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In recent years, the work on simultaneous localization and mapping has matured signifi-

cantly. Robust techniques have been developed to explore and map a static environment 

in real-time. However, the problem of localizing and mapping a dynamic environment is 

still to be solved. The dynamic part of the environment not only makes the localization 

difficult but it introduces a diverse set of challenges to the existing problems such as 

detecting, tracking and segmenting the moving objects, and 3D reconstruction of the mov-

ing objects and/or static environment.  

This thesis focuses on studying the problem of simultaneously localizing and mapping a 

actively dynamic environment. A comprehensive review and analysis of the state-of-the-

art methods is provided for both static and dynamic cases. A stereo camera is used to 

explore the dynamic environment and obtain semi-dense point clouds for the image se-

quence. The proposed approach is a variant of the standard ICP where the outliers of the 

registration process are not discarded. All 3D points are assigned a confidence measure 

based on their association in their respective neighborhood. The confidence measure de-

cides if a 3D point is classified static or dynamic in the global map. Hence, the approach 

does not require any prior information about the environment or the moving objects. In 

the latter part of this study, the moving objects are segmented in 3D space and 2D images 

for any potential future analysis. The framework is tested with highly dynamic scenes 

from both indoor and outdoor environments. The results demonstrate the effectiveness of 

the proposed approach. 
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1. INTRODUCTION 

One of the research aims at the junction of Robotics and Computer Vision is to enable 

robots to autonomously explore unknown, unstructured and possibly dynamic environ-

ments. The intuitive approach to solving this problem is to build and maintain a map of 

the environment and localize the robot within that map. This approach is generally termed 

as Simultaneous Localization and Mapping (SLAM). When one or many cameras are 

utilized as the sensing mechanism, then the term Visual SLAM is utilized. During explo-

ration of the environment, if only the camera moves and all the underlying objects in the 

environment are stationary, then the environment is assumed to be static and ideal for the 

approach. This assumption can also be held when some moving objects appear for just a 

few frames of the image sequence and that they reside in only a small portion of the 

image. On the contrary, if the moving objects cover a large part of the image or if they 

are in the view of the camera for a long span of time, then it can be easily classified as a 

dynamic environment. Even though it may seem trivial to handle the dynamic object as 

an accessory to the static environment, unfortunately, that is not the case. The introduction 

of a moving object to a static scene often has strong impact on the performance of tradi-

tional SLAM approaches.  

Furthermore, the dynamic behavior of the environment cannot be ruled under a single 

description. The extent of dynamic change in the scene and the resulting effect depend 

entirely on the intended use of the system. Some researchers are interested in studying 

the slowly varying conditions of the environment such as luminosity. An outdoor envi-

ronment could be examined for extended periods under flexible light and weather condi-

tions. These changes can induce considerable variation in the appearance of the scene. 

However, the effects are only observable in long-term mapping since the changes either 

occur gradually or out of the current view of the camera. Moreover, they are explored 

only in the next round of exploration. Therefore, the environment in general remains static 

and the same approach of static environment can be utilized. 

An intense dynamic environment, where the objects in view are in continuous motion 

pose a more difficult challenge. Consider a mobile robot which is building a dense map 

of an outdoor environment. The unaccounted moving vehicles and pedestrians present in 

such a scene can considerably disrupt the localization and mapping process. Nonetheless, 

solving such problems is crucial for both research and real-world applications 

The primary aim of this thesis is to develop a Visual SLAM based approach that can 

effectively perform in an intense dynamic environment. The framework is tested on real-

world datasets with two indoor and one outdoor case scenarios. These tests demonstrate 
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the ability of the method to build and update a map in a true dynamic environment. For a 

system to work unsupervised in a real dynamic environment, it is essential to maintain a 

level of autonomy and independence, therefore, no prior knowledge about the motion 

model (for camera or dynamic objects) and template (for dynamic objects) is considered. 

The system extracts information about 3D points pertaining to dynamic objects during 

the proposed framework and segments the points from the static map. The study empha-

sizes on building a map of the explored environment under dynamic circumstances, 

hence, moving objects are retained in the map as long as they are viewed in the scene. 

Moreover, motion based segmentation is performed using the fused information from 3D 

map and Gaussian Mixture Models (GMM), for further analysis of the dynamic objects 

in 2D image space. However, the analysis of the dynamics objects and large-scale map-

ping is not in the scope of this study. 

The thesis is organized as follows. Chapter 2 presents the related work for SLAM in both 

static and dynamic environments. Furthermore, it describes the theoretical background in 

stereo camera geometry. Chapter 3 details the approach proposed in this study for Visual 

SLAM in dynamic environment. Next, Chapter 4 tests the efficiency of the method on 

various dataset. Finally, Chapter 5 provides conclusion drawn based on this study, where  

limitations of the proposed approach and the potential future research is also briefly dis-

cussed. 
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2. BACKGROUND 

2.1 SLAM and Visual SLAM 

In 1985, Chatila and Laumond  [1] proposed to localize and map an observer in a parallel 

fashion. The idea proved to carry on and it was later known as Concurrent Mapping and 

Localization (CML) [2] or Simultaneous Localization and Mapping (SLAM). The latter 

term has now been generally adopted in the literature. 

SLAM is not a specific sequence of steps but rather an approach whereby an observer 

(vehicle, robot or simply sensor with a processing unit) creates a globally consistent map 

of an environment and at the same time localizes itself within that map at each instant. 

As aforementioned, in order to build a map of the environment, it is necessary that a 

suitable sensing device is selected. The sensor should be capable of perceiving the envi-

ronment and provide accurate measurements. The most common sensors utilized for 

SLAM are lasers [3], global positioning systems (GPS) [4], sonar [5] and cameras [6]. 

Each of these sensing devices has its own strengths and inherent limitations. Sonar and 

Laser are capable of providing very dense and accurate information pertaining to the 

structures in the environment. However, their use becomes troublesome in a highly-clut-

tered setting or for object recognition application. Furthermore, good quality sonar and 

laser range finders are mostly expensive, and their structure is both heavy and large, thus 

making their use difficult for airborne or light weight robotic framework. Meanwhile, 

GPS sensor lacks the ability to provide information about the structural details of the 

environment. It can only be used to create a 2D map when functioning alone. Further-

more, GPS does not work effectively in narrow streets, under water, tunnels and some-

times indoor.  However, GPS has been used in many SLAM implementations as a sup-

plementary sensor where its information is fused with the primary sensor, thus aiding 

significantly to localization problem and making the implementation robust [7]. 

On the other hand, cameras prove to be of significant aid for a variety of SLAM imple-

mentations. This is due to the fact that camera based systems are capable of acquiring a 

wide range of information and further have a multitude of data manipulation methods. A 

SLAM implementation that employs camera as the primary sensing mechanism is known 

as visual SLAM [8].  Visual SLAM offers the added benefit of utilizing the innate capa-

bilities of a camera such as color, texture and visual intensity observations for high level 

tasks like reconstruction [9], detection and recognition [10] of people, objects, and places. 

Moreover, a camera has the added benefit of being comparatively lighter, cheap and 

power efficient to other sensors. However, the use of camera introduces its own set of 

problems to the equation. These problems may arise due to several factors such as blurred 

images, light changes, lack of textural information and transparent objects in the scene. 
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Nonetheless, these problems can be mitigated by appropriate camera specification selec-

tion or other effective counter measures. 

The initial research on using visual cues for mapping was conducted in the 2000s [11, 12] 

using stereo configuration. Other tried implementing the approach by using a different 

camera configuration. In [13], Pillia et al. used a monocular camera to implement SLAM 

in an indoor environment with the aim of recognizing objects with a minimum number of 

cameras. However, monocular camera poses the problem of scale ambiguity for cases 

where exact measurements might seem beneficial after reconstruction. Other camera con-

figurations include multi-camera rigs that may either have overlapping or distinct views 

[14, 15], cameras with wide-angle lens [16], and omnidirectional camera [17]. In recent 

years, the use of RGB-D cameras has proved valuable for indoor SLAM implementations 

[18]. These cameras provide both color information and the depth map of the view which 

assist to complement together for easier data processing and result verification. However, 

all these advantages are lost when outdoor conditions are considered, especially under 

sunlight. 

Nonetheless, a stereo configuration with large overlapping views still has its relevancy to 

SLAM due to its accuracy and simplicity in use. The landmarks visible in the overlapping 

region of the views can be accurately converted to their scaled real 3D positions using 

triangulation procedure [19]. One of the most effective and robust implementation is pre-

sented by Engel et al. in  [20] that utilizes stereo camera for mapping a large scale outdoor 

environment in real-time with a standard CPU. 

Although many solutions have been proposed and implemented for Visual SLAM, there 

still exist a few limitations to these techniques. As a result, many implementations pro-

duce a map with a large accumulated error and some may even fail the process. These 

limitations or problems arise due to the fact that few assumptions are made about the 

environment and/or video acquisition process, that render the implementation useless 

when these assumptions are not met in the real world. The three core assumptions are: 

1- Camera motion is smooth and the appearing features in the views are consistent. This 

assumption often fails in cases when the camera is attached to a quadcopter, humanoid 

robot or held by a person exploring the environment. The nature of motion is erratic in 

this case and can lead to erroneous mapping and localization for scenes with a repetitive 

texture [21]. 

