

Caroline Hay
Gerti Dhima
Implementing a secured IMS-based Identity exchange
Master of Science Thesis

 Examiner: Professor Jarmo Harju,

 Associate Professor Isabelle Augé-Blum
 Supervisor: Lic.Tech Seppo Heikkinen
 Examiner and topic approved in the

 Faculty of Computing and Electrical
 Engineering Council

 meeting on 8 September 2010

ii

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

HAY, CAROLINE; DHIMA, GERTI: Implementing a secured IMS-based Identity
exchange
Master of Science Thesis, 89 pages, 13 Appendix pages
September 2010
Major subject: Communications Engineering
Examiner(s): Professor Jarmo Harju, Lic. Tech. Seppo Heikkinen, Associate
Professor Isabelle Augé-Blum
Key words: IMS, SIP Signaling, Application Server, HIT, Identity exchange

With the continuous development of telecommunications, networking and the ubiquitous
computing the necessity of higher bandwidth and better quality of services is always one of
the most important user requirements. In this background, IP Multimedia Subsystem (IMS)
is becoming very important for the Next Generation Networking (NGN) and all-Internet
Protocol (all-IP) infrastructure. This new tendency provides opportunities for new operators
and service providers to enter the market and to be competitive. These developments will
generate new challenges related to the user identity assurance. It will be more difficult to
rely on the old paradigms of the static operator relationships guaranteeing end-to-end the
identity of the users. In this case there is crucial need to find new mechanisms to provide to
the end points assurance about the identity of their counterparts.

In this work we implemented a solution that establishes a trust between two end points
by taking advantage of IMS in a roaming scenario where the visited access network may
not be entirely trustworthy. In essence, this means establishing an identity association so
that the parties can have operator provided assurance regarding the used identities. This
allows local trust decisions and does not rely on the existence of global Public Key
Infrastructure (PKI).

Concretely in this work we have modified the Session Initiation Protocol (SIP)
“INVITE” messages by adding new SIP headers such as the identity and the signature of the
SIP entities taking part in a multimedia conversation. Every SIP entity has to add its own
identity and signature and also has to verify those of its counterparts in a typical SIP
“INVITE” exchange.

By this work we show that establishing this kind of identity association is feasible but
some scalability issues have to be taken into account such as the time delay or the size of
the new messages. In order to accomplish this master thesis work, we have used the Open
Source IMS Core (OSIMS) platform developed by FOKUS, SailFin project as the
Application Server (AS) and IMS Communicator as the IMS client.

iii

Preface

This master thesis is part of the research activities of Networks and Protocols Group; one
of the researching groups in the Department of Communications Engineering at “Tampere
University of Technology”. The work was accomplished during our academic exchange of
spring 2010 at Tampere University of Technology. At the same time this master thesis will
be the End of Study Project for our home university “Institut National des Sciences
Appliquées de Lyon”, France.

We would like to thank the people who made this thesis possible. First of all we would
like to thank Professor Jarmo Harju and Lic. Tech. Seppo Heikkinen, our supervisors at
“Tampere University of Technology”, for the subject they found, the guidance and the
advices they have provided to us during these months of work.

Then we would like to thank Associate Professor Isabelle Augé-Blum our examiner at
“Institut National des Sciences Appliquées de Lyon” for the support on our research.

Tampere, September 2010

Caroline HAY Gerti DHIMA

iv

Contents

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND .. 3

2.1 EVOLUTION OF MOBILE NETWORKS ... 3
2.2 INTRODUCTION TO IMS AND ITS COMPONENTS .. 5

2.2.1 Why do we need IMS? ... 6
2.2.2 General overview of IMS components .. 7
2.2.3 User identity in IMS ... 9
2.2.4 The user databases: the HSS and the SLF ... 9
2.2.5 SIP servers: Call Session Control Function .. 12
2.2.6 Application Servers ... 14

2.3 OVERVIEW OF SIP .. 15
2.4 SIP SERVLET TECHNOLOGY .. 20
2.5 PRINCIPLES OF CRYPTOGRAPHY ... 21

2.5.1 Symmetric encryption ... 21
2.5.2 Asymmetric encryption ... 22
2.5.3 Digital signature ... 23

2.6 THE MAIN SECURITY PROBLEMS OF IMS ... 24
2.7 PROPOSITION OF AN SECURED IDENTITY EXCHANGE MECHANISM ... 26

3 SOFTWARE ENVIRONMENTS AND TOOLS USED .. 35

3.1 IMS ENVIRONMENT .. 35
3.1.1 Open Source IMS Core Network from Fokus ... 35
3.1.2 Implementation of IMS principles in Open Source IMS Core.. 36
3.1.3 Prerequisites, installation and configuration of OSIMS ... 39

3.2 IMS CLIENTS ... 46
3.2.1 Clients UCT and Monster ... 47
3.2.2 IMS Communicator ... 48
3.2.3 Installation and configuration of IMS Communicator ... 48

3.3 APPLICATION SERVERS ... 50
3.3.1 Different Application servers ... 50
3.3.2 SailFin Application Server .. 51
3.3.3 Installation and configuration of SailFin... 52

3.4 TOOLS USED .. 53
3.4.1 Wireshark ... 53
3.4.2 Eclipse IDE .. 54

4 IMPLEMENTING A SECURED IDENTITY EXCHANGE BASED ON IMS.. 55

4.1 ORGANIZATION OF THE WORK .. 55
4.1.1 Caroline: Modification of the IMS Client... 56
4.1.2 Gerti: Modification of the Core Network and AS... 57
4.1.3 Next step: Creation of two domain operators .. 58

v

4.2 MODIFICATION OF THE IMS CLIENT .. 60
4.2.1 Sending an INVITE request .. 60
4.2.2 Receiving a modified INVITE request .. 63
4.2.3 Answering to the modified INVITE request ... 64
4.2.4 Receiving the response to its request INVITE .. 65
4.2.5 Clients’ final modifications .. 65

4.3 FILTER CRITERIA ON THE HSS ... 66
4.4 DEVELOPING A SIP APPLICATION FOR SECURING THE IDENTITY EXCHANGE.. 70

4.4.1 Overview of the SIP Servlet application .. 71
4.4.2 Identity exchange SIP Servlet application ... 73

5 RESULTS AND DISCUSSION ... 76

5.1 GENERAL RESULTS ... 76
5.2 PACKET ANALYSIS .. 76
5.3 CALL FLOW ... 81
5.4 IMPROVEMENTS ... 83
5.5 FUTURE WORK RECOMMENDATIONS .. 84

6 CONCLUSIONS .. 86

REFERENCES ... 87

APPENDIX A: CONFIGURING VIRTUAL INTERFACES ON “/ETC/NETWORK/INTERFACES” .. 90
APPENDIX B: DNS ZONE CONFIGURATION FILE /ETC/BIND/OPEN-IMS.DNSZONE ... 91
APPENDIX C: FUNCTIONNING OF IMS COMMUNICATOR ... 92
APPENDIX D: NIST-SIP: THE REFERENCE IMPLEMENTATION FOR JAIN-SIP 1.2 ... 94
APPENDIX E: TESTING THE PROJECT ... 94
APPENDIX F: SCRIPT SHELL: SCRIPT.SH ... 98
APPENDIX G: CONFIGURE THE FOLDER IMS-COMMUNICATOR AS “BOB” OR AS “ALICE” .. 101

vi

Abbreviations and notations

ACK Acknowledgement
ADSL Asymmetric Digital Subscriber Line
AKA Authentication and Key Agreement
ALL-IP All Internet Protocol
AN Application Network
AoR Address of Record
API Application programming interface
AS Application Server
BGCs Breakout Gateway Control Functions
B2BUA Back-to-back user agent
CN Core network
CPU Central Processing Unit
CSCF Call Session Control Function
DBMS Database Management System
DNS Domain Name System
EAR Enterprise archive
ETSI European Telecommunications Standards Institute
FHoSS FOKUS Home Subscriber Server
GGSN Gateway GPRS Support Node
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
GUI Graphical User Interface
HIT Hash Identity Tag
HLR Home Location Register
HN Home Network
HSS Home Subscriber Server
IDE Integrated development environment
IETF Internet Engineering Task Force
iFC Initial Filter Criteria
IMS IP Multimedia Subsystem
IP Internet Protocol
ISC IMS Service Control interface
IPsec Internet Protocol Security
ITU International Telecommunication Union
ITU-T Telecommunication Standardization Sector
I-CSCF Interrogating CSCF

vii

JAIN-SIP Java APIs for Integrated Networks
JDK Java Development Kit
JMF Java Media Framework
JRE Java Runtime Environment
J2DK Java Development Kit 2
LGPL GNU Library General Public License
LTE Long Term Evolution
MD5 Message Digest 5
MRF Media Resources Functions
MRFC Media Resources Function Controllers
MRFP Media Resources Function Processor
NDS Network Domain Security
NGN Next Generation Network
OSIMS The FOKUS Open Source IMS Core
PDA Personal digital assistant
PKI Public Key Infrastructure
PSTN Public Switched Telephone Network
P-CSCF Proxy-CSCF
QoS Quality of Service
RAM Random Access Memory
R&D Research and Development
SAR Sip ARchive
SDP Session Description Protocol
SER SIP Express Router
SFC Secondary Filter Criteria
SGW Signaling Gateway
SHIPNET Service Handling on IP Networks
SIP Session Initiation Protocol
SLF Subscriber Location Function
SPT Service Point Triggers
Ssh Secure Shell
SVN Subversion
S-CSCF Serving CSCF
TEL URI Telephone Uniform Resource Identifier
THIG Topology Hiding Inter-network Gateway
TISPAN Telecoms & Internet converged Services & Protocols for Advanced
 Networks
TP Trigger Point
UA User Agent

viii

UE User Equipment
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
USIM Universal Subscriber Identifier Module
VoIP Voice Over IP
VN Visited Network
xDSL x Digital Subscriber Line (contains DSL, ADSL, HDSL, SDSL, VDSL)
xG Different generations of Mobile telecommunications technology
WAR Web Archive
WLAN Wireless Local Area Network
2G 2nd Generation: GSM
2.5G 2.5nd Generation: GPRS
3G 3 rd Generation: UMTS
3G+ 3.5 rd Generation: HSDPA
3GPP 3rd Generation Partnership Project
3GPP2 3rd Generation Partnership Project 2
4G 4th Generation: LTE

ix

Table of Figures

Figure 2-1. Data traffic: 3G/3G+ vs. 2G [3] ... 4

Figure 2-2. Simplified IMS architecture [5] .. 5

Figure 2-3. Access Networks Independence [8] .. 7

Figure 2-4. IMS architecture [7] ... 8

Figure 2-5. Information in the HSS [6] ... 10

Figure 2-6. User Profile ... 11

Figure 2-7. Initial Filter Criteria ... 12

Figure 2-8. ISC Interface.. 15

Figure 2-9. Invite message ... 17

Figure 2-10. INVITE call flow ... 19

Figure 2-11. Servlet API and SIP Servlet API .. 20

Figure 2-12. Symmetrical encryption and decryption [18] .. 22

Figure 2-13. Asymmetrical encryption and description [18] ... 23

Figure 2-14. Generation and validation of the signature [19] .. 24

Figure 2-15. IMS Security Architecture [21] .. 25

Figure 2-16. Chain of trust establishment between two SIP users 27

Figure 2-17. Creation of the HIT based on the public Key .. 28

Figure 2-18. Distribution of the cryptographic keys.. 28

Figure 2-19. Creation of the signature with the private key... 29

Figure 2-20. UserA sends the first SIP INVITE message .. 30

Figure 2-21. Message INVITE forwarded by the Proxy. ... 30

Figure 2-22. The message is forwarded to the home network of UserB 31

Figure 2-23. The home network of UserB forwards the message to UserB’s proxy........... 32

Figure 2-24. Reception of the message by UserB ... 32

Figure 2-25. UserB's answer to UserA's INVITE forwarded to UserA 33

Figure 2-26. Identity Association ... 33

Figure 2-27. INVITE Message flow .. 34

Figure 3-1. Fokus IMS architecture [5] .. 36

Figure 3-2. Proxy CSCF [28] ... 37

Figure 3-3. Interrogating CSCF [28] .. 37

Figure 3-4. Serving CSCF [28] .. 38

Figure 3-5. FOKUS Home Subscriber Server [28] ... 39

Figure 3-6. Address planning ... 41

Figure 3-7. Configuration of the client Monster ... 47

Figure 3-8. JMF libraries [33] .. 49

Figure 3-9. SailFin Architecture ... 51

Figure 3-10. WEB administration console .. 52

x

Figure 4-1. Planning of the project ... 55

Figure 4-2. Task A: UserA sends a request INVITE to UserB .. 56

Figure 4-3. Task D: UserB answers to UserA's INVITE message 56

Figure 4-4. Tasks B & C: Implementation of the AS .. 57

Figure 4-5. Request INVITE between two users belonging to different domains 58

Figure 4-6. Answer to an INVITE between two users belonging to different domains 59

Figure 4-7. Request INVITE modified (sent in the Task A) .. 62

Figure 4-8. Response to the request INVITE modified (Task D, c) 64

Figure 4-9. AS Invocation [38] .. 67

Figure 4-10. Identity Filter Criteria .. 68

Figure 4-11. Service Profile ... 69

Figure 4-12. User Profile.. 70

Figure 4-13. SIP INVITE from “Domain_B” to “Domain_A” .. 75

Figure 5-1. Request INVITE : Bob -> P-CSCF .. 77

Figure 5-2. Request INVITE: S-CSCF_Bob -> AS... 78

Figure 5-3. Request INVITE: S-CSCF_Bob -> S-CSCF_Alice .. 79

Figure 5-4. Request INVITE: P-CSCF_Alice -> Alice ... 79

Figure 5-5. Response 200OK: Alice -> PCSCF of Alice .. 80

Figure 5-6. Response 200OK: S-CSCF_Alice -> S-CSCF_Bob 80

Figure 5-7. Response 200OK: S-CSCF_Bob -> Bob ... 81

Figure 5-8. INVITE Call Flow between Bob and Alice .. 83

Figure 6-1. HIP handshake [9] ... 85

Figure 8-1. REGISTER Call Flow.. 92

Figure 8-2. Some useful packages proposed by Nist-Sip [40] ... 94

Figure 8-3. Client not registered ... 96

Figure 8-4. Procedure to register the user ... 97

Figure 8-5. Registration box ... 97

Figure 8-6. Bob calls Alice .. 97

Figure 8-7. Bob and Alice connected ... 98

Figure 8-8. Ims-communicator folder ..102

1

1 Introduction

Nowadays, we are at a real turning point in the history of networks. During a long time the
different networks used to individually develop on their own, while now is the time for the
convergence. This tendency logically arose to follow the users growing requirements. They
demand access to any service, anywhere and at any time with the same user experience. As
it is becoming possible to interconnect heterogeneous networks, the market is becoming
very open and allows almost everybody to provide access services of their own. This leads
to the increase of the amount of mini-operators, and affects the development of new
ubiquitous networks. In such a diverse environment, the security needs to be revised.
Indeed, the operator relationships will not be anymore based on pre-established roaming
agreements but they will be more likely to be dynamically generated. In this future context,
the security requirements and in particular, the identities of the users and statements are
becoming even more critical.

Still, it can be envisaged that users trust their own operators who provide authentication
procedures for them through secured infrastructures and billing services. It can be
envisaged that in the future networks, the relationships between users and their own
operators would remain trusted. In this case, users’ identity would be provided by their
operator. In order to increase their revenues and to develop their customers’ loyalty by
providing more profitable multimedia services, the operators invest a lot in new solutions.
For example, as the next step of the Third Generation (3G), Ip Multimedia Subsystem
(IMS) possibilities are carefully studied.

In this project, we envisage a solution that takes advantage of IMS architecture in a
roaming scenario to signal the needed identity parameters between two communication
endpoints that rely on their own operators to establish their trust evaluation. In other words,
we propose to establish an identity association so that the operators can provide assurance
regarding the used identities, in a scenario where the visited access network may not be
entirely trustworthy. It is assumed that the users trust their own operators and that the home
operators of the users are linked with a roaming agreement. It is also assumed that every
entity is in possession of a secure cryptographic identifier. This one enables to justify of
one’s identity by providing a proof of possession. This solution does not rely on the
existence of global Public Key Infrastructure (PKI) and is based on local trust decisions.
Thus, in essence, this work proposes to use IMS infrastructure to carry the necessary

2

signaling needed to establish a call between two end points, visiting not entirely
trustworthy networks.

This thesis is organized as follows. In the next chapter we will introduce the theoretical
background related to this work. Notions such as IMS, Session Initiation Protocol (SIP) and
principles of cryptography will be presented and explained in details. We will deal with the
security problems of IMS technology and a mechanism to improve it will be presented.

In the third chapter we will present the software environment that we have used and
some important tools. We will explain the installation and configuration of the Open Source
IMS Core and the integration of SailFin as an Application Server (AS). We will explain the
configuration in the case of one IMS domain and in the case of two IMS domains. This part
will be finished by testing and analyzing via Wireshark a simple call between two IMS
clients. Firstly, the clients are registered at the same domain and in a second time they are
registered in two different IMS domains.

The fourth chapter will be dedicated to the implementation of our solution that will be
based on the development of an IMS client open source code and then on the development
of a SIP application based on the SIP Servlet technology that will be deployed on the SIP
application server. We will describe the classes and the methods developed in order to
implement the mechanism presented. In the fifth chapter we will discuss the results and
present some improvements and future work on the topic. And finally, the sixth chapter will
conclude the work and present some future work recommendations.

3

2 Theoretical background

In this chapter we will present general overview of the background technologies that we
have used in this thesis. We will introduce the theoretical part of these technologies and in
some occasions we will explain in more details those subjects that have been needed for the
comprehension of the topic and for the implementation of the project. After a short
introduction to the paradigms of the communications networks over the last years, we will
deal with the introduction of IMS, the architecture and its components. The security
challenges of IMS will be introduce later and some technical mechanisms to correct them
will be presented. As the last part of this chapter we will expose some key notions that have
been very useful during the project such as the SIP protocol and the structure of the SIP
messages, SIP Servlet technology and the general principles of cryptography.

2.1 Evolution of mobile networks

Since they appeared, the mobile telecommunication technologies have always known a
continuous and fast growth. International Telecommunication Union (ITU) even admits
that it has been the “most rapidly adopted technology in history” and that “it is today the
most popular and widespread personal technology on the planet” [1]. With over one billion
users worldwide, the cellular technology has become the most important part of
communication in business and general public use. As a consequence, to answer to the
growing customers demands, the wireless telephone technology was developed quite
rapidly through its different generations. Each generation was marked by a decisive
evolution enabling higher data rates, the use of new frequency bands and non-backwards
compatible transmission technologies. The second generation (2G) technologies proposed
circuit-switched voice (with the well-known Global System for Mobile Communications
(GSM)) and packet-switched data (introduced by the General Packet Radio Service
(GPRS)). The 3G marked a turning point by adding the packet-switching for the voice and
data IP to the existing 2G infrastructures. By adding the rapidity of IP packet transmissions
to the everywhere virtually coverage provided by the mobile phones infrastructures, the 3G
enabled the emergence of broadband services with consistent user experience.

