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ABSTRACT 
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The development of web applications  for desktop and mobile has surged in  recent  

years. The  most  popular  web  scripting  language  is  JavaScript  because all the 

browsers support it and its role as a scripting language of the WWW. It is a powerful 

and flexible language. However, it also has some shortcomings. For this  reason,  over  

the  last  few  years  many  different  web  scripting  languages  have appeared, they 

give the solutions to the shortcomings of JavaScript.   

 

In    this    thesis a number of emerging web scripting languages are surveyed and the 

most popular option, CoffeeScript, TypeScript and Dart, are evaluated in detailed level. 

We will explain what a scripting language is and how it works, JavaScript‗s problems in 

developing a web application, list of available scripting  languages  for  web  clients,  

the  motivation  behind  these  languages  and  their features that they add to JavaScript.   

 

In order to show the results, an example web application is developed in all the 

languages. The main conclusion extracted of this thesis is that these languages address  

the  shortcomings  of  the  JavaScript  such  as  they  all  have  the  compile  time 

checking for errors, CoffeeScript adds the syntactic sugar to JavaScript syntax, object-

orientation,  inheritance.  TypeScript and  Dart  have  the  type  checking, modules  and  

generics.  Dart  also  supports  the  concurrency  with  isolates.  It  is  easy  to develop 

and maintain the complex and large scale applications in these languages. 
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TERMS AND DEFINITIONS 
 
 

App Application 

Brevity of Code If the number of lines of code is reduced 

CS CoffeeScript 

DOM Document Object Model  

ECMA European Computer Manufacturer‘s Association 

IIS Internet Information System 

Intellisense Intelligent code sense  or Autocompletion of code 

JCL Job Control Languages 

JS JavaScript 

TCL  Tool Command Language 

TS TypeScript 

XUL XML User Interface Language 

Weak Typing Weak typed languages are those in which variables are not of a 

specific data type.  It should be noted that this does not imply that 

variables do not have types; it does mean that variables are not 

"bound" to a specific data type. 

Strong Typing Programming languages in which variables have specific data types 

are strongly typed. This implies that in strong typed languages, 

variables necessarily bind to a particular data type. 

Strict Typing Strictly typed languages enforce typing in all data being interacted 

with. Languages where variables must be declared to contain a 

specific type of data. 

Static Typing Static typed languages are those in which type checking is done at 

compile-time 

Dynamic Typing Dynamically typed languages are those in which type checking is 

done at run-time 
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1. INTRODUCTION 

“It’s hard enough to find an error in your code when you're looking for it; it's even 

harder when you've assumed your code is error-free.‖  

       - Steve McConnell 

Web scripting languages became increasingly popular in the web application program-

ming in the last years. There are many options for server-side languages but when it 

comes to browser we are limited to JavaScript. Flash was used earlier to do the same but 

now it is fading away because it is not supported by iPhone and iPads, websites are not 

SEO optimized, content is not shareable on Facebook and twitter. ECMA script pro-

gramming language JavaScript is used more widely in the development of web applica-

tions and in the server-side (node. js). Even there are ways to program embedded sys-

tems using it; many frameworks are available for this purpose. 

 

JavaScript is claimed to cause problems to developers because it is error prone and er-

rors are difficult to spot. Developing rich featured and heavy applications are not so 

easy with JavaScript even though there is couple of libraries and frameworks such as 

JQuery, Backbone.js, and Kockout.js etc. To address these problems, new programming 

languages have been proposed. Usually they provide the missing functionality and im-

plement language concepts of their own. Dart, CoffeeScript and TypeScript are exam-

ples of these. 

 

All of these alternative languages address different problems of JavaScript and provide 

the solutions for them. For instance if you want to get rid of nasty callbacks and a proto-

type approach to object oriented programming and want some syntactic sugar,  Cof-

feeScript  is the best  choice. For strict typing the Dart and TypeScript would be wise 

choice. There are IDE available for development in the Dart and TypeScript. There are a 

number of alternatives available, they do not replace the JavaScript but having higher 

level options available is always good. 

 

The goal of this thesis is to evaluate some of these alternative web scripting languages. 

In order to achieve this goal comparisons concerning syntax, semantics, language fea-

tures, security and performance are made. The contribution of this thesis will be an in-

troduction to almost all the scripting languages but the focus will be in three languages. 

There will be an historical background, overview of new features and how they solve 

the problems of JavaScript.  
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The TODO application is also developed in all the considered languages to clear the 

idea of development in all these languages. It is a basic TODO application which has 

features such as add TODO item, remove, sort and edit. The data is saved in the local 

storage. 

 

This thesis is organised as follows. Chapter 2 presents the scripting languages in general 

and the history of scripting languages, Chapter 3 is about JavaScript, its main features 

and drawbacks of JavaScript, Chapter 4 decribes the list of available scripting languages 

for web clients and need of popularity of web scripting languages, Chapter 5 explains 

the CoffeeScript and its features, Dart and TypeScript are elaborated in Chapter 6 and 

Chapter 7 respectively, Chapter 8 gives the robust and performance comparisons, Chap-

ter 9 describes the TODO application features and its implementation. Finally, Chapter 

10 gives the conclusion of the thesis. In the appendix the code of TODO application in 

all the languages is given.  
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2. SCRIPTING LANGUAGES 

Scripting languages are computer-programming languages designed for "scripting" the 

operation of a computer. Early script languages were often called batch languages or 

job control languages. A script is more usually interpreted than compiled, but not 

always. (Wikipedia) 

e.g. Perl, Tcl, Python, Rexx, Visual Basic, JavaScript, Unix shell 

2.1. History of scripting languages 

The Scripting languages originated as job control languages (JCL) in 1960‘s IBM 360 

had the Job Control Language. [1] The scripts were used to control the other programs; 

their responsibilities include launch compilation, execution and check return codes. In 

1970's scripting languages got more powerful in the UNIX world. Shell programming, 

AWK, Tcl/Tk, Perl are examples of that. Shell programming named sh, began as a small 

collection of commands that were interpreted as calls to system subprograms that per-

formed utility functions, such as file management and simple file filtering. Another 

scripting language is awk developed by Al Aho, Brain Kernighan and peter Weinberger 

at Bell Laboratories, awk began as a report generation language but later became a more 

general- purpose language. The Perl language, developed by Larry Wall, was originally 

a combination of sh and awk. [2] Perl has grown significantly since its beginnings and 

is now a powerful, although still somewhat primitive, programming language. Although 

it is still often called a scripting language, but in actual it is similar to the imperative 

language, because it is always compiled into an intermediate language before its execu-

tion. In 1990‘s scripting languages become more common, used in faster computers, 

graphical user interfaces, component based programming and internet. In mid-1990s 

after the first graphical browsers appeared the use of Web exploded. The scripting lan-

guages were developed to write extensions to the browser and for controlling the 

browser, including JavaScript (a dialect of ECMAScript) or XUL. [3] 

2.2. Properties of scripting languages 

There is no hard and fast line between a "scripting language" and a "programming lan-

guage". The boundary between them is somewhat blurry and difficult to demarcate. 

However, it is possible to highlight a few characteristics of scripting languages: 

 

―Scripting languages are interpreted or bytecode-interpreted and never compiled to na-

tive code; the memory handling is done by a garbage collector and not by a program-

http://en.wikipedia.org/wiki/ECMAScript
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mer; include high-level data types, such as lists, associative arrays and so on; the execu-

tion environment can be integrated with the program being written; the scripting pro-

grams (or simply, scripts) can access modules written in lower-level languages, such as 

C.‖ 

 

Related to the above, usually in a "scripting language‖ the variables are not declared 

explicitly, and the types of the variables are scarcely declared. Some scripting languages 

(such as Javascript) are coerced type, and others (such as TypeScript and python) are 

strongly typed and raise exceptions on type mismatches. 

 

Not every scripting language has the whole set of these features. For example, shell 

scripts cannot access C modules. But it‘s a scripting language nevertheless. 

 

The main idea behind the scripting languages is their dynamic nature that allows treat-

ing data as a program and vice versa. The list of the scripting languages includes: shell, 

awk, Perl, TCL, Python, Java, Lisp and many others. 