2- All the acquired images are sharp enough for the salient features to be observed. How-

ever, this assumption fails when the camera is moving sharply, the objects in the scene 

moves rapidly or camera turns out of focus. This problem may lead to a total system 

failure since the required number of salient features are not successfully detected. In 2008, 

Mei and Reid studied the problem of tracking visual features in on blurred images in real-

time [22]. 
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3- The objects in view are stationary and composed of rigid elements. However, this is 

never the case for real world experimentation. An outdoor environment mostly contains 

moving objects such as vehicles. Moreover, these objects may not necessarily be rigid 

e.g. pedestrians moving through the scene. Most of the implementations are not able to 

accommodate for moving objects and hence fails or generate erroneous maps due to in-

correct associations. Some implementations are able to Map and localize successfully in 

a dynamic environment by considering the moving objects as noise as discarding them 

from the system. However, these implementations do not retain any information about 

the moving objects or the dynamics of the scene. 

In relevance to frequent occurrence, the first and third problem are crucial and needs to 

be accommodated for. Much work has been done in regard to improving the localization 

and pose estimation by introducing probabilistic methods such as Extended Kalman Filter 

(EKF), Factored Solution to SLAM (FastSLAM). These methods have significantly com-

pensated for the problem and perform effectively under varying circumstances. However, 

SLAM in a dynamic environment has remained a challenge for a long time. In the next 

section, we will discuss the State-of-the-art techniques for Visual SLAM in a dynamic 

environment. 

 

2.2 State-of-the-art for VSLAM in Dynamic Environment 

As mentioned before, most SLAM implementations hold steadfast to the assumption that 

the environment is static or stationary. This assumption was necessary at the initial time, 

to progressively develop efficient variants of SLAM. The classical SLAM approaches 

have matured enough that it has little room for improvement. Nonetheless, the problem 

for SLAM or Visual SLAM, especially in a dynamic environment, is far from solved. 

Many recent studies still build upon the assumption of static environment to solve 

VSLAM problems. Davison et al. [23] proposed a camera tracking system called 

monoSLAM (monocular Simultaneously Localization and Mapping) to localize and map 

a newly explored environment. The implementation utilized EKF to effectively calculate 

the camera pose in real time. Afterward, Newcombe and Davison [24] suggested using 

Structure from Motion (SFM) for calculating the ego-motion and later, to reconstruct a 

model of the environment. In addition to the aforementioned studies, the work presented 

in [25], [26], and [27] hold the postulate that the environment to be explored is static.  

In [28], Winston Churchill and Paul Newman propose a technique called lifelong explo-

ration for building map of an outdoor environment based on the accumulated changes. If 

the localization process fails to register the scene to its previous depiction in the map, a 

fresh perspective of the environment is registered based on the Visual Odometry (VO). 

In another study, the dynamics are changed in an offline manner and an update of the map 
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is required [29]. A static environment is mapped iteratively, where part of the environ-

ment is only changed. The purpose of the study was to examine the long-term mapping 

of an environment that shows a slight change in dynamics. Nonetheless, both these sce-

narios exhibit a common trait. The environment under study changes gradually and can 

still be mapped with the classical SLAM approaches. 

One way of handling a dynamic environment is to strictly focus on the static points of the 

environment and discard all the unstable points in order to preserve the map. Konolige 

and Bowman [30] proposed a vision-based pose-graph SLAM to map an environment 

with both actively moving objects (e.g. moving people) and passively moving objects 

(e.g. moved furniture). The approach views the environment as a neighborhood at that 

time instant. Exemplars are selected for a neighborhood by the proposed least-recently-

used-view deletion algorithm. The algorithm helps to limit the exemplars per neighbor-

hood to a minimum figure in order to explain the neighborhood’s visual variation with a 

least set of data. Though this approach is able to localize and map in a dynamic environ-

ment, it cannot extract any information about the dynamics of the objects in the scene. 

Since, all unstable points i.e. noise and/or the points originating from dynamic elements, 

are removed from the process. 

Aguiar et al.  proposed a method to attain more information about the dynamic elements 

in the environment in [31]. The multi-view camera approach utilizes eight cameras in 

order to track a person. Later, the data is used to reconstruct a high quality spatio-tempo-

rally model that is consistent in its texture, shape, and motion. Zollhofer et al. [32] pro-

posed another approach to achieve equivalent results. The implementation uses a single 

RGB-D camera to reconstruct a non-rigid body in real-time. It adopts a technique called 

extended non-linear As Rigid As Possible (ARAP), in order to register the RGB-D data 

to an object template. However, [31] and [32] follow many other implementations in the 

manner that it requires an initial template/ model of the moving and/or deforming object. 

The model is then deformed along the process by fitting the 3D points associated with the 

local regions and registering it in rigidly. Theses implementations deviate from the orig-

inal essence of the SLAM and focus on merely reconstructing a detailed model of a non-

rigid object. Furthermore, the object of interest is merely one and modeled within limited 

spatial extent. In addition, the implementations tend to fail at tracking and registration 

when the data points are noisy, sparse or occluded. 

Recently, Keller et al. proposed a methodology to overcome the limitations of the afore-

mentioned studies [33]. A Point-Based Fusion method was proposed to localize and map 

an environment in real-time. A 3D model is reconstructed afterwards while vividly dif-

ferentiating the dynamic and the static objects in the scene. A commercial RGB-D camera 

(Kinect /PMD Camboard) was used for the experimentation. The approach takes the out-

liers into consideration and assign them a confidence value instead of discarding them. 

The confidence values are raised and lowered with time based on data associations, which 

later determines if the points are static or dynamic. For Segmentation of dynamic objects, 
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the individual few dynamic points are used as seed in order to segment the entire moving 

object from the depth maps. In contrast to previous methods, the implementation can work 

with a larger spatial extent. It has been tested in indoor environment. Nonetheless, the use 

of commercial RGB-D camera poses a limitation of indoor use only. These sensors per-

form poorly in an outdoor environment and very little accurate data is obtained in such a 

case. For Kinect V2, the maximum range in outdoor environment reduces to 1.9 meters 

under favorable conditions [34]. Furthermore, only two-thirds of the data obtained is re-

liable in outdoor conditions. The working range can fall to 0.8 meters in case of sunlight 

[34].  

In this study, we propose a variant of the Keller et al. [33] to tackle dynamic scenes using 

a stereo camera. The general framework of the approach is maintained; however, a num-

ber of necessary alterations have been introduced to handle the different nature of data. 

The preference to stereo camera over the commercial RGB-D camera is mainly to tackle 

the problem of outdoor environment exploration. 

2.3 Stereo Camera Geometry and Calibration 

2.3.1 Camera Model 

In our work, we adopt cameras that work on the principle of Pinhole camera model also 

known as perspective camera model, a widely used and acknowledged approach. Pinhole 

model provides us with a mathematical relation between the points at 2D image plane and 

the reprojected 3D points in world coordinates. The transformation is a two-step operation 

where a mapping exists between 3D world coordinates and 3D camera coordinates (R3 to 

R3), followed by projection from 3D camera coordinates to 2D image points  (R3 to R2) 

[35]. 

 

Figure 1.  Pinhole camera model. A Point Pin 3D space is mapped to a 2D point p on 

image plane I by the ray connecting P with the center of projection C. 
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Let us describe the basic parameters of a pinhole camera that will be later utilized to 

explain the derivatives of these parameters. Figure 1 shows a ray originating from the 

origin of camera coordinate, here known as the center of projection (COP). A straight line 

from the center of projection, which is perpendicular to the image plane I is known as the 

Principal axis, while the point at which principal axis intersects the image plane I is 

known as the optical center or principal point (c =𝑐𝑥, 𝑐𝑦). The distance between the optical 

center and the COP is the focal length. In the mentioned figure, a 3D point P= (X, Y, Z) 

is mapped to the image plane I of coordinates (u, v). This interrelationship is explained 

using the concept of similar triangles, and the consequent equation is obtained to be: 

(
𝑢

𝑣
) =

𝑓

𝑍
 (

𝑋

𝑌
)  .     (1) 

The equation above assumes that the origin of the mage plane is exactly at the principal 

point c, however, in practice this exactness is not retained, and by definition the origin of 

the images I mostly located at the lower or upper left corner. Thus, the equation above is 

altered to obtain equation 2. 

