / Messaging

This service handles the user profile and messaging details, such as nicknames, icons

and other data that should be carried over from one social service or application

to another. The thriving of the Short Message Service, SMS, in cellular networks

has demonstrated how important it is to not be limited into voice communications.

Today, Internet and web enabled technologies, such as email and instant messaging

are rapidly gaining ground over SMS messaging and phone calls. These services

are rapidly integrating into Voice-over-IP services and social networks. In a way, it

could be said that the user identity is converging in these different communication

services into one unique identity that can be contacted in a variety of ways. In any

case, the speech communication, in synchronous and asynchronous forms, will be

of special importance in the limited car environment, where the use of a keyboard

might not be possible.

The vision of Carbook is bringing the Facebook into the car so that the com-

munication method is more or less transparent to the user. Existing convergence

technologies are used and brought into the car to achieve this goal. The communi-

cation between people is divided into separate functions:

• browsing and finding the people,

• checking the status and availability of the person to contact, and

• establishing synchronic or asynchronic communication link between the users.

Browsing and finding people is being rethought in social networks, whereas mobile

technologies still rely on personal phone books stored in the memory of mobile

phones and centralized directories of names and phone numbers. Still, there should

be no more need for showing the user the phone numbers, or email addresses of the

people that there is need to show IP addresses of the services in the Web.

The status of the user is converging in the different kinds of instant messaging

services with client programs delegating the status of the user into separate instant

messaging networks. Car environment brings some new statuses for the user such as

“driving”, or “traveling”, that have special meaning to the communication networks.

These should be implemented using separate ontologies to achieve wide interoper-

ability without the burden of traditional standardization processes.

User status communication has been lately enhanced to encompass messaging

from individual to community, such as in the Twitter service [38]. The Twitter

service is based on short messages, “tweets”, that communicate what the user is

doing right now. This type of service is called “micro-blogging”, and the two main

6. Carbook Services 34

Figure 6.3: Twittervision showing real-time “tweets” on the world map

providers of micro-blogging services are Twitter and Jaiku [39]. In principle, micro-

blogging is an evolution step from predefined, taxonomied states of status, to free

form status messages. This small piece of information can be further associated

with other data, such as geoposition, to create new services. One example of such

secondary service is TwitterVision, a service that visualizes real-time “tweets” on the

world map (Figure 6.3).

Asynchronic messages, such as voice email, are of special relevance in the car

environment, where the user might not have access to a keyboard, or possibility to

react to the communication immediately. It is easy to imagine that voice email will

become a very important communication method in cars in the future.

Social networks get a new dimension with Carbook System, when it is possible

to give access to the real-time data streams in your car to your friends, and upload

the car collected data into different services to be used by virtual communities. It is

visioned that hyper-social behavior could and should be brought and encouraged into

the road environment, and enabling direct social interaction between drivers could

decrease, or even eradicate, different kinds of negative behavior such as driving under

influence and road rage.

35

7. APPLICATION RUNTIME ENVIRONMENT

In Carbook System, there are two different runtime environments for Web Services

applications:

• home domain runtime environment, and

• car domain runtime environment.

The services integrated into Carbook System can also run on user’s mobile devices,

on home computers and on various server platforms in the Internet, but these are

not considered to be parts of Carbook System. This is because these platforms

are heterogenous, non-standard and non-interesting from the perspective of the sys-

tem. However, the services can be added to Carbook System by separate devices

connected to the Internet, whether they are inside the car, in the user’s home, or

provided over the Internet by a third party service provider.

This chapter will outline the principles and methods to be used when the runtime

environments, and applications enabled by them, are implemented.

7.1 Car Domain Runtime Environment

Car Domain Runtime Environment (Car Domain RTE), is a platform for Semantic

Web Services applications to be run in the car domain. The home server in the

user’s home is also a Web Services platform with a different operating context. It is

visioned to be highly similar to the Car Domain RTE, without the APIs specific to

the car domain. Service deployment on the home server is left outside of the scope

of this thesis, because this functionality is not critical in respect to the complete

system at the moment.

Deploying the Web Service applications in the car reduces latencies and makes the

services available in offline mode also. The application running on the Car Domain

RTE can also get special access to certain Application Programming Interfaces,

APIs, that are not feasible to use remotely over the Internet mainly because of

security, latency and bandwidth issues. Also, migrating full, or thin client Web

Services applications to the Car Domain RTE is made possible to make reduction

7. Application Runtime Environment 36

Linux OS

SensorsUser Interface HW ConnectivityHW Layer

OS layer

EB RTE layer DB DRM HMI Application
Deployment

ID, auth,
ipsec, MIP

Platform
services

Service/application layer Infotainment HMI Service Applications

Service Discovery / Control Domain
WLAN/Bluetooth

User

Terminals Home Server

Third-party
Service Provider

Internet

Figure 7.1: Car Domain Runtime Environment

of the bandwidth consumption on some bandwidth intensive services possible. The

draft structure of the Car Domain Runtime Environment is depicted in Figure 7.1.