2.3. Scripting engine 

In computer science, an interpreter normally means a computer program that executes, 

i.e. performs, instructions written in a programming language. While interpretation and 

compilation are the two principal means by which programming languages are imple-

mented, these are not fully distinct categories, one of the reasons being that most inter-

preting systems also perform some translation work, just like compilers. 

 

Essentially an interpreter (or scripting engine) is the component that is responsible for 

turning a script into machine code at execution time (as opposed to a compiler which 

creates machine code prior to execution time). See in the figure 2.1. 
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Script

 Scripting Engine

 
 

Execution

 
Figure2.1.Scripting engine. 

 

Every scripting language has its own scripting engine, in order to implement the script-

ing engine, one should understand the scripting language‘s nature and how it works. 

User needs to look at the system requirements, how a scripting engine will fit into the 

existing software architecture, to conclude which type of the scripting engine to use. 

Programmers will need a deep understanding to use scripting engine in ways that will 

provide similar results to simply writing executable code in a non-scripting language. 
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3. WHAT IS JAVASCRIPT? 

JavaScript is a programming language that can be inserted into HTML pages, can be 

executed in all modern web browsers [17]. It is used to make the web pages interactive. 

It turns on your visitor‘s computer and does not require constant downloads from the 

website.  

3.1. History 

JavaScript was created in 10 days at Netscape by Brendan Eich on May 1995. It was not 

always known as JavaScript: the original name was Mocha, LiveScript was the official 

name for the language when it first shipped in beta releases of Netscape Navigator 2.0 

in September 1995, but it was renamed JavaScript[18] on December 4, 1995 when it 

was deployed in the Netscape browser version 2.0B3[19]. Netscape‘s Navigator, Micro-

soft‘s Internet Explorer and most other popular browsers support JavaScript. 

 

Netscape introduced an implementation of the language for server-side scripting (SSJS) 

with Netscape Enterprise Server, first released in December, 1994 (soon after releasing 

JavaScript for browsers)[20][21]. Since the mid-2000s, there has been a proliferation of 

server-side JavaScript implementations. Node.js is one recent notable example of 

server-side JavaScript being used in real-world applications [22][23]. 

 

Later on Jan 1997, Microsoft implemented its own version of JavaScript known as the 

Jscript. Jscript is similar to JavaScript accepted that it adds a few more additional capa-

bilities. Jscript is compatible with JavaScript 1.2. Microsoft also included server side 

JavaScript support with its Internet Information Server (IIS). 

 

In November 1996, Netscape submitted JavaScript to European Computer Manufac-

turer’s Association (ECMA) for consideration as an industry standard, and subsequent 

work resulted in the standardized version named ECMAScript. In June 1997, ECMA 

International published the first edition of the ECMA-262specification. A year later, in 

June 1998, some modifications were made to adapt it to the ISO/IEC-16262 standard, 

and the second edition was released. The third edition of ECMA-262 (published on De-

cember 1999) is the version most browsers currently use. [24] 

 

Over time it was clear though that Microsoft had no intention of cooperating or imple-

menting JS in IE, even though they had no competing proposal and they had a partial 

(and diverged at this point) implementation on the .NET server side. 

http://en.wikipedia.org/wiki/Server-side_scripting
http://en.wikipedia.org/wiki/Netscape_Enterprise_Server
http://en.wikipedia.org/wiki/JavaScript#cite_note-Newscape_JavaScript_Guide-1998-14
http://en.wikipedia.org/wiki/JavaScript#cite_note-Newscape_JavaScript_Guide-1998-14
http://en.wikipedia.org/wiki/Comparison_of_server-side_JavaScript_solutions
http://en.wikipedia.org/wiki/Node.js
http://en.wikipedia.org/wiki/JavaScript#cite_note-RWW-Server-Side-2009-12-17-16
http://en.wikipedia.org/wiki/JavaScript#cite_note-RWW-Server-Side-2009-12-17-16
http://en.wikipedia.org/wiki/ECMAScript
http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/Ecma_International
http://en.wikipedia.org/wiki/ECMA-262
http://en.wikipedia.org/wiki/ECMA-262
http://en.wikipedia.org/wiki/ECMA-262
http://en.wikipedia.org/wiki/JavaScript#cite_note-19
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In 2005 Jesse James Garrett introduced a term ―Ajax‖ and a set of technologies in his 

paper in which JavaScript was the backbone, used to create web applications where data 

can be loaded in the background, avoiding the need for full page reloads and resulting in 

more dynamic applications. This resulted in a creation of many other open source librar-

ies such as Prototype, jQuery, Dojo and Mootools. 

 

All of this then brings us to today, with JavaScript entering a completely new and excit-

ing cycle of evolution, innovation and standardisation, with new developments such as 

the Nodejs platform, allowing us to use JavaScript on the server-side, and HTML5 APIs 

to control user media, open up web sockets for always-on communication, get data on 

geographical location and device features such as accelerometer, and more. It is an ex-

citing time to learn JavaScript. 

 

Today, "JavaScript" is a trademark of Oracle Corporation.[25] It is used under license 

for technology invented and implemented by Netscape Communications and current 

entities such as the Mozilla Foundation.[26] 

 

3.2. How it works? 

Support for JavaScript is built right into all the web browsers like Internet Explorer, 

Safari, Firefox, Google Chrome, and Netscape. It is enabled by default on all the web 

browsers, therefore the JavaScripts code runs automatically when the website is visited. 

As it is the interpreted language, so no compiler is required to create usable code. There 

are plenty of editors available to write the code. The script can be written in the same 

file as the HTML but it is recommended that to write in a separate file (using .js exten-

sion helps identify them as JavaScript) thus it can reuse again easily on multiple pages 

of a website. The <script> tag is used to link the JavaScript with the HTML. The same 

JavaScript can then be added to several pages by adding the appropriate tag into each of 

the pages to set up the link.  

3.3. Paradigms 

JavaScript is such a flexible language that it can be used to write code that follows many 

radically different programming paradigms such as functional programming, object-

oriented programming (OOP), imperative programming etc. 

3.4. Functional programming in brief 

Functional programming is a style of programming which models computations as the 

evaluation of expressions and avoids state and mutable data. In functional programming 

functions are first-class, which means they are treated as the any other values, they can 

be passed as arguments to other functions and can be assigned to any other variable as 

http://nodejs.org/
http://en.wikipedia.org/wiki/Trademark
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/JavaScript#cite_note-22
http://en.wikipedia.org/wiki/Mozilla_Foundation
http://en.wikipedia.org/wiki/JavaScript#cite_note-23
https://en.wikipedia.org/wiki/Program_state
https://en.wikipedia.org/wiki/Immutable_object
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well as can be used in any other context where values can be used. There‘s typically no 

layer where you process the input, store state, arranges a sequence of statements, update 

the state, and decide about the next step. 

3.5. JavaScript and Functional Programming 

JavaScript is not the truly functional language like Haskell and Lisp but it supports 

some construct that are typical of functional language. A goof functional programming 

can be done in JavaScript if these constructs are used extensively. The followings are 

the functional programming aspects implementation, which are not native but there im-

plementation will not cost much. 

3.5.1. Anonymous functions 

The anonymous function is a function which is defined without being bound to an iden-

tifier. JavaScript is familiar with this concept. The two most common ways to create a 

function in javascript are by using the function declaration or function operator. 

Anonymous functions are created using the function operator. Here is an example: 

 

var sum = function(x, y) { 

 return x + y; 

} 

 

3.5.2. High-order functions 

 

High-order functions are functions which accept functions as arguments or return func-

tions. JavaScript has these functional elements built-in for a long time. Here is a basic 

example:  

 

funct(”someArgument” , function(x) {return x;}); 

function funct(a, foo){ 

foo(a);//it will return a 

   } 
 

If you‘re using a function as a value that you pass around. Here‘s an example that shows 

how to combine together various functions. 