(
𝑢

𝑣
) =

𝑓

𝑍
 (

𝑋

𝑌
) +

𝑐𝑥

𝑐𝑦
 .       (2) 

In matrix form we obtain the formation shown in equation 3, which proves more practical 

during calculations 

               Z (
𝑢
𝑣
1

) = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] [
1 0 0
0 1 0
0 0 1

    
0
0
0

] [

𝑋
𝑌
𝑍
1

] .               (3) 

                                                                                      K                    

Here, K is the Intrinsic matrix or camera calibration matrix as it contains the intrinsic 

camera parameters f and c. The matrix followed by K is a homogenous transformation 

composed of the Rotational matrix R and translational matrix t. Here R is set to be an 

identity matrix while the translational matrix is 0. The above equation enables us to trans-

form points from image point coordinates (u,v) to 3D points in camera coordinate system 

and vice versa. However, we still have to transform the 3D points from the camera coor-

dinate system to world coordinate system. This transformation is achieved as: 

𝑃𝑐𝑎𝑚 = 𝑅 ∗ 𝑃𝑤𝑜𝑟𝑙𝑑 + 𝑡 ,                      (4) 

where the 3D rotation matrix  𝑅 ∈  𝑅3𝑥3 and 3D translation 𝑡 ∈  𝑅3 are known as the 

extrinsic parameters. Finally, by combining the obtained relations we can attain a map-

ping relationship between points in the image plane and the corresponding 3D points in 

world coordinate frame.  
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𝑤 (
𝑢
𝑣
1

) = 𝐾  [𝑅|𝑡] 𝑃𝑤𝑜𝑟𝑙𝑑 = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] [𝑅|𝑡] [

𝑋
𝑌
𝑍
1

] .            (5) 

Two or more image sensors along with their lenses combine to form a stereo camera. The 

concept mimics the human’s ability of binocular vision in order to perceive three-dimen-

sional information about the scene. The distance between the lenses is known as intra-

axial distance or baseline distance. Stereo vision helps to obtain 3D information from 

multiple views of a scene. At least one pair is necessary to obtain the 3D information by 

estimating the relative depth of points. The reconstruction of 3D points from disparity 

maps obtained from the stereo pairs will be discussed in later sections. 

2.3.2 Camera Calibration 

The estimation of lens and imaging sensor parameters is known as geometric camera cal-

ibration, also called camera resectioning [36]. These camera parameters are the intrinsics 

K, extrinsics [R | t], and distortion coefficients (radial and tangential). Tangential distor-

tion results when the lens and the image plane are not parallel. While, Radial distortion 

results when light rays bend more near the edges of a lens compared to its optical centre. 

Small lenses show greater distortion. The theoretical origin of these camera parameters 

was discussed in section 2.3.1. These parameters are essential for correcting lens distor-

tion, measuring object size in real world scale and finding camera location in the scene. 

These parameters form the basis of many machine vision applications such as 3D recon-

struction, localization, and mapping. 

In order to estimate the camera parameters, we need to form a relation between 3D points 

in world coordinate and its 2D points on the image plane. Typically, these points are 

obtained by finding feature points in the images of a calibration pattern e.g. checkerboard. 

For checkerboard calibration pattern the most suited feature points are corner points. The 

correspondences between 2D and 3D are used to compute the camera parameters. The 

accuracy of the estimated camera parameters is evaluated by checking the reprojection 

error. 

2.3.3 Epipolar Geometry & Image Rectification 

 Epipolar geometry is the intrinsic projective geometry of stereo vision. In a stereo vision 

case, when two cameras view a scene from their distinct position with fixed baseline, 

some essential geometric relations exist. These relations map a 3D point to a projection 

on the image plane under some geometric constraints [35]. These relationships were ex-

plained in the previous sections; however, the compulsory geometrical constraint will be 

explained here.  
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The motivation for defining the geometry and constraints is to alleviate the search for 

corresponding point matching in the stereo images. Figure 2.a shows a point X in lying 

in a 3D space which when projected back on to the camera image planes finds itself at 

2D position 𝑥 and 𝑥 / .The points 𝑥 and 𝑥 / and their camera centres 𝐶 and 𝐶 / are coplanar, 

and lie on the same plane 𝜋. Let’s assume, we know position of X in the first camera 

plane only, which is 𝑥. Then from the aforementioned conditions, we can deduce that 𝑥 /  

must lie on the intersection of plane 𝜋  with the second camera image plane. This range 

of possibilities exists on the line that passes through 𝑒 / and 𝑙/, as shown in figure 2.b. This 

greatly benefits us in terms of stereo correspondence search where we only need to search 

for the correspondences on the horizontal Epipolar line. 

 

(a)       (b) 

Figure 2. Points following the constraints of Epipolar geometry (reproduced from [37]) 

   

However, real images do not directly follow Epipolar geometrical constraint by default. 

This requires an additional step of rectification, where the images are projected onto a 

common image plane. 

Hence a rectified image must satisfy the following two properties: 

• Corresponding point lie on the Epipolar lines and all Epipolar lines are parallel to 

the horizontal axis. 

• The Corresponding points on images have same vertical coordinates. 

For rectification of images used in this work, computer vision toolkit’s function was uti-

lized. Figure 3 shows the result of image rectification. 
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   (a)     

 

 

 
 

  (b) 

 

Figure 3. Stereo pair Rectification (a) Original images acquired using the Zed camera; 

the straight white line passes through same image coordinates (b)Rectified pair; the 

same visual points in left and right pair lie on the white line which depicts the Epipolar 

line. 

 

The effects of image rectification can be observed from the above figure. The images 

were rectified using the camera parameters obtained during the calibration process. Figure 

3.a shows the original images of an indoor environment obtained using a stereo camera. 

It can be observed from the unrectified images the visual features from the left and right 

frame do not lie on the same vertical coordinate. The objects encircled in red move sig-

nificantly in the vertical direction between both views. On the other hand, Figure3.b 

shows a better result after rectification. The same objects are now encircled in green, and 

it can be seen that the encircled objects are at the same distance in the left and right view 

from the white line, which serves as an Epipolar line for the points that it passes through. 

2.3.4 Salient Feature detection and triangulation 

Many types of effective interest point detection approaches have been introduced such as 

Haris, FAST, SURF, CENSURE, and SIFT. Each of these and other existing methods has 

its own advantages and pose own set of limitations. For this work, we adopted the use of 

Haris Corner Detector during our experiments with sparse cloud generation.  Harris Cor-

ner Detector is still among the widely used interest point detectors [38]. Furthermore, it 

has been previously utilized in a multitude of Visual SLAM implementations due to its 
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performance, as in [39]. Haris Corner Detector offers rotation invariance along with high 

detection repeatability, localization accuracy, and robustness to the varying environment 

[38]. Therefore, it is practical to asses our approach using this classical detector as a cor-

respondence matching system. The salient features detected for the scene in Figure 4.a 

and b are shown in Figure 4.c 

Once the salient points are detected, these are tracked in the corresponding stereo pair. 

Generally, two main approaches exist for registration of features. Some researchers use 

block matching method [40, 41] while others focus on the well-developed techniques 

based on Kanade-Lucas tracker (KLT) [42]. For this work, MATLAB’s built-in vision 

tracker was utilized which is based on KLT. This point based tracker perform effectively 

in short-term tracking, the result of tracking of the feature points are shown in Figure 4.d. 

The tracking shows that some features still do not follow the Epipolar constraint, hence, 

those points are removed by restricting their vertical distance. The filtered salient features 

that follow the Epipolar constraint are shown in Figure 4.e. These salient feature points 

are used to obtain the 3D point cloud by a process called triangulation, also known as 

reconstruction. Triangulation uses the camera extrinsic and intrinsic parameters to locate 

the point in 3D space using the equations provided in Section 2.3.1. 

 

 

(a)       (b) 

 

 

   (c)       (d) 
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 (e)  

 

(f)  

Figure 4. Feature point detection, tracking and triangulation (a, b) Stereo pair ac-

quired using the Zed camera (c) Corner Feature points detected in the left frame of ste-

reo pair(d) Detected corner points are tracked in the stereoAnaglyph (red-cyan stereo 

pair) (e) Filtered points tracked in bound to Epipolar constraint (f) Sparse 3D point 

cloud generated from the tracked feature points by triangulation 

2.3.5 Dense Disparity Estimation 

Feature matching based reconstruction may provide us with more accurate disparity esti-

mates and allow recovery under large displacement, however they cannot be used in many 

stereo applications requiring dense disparity estimates such as 3-D environment recon-

struction. Dense disparity estimation poses its own set of difficulties such as photometric 

variation and depth discontinuities. 
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The disparity estimates in this work were computed using MATLAB computer vision 

toolkit. The function can compute the disparity map using either Block Matching or Semi-

Global Matching (SGM) [43] algorithm. The later was chosen due to its added function-

ality that it enforces similar disparity on neighboring blocks. This constriction results in 

a more complete disparity map compared to the Block Matching algorithm [44]. Further-

more, it provides a good compromise between computational speed and global optimality. 

Figure 5.a shows the disparity map computed for the stereo pair shown in Figure 5.a and 

b. The same disparity map is shown using a color map (jet) for visual inspection in Figure 

5.b. The disparity range during computation was set between 0 to 64 and the uniqueness 

threshold was set to 60. The uniqueness threshold helps to retain pixels with reliable dis-

parities and discards unreliable points. 