Car Domain Runtime Environment is a service-oriented platform based on Java

technology [37] and OSGi platform [47]. Car Domain RTE makes use of OSGi

methods for IPC, packaging and deploying service components. This makes it pos-

sible to decrease the application dependence on the underlying operating system,

makes available a large amount of components already made to OSGi-platform and

leverages the mass of people already familiar with this type of environment. Java

and OSGi also have a good support for Web Services and XML which are the core

technologies in this architecture.

Car Domain Runtime Environment works together with legacy infotainment sys-

tems and communicates with the car Electronic Control Units, ECUs, through the

security media gateway as shown in Figure 7.2. The legacy systems can use Car-

book services such as UPnP zero network configuration capabilities, but this is not

strictly necessary. Legacy systems may also provide some additional services and

Carbook can function as an adapter for these legacy services, so that they will be

integrated seamlessly into the Carbook architecture.

7.2 Existing Car Domain Platforms

There are many different platforms for developing applications for the car computer.

OSGi Alliance [33] has produced specifications for service application deployment

built on top of Java Archive Technology [44]. The OSGi platform [47] consists

primarily of a framework for application life cycle management and a service registry,

applications running on top of Java Runtime Environment. The application life cycle

7. Application Runtime Environment 37

Internet

FIREWALL / SECURITY GATEWAY

Car electronics

ECU / AUTOSAR

ADAS

Legacy infotainment

Car Domain RTE

Figure 7.2: Relation to legacy infotainment systems and ECU

management needs to be taken into consideration when service applications from

multiple different service providers need to be separately installed, started, stopped

and uninstalled without affecting the rest of the system. Applications are considered

as separate components, “bundles”, with separate life cycles and dependencies on

each other. The service registry [49] is a concept for service discovery and binding

used inside one virtual machine, and it seeks to replace the Java Listener Pattern

[48], which is widely used, but does not scale well in embedded environments [49].

This platform is designed for smart home appliances [51], automotive telematics,

Internet gateways and consumer electronics and offers a flexible way of distributing

and updating applications installed on Carbook System while not compromising

security without specially built in-house solutions. OSGi platform is widely used in

the industry.

Global System for Telematics [36], GST, is an EU-funded Integrated Project that,

among other deliverables, provides specifications for a GST Open Systems platform

for controlling and reading automotive telematics. GST Open Systems compliant

platform provides access to car sensors and to Internet services. The GST project

has ended in February 2007.

7. Application Runtime Environment 38

7.3 Component Technologies

Providing a runtime environment for a heterogenous set of components with differ-

ent life cycles necessitates some centralized control for keeping the system in whole

responsive and operating correctly. From the perspective of the platform, this means

sandboxing the service applications and access controls to administrative functions

such as deploying new applications, removing existing ones and granting new per-

missions to applications. In principle, the application should be allowed to access

the public services provided by other applications and by the platform, but not to

interfere with the normal operation of the system. From the perspective of the appli-

cation provider, this means that the applications must conform to general guidelines

and interface specifications. If special permissions are required for the application to

operate, these are acquired from a certification authority by cryptographically sign-

ing the application as conformant to requirements to the permissions in question.

Similar application certification processes are in use in other operating systems as

well [40] and they are also being incorporated in multipurpose consumer operating

systems.

Car Domain RTE uses the platform services provided by the OSGi platform for

application deployment and life cycle management, so that the application compo-

nents can be dynamically installed and removed without affecting the other applica-

tions or rebooting the system. Additionally, a style guide should be provided later to

facilitate interoperability between applications from different third party providers.

39

8. USER INTERFACE

The users of Carbook System are either owners and passengers of cars, or service

providers. In some cases these roles will inevitably overlap, since normal users are

allowed to integrate their own services into Carbook Distributed Service Directory.

Carbook System is used through web user interfaces enabled by Rich Internet Ap-

plications.

Because of the nature of the Carbook services, different kinds of user interfaces

are required. These types of user interfaces are reiterated in this chapter.