Supported by the technology Universal Mobile Telecommunications System (UMTS),
the 3G was developed by the 3rd Generation Partnership Project collaboration (3GPP)
standardization body. The 3G is based on a mixed core network using circuit and packet
switched technologies. It increases bit rates in downlink and uplink, offers a fast access to
Internet which enables to provide new multimedia services such as Mobile Television and
Video on Demand [2]. All these new services introduced by the 3G were significantly

4

adopted by the costumers which resulted in a dramatic increase in data traffics as shown in
Figure 2-1.

Figure 2-1. Data traffic: 3G/3G+ vs. 2G [3]

This data traffic was so important that new standards still had to be developed. Indeed,
in spite of the good performance of the 3G, users still asked for more services, with the
same Quality of Service (QoS), regardless the network they are attached to. It is in this
perspective that nowadays, the 3GPP develops the NGN, working in collaboration with
some other organizations like:

 The NGN group in Telecommunication Standardization Sector (ITU-T)
 The Telecoms & Internet converged Services & Protocols for Advanced Networks

(TISPAN) group in European Telecommunications Standards Institute (ETSI)

The approaching 4G mobile communication systems aim at solving the still remaining
problems in 3G networks and at providing new services. The 4G, a network of networks
which provides seamless service to mobile users anywhere, at anytime, is “a must” so far.
The 4G architecture separates the Application Network (AN) and the Core Network (CN)
and focuses on seamlessly integrating the existing wireless technologies including GSM
and Wireless Local Area Network (WLAN). The future 4G infrastructures will be
composed of a set of various networks using IP as a common protocol. NGNs are defined
not only to be multiservice, multiprotocol, multi-access, IP-based networks, but also
secured, reliable and trusted. [4]

5

2.2 Introduction to IMS and its components

In order to offer higher bandwidths, lower operational costs and new generation of services,
wireless standards organizations are focused on building the next generation all-IP network
infrastructure. The IMS was created as a key part of the third generation network to solve
these needs. It was introduced during the 3G development, in UMTS release 5. In its first
version, the objective was to “support applications involving multiple media components
per session in such a way that the network would be able to dissociate different flows with
potentially different QoS characteristics associated to the multimedia session.” [4]. IMS
was later extended by the ETSI, during its work on the NGN, the 4G. Indeed, IMS was
standardized as a subsystem of NGNs by TISPAN. The Figure 2-2 shows a simplified
view of the architecture proposed by IMS. We can distinguish the main functions and nodes
that will be better presented in the General Overview of IMS section.

Figure 2-2. Simplified IMS architecture [5]

The IMS consists in a set of new entities dedicated to the handling of the signaling and
user traffic flows related to the multimedia applications. All IMS entities are located in the
IMS Core Network. According to the standards, IMS is defined in the form of reference
architecture to enable delivery of next-generation communication services of voice, data,
video, wireless, and mobility over an IP network [6]. It exists as part of an entire network.

6

IMS by itself needs others components such as an access network to complete its
functionalities as a system for multimedia service delivery.

2.2.1 Why do we need IMS?

Nowadays, it is possible to access via a mobile phone any internet services. This is possible
due to the development of wireless technologies and the available higher data rates
available. The evolution from circuit-switched domain to packet-switched domain improves
the user experience in Internet services access through the cellular network. So the
question, “why do we need IMS for?”, still remains. According to [7], some of the reasons
why we need IMS are:

 One of the most important reasons is the Quality of Service (QoS). This is very
important in real time multimedia sessions. The packet-switched domain provides
best effort service without really considering QoS. Although IP networks have had
their own QoS mechanisms with DiffServ and IntServ. Consequently, it might
become a nightmare for users who want to use Voice Over IP (VoIP) or other real
time services. Therefore, one of the reasons for creating the IMS was to provide the
QoS required for enjoying rather than suffering real time multimedia sessions.

 Another reason for creating IMS was to charge multimedia sessions appropriately.
Generally in a network without IMS, 3G operators have no possibility to know what
kind of service the user is using.

 The third main reason is to provide integrated services. IMS offers the possibility
for 3G operators to provide to the users their own services but also other services
provided by third parties. The operators can integrate or combine these third party
services to their own services in order to offer completely new services to users

In other words, the IMS aims to [7]:

 combine the latest trends to technology
 make the mobile Internet paradigm come true
 create a common platform to develop diverse multimedia services
 create a mechanism to boost margins due to extra usage of mobile packet-switched

networks

There are some requirements that led to design of the 3GPP IMS [7]:

 support for establishing IP Multimedia Sessions
 support for a mechanism to negotiate QoS
 support for interworking with the Internet and circuit-switched networks
 support for roaming

7

 support for strong control imposed by the operator with respect to the services
delivered to the end-user

 support for rapid service creation without requiring standardization

Figure 2-3. Access Networks Independence [8]

As shown in the Figure 2-3, another very attractive characteristic of IMS is the access
network independency. This means that telecommunication operators can integrate IMS in
their network independently of the access network they are providing to theirs users, e.g.,
GPRS, UMTS or Long Term Evolution (LTE). IMS can even be integrated with wired
networks such as Cable Networks, x Digital Subscriber Line (xDSL) or Public Switched
Telephone Network (PSTN).

2.2.2 General overview of IMS components

First of all, we have to keep in mind that 3GPP standardize functions instead of nodes. This
means that the IMS architecture is a collection of functions linked by standardized
interfaces [7]. Depending on the operator implementation, we can find two or more
functions into a single node or one function into two or more nodes. For a closer view of
the IMS architecture standardized by 3GPP, have a look at the Figure 2-4.

In this figure we can distinguish different logical components, interfaces and networks.
On the left side, there are different IMS terminals such as Personal Digital Assistants
(PDAs) or computers that can be used as IMS clients. These devices referred as User
Equipments (UE) can be connected to the IMS core network via wired or wireless access
networks such as Asymmetric Digital Subscriber Line (ADSL), GPRS, UMTS, etc. In the
IMS Core Network we have different SIP servers, databases and gateways through other
networks.

8

Figure 2-4. IMS architecture [7]

Figure 2-4 shows all the nodes included in the IP Multimedia Core Network Subsystem.
These nodes are [7]:

 One or more user databases called Home Subscriber Servers (HSS) and Subscriber
Location Functions (SLF)

 One or more SIP Servers known as Call Session Control Functions (CSCF)
 One or more Application Servers (Ass)
 One or more Media Resources Functions (MRFs), each one further divided into

Media Resources Function Controllers (MRFCs) and Media Resources Function
Processors (MRFPs)

 One or more Breakout Gateway Control Functions (BGCFs)
 One or more PSTN gateways, each one decomposed into a Signaling Gateway

(SGW)

In this thesis we were more interested in some of these nodes. We will introduce their
role in the next sections. Fortunately, one does not need to be expert in all the nodes in
order to install the platform and develop applications. The other nodes which are less

9

important for the project will not be introduced in this work. The reader can find more
information in [7].

2.2.3 User identity in IMS

Identification is one of the most important abilities of a network. Users have to be identified
in any kind of network, such as when calls can be directed to the appropriate user. IMS also
has its own way to identify users. In IMS, there are two key notions concerning the user
identity. These are the Private User Identity and the Public User Identity.

Private User Identity

Each IMS subscriber has one Private User Identity. The Private User Identity takes the
format of NAI (Network Access Identifier)

username@operator.com.

The Private User Identity is used for subscription identification and authentication. It is
stored in a smart card and there is no need for the user to know it.

Public User Identity

Each IMS user can be allocated one or more Public User Identity, which is used to route
SIP signaling in IMS. The Public User Identity can be a SIP URI or a TEL URI. If Public
User Identity is a SIP URI, the form is as follow:

sip: first.last@operator.com

When a PSTN subscriber makes a call to IMS terminal or receives a call from IMS
user, the TEL URI is always needed, because the identification in PSTN can only be
presented as numbers. So, TEL URI uses an international way to present a phone number.

2.2.4 The user databases: the HSS and the SLF

The HSS is the main user database of IMS. It is used to store the authentication information
of users and subscription-related information also known as user profiles. Technically, the
HSS is an evolution of the Home Location Register (HLR). A network may contain more
than one HSS, but in any case, all of the data related to a particular user is stored in a single
HSS. In the Figure 2-5 the reader can find a schematic representation of the HSS.

10

Figure 2-5. Information in the HSS [6]

The HSS supports the CSCF functions by [6]:

 identifying the address of the CSCF that should be handling the session
 storing the user’s registration and location information
 supporting the authentication and authorization by providing the integrity and

ciphering keys
 providing an access to a service profile, for which the subscriber has been

provisioned

If multiple HSSs are used in the network, a SLF is needed. This is a database used to
map the users’ address to HSSs. Both the HSS and the SLF can implement the DIAMETER
protocol which is used to exchange AAA-related information [9]. The HSS and the SLF are
always located in the home network.

User Profile

All the data related to a user are stored in the HSS in a data structure called user profile.
The Figure 2-6 shows the components of this structure. The Private User Identity and one
or more service profiles are stored in the user profile. Each service profile contains one or
more Public User Identities and zero or more initial Filter Criteria (iFC). The user profile
contains information about the media types that the user is authorized to use, and about the
services that are to be applied to the user. This is about the application servers that will
need to be contacted whenever the user issues a request.

11

Figure 2-6. User Profile

When the user registers to a particular Serving CSCF (S-CSCF) and the authentication
is confirmed, the user profile including the iFC is downloaded from the HSS by the S-
CSCF and is available for the whole period that the user is registered.

Initial Filter Criteria

Besides other information, in the service profile there is also initial Filter Criteria. It
contains user information that indicates the S-CSCF when to involve a particular
Application Server to provide the service. Filter Criteria is a very important concept in IMS
because it determines the services that will be provided to each user. An iFC defines a set
of conditions that, when met, will force the S-CSCF to delegate the control to an AS whose
Uniform Resource Identifier (URI) is also part of the iFC. The conditions can be based on
different combinations of values of SIP methods, SIP headers and so forth, present in the
incoming request. For more information on SIP the reader can refer to the section 2.3.

The iFCs are always evaluated with SIP initial requests that initiate a dialog or are
stand-alone requests like ”INVITE”, “REGISTER”, “SUBSCRIBE MESSAGE”. Subsequent
messages like “BYE”, “NOTIFY, “INVITE” inside a dialog are not evaluated. The iFC can
be considered as the grouping between a Trigger Point (the logical expression of Service
Point Triggers (SPT) matching a message) and an AS [10]. It is composed of groups and
each group is formed of the logical atoms, the SPT. There are 5 distinct types of SPTs,
based on what each of them is used to check in the SIP message:

 Request-URI equals <value>
 SIP Method equals <value>

12

 SIP Header matches <regular expression>
 Session Case is one of [originating, terminating, terminating to unregistered user]
 SDP Line [<line name>] matches <regular expression>

Figure 2-7. Initial Filter Criteria

The components of an iFC are presented in the Figure 2-7. As we note, the iFC is
composed by one or more Service Point Trigger and some fields such as Priority or
information related to the AS.

2.2.5 SIP servers: Call Session Control Function

The CSCF provides the central control function in the IMS Core Network to set up,
establish, modify, and tear down multimedia sessions. This is basically a SIP server which
processes and is responsible for all SIP signaling in the IMS. The CSCF function is
distributed across three types of functional elements based on the specialized function they
perform [7]. These three elements are the Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-
CSCF), and the Serving-CSCF.

P-CSCF

The P-CSCF is an edge access function and is the entry point for a UE to request services
from an IMS network. The P-CSCF is allocated to the IMS terminal during IMS
registration and does not change throughout the whole registration time. The role of this

13

SIP server is to function as a proxy by accepting incoming requests and forwarding to the
entity that can service them. From the SIP point of view, the P-CSCF is acting as an
inbound/outbound proxy server. The incoming requests are either the initial registration or
an invitation for a multimedia session. A request of the UE to register for a service is
normally forwarded to a session controller or to one with the capability to interrogate for it.
Session invitation requests are forwarded by the P-CSCF to a S-CSCF.

The P-CSCF also performs some important edge functions. Since this is the first-hop
access, it establishes and maintains a number of Internet Protocol Security (IPSec) security
associations with the IMS terminal. It also provides compression of SIP signaling to
minimize latency over the air interface. SIP messages can be large due to the text based
nature of SIP protocol. In order to reduce the time to transmit SIP messages, a mechanism
to compress and decompress the message is used. It provides a policy function by
initiating support for IP flow control and authorization of traffic-bearer resources. The P-
CSCF is also capable of handling emergency call sessions. [7] [8] [11]

The P-CSCF may be located in the home network or in the visited network. The
location of the P-CSCF is directly related with the location of the Gateway GPRS Support
Node (GGSN) in the 2.5G networks. Once the IMS reaches the mass market the operators
will migrate the configuration and the P-CSCF and the GGSN will be definitely located in
the visited network.

I-CSCF

The I-CSCF is a SIP proxy located on the edge of an administrative domain [9]. The
Domain Name System (DNS) records of the domain store the address of the I-CSCF. The
SIP server obtains the address of an I-CSCF of the destination domain when it tries to find
the next SIP hop for a particular message.

The I-CSCF is responsible for determining which Serving CSCF should be assigned for
controlling the session requested by the UE. A request to the I-CSCF may come from the
home network or a visited network through the Proxy CSCF. The I-CSCF obtains the
request for the address of the S-CSCF from the HSS during a registration request, and
provides it to the P-CSCF for subsequent multimedia requests.

The I-CSCF has an interface to the HSS and SLF, which is based on the Diameter
protocol. It can obtain the address of S-CSCF from HSS. And it could also retrieve user
location information and route a SIP request received from another network towards the
appropriate destination, such as the S-CSCF. The I-CSCF may perform transit routing
functions. When the I-CSCF determines that the destination of the session is not in the
IMS, it may forward the request or return with a failure response. In some cases the I-CSCF
can encrypt some parts of SIP messages that contain sensitive information about the
domain such as the DNS servers, their names or their capacity or information about the
route the SIP message has taken. This functionality is known as Topology Hiding Inter-

14

network Gateway (THIG).The I-CSCF is usually located in the home network. However,
for some special cases, for example, an I-CSCF THIG, it may also be located in visited
network.

S-CSCF

The S-CSCF is responsible for conducting both registration and session control for the
registered UE’s sessions. In addition, it is responsible for interfacing with the Application
Servers in the Application Plane. As a registrar, it enables the network location information
of the UE to be available through the HSS. It maintains a binding between the user location
(the IP address of the terminal the user is registered with) and the used SIP address of
record (also known as Public User Identity). It makes the decision to allow or deny service
to the UE. Its role is to execute the session request by locating the destination endpoint and
conducting the signaling toward it. The S-CSCFs maintain a full state of the sessions and
have the capability to originate and terminate a session on behalf of a requesting endpoint.
Like I-CSCF, the S-CSCF also implements a Diameter interface to the HSS. The reason is
to download from the HSS the authentication vectors of the user who wants to access IMS.
These vectors are used to authenticate the user. The S-CSCF also downloads from the HSS
the user profile which contains a set of triggers that may route the SIP message through one
or more AS.

In addition to acting as a registrar, the S-CSCF is also responsible for routing all SIP
messages to the AS. To do this, the S-CSCF uses information obtained from the HSS in the
form of iFC that acts as triggers against inbound session establishment requests. The iFC
includes rules that define how and where SIP messages should be routed to the various AS
that may reside in the Application Plane. A network may include a number of S-CSCFs in
the sake of scalability and redundancy. Each of them serves a number of IMS terminals.
The S-CSCF is always located in the home network.

2.2.6 Application Servers

The SIP servers that we already presented don’t provide any added-value services. IMS
applications are implemented in SIP AS with the help of media servers [11]. Application
server is a service creation and execution platform that interacts with the S-CSCF using SIP
via IMS Service Control (ISC) interface. The Figure 2-8 presents the ISC interface between
the AS and the S-CSCF and the basic principle of the relation between them.

15

Figure 2-8. ISC Interface

The AS can operate on a SIP User Agent (UA) mode or Back-to-back User Agent
(B2BUA) mode. The ASes are responsible for hosting and executing the services. A single
AS may host multiple services, for example, telephony and messaging services. One
advantage of this flexibility is to reduce the workload of the control layer. There are many
application servers providing different services, such as presence service or instant
messaging service etc.

The service profile downloaded from the HSS contains a list of ASs, identified by their
URI, and some filtering rules. The filtering rules allow the S-CSCF to determine when
received SIP requests need to be routed to a particular AS. In this way, customized services
can be applied to the users, and a clear separation is enforced between the basic SIP
functions (S-CSCF) and the enhanced service logic (AS) [11]. According to [7], we have
several kind of AS. We will cite only the most useful for this work, the SIP-AS. This AS, is
the service part in IMS, supporting well defined signaling and administration interfaces.
This AS hosts and executes IP multimedia services based on SIP. It is triggered by the S-
CSCF and it comprises filter rules for choosing applications for the handling of the session.

An AS can be located in the home network or in an external third-party network. If
located in the home network, it can query the HSS with the Diameter Sh or Si interfaces
(for a SIP-AS).

2.3 Overview of SIP

The Session Initiation Protocol is an application-level signaling protocol defined by the
Internet Engineering Task Force (IETF) in RFC 3261 [12] for creating, modifying, and
terminating sessions with one or more participant over an IP network. Sessions are
described using the Session Description Protocol (SDP) defined in RFC 4566 [13]. The

16

SDP sessions are carried in the SIP messages and allow participant to agree on a set of
parameters such as transport addresses or media types [11]. In addition, SIP deals with the
location of the users. For this reason, every user that wants to be able to receive multimedia
communications has to be registered. This is done through the registration procedure,
during which the user has to communicate its present location (expressed as a “location”
SIP URI), together with its public identity (expressed as a “logical” SIP URI), to its home
SIP server (its registrar server), which will then maintain a table with the mapping.

SIP follows the well-known client-server model like many other protocols developed
and used by IETF. SIP is a text-based protocol that borrows most of its principles from
SMTP (Simple Mail Transfer Protocol) and HTTP (Hypertext Transfer Protocol); two of
the most successful protocols on the Internet. This means that it is easy to extend, debug
and use to build services [7].