 

http://helephant.com/2012/07/14/javascript-function-declaration-vs-expression/
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// Function to calculate a total 

var total = function(x, y) { 

   return x + y; 

};  

// Function to add taxes 

var AddTaxes = function(x) { 

  return x * 1.4; 

};  

//function that takes the other two functions as argument 

var CalcTotalPlusTaxes = function (fnTotal, fnAddTaxes, x, y) { 

    return fnAddTaxes(fnCalcTotal(x, y));  

};  

// Execution 

var result = CalcTotalPlusTaxes(CalcTotal, AddTaxes, 40, 60); 

alert(result); 

 Programme4.1. Example of combine together various functions. 

 

Note that you can still invoke an anonymous function without resorting to intermediate 

variables, as in the following code: 

alert( (function(x) {return x * 1.4;})(100)); 

3.5.3. Recursion 

Another concept which is common in almost all the modern languages is the recursion. 

A function calls itself inside its body: Here is an simple example 

 

 

function factorial(n) { 

    if (n &lt;= 1) return 1; 

    return n * factorial(n - 1); 

} 

 

This is a very popular example of calculating the factorial by using the recursion that is 

why the detail description is skipped. 

3.5.4. Closure 

A closure is a function called in one context that remembers variables defined in another 

context, the context in which it was defined. That‘s why, in the following example (the 

really interesting stuff is occurring in the anonymous function), when we call the hello 

function it will alert the name that is the part of inside function. 

 

function  hello(name){ 

 var text = “Hello” + name; //local variable 

 var someAlert = function(){  

    alert(text); 

 } 

return someAlert; 

} 

var  say = hello(“Antti”); 

say(); 
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The above code has a closure because the anonymous func-

tion function() { alert(text); } is declared inside another function, hello() . In JavaScript, 

if you use the function keyword inside another function, you are creating a closure. 

 

3.6. Object oriented paradigm in brief  
 

The object-oriented paradigm is a programming paradigm that promotes the efficient 

design and development of software systems using reusable components that can be 

quickly and safely assembled into larger systems. [27] The basic unit of code that is a 

template for creation of object is a ―class‖. OO paradigm includes some unique concepts 

which overcome the drawbacks of fellow programming paradigms. In OOP, the empha-

sis is on data and not on procedures. General features of OO programming are: object, 

Classes, Data Abstraction, Data Encapsulation, Inheritance, Modularity, Polymorphism, 

message passing and dynamic binding. 

3.7. Java Script and Object oriented Programming 

3.7.1. Core Objects 

JavaScript has many objects that are part of its core for example there are objects like 

Math, Object, Array and String. Following is the example to generate the random num-

ber by using the Math object in JavaScript 

 

alert(Math.random()); 

 

3.7.2. Custom Objects 

There is a significant difference between custom objects in OOP language and 

JavaScript because in JavaScript there are no classes, it just has objects whose blueprint 

are that of a dictionary of data and functions. When a new object is created in 

JavaScript, it has an empty dictionary user can fill with anything he/she like. 

 

It requires a little more work to gain the functionality of OOP languages for instance 

inheritance, encapsulation and abstraction; with the help of two approaches it is possible 

to exceed the capability of native JavaScript such as: Prototypes and closures.   

 

3.7.3. Prototype-based programming 

To make a new object, you just call the "copy" method on an existing object. In a proto-

type-based language, an object can contain both data and behavior. It's a self-contained 

thing. 
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Prototype-based programming is a style of object-oriented programming in which 

classes are not present, and behavior reuse (known as inheritance in class-based lan-

guages) is accomplished through a process of cloning existing objects which serve as 

prototypes. This model is also known as class-less, prototype-oriented, or instance-

based programming. (Wiki) 

 

3.7.4. Object-orientation through Prototypes in JavaScript 

Defining a class is as easy as defining a function. As there is no explicit way of defining 

the class in JavaScript therefore functions can be used to somewhat simulate classes, but 

in general JavaScript is a class-less language. In the example below we define a new 

class called Person. 

function Person() { } 

To define properties and methods for an object created using function(), you use 

the this keyword. The prototype model requires that you define the public structure of 

the class through the JavaScript prototype object. The following code sample shows 

how to rewrite the Person class to avoid a closure. 

// Pseudo constructor 

var Person = function(name, lastname, birthdate){ 

    this.initialize(name, lastname, birthdate); 

}  

// Members 

Person.prototype.initialize(name, lastname, birthdate){ 

    this.Name = name; 

    this.LastName = lastname; 

    this.BirthDate = birthdate; 

} 

Person.prototype.getAge = function(){ 

    var today = new Date(); 

    var thisDay = today.getDate(); 

    var thisMonth = today.getMonth(); 

    var thisYear = today.getFullYear(); 

    var age = thisYear-this.BirthDate.getFullYear()-1; 

    if (thisMonth > this.BirthDate.getMonth()) 

        age = age +1; 

    else  

       if (thisMonth == this.BirthDate.getMonth() && 

           thisDay >= this.BirthDate.getDate()) 

           age = age +1; 

    return age; 

} 

 Programme4.2. Example of prototype in JS. 

In the above example the constructor and the members are clearly separated and con-

structor is always required. Because in JavaScript there is no private member keyword, 

you can have the getter and setter to define the properties but these backing fields are 

accessible from outside in anyway. 
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3.7.5. Inheritance 

Through inheritance, one object can inherit the characteristics of another object; this 

allows an existing object to be extended and similar objects to share properties and 

behaviors [28]. 

 

var animal = {eat : true}; 

function Dog(name){ 

 this.name = name; 

} 

Dog.prototype = animal; 

var dog = new Dog('tiger'); 

alert( dog.eat ) // true 

 

Using the prototype, Dog inherits the properties of animal allowing the dog instance to 

use animal‘s eat property. 

3.7.6. Abstraction 

Abstraction is hiding the details of a process/artifact to emphasize other (more 

important) aspects, details, or structure. This can be achieved by inheritance 

(specialization), or composition. JavaScript achieves composition by letting instances of 

classes be the values of the attributes of other objects. 

 

The JavaScript Function class inherits from the Object class (this demonstrates 

specialization of the model). And the Function.prototype property is an instance of the 

object (this demonstrates composition) 

 

var foo = function(){}; 

alert('foo is a Function: '+(foo instanceofFunction)); 

alert('foo.prototype is an Object: 

'+(foo.prototypeinstanceofObject)); 

3.7.7. Encapsulation 

Encapsulation is a language mechanism to restrict the access of object‘s component 

[29]. The object is structured to be self-contained, everything is available internally that 

an object needs. The internal state of the object is not directly accessible externally 

except through the abstraction layer [30]. 

 

(function() {  

   var x = ''; 

   function myFunction () { 

     alert('Hello: ' + x); 

   } 

   x = 'Bob'; 

   myFunction(); 

   alert(typeof x);            // string 

   alert(typeof myFunction);   // function 

   })(); 
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   alert(typeof x);               // undefined 

   alert(typeof myFunction);      // undefined 

 

Whatever you declare in that self invoking function is held in a separate scope. The 

variable x and the function myFunction() cannot be accessed from anywhere else. The 

code in other JavaScript files will not see them, for example, and it would be free to 

declare another function myFunction() without conflicts. 

 

3.8. Why JavaScript is not enough? 

3.8.1. No Module 

Module development means separating the functionality of a program into independent 

parts. In JavaScript there is no import statement as so no namespace. The namespace is 

important in modularity. This is particularly annoying when dealing with many libraries 

that also depend on other libraries. It forces you to know all the dependencies up front 

and hurts the modularity of your application. 

3.8.2. No Visibility Control 

In JavaScript access modifier are not there, no private, protect and public modifiers like 

in Java that helps in hiding, reduce dependencies, understanding which code belongs to 

which class, and less risk of accidental side-effects etc, it helps in modularity as well. 

And it is enforced by the compiler so you get some static checking about this 

organization and you do not have to manage by yourself. 

3.8.3. Weak Type System 

In JavaScript there is no type system. While defining a variable, it is not necessary to 

specify the type of the variable and that variable can store any type of values like strings 

or number. For instance if you define a variable  

var a; 

a = “hello”; 

....... 

a = 10; 

 

There will be no error in the above code. In JavaScript it does not have type system, 

therefore it is hard to pick up the other peoples code and look at the interface and it is 

difficult to see what the functions do. It would be rather easy if it has the types in the 

function signatures.  