8.1 Rich User Interfaces

Basically the terminal equipment and the service provider can choose any web user

interface technology, such as Microsoft Silverlight, Ajax, Flash, Java, native client

application or basic HTML. Some of these technologies are compatible with different

terminal devices than others and they vary in richness of user interfaces also.

In a service oriented architecture we will not need to make services and terminal

devices uniform in such way that any service would be usable through any terminal.

This means that Carbook System in whole will be seen as a small collection of

simple and specialized services for simple specialized devices and on the other hand,

a large collection of generic services for terminals that support these. Every device

takes a complete list of services available and filters out those it is not capable of

interfacing with. On the other hand this means that the service provider does not

need to support a broad range of devices if that would be too costly, but only choose

to support certain classes of devices.

There needs to be some kind of method for choosing the best user interface

available for the user’s terminal device. Of course, if a native client application

is available for the terminal, this should be used, as it is tailored for this specific

terminal type. Native applications can also bypass some technical limitations that

might be problematic through pure WWW interfaces. For example, it is not trivial

to pass microphone input through to a vanilla WWW service without a special

client-side application. Other special equipment such as joysticks, cameras, IC card

8. User Interface 40

and fingerprint readers might necessitate the use of native client application also.

While the native client applications have their undeniable advantages, they also

have a lot of disadvantages. It is often impossible for a service provider to support

more than a handful different client applications for different terminal types. This

problem will become more pronounced because of the sheer number of different kinds

of mobile devices compared to two or three main flavors of operating systems on

home computer field. It is also harder to update the applications that are installed

to a client device compared to a pure web service that can be upgraded on the server

side.

Depending on the type of the service, it is possible to expand the user base by

providing more generic user interfaces without compromising the user experience by

leveraging RIA technologies. As said earlier, these will inevitably have less control

on the user device than a native client application. However, full control is rarely

needed, because most of the services can be easily implemented using standard web

user interface components without low level access to the hardware.

8.2 User Interface Service

When a richer set of interaction is needed in addition to keyboard and mouse input

paradigm, it will be necessary to interface with some built-in user interface devices in

the car. This can be used for speech-to-text dictation, VoIP calls with image and IC

card payments. Some devices might allow for multiple access such as microphones,

but others, such as full screen video on an integrated video screen, might require

some locking.

From a service point of view, interfacing to these User Interface Services is similar

to interfacing car sensor services. Every service needs an explicit authorization to

use these external user interface devices, and this authorization might be pre-signed

into the service bundle by a trusted authority, or explicitly granted by the end-user.

UPnP stream services are exempt from this authorization process, because their

nature is inherently public.

8.3 Universal Plug-and-Play

UPnP services can be for example audio and video streams. These do not need Car-

book System to operate, but Carbook System can provide a hospitable environment

for these devices to operate in by converting UPnP and Bluetooth services dynam-

ically into Carbook Services by publishing them in Carbook Directory Service and

8. User Interface 41

tunneling them from one location to another, and the other way around, advertising

Carbook Services in the UPnP and Bluetooth domain as applicable.

With some services, it is appropriate to make them first UPnP and DLNA com-

pliant, and then advertise them in Carbook Directory Service with necessary ap-

plication components handling the tunneling and access control between locations.

This approach has several important qualities; The local services can be used lo-

cally without any signaling between Carbook Directory Server and the place-of-use,

and it also integrates all the existing UPnP and Bluetooth devices seamlessly into

Carbook System.

Tunnelling of the UPnP services between different domains is initiated by the

user. User can use the local user interface to browse the locally available UPnP

services and mark them up to be tunneled to other domains if appropriate.

8.4 Software Agent Interface

The independent nature of services imply that the user might authorize an agent

to function in her behalf towards some well defined purpose. This means that

practically all the user interfaces that are accessible to the user, should also be

accessible to independent software agents. This means that the service interfaces

need to be machine accessible over the Internet and that the services need to have

machine readable semantic service descriptors associated to them. The purpose of

the software agent in this sense is to gather and aggregate services into more useful

combinations and abstractions. Often the service aggregator needs the authorization

of the user to do this, and this makes it a software agent functioning on behalf of

the user.

The metadata needed for this automatic interaction with services is included in

Carbook Directory Service, and is the same information that is used in enabling

service interoperability.

Examples of this software agent interaction would be automatic searching and

indexing of Internet radio stations using the preferences and access rights of the

user, and finding the events and interesting placemarks in the locality of the user,

perhaps leveraging the friend networks of the user and the communities the user

belongs to.