SIP URIs are used to identify users in the SIP architecture. In general they identify
communication resources. SIP URI follows the general rules for URIs defined in RFC 3986
[14] as shown in the following example: “sip:name.surname@example.com”. This URI
is made of user part which identifies a particular resource and host-port part which
identifies the source providing the resource. This might be a Fully Qualified Domain Name
(FQDN) or an IP address plus an optional port value. As we will see later, a SIP URI may
represent [11]:

 The public identity of a user. This is the identifier that anyone could use to contact
that user. Example: sip:gerti.dhima@openims.com

 A user at a specific host or location. For example in the following SIP URI the user
bob is located at location 192.168.10.33. Example:
sip:bob.brown@192.168.10.33

 A SIP server such as in the example : sip:proxyA.openims.com
 A group of users such as in the example: mobileUsers@openims.com. This might

represent all the mobile phone users of a company

As we can see, some of the SIP URIs point to logical identities and some others indicate
locations. SIP URIs that point to locations, can be directly resolved to the corresponding IP
address, port, and transport via DNS queries. Other URIs can be used to identify
communication resources for example the Telephone Uniform Resource Identifier (TEL
URI). We will not introduce them in this work but the reader can find more about them in
[11].

SIP Messages

The communication using SIP means a couple of messages. These messages can be, either
SIP Requests sent by a client to a server or SIP Responses sent by a server to the client as a

17

response to the SIP Request. The messages are transported by the underlying network
protocols.

 Requests are used in order to start a communication or to inform the receiver about
a request

 Responses are used in order to confirm that a request has been received and treated
by the server or to indicate the status of the treatment.

The general format of a SIP messages is:

request-line
message-header
message-body]
Request-line = Methods Request-URI SIP-Version

The methods can be: “REGISTER”, “INVITE”, “ACK”, “CANCEL”, “BYE”,

“OPTION”. The Figure 2-9 presents a simple INVITE request sent by the SIP user
bob@open-ims.test to start a conversation with the SIP user alice@open-ims.test:

Figure 2-9. Invite message

Through this example we have shown the most important SIP headers of the simple
INVITE message. We will see in the implementation chapter of the project that some other
SIP headers have been added. These new headers contain the Identity of different SIP
entities and their respective signature. Later on we will discuss more in detail about these
aspects. In the Table 1 we present the most important SIP headers and their role.

18

SIP Header Role

Call-ID The Call-ID header uniquely identifies a particular invitation or
all registrations of a particular client.

CSeq The CSeq header (command sequence) uniquely identifies
transactions within a dialog.

Contact The Contact header contains a list of URLs used to redirect
future requests.

Content-Length The Content-Length header indicates the size of the message-
body in decimal number of octets

Date The Date header field reflects the time when the request or
response was first sent.

From The From header indicates the initiator of the request.

Max-Forwards The Max-Forwards header is used to limit the number of proxies
or gateways that can forward the request.

Route The Route header is used to store the route set of a transaction.

Record-Route The Record-Route headers are used to establish a route for
transactions belonging to a session.

To The To header specifies the "logical" recipient of the request.

Via The Via header indicates the path taken by the request so far.

Event The Event header is used to indicate the event or class of events
the message contains or subscribes.

Supported The Supported header enumerates all the capabilities of the client
or server.

Path The Path header field is a SIP extension header field with syntax
very similar to the Record-Route header field.

Content-Type The Content-Type header indicates the media type of the
message-body sent to the recipient.

Table 1. The most important Sip headers

19

Figure 2-10. INVITE call flow

As the mechanism of enhancing the identity assurance is implemented on the basic
INVITE exchange, we will introduce here the call flow of this exchange as described by the
standards, presented in the Figure 2-10. For more details one can be referred to [7].

In this figure, in red is presented the first INVITE request sent by UserA when he wants
to start a multimedia conversation with another IMS user (UserB) that can be registered in
another IMS domain as presented in this case. Before arriving at UserB the request pass
through different SIP servers of the domain A and then B as per a normal INVITE call flow.
Once this request arrives at the UserB, some other responses are exchanged up to the
moment UserB decides to take the call. In this moment, a SIP response “200 OK” is
generated by UserB, represented in blue in this figure, and is sent to UserA. In this work we
modify only the first “INVITE” request and then the last “200OK” response.

20

2.4 SIP Servlet Technology

A SIP Servlet is a server-side component of Java programming language that performs SIP
signaling. SIP Servlet was designed to simplify SIP development and attract developers to
the SIP protocol. They are managed by SIP Servlet containers, which typically are part of a
SIP-enabled application server [15]. SIP Servlets interact with clients by responding to
incoming SIP requests and returning corresponding SIP responses. This is comparable to
the “request/response” model known from HTTP Servlets. They are built using the generic
servlet Application Programming Interface (API) provided by the Java Servlet
Specification.

The Figure 2-11 shows a general overview of the SIP Servlet API and compares it with
the Servlet API. SIP Servlet are based on Java APIs for Integrated Networks (JAIN SIP), a
low level Java API specification for SIP Signaling. [16]

Figure 2-11. Servlet API and SIP Servlet API

SIP Servlet is a Java programming language class that extends the
“javax.servlet.sip.SipServlet” class, optionally overriding SipServlet's methods
[15]. These methods are named along the model of “doRequest” where “Request” is a
SIP request name. For example, the “doINVITE” method will respond to incoming SIP
“INVITE” requests.

The SIP Servlet API (JSR 116) is a server-side interface describing a container of SIP
components or services. For more details the reader can find this API in [17]. The lifecycle
of SIP Servlets are managed by the SIP Servlet container, which at the same time enables
network communication for SIP requests and responses by listening on a particular
listening point. A typical SIP application consists of the following components:

 one or more SIP Servlets
 optional utility and helper classes such as SIP listeners
 static resources used by the classes
 metadata and configuration files

21

One of the configuration files is “sip.xml” deployment descriptor, which is used by
the SIP Servlet container to process deployed SIP applications and configure the runtime to
properly respond to incoming SIP requests [15]. SIP applications are packaged in either SIP
archive (SAR) or web archive (WAR) files. SIP containers will recognize either the “.sar”
or “.war” extensions when processing SIP applications. The SAR format includes the use
of the presence of the “WEB-INF” folder that contains class files and deployment
descriptors. SIP application that has been packaged in a SAR or WAR may be packaged
itself within Enterprise archive (EAR).

We have used SIP Servlet API to develop the application, which will be responsible for
checking the identity of one SIP entity when an “INVITE” message arrives to the S-
CSCF and then adding the identity and the signature of the SIP server to the message. We
delegated this task to the application server because in this way the S-CSCF is not
overloaded with this extra task. This will be better explained when we will discuss the
implementation of the project in the section 4.3.

2.5 Principles of cryptography

In the computer era, cryptography has become a necessity for the exchange of critical
messages. Indeed, Internet has become an essential communication tool both for business
and private needs. It appears that the transactions can be intercepted by malicious people
for several purposes: just to get some information (passive listening), to stop exchanges, or
even to modify it. So, there is an obvious need for a security system or mechanism.

The cryptography is a technique which aims at protecting the confidentiality, integrity
and authenticity of the information by ciphering the messages. By applying arithmetic
calculations to the original message (plain text), it creates a new message unreadable
without applying a specific action (cipher text). Most of the time, we use a cipher key to
cipher a message, and a decipher key to decipher a message. There are two kinds of
encryption: the symmetric and the asymmetric ones. The next sections will present them
and also the principle of digital signatures which derives from them.

2.5.1 Symmetric encryption

The symmetric encryption uses symmetric keys or “secret keys”. A representation of the
symmetric mechanism is given in the Figure 2-12. The sender and the receiver share a
common secret key. The sender ciphers the message with this secret key, and the receiver
deciphers it with the same secret key. As a consequence, the confidentiality of the message
is ensured.

This is a very efficient method as, if anyone intercepted the message, he couldn't get the
information because he wouldn't have the secret key. The problem with this method is that,

22

it is assumed that the two users share a common secret. In the Internet world, as people
communicating with each other can be at the two sides of the world, the key exchange may
need to be done through the network. Thus, we come back to the initial situation where we
need to secure this exchange. Rather than doing so, a second encryption method, the
asymmetric cipher, exists to avoid these problems: the asymmetric cipher.

Figure 2-12. Symmetrical encryption and decryption [18]

2.5.2 Asymmetric encryption

Asymmetric encryption uses asymmetric keys which are a pair of private/public keys. This
method can solve the problem of key distribution caused by the symmetric encryption.
Indeed, rather than having a single secret key, each user is going to have a pair of
cryptographic keys: a private key and a public key. The private key is kept secret while the
public key can be widely spread. Contrary to the symmetric encryption, as we can see in the
Figure 2-13, the encryption and decryption are done with different keys. Every time the
Originator wants to send a message to the End User and wants to make sure he is going to
be the only one who can read it, he has to get the End User's public key, encrypt the
message with it and send it to him. When the End User receives the message, he decrypts it
with his private key. Thus, the Originator can be sure that nobody else than the End User
can open his message, because he is the only one who has the appropriate private key.
Consequently, the confidentiality of the message is assured.

23

Figure 2-13. Asymmetrical encryption and description [18]

The main advantage of this technique is to avoid the decryption key distribution
problem, because the public keys can be freely sent. But there is a new challenge rising.
The receiver has to be sure that the public key that he get from the sender is really this one
corresponding to the person that he thinks. Still, it is easier to implement and more secured
than the symmetric encryption. In reality the most systems use asymmetric keys to encrypt
the symmetric key, which is used to encrypt the actual message.

2.5.3 Digital signature

The asymmetric encryption enables the creation of the digital signatures which aim at
protecting the message. It consists of applying a hash function to a message and then
encrypting it with the private key to obtain a signature. The generation of this signature is
represented in the Figure 2-14. This one is a kind of DNA of the message, which is added
to the original message to produce a signed message. Once this signed message received,
the signature can be verified by the receiver as shown in the Figure 2-14:

 The end user gets the signature
 He deciphers it with the sender's public key
 And then, it compares the result with the result of the hash function on the message

24

Figure 2-14. Generation and validation of the signature [19]

A signature generated with a certain private key is validated by using the corresponding
public key. Moreover, it should not be computationally feasible to generate a valid
signature for a party who does not have the private key. This process guarantees the
integrity of the message by creating a hash of it and its authenticity by encrypting this hash
with the private key. [20]

2.6 The main security problems of IMS

In the above sections we gave a general overview of the IMS architecture. Now we will
discuss some security problems related to IMS and more precisely to the signaling protocol
it is using.

The IMS architecture presents significant security challenges that must be addressed by
the carriers as IMS moves into widespread deployment. The generally open and distributed
architecture creates the advantage of flexibility in implementation and deployment. It also
creates a multitude of interface points that must be secured [21]. The security in IMS is an
important and urgent issue and it is required to ensure that every SIP based Internet service
can meet the corresponding security requirements.

25

Figure 2-15. IMS Security Architecture [21]

According to [21], in the Figure 2-15, five different security associations within the IMS
are identified:

1. Mutual authentication between the UE and the IMS. The HSS delegates this to the
S-CSCF but the HSS is responsible for generating the keys and challenges.

2. Secure link and security association between the UE and P-CSCF for authentication
of data origin.

3. The Cx interface provides internal security for the link between the CSCF and HSS.
This association plays an important role in securing the keys and challenges during
the UE registration process.

4. Link which provides security between the P-CSCF and other core SIP services
when the UE is roaming in a Visited Network (VN).

5. This link provides security between the P-CSCF and other core SIP services when
the UE is operating in the Home Network (HN).

The main problems are also related to the underlying protocols that IMS and SIP are
using. SIP protocol, according to RFC 3261 [12], utilizes transport protocols such as TCP
and UDP. As a result, SIP inherits the vulnerabilities of these protocols. As noted in RFC
2617 [22], SIP authentication typically uses HTTP digest authentication, which is
vulnerable to many forms of known attacks. According to [23], the HTTP digest
authentication in SIP suffers from a major weakness when it is applied in SIP. It is the lack
of securing all headers and parameters in SIP which would possibly need protection.

Since the current authentication mechanism is not providing security at an acceptable
level, several new schemes are proposed to improve it. One can find a non-exhaustive list

26

of these schemes in [24]. Some of the mechanisms suggested to increase the SIP security
are S/MIME, IPSec and TLS. Moreover with the last developments in the networks and
computing technologies, it becomes easier for the new players and third part service
providers to enter the market. Therefore signaling and data packets can traverse
untrustworthy network realms. According to the specifications [25], the security of IMS is
based on the fact that the multimedia sessions are supposed to be taken place between
trusted entities. Thus, the operator static relationship cannot rely anymore in old paradigms
to guarantee the user identity end-to-end. Because of these new developments, there is a
real need for new methods that provide better assurance about the identity of the entities
taking part in a multimedia conversation. In order to provide the recipient of a SIP message
with greater assurance of the identity of the sender, a cryptographic signature can be
provided over the headers of the SIP request, which allows the signer to assert a verifiable
identity as described in RFC 3893 [26].

In this particular technologic background and actual state of art, we have implemented a
new mechanism which takes advantage of IMS architecture to establish a trust between the
entities taking part in a multimedia session in a roaming scenario. We will better introduce
the work in the next section.

2.7 Proposition of an secured identity exchange mechanism

In order to make the authentication mechanism security level meet the requirements, one
solution can consist in exchanging secured identities before starting a multimedia session.
Based on the paper [9], this thesis proposes to take advantage of the IMS’s ability to easily
and rapidly provide services developed in application servers to imagine a service which
could implement this security mechanism. The home operators of the users guarantee the
identities of their users and are assumed to trust each other thanks to a roaming agreement.
This kind of agreement can link two telephone companies to outline the terms and
conditions under which the participating companies will provide wireless service to their
subscribers (it dictates the liabilities of the parties and the necessary security association).
Roaming agreements are useful when companies can’t offer a complete national or
international coverage. It’s assumed that every entity has a secure cryptographic identifier
attributed. The possession of this secured identifier enables its owner to prove his identity.
In this project, the necessary initial signaling needed to enhance the trust between the
parties in the communication is carried by the IMS architecture.

The mechanism envisaged is based on local trust decisions and roaming agreements. It
does not rely on the existence of a global PKI which avoids the problems relying to the
future dynamic networks. There probably will not be any agreement about the common
global trust roots. Thus in practice, such a security infrastructure would not be very
practical to establish and to support.

27

The Figure 2-16 shows how the chain of trust between two SIP users UserA and UserB
is established. The operators trust their respective users and the trust relationship between
the operators allows UserA and UserB to trust each others. This leads to create a chain of
trust between the two users.

Figure 2-16. Chain of trust establishment between two SIP users

In practice, the fact that two entities trust each others can mean that they share secured
information. Every entity is in possession of his own secured information which represents
his identity. Every time one wants to prove his identity, he has to show that it is in
possession of this secured information. In this project, we chose to use Public Keys to
constitute the entities’ secured identity. The Figure 2-17 represents the creation of the
cryptographic identifier which is based on a public Key. By applying hashing to the public
key attributed to the entity, we can form a concise representation of this identity, Hash
Identity Tag (HIT). Basically, HIT and public Key represent the same thing (the entity’s
cryptographic identity), the HIT is just more suited for protocols. Moreover it has to be
noted that the term HIT that we use in this specific context should not be mixed with the
same term used in Host Identity Protocol context. Even though the identity we presented
here is based on the HIT representation, there are some differences that we have to keep in
mind. The identity that we are using is not exactly the same as HIT in a typical HIP
exchange. Actually in HIP it has certain structure as well to give it a IPv6 interpretation. In
this work we haven’t implemented HIP specific exchange, but just the assured identity
exchange.

28

Figure 2-17. Creation of the HIT based on the public Key

In essence, when two entities want to establish a trust between them, they first exchange
their identities HIT (or their Public keys with which they calculated the HIT, like in the
Figure 2-18). Then, when they need to communicate in a trusted way, they just have to
prove that they are in possession of their own identity (or of their Public Key).

Figure 2-18. Distribution of the cryptographic keys

When one entity wants to prove its identity when sending a message, it sends this
cryptographic identifier HIT in the message, and protects it by a signature. As shown in the
Figure 2-19, this signature is calculated by ciphering the hash of some fields selected in the
message with the private key. By doing this, all these fields become protected, which
means that the correspondent can be sure of their authenticity. Our interest lies on

29

protecting the following headers: From, To, Date_sent, Call-Id, Cseq. For
example, securing the header Date_sent protects the message from replay attacks, while
the header Call-Id would prevent a third part from modifying the type of message (for
example to transform an INVITE message in a BYE one in order to end the conversation).
The new headers containing the HIT (P-End-Pub-Identity-Info) and the identity
of the user (P-End-Pub-Identity) are also protected by the signature to prevent them
from being falsified. Their description is defined in the section 4.1.1.

Figure 2-19. Creation of the signature with the private key

In practice, we modify the messages exchanged between the two users by adding this
secured cryptographic identity, so that every user can prove his identity. We also protect the
message with a signature. The next paragraphs show the different behaviors of each entity
towards these specific messages.

In the first SIP “INVITE” message, shown in the Figure 2-20, UserA sends his identity
information (HIT) and the algorithm used to obtain it (ALG). The contents and the relevant
SIP headers are protected with a signature.

30

Figure 2-20. UserA sends the first SIP INVITE message

In the next phase, presented in the Figure 2-21, the message is received by the proxy P-
CSCF1. Depending on where the user is, P-CSCF1 can belong to the user’s home network,
or to another operator. First, the proxy verifies the message fields, for example, it checks if
the user is registered and if all the media parameters fit the current local policy. Then, the
proxy does not do much else than forward the message to the user’s home network: S-
CSCF_A. However, it can add some new headers like “P-Asserted-Identity” (which
represents its own definition of the identity of the user) or “Record Route” (where it
indicates its own SIP URI) [7]. However, the reliability of this information depends on the
existence of security association between the access (P-CSCF1) and home operators (S-
CSCF_A) as it is generally expected that the IMS charging information is exchanged only
between trusted networks. Then, the message is forwarded to the home network of UserA.

Figure 2-21. Message INVITE forwarded by the Proxy.

31

In the Figure 2-22, when S-CSCF_A receives the message, it can check the
correspondence of the registered user identities. Of course, it is assumed that the user has
previously registered the identities he is using on this connection. He has already shared his
cryptographic identity (HIT) as a secret with his operator. There are several ways to share
this secret. Either, it can be already recorded in the Universal Subscriber Identifier Module
(USIM) card of the SIP phone and in the database of the operator, either it can be shared
during the “REGISTER” phase. This second solution is more secured as the shared secret
changes every time the user performs a call, but the first one is the easiest to implement
because it avoids all the key exchange problems. After this, and the verification of the
signature, S-CSCF_A can sign user’s HIT, which means to add some specific headers in the
message (Cf. in the section 4.1.2). By doing this, the home operator indicates that this user
can be trusted at this expressed application level identity. Based on the receiver’s Address
of Record (AoR), the message is forwarded to the home operator of that entity (S-
CSCF_B).