3.8.4. No Static checking 

This is also related to type system, when there is a type system and a compiler that 

enforces types that means at compile time it can help you find a whole class of errors 

that a programmer might not find while running through the problem but similarly, if 
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there is an error in an else branch or in any branching code that does not run regularly or 

say some sort of error handling code that will be hard to manage if the code is getting 

bigger and bigger. It is possible if you write unit test and integration tests to test all the 

branches of the program but many programmers do not do that. Let consider the 

following example code 

var arraySet = []; 

if(arrayset.length == 0){ //typo mistake  

arraySet[1] = “hello” ; 

} 

else { 

 for(var i = 0; i<arrayset.length ; i++){ //typo mistake 

  //do something 

} 

} 

 

In if statement there is a typing error or typing mistake that condition will never be true 

and the for loop will also not execute.  

3.8.5. No support for generics 

With generics, you can tell your program, and other developers sharing the code, that a 

list will only take the numbers or strings but it will not take the numbers and strings all 

together. For example 

var myArray = new Array(); 

myArray[0]= "string 1"; 

myArray[1] = "string 2"; 

myArray[2]=5; 

alert(myArray[2]); 

alert(myArray[1]); 

  

The above code is correct is in JavaScript but it should not be in the way it is. There is 

no typing system though no generics.  

3.8.6. Not enough polymorphism 

It is not possible in JavaScript to define equality or comparison for user defined types 

because JavaScript assumes that everything is a string (its default behaviors of JS). 

Moreover there are no standard protocols for hash codes; object as tables can be used 

but for the keys only the string can be used. The other problem is object‘s behavior in 

Boolean context is also not possible. Callable objects are only made possible by treating 

functions as objects, never the other way around. 

3.8.7. Development of a large application is hard 

JavaScript also has features (or, more commonly, it lacks features) that make 

development of large applications somewhat more challenging than they might be in 

other languages. Some of these are minor grievances—the way variable scope works, 

for example. Others are a bit more significant; for example, JavaScript has no built-in 

module system. This is a particular annoyance for programs that depend on third-party 
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libraries, since they have no good way of ensuring that library A will not conflict 

somehow with library B (for example, both libraries might try to create objects with the 

same name). 

3.8.8. Maintainability is hard 

JavaScript is increasingly used to develop the large and complex application. The 

problem is maintainability of such application because it should have a well-defined 

structure and developers should adhere to a strict coding discipline in order to avoid 

producing a festering pile of messy code where everything depends on everything and 

no boundaries can be found between modules.  

3.8.9. Equality comparisons 

The weak equality comparison in JavaScript has some confusing behavior and is often 

the source of confusing bugs. The example below is taken from JavaScript Garden's 

equality section [31] which delves into the issue in some depth. 

""           ==   "0"// false 

0            ==   ""// true 

0            ==   "0"// true 

false        ==   "false"// false 

false        ==   "0"// true 

false        ==   undefined     // false 

false        ==   null// false 

null         ==   undefined     // true 

" \t\r\n"    ==   0// true 

 

The reason behind this behavior is that the weak equality coerces types automatically, 

this is all pretty ambiguous and can lead to unexpected results and bugs. 

3.8.10. Number property lookups 

A flaw in JavaScript's parser means that the dot notation of numbers is interpreted as a 

floating point literal, rather than a property lookup. For example, the following 

JavaScript will cause a syntax error: 

8.toString(); 

The javaScript's parser is looking for another number after the dot, and so raises an 

unexpected token error when it encounters toString().  

3.8.11. Reserved words 

Certain keywords in JavaScript are reserved for future versions of JavaScript, such as 

const, enum and class. Using these as variable names in your JavaScript programs can 

cause unpredictable results; some browsers will cope with them just fine, and others will 

choke. It is totally depends on the different implementation of browsers. 

http://bonsaiden.github.com/JavaScript-Garden/#types.equality
http://bonsaiden.github.com/JavaScript-Garden/#types.equality
http://bonsaiden.github.com/JavaScript-Garden/#types.equality
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3.8.12. Global  variables 

By default the JavaScript program runs in the global scope, and by default any variable 

created is in global scope too. It is recommended that if you want to create a local 

variable then use the var keyword. 

 

usersCount = 1;        // Global 

var groupsCount = 2;   // Global 

 

(function(){               

pagesCount = 3;      // Global 

var postsCount = 4;  // Local 

})(); 

 

This is a bit of an odd decision since the vast majority of the time you'll be creating 

local variables not global, so why not make it the default behavior? As it stands, 

developers have to remember to put var statements before any variables they're 

initialized, or face weird bugs when variables accidentally conflict and overwrite each 

other. 
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4. SCRIPTING LANGUAGES FOR WEB CLI-

ENTS 

4.1. List of scripting languages for web client 

There are quite a few changes coming to JavaScript in the recent versions of the lan-

guage standard, for example, ECMAScript 6, but also simultaneously a number of lan-

guages started to appear near JavaScript that try to address the described issues in sec-

tion 3.8 and add missing functionalities of JavaScript and compile to JavaScript. If 

somebody wants to use OOP concepts, or add strict typing, or want to avoid the call-

backs then should definitely check these languages. Below is the list: 

 

 Coffee Script 

 Type Script 

 Dart 

 Haxe 

 Roy 

 Clojure Script 

 Opal 

 Iced Coffee Script 

 Live Script 

 Kaffeine 

 ParenScript 

 Fay 

 Ceylon 

4.1.1. TypeScript 

It compiles to JavaScript. It is an open source and it is designed to develop large appli-

cations. TypeScript syntax is a superset of ECMA5 syntax. Any existing JS code is the 

TypeCcript code. TypeScript offers optional type annotations and static typing. It has 

classes, explicit interfaces and easier modules exports. Classes enable programmers to 

express common object-oriented patterns in a standard way, making features like inhe-

ritance more readable and interoperable. It supports header files which add type infor-

mation to existing JavaScript libraries. 

 

 

http://en.wikipedia.org/wiki/ECMAScript#ECMAScript_Harmony_.286th_Edition.29
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4.1.2. Dart 

The goal of the Dart is ―ultimately replace JavaScript as the lingua franca of web devel-

opment on the open web platform‖ [4]. It has the ability to be more easily tooled large 

scale projects and better security features. It is possible to build more complex, full fea-

tured client side web applications.  It is dynamically typed language and open source. It 

is basically class based, single inheritance, object oriented language. 

  

It is an optional typing and supports abstract classes, interfaces and reified generics. 

Dart is intended to address JavaScript's problems (which Google's engineers felt could 

not be solved by evolving the language) while offering better performance, the ability 

"to be more easily tooled for large-scale projects" and better security features. [38] 

 

4.1.3. CoffeeScript 

It adds syntactic sugar to enhance the JavaScript readability inspired by Ruby, Python 

and Haskell. It is a weak type checking language and adds some features like list com-

prehension and pattern matching. The same code of JavaScript can be written in 1/3 

fewer lines without affecting the performance. 

 

4.1.4. Haxe 

It is a high level multiplatform programming language. The single code file can compile 

into Adobe Flash applications, JavaScript programs, C++ standalone applications, PHP, 

Apache CGI, and NOdeJS server-side applications. [55] It is strict typed or static typed 

language. It supports classic object oriented features; it has classes and interfaces like 

Java. It supports modularity, generics, advanced type inference for all variables includ-

ing method's arguments and return types. It is open source modern language. 