42

9. CARLAB IMPLEMENTATION

Carlab is a physical laboratory space that is the environment for incremental im-

plementation of the Carbook System. It will also be a central location for internal

and customer demonstrations of the capabilities of the Carbook System. Carlab is

built from scratch, starting from work space layout, by deploying new servers and

services to incrementally demonstrate Carbook functionality. The first milestone

for the Carlab will be in Fall 2008, and is expected to achieve the basic Carbook

functionality.

This chapter outlines the network topology of the Carlab and summarizes some

of the services that have been already implemented, or that are currently being

implemented.

9.1 Mobile IP

Mobile IP routing is a necessary precondition for any meaningful mobile Internet

services. For demonstration purposes, Mobile IPv4 home agent is being deployed in

the Carlab, with roadmap plans to upgrade it to full scale Mobile IPv6 support.

The Mobile IP home agent is first demonstrated with GPS Trace Extraction

application installed to a group of mobile phones. The GPS Trace Extraction ap-

plication is paired with a Mobile IP client to send binding update messages to the

Mobile IP home agent, when the IP address changes. Demonstrations of GPS Trace

Extraction with Mobile IP are expected to start in Fall 2008.

Mobile IP home agent resides in the public portion of the Carlab network topol-

ogy, and is visible to the Internet.

9.2 OpenStreetMap Integration

Location can be visualized in many ways, the simplest of which is a simple coordi-

nate. However, a simple coordinate is not very descriptive for a human observer,

because the location described is not directly evident. For example, software bugs

in the system might not be directly recognizable, when the location is given as a

simple coordinate.

9. Carlab Implementation 43

To facilitate the demonstration of location dependent services, there needs to be

a way to visualize locations. This is normally done by drawing location indicators

on top of a map background. In the Internet, there are numerous maps services

available, some of them more open to free commercial use than others. For demon-

stration purposes, Carlab project is using OpenStreetMap services to provide the

needed map backgrounds.

The backgrounds are published as map tiles, rendered to pictures from vector

data. These tiles are queried by the client from the map tile provider, or repository,

when certain sections of the map are needed. At the client side, the map tiles are

collected and rendered to the correct positions. Location information and other

augmenting data can then be visualized on top of the generated background by the

client.

Often, the map visualization engine is built as a web-enabled application, so that

visualizing different data on top of the background map can be done, for example,

with Javascript and Scalable Vector Graphics.

In practice, the client needs to have data sources to visualize on top of the

map. These data sources could be, for example, GPS traces, current GPS loca-

tions, GeoRSS feeds and other location dependent data. These data sources are

visible to the user as layers that can be selected and deselected freely, showing and

hiding the associated data as needed. The data sources have different types, that

need explicit support from the client. At first, a simple GeoRSS support is planned

to be demonstrated along with custom GPS trace information collected from 3G

mobile phones. Later, data source discovery and general support for multiple types

of data sources will be implemented.

The location visualization is functionality, that is targeted to the user’s perspec-

tive of the Carbook System. In practice, this means that the visualization engine

is available from the Car domain and from the Home domain of the Carbook Sys-

tem. For this purpose, the Carlab includes the Home domain and the Car domain

mock-ups along with necessary network infrastructure.

Demonstration of the OpenStreetMap are expected to commence in Fall 2008

with several other milestone demonstrations.

9.3 GPS Trace Extraction from 3G Mobile Phones

Position dependent services rely on accurate, real-time positioning data from the

clients. To be able to demonstrate these services, some GPS feeds must be available

to the Carbook System. For this purpose, a client software was developed to 3G

9. Carlab Implementation 44

Access network Wired / Wireless Remarks

Intranet wired corporate intranet
Visitor (wired) wired primarily for visitors
Visitor (wireless) wireless primarily for visitors
ADSL wired consumer ADSL line
Static, public IP wired For Carlab

Table 9.1: Summary of the access networks available in Carlab

Access network Firewall Authentication

Intranet HTTP proxy, firewall, NAT HTTP Proxy
Visitor (wired) NAT none
Visitor (wireless) NAT WWW authentication form
ADSL none none
Static, public IP none none

Table 9.2: Access networks available in Carlab, security characteristics

mobile phones using Python and XML, to stream measured GPS positions to the

Carbook Position Data Store service.

The Carbook Position Data Store is an implementation for publishing the col-

lected coordinate data for the secondary services. Web Services interface and Car-

book Directory Service integration for the Carbook Position Data Store are future

milestones for these services.

The GPS Trace Extraction capability is first demonstrated with integration to

public OpenStreetMap service, by overlaying the real-time data and collected statis-

tics on top of the map background. Demonstrations for the GPS Trace Extraction

are expected to start in Fall 2008.