The disparity map was used to reconstruct a dense 3D point cloud using the camera pa-

rameters obtained and explained in earlier sections. The direct result of 3D reconstruction 

is shown in Figure 5. c. The huge range of the point cloud in all axis is mainly due to the 

erroneous position estimation. These points can be discarded as they are completely use-

less and would considerably damage the point cloud registration process. The points are 

removed limiting the perceived depth of the point cloud to a practical and reliable distance 

i.e. 6-8meters. For most of the experiments, the distance was limited to 6.5 meters and 

the result of this truncation is shown in Figure 5. d. The point cloud obtained is dense for 

areas that have been accurately reconstructed. However, in our work, we do not require 

such dense point clouds, hence the point clouds are downsampled to a uniform distribu-

tion using a grid filter. The filter averages the physical properties of the points in 2 cm 

cubic range. The downsampling significantly aids to reduce memory and computation 

time complexity for SLAM. Figure 5.e shows the obtained downsampled point cloud. 

 

 

 
                               (a)      (b) 
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(c) 

 

(d)       (e) 

Figure 5. Feature point detection, tracking and triangulation (a, b) Stereo pair acquired 

using the Zed camera (c) Corner Feature points detected in the left frame of stereo pair(d) 

Detected corner points are tracked in the stereoAnaglyph (red -cyan stereo pair) (e)Fil-

tered points tracked in bound to Epipolar constraint (f) Sparse 3D point cloud generated 

from the tracked feature points by triangulation 

2.3.6 Comparison of Feature matching and Dense Stereo Esti-

mation 

The goal of this work is to both localize the camera/observer and map the environment 

with enough data that useful information can be extracted for further processing. In the 

scope of this work, the goal is to extract enough 3D points of the dynamic objects in the 

scene that they can be effectively used to make decisions. 

Initially, salient features were detected and tracked to obtain 3D map of the environment. 

After successive registration step, the map is dense enough to provide useful information 

about the environment. This was valid only for cases when the camera did not move 
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quickly and scenes were explored for relatively long time. Furthermore, the sparsity had 

the innate drawback, that the features obtained were not uniformly distributed as seen in 

Figure 6.a. Some area might have a large number of points packed densely, while other 

areas might have few points distributed irregularly at longer distances. This effect was 

even more visible for moving object in the scene, which made it considerably difficult to 

process the 3D points while maintaining enough data points to reflect the entirety of the 

object. On the other hand, the results from dense stereo estimation gave us more reliable 

results in terms of uniformity. High threshold was selected in order to keep accurately 

generated 3D points. Even after significant downsampling of 3D cloud, a considerable 

number of points are retained with uniform distribution. During registration of successive 

point clouds, the map becomes dense and effectively represent the real-world environ-

ment which can be observed in Figure 6.b. Hence, the use of dense stereo estimation was 

adopted for viable results in a dynamic environment.  

 

(a)       (b) 

Figure 6. Result of Point Cloud registrations (a) Sparse clouds from corner feature de-

tection at 0.001 threshold (b) Dense clouds at uniqueness threshold of 60 (a considerably 

high value) 
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3. PROPOSED METHOD 

3.1 Framework 

In this subsection, we will briefly present the proposed framework using the flowchart 

shown in Figure 7. A comprehensive explanation of these steps is provided in other sec-

tions. 

In the proposed approach, a disparity map is estimated based on the stereo pair using the 

computed stereo parameters. 3D point cloud is reconstructed from the corresponding dis-

parity map. The point cloud obtained is uniformly downsampled in order to ease the com-

putational load. These steps have been explained in the previous section along the camera 

geometry. 

 

Figure 7 Flowchart of the proposed approach 
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The point cloud, 𝑃𝑡𝐶𝑘, obtained from stereo pair k is registered to a global map by finding 

the transformation between 𝑃𝑡𝐶𝑘 and 𝑃𝑡𝐶𝑘−1 (at time k-1). The transformation is com-

puted based on correspondences (inliers) between the point clouds using Iterative Closest 

Point (ICP) algorithm. The non-correspondences (outliers) do not contribute to transfor-

mation computation, however, they are utilized to differentiate the dynamic part of the 

scene. The dynamic points are extracted and clustered from the global map and corre-

sponding image points are segmented using a two mask binary masks obtained from 

Gaussian Mixture Model (GMM)  and the projection of the 3D points onto the image). 

All these steps would be discussed in detail in the following subsections. 

3.2 Global Cloud Model 

The process of Visual SLAM allows us to generate a map of the environment under ob-

servation. This map can be stored in different form depending on the choice of the devel-

oper and ease of use. In this work, we maintain a global cloud after the registration and 

stitching of the individual point clouds to the global coordinate frame. The global cloud 

variable is a self-contained model that includes all its relevant processed information. 

This variable is readily passed into other functions and the nature of the variable is main-

tained in the output.  

The global cloud has 5 distinct parameters namely Location, Color, Normal, Confidence, 

and NoFrames (indicating Number of frames). As evident from their names, the first three 

parameters define the physical properties of each 3D point in the Global Cloud variable. 

The Location is a Nx3 matrix which identifies the xyz position of the N 3D points in 

space while Color stored the RGB color of the 3D point. Normal is a similar Nx3 matrix 

which specifies the normal vector of the 3D point.  Confidence is a unique parameter 

introduced regarding a 3D point which will serve as the base criterion for classifying a 

point as being static or dynamic. If a point gains a total confidence of greater then 1, it is 

classified as a reliable static point otherwise the points is considered as unreliable which 

could be part of either moving object or simply noise. The final property defines for how 

many frames the point has been in the scene and has been viewed by the camera. It helps 

to keep track of points and remove unstable points after they have been in the scene for 

some time.  

3.3 Point Cloud Alignment and Data Association 

Once the 3D point cloud for a scene is obtained, it has to be registered to the Global 

Cloud. This step transforms the second point cloud to the reference coordinate system 

defined by the first point cloud which in this case is the Global Cloud. One of the widely-

used techniques for point cloud registration is the Iterative Closest Point (ICP) algorithm. 

ICP was originally introduced in [45] to find the transformation between two point clouds 
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where one would serve as the reference surface. Finding this transformation includes cal-

culation of the rotational matrix R and the translational vector t between the second point 

cloud and the reference cloud. The transformation is computed by minimizing the squared 

error between corresponding points in the two clouds. The generalized formulation for 

ICP can be explained with Figure 8  and the following equations. 

 

(a)               (b) 

Figure 8 Distance measures in 2D case between two curves P and Q. 

Two curves P and Q have to be aligned by finding the transformation between them. Let 

us select N pairs of corresponding points, 𝑝𝑖 ∈ 𝑃  and  𝑞𝑖 ∈ 𝑄, (i = 1 … N), known as 

control points from two views. The transformation T can be found by minimizing the 

error function: 

𝑒 = ∑ ‖𝑇𝑝𝑖 − 𝑞𝑖‖2𝑁
𝑖=1         (6) 

The information about correct correspondence can be difficult to obtain for large number 

of points. Therefore, a more practical approach is to minimize the distance between the 

points on one surface against the other. Equation 6 takes the following form 

𝑒 = ∑ ‖𝑇𝑝𝑖 − 𝑞𝑗
′ ‖

2𝑁
𝑖=1 , where 𝑞𝑗

′ = 𝑞|𝑚𝑖𝑛𝑞∈𝑆𝑗
‖𝑇𝑝𝑖 − 𝑞‖.   (7) 

Here, 𝑆𝑗 depicts the tangent plane of Q at point 𝑞𝑗. However, we do not know where the 

corresponding point 𝑞𝑗 is. The corresponding points could be moved closer using a trans-

formation 𝑇0.In an iterative case the previous transformation 𝑇𝑘−1 are used for accumu-

lative approximation. A generalization of the above equation is: 

𝑒𝑘 = ∑ 𝑑𝑠
2(𝑇𝑘𝑝𝑖 ,  𝑆𝑗

𝑘)𝑁
𝑖=1      (8) 

Where 𝑑𝑠 is the signed distance from a point to the plane and 𝑇𝑘 = 𝑇. 𝑇𝑘−1. This mini-

mization constrains the direction in which the distance is reduced between the point and 

the plane. 
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The algorithm follows the following steps, iteratively. 

1-Select a set of N control points 𝑝𝑖 ∈ 𝑃 and compute their surface normal 𝑛𝑝𝑖 . 

2-At each iteration k, the following steps are repeated until convergences. 

For each control point 𝑝𝑖,  

a- Apply the transformation 𝑇𝑘−1 to both the point and its normal to obtain 𝑝𝑖
′ 

and 𝑛𝑝𝑖
′ . 

b- Find the intersection between  𝑞𝑖
𝑘 of the surface Q and the normal  line de-

fined  by   𝑛𝑝𝑖
′  for 𝑝𝑖

′. 

c- The tangent plane 𝑆𝑖
𝑘 is computed for the surface Q at 𝑞𝑖

′’ 

Find the transformation T that would minimize 𝑒𝑘 in Equation 8. 