4.1.5. Roy 

It compiles to light-weight and readable JavaScript. Roy tries to output clean JS to help 

with debugging, performance and reasoning. [53] It is statically typed and a small func-

tional language. It has features like pattern matching, Structural typing, Monad syntax, 

Simple tagged union and Compile time meta programming. The module support is de-

signed to unify the many module standards the JavaScript community has created,  

including CommonJS Modules/1.0, Asynchronous Module Definitions (AMD), and 

browser-based global. [53] The main motivation to develop this language was ―writing 

correct JavaScript is hard‖ [5].  
 

http://en.wikipedia.org/wiki/JavaScript
http://haxe.org/ref/type_infer
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4.1.6. Clojure Script 

It can also compile to JavaScript. It runs on the Java Virtual Machine, Common 

Language Runtime, and JavaScript engines. It is designed to be a general purpose 

language, combining the approachability and interactive development of a scripting 

language with an efficient infrastructure for multi threaded programming. It provides an 

easy access to the Java frameworks, with optional type hints and type inference, to 

ensure that call to Java can avoid reflection [6]. 

4.1.7.  Opal 

It compiles Ruby to JavaScript and has a compiler which can run on any browser. It is 

strongly typed, higher order, strict, pure functional language. It has features like 

parameterized structure, unrestricted overloading, selective imports and modularization 

[7]. It can be used for concise, simple, concurrent, secure and dynamically distributed 

web applications.  

4.1.8. Iced Coffee Script 

It compiles to readable and pretty-printed pass through JavaScript lint without warnings. 

It is a superset of CoffeeScript, it has clean, readable, maintainable control flow for 

network and asynchronous operations. There are no callback pyramids. CoffeeScript is 

just JavaScript but iced coffee script is doing something deeper. It adds two new 

keywords: await and defer. They transform code for you so that you can write code in a 

synchronous style. In the generated JavaScript, await and defer produce nested 

functions. These additions simply powerfully streamline asynchronous control flow, 

both on the server and on the browser. 

4.1.9. Live Script 

It compiles to JavaScript and compatible with CoffeeScript. It is an open source 

language. LiveScript aims for increased expressiveness and code beauty. It has more 

features than CoffeeScript like it assist in functional style programming, it supports 

imperative and object oriented programming, and also has an optional class system with 

inheritance, calls to super and more [8].  

4.1.10. Kaffeine 

It is progressively enhanced JavaScript syntax. [54] It is an open source language. It 

supports packages and classes import, useful for browser applications. It avoids nice-to-

haves, concentrate on small useful feature set and pragmatism. It is hackable, modular, 

extendable and testable.  
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4.1.11. ParenScript 

It is a translator form an extend subset of Common Lisp to JavaScript. It is an open 

source language. It works with the native JavaScript data types. There are no new types 

introduced, and object prototypes are not touched. It introduced minimal overhead for 

advanced Common Lisp features. The generated code is almost as fast as hand-written 

JavaScript [9]. 

4.1.12. Fay 

Fay compiles to JavaScript and it is statically typed, lazy, pure by default. It is a proper 

syntactic and semantic subset of Haskell [10]. It has a trivial foreign function interface 

to JavaScript. 

4.1.13. Ceylon 

It is a JVM language compile to JavaScript. Ceylon compiles to both Java and 

JavaScript virtual machines, bridging the gap between client and server. It has a 

powerful static type system but prevents many bugs [11]. It supports modularity. It is 

also open source. 

 

For the detailed analysis and a discussion only three languages are chosen CoffeeScript, 

TypeScript and Dart. They are the most popular and used by many developers to build 

larger scale applications. It will be described how they relate to each other and 

JavaScript in the next sections.  



21 

4. SCRIPTING LANGUAGES 

 

 

4.2. Importance of language popularity 

Programming Language popularity is important for having a large group of possible 

employees in any software company. To avoid the risk of proper planning of mainte-

nance and development of new and existing softwares programming language should 

not be unpopular or unknown. Consequently, which language should be used for the 

projects is also dependent on the factor of the popularity of programming language no 

matter its web or desktop application. 

 

To determine which programming language is most widely used, and what usage means 

varies by context is hard to measure. It is hard to collect the scientific data on this; 

therefore any kind of result cannot be seen as a true scientific proof in this regard. 

One language may occupy the greater number of programmer hours, a different one 

have more line of code and a third utilize the most CPU time. There are the numerous 

methods of measuring the popularity of a programming language that have been pro-

posed: 

 

 Counting the number of job advertisement that mention the language [12] 

 The number of books sold that teaches or describe the language [13] 

 Estimates of the number of existing lines of code written in the language-which 

may underestimate languages not often found in public searches [4] 

 Counts of language references (i-e the name of the language) found in web 

searches. 

Now, considering the languages in web programming context, we can also take existing 

software ecosystems into account. Aforementioned, all these languages have a very 

close relationship because all of them are compiled down to the JavaScript. There are 

relatively more docs (the core docs themselves are great), more existing code, and more 

tools in CoffeeScript, than any other dialect. Just as the ecosystem of JavaScript is in 

turn bigger than that of CoffeeScript. There are already several CoffeeScript books in 

the making, for example. StackOverflow registers more than three thousand questions 

about CoffeeScript, while other dialects are in the single or low double digits. (And 130 

thousand questions about JavaScript see the figure 3.1, to prove our point about Cof-

feeScript still being a minnow in the big JS Sea!) There is also an increasing array of 

tools where CoffeeScript support comes out of the box, e.g. connect-assets. 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkpage=the&clkld=0&clkorgn=0&clkord=0&clkmod=1clk&clkitem=consequently&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fconsequently
http://jashkenas.github.com/coffee-script/
https://github.com/TrevorBurnham/connect-assets
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Figure3.1.Tags on Stackoverflow 

 

TypeScript is fully opened sourced and is already being supported by companies other 

than Microsoft. As TypeScript is the superset of JavaScript it has access to all the eco-

systems in JavaScript. There exists a tight integration between TypeScript and Visual 

Studio, All the windows store apps with JavaScript can be used as a template in win-

dows app with TypeScript with little modifications. 

 

Dart is also the open source and developed by the Google. One indicator of popularity is 

the TIOBE Programming Community Index [15]. It is a programming language ranking 

based on skilled engineers, courses, third party vendors and search engine ratings [16]. 

Dart recently crept up into the TIOBE Programming Community Index number 43 for 

language popularity in October 2012. As long the major browsers don't support Dart, 

therefore there will not be a change in the popularity of Dart. 

 

 
Figure3.2.Popularity on Github 

 
In the figure 3.2 all the numbers are taken from the github, it shows that there are num-

ber of users of Dart even though it is quite a new language. As there are many users 
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that‘s why they log many issues. If we see the code files and the repositories available 

then the CoffeeScript has over three thousand repositories. JavaScript has many users 

and code files because it is an old language even there are a number of web applications 

that are developed in JS and it is more popular in all. 
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5. WHAT IS COFFEESCRIPT? 

CoffeeScript is a programming language that compiles to JavaScript, it means the pro-

grammer writes his code in CoffeeScript compiler compiles it and generates the 

JavaScript out of it that can be served up to the web browser. The golden rule of Cof-

feeScript: ―it is just a JavaScript‖ [32]. There is no interpretation at run time therefore 

the existing JavaScript libraries can be used in CoffeeScript and vise-versa. 

5.1. History  

CoffeeScript is almost four years old. On December 13, 2009, Jeremy Ashkenas made 

the first Git commit of CoffeeScript with the comment: "initial commit of the mystery 

language."[33] It was first developed on Christmas Day 2009 in Ruby using lexer and 

parser libraries. On February 21, 2010, the 0.5 version was released the CoffeeScript 

compiler was rewritten in CoffeeScript and since then has been self-hosting. Ashkenas 

takes great pride in knowing that an update to the CoffeeScript compiler is compiled 

with (the previous version of) CoffeeScript and the resulting code (the new version of 

the compiler) then compile the source code again. This self-hosing / bootstrapping proc-

ess highlights how mature the CoffeeScript compiler already is. [34] On December 24, 

2010, Ashkenas announced the release of stable 1.0.0 to Hacker News, the site where 

the project was announced for the first time. [35][36] 

5.2. How it works? 

The code written in CoffeeScript first compiles and generates a JavaScript code out of it 

that can execute in any host (browser) or in any JavaScript engine. The compiler is writ-

ten in CofeeScript and run on Node.js. There is another way to run the CoffeeScript 

code. In the HTML page just write your CS code between: 

 

<script type="text/coffeescript"> 

    ... 