9.4 Network Topology

There are a number of different networks accessible in Carlab physical area. These

are shown in Table 9.1 and in Table 9.2. This was the starting point when the

Carlab network implementation was started.

It was decided that the Carlab network is to be separated from the visitor and

intranet networks for security reasons. The implemented network topology is shown

in Figure 9.1, and described in Table 9.3, and in Table 9.4.

The implemented Carlab network consists of Carlab LAN subnet and two local

IPv4 subnets, Carlab VPN and Carlab WLAN. Switches and some of the less im-

portant routers are left out of Figure 9.1. The Carlab also has a number of static

global IPv4 addresses, that are publicly accessible from the Internet. The public IP

9. Carlab Implementation 45

Carlab WLAN (192.168.1.0/24) Carlab LAN (172.31.104.64/26)

<set of public IPs>

172.31.104.65
OpenVPN

<public IP>192.168.2.0/24

Mobile IP

home agent

Demonstration

servers
Workstations

Workstations and servers

172.31.104.66

NAT Gateway

Laptops

6to4 router

<public 6to4 subnet>

<public IP>

Carlab IPv6 (Public 6to4 subnet)

Carlab WLAN6 (6to4 subnet/2) Carlab LAN6 (6to4 subnet/2)

Mobile IP

home agent

Demonstration

servers
Workstations

Workstations and servers

Laptops

Internet

192.168.1.1

172.31.104.67

Figure 9.1: Network topology in Carlab

addresses are left out of this thesis for security reasons. The IPv6 is one of the key

technologies to be evaluated in Carlab, and so twin networks, Carlab LAN6 and Car-

lab WLAN6, will be implemented using the same physical network and IPv6. NAT

and VPN routing are not necessary with the IPv6 networks, as they are globally

routable.

Normal development and administration is carried out in the Carlab subnet, pro-

tected both from Internet threats and from escalation of breaches into the intranet.

Preventing incident escalation by separating Carlab development environment from

the intranet is important, because the work includes connecting proof-of-concept and

9. Carlab Implementation 46

Name of the network Subnet Remarks

Carlab LAN 172.31.104.64/26 For servers and workstations
Carlab WLAN 192.168.1.0/24 For laptops and devices
Carlab VPN 192.168.2.0/24 For remote administration
Carlab LAN6 Public 6to4 (half) Twin network, IPv6 concept
Carlab WLAN6 Public 6to4 (half) Twin network, IPv6 concept

Table 9.3: Network subnets in Carlab

Name of the network Firewall Authentication

Carlab LAN firewall, NAT none
Carlab WLAN firewall, NAT Pre-shared key
Carlab LAN6 none none
Carlab WLAN6 none Pre-shared key
Carlab VPN firewall, NAT VPN authentication

Table 9.4: Network topology in Carlab, security characteristics

demonstration servers to the Internet, which might increase the risk of penetration

by malicious attack vectors, and the risk of data theft.

Remote administration of the servers, and working from home is allowed by in-

stalling OpenSSH services to all the relevant servers and deploying an OpenVPN

router so that Virtual Private Network connections into the Carlab subnet are pos-

sible.

The public Carlab servers are accessible from the Internet through NAT router,

but actually reside in Carlab subnet. Administration connections to the public

servers are not allowed from the Internet, but only from the Carlab LAN subnet.

9.5 Home Domain and Car Domain

The previous sections have concentrated mainly on the Service domain and the

Infrastructure domain of the Carbook System. In actual implementation, these two

domains are implemented together, because there are no actual third party service

providers in the Carlab. All the services are therefore implemented in the same

physical network as the Carbook Directory Service. However, the Carbook System

has two additional domains, the Home domain, and the Car domain. These domains

will be implemented as mock-ups.

The Home domain is implemented by constructing a small living room with an

ADSL network connection, inside the Carlab. The Car domain will be built inside

a front part of a car, also installed inside the physical space of the Carlab. The

9. Carlab Implementation 47

Car domain will be connected to the Internet wirelessly, possibly in a nomadic way,

alternating between WLAN and 3G connections.

While there will be only one Home domain in the Carlab demonstration environ-

ment, the Car domain is implemented as a group of mobile nodes with relevant soft-

ware, in addition to the actual Car domain mock-up. These simulated Car domains

have different scopes and accuracies of simulation, but they provide the location

data that is expecially relevant when assessing Car domain related technologies and

system characteristics.