Figure 2-22. The message is forwarded to the home network of UserB

The next step, presented in the Figure 2-23, is the reception of the message by the home
network of UserB (S-CSCF_B). This one has a roaming agreement with the home network
of UserA and has exchanged its identity with it. As a consequence, S-CSCF_B can check
that the message from the server can be trusted. Then, because the message has been signed
by the S-CSCF_A, the identity of the sender is assured. Thus, it is willing to forward traffic
from this operator to its own subscribers. S-CSCF_B proceeds in including its own
assurance to the identity of UserA as a token of trust it has on the established agreement.

32

Figure 2-23. The home network of UserB forwards the message to UserB’s proxy

In the last phase as illustrated in the Figure 2-24, UserB receives the message
containing the specific headers of trust from its own home operator. It is assumed that the
user is in possession of the identity of his home operator, so he can check that he can trust
this message by comparing the identity presented in the specific headers added by his home
operator and the saved identity. Then, UserB can save UserA’s identity for a later use, and
sends the response to the request INVITE with his own configuration information and
relevant identities protected by a signature. These new headers added in the message have a
double goal: first, they assure UserB’s identity to his home operator, and then, they let
know this identity to UserA, when the message will be forwarded to him.

Then, the procedure described in the Figure 2-25 works to the opposite direction in a
similar fashion. Indeed, UserB’s home operator assures UserB’s identity, and based on

Figure 2-24. Reception of the message by UserB

33

transitivity, UserA’s home operator asserts the received identities. The response is
forwarded to UserA.

Figure 2-25. UserB's answer to UserA's INVITE forwarded to UserA

The Figure 2-26 presents UserA’s behavior when receiving this answer. UserA
concludes the transaction by sending an acknowledgment (ACK) message directly to UserB
as in typical SIP transaction. In this ACK message, UserA includes the HIT representing
his secured identity that UserB had previously saved when receiving the first message
Invite (shown in the Figure 2-26). When UserB receives this ACK message, he can check
the correspondence of the identities received and saved. When the test confirms UserA’s
identity, he answers with a similar ACK message containing his own HIT that UserA can
verify. After this, the identity association is realized; UserA and UserB can switch to
communicate directly on IP layer with the negotiated session parameters as they are in
possession of each other’s assured identities.

Figure 2-26. Identity Association

34

Figure 2-27. INVITE Message flow

Finally, the whole mechanism presented in the Figure 2-27 enables to create an identity
association between UserA and UserB. These users are roaming in networks different from
their home networks, and can trust each others thanks to the secured identity exchange.
This mechanism relies on local trusts and dynamic roaming agreements. It differs from a
typical IMS setup by the fact that the relationships between operators are dynamically
established, which contrasts with the actual IMS environments, where the relationships are
static and trust is based on the reliability of the operator. Even if this scenario isn’t yet a
reality, it’s expected to be more likely in the future ubiquitous environment. [9]

35

3 Software environments and tools used

In this chapter we will introduce different software environments that we have used as
background technologies and platforms in order to develop, implement and test this project.
The Open Source IMS architecture from FOKUS Institute will be introduced as well as the
IMS clients and the application server that have been used to perform the tests. We will
also introduce the background tools that we have used such as Wireshark, Eclipse
Integrated Development Environment (IDE) and server access in distance via Virtual
Private Network (VPN) and Secure Shell (Ssh).

3.1 IMS environment

The Open Source IMS core project has been used as an IMS platform for this work. This
project offers all the basic components of an IMS core network that were needed during the
thesis work. Even though nowadays there are already many Open Source projects
established in the plain VoIP area for SIP clients, proxies, stacks and tools around the IETF
SIP standards, but there are practically no Open Source projects with specific focus on the
IMS. The OSIMS project aims to fill the currently existing IMS void in the Open Source
software landscape with a flexible and extendable solution that has already proven its
conformance and performance in several national and international Research and
Development (R&D) projects. [5]

3.1.1 Open Source IMS Core Network from Fokus

The OSIMS is an Open Source implementation of IMS CSCFs, the central routing elements
for any IMS signaling, and a lightweight HSS, which together form the core elements of
all IMS/NGN architectures as specified today within 3GPP, 3GPP2 (3rd Generation
Partnership Project 2), ETSI TISPAN [27]. It is based on the open source project SIP
Express Router (SER) and has been developed by the Fraunhofer Institute FOKUS in
Germany. The first versions appeared during 2006 and are designed for Linux-based
platforms.

The sole purpose of this platform is to provide an IMS core implementation reference
for IMS technology testing and IMS application prototyping for research purposes,
typically performed in IMS test-beds.

36

Figure 3-1. Fokus IMS architecture [5]

The main functions and interfaces of the OSIMS are presented in the Figure 3-1. We
will describe them more in detail in the next section.

3.1.2 Implementation of IMS principles in Open Source IMS Core

This implementation offers all the basic functions of an IMS core network that is, P-CSCF,
I-CSCF and S-CSCF. It offers also the HSS function, which is responsible for provisioning
users and the associated service profiles in order to deploy different services.

P-CSCF

In the current implementation of the OSIMS, the P-CSCF component is able to firewall the
core network at the application level: only registered endpoints are allowed to insert
messages inside the IMS network and the P-CSCF asserts the identity of the users. After a
successful registration process to an IMS home network, subsequent user messages are
forwarded based on DNS information towards the requested IMS home network. In the
Figure 3-2, it is shown the modular architecture of the P-CSCF implemented by the OSIMS.

37

Figure 3-2. Proxy CSCF [28]

I-CSCF

The role of the I-CSCF is a stateless proxy that queries the HSS, by using the indicated
public identities of the caller or the callee, and based on responses routes the message to the
correct S-CSCF. It implements the Cx interface [29] of an I-CSCF to the HSS. Therefore it
supports the required Diameter commands to locate the user-assigned S-CSCF or to select,
based on capabilities, a new S-CSCF and check identities for roaming authorizations.

Figure 3-3. Interrogating CSCF [28]

After receiving a successful answer for the Diameter query, the I-CSCF forwards the
SIP messages in a transactional mode. To protect the home network, it has a firewalling

38

capacity that only allows signaling messages coming from trusted networks. In the Figure
3-3 it is shown the modular architecture of the I-CSCF implemented by the OSIMS.

S-CSCF

The S-CSCF implementation also communicates with the HSS using Diameter (over the Cx
interface) to retrieve authentication vectors, update registration information and download
the user profiles as specified in [29].The S-CSCF can apply specific iFC to enforce specific
SIP routing rules. In the Figure 3-4, it is shown the modular architecture of the S-CSCF
implemented by the OSIMS.

Figure 3-4. Serving CSCF [28]

Some of the features of the OSIMS S-CSCF related to this project are [28]:

 Authentication through AKAv1-MD5(Authentication and Key Agreement version
1- Message Digest 5), AKAv2-MD5 and MD5

 Download of Service-Profile from HSS
 Initial Filter Criteria triggering
 ISC interface routing towards Application Servers

HSS

The OSIMS would be incomplete without a Home Subscriber Server. FOKUS developed its
own prototype, the FOKUS Home Subscriber Server (FHoSS), which is entirely written in
Java and based upon Open Source software. The user data is kept inside a MySQL database.
It is mostly a configurator for the Database Management System and the Diameter
interfaces with the CSCFs and IMS application layer.

39

Figure 3-5. FOKUS Home Subscriber Server [28]

The FHoSS allows the generation of authentication vectors and it provides a HTTP-
based management interface for easy management of user profiles and associated iFCs. In
the

Figure 3-5 it is shown the modular architecture of the FHoSS implemented by the
OSIMS. To manage and maintain the FHoSS, a web based management interface is
provided. This provides a clear structure and separation of logic and Graphical User
Interface (GUI) related tasks. The rendering is done by several Java Server Pages which
can be found in the src-web folder.

3.1.3 Prerequisites, installation and configuration of OSIMS

The installation and configuration steps can be found in the website of the Open IMS
project available in [30]. In order to install the key components of OSIMS platform some
hardware, software and network prerequisites are required.

As hardware requirements, a current Linux desktop class machine should be enough but
if we want to get ultimate performance, then it is better to have several Gigabytes of
Random Access Memory (RAM) and as many Central Processing Units (CPUs)/Cores as
needed.

As software requirements, we need to install several modules such as subversion in
order to download the fresh code. Different packages such as GCC3/4, make, Java
Development Kit version 1.5 (JDK1.5), ant used for Java development are needed to be
installed first. In this work we used MySQL as a Database Management System (DBMS)
which is supported by FHoSS, I-SCSF and other functions requiring a DBMS.
Development libraries libxml and libmysql are required. Linux kernel 2.6 and ipsec-tools are

40

needed to use IPSec security. In addition, we use bind9 as a name server. And we choose
Google Chrome which can connect to the box as a browser.

As network access requirements, a controllable DNS server should be enough. At the
beginning we configured virtual IP interfaces over the loopback. In this way we had a better
view while analyzing with Wireshark. This was when we configured everything in one
Linux box. Then we configured two IMS domains and in this case we changed the
configuration done previously and configured the two IMS domains over the eth0 of that
machine. We will better explain later the configuration needed in the two cases. The full list
of the prerequisites can be found in the IMS Installation Guide [30].

Get the source code

Once the prerequisites installed, we continue with the installation and the configuration of
the FHoSS and then the CSCFs which are the core components of OSIMS. We start by
downloading the fresh code of FHoSS and CSCFs at
“http://svn.berlios.de/svnroot/repos/openimscore” and get the FHoSS source
code at “FHoSS/trunk” and CSCFs source code at “ser_ims/trunk”. The source code is
pre-configured to work from a standard file path. For that, we create the directory
“/opt/OpenIMSCore” and then go there to create two new directories “FHoSS” to checkout
the HSS and “ser_ims” to checkout the CSCFs.

#>mkdir /opt/OpenIMSCore
#>cd /opt/OpenIMSCore
#>mkdir FhoSS
#>svn checkout
http://svn.berlios.de/svnroot/repos/openimscore/FHoSS/trunk FHoSS
#>mkdir ser_ims
#>svn checkout
http://svn.berlios.de/svnroot/repos/openimscore/ser_ims/trunk ser_ims

Compile

Before compilation, we must be sure we have a version of JDK superior or equals to 1.5.
And then, we use ant to build and install the FHoSS. Starting from the installation directory
of OSIMS we enter in FHoSS directory and then compile the sources of FHoSS and then
install it.

#>cd FHoSS
#>ant compile
#>ant deploy

In similar way, we compile and install the code of CSCFs in the “ser_ims” directory.

41

#>cd ser_ims
#>make install-libs all
#>cd ..

Configure the environment if one IMS domain

At the beginning, in order to test the project, we decided to configure all the SIP servers,
IMS clients and AS in a single machine and the default domain we configured was “open-
ims.test”.

Configuration of IP virtual addresses over loopback

According to the Installation Guide, the IP addresses of the SIP servers, the FHoSS and the
IMS clients, by default, were configured over the loopback address “127.0.0.1” with
different ports. In order to have a better view of the architecture, we have configured
different virtual network interfaces over the loopback. So basically we differentiated the
traffic over these virtual interfaces. Then we binded over these virtual interfaces the SIP
servers, the FHoSS, the Application Server and the IMS clients according to the
architecture presented in the Figure 3-6.

Figure 3-6. Address planning

First of all, in order to configure nine virtual interfaces we start by editing the file
“/etc/network/interfaces”. The reader can find the configuration file in Appendix A.
Here, we proceed by describing the configuration of the DNS server. The domain name that

42

we have chosen is “open-ims.test” according to the Installation Guide. First of all we
have to copy to the bind configuration directory “/etc/bind/” the DNS zone file
accessible in the “/ser_ims/cfg/” directory.

#>sudo cp ~/ser_ims/cfg/open-ims.dnszone /etc/bind/open-ims.dnszone

Then we edit the file “named.conf” and insert the DNS zone file there.

#>cd /etc/bind/
#>sudo vim named.conf
zone "open-ims.test" IN {
 type master;
 file "/etc/bind/open-ims.dnszone";
 notify no; };

Then, the file “/etc/bind/open-ims.dnszone” has to be modified in order to assign
the IP addresses to the SIP servers, IMS clients and Application Server. The reader can find
in the Appendix B how this file should look like for the architecture we present.
Now the DNS server should be restarted and the modification will be taken into account.

#>sudo /etc/init.d/bind9 restart

In the same time we have to edit the file “/etc/resolv.conf” in order to point to the new
installed DNS server.

search open-ims.test
nameserver 10.1.22.101

We can test if the different servers are resolvable with the command “dig”.

#>dig pcscf.open-ims.test

Configuring the MySQL

In order to use FHoSS, we needed a database. For this we used the sql scripts that can be
found following the installation root directory. These scripts are used to create a MySQL
database and then to add two users. Also we installed the icscf.sql into the MySQL
database.

#>mysql -u root -p -h localhost < FHoSS/scripts/hss_db.sql
#>mysql -u root -p -h localhost < FHoSS/scripts/userdata.sql
#>mysql -u root -p -h localhost < ser_ims/cfg/icscf.sql

43

Configure the IMS core

At this stage we should have the DNS and MySQL working. As the last step, we have to
copy several files from the directory “/ser_ims/cfg” to “/opt/OpenIMSCore”, the
current directory.

#>cd /opt/OpenIMSCore
#>cp ser_ims/cfg/*.cfg .
#>cp ser_ims/cfg/*.xml .
#>cp ser_ims/cfg/*.sh .

All these files can be modified to our own preference in order to match the
configuration we want to have. If one wants to use the default configuration then there is no
need to change the parameters. In the directory “/FHoSS/deploy/” some of the files that
can be modified are:

 “DiameterPeerHSS.xml”: we need to modify the peer configuration here like
the FQDN, Realm, Acceptor Port and Authorized identifiers.

 “hibernate.properties”: what we can configure are the main properties for
hibernate; implicitly is configured to connect to the mysql on the localhost
(127.0.0.1:3306). The most relevant properties are:
“hibernate.connection.url=jdbc:mysql://127.0.0.1:3306/hssdb”
“hibernate.connection.username=hss”
“hibernate.connection.password=hss”

 “hss.properties”: Specify configuration like on which address the tomcat is
listening (e.g. “host=localhost”) and the relative path of the web interface of the
FHoSS. (e.g. “appPath=/hss.web.console”). Other parameters like
“operatorId”, “amfId” and “defaultPsiImpi” can be specified here.

 “log4j.properties”: Contains configuration for the logger. The most relevant
things here are the output file path of the logger and the level of logging.

Changes to the Configuration if two IMS domains

We described in the previous section the configuration related to one domain. As the aim of
this project is to implement an assured identity exchange in a roaming scenario, we
configured another IMS domain and then integrate it with the first one. We will continue by
describing this configuration and explain all the difficulties.

The final version of the project was developed on two distant machines. In this way, the
project could be available to everyone who wants to test it or to be base on it for future
research. These two machines were in the same local network and their addresses were:

ims-a.rd.tut.fi (130.230.141.36)
ims-b.rd.tut.fi (130.230.141.37)

44

On the first machine (ims-a) we have installed and configured the first domain named
“open-ims.test” and on the second machine (ims-b) we have installed the second
domain named “open-ims2.test”. In this case we will configure all the SIP servers of a
domain on the IP address of that machine. This solution is not the best one for analyzing
the traffic with Wireshark. This is the reason why we first configured on one box by
creating virtual addresses binded over the loopback.

All the SIP server’s configuration files should be modified in order to change the IP
address configured by default on “127.0.0.1”. It might be very useful to use the script
configurator.sh. It can be found in “opt/OpenIMSCore/ser_ims/cfg/”. This script is
based on the function seed and takes as arguments the configuration files that we want to
modify. The most important files to be modified are:

#>sh configurator.sh /opt/OpenIMSCore/ser_ims/cfg/*.xml
#>sh configurator.sh /opt/OpenIMSCore/ser_ims/cfg/*.sql
#>sh configurator.sh /opt/OpenIMSCore/ser_ims/cfg/*.cfg
#>sh configurator.sh /opt/OpenIMSCore/FHoSS/deploy/hss.properties
#>sh configurator.sh /opt/OpenIMSCore/FHoSS/deploy/DiameterPeerHSS.xml
#>sh configurator.sh /opt/OpenIMSCore/FHoSS/scripts/hss_db.sql

Once the script executed we enter the new domain name and the new IP addresses of
the SIP servers. The script will modify the old domain name and IP addresses with the new
ones. The basic configuration of the second domain is the same as the configuration we
already described about the first domain. But still there are some changes related to the
integration of the two domains. More specifically, particular attention should be paid to the
configuration of the DNS. We configured the DNS on the “ims-b.rd.tut.fi”. Here, we
will present the changes done to integer the second domain with the first one.

On the file “/etc/bind/named.conf” of the “ims-b.rd.tut.fi” we enter two zones
that correspond to the first and the second domain. Then in the zone file
“/etc/bind/open-ims.test” and “/etc/bind/open-ims2.test” we configure the IP
addresses related to every SIP server and the AS used respectively on the first and the
second domain.

#>vim /etc/bind/named.conf
zone "open-ims.test" IN{
 type master;
 file "/etc/bind/open-ims.dnszone";
 notify no;
};
zone "open-ims2.test" IN{
 type master;
 file "/etc/bind/open-ims2.dnszone";
 notify no;
};

45

On the “ims-a.rd.tut.fi” we modified the file “/etc/resolv.conf” in order to
indicate the new DNS configured on the second machine. On the “ims-b.rd.tut.fi” we
modified the same file by indicating the DNS configured on that machine.

ims-a#> vim /etc/resolv.conf
search open-ims.test
nameserver 130.230.141.37

ims-b#> vim /etc/resolv.conf
search open-ims2.test
nameserver 130.230.141.37

With these basic configurations we were able to integrate two IMS domains. We can
test this configuration with the command dig from the “ims-a.rd.tut.fi” as shown in the
example. This command proves that the DNS configuration is correct.

ims-a#> dig scscf.open-ims2.test

; <<>> DiG 9.7.0-P1 <<>> scscf.open-ims2.test
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47396
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL:
1

;; QUESTION SECTION:
;scscf.open-ims2.test. IN A

;; ANSWER SECTION:
scscf.open-ims2.test. 86400 IN A 130.230.141.37

;; AUTHORITY SECTION:
open-ims2.test. 86400 IN NS ns.open-ims2.test.

;; ADDITIONAL SECTION:
ns.open-ims2.test. 86400 IN A 130.230.141.37

;; Query time: 0 msec
;; SERVER: 130.230.141.37#53(130.230.141.37)
;; WHEN: Mon Aug 30 13:09:37 2010
;; MSG SIZE rcvd: 87

Some other issues should be taken into account when testing our project with two
domains. There are some modifications done to the AS in order to specify the new IP
address, here “130.230.141.37”. Attention is required when configuring the iFC on the
second domain. In general, the main procedure does not change.