</script> 

 

Or include your CS file: 

 

<script type="text/coffeescript" src="demo.cs"></script> 

 

You also have to include the compress and minified version of the compiler as ―coffee-

script.js‖.  

http://en.wikipedia.org/wiki/Jeremy_Ashkenas
http://en.wikipedia.org/wiki/Git_%28software%29
http://en.wikipedia.org/wiki/Hacker_News
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<script type="text/javascript" src="coffee-script.js"></script> 

 

But this is not recommended way to use and run the CoffeeScript code. The other and 

recommended way is first compiled the CS code and include the generated .js file in 

HTML page. 

 

5.3. Features it adds to JavaScript 

As it is already mentioned that CoffeeScript is just a JavaScript and has all the features 

that JavaScript has therefore, it is useless to describe all of them again. Why to invent 

the wheel again? Rather to define the incentives that it includes to JavaScript. 

In brief, CoffeeScript lets the programmer to write the same program with less lines of 

code than JavaScript. It‘s got a lot of sorts of lightweight add-ons like Ruby style string 

interpolation and Python style list comprehension. It makes a lot of common tasks much 

easier than JavaScript. Pass around a lot of functions, so CoffeeScript provides a very 

brief way of expressing those. In the next section, all of these good parts of CoffeeScript 

are illustrated with examples. 

 

First of all, we will see how a JavaScript code can be converted to the working Cof-

feeScript code with simple manipulations of the existing code. It includes the following 

steps: 

 

 Remove the semicolon at the end of every statement because there is no state-

ment termination in CoffeeScript. 

 Remove the var statements 

 Remove the curly braces and use the indentation instead, CoffeeScript objects 

are whitespace dependent.  

 Remove the return statements because return is the last expression and since 

everything is an expression.  

 a= Foo(x) -> 

    If x > 0 

      42 

In the above example if the value of x will be zero or less than zero, it will as-

sign undefined to a. But if the condition is true it will return the 42. 

 Remove the ―function‖ keyword because there is no such keyword use ―->‖ in-

stead. 

So here is a simple JavaScript code 

var sum = function(y) { 

 return y+y; 

} 

In CoffeeScript it will be written as: 

sum = (y) ->y+y 
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5.3.1. Inheritance with CoffeeScript 

Classes are simpler in CoffeeScript than JavaScript because they are not prototypical 

here. Classical-looking inheritance is a case of the extends keyword, and the super () 

method call to invoke the parent class' behavior: 

class Human 

 eat: -> console.log "food" 

 

class Boy extends human 

 eat: -> console.log "Meat" 

 

class Girl extends human 

 eat: -> 

  super() 

         console.log 'Girl wants fun on weekends.' 

 

new human().eat() 

new Boy().eat() 

new Girl().eat() 

 

Programme5.1. Example of inheritance in CS. 

 

You'll notice that in the example programme 5.1, we're using the super () keyword. Be-

hind the scenes, this is translated into a function call on the class' parent prototype, in-

voked in the current context. In this case it will be Girl._super._eat.call which is the 

Human‘s.  

 

5.3.2. List comprehensions 

You have an array of objects and want to map them to another array; in those scenarios 

you can use the list comprehensions. In CoffeeScript, a simple for loop can avoid recal-

culating list.length on every iteration. However, CoffeeScript also overloads the for loop 

with the ability to do Comprehensions. Comprehensions allow you to manipulate the 

items being iterated over. 

 

teacher_course = [{name: "Imed", course: "programming 1"}, 

{name: "Tapio",course: "Artificial Intelligence"}, 

{name: "Terhi",course: "Utilizations of DS"}, 

{name: "Henri",course: "Analysis of Algorithms"}, 

{name: "Maarit", course: "Principles of programming languages"}] 

 

names = (instructor.nameForInstructorInTeacher_course) 

# => [ 'Imed’, ' Tapio ', ’Terhi ', ' Henri ', ’Maarit’] 

 

5.3.3. String interpolation 

CoffeeScript's multi-line string blocks are similar to Pythons triple-quoted strings (with 

interpolation of variables done with #{varname} ): 

 

http://coffeescript.org/#loops
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hello = """ 

 multi-line 

 string 

 block. #{varname} 

 """ 

or 

name=“Jermy” 

alert (“I am #{name}”) 

5.3.4. Splats (…) 

CoffeeScript adds splats (...), which is a way of dealing with variable number of argu-

ments in JavaScript methods. 

 

course = (programming1, OOP...) -> 

  print programming1, OOP 

5.3.5. Number property lookup 

In JavaScript the dot notation after the number is interpreted as floating point (see sec-

tion 4.8.10). The solution to this problem is to use either parenthesis or add an addi-

tional dot. 

 

(6).toString() 

6..toString() 

 

CoffeeScript parser will automatically deal with this issue while detecting the double 

dots whenever the programmer accesses the properties of numbers. 

5.3.6. Reserved words 

If a programmer uses the reserved words an object‘s property, CoffeeScript neatly side 

steps this issue, by detecting, and escaping it if necessary. 

 

For example, let's say programmer was to use the reserved keyword class as a property 

on an object, CoffeeScript might look like this: 

 

myObj = { 

 remove: "keyword detected!" 

} 

myObj.class = -> 

 

The CoffeeScript parser notices, there is a reserved keyword, and quotes it for you: 

 

var myObj; 

myObj = { 

 "remove": "keyword detected!" 

}; 

myObj["class"] = function() {}; 
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5.3.7. Global variables 

By default every variable that is created is local. It is very difficult to create the global 

variables implicitly. There is an explicit way to create global variables by assigning 

them as properties on window.  

 

This is how the global variables are created 

 

class window.Teacher 

constructor: -> 

 

The var keyword is reserved in CoffeeScript and will trigger a syntax error if used. Let's 

have a look at an example of CoffeeScript's variable assignment [37]: 

 

outerScope = true 

do -> 

innerScope = true 

 

Compiles down to: 

 

var outerScope; 

outerScope = true; 

(function() { 

 var innerScope; 

 return innerScope = true; 

})(); 

 

Notice how CoffeeScript initializes variables (using var) automatically in the context 

their first used. Whilst it's impossible to shadow outer variables, you can still refer to 

and access them. You need to watch out for this, be careful that you're not reusing the 

name of an external variable accidentally if you're writing a deeply nested function or 

class.  

5.3.8. Compile time checking 

CoffeScript has the ability to catch the syntax errors on compile time that is really help-

ful in cutting down on production issues. Developers who are accustomed to writing 

JavaScript, Ruby, Python or any other dynamically typed languages may feel that this is 

unnecessary but coming from a background of strongly typed languages, we believe that 

compile time safety is invaluable.  

5.3.9. Existential Operators 

In JavaScript programmers have to check the null and undefined values by themselves. 

CoffeeScript provide the ―?‖ operator which can use on a single variable even in a long 

chain of property accessors to check if a given property is not null and is defined. Here 

is an example code:  

student = 
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name: "franklin Jones" 

age: 18 

 

#Using the existential operator 

console.log student.non?.existent.property 

 

It will check whether the property ―non‖ is defined by the student or not.  If all of the 

properties exist then you'll get the expected result, if the chain is broken, undefined is 

returned instead of the TypeError that would be raised otherwise. Existential operator 

can also be used on methods: 

 

console.log student.name.reverse?() 



30 

6. DART 

 

6. WHAT IS DART? 

Dart is an open-source web programming language. The goal of Dart is "ultimately to 

replace JavaScript as the lingua franca of web development on the open web platform." 

[38] Dart has the ability to build more complex, full featured client side web applica-

tions. It is class based, single inheritance, object oriented language. It is an optional typ-

ing and supports abstract classes, interfaces and reified generics. Dart is intended to 

address JavaScript's problems (which Google's engineers felt could not be solved by 

evolving the language) while offering better performance, the ability "to be more easily 

tooled for large-scale projects" and better security features. [38] 

6.1. History 

Dart is developed by Google, Google had announced one more programming language 

in history (in 2009) Go when it was not satisfied with the working of C or C++, they 

released Dart at the GOTO conference in Aarhus, 2011 October 10–12. 