9.6 Next Steps

The general guideline for the Carlab implementations will be aiming towards full

Carbook functionality with small incremental steps. However, there are many in-

frastructural challenges to solve as well. For example, the mail delivery from the

servers to administration and users should be made possible by adding relevant mail

servers to Carlab.

It is not clear, if it is possible to have native IPv6 connectivity for the mobile

terminals. If native IPv6 connectivity cannot be accomplished, the 6to4 method

will be assessed next. While the current situation looks rather bleak for IPv6, the

transition will inevitably happen, and it pays to be ready for it.

The first demonstrations start in Fall 2008, and at that point we should have a

good number of applications and services to build on. The milestones for the Carlab

project are set for every year to Spring, Fall and Winter, which makes a good four

months of implementation time for every step.

48

10. CONCLUSIONS

The goal of this thesis work is to define the concept of Carbook and its initial form.

Additionally, the technology field relating to the envisioned Carbook framework was

mapped and evaluated. These goals were achieved, and it is now possible to design

implementation roadmaps with a clear view towards the end result.

Proof-of-concept implementations and demonstrations will be situated in the spe-

cial Carbook technology laboratory, Carlab. The work will continue with incremen-

tal proof-of-concept and technology demonstrations, building small demonstrable

sets of services on top of the previous milestone. The growth of the concept plat-

form will be both horizontal, with added low-level services, and vertical, with derived

and aggregated services aimed towards end users.

Different options for web platforms with web services capability will need to be

evaluated when the actual implementation of the Carbook servers is started. These

platforms include, for example, OSGi platform, Apache Axis2 engine, and Web

Services Interoperability Technology platform. Tools and frameworks for building

web services on top of selected platforms are needed. At the time of writing the

Apache Muse looks promising in respect to being compatible with both the OSGi

platform and the Apache Axis engine.

Also, a deeper review of the different Web Services specifications in relation to

the platforms available, technical capabilities and characteristics of these platforms

and the set of features necessary for Carbook System is necessary before the actual

implementation of Carbook System. Evaluation of these platforms and additional

tools is outside the scope of this thesis.

The choice between supporting UPnP and Devices Profile for Web Services should

be addressed with possible later migration plan to DPWS. It will probably be neces-

sary to support both of these UPnP standards depending on the multimedia device

availability in the consumer market.

It might be necessary for the Carbook services to serialize and migrate between

different platforms. This might be a special platform functionality related to avail-

ability, where the services provided by service providers might migrate and replicate

inside a cloud computing cluster, or a more interesting case of user agents migrating

10. Conclusions 49

from one platform to another to for example make use of local services that are not

available over the Internet. This, and other agent related technologies will probably

gain some extra momentum as the Carbook service platform creates a new market

for independent software agents.

It is necessary to conduct some research into the field of software agents to find

out what solutions have been found for situations where multiple software agents

act hierarchically towards independent goals while all representing the user of the

system. The practical problems arising from this are firstly, the potentially con-

flicting actions and goals between separate agents, and secondly methods of reliably

controlling swarms of software agents using intuitive user interfaces.

The Carbook framework aims to be as open as possible without compromising

security and stability. Open platforms need an open and active community around

them to prosper, and building and supporting the community will become an essen-

tial aspect in the future productization of Carbook.

50

BIBLIOGRAPHY

[1] European Union. Measures to be taken against air pollution by emissions

from motor vehicles. DIRECTIVE 70/220/EEC amendment 2002/80/EC

[directive].

[2] European Union Sixth Research Framework Programme (FP6). Ambient

Networks Project [web site] [referenced 2008-05-30] Available at:

http://www.ambient-networks.org/.

[3] International Organization for Standardization. Road vehicles –

Communication on FlexRay. ISO/CD 10681 [standard].

[4] International Organization for Standardization. Road vehicles – Diagnostics

on Controller Area Networks (CAN) – Part 4: Requirements for

emissions-related systems. ISO 15765-4 [standard].

[5] International Organization for Standardization. Road vehicles – Interchange

of digital information on electrical connections between towing and towed

vehicles. ISO 11992 [standard].

[6] International Organization for Standardization. Road vehicles – Automotive

multimedia interface. ISO 22902 [standard].

[7] Institute of Electrical and Electronics Engineers. IEEE 802.21 [standard].

[8] International Organization for Standardization. Road vehicles – Controller

area network (CAN). ISO 11898 [standard].

[9] LIN Consortium [web site] [referenced 2008-05-30]. Available at:

http://www.lin-subbus.org/.

[10] Internet Engineering Task Force. Mobility Support in IPv6. IETF RFC 3775

[standard] [referenced 2008-05-30]. Available at:

http://tools.ietf.org/html/rfc3775.