Multiple types of error minimization approaches have been proposed namely Point-to-

Point, Point-to-Plane, Point-to-Curve, Curve-to-Curve, Line-to-Line, and Line-to-Curve 

error metrics [46]. In this work, we use Point-to-Plane error minimization, since it pro-

vides a sturdier result even in the presence of a degree of noise. 

Generally, all the points in the cloud contribute to the calculation of transformation with 

identical weightage. However, there might be points that will not find its optimal corre-

spondence and might get associated to wrong points. This computed transformation 

would still give a minimum least-squared error but it would be erroneous in a practical 

sense. Hence a criterion was adopted that selects the point which should contribute to the 

calculation of the homogeneous transformation matrix, these points are called inliers. On 

the other hand, the points that are left out are called outliers. Outliers are mostly consid-

ered as noise and are discarded from the process. MATLAB’s ICP implementation re-

quests the user to provide an estimate of the ratio of inliers that are to be expected for 

computing the transformation. However, the approach is not appropriate for real world 

data sets where arbitrary noise and change in environments are possible. For example, a 

walking person is introduced into the scene, the points pertaining to the dynamic object 

(person) are not static and keep changing their position, hence they cannot contribute to 

the calculation of transformation matrix, which implies that the number of outliers in-

creased. As a result, the implementation fails with incorrect registration alongside im-

mense noise in the map. This effect can be observed from Figure 9 which shows the 

mapping of the previous corridor image sequence using MATLAB’s point cloud regis-

tration and stitching example. Even in a static environment, the mapping is not consider-

ably accurate, the registration is tilted and points and surfaces are generated at a depth 

greater than the distance of the wall from the observer. This mediocre performance is due 

to the fact that it cannot accommodate for the varying number of inlier and does not ac-

tively remove noise from the scene global cloud. Furthermore, the performance becomes 

worse as soon as the person walks into the camera view. 



21 

 

(a) 

 

(b) 

Figure 9. Point Cloud registration failure of the dataset with moving person at parame-

ters: Inlier ratio=0.8, point-to-plane error metric and point cloud merging at grid fac-

tor of 0.0135 m3 (a) Static environment i.e. before person walks in to the scene (a)Dy-

namic environment 

The approach proposed in this study uses a customized version of the MATLAB’s ICP 

implementation. Instead of fixed number of inlier selection, a distance based threshold is 

set for inlier selection. This distance threshold comes into effect during data association 

step. This can be explained with the example shown in Figure 10. The points on the lower 

lines must be transformed and aligned to the line above it. The dark grey points have 

found their corresponding association and are therefore considered inliers. While the light 
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grey points have no correspondences, and are considered outliers to the system. Further-

more, the dark grey points joined by the light line are also considered outliers since the Y 

do not fulfill the distance threshold criterion and cannot be considered reliable corre-

spondences for a rigid transformation. 

The inliers are then used to compute the transformation matrix by minimizing least 

squared error, iteratively. Unlike other approaches, the proposed method in this study 

discourages discarding the outliers directly after registration. These outliers contain im-

plicit information about dynamic objects in the scene. The extraction of relevant points 

from these outliers and removal of noise would be discussed in the proceeding sections. 

Like any other gradient descent method, ICP expects a good starting point from the user 

since it also serves as the reference data. Furthermore, the images acquired should provide 

overlapping views to some degree so that the points from new cloud could associate to 

the points in Global Cloud. The proposed approach is able to work effectively with 

slightly overlapping views due to its flexible selection of the number of inliers. However, 

consistency in data is desirable under such circumstances so that the points could attain 

enough confidence to be termed reliable.  

 

Figure 10. Point Correspondence Selection 

Once an appropriate transformation is obtained for the new point cloud against the refer-

ence cloud. The new cloud is transformed to the reference coordinate frame using the 

homogenous matrix [R | t]. Hence, this operation continues as the map builds up over the 

previous point clouds and stored in the Global Cloud. Additionally, camera localization 

is achieved by transforming the initial position of the camera, [I | 0] where I is the identity 

matrix, along the registration process to the reference coordinate system. The accumu-

lated transformation provides us with the localization of the observer, where the observer, 

in this case, is the hand-held camera. 

3.4 Merging and Confidence Gain 

The addition of new 3D points to the processing stream adds load to the memory and 

processing capacity. In order to restrain the growth of the amount of points, some criteri-

ons must be set to limit the addition of 3D points. Here we use 3D point merging and 

No Correspondences 

 Valid 

 Correspondences 

 Invalid 

 Correspondences 
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removal as the means of restraining the exponential growth of points. In this section, we 

will only discuss the merging of 3D points and its resultant confidence gain. Previously 

during association of points, we have successfully formed a relationship between points 

of a new point cloud to a reference cloud (Global Cloud). Now a point may either asso-

ciate itself to one point or many points as shown in Figure 10, where point qij has been 

associated to two points. Both these points serve as inlier for transformation computation, 

however, only the closest point is merged physically, which in this case is pij. This merg-

ing is performed so that the duplicate of the same 3D point may be removed. During 

merging step the Position, RGB colour and the Normal vector of the closest points (pij and 

qij) are averaged for the resultant merged point. Furthermore, the previous confidence of 

both these points are added with a bonus of 0.1 and the NoFrames value is increased by 

1, since this point has been observed in one more scene. However, the other associations 

of qij are not averaged physically. It can be assumed that the other associated points qij are 

points from the same object obtained at different position due to different surface sam-

pling. Therefore, we do not merge the physical properties of such points and these points 

are added to the Global Cloud with their original physical properties (position, colour and 

normal). Nonetheless, the confidence is increased by merging its confidence with the 

confidence of points qij along with an added confidence obtained through a Gaussian dis-

tribution as shown in Figure 11. The peak value is set to be 0.1 and the standard deviation 

is set to be half of the distance threshold used during ICP correspondence selection. 

Hence, the further the point moves away from qij, the lower confidence gain it gets during 

merging step. Lastly, the NoFrames value is increased by 1 as for the other point. 

 

Figure 11. Confidence gain during merging of points 

The outliers, on the other hand, are treated slightly differently than the inliers. Outliers 

are not always noise and can be generated due to the object being out of the scene between 

the consecutive image sequence, or the process failing to reconstruct the 3D points accu-

rately at the desired position. Hence, they are not removed from the process at this stage 

and are added directly into the Global Cloud with a confidence of 0 and NoFrame value 
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of 1. This is done for the purpose that these outliers could possibly serve as inliers in the 

following sequence of point cloud registration. 

3.5 Confidence Reduction 

In the previous step, confidence gain helped us to stabilize the points and convert the 

points from dynamic/ unstable status to static/ stable. In order to handle a dynamic envi-

ronment, a mechanism must be designed to convert the static point back to dynamic. For 

example, a parked car was previously mapped along the environment where all the points 

from the scene were static. Now, if the vehicle in the scene starts to move, then the 3D 

points associated to the vehicle must change in confidence and should be classified as 

dynamic points. 

This effect is obtained by continuously reducing the confidence of points from the Global 

Cloud that are in the view of the camera by a value of 0.01 at each iteration, since it has 

already been established that the points in view would associate themselves with the 

newly observed environment. Hence, the points that find association would increase in 

confidence during the merging step, while at the same time decrease by a fixed value of 

0.01. Since the gain would be greater than the loss in confidence, therefore such points 

would remain static. On the other hand, those points that do not find association, would 

only loss confidence and, as a result they would change from static status to dynamic/un-

stable status.  Figure 12 illustrates a situation where the far end of the Global Cloud/ 

environment is being viewed by the camera. The points in perspective view are obtained 

by projecting the global cloud onto the image plane with the help of accumulated trans-

formations. Only the points in front of the camera that fall onto the image plane after 

projection are considered for the reduction of confidence. 

 

(a) 
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(b) 

Figure 12. Projection of points to image plane for confidence reduction (a) illustration 

of the camera viewing the global cloud (b) projected points onto the image plane from 

the perspective view 

3.6 Removal of Unstable points 

Until now we focused on building the map with the addition of new measurements. Now 

we need to improve the registration process by removing the unstable points. This is a 

crucial step which is essential for the process to work in a dynamic environment. Some 

constraints are defined in this step in order to facilitate the removal of unstable points. 

The maximum confidence that a point can accumulate is 1.25. This value has been chosen 

empirically while keeping the gain (0.1) and reduction (0.01) into consideration. All the 

points that have been added to the map i.e. the Global Cloud are evaluated at each itera-

tion. Points with confidence less than 1 are extracted as a set of unstable points, which 

may either contain noise or points from the dynamic object. From these extracted points, 

only those points are discarded from the map that have been present for more than some 

threshold time tmax. In most of the experiments, the tmax was set equivalent to 5 frames. 

Any unstable point that has not gained enough confidence during 5 iterations is discarded. 

Hence, this step discards noisy data points and retain only those points in the map that we 

are confident of. As a result, the registration process is less prone to error. On the other 

hand, points pertaining to a moving object in the scene are continuously updated, since 

new points from recent frames are added while the previous points are removed. 5 frames 

is sufficiently quick for the scene to update the points when the camera is acquiring im-

ages at 30 fps. 