6.2. How it works? 

There are three ways to run the Dart application. First, The Dart VM reads and executes 

source code, which means there is no compile step between edit and run. As with other 

popular scripting languages, it‘s very quick to iterate with Dart. The Dart VM runs on 

the command line and servers, and can be embedded into browsers. Second, it can com-

pile to JavaScript like other languages with the help of dart2js compiler and can run in 

web browsers. Third, the Dart SDK ships with a version of the Chromium web browser 

modified to include a Dart virtual machine. This browser can run Dart code directly 

without compilation to JavaScript. It is currently not intended for general-purpose use, 

but rather as a development tool for Dart applications. [39] 

6.3. Features it adds to JavaScript 

6.3.1. Optionally typed 

 

Dart has the type annotations, but it is not strictly typed language. Types provide many 

benefits such as it is much easier for people to read your code if it has judiciously 

placed type annotations, tools can leverage type annotations in various ways. In particu-

http://en.wikipedia.org/wiki/Lingua_franca
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Go_%28programming_language%29
http://en.wikipedia.org/wiki/Aarhus
http://en.wikipedia.org/wiki/Virtual_machine
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lar, they can help provide nice features such as name completion and improved naviga-

tion in IDEs. 

 

Dart‘s inclusion of an optional type system means you can use type annotations when 

you want, or skip them when that‘s easier. The big advantage is it can be used as static 

typing and if the programmer makes any mistake in types and pass the bad argument to 

any library while writing the code, checked mode will detect that at the point where you 

made the mistake. Dart rules are much less strict. It is recommended to use the type 

where they make sense. The most valuable thing a programmer can do is add types to 

the headers of public members of your libraries. Next, do the same for the private ones. 

Even if nobody else has to maintain the code it will be helpful if programmer leave the 

code and come back in a few weeks or months. In both cases, he doesn‘t necessarily 

have to add types of the bodies of methods or functions. Users of the library get value 

from type signatures, even if they are not 100% accurate. 

 

On the other hand dart is dynamically typed language too, the programmer can stop the 

static checker or compile time checking of the code by using the type ―dynamic‖ which 

is default type given when no type is explicitly given by the programmer.  

 

The spec says: Dart programs may be statically checked. The static checker will report 

some violations of the type rules, but such violations do not abort compilation or pre-

clude execution. 

6.3.2. Reified generics 

Dart supports reified generics. Think of generics as type annotations for your collec-

tions. With generics, you can tell your program and other developers sharing the code 

that a List of strings will only contain the string elements. Objects of generic type carry 

their type arguments with them at run time. Passing type arguments to a constructor of a 

generic type is a runtime operation.  

 

As it is described earlier that the types are optional so if you don‘t want the types the 

generics will not force you to. 

For example  

new List(); 

and 

new List<num>(); 

 

They both are correct but in the second, the list will only store the numbers. 

6.3.3. Dart is purely object oriented 

The Dart language is clear: everything is an object. It is easy to explain how everything 

works without having to deal with primitives as a special case. Even calling + on two 
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numbers is modelled as a method call. Numbers, Booleans, and even null are all objects. 

[40] 

 

Dart lets you put any number of public classes into a file. It is not forced to have the 

name of the file is same of the class name and it is also not forced to put one public 

class in one file. It is possible to organize the project files and content in any way you 

want. 

6.3.4. Closures and lexically scoped functions 

Closure functions that can naturally access variables in their enclosing scope without 

having to write verbose anonymous inner classes. 

 

Here is an example of a closure in action. The makeAdder function returns a function 

that closes around makeAdder‗s parameter. [40] 

 

makeAdder(int x) { 

 adder(int y) => x + y; 

 return adder; 

} 

 

main() { 

 var add2 = makeAdder(2); 

 var result = add2(3); 

 print(result); // 5 

} 

You can use simplified makeAdder by returning an anonymous function: 

makeAdder(int x) { 

 return (int y) => x + y; 

} 

6.3.5. Dart has mixins 

In object-oriented programming languages, a mixin is a class which contains a combina-

tion of methods from other classes. How such combination is done depends on lan-

guage, but it is not by inheritance. [52] If a combination contains all methods of com-

bined classes it is equivalent to multiple inheritance. No need to pollute the inheritance 

hierarchy with utility classes. Use Dart‘s mixins to slide in functionality that is clearly 

not an is-a relationship. [40] Dart supports a basic form of mixins as of the M3 release 

in early 2013 [41]. The language designers expect to expand on mixin‘s abilities in fu-

ture versions of the language. 

 

Classes that extend an object, don‘t have constructors, and don‘t call super can be a 

mixin, it should come as no surprise that an abstract class (with a few restrictions) is 

itself a mixin. Here is an example of a Persistable mixin [40]: 

 

abstract class Persistable { 

 save() { ... } 

http://en.wikipedia.org/wiki/Object-oriented_programming_language
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Multiple_inheritance
http://www.dartlang.org/articles/mixins/
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 load() { ... } 

 toJson(); 

} 

 

class Hug extends Object with Persistable { 

  Map toJson() => {'strength':10}; 

} 

 

main() { 

 var embrace = new Hug(); 

 embrace.save(); 

} 

 

Restrictions on mixin definitions include: 

1. Must not declare a constructor 

2. Super class is an Object 

3. Contains no calls to super 

6.3.6. Building large and complex applications 

Dart scales from small scripts to large, complex apps. [42] You can quickly write proto-

types that evolve rapidly, and you also have access to advanced tools, reliable libraries, 

and good software engineering techniques. Web development is very much an iterative 

process. With the reload button acting as your compiler, building the seed of a web app 

has been often a fun experience of writing a few functions just to experiment. As the 

idea grows, you can add more code and structure. Thanks to Dart‘s support for top-level 

functions, optional types, classes, and libraries, your Dart programs can start small and 

grow over time. Tools such as Dart Editor help you refactor and navigate your code as it 

evolves. [42] 

6.3.7. Concurrency support with isolation 

A Thread is a concurrent unit of execution. It has its own call stack for methods being 

invoked, their arguments and local variables. Dart is a single threaded programming 

language. Each isolate is a unit of work. It has its own memory allocation. Sharing 

memory between isolates is not possible Dart support the concurrent execution with the 

help of isolation (processes without overhead). Each isolate can pass over messages to 

the others. When an isolate receives a message it processes it in a way similar to events 

handling. Isolates allow a single app to use multi-core computers effectively. 

6.3.8. Snapshots 

Snapshots are supposed to provide nice startup improvements for large applications; the 

whole application code does not require to be downloaded every time you start the ap-

plication. Dart addresses this with the heap snapshot feature. An application's heap is 

walked and all objects are written to a file. Every time when the application code is 

loaded, just before calling the main, it takes the snapshot of the heap and the Dart virtual 
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machine use that the snapshot file to quickly load an application. The snapshot facility 

is also used to serialize object graphs sent between Isolates in the Dart VM. [43] 

6.3.9. Reliability 

Every Isolate is single threaded; splitting up the application into multiple and independ-

ent processes or isolates helps in achieving reliability. For example if one isolates 

crashes it will not affect the others and it can restart again. 

6.3.10. Security 

It is also related to isolates. The code that is not trustworthy can be run in isolate and the 

communication with that isolate must do with the message passing, which will be en-

hanced with the capability-style mechanism that permits which isolates will communi-

cate of which port. The isolate must assign a port to send messages. The communication 

between isolates is not possible without ports. 

6.3.11. Best usage of memory 

Each isolate‘s heap is standalone; all objects in that heap clearly belong to that isolate. 

When one isolate is launched in memory and it finishes its task can be deallocated from 

the memory in one go, there is no need to call the garbage collector. There is one more 

benefit related to splitting the application into small isolates, by this way they take the 

less memory than the whole application take as full. Each heap is governed by its own 

GC with the effect that a full GC run in one Isolate only stop the world in that Isolate, 

the other Isolates won't notice. Hence having one heap per isolate improves the mod-

ularity: each Isolate controls its own GC pause behavior and is not affected by some 

other component. 