46

Start the components

The next step after installation is to start each module of CSCFs: “pcscf.sh”,

“icscf.sh”, “scscf.sh” and at the same time. In order to start the FHoSS the
“startup.sh” is used.

#>cd /opt/OpenIMSCore
#>sh ./pcscf.sh
#>sh ./icscf.sh
#>sh ./scscf.sh
#>sh ./startup.sh

We should make sure that each component can connect to HSS. And in this process, we
could see periodical log messages with the content of the registrar and with the opened
diameter links. After that, we can check the web interface on “http://localhost:8080/”.
In order to connect as admin one should use as username: “hssAdmin” and as password:
“hss”.

Configure Subscribers

By default, FHoSS comes provisioned with a couple of sample users:

alice@open-ims.test
bob@open-ims.test

We can create new users using the web management interface on

“http://localhost:8080/hss.web.console/”. In order to manage the FHoSS you
should use “hssAdmin” as user login and “hss” as password. In order to create new users
there are few easy steps to follow:

 create a Subscription
 create a Private Identity
 create a Public Identity
 link them

For more information follow the Installation Guide [30].

3.2 IMS Clients

The IMS Client chosen for this project has to meet some requirements: first, it has to be
compatible with the IMS environment and then, it has to be open source, so that we can get
and modify its code. The installation guide of OSIMS recommends several IMS clients such

47

as UCT, Monster and IMS Communicator. The next sections present them, and explain
which one we chose for this project.

3.2.1 Clients UCT and Monster

Concerning the IMS UCT [31] client, there was a problem of compatibility between the
software and the machine on which we developed (i386), so we couldn’t use this IMS
Client. Monster [32] was interesting in the sense that it was developed by the same
community that created OSIMS and it was totally compatible with the IMS environment.
Moreover, it was a simple IMS client with all the basic functions and no complicated
features that could lead to mistakes when first launched.

As a consequence, the IMS client Monster is ideal for the testing phase of the IMS
environment. Even if it was not Open Source, this simple IMS client enabled us to see if the
IMS environment was well configured (if the clients could register themselves and then
initiate a call with another IMS client). The Figure 3-7 shows the configuration of the
Monster client needed with the OSIMS environment.

With Wireshark, we could follow the call flow and see to which entities the message
was forwarded. After verifying that the IMS environment was well configured, we
downloaded the sources of the third IMS Client possible: IMS Communicator [33]. The
next section presents this last client.

Figure 3-7. Configuration of the client Monster

48

3.2.2 IMS Communicator

IMS Communicator was created to fill the need to have an IMS client able to use and test
all the new services and convergence scenarios made possible with SIP and the IMS
architecture. It was originally developed by PT Inovaçao in order to support the
development and testing of IMS/NGN components for its Service Handling on IP Networks
(SHIPNET) IMS/NGN architecture. Now, it is open to the community as an open source
project. It is licensed with the Apache Software License and the GNU Lesser General
Public License (LGPL).

Based on a SIP project (SIP-Communicator softphone), IMS Communicator is built on
top of the JAIN SIP RI, to which contributions were also made to support the IMS SIP
extensions defined by 3GPP and IETF. Java Media Framework (JMF) API provides its
media stack. This IMS client is multiplatform compliant and is written in Java.

To fit to the IMS requirements, several development efforts had to be made on the
original SIP Communicator client. Indeed, it was needed to implement the IMS
Registration and Authentication and the IMS Session establishment:

 IMS Registration and Authentication
o support of IMPI
o authentication algorithm AKAv1
o subscription to the “reg” event package

 Security Agreement mechanism (no IPSec though)
o IMS Session Establishment
o Precondition Mechanism
o Early Media
o Call transfer

In practice, we can see that new functions and specific to IMS appear in the java
sources (for example, methods to create the different IMS messages like REGISTER or
INVITE). [33]

3.2.3 Installation and configuration of IMS Communicator

Installation

To install IMS Communicator, some requirements have to be filled:

 JRE 1.5 (Java Runtime Environment) installed
 J2DK 1.5 (Java 2 Development Kit) installed
 Apache Ant
 JMF API

49

To get the sources, we can download the subversion (svn) sources by opening a console and
typing:

#>svn checkout svn://svn.berlios.de/imscommunicator/trunk/ims-
communicator

The JMF binaries are not shipped with the source code because of their size. Still, they
are not necessary for the basic functioning of this project; they enable to realize voice calls.
They can be downloaded as a separated package. As for the project sources, we just have to
open a console and write:

#>svn checkout svn://svn.berlios.de/imscommunicator/trunk/ims-
communicator/trunk/lib

There’s support for Linux and Windows. Thus, as we develop on a Linux platform
(needed to install the IMS environment), we download the corresponding package and
place it in the lib folder inside the IMS Communicator project as represented in the Figure
3-8.

Figure 3-8. JMF libraries [33]

Configuration

The configuration of IMS Communicator consists in indicating the public identity of the
user and the IMS environment that he belongs. All these values can be changed manually in
the file “ims-communicator.xml”. Most of the fields are already well configured by
default; some particular fields have to be filled according to the IMS environment
configured to enter the user identity and the address of the IMS Proxy.

Sip:
<PUBLIC_ADDRESS value=sip:bob@open-ims.test/>
<REGISTRAR_ADDRESS value="open-ims.test" />
<DEFAULT_DOMAIN_NAME value="open-ims.test" />
<DEFAULT_AUTHENTICATION_REALM value="open-ims.test" />
<OUTBOUND_PROXY value="pcscf.open-ims.test:4060/udp" />

50

Ims:
<PRIVATE_ADDRESS value="bob@open-ims.test" />
<USE_IPSEC value="false" />
<AUTH_ALGORITHM value="MD5" />

Common :
<PREFERRED_NETWORK_INTERFACE value="lo" />
<PREFERRED_NETWORK_ADDRESS value="10.1.22.101" />

To launch the project, in the folder /ims-communicator launch:

#>ant rebuild

Some mistakes may appear which lead to a "BUILD FAILED". It may be necessary to open
the files concerned add a library

#>vim /ims-
communicator/src/net/java/sip/communicator/sip/simple/XmlPresenceInfor
mationFactory.java

import net.java.sip.communicator.common.Console;

#>vim ims-
communicator/src/net/java/sip/communicator/sip/simple/storage/ContactL
istSerializer.java

import net.java.sip.communicator.common.Console;

After this, the command ant rebuild should lead to a "BUILD SUCCESSFUL". To
launch the client, we just have to write:

#>ant run

A IMS Communicator window appears and we can register the user whom information is
detailed in the file "ims-communicator.xml".

3.3 Application Servers

3.3.1 Different Application servers

An AS is a server that communicates through SIP and DIAMETER interfaces in order to
provide services that can vary from basic telephony services to advanced multimedia
services. There are different application servers. Some of them are open source and the
others are developed by vendors. The most well known open source ASs are Mobicents,

51

OpenSIPs, Sailfin, Asterisk. Some of them are C-based such as OpenSIP and some of them
java-based such as SailFin. Basically, they are SIP application containers. They provide to
the developers the possibility to deploy their application to be used by the IMS Clients
through the IMS architecture. We have chosen as AS, SailFin project [34] because it is an
open source, java-based AS and because we wanted to develop an application based on SIP
Servlet technology. SailFin provides the possibility to deploy SIP applications.

3.3.2 SailFin Application Server

SailFin project is based on robust and scalable SIP Servlets technology on top of a
deployment-quality, Java EE-based GlassFish. This project is contributed by Ericsson.
SailFin, currently, provides JSR 289 compatibility, high- availability, and clustering, and is
integrated with the existing GlassFish services. It adds the SIP Servlet Container based on
JSR 289 to GlassFish. Given the functionality, the SailFin codebase requires GlassFish as
its underlying runtime. In the Figure 3-9 we can find the module architecture of SailFin. As
we already mentioned, the Project SailFin provides a SIP Container for deploying SIP
applications and a Web container for deploying different WEB applications.

Figure 3-9. SailFin Architecture

The SailFin project offers a Web console for administration purposes. This is shown in
the Figure 3-10. This Web console offers the possibility to configure different parameters
such as SIP listening ports and HTTP listening ports. Deploying a SIP Servlet Application
becomes even easier with the Web administration console.

52

Figure 3-10. WEB administration console

3.3.3 Installation and configuration of SailFin

In this section we describe the general procedure how to provision any application server
within OSIMS infrastructure. We describe how to install and configure SailFin. Later on,
we explain how to deploy and run a SIP Servlet application on SailFin. First, we start by
describing the SailFin installation and configuration. SailfinV2 can be found in [35]. Once
we downloaded the source code we can extract the archive.

#>java -Xmx256m -jar sailfin-installer-v2-b31g-Linux.jar
#>cd sailfin

We can edit the file “setup.xml” according to our needs and then we can build and run
SailFin. For instance, we have named the domain as “domain1” and have started it and the
database as follows:

#>chmod -R +x lib/ant/bin
#>lib/ant/bin/ant -f setup.xml
#>./bin/asadmin start-domain domain1
#>./bin/asadmin start-database

The next step in the configuration of SailFin consists in changing the default SIP
listener and external ports. SIP listener are ports on which SIP Servlets listen to incoming
SIP requests and external ports are ports from which it sends outgoing requests. The ports
for SIP traffic and HTTP traffic have to be chosen carefully in order not to be in conflict

53

with the ports already dedicated to the IMS components. The configuration can be changed
through web interface, by default on port 4848, or from the console with the usage of
asadmin tool.

After having installed and configured SailFin we can easily deploy the SIP Servlet
applications. All we need is to open a web interface and navigate through: Common Tasks
 Applications Converged SIP Modules Deploy and specify the following:

 Location – path to the application war, on local file system
 Application name – any application name
 Status enabled – on, automatically starts the application
 Run verifier – on

We can use the command line version by using the “build.xml” application file. For this
we enter in the application directory and use ant after having compile the application.

#>cd /sailfin/samples/sipservlet/Identity
#>ant compile
#>ant deploy

The SailFin instance hosts SIP Servlet application and is ready to be plugged into IMS
infrastructure. We will describe the procedure to provision the application server supporting
ISC interface within Open Source IMS Core infrastructure when we will discuss about the
implementation of the project in the section 4.3.

3.4 Tools used

3.4.1 Wireshark

Wireshark [36] is an open source network packet analyzer. It captures network packets and
tries to display that packet data as detailed as possible. Some of its different features are:

 capturing live packet data from a network interface
 displaying packets with detailed protocol information
 opening and save packet data capture
 filtering packets on criteria (protocol, source, destination)
 searching for packets in many criteria
 showing the call flow of messages between different entities communicating

In this work, these tools were very useful because they enabled us to observe every SIP
message sent between the different entities and help us to debug the program. The

54

installation is traditional. We can download the software from the website or we can
download it via Linux package synaptic manager:

#>apt-get update
#>apt-get install wireshark

Once the Wireshark is installed, we can launch it from a window. With Wireshark, one
has the possibility to capture on one of the different network interfaces. As in this project
we have installed everything in one box, we selected the loopback interface.

By default, Wireshark does not interpret the DIAMETER protocol. If the DIAMETER
messages are not present on the traces then it is probably because the used ports in the
OSIMS haven’t been associated to the protocol. In order to associate them one has to go
through:

Edit > Preferences > Protocols > Diameter
Set up the DIAMETER TCP ports = 3868,3869,3870

Wireshark offers the possibility to have a better view of the trace captured. This is the
coloring rules. You can also write your coloring rules in a file and then import it to
Wireshark.

View > Coloring Rules

3.4.2 Eclipse IDE

Eclipse [37] is a multi-language software development environment written in Java. It is
composed of an integrated development environment and an extensible plug-in system. It
helps us to develop applications in Java and other languages (C/C++, python, php) thanks
to its numerous functions: syntax coloration, completion, debug, project management…).
The installation of this software is also traditional: it can be found on the website or can be
downloaded for console writing:

#>apt-get update
#>apt-get install eclipse

55

4 Implementing a secured identity exchange based
on IMS

In this chapter, we will present the concrete implementation of the secured identity SIP
exchange mechanism presented in the section 2.7. We will first describe the way the work
was organized and shared. Then, we will describe more in detail the different parts of the
implementation. The first task deals with the modification of the IMS Client, which
presents the different functions created in the IMS Communicator open source client. Then,
we will present the principle of filter criteria on the HSS. We will finish with the
development of a SIP Servlet application for securing the identity exchange in the AS. The
reader can find in the Appendix E how to test the project on his own platform.

4.1 Organization of the work

This project was done as joint thesis. The most logical way to implement this project was to
process step by step, making sure that the previous step worked before trying to develop the
other step. We followed the message flow presented in the project in the Section 2.7. These
are the main steps of this implementation. They are not ordered in time, because as
previously mentioned, they were realized in a parallel way:

A. Modify the first INVITE message sent by the caller
B. Modify the behavior of the different SIP servers in the IMS Core Network towards

the new headers present in the incoming message
C. Implement an SIP Servlet application responsible for assuring the identity exchange

on the S-CSCF
D. Modify the behavior of the callee towards this modified message

A representation of this planning is presented in the Figure 4-1.

Figure 4-1. Planning of the project

Concretely, we divided the work in two, so that we could work in parallel.

56

4.1.1 Caroline: Modification of the IMS Client

Caroline’s work was about changing the behavior of the IMS Communicator used as the
IMS client. She first implemented the exchange identity mechanism only between two IMS
clients: UserA and UserB. In this first step, the IMS Core Network didn’t check the
identities and just forwarded the messages to the addressee. Moreover, in this simple case,
UserA and UserB belonged to the same domain.

 Task A: Its representation is given in the Figure 4-2.

a. UserA adds his identity and his signature in the first message “INVITE”
b. The core IMS just forwards it to UserB

Figure 4-2. Task A: UserA sends a request INVITE to UserB

 Task D: Its representation is given in the Figure 4-3.

c. UserB verifies the identity and the signature sent by UserA and adds its own
identity and signature in the SIP response message

d. The core IMS just forwards it to UserA who checks UserB’s identity and saves
it

Figure 4-3. Task D: UserB answers to UserA's INVITE message

57

In this case, the implementation is not final: UserB was not supposed to know the
identity of UserA. It is the server which is supposed to check UserA’s identity and
signature, and then add his own identity and signature that UserB checks. But, at this state
of the project, the fact that UserB is able to check UserA’s identity is a good point. When
the IMS Core Network would take charge of processing of UserA’s new message headers
(after the steps B-C), it would very easy to switch UserB to verify the server’s identity
rather than UserA’s identity.

4.1.2 Gerti: Modification of the Core Network and AS

Gerti’s work was about the modification of the IMS Core Network and the installation of
an Application Server (tasks B-C). The AS is one element that does not exist by default in
the OSIMS project, so he had to first familiarize himself with this entity, and the
technologies associated. Firstly, he started by installing and configuring a basic AS which
could communicate with the OSIMS (task D). The next step was the modification of the
different filters at the level of the S-CSCF so that the SIP messages containing specific
headers could be forwarded to the AS (task C). Once the task A was completed (the IMS
Client sends a SIP INVITE with specific headers containing UserA’s identity), the test and
sign functions specific to the servers could be implemented in a SIP application deployed in
the AS. In this case, UserA and UserB still belonged to the same domain.

 Tasks B & C: Its representation is given in the Figure 4-4. The steps already
implemented in the previous steps are represented in grey; the new implementations
are in black.

 Figure 4-4. Tasks B & C: Implementation of the AS

a. Based on the iFC, the S-CSCF detects the specific headers (containing the
caller’s identity and signature) and forwards the message to the AS.

58

b. The AS realizes the tests of user’s identity and signature. When this user’s
information is verified, it adds its own identity and signature (or rather, the ones
of the home operator) and forwards the message to the S-CSCF.

c. The server forwards it to the proxy which forwards it to UserB.
d. UserB is modified to check the server’s identity and signature, and if they are

verified, he saves UserA’s identity.

Then, the mechanism has a similar functioning in the opposite way: UserB creates the
SIP response and adds his own identity and signature, forwards the message to the P-CSCF
proxy, which forwards it to the S-CSCF. This one, detecting the specific headers, sends the
message to the AS. This one checks UserB’s identity and signature, and then returns the
message so that it can be forwarded to UserA: S-CSCF -> P-CSCF -> UserA.

4.1.3 Next step: Creation of two domain operators

Once the mechanism tested for one operator domain with two users, it is interesting to
implement a scenario where the two SIP users belong to two different domains. In this case,
the roaming agreement between the home operators is necessary to carry the SIP signaling
through the two networks. We could implement a way to apply the principles of the
roaming agreement: the servers have to add and verify their identities and signatures. So,
the interesting thing in this scenario is that it comes closer to the real situation that we
described in the chapter 4.4.

Figure 4-5. Request INVITE between two users belonging to different domains

A representation of this implementation is given in the Figure 4-5.

59

a) After consultation of the I-CSCF, the server forwards it to the addressee’s home
network (UserB belonging to DomainB). The message goes through the network,
reaches the proxy and is forwarded to the addressee’s serving server: S-CSCF_B.

b) Based on the iFC, the server S-CSCF_B detects the specific headers (containing the
caller’s home operator identity and signature), and forwards the message to the
second domain AS.

c) As the home operator of the addressee (DomainB) has a roaming agreement with
the caller’s home operator (DomainA), the AS (belonging to DomainB) can check
its identity and its signature. Then, it returns the message to the UserB’s S-CSCF.

d) The server sends it to the proxy P-CSCF_B which forwards it to UserB.

Then, the process works exactly in the same fashion in the opposite way. This is presented
in the Figure 4-6.

Figure 4-6. Answer to an INVITE between two users belonging to different domains

a) UserB checks his server’s identity and signature, and if they are verified, he saves
UserA’s identity. Then he creates a new SIP response adding his own identity and
signature.

b) UserB’s identity and signature are checked by the server in DomainB, and if they
are verified, the identity and signature of DomainB are added.

c) The message is forwarded to UserA’s home operator, the DomainA.
d) The identity and signature of DomainB are verified, and if they are, the identity and

signature of DomainA are added.
e) The message is forwarded to UserA, which checks his server’s identity and

signature and, if they are verified, he saves UserB’s information.

60

4.2 Modification of the IMS Client

As previously explained, we chose to develop the IMS Communicator client to implement
the project. Before any modifications, the client was able to register to the IMS Core and
have a multimedia call with another IMS client. All the features and functionalities
proposed by this client can be found in [7].