3.7 Extraction and Clustering of Dynamic Points 

The Global Cloud can accommodate 3D points from the static environment and unstable 

points from the moving objects and/or static objects that occur with less consistency dur-

ing the registration process. It is essential to differentiate and isolate the points pertaining 

to dynamic objects from rest of the point cloud. This result is achieved through a sequence 

of steps that will be discussed here in. 
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The initial extraction of dynamic points and their clustering would be explained using the 

same scene that has been utilized in earlier topics of this thesis. Figure 13.a presents an 

environment with static objects placed in a corridor that is being mapped. A person passes 

by in the corridor and the points obtained from the person are shown in red in the middle 

of the static part of the map. 

Both the person and the points from the far end of the corridor have low confidence. The 

points from the far end of the corridor are acquired with inconsistency and are not able to 

gain confidence quickly. Hence we cannot be confident if these points are static, dynamic 

or noise. In the first step, we extract out the points with confidence less than 1 and obtain 

the point cloud shown in Figure 13.b. Since we are sure about the accuracy of the static 

part of the map, in our analysis we will only take the dynamic points within the bounds 

of the static part of map into consideration. For the points at the far end of the corridor, 

we have to wait for the area to be explored further by the observer. Therefore, in the next 

step, the points that are in the physical bounds of the static portion are maintained, while 

the other points are discarded as they are not fit for analysis. The obtained points are 

shown in Figure 13.c.  

Now that we have sufficiently accurate data to deal with, we can form clusters based on 

the proximity of the points. In this study, the points were clustered using MATLAB’s 

built-in function clusterdata [47]. The algorithm forms links between data points in space 

based on the squared Euclidean distance between them and forms a new cluster at the 

cutoff of 1.5. These parameters were set through experimentation and provide good result, 

irrespective of the dynamics of the scene for consistent point density. Clusters with a low 

number of points (200 or less) are removed and therefore a refined result is obtained as 

shown in Figure 13.d and e. The clusters obtained should, however, be further observed. 

Although we have acquired the points pertaining to the moving person in form of a single 

cluster, we can also see three other large clusters present at the left end. These three clus-

ters are the remains of the unstable points from the far end of the corridor since the bound-

ary joining the stable and unstable points would never be a crisp difference. The border-

line is irregular within the bounds of the static portion of the map and would be a by-

product of the extraction process. Hence further process is required to differentiate be-

tween the moving object which is truly dynamic in nature and the false dynamic clusters 

obtained due to inconsistency. 
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(a) 

 

(b) 

 

(c) 

                       

(d)        (e) 

Figure 13. Extraction and clustering of Dynamic points(a) Map of the environment con-

taining both static and dynamic/ unstable points (b) Extracted dynamic and/ or unstable 

points (c)dynamic points extracted from within the bounds of static map (d) clustering 

of points and removal of small clusters (e) visualized clusters pertaining to possible dy-

namic objects 
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3.8 Segmentation of Dynamic objects (2D images) 

In the previous section, we had successfully extracted and clustered the instantaneous 

dynamic points from the Global Cloud. However, we still must verify the true positive 

detection (actual moving points) and isolate it from the false positive (noise, inconsistent 

points). For this purpose, the aid of 2D processing was acquired due to its twofold valua-

ble outcomes at this point. Firstly, the 2D image processing provides an enormous variety 

of standard implementations to study the motion of objects. These implementations can 

prove useful and are easy to tune. Secondly, we can easily acquire the actual moving 

object from the original 2D images as consequence of this verification step. A correlation 

between the 2D segmented object and the associated 3D points can be built by keeping 

track of the processed data. As part of the proposed approach, we suggest the use of masks 

obtained through two different methods for the segmentation of the moving object. The 

process of acquiring the masks and segmenting the object is explained in the following 

subsections. 

3.9 Mask Obtained from clustered points 

The presence of segmented 3D clusters makes it easy to obtain an initial mask. This can 

be done by projecting the 3D points onto the image plane using the correct extrinsics [R 

| t]. Each cluster is projected separately and a 2-D convex hull is acquired for the X and 

Y coordinates of the projected points. This results in a solid filled mask of the points 

instead of just the borderline. Similarly, all the other clusters are projected and their masks 

are augmented to obtain a mask for all the clusters. The resultant mask is shown in Figure 

14. The problem of segmentation has progressed a single step, however, the issue of ver-

ification remains. 

 

 

Figure 14. Mask obtained by projecting the clustered dynamic points 
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3.10 Motion Mask obtained using GMM 

For the purpose of verifying our moving objects, we use Gaussian Mixture Model (GMM) 

to detect motion in the scene. GMM is a background modeling approach that is able to 

model the background scene and correctly detect any moving objects in form of fore-

ground. This method was originally introduced in 1999 by Stauffer and Grimson [48], 

which has later been improved and adopted for a variety of applications such as video 

surveillance in recent years.  

The generalized concept of GMM can be explained using Figure 15. Two gaussian dis-

tributions represent some data. This data cannot be accurately represented by a single 

component/ distribution. Therefore, a mixture of these distributions is adopted. The mix-

ture model is defined by a weighted sum of gaussians. 

 

Figure 15 Mixture model for distribution components 1 and 2. 

 

The algorithm treats each pixel independently and characterizes it by a mixture of K 

Gaussians mixture. The pixel values in an image can be considered over time series and 

are termed as ‘pixel process’. The gray scale values are represented by a scaler while a 

colour pixel takes a vector form. At time t, we are aware of the history of a particular 

pixel (𝑥𝑜 , 𝑦𝑜) , given by 

[𝑋1 , …,𝑋𝑡 ,] = { I(𝑥𝑜 , 𝑦𝑜 , i): 1 ≤  i ≤  t},    (9) 
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here, I is the image. The probability that a particular pixel might have an intensity   

at time t is given as: 

𝑃(𝑋𝑡) = ∑ 𝑤𝑖,𝑡 ∗ η(𝑋𝑡, 𝑢𝑖,𝑡, Σ𝑖,𝑡)𝐾
𝑖=1 .   (10) 

Here, the number of distributions are denoted by K. 𝑤𝑖,𝑡 is the estimated weight parameter 

of the  𝑖𝑡ℎ distribution i.e. what fraction of the data this distribution accounts for. 𝑢𝑖,𝑡 is 

the mean value and Σ𝑖,𝑡 is the covariance matrix of the𝑖𝑡ℎ Gaussian distribution in the 

mixture at time t.  The Gaussian probability density function η is given as: 

η(𝑋𝑡, 𝑢𝑖,𝑡, Σ𝑖,𝑡) =
1

(2𝜋)
𝑛
2  |Σ|

1
2

 𝑒−
1

 2
 (𝑋𝑡− 𝑢𝑡)𝑇 Σ−1(𝑋𝑡− 𝑢𝑡)

,   (11) 

here, Σ𝑘,𝑡 = 𝜎𝑘
2I is the covariance matrix of the 𝑖𝑡ℎ component. In order to estimate the 

background model, the first B distributions are considered based on the order of their 

fitness value 𝑤𝑘,𝑡/𝜎𝑘 .The update of the weights 𝑤𝑘,𝑡  and the selection of B distributions 

are given as: 

𝑤𝑘,𝑡  =  (1 −  α)𝑤𝑖,𝑡−1  +  α(𝑀𝑘,𝑡),    (12) 

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏(∑ 𝑤𝑘
𝑏
𝑘=1 > 𝑇).     (13) 

where α is the learning rate and 𝑀𝑘,𝑡 is a binary value which is 1 for the model that 

matched and 0 otherwise. The threshold T is the minimum portion of the background that 

should be considered for the model. 

The Gaussian components are sorted based on their weights and variances. The formula-

tion proposes that a pixel relating to the background would represent high weight and a 

weak variance, since the background is static and therefore its value is essentially con-

stant. For detecting the foreground i.e., the moving object, each pixel is classified based 

on the response of the Gaussian distributions. A pixel that cannot be modeled by the de-

fined /trained background Gaussians is termed as a foreground pixel. Since this approach 

considers the process pixelwise, it is prone to isolated noise in the images. 

The MATLAB implementation of GMM follow the proposals of [49, 50] and provides 

an easy to tune implementation. However, it should be kept in mind that the GMM ap-

proach basically works if the camera is static, and so does the MATLAB’s implementa-

tion of GMM. Furthermore, MATLAB’s documentation recommends training the GMM 

model with a set of at least 150 images and then further testing should be conducted. 

In order to apply GMM on images captured with a moving camera, we propose some pre-

processing steps in this study. The result from the proposed approach provides a good 

compromise between accuracy, robustness, and segmentation of the foreground. Since 

the camera is moving, the model should be continuously trained on the images from the 
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newly explored environment. Moreover, the training is conducted with few recent images 

to keep the novelty of scene. In addition, the training images must be geometrically trans-

formed to the current scene, so that the assumption of a static camera is maintained for 

the GMM. 