[11] Internet Engineering Task Force. Fast Handovers for Mobile IPv6. IETF RFC

4068 [standard] [referenced 2008-05-30]. Available at:

http://www.ietf.org/rfc/rfc4068.txt.

BIBLIOGRAPHY 51

[12] Internet Engineering Task Force. Network Mobility (NEMO) Basic Support

Protocol. IETF RFC 3963 [standard] [referenced 2008-05-30]. Available at:

http://www.ietf.org/rfc/rfc3963.txt.

[13] World Wide Web Consortium. Web Services Description Language (WSDL)

1.1 [standard]. W3C Note 15 March 2001 [referenced 2008-05-30]. Available at:

http://www.w3.org/TR/wsdl.

[14] World Wide Web Consortium. Web Services Choreography Description

Language Version 1.0 [standard]. W3C Candidate Recommendation 9

November 2005 [referenced 2008-05-30]. Available at:

http://www.w3.org/TR/ws-cdl-10/.

[15] World Wide Web Consortium. Web Service Semantics - WSDL-S [standard].

W3C Member Submission 7 November 2005 [referenced 2008-05-30]. Available

at: http://www.w3.org/Submission/WSDL-S/.

[16] World Wide Web Consortium. Resource Description Framework [standard]

[referenced 2008-05-30]. Available at: http://www.w3.org/RDF/.

[17] World Wide Web Consortium. OWL Web Ontology Language Overview

[standard] W3C Recommendation 10 February 2004 [referenced 2008-05-30].

Available at: http://www.w3.org/TR/owl-features/.

[18] World Wide Web Consortium. OWL Web Ontology Language Guide

[standard] W3C Recommendation 10 February 2004 [referenced 2008-05-30].

Available at http://www.w3.org/TR/owl-guide/

[19] World Wide Web Consortium. OWL Web Ontology Language Reference

[standard] W3C Recommendation 10 February 2004 [referenced 2008-05-30].

Available at: http://www.w3.org/TR/owl-ref/.

[20] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.1

Specification [standard]. W3C Recommendation 14 January 2003 [referenced

2008-05-30]. Available at: http://www.w3.org/TR/SVG11/.

[21] Internet Engineering Task Force. Extensible Messaging and Presence Protocol

(XMPP): Core. IETF RFC 3920 [standard] [referenced 2008-05-30]. Available

at: http://tools.ietf.org/html/rfc3920.

BIBLIOGRAPHY 52

[22] Internet Engineering Task Force. Extensible Messaging and Presence Protocol

(XMPP): Instant Messaging and Presence IETF RFC 3921 [standard]

[referenced 2008-05-30]. Available at: http://tools.ietf.org/html/rfc3921.

[23] Internet Engineering Task Force. Internationalized Resource Identifiers (IRIs)

and Uniform Resource Identifiers (URIs) for the Extensible Messaging and

Presence Protocol (XMPP) IETF RFC 5122 [standard] [referenced

2008-05-30]. Available at: http://tools.ietf.org/html/rfc5122.

[24] XMPP Council. XEP-0072: SOAP Over XMPP [standard]. [referenced

2008-05-30]. Available at: http://www.xmpp.org/extensions/xep-0072.html.

[25] OASIS. UDDI Specifications [standard]. [referenced 2008-05-30]. Available at:

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

[26] Microsoft Corporation. Devices Profile for Web Services [standard]. February

2006 [referenced 2008-05-30]. Available at:

http://schemas.xmlsoap.org/ws/2006/02/devprof/.

[27] UPnP Forum [web site]. [referenced 2008-05-30]. Available at:

http://www.upnp.org.

[28] Digital Living Network Alliance [web site]. [referenced 2008-05-30]. Available

at: http://www.dlna.org.

[29] IETF WEBDAV Working Group [web site]. [referenced 2008-05-30]. Available

at: http://ftp.ics.uci.edu/pub/ietf/webdav/.

[30] IEEE Intelligent Transport Systems Society [web site]. [referenced

2008-07-09]. Available at: http://www.ewh.ieee.org/tc/its/.

[31] Google Inc. Keyhole Marking Language [web site] [referenced 2008-05-30].

Available at: http://code.google.com/apis/kml/.

[32] fmipv6.org. Web site of Linux implementation of IETF RFC 4068 Fast

Handovers for Mobile IPv6 [web site] [referenced 2008-05-30]. Available at:

http://www.fmipv6.org/.

[33] OSGi Alliance [web site] [referenced 2008-05-30]. Available at:

http://www.osgi.org.