In this project, we needed to modify the behavior of the client according to the secure
exchange of identities mechanism previously described in [9]. “Modifying its behavior”
means modifying the SIP messages that the client sends at different steps of its operation:

1) when sending an INVITE request (UserA in the Task A)
2) when receiving an INVITE request modified (UserB in the Task A)
3) when sending a response to the INVITE request (UserB in the Task D)
4) when receiving this response (UserA in the Task D)

For all of these steps, the same methodology was employed to implement the changes:

 understanding the IMS client way of working. This means which classes and
methods are used in this step

 changing the code to apply the modification
 testing the new code and analyzing the messages sent using the log files and

Wireshark

4.2.1 Sending an INVITE request

The first step was to find “where” the message INVITE was produced in the IMS client.
This means, which classes and which methods were involved when a user wants to call
another user. For this purpose, the easiest way was to analyze the log files. All the actions
performed by IMS Communicator are recorded in a specific file that can be founded in the
folder “/log”. However, to see all the debug information, we had to modify a parameter in
the file “ims-communicator.xml” and set the trace level, which was fixed by default at 16
(stack log), to 32 (stack log + debug log).

<TRACE_LEVEL value="32" />

A new log file “ims-communicator.debug.log” appeared in the folder “/log”. We

found out that when the client sends an “INVITE” request, the creation of the message was
realized by the method Invite in the class “/ims-
communicator/src/net/java/sip/communicator/sip/CallProcessing.java”.

61

We could see in the “INVITE” method that to create the different headers that compose
the “INVITE” message, we always had to follow the same logic:

 create the header (for a new header use “javax.sip.header.ExtensionHeader”)
 test if the header’s syntax was correct
 add the header created to the object of type “javax.sip.Request” called

“INVITE”.

For the sake of commodity, we created a new java class which contains all the
necessary functions to calculate and verify the different identities and the all the attributes
of the client: “Security_ims_project_tools.java”. This class is situated in the
directory: “/ims-communicator/src/net/java/sip/communicator/sip/security”

We created two functions for calculating the HIT (GETHIT) and the signature
(GETSIGNATURE), and some other auxiliary functions (GETPUBLICKEY, GETPRIVATEKEY) and
parameters (String algorithm=”SHA-1”, PublicKey, PrivateKey):

METHOD GETHIT

The method GETHIT takes in parameter the client’s Public key, applies a SHA1 function
and returns a String which contains the hash code generated: HIT. The HIT is defined as the
cryptographic identifier, and is get from the hash on the public key.

We previously had generated different pairs of public/private keys for each entity:
Alice, Bob, Server_Alice and Server_Bob. For example, for Bob, we created two files:
“public_key_file_bob” and “private_key_file_bob” containing the corresponding
cryptographic keys that we placed in the root folder (“/ims-communicator”).

These cryptographic keys, which were saved in files, are then read by the function
GETPUBLICKEY. This method takes in parameter the localization of the file containing the
key, and returns an object of the type “PublicKey” defined in the package
“java.security”.

Then, we used the functions defined with the object
“java.security.MessageDigest” to create the Hash of the public key. It is in the
creation of this object that the variable “algorithm=SHA-1” was used to define the
hash algorithm.

METHOD GETSIGNATURE

In the method GETSIGNATURE, we create the signature associated to the HIT. This signature
is calculated creating a hash of several parameters present in the message, and then by
ciphering it with the private key.

62

We use the Object “java.security.Signature”, initialize it with the object
“java.security.PrivateKey” obtained thanks to the method GETPRIVATEKEY (similar
functioning than GETPUBLICKEY). Then, we update it with the different parameters so that it
can generate a signature associated.

Once these functions defined, we can create the new headers (objects of type
“javax.sip.header.ExtensionHeader”) and add them in the message “INVITE”. For
each header, we just need the name and the value associated:

 “P-End-Pub-Identity”: represents the identity that the client wants to
communicate. Its value is copied from the header “From” (client’s sip address)

 “P-End-Pub-Identity-Info”: represents the cryptographic identity of the client, it
contains the HIT. The value associated is obtained with the function GETHIT.

 “P-End-Identity”: represents the signature associated to the HIT. Its value is
obtained with the function GETSIGNATURE.

After these modifications, we can check with Wireshark and from the logs that the
modifications have been taken into account. Indeed, we can see in the Figure 4-7 a message
“INVITE” with these three new headers issued from the log files.

This “INVITE” request is received by the SIP servers of the IMS Core, which forward it

to the addressee. The reception of this request is described in the next section.

Figure 4-7. Request INVITE modified (sent in the Task A)

63

4.2.2 Receiving a modified INVITE request

Using the same methodology as previously, we discovered that it was the function
“ProcessInvite” from the class “CallProcessing.java” which took in charge the
message “INVITE” received. When the client (UserB) receives the message “INVITE”
modified, he has to check the identity of UserA (his HIT) and the signature associated.

We created 2 new functions in the class
“Security_ims_project_tools.java” (VERIFYHIT and VERIFYSIGNATURE), and
the annex methods (EXTRACTHITUSER, EXTRACTALGUSER) and parameters (PublicKey
public_key_UserA, Boolean hit_verified=false, Boolean

signature_verified=false)

METHOD VERIFYHIT

The method VERIFYHIT takes in parameter the public key file containing the real saved
identity of the sender (UserA) and the header containing the hit in the message “INVITE”
received. It recalculates the real hit, and compares the hit received: if they correspond, it
returns a Boolean “true”.

First, the client UserB calculates the real HIT corresponding to the sender thanks to the
public key of UserA previously saved in the folder “/ims-communicator” of UserB.

Then, he takes the value of the header “P_end_pub_identity_info” and applies the
functions EXTRACTHITUSER and EXTRACTALGUSER to obtain the values of the HIT and the
algorithm associated.

Finally, the function compares these two values (hit expected, hit received) and returns
a Boolean “true” if they correspond each other.

METHOD VERIFYSIGNATURE

The method VERIFYSIGNATURE takes in parameter the public key file and several fields
composing the header, it decodes the signature applying the public key on the data with
which the signature was generated.

In this function, we take advantage of the methods proposed with the Object of type
“java.security.Signature”. Indeed, the function VERIFY enables to check if the
Signature proposed really corresponds to this one expected. The function
VERIFYSIGNATURE returns its result as a Boolean equals to “true” when the signature is
verified.

If the result of these two functions equals to true, we could change the value of the two
Booleans created in the file “CallProcessing.java”: “hit_verified” and

64

“signature_verified” to “true”. These states would enable to later modify the answer
to the INVITE, described in the next point.

Moreover, we save in a file the value of the header “P_end_pub_identity” which
contains the identity that UserA wants to communicate to UserB. For example, if Bob sends
the message “INVITE” to Alice, Alice creates a file “sip:bob@open-ims.test” in
“/ims-communicator” which contains:

<urn:hit:05fdbb0ebdb05125b9a5934b5fec9676a6ebbc2c>;alg=SHA-1.

4.2.3 Answering to the modified INVITE request

For this step, the function SAYOK in the file “CallProcessing.java” is invoked.
This function is called when UserB accepts to answer the call. The corresponding message
is the fourth “200 OK” message sent. It is important not to add the secured identity in the
previous “200 OK” as they are generated before accepting the call.

As previously said, the UserB client first verifies the values of “hit_verified” and

“signature_verified”. If they are both fixed at true, which means that the identity of
the sender is verified, UserB has create a new SIP message based on this one received. He
copies and pastes all the headers (like “From”, “To”, “Call-Id”) and replaces the value of

CSeq: 1 INVITE
From: "bob" <sip:bob@open-ims.test>;tag=742565912
To: <sip:alice@open-ims.test>
Via: SIP/2.0/UDP
10.1.22.101:5080;branch=z9hG4bKc7f87fe5f3ba6c1699aee27d64b02086
Max-Forwards: 70
Contact: <sip:bob@10.1.22.101:5080>
Route: <sip:pcscf.open-ims.test:4060;transport=udp>,
<sip:orig@scscf.open-ims.test:6060;lr>
Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,PRACK,UPDATE
P-Preferred-Identity: <sip:bob@open-ims.test>
Supported: 100rel,precondition,early-session
P-Access-Network-Info: IEEE-802.11
User-Agent: IMS-Communicator 081209
Date_sent: Tue Jun 29 22:13:56 EEST 2010
P-End-Pub-Identity: sip:alice@open-ims.test
P-End-Identity:
302c0214335b5eef8f024529a69df25ee98e88811c5242d6021454e98142de3ab671
be683038f901c39d55ece62f
P-End-Pub-Identity-Info:
<urn:hit:719a95029058615c2b07e5b70f137ac11e95e163>;alg=SHA-1

Figure 4-8. Response to the request INVITE modified (Task D, c)

65

the headers “P_end_pub_identity”, “P_end_pub_identity_info” and
“P_end_identity” filled by UserA’s information, by his own information. This is
basically the same operation than this one that UserA did when he modified the “INVITE”
Message.

After these modifications, we can check with Wireshark and from the logs that the
modifications have been taken into account, and that the answer to the “INVITE” presents
three new headers updated. This can be seen in the Figure 4-8, issued from the logs. This
response is sent to the IMS Core which forwards it to the Caller UserA. Its behavior is
described in the next section.

4.2.4 Receiving the response to its request INVITE

For this step, it is the function PROCESSINVITEOK in the file “CallProcessing.java”
which is invoked. In this case, UserA does exactly the same than UserB has just done. This
means, he verifies UserB’s identity and signature and save UserB’s identity. Then, to start
the direct communication, he sends an ACK2 message to UserB, containing his HIT. This
is a simple UDP message sent to the IP address of the UserB that contains the identities of
the UserA. The reason of this message is to indicate the identity of the UserA directly to the
UserB. Once receiving the UDP message, the UserB verifies the identity received in this
message with the identity that he has already saved during the SIP exchange. This is
another mechanism in order to improve the identity exchange and permit the user to have a
better certainty about the identity of its counterpart.

4.2.5 Clients’ final modifications

As previously described, after these modifications, the mechanism was still basic between
the two users; the server didn’t take part in the process. However, the functions required
only small modifications to make the users verify their operators’ identities rather than the
other SIP user’s one. Indeed, in the code, there is just a variable which takes in
consideration the value of the hit and another for the signature. Rather than taking the value
of the hit of the user (in the header “P-End-Info-Identity”), we changed it so that it
could now take the server’s hit (in the header “Identity-Info”) and signature (in the
header “Identity”). We also realized three new methods: EXTRACTHITSERVER,
EXTRACTALGSERVER, and EXTRACTNAMESERVER. In these headers, there is also information
about the name of the home operator: we created a new function in the class
“Security_ims_project_tools.java”: VERIFYNAME. Finally, the modified IMS client
uses new attributes and main methods, all defined in the file
“Security_ims_project_tools.java” and described in the Table 2.

66

IMS Client – UserA
Attributes:

- (Public Key) Client itself - UserA
- (Private Key) Client itself - UserA
- (Public Key) UserA’s home operator
- (String) Algorithm used for the

authentication
- (Boolean) hit_verified
- (Boolean) signature_verified
- (String) Name of home operator

Methods:
- String GetHIT
- String GetSignature
- Boolean VerifyHit
- Boolean VerifySignature
- Boolean VerifyName

Auxiliary methods:
- PublicKey GetPublicKey
- PrivateKey GetPrivateKey
- String extractHitServer
- String extractAlgServer
- String extractNameServer

Table 2 Attributes and Methods defined in “Security_ims_project_tools.java”

These are the main modifications that we applied to the IMS Communicator client to
implement the secured identity exchange mechanism. There are still some auxiliary
methods that we needed to implement but those aren’t very important for the
comprehension of the project. These classes realize basic functions, as calculations or
translations, and are used by more important classes. The next sections focus on the
implementation related to the IMS Core (Tasks B&C).

4.3 Filter Criteria on the HSS

After the short introduction to the initial Filter Criteria concept presented in the chapter
2.2.4, we continue by presenting the modifications that we have done to implement our
own iFC. Of course before starting we should make sure that the OSIMS infrastructure is
set up and running. We verified this by analyzing the traffic with a network analyzer such
as Wireshark.

The purpose of this iFC would be to invoke an AS, as shown in the Figure 4-9, when
the S-CSCF receives SIP INVITE requests that contain some particular headers such as
“Pub-End-Identity”, “P-End-Identity-Info”, “Identity” or “Identity-Info”.
Actually these headers are respectively the signature of the SIP entities sending the
message and their identity. We described earlier how these headers are calculated. The SIP
entities can be SIP users or the S-CSCF.

67

Figure 4-9. AS Invocation [38]

As we mentioned before, the role of the SIP application that we developed is to verify
the identity and the signature of the SIP entity when a SIP “INVITE” message arrives to the
S-CSCF. Then, to add the identity of this S-CSCF in the “INVITE” message and fianlly do
the same task when the callee sends the SIP response to the previous SIP “INVITE” request.

For these reasons we created an iFC and then integrated it to the user profiles in order to
benefit from this application. The FHoSS web interface, listening by default on port 8080,
helped us to do all the configurations needed. We went through different steps in order to
configure the iFC. All the configurations presented below needs to be done in admin mode
through the FHoSS web interface available on http://127.0.0.1:8080.

Firstly, we added a new application server. For that we needed to specify its address in
the form of SIP URI and the default behavior of the S-CSCF in case of connection failures.
This is done through: Services Application Servers Create and specify the
following values. As examples, we provide the names we have used in our iFC.

 “Name” – any unique name. Example: “sailfin”
 “Server Name” – it must be a valid SIP URI which resolves to application server

address. Example “sip:sailfin.open-ims.test:41981”
 “Diameter FQDN” – fully qualified domain name. Example: “sailfin.open-

ims.test”
 “Default Handling” – default behavior of the S-CSCF in case of connection

errors. Example: “Session – Continued”
 “Service-Info” – required, if used by the application.

68

Secondly, we had to create a service profile. This step is a little bit more complicated
than adding an application server. In order to create a service profile we need to perform
the following three steps:

 create Trigger Point
 create Initial Filter Criteria
 create Service Profile itself

Trigger point defines a set of conditions under which particular SIP request is
forwarded to the AS. Particular conditions are provided by Service Point Triggers (SPTs) in
the form of the regular expression. The Trigger Point is created through: Services
Trigger Points Create and specify the following values:

 “Name” – any unique name. Example: “SailfinTP”
 “Condition Type” – logic by which SPTs are evaluated. Example :“Disjunctive

Normal Forme”

After this we specified the set of appropriate SPTs constituting this Trigger Point (TP)
and provided optional list of already existing iFC to which this Trigger Point is attached.
The Figure 4-10 shows how the TP of the iFC that we have configured in order to invoke
the application we developed looks like.

Figure 4-10. Identity Filter Criteria

Initial Filter Criteria defines a correlation between a set of Trigger Points and particular
application server responsible for the execution of the associated service. The IMS

69

standards specify that iFC can have from one to “n” attached Trigger Points. In the FOKUS
OSIMS implementation there can be only one. So generally in order to create iFC we need
to specify the previously created Trigger Point and desired application server address. For
this we navigate through: Services Initial Filter Criteria Create and
specify the following values:

 “Name” – any unique name, Example “SailfinFilter”
 “Trigger Point” – name of the already existing Trigger Point, Example

“SailfinTP”
 “Application Server” – application server name, Example: “sailfin”
 “Profile Part Indicator” – specifies the registration state condition for criteria

evaluation.

Then we created a Service Profile and assigned to it a prioritized list of iFC including
the one just created. If no iFC is specified, then this Service Profile will not invoke any
service logic and all requests would be processed without evaluation. In our case, the
service profile is shown in the Figure 4-11. For creating a Service Profile we navigate
through: Services Service Profiles Create and specify the following values:

 “Name” – any unique name, Example: “default_sp”
 “IFCs” – set of attached Initial Filter Criterias. Example: “SailfinFilter”

Figure 4-11. Service Profile

As the FHoSS, by default, comes provisioned with a couple of sample users, we didn’t
create new user accounts. If this is needed, it can be done very easily through the FHoSS
WEB interface.

70

Finally, we activated a Service Profile for a particular user by assigning it to one of his
IMPU’s (Public User Identity). The user can be found by navigating through User
Identities Public User Identity Search. Then we just set the Service Profile
field with the appropriate value. In the Figure 4-12 is shown the configuration in our
example.

Figure 4-12. User Profile

Now that we have finished configuring an iFC we are ready to test it using the
appropriate IMPU with the services hosted on the application server. In the next section we
introduce the SIP Servlet application that we have developed.

4.4 Developing a SIP application for securing the identity
exchange

The aim of this part of the project was to implement a module in the S-CSCF. We already
have mentioned in the beginning of this chapter the role of this module. This module can be
implemented directly by modifying the code of the S-CSCF or can be implemented as a SIP
application and then deployed in the AS. Knowing that the S-CSCF is coded in C, if we had
chosen this way of doing, then we would have had to code in C and would have spent a lot
of time in understanding the sources code of this server. In other words, it was easier to
develop a SIP application rather than to modify the code of the S-CSCF. At the same time,
implementing this module directly in the S-CSCF would mean that this SIP server would
have to support all the added burden coming from the amount of users that want to perform
a call with identity exchange.

71

We decided to implement this module by developing a SIP application based on SIP
Servlet technology and then deploying it on the SailFin AS. By this way we have a “plug
and play” solution that can be deployed easily in another AS and be used in other IMS
platforms. We chose SailFin as an application server because it is a Java-based AS that
provides SIP Servlet container. Moreover, this solution helps to delegate the added burden
to the AS and to maintain the performances of the S-CSCF.

4.4.1 Overview of the SIP Servlet application

In this section we will explain the SIP application and the java classes that we have
developed. This application is based on a SIP Servlet and follows all the requirements of a
SIP Servlet application. In the Table 3 the reader can find the file structure of the SIP
application developed named “identity”.

File Description

WEB-INF/ Configuration and executable files of the SIP application are in
this directory.

WEB-INF/sip.xml The SIP Servlet-defined configuration file for the SIP application.

WEB-INF/web.xml The Java EE standard configuration file for the Web application.

WEB-INF/classes Store compiled class files in the directory. Both HTTP and SIP
servlets can be stored in this directory.

WEB-INF/lib Store class files archived as Jar files in the directory.

Table 3 SIP Application file structure

Both “sip.xml” and “web.xml” have similar information except <servlet-mapping>
setting. Another difference between the “sip.xml” and “web.xml” is that in “web.xml”
we can specify a servlet associated with the file name portion of URL. But SIP has no
concept of the file name. Filter conditions can be set using URI or the header field of a SIP
request. The following “sip.xml” example shows that a SIP Servlet called “identity” is
assigned all “INVITE” methods.