If the approach is followed without geometrically transforming the previous images to 

the current scene for training, the results are not good. GMM erroneously detects the static 

objects to be moving and segments out their boundaries as foreground. The reason for 

obtaining just the boundaries is that due to few training images, only the borderlines de-

picts significant motion in the images. The result of a similar process without geometric 

alignment of the images is shown in Figure 16.b for the scene in Figure 16.a at time t. 

The training of the model was performed with 3 latest images. However, when the images 

are geometrically warped from time t-2 and t-1 to t and then fed to the training of the 

model, a significant improvement can be seen. The result obtained is shown in Figure 

16.c, where none of the stationary objects are detected. 

The image transformation was achieved by finding salient features in the neighboring 

frames of a video sequence and tracking them in the frame at time t. From here on we can 

compute the affine image transformation between the previous and current frame using 

the MATLAB’s estimateGeometricTransform function based on the point correspond-

ences. Once the transformation is computed, the previous frame is warped to the current 

frame so that the corresponding points overlap each other. The warping of image to high 

accuracy is only possible if the images translation is very low.  

Another addition to the approach is not to limit the number of training samples from the 

moving camera to a constant. It is rather useful to accept and reject training images based 

on the motion that is within some threshold. During experimentation, we found that if the 

resultant translational motion between the previous images and the image at time t is less 

than 30 pixels, then it should be accepted as it can be accurately transformed to the current 

image. Hence, if the camera is acquiring images at 30 fps, then a considerable number of 

training images can be attained even with a moving camera. 

The above-explained approach, when applied to the video sequence for detecting the 

moving person, provides a peripheral detection of the person. This is due to the fact that 

the training images already include the moving person, hence GMM is not able to make 

a clear distinction between the foreground and the background. Therefore, as the person 

moves, the front of the person occludes the background in the direction of motion while 

the background in the other direction slowly becomes visible. Nonetheless, the result is 

accurate with no false detections. The mask obtained for the moving object is shown in 

Figure 16.d.   

The approach is computationally expensive; however, it provides reliable results for de-

tecting dynamic objects position from a moving camera. 
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                        t-2    t-1     t 

(a) 

 

(b)       (c) 

 

(d) 

Figure 16. Obtaining motion mask from GMM with moving scene (a) previous frames 

transformed to the current frame ‘t’ (b) mask obtained when training images were not 

geometrically transformed (c) mask obtained when training images were geometrically 

(d) mask obtained for the moving person using the proposed approach 

3.11 Segmentation using combined masks 

Now that we have the masks obtained from two different methods, a conclusive decision 

can be made about the actual dynamic object. We propose to use the blobs in the resultant 

mask of GMM as markers for segmenting out the actual dynamic objects from the first 

mask (obtained from projection). Since, under such dynamic circumstances where both 

the camera and the objects in the scene move, only a peripheral area of the moving object 

can be accurately detected using GMM without having many incorrect detections. The 

segmentation obtained using the proposed sequence of steps is shown in Figure 17. The 

segmented object is not finely extracted in this process; nonetheless, it meets the objective 
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of this work where the dynamic environment was successfully registered using SLAM 

and the moving object in the scene was identified and isolated for further analysis. 

    

(a)       (b) 

 

(c) 

Figure 17. Segmentation of the dynamic object using binary masks (a) Mask obtained 

by projecting the clustered 3D dynamic points onto image plane (b) Masked obtained 

using GMM based motion detection(c) Segmented dynamic object from 2D images 
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4. EXPERIMENTAL  SETUP AND RESULTS 

In this section, we would present camera setup and analyse the results obtained for the 

proposed approach of Visual SLAM. Each test case is directed to examine the ability of 

the algorithm in a different environment. Since the primary goal of the study is to develop 

a method that can robustly perform in a dynamic environment, therefore, two of the test 

cases mimic a highly dynamic indoor environment. The third case is directed to test the 

ability of the approach to map a medium scale outdoor environment. 

For experimentations conducted throughout this work, we used a Zed stereo camera [51]. 

The camera follows Pinhole camera model, with two cameras fixed at a baseline distance 

of 12 centimeters. The specifications of the Zed camera are notable. The effective range 

for this camera is 0.5 to 20 meters, with the capability of working both indoor and outdoor 

[51]. However, the performance deprecates with the increase in distance, therefore it was 

beneficial to limit our interest to a maximum of 6.5 meters in order to acquire valid and 

consistent data. This figure was explored empirically during this work. 

For calibrating the Zed camera, we utilized the Computer Vision System Toolbox™ cal-

ibration algorithm which in turn adopts the work proposed by Jean-Yves Bouguet [52]. 

The parameters obtained after calibration for the Zed stereo camera are provided in Table 

1. These parameters are specific to the device used and might vary slightly due to toler-

ances adopted in measurements during manufacturing of camera components. 

Table 1. Zed camera calibrated parameters 

Properties Left Camera (L) Right Camera (R) 

Radial Distortion [-0.1609, -0.0095, 0.0298] [-0.1638, 0.001, 0.0182] 

Tangential Distortion [-3.3259 e-04, -6.2056 e-04] [-2.1356 e-04, -2.8499 e-04] 

Estimate Skew 0 0 

Intrinsic Matrix (K) 

[1.399 e+03, 0, 0; 

0, 1.4008 e+03, 0; 

1.0501 e+03, 6.322 e+02, 1] 

[1.3997 e+03, 0, 0; 

0, 1.4009 e+03, 0; 

1.081 e+03, 5.81 e+02, 1] 

Focal Length (fx, fy) px [1.399 e+03, 1.4008 e+03] [1.399 e+03, 1.4 e+03] 

Principal Point (cx, cy) px [1.0501 e+03, 6.3224 e+02] [1.081 e+03, 5.81 e+02] 

Mean Reprojection Error (px) 0.1961 0.1998 

Translation of R Camera from L (mm) [-1.216 e+02, -0.0957, -1.52] 

Rotation of R Camera from L (mm) [0.999, -0.0019, -3.839 e-04; 

0.0019, 0.999, -0.006; 

3.9564 e-04, 0.006, 0.999] 
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4.1 Case 1: Object introduction to scene and removal 

This dataset serves as the first test case to check the robustness of the implementation. 

The first test is directed to check how the algorithm performs when only the dynamics of 

the environment are changed. The indoor scene is recorded with the Zed camera fixed at 

a position. The video is acquired at a frame rate of 30 fps. The parameters used to process 

the sequence are provided in Table 2. The excerpt from the video along with the processed 

results can be seen in Figure 18. The first column has excerpt from the original image 

sequence followed by a map built for the environment in the second column. The third 

column shows the dynamic object that has been segmented, from the corresponding im-

age, during its motion. 

The image sequence starts with a static environment where it’s corresponding downsam-

pled point cloud is shown in red color. This shows that that the environment hasn’t gath-

ered enough confidence in the start to be classified static. Nonetheless, the segmentation 

verifies that the environment is static since no motion is observed in the GMM masks. 

The points quickly gain confidence during registration with the point clouds from the 

subsequent images. This period is highly affected by the framerate of camera acquisition 

and takes a few iterations. The points that have gathered confidence greater than 1 are 

termed static and obtain their original color. As the person walks into the static scene, 3D 

points pertaining to the person are dynamic and shown in red and at the same time, the 

person is segmented in the third column. The map successfully updates and is not affected 

by the moving 3D points. Once the person sits on the chair and does not show any con-

siderable movement, he becomes part of the static environment and is registered into the 

map (8th row). In the following frames, the person moves out of the scene again. The 

corresponding 3D points of the person become dynamic since they cannot find associa-

tions and they are removed. While new points from the current frames help to continu-

ously update the map. When the person moves out of the view, the map attains the initial 

static form (11th row). The action is repeated to verify the response of the system. 

Table 2. Parameters used for the registration of test dataset 1. 

Parameters Value Unit 

Acquisition Rate 30 Frames per second 

Point Cloud Generation Parameters 

Uniqueness threshold 60 constant 

Disparity Range 0-64 pixel 

Physical Z bound 6 meter 

Down sampling 0.04 meter, Volumetric grid step 

Registration Parameters 

Correspondence Threshold 0.05 meter 

Merging Threshold 0.05 meter 

Confidence Gain 0.1 (max), Gaussian distribu-

tion 

constant 
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Penalty Reduction 0.01 constant 

Threshold time for noise re-

moval (tmax) 

5 frames 
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Figure 18. Test case 1; first column shows the original images, second column shows the 

registered map and the third column presents the segmented moving object. 

4.2 Case 2: Passer-by in a moving scene 

The second test case is a continuation of the first case, where camera motion is introduced 

into the scene. The same parameters are utilized for image acquisition as for Case 1. The 

parameters used to process the sequence are provided in Table 3. The excerpt from the 

video along with the processed results can be seen in Figure 19. In this test case, we map 

a corridor while a person passes through the scene. It can be observed from the results 

that the map is successfully updated along the moving person. The dynamic points per-

taining to the moving person are clearly visible in front of the static part of the map, while 

unstable dynamic points are present at the far end of the map. The unstable/dynamic 

points at the far end are due to their inconsistency in the individual point clouds, as ex-

plained in Section 3.7. 