6.3.12. Dart supports code sharing 

With the Dart package manager (pub) and language features such as libraries, you can 

easily discover, install, and integrate code from across the web and the enterprise. And 

it was not possible in the traditional web programming workflows.  

6.3.13. Global namespace 

In Dart there is a possibility to make the namespaces; you can develop the global na-

mespaces in the ‗library‘ scope. You have a keyword ―library‖ and only what is public 

is visible outside of it. A library can be made of multiple files, and contain multiple 

classes and functions. Once you have defined your own libraries you can use them in 

your program with the help of ‗import‘ statement. Then the main () function that is the 

starting point of the application. 
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7. WHAT IS TYPESCRIPT? 

 

TypeScript is a syntactic sugar for JavaScript. TypeScript syntax is a superset of EC-

MA5 syntax. Any existing JS code is the TypeCcript code. TypeScript offers optional 

type annotations and static typing. It has classes, explicit interfaces and easier modules 

exports. Classes enable programmers to express common object-oriented patterns in a 

standard way, making features like inheritance more readable and interoperable. 

 

7.1. History 

TypeScript is developed by Microsoft. The first preview build of TypeScript was 

launched in October 2012. The most publicly recognizable name behind TypeScript is 

Microsoft Technical Fellow Anders Hejlsberg, the father of C# and Turbo Pascal. But 

Hejlsberg isn't the one who came up with the idea for TypeScript. TypeScript is actually 

the product of a team of about 50 people, headed by Microsoft Technical Fellow Steve 

Lucco. [44] 

 

Typescript is the open source language that is available under an Apache 2.0 open-

source license. 

7.2. How it works? 

TypeScript is compiled, rather than interpreted. Typescript has a compiler tsc that is 

written in Typescript compiles the Typescript code and generates the idiomatic Java-

Script that can execute in any host (browser) or in any JavaScript engine. There is also 

an alpha version of a client-side compiler in JavaScript, which executes TypeScript 

code on the fly, upon page load.[45] Code can be written between: 

 

<script type="text/typescript"> 

    ... 

</script> 

or include the TS file: 

<script type="text/typescript" src="demo.ts"></script> 

 

And include these two js files also: 

<script type="text/javascript" src="typescript.min.js"></script> 

<script type="text/javascript" 

src="typescript.compile.min.js"></script> 

http://www.zdnet.com/whats-microsofts-father-of-cs-next-trick-7000004226/
http://www.linkedin.com/pub/steve-lucco/58/849/b50
http://www.linkedin.com/pub/steve-lucco/58/849/b50
http://www.linkedin.com/pub/steve-lucco/58/849/b50
http://en.wikipedia.org/wiki/Alpha_test
http://en.wikipedia.org/wiki/TypeScript#cite_note-8
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All JavaScript code is the TypeScript code simply copy and paste, it will work. All Ja-

vaScript libraries work with TypeScript Node.js, JQuery, Backbone etc. Microsoft pro-

vides the plugin for Visual Studio 2012 and WebMatrix that helps in code completion, 

refactoring and debugging of TypeScript code. The online Cloud9 IDE also supports 

TypeScript. 

 

7.3. Features it adds to JavaScript 

The features TypeScript adds to JavaScript development are small, but yield large bene-

fits to .NET developers who are accustomed to similar features in the languages they 

use for regular Windows application development. [46] 

 

7.3.1. Optionally typed  

TypeScript adds optional static types to JavaScript. Types are used to place static con-

straints on program entities such as functions, variables, and properties so that compilers 

and development tools can offer better verification and assistance during software de-

velopment. These type annotations are like the JSDoc comments found in the Closure 

system [46], but in TypeScript they are integrated directly into the language syntax. 

This integration makes the code more readable and reduces the maintenance cost of 

synchronizing typed annotations with their corresponding variables. [47] TypeScript 

provides static typing through type annotations to enable type checking at compile-time. 

This is optional and can be ignored to use the regular dynamic typing of JavaScript. [48] 

 

function square(x: number): number { 

 return x*x; 

} 

 

TypeScript‘s static compile-time type system closely models the dynamic run-time type 

system of JavaScript, allowing programmers to accurately express the type relationships 

that are expected to exist when their programs run and have those assumptions pre-

validated by the TypeScript compiler. TypeScript‘s type analysis occurs entirely at 

compile-time and adds no run-time overhead to program execution. 

7.3.2. Type inference 

The TypeScript type system enables programmers to express limits on the capabilities 

of JavaScript objects, and to use tools that enforce these limits. To minimize the number 

of annotations needed for tools to become useful, the TypeScript type system makes 

extensive use of type inference. For example, from the following statement, TypeScript 

will infer that the variable ‗i‘ has the type string.  

http://en.wikipedia.org/wiki/Visual_Studio
http://en.wikipedia.org/wiki/Microsoft_WebMatrix
http://en.wikipedia.org/wiki/Cloud9_IDE
http://en.wikipedia.org/wiki/Static_typing
http://en.wikipedia.org/wiki/Type_checking
http://en.wikipedia.org/wiki/Compile-time
http://en.wikipedia.org/wiki/Dynamic_typing
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var i =”abc”; 

 

Let‘s take another example of plain JS code 

function process(y) { 

y.name = “foo”; 

var x= y*y; 

alert(y); 

} 

TypeScript takes the data type of variable y as ―any‖. You can perform any function on 

that, assign any value to it or pass to any other function. In the above code if you put the 

data type in the parameter like function process(y:string){…} then it will give an error 

on line 2 because there is no property name on string available. Therefore, if you want 

to give the specific type to a variable it will allow you to do the certain operations. 

It is possible to have the user defined types in TypeScrtipt. For example 

 

interface person{ 

a:string; 

c?=:number;   

clear() : void; 

sum(x:number,y:number): number; 

} 

 

The above interface have two functions and two variables, a class that will implement 

this interface must have to overload the both functions and assign the value to the first 

variable but the second variable is optional (? is for optional).  

You can have the function overloading which is not allowed in JS. If a programmer im-

plements the above interface in his code somewhere and mistype the sum() function as 

sumx() JS will not prompt any error. Imagine there are 200 lines of code and program-

mer does not know at which line the error is occurring. But in TS at compile time it will 

show the error and the line number where it is occurring. This is all possible with the 

help of type inference in TS. 

7.3.3. Object Orientation 

The great strength on TypeScript is to introduce the concept of classes and inheritance. 

In JavaScript inheritance is done by the prototypes as described in the section 4.7, but it 

tends to be more verbose, a bit confusing and far from elegant. Following is the simple 

class example in TypeScript 

 

class Person { 

 name: string; 

 constructor(name: string) { 

 this.name = name; 

    } 

 sayHello() { 

  alert("Hello, my name is " + this.name); 
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    } 

} 

 

This compiles to the following JavaScript code 

Var Person = (function () { 

 function Person(name) { 

  this.name = name; 

    } 

 Person.prototype.sayHello = function () { 

  alert("Hello, my name is " + this.name); 

 }; 

 return Person; 

})(); 

 

7.3.4. Inheritance 

In TypeScript inheritance is achieved by simply using the ―extend‖ keyword to extend 

from the base class. Consider a simple example where inheriting the student class from 

the person class. It is possible to override the methods and a derived class will inherit all 

the public members from its base class. 

class person { 

 name: string; 

 constructor(name: string) { 

  this.name = name; 

    } 

 sayHello() { 

  alert("Hello, my name is " + this.name); 

    } 

} 

class Student extends Person { 

 sayHello() { 

  super.sayHello(); 

  alert("and I am a student!"); 

    } 

} 

var student: Student = new Student("Antti"); 

student.sayHello(); 

 Programme7.1. Example of inheritance in TS. 

 

7.3.5. Modularization and multi-file 

In JavaScript to hide the names and encapsulate the private data the closures are used as 

described in section 4.5.4. TypeScript provides built-in support for CommonJS and 

AMD modules. It is quite simple to import and export TypeScript files, just like you 

would in a server-side language. Importing JavaScript libraries is a bit trickier