<sip-app>
 <display-name>SIP Identity</display-name>
 <description>SIP Identity application</description>
 <servlet>
 <servlet-name>identity</servlet-name>
 <description>Identity SIP servlet</description>
 <servlet-class>com.ericsson.sip.IdentityServlet</servlet-
class>
 <load-on-startup>1</load-on-startup>
 </servlet>

72

 <servlet-mapping>
 <servlet-name>identity</servlet-name>
 <pattern>
 <or>
 <equal>
 <var ignore-case="false">request.method</var>
 <value>INVITE</value>
 </equal>
 </or>
 </pattern>
 </servlet-mapping>
</sip-app>

As the iFC we configured in the previous section, sends to the AS all “INVITE” SIP
messages that contain the specific headers, the application that we developed should have a
SIP Servlet responsible for receiving the “INVITE” messages. The SIP Servlet “identity”
extends the “javax.servlet.sip.SipServlet” class and implements the
“javax.servlet.Servlet” interface. It overrides the DOINVITE method. This application
is responsible for:

 receiving all the “INVITE” requests forwarded by the S-CSCF according to the iFC
 verifying if the request comes from a SIP user or from a S-CSCF of another IMS

domain
 verifying the sender identity of the message and his signature. If the sender is a SIP

user that has already been registered in the domain, the application will have to
identify its identity based on the Public Key of that user and his signature based on
the headers present on the message. We assume that the S-CSCF is in possession of
the Public Key of the user. If the message comes from another operator, based on
the trust that the operators have between them, the identity and the signature of the
S-CSCF of that operator is verified. The operators have previously exchanged their
Public Identities.

 adding the S-CSCF identity and signature
 forwarding the message to the S-CSCF

The SIP Servlet application has to deal in the same fashion with the response of the
“INVITE” message sent by the callee to the caller. The servlet we developed, also has to
override the DORESPONSE method. In this case we don’t need to create a specific iFC,
because every response follows the same path as the request, so they are directly forwarded
from the S-CSCF to the AS.

73

4.4.2 Identity exchange SIP Servlet application

After this brief introduction of the main functions of the SIP Servlet application, we go
deeply in details of how we have coded it and present the main java classes and methods
used. But first of all, we have to keep in mind that this case of study is based on a call
between two IMS user. UserA sends an “INVITE” Request to UserB. We name S-CSCF_A
the SIP server of UserA and S-CSCF_B the SIP server of UserB. We assumed the case
where the two users have already been registered in two different IMS domains.

As already presented in the previous section, the UserA sends his modified “INVITE”
Request to the UserB. In this Request there are some new headers such as “P-End-Pub-
Identity”, “P-End-Identity-Info” and “P-End-Identity”. When this Request
arrives to the S-CSCF_A, after having passed through the P-CSCF_A and optionally
through the I-CSCF_A, it is forwarded to the AS based on the iFC we already configured.
As the “sip.xml” file indicates, the “INVITE” Request is received by the “identity”
Servlet, the SIP application developed in this project. In the following code we present the
structure of the SIP Servlet developed.

public class IdentityServlet extends SipServlet implements
 SipErrorListener,Servlet {

 @Override
 protected void doInvite(SipServletRequest request) throws
 ServletException, IOException {
 if(cp.verifyIdentity(request, public_key_file_user,
 "type_user")==true){
 cp.addIdentityS(request, public_key_file_server,
 private_key_file_server);
 }
 Proxy proxy = request.getProxy();
 proxy.setSupervised(true);
 proxy.proxyTo(request.getRequestURI());
 }

 @Override
 protected void doResponse(SipServletResponse response)throws
 ServletException, IOException {
 if(cp.verifyIdentity(response,
public_key_file_user,"type_user")==true)
 {
 cp.addIdentityS(response, public_key_file_serverA,
 private_key_file_serverA);

 }
 super.doResponse(response);

} } }

74

All the auxiliary methods used for verifying or adding the identity and the signature of
the user or the server are gathered in the “Security_ims_project_tools.java” class in
the package “com.ericsson.sip.security”.

The first thing that the Servlet has to do is to know, if the Request came from the SIP
server of the other domain or if it came from one of its own users. Let’s assume that the
application server associated to S-CSCF_A has to check a message “INVITE” coming
from UserA already registered in the S-CSCF_A. In this case, the AS has to check the
identity of UserA (his HIT) and the signature associated. These verifications are done
through the method VERIFYIDENTITY of the “CallProcessing.java” class in the package
“com.ericsson.sip”.

METHOD VERIFYIDENTITY

This method takes as parameters:

 a SIP message
 the public key of the SIP entity the request comes from
 the type of the sender: it can be a IMS user or the S-CSCF of another domain

This method verifies the identity and the signature of the SIP entity with the two

methods that we already presented in the SIP user code. These methods are VERIFYHIT and
VERIFYSIGNATURE. They are both defined in the “Security_ims_project_tools.java”
class. If the identity and the signature are verified then the VERIFYIDENTITY returns a
Boolean “true”.

Once the verification of the identity and signature are done, S-CSCFA has to add its
identity and its signature to the SIP “INVITE” message. This is done through the method
ADDIDENTITYS of the “CallProcessing.java” class.

METHOD ADDIDENTITYS

This method takes as parameters:

 a SIP message
 the public key of the SIP Server
 the private key of the SIP Server

This method uses the same methods that we already presented when describing how the
IMS user adds his identity and his signature to the “INVITE” message. The methods

75

GETHIT and GETSIGNATURE used for creating the identity and the signature of the server are
also coded in the “Security_ims_project_tools.java” class.

After this step, the AS has to forward the “INVITE” message to S-CSCF_A which will
be responsible of forwarding it to S-CSCF_B, the SIP server of the other domain where the
second IMS user is registered. The Figure 4-13 shows a typical message “INVITE” that is
sent from the domain of UserB=Bob (“domainB”) to the domain of UserA=Alice
(“domainA”). We can see the identity and the signature of S-CSCF_B (“homeB”)and also
the identity and the signature of Bob who wants to start the conversation.

Figure 4-13. SIP INVITE from “Domain_B” to “Domain_A”

Once the “INVITE” message arrives to the S-CSCF_B, it is forwarded to the AS of this
domain based on the iFC configured. Then the following procedures are in the same
fashion as before. The difference is that now the S-CSCF_B has to verify the identity and
the signature of S-CSCF_A and then add his own identity and signature to the headers of
the message and forward it back to the UserB.

The SIP Response follows the same path as the SIP “INVITE” Request and the same
methods were applied in order to verify and add the identities and the signatures of the SIP
entities. Once the SailFin is installed and configured we can deploy the application through
the WEB interface or through the “build.xml”.

76

5 Results and discussion

In this part, we will present the results of the implementation of the project. At the
beginning we will give general results that have been revealed during this work and then
we will go through the relevant Wireshark screen shots to analyze the different SIP
messages. We will analyze step by step the messages transiting in the network through the
different entities when an IMS user wants to call another IM Client. Finally we will give
some improvements to be considered for future research.

5.1 General results

The mechanisms presented on this work have been evaluated according to their scalability
aspects. Adding new headers on the SIP messages augment the size of these messages. The
process of verifying the identity and the signature every time the SIP messages pass
through a SIP entity generate new calculations and therefore augment the time delay. The
main problem that the size of the “INVITE” messages can cause is the possibility to switch
from a UDP datagram to TCP if the UDP datagram is too large. This can be prevented by
encoding properly the packet. We have analyzed the SIP messages containing the new
headers. This has shown that the total size of the SIP message does not overpass the
maximum size of the UDP datagram.

The result of this work is that the high level architecture presented in order to enhance
the security aspects of multimedia communications based on IMS architecture and SIP
exchange is implementable. Nevertheless some scalability aspects such the size of the new
SIP packets and the time delay has to be taken into account.

5.2 Packet analysis

In our test runs, it is Bob (“sip:bob@open-ims.test”) who calls Alice
(“sip:alice@open-ims.test”). They both belong to the same domain (“open-
ims.test”) and are already registered. These are the different IP addresses of the entities:

 Bob: 10.1.22.101
 Alice: 10.1.22.101
 P-CSCF: 10.1.2.102
 I-CSCF: 10.1.2.103
 S-CSCF: 10.1.2.104
 AS: 10.1.2.109

77

The Figure 5-1 shows the first “INVITE” message sent by Bob to his proxy (P-CSCF). We
can see the IMS-specific headers composing the SIP message like “Call-ID”, “CSeq”,
“From”,” To”, “Via”, “Contact”, “Route” and “Allow”. There are also the identity-
specific headers that we added with the different methods described in the previous section:

 “Date_sent”: Contains the date when the message was produced. In fact, IMS
Communicator didn’t create this header by default, so we had to add it.

 “P-End-Pub-Identity”: Contains the identity that Bob wants to communicate to
his interlocutor, Alice.

 “P-End-Pub-Identity-Info”: Contains Bob’s cryptographic identifier (HIT)
and the algorithm to use to decipher it (ALG)

 “P-End-Identity”: Contains the Signature protecting the message.

Then, the proxy just forwards the message to the I-CSCF which consults the database
HSS to know the S-CSCF associated to Bob. Then it forwards the “INVITE” message to
it. These two SIP servers don’t do much more than forwarding the message. The headers
that we use to calculate the signature are not removed nor modified. The proxy just
modifies the header “Route” to indicate its address for the future answer to pass by him,
and add some headers that we did not use in this project. As a consequence, the messages
forwarded by P-CSCF and I-CSCF are quite the same than this one sent in the Figure 5-1.

Figure 5-1. Request INVITE : Bob -> P-CSCF

78

The Figure 5-2 shows the “INVITE” message received by the S-CSCF associated to
Bob. It, according to the iFC, forwards the specific “INVITE” message to the Application
Server. In the AS is the SIP application responsible for securing the identity exchange. We
can notice that once again the message hasn’t been modified. Then, the SIP application on
the AS performs its tasks: check Bob’s identity, and check the authenticity of the message.
It can accomplish these tasks with the help of the value of the HIT, the algorithm contained
in the header “P-End-Pub-Identity-Info”, the signature contained in “P-End-

Identity”, and the other headers used to calculate the signature. In the Figure 5-3, the
application server has finished its controls, and has added its specific headers as the user
has been identified:

 “Identity-Info”: Contains the server’s name domain, own HIT (net), and
algorithm uses in order to obtain the hit.

 “Identity”: Contains the corresponding signature.

All the headers previously added are still present in the message. After several
communications with the I-CSCF of Alice in order to find the C-SCSF associated to Alice,
Bob’s S-CSCF forwards it to the S-CSCF of Alice. It is assumed that Bob and Alice home
operators have a pre-established roaming agreement.

Figure 5-2. Request INVITE: S-CSCF_Bob -> AS

79

Figure 5-3. Request INVITE: S-CSCF_Bob -> S-CSCF_Alice

Figure 5-4. Request INVITE: P-CSCF_Alice -> Alice

In the Figure 5-4, we can see that the SIP Server corresponding to Alice has replaced
the headers “Identity” and “Identity_Info” with its own information. The information

80

related to Bob’s identity has not been changed. This message is forwarded to Alice who
checks the headers related to her home operator. Actually, she checks her operator’s hit,
name, and signature.

If the identity of the server of Alice is verified by Alice, it means that the message can
be trusted. The assurance issued by her server about the carried Bob’s identity, enables her
to trust it too. As a consequence, she saves Bob’s information (hit and address) and answers
to Bob’s request in the 4th “200 OK” as shown in the Figure 2-10. This message
corresponds to the message sent when Alice accepts a call. The Figure 5-5 shows the SIP
response of Alice to the “INVITE” message. She forwards the message to her P-CSCF. This
proxy forwards the message to Alice’s S-CSCF.

Figure 5-5. Response 200OK: Alice -> PCSCF of Alice

Figure 5-6. Response 200OK: S-CSCF_Alice -> S-CSCF_Bob

81

In the Figure 5-6, we can see that the process is realized in the opposite direction: still
through the application server associated, the server of Alice checks Alice identity, and
then adds its own identity. It forwards the message to the server of Bob, which checks the
identity of Alice’s server. Then, if this identity is verified, it replaces Alice server specific
headers with its own information and forwards it to the Bob’s proxy.

In the Figure 5-7, Bob’s P-CSCF forwards to him the Response “200 OK” coming from
Alice. It contains Bob’s server and Alice’s identity information. Bob first checks the
server’s identity fields. If they are verified, it means that it can trust this message, and Alice
identity which is associated. It saves Alice’s cryptographic identifier (HIT).

Figure 5-7. Response 200OK: S-CSCF_Bob -> Bob

Once these different exchanges are performed, Bob and Alice are in possession of their
respective secured identities, which have been asserted by their own trusted home
operators. As a consequence, they can start to directly talk together. Their identities have
been exchanged in a secure way, so they can be sure of their correspondent’s identity.

5.3 Call Flow

In this section, we present the message call flow. The Figure 5-8 enables to see an overall
view of the messages exchanges, the involved entities, and to notice the differences with a
basic call setup: we can see that there are some messages forwarded to the entity
“10.1.22.109”, which is the Application Server.

82

83

Figure 5-8. INVITE Call Flow between Bob and Alice

5.4 Improvements

Now that the basic functioning is working, we could implement some enhancements to
improve this work. First, we could configure this secured exchange identity mechanism as
an option when launching the Client IMS Communicator. At present, the mechanism is
automatically activated; the headers are directly modified when starting the Client IMS.
Moreover, we could think about the reaction of the different entities when one’s identity is
not verified: should the entity send an error message or not, in case someone was trying to
launch a Denial of Service attack for example. Maybe an alternative solution could be to
limit the amount of error messages per identity.

 We also could make the sources’ use more dynamic: for the configuration of the Client
(like to indicate the localization of the Public and Private Keys, the algorithm used to
calculate the HIT, the name of the domain operator), it would be nicer to add them in the

84

file Configurator.xml which defines all the configuration of the IMS client rather than
letting them defined in java classes.

We could also think about the way we generated and saved the cryptographic keys in
the IMS Clients and in the S-CSCFs. For the moment, there are saved in files that the
programs can read. A better solution for the application server would be to save this
information in the HSS database. In this case it would enable to save many identities.

Moreover, the distribution of these keys can also be studied. In the solution we
presented in this work, they are pre-saved at the user and server code source directory. This
scenario can be realistic as it would look like the one used for the shared secret between a
phone user and his operator which is already saved in the SIM card of the user before he
buys the phone. But we could also imagine a scenario where the cryptographic Keys
distribution would be dynamically realized every time a SIP user wants to call another SIP
user.

Simulate a real roaming of a user in a visited network could be envisaged, but seems to
be a little bit complicated to implement. Indeed, this implicates a lot of programming to
realize the roaming, and all the carried signaling. Nevertheless, implementing this scenario
could be really interesting for the future of this project. It would enable us to have a better
vision of its realistic characteristics.

5.5 Future work recommendations

Even though in this work we haven’t exchanged any HIP specific information, there are
some similarities to its use. The work can be improved in the future by implementing a real
HIP identity association through a four way handshake mechanism as presented in the
Figure 5-9.

The simple difference might be that in this case there will be no I1 message and the user
A will start the handshake by sending in a HIP packet the message R1 which is meant to be
a SIP “INVITE” message containing the identity and keying information of that user. Then
the exchange will follow as a typical HIP handshake. No puzzle scheme is needed because
it is supposed that the sender is known by the signaling network by being registered with
the home operator using Authentication and Key Agreement (AKA) procedure.

85

Figure 5-9. HIP handshake [9]

Another direction for future work can be the usage of a certificate. With the presented
mechanisms, the identity and the other keying information are in the body section of the
message. There can be another way of including them in a kind of certificate. This solution
authorizes another network element to take care of the HIP negotiation as presented in [39]
and then explained more in detail in [9].

86

6 Conclusions

During this master thesis we have accomplished several tasks that were set as objectives at
the very beginning of the work. We succeed in installing and configuring two IMS
platforms and integrate IMS clients on them. At the same time we implemented an AS on
which we deployed the SIP Servlet application. The main purpose of the work was to
implement a secure identity exchange based on the IMS architecture. For this, we modified
the IMS client code by developing new classes and methods in order to calculate and then
add the identity and the signature of the client and also to verify those of the SIP server.
The same functionalities have been developed for the S-CSCF to assert its identity to its
own users using the trust established by the roaming agreement.

The identity that we added as a new header (hash of the SIP entity public key) on the
SIP messages is similar to HIT. Even though this identity is based on the HIT
representation it is not exactly the same as HIT in a typical HIP exchange. In this work we
haven’t implemented HIP specific exchange, but just the assured identity exchange.

All this work relies on the fact that the trust between two end SIP entities is based on
the existing trust relationship between the operators. In addition, every entity is in
possession of a secure cryptographic identifier. One of the prerequisites of this work is that
the IMS user has already registered previously with the home operator and has
communicated his identity to its operator. At the same time the operators have
communicated their identity to the users. In this case, the operator can check the
correspondence of the identities and once those identities verified it can add its own
identity. As the IMS users trust their own home operators and as the operators trust each
other based on the pre-established agreement, the end users can be sure about the identity of
their counterparts.

The mechanisms presented on this work have been evaluated according to their
scalability aspects. We have analyzed the SIP messages containing the new headers. This
has shown that the total size of the SIP message does not overpass the maximum size of the
UDP datagram. The result of this work is that the high level architecture presented in order
to enhance the security aspects of multimedia communications based on IMS architecture
and SIP exchange is implementable. Nevertheless some scalability aspects such the size of
the new SIP packets and the time delay has to be taken into account.

87

References

The validity of the online references has been checked on September 11, 2010.

[1] ITU. The World in 2009: ICT FACTS AND FIGURES. A decade of ICT growth
by mobile technologies. (2009) [Online]. http://www.itu.int/ITU-
D/ict/material/Telecom09_flyer.pdf

[2] Dharwadkar S. N., Masood N.: Next Generation Network. Consumer Electronics,
2007. ISCE 2007. IEEE International Symposium on, ISBN: 978-1-4244-1109-2.

[3] Jarry-Lacombe B.: Network Global Strategy; Fixe/mobile convergence and IMS.
Telecommunications Network Strategy and Planning Symposium. Networks 2008.
The 13th International.

[4] ETSI Mobile Competence Centre (MCC). Overview of 3GPP Release 5. (Jun.
2003) [Online]. http://www.3gpp.org/article/ims

[5] FOKUS, OSIMS (Open Source IMs Core). [Online].
http://www.fokus.fraunhofer.de/en/fokus_testbeds/open_ims_playground/compone
nts/osims/index.html

[6] Handa A.: System Engineering for IMS Networks. Chapter 1 Introduction to IMS.
ISBN-10: 0750683880. 2008.

[7] Camarillo G., García-Martín M. A.: The 3G IP multimedia subsystem (IMS):
merging the internet and the cellular worlds. John Wiley & Sons pp. 1-268. May
2006.

[8] Poikselka M., Mayer G., The IMS: IP Multimedia Concepts and Services, 3rd
edition. Wiley. 2009.