BIBLIOGRAPHY 53

[34] OpenStreetMap [web site] [referenced 2008-05-30]. Available at:

http://www.openstreetmap.org.

[35] Google Talk for Developers [web site] [referenced 2008-05-30]. Available at:

http://code.google.com/apis/talk/open_communications.html

[36] Global System for Telematics [web site] [referenced 2008-05-30]. Available at:

http://www.gstforum.org/.

[37] Sun Microsystems. Java technology Sun Developer Network [web site]

[referenced 2008-05-30]. Available at: http://java.sun.com/.

[38] Twitter [web site] [referenced 2008-05-30]. Available at: http://twitter.com

[39] Jaiku [web site] [referenced 2008-05-30]. Available at: http://jaiku.com

[40] Symbian Limited. Symbian Signed [web site] [referenced 2008-05-30]. Available

at: https://www.symbiansigned.com.

[41] Mark Weiser. Ubiquitous Computing [web site] [referenced 2008-07-09].

Available at: http://www.ubiq.com/hypertext/weiser/UbiHome.html.

[42] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures [dissertation] [referenced 2008-05-30]. Available at:

http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm.

[43] Yoshihiro Ohba - Toshiba America Research, Marc Meylemans - Intel, Subir

Das - Telcordia Technologies. Security Signaling During Handovers. IEEE 802

Tutorial [web tutorial]. March 2008 [referenced 2008-05-30]. Available at:

http://www.ieee802.org/802_tutorials/march08/21-08-0080-01-0sec-security-

signaling-during-handovers-tutorial.ppt.

[44] Sun Microsystems. Online tutorial for Java Archives [web tutorial] [referenced

2008-05-30]. Available at:

http://java.sun.com/developer/Books/javaprogramming/JAR/.

[45] Paul Schmitz, Geoff Weaver. MIPv6: New Capabilities for Seamless Roaming.

Among Wired, Wireless, and Cellular Networks. DeveloperUPDATEMagazine

Intel [e-magazine]. September 2002 [referenced 2008-05-30]. Available at:

http://www.intel.com/technology/magazine/communications/nc09024.pdf.

BIBLIOGRAPHY 54

[46] Basavaraj Batil. IP Mobility Ensures Seamless Roaming. Communication

Systems Design [e-magazine]. February 2003 [referenced 2008-05-30]. Available

at: http://img.cmpnet.com/commsdesign/csd/2003/feb03/feat1-feb03.pdf.

[47] OSGi Alliance. OSGi Provides Open Platform for the Internet-Enabled Car

[press release] [referenced 2008-05-30]. Available at:

http://www.osgi.org/wiki/uploads/News/pressrel1016900.pdf.

[48] OSGi Alliance. Listener pattern considered harmful [whitepaper] [referenced

2008-05-30]. Available at:

http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf.

[49] H. Cervantes and R.S. Hall. OSGi in a nutshell [presentation]. 01 March 2004.

[referenced 2008-05-30]. Available at:

http://gravity.sourceforge.net/servicebinder/osginutshell.html.

[50] Bill Venners and Elliotte Rusty Harold. Why PUT and DELETE? A

Conversation with Elliotte Rusty Harold by Bill Venners [interview]

[referenced 2008-05-30]. Available at:

http://www.artima.com/lejava/articles/why_put_and_delete.html.

[51] R. Kango, P.R. Moore, J. Pu. Networked smart home appliances - enabling

real ubiquitous culture [article]. Networked Appliances, 2002. Liverpool.

Proceedings. 2002 IEEE 5th International Workshop 30-31 Oct. 2002 Page(s):

76 - 80 [referenced 2008-05-30]. Available at:

http://ieeexplore.ieee.org/iel5/8793/27828/01241340.pdf.

[52] Sanjiva Weerawarana. Google Tech Talks Web Services Middleware: All

Grown Up! [speech]. 2007-10-08. [referenced 2008-05-30]. Available at:

http://video.google.com/videoplay?docid=4366223572258324894.

[53] Matt Tucker. Jive Talks XMPP (a.k.a. Jabber) is the future for cloud services

[blog]. 2008-01-24. [referenced 2008-05-30]. Available at:

http://www.jivesoftware.com/community/blogs/jivetalks/2008/01/24/xmpp-

aka-jabber-is-the-future-for-cloud-services.

[54] Tom Jordahl. SOAP over XMPP [blog]. 2005-09-06. [referenced 2008-05-30].

Available at: http://tjordahl.blogspot.com/2005/09/soap-over-xmpp.html.