Table 3. Parameters used for the registration of test dataset 2. 

Parameters Value Unit 

Acquisition Rate 30 Frames per second 

Point Cloud Generation Parameters 

Uniqueness threshold 60 constant 

Disparity Range 0-64 pixel 

Physical Z bound 6.5 meter 

Down sampling 0.02 meter, Volumetric grid step 

Registration Parameters 

Correspondence Threshold 0.03 meter 

Merging Threshold 0.03 meter 

Confidence Gain 0.1 (max), Gaussian distribu-

tion 

constant 

Penalty Reduction 0.01 constant 

Threshold time for noise re-

moval (tmax) 

5 frames 
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Figure 19. Video test case 2, where first column shows the original images, second col-

umn shows the registered map and the third column presents the segmented moving ob-

ject. 

4.3 Case 3: Outdoor environment mapping 

The third case scenario tests the traditional ability of SLAM to map over a longer range 

in an outdoor environment while maintaining the ability to compensate for any dynamics 

introduced into the scene. The primary purpose of this dataset was to check the robustness 

of the implementation. The video was recorded in front of the Tampere University of 

Technology with the hand-held Zed camera. The dataset provides several challenges to 

test the system. The video was recorded on a cloudy day in winter. The frame rate of 

image acquisition was limited to 10. The hand-held camera along with a low framerate 

resulted in sharp changes in the scene between the frames. The scene was recorded for a 

total length of 45 meters. 

The parameters used to process the sequence are provided in Table 4. Some important 

excerpts from the video along with the processed results can be seen in Figure 20. The 

order of data the same as mentioned for the previous test cases. It can be observed that 

the environment introduces more noise into the registration process as compared to the 

previous datasets. Nonetheless, the point clouds are registered sequentially and the map 

builds up (1st and 2nd row). The images in the 3rd row of Figure 20 shows two pedestrians 

walking in and out of the scene. It can be observed from the map at the corresponding 

stage that the pedestrians are registered as dynamic objects in the map and the moving 

objects did not affect the registration process. The pedestrians are then discarded from the 

map as they move out of the scene. In the subsequent frames (4th and 5th row), a tree 
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comes into the range of the camera. The tree is initially detected as a dynamic object but 

it is soon added to the map as a stationary object. This test case effectively demonstrates 

the ability of the proposed approach to perform in an outdoor dynamic environment. 

Table 4. Parameters used for the registration of test dataset 3. 

Parameters Value Unit 

Acquisition Rate 10 Frames per second 

Point Cloud Generation Parameters 

Uniqueness threshold 30 constant 

Disparity Range 0-64 pixel 

Physical Z bound 6 meter 

Down sampling 0.08 meter, Volumetric grid step 

Registration Parameters 

Correspondence Threshold 0.2 meter 

Merging Threshold 0.2 meter 

Confidence Gain 0.1 (max) , Gaussian distribu-

tion 

constant 

Penalty Reduction 0.01 constant 

Threshold time for noise re-

moval (tmax) 

10 frames 
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Figure 20. Video test case 3. The video was captured in an outdoor dynamic environment. 

The first column shows the original images, second column shows the registered map. 

4.4 Case 4: Narrow Corridor with Semi-Transparent surfaces 

This test dataset was generated to analyse the ability of our system to tackle narrow path-

ways with less distinct structures. The corridor offers repeating spatial structures which 

are challenging for the ICP to register. Furthermore, the semi-transparent surfaces (glass 

doors and room windows) in the hallway generate a great amount of noise in the point 

clouds, making the registration process more difficult.  

The parameters used to process the sequence are provided in Table 5. Some important 

excerpts from the video along with the processed results can be seen in Figure 21. The 

order of data is the same as mentioned for the previous test case. It can be observed 

throughout the sequence that the point cloud contains a considerable amount of noise. 

The images in the 3rd row of Figure 21 illustrate that the semi-transparent and transparent 

surfaces introduce a lot of noise into the registration process. Nonetheless, the corridor is 

mapped accurately till the rotation of the camera. During the 180o rotation to turn back 

(observed in row 4 to 7), the proximity of the camera to the wall restricts the view. The 
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point clouds generated from the images during the rotation have very few points. More-

over, the presence of the semi-transparent glass door produced a noisy and unstructured 

point cloud. The result is a 90o rotation instead of 180o. Afterwards, the registration pro-

cess continues straight (observed in row 8 to 10) in the direction of motion i.e. forward. 

Upon the second rotation at the end of corridor (observed in row 11 to 13), a similar 

partial rotation is registered instead of a complete 180o  turn due to similar causes. This 

registration failure was inevitable with just the use of ICP. Such problems can be avoided 

by either supplementing the trajectory computation with another means of transformation 

computation such as IMU or using predictive filtering methods to compensate for the 

brief inaccurate transformation estimation provided by the ICP.  

Table 5 Parameters used for the registration of test dataset 4. 

Parameters Value Unit 

Acquisition Rate 10 Frames per second 

Point Cloud Generation Parameters 

Uniqueness threshold 15 constant 

Disparity Range 0-240 pixel 

Physical Z bound 6 meter 

Down sampling 0.02 meter, Volumetric grid step 

Registration Parameters 

Correspondence Threshold 0.035 meter 

Merging Threshold 0.035 meter 

Confidence Gain 0.1 (max), Gaussian distribu-

tion 

constant 

Penalty Reduction 0.01 constant 

Threshold time for noise re-

moval (tmax) 

10 frames 

 

1 

  

2 

 
 



44 

3 

  

4 

  

5 

  

6 

  

7 

  

8 

  



45 

9 

  

10 

  

11 

  

12 

  

13 

 
 

Figure 21. Video test case 4. The test data was recorded at Tietotalo, Tampere University 

of Technology. The first column shows the original images, second column shows the 

registered map. 
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5. CONCLUSIONS 

This thesis presents an effective approach to implement stereo based Visual SLAM in an 

active dynamic environment. The system performs without any prior knowledge or model 

initialization of the environment or its part. The approach exploits the intrinsic character-

istics of the ICP algorithm to develop a robust framework. The outliers of the data asso-

ciation step during the registration process are considered the key contributor to the study 

of the dynamics of the objects in the scene. A general measure of confidence assigned to 

each 3D point is used to differentiate the points as static and dynamic. During the study, 

the main objectives were to (1) generate and update a semi-dense map of the active dy-

namic environment (2) isolate the dynamic object in the global map (3) segment the mov-

ing objects in the 2D images. All the mentioned objectives were successfully accom-

plished. The results from the experiments show the effectiveness of the system in realistic 

environments. The test cases were recorded both indoor and outdoor along with additional 

complexities including camera motions, camera jitter, light conditions and object motion.  

Each of the four test cases incrementally introduces challenges for the registration pro-

cess. The first two cases specifically focus on the dynamic objects in an indoor environ-

ment. The datasets were recorded with a hand-held static and moving camera, respec-

tively. Both the scenes were successfully mapped along with accurate segmentation of 

the moving object. The third test case composes of an outdoor dataset recorded on a 

cloudy winter day. The video was recoded at 10fps with a hand-held camera, resulting in 

a choppy image sequence. The scene in this test case offered little distinct spatial struc-

tures for the ICP, and therefore, resulted in a noisy map that seems to be compressed at 

times. Nonetheless, the sequence was successfully registered. The last test case proved to 

be most challenging and pointed out the limitations of the proposed approach. The pres-

ence of many semi-transparent surfaces in the narrow corridor resulted in the generation 

of noisy point cloud for the image pairs. Moreover, the walls when viewed in close-up 

during the rotation of the camera provided little texture to generate a structurally sound 

point cloud with enough 3D points. The combination of semi-transparent surfaces and 

close-up view of the wall resulted in point clouds that were weak candidates for ICP al-

gorithm. The proposed approach failed to register the point clouds from the images se-

quence, accurately. For such cases, the system should be aided with complementary sens-

ing mechanism e.g. IMU or predictive filtering algorithms such as Extended Kalman Fil-

tering. 

In our experiments, the system was successfully tested on framerates between 10-30. 

However, 30fps is more desirable for implementations following only visual cues. This 

is mainly due to the fact that the camera pose difference between the consecutive frames 
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significantly reduces. As a result, less blur is observed during camera motion, the trans-

formation computation speeds up, and registration accuracy increases. 

In its current state, our system requires the initialization of the threshold value. This 

threshold value determines which points are close enough to be classified as inliers during 

data association. The same threshold value is then used for merging of the neighboring 

close points. Although, the threshold value is intuitive in nature and can be easily selected 

with few trials, an automatic selection methodology would eliminate this tedious param-

eter tuning. Further improvement could be made in terms of real-time processing capa-

bility. The implementation was done in MATLAB, the datasets were recorded and tested 

offline. This arrangement, especially motion segmentation, seems to be computationally 

exhaustive for MATLAB and takes a considerable amount of time for processing. 
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