[9] Heikkinen S.: Establishing a Secure Peer Identity Association Using IMS
Architecture. The Third International Conference on Internet Monitoring and
Protection, pp.145-151. 2008.

[10] Open IMS Core, FAQ. [Online]. http://www.openimscore.org/faq/
[11] Perea R. M., Internet Multimedia Communications Using SIP: A Modern

Approach Including Java Practice - 4th Edition. Morgan Kaufmann. 2008.
[12] Rosenberg et. al.: Session Initiation Protocol (SIP). RFC 3261. Jun. 2002.
[13] Handley M. et al.: Session Description Protocol (SDP). RFC 4566. Jul. 2006.
[14] Berners-Lee T. et al.: Uniform Resource Identifier (URI): Generic Syntax, RFC

3986. Jan. 2005.

88

[15] Sun Microsystems. The SIP Servlet Tutorial. [Online].
http://docs.sun.com/app/docs/doc/820-3007?l=en

[16] Ranganathan M., O'Doherty P.: JAIN SIP Developer Tools. [Online]. https://jain-
sip.dev.java.net/

[17] Package javax.servlet.sip. [Online].
http://www.wesip.com/mediawiki/API/javax/servlet/sip/package-summary.html

[18] Dauman A.: How to implement an open IP encryption flow. (2006) [Online].
http://www.eetimes.com/design/industrial-control/4014835/How-to-implement-an-
open-IP-encryption-flow

[19] Software Technology Support Center. (Nov. 2009) [Online].
http://www.stsc.hill.af.mil/crosstalk/2009/11/0911ChandlerLoyless.html

[20] Idrissi K.: Coding techniques and modulations, Data encryption lecture. INSA
Lyon, Telecommunications, Services and Uses. 2008.

[21] Hunter M. T., Clark R. J., Park F. S.: Security Issues with the IP Multimedia
Subsystem (IMS): A White Paper. 2007.

[22] Network working group Franks J.: HTTP Authentication Basic and Digest Access
Authentication. RFC 2617. Jun. 1999.

[23] Salsano S., Veltri L., Papalilo D.: SIP security issues: the SIP authentication
procedure and its processing load, IEEE Network 16 (6) 38–44. 2002.

[24] Wang F., Zhang Y.: A new provably secure authentication and key agreement
mechanism for SIP using certificateless public-key cryptography. 2008.

[25] 3GPP. Security architecture. 3rd Generation Partnership Project Technical
Specifications, TS 33.102 V7.1.0. Dec. 2006.

[26] Peterson J.: Session Initiation Protocol (SIP) Authenticated Identity Body (AIB)
Format. RFC 3893. Sep. 2004.

[27] The Open IMS Core Project. [Online]. http://openimscore.org/
[28] FOKUS OPEN IMS PLAYGROUND, Fraunhofer. Serving CSCF. [Online].

http://www.fokus.fraunhofer.de/en/fokus_testbeds/open_ims_playground/compone
nts/osims/cscfs/s_cscf/index.html

[29] 3GPP. IP Multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling flows and
message contents. Specification detail: 29.228. Release 5. [Online].
http://ftp.3gpp.org/specs/html-info/29228.htm

[30] OpenIMSCore, Installation Guide. [Online].
http://openimscore.org/installation_guide

[31] Communications Research Group at the University of Cape Town, South Africa.
UCT IMS Client. (2008) [Online]. http://uctimsclient.berlios.de/

89

[32] FOKUS Fraunhofer, Monster the client. (2009) [Online]. http://www.monster-the-
client.org/

[33] Inovação PT. IMS Communicator. [Online]. http://imscommunicator.berlios.de/
[34] Sailfin Project. [Online]. https://sailfin.dev.java.net/
[35] Download SailFin Builds. [Online].

https://sailfin.dev.java.net/downloads/download_linux.html
[36] Wireshark. Analyze Wireless Data And Get Results. [Online].

http://wireshark.com/
[37] Eclipse, Open source community. [Online]. http://www.eclipse.org/
[38] Dinsing T. et al.: Service composition in IMS using Java EE. Ericsson Review No.

3, 2007.
[39] Koponen T., Gurtov A., Nikander P.: Application mobility with Host Identity

Protocols. Proceedings of Network and Distributed System Securty Workshop'05.
Feb. 2005.

[40] NIST-SIP: The Reference Implementation for JAIN-SIP 1.2. [Online].
http://snad.ncsl.nist.gov/proj/iptel/jain-sip-1.2/javadoc/overview-summary.html

90

Appendix A: Configuring virtual interfaces on “/etc/network/interfaces”

auto lo
iface lo inet loopback

auto lo:1
iface lo:1 inet static
 address 10.1.22.101
 netmask 255.255.255.0

auto lo:2
iface lo:2 inet static
 address 10.1.22.102
 netmask 255.255.255.0

auto lo:3
iface lo:3 inet static
 address 10.1.22.103
 netmask 255.255.255.0

auto lo:4
iface lo:4 inet static
 address 10.1.22.104
 netmask 255.255.255.0

auto lo:5
iface lo:5 inet static
 address 10.1.22.105
 netmask 255.255.255.0
auto lo:6
iface lo:6 inet static
 address 10.1.22.106
 netmask 255.255.255.0
auto lo:7
iface lo:7 inet static
 address 10.1.22.107
 netmask 255.255.255.0
auto lo:8
iface lo:8 inet static
 address 10.1.22.108
 netmask 255.255.255.0
auto lo:9
iface lo:9 inet static
 address 10.1.22.109
 netmask 255.255.255.0

iface eth0 inet dhcp

91

Appendix B: DNS zone configuration file /etc/bind/open-ims.dnszone

$ORIGIN open-ims.test.
$TTL 1W
@ 1D IN SOA localhost. root.localhost. (
 2006101001 ; serial
 3H ; refresh
 15M ; retry
 1W ; expiry
 1D) ; minimum

 1D IN NS ns
ns 1D IN A 10.1.22.103

dns 1D IN A 10.1.22.101

pcscf 1D IN A 10.1.22.102
_sip.pcscf 1D SRV 0 0 4060 pcscf
_sip._udp.pcscf 1D SRV 0 0 4060 pcscf
_sip._tcp.pcscf 1D SRV 0 0 4060 pcscf

icscf 1D IN A 10.1.22.103
_sip 1D SRV 0 0 5060 icscf
_sip._udp 1D SRV 0 0 5060 icscf
_sip._tcp 1D SRV 0 0 5060 icscf

open-ims.test. 1D IN A 10.1.22.103
open-ims.test. 1D IN NAPTR 10 50 "s" "SIP+D2U" "" _sip._udp
open-ims.test. 1D IN NAPTR 20 50 "s" "SIP+D2T" "" _sip._tcp

scscf 1D IN A 10.1.22.104
_sip.scscf 1D SRV 0 0 6060 scscf
_sip._udp.scscf 1D SRV 0 0 6060 scscf
_sip._tcp.scscf 1D SRV 0 0 6060 scscf

imsCommA 1D IN A 10.1.22.106
_sip.imsCommA 1D SRV 0 0 5070 imsCommA
_sip._udp.imsCommA 1D SRV 0 0 5070 imsCommA
_sip._tcp.imsCommA 1D SRV 0 0 5070 imsCommA

imsCommB 1D IN A 10.1.22.107
_sip.imsCommB 1D SRV 0 0 5080 imsCommB
_sip._udp.imsCommB 1D SRV 0 0 5080 imsCommB
_sip._tcp.imsCommB 1D SRV 0 0 5080 imsCommB

trcf 1D IN A 127.0.0.1
_sip.trcf 1D SRV 0 0 3060 trcf
_sip._udp.trcf 1D SRV 0 0 3060 trcf
_sip._tcp.trcf 1D SRV 0 0 3060 trcf

bgcf 1D IN A 127.0.0.1
_sip.bgcf 1D SRV 0 0 7060 bgcf

92

_sip._udp.bgcf 1D SRV 0 0 7060 bgcf
_sip._tcp.bgcf 1D SRV 0 0 7060 bgcf

mgcf 1D IN A 127.0.0.1
_sip.mgcf 1D SRV 0 0 8060 mgcf
_sip._udp.mgcf 1D SRV 0 0 8060 mgcf
_sip._tcp.mgcf 1D SRV 0 0 8060 mgcf

hss 1D IN A 10.1.22.105

sailfin 1D IN A 10.1.22.109

pcrf 1D IN A 127.0.0.1
clf 1D IN A 127.0.0.1

Appendix C: Functionning of IMS Communicator

Using Wireshark, we could launch a simulation and follow the different messages
exchanged by the different entities. In this simulation, we have one IMS Client that is
performing a registration to his home operator. The message flow is shown in the Figure
8-1. In this one, the addresses of the different entities are:

 IMS Client: 10.1.22.101
 P-CSCF : 10.1.22.102
 I-CSCF : 10.1.22.103
 S-CSCF :10.1.22.104

Figure 8-1. REGISTER Call Flow

93

This Figure can be understood by reading it step by step:

10.1.22.101 -> 10.1.22.102: SIP. Request “REGISTER” (1)

The request “REGISTER” created by the user is first sent to the P-CSCF (the proxy is
always the first point of contact of the user). This message contains the IMS Client SIP
identity.

10.1.22.102 -> 10.1.22.103: SIP. Request “REGISTER” (1)

The proxy just forwards it to the interrogating server to check the user’s identity.

10.1.22.103 -> 10.1.22.104: SIP. Request “REGISTER” (1)

After interrogating the database HSS, the I-CSCF forwards the request to the S-CSCF
associated to the user.

10.1.22.104 -> 10.1.22.103: SIP. Status “401 Unauthorized”

The S-CSCF sends a message “401 Unauthorized” containing a challenge to the I-
CSCF. This challenge aims at authenticating the user, by providing a puzzle that he is the
only one able to solve.

10.1.22.103-> 10.1.22.102-> 10.1.22.101:SIP. Status “401 Unauthorized”

The message is forwarded to the client IMS by the Interrogating and Proxy SIP Servers.

10.1.22.101 -> 10.1.22.102: SIP. Request “REGISTER” (2)

When receiving this message, the user resolves the challenge using his password
(shared with the server), generates the answer (The second sequence of the request
REGISTER) and sends it to the proxy.

10.1.22.102 -> 10.1.22.103 -> 10.1.22.104: SIP. Request “REGISTER” (2)

This message is then forwarded to the server by the SIP Servers which can check if the
user answered the good response to the challenge, which would prove that he has the
password, and so, that he is who he pretended to be. The S-CSCF generates so a “200 OK”
message, which is forwarded to the user to warn him that he is well registered.

94

Appendix D: NIST-SIP: The Reference Implementation for JAIN-SIP
1.2

The objective of this specification is to develop a standard interface to SIP that can be used
independently or by higher level programming entities and environments. This
specification was designed to provide a developer with a standardized interface for SIP
services which are functionally compatible with the RFC 3261 [12]. This specification is a
general purpose transaction based Java interface to the SIP protocol. It is rich both
semantically and in definition to the SIP protocol. Some useful packages proposed by Nist-
Sip are presented in the Figure 8-2.

In the project, we used several objects and methods proposed by these packages.
Actually, they were especially created and used for the IMS Client that we used (by Jose
Miguel Freitas). More information can be found in [40].

Appendix E: Testing the project

To test the project files, we first have to install the platform Open Source IMS Core and the
tools (procedures described in the section 3). Then, you need to configure the folders
containing the IMS Clients (/ims-communicator) and the application server (/sailfin) in
the place of your choice. In the Appendix F, an example of script that can be used is
presented. You first need to adapt it to your configuration to indicate the location of all the
elements, and save it as “script.sh” for example. It can be noted that if you want to test a
configuration with two users (Bob and Alice), you need to create two folders containing the

Figure 8-2. Some useful packages proposed by Nist-Sip [40]

95

same code (“/ims-communicator6” and “/ims-communicator7” in the example), and
then follow the procedure described in the Appendix G to configure the user as Bob or as
Alice.

The script enables to easily launch the environment and the different elements. It’s
recommended to open several Consoles (or different instances in Putty Connection
Manager) which are going to contain all the different elements. To do so, you first need to
be “Root” in your Console, and then launch the script:

#>sudo bash
#>sh script.sh

Then, the script is launched and it writes all the possibilities that you have:

"*****Commands available : init, restart_as, p, i, s, hss, as, as_log,
as_log_vi bob, bob_run, bob_log, alice, alice_run, alice_log,
quit*****"

In a first window, you can start the environment (it restarts DNS, MySQL and Sailfin):

Init

Then, in each of the 6 consoles, you launch the different servers: p-cscf, i-cscf, s-cscf, hss.
So first, you need to launch the script in each console:

sh script.sh

In the first console, you need to write :

P

Then, in the second one:

I

Then in the other consoles:

s, hss.

To be sure that the environment is working, you can read the numerous logs appearing
in the SIP servers windows. The I-CSCF and S-CSCF must show [Open] connections, this
means that they are dialoging with the HSS, waiting for users to register themselves. Before
launching the users, you can run Wireshark, so that you will be able to analyze the traffic.
More information about the configuration of Wireshark can be found in the section 3.4.1.

96

Then, you can launch the two users Bob and Alice. For each of them, there are several
options when you choose “bob” or “alice”. We recommend to first rebuild and then
execute. For example, for Bob:

#>sh script.sh
Bob
Bob_rebuild

If the rebuild returns a “BUILD SUCCESSFUL” (or else, correct the mistakes, it is
probably a background element missing):

#>sh script.sh
Bob
Bob_run

When this command is launched, a window opens representing the IMS Client. This
one is shown in the Figure 8-3. The next step is to REGISTER the user, as shown in the
Figure 8-4 and Figure 8-4 (Bob’s password is “bob”; Alice’s password is “alice”).

Figure 8-3. Client not registered

97

Figure 8-4. Procedure to register the user

Figure 8-5. Registration box

Then, when another client “Alice” is registered, we can try to call her: as represented in

the Figure 8-6, Bob has entered the Alice’s sip address and has pushed the button “Dial”.

Figure 8-6. Bob calls Alice

98

Alice can see the incoming call, and can decide to accept it by pushing “Answer”. Then
when the connection is established, the status is turned to “Connected” as shown in the
Figure 8-7.

Figure 8-7. Bob and Alice connected

We can follow in Wireshark the different messages exchanged presented in the Section 5.

Appendix F: Script Shell: script.sh

#!/bin/bash
echo ""
echo ""
echo "*****Commands available : init, restart_as, p, i, s, hss, as,
as_log, as_log_vi bob, bob_run, bob_log, alice, alice_run, alice_log,
quit*****"
read a
case $a in

init)
/etc/init.d/bind9 restart;
cd /etc/init.d/;
/home/hay/sailfin/bin/asadmin start-domain domain1;
/home/hay/sailfin/bin/asadmin start-database;
mysql -p;
echo "*****DNS, MySQL and Sailfin launched*****"
;;

quit)
/etc/init.d/bind9 stop;
/home/hay/sailfin/bin/asadmin stop-domain domain1;

99

/home/hay/sailfin/bin/asadmin stop-database;
echo "*****DNS and AS servers stopped *****";;

restart_as)
/home/hay/sailfin/bin/asadmin stop-domain domain1;
/home/hay/sailfin/bin/asadmin stop-database;
/home/hay/sailfin/bin/asadmin start-domain domain1;
/home/hay/sailfin/bin/asadmin start-database
;;

p)
cd /opt/OpenIMSCore;
sh pcscf.sh;
echo "*****P-CSCF launched*****"
;;

i)
cd /opt/OpenIMSCore;
sh icscf.sh;
echo "*****I-CSCF launched*****"
;;

s)
cd /opt/OpenIMSCore;
sh scscf.sh;
echo "*****I-CSCF launched*****"
;;

hss)
cd /opt/OpenIMSCore/FHoSS/deploy;
sh startup.sh;
echo "*****HSS launched*****"
;;

as)
cd sailfin/samples/sipservlet/Identity;
ant all;
;;

as_log)
gedit sailfin/domains/domain1/logs/server.log trunk/ims-
communicator4/log/ims-communicator.app.log;;

as_log_vi)
vim sailfin/domains/domain1/logs/server.log;;

bob)

100

cd /home/hay/trunk/ims-communicator6/;
echo ""
echo "***** Client IMS-Communicator 6 (bob)*****";
echo "***** Choice : clean, make, rebuild, run-project, run, all

*****";
read b ;
case $b in

clean)
 ant clean;;

 make)
 ant make;;

 rebuild)
 ant rebuild;;

run-project)
 ant run-project;;

run)
ant run;;

all)
ant all;;

esac;;

bob_run)
cd /home/hay/trunk/ims-communicator6/;
ant run;;

bob_log)
cd /home/hay/trunk/ims-communicator6/log;
gedit ims-communicator.app.log ims-communicator.debug.log ims-
communicator.stack.log
;;

alice)
cd /home/hay/trunk/ims-communicator7;
echo ""
echo "***** Client IMS-Communicator 7 (alice)*****";
echo "***** Choice : clean, make, rebuild, run-project, run, all
*****";
read b ;
case $b in

clean)
ant clean;;

101

make)
ant make;;

rebuild)
ant rebuild;;

run-project)
ant run-project;;

run)
ant run;;

all)
ant all;;

esac;;

alice_run)
cd /home/hay/trunk/ims-communicator7;
ant run;;

alice_log)
cd /home/hay/trunk/ims-communicator7/log;
gedit ims-communicator.app.log ims-communicator.debug.log ims-
communicator.stack.log

esac

Appendix G: Configure the folder ims-communicator as “Bob” or as
“Alice”

Some modifications need to be done to configure the project as a “bob” or “alice” profile.
Bob and Alice differ from their sip addresses, the cryptographic keys that they have, and
the server that they trust (if they belong to different domains). So, the next steps are going
to describe how to change these values.

First, we need to open the file “ims-communicator.xml”. This file contains all the
configuration of the user. Some fields need to be adapted to Bob or to Alice profile as
described in the Section 3.2.3.

Then, we need to put the correct keys in the folder “/ims-communicator”. In the
Figure 8-8, we show the example of a user configured as “bob”. We can see that he has his
private key and his public key, and also his home operator’s public key
(“public_key_file_serverB”).

102

Figure 8-8. Ims-communicator folder

Finally, some modifications need to be done in the file
“src/net/java/sip/communicator/sip/security/Security_ims_project_tools.ja
va”. They represent the algorithm used by the user and his home
operator’s name:

private String algorithm ="SHA-1";
private String name_server = "homeB";

Some other modifications have also to be done in the file
“src/net/java/sip/communicator/sip/CallProcessing.java”. These different
values represent the names of the files containing the keys presented in the Figure 8-8:

private String private_key_file_client="private_key_file_bob";
private String public_key_file_client="public_key_file_bob";
private String public_key_file_server="public_key_file_serverB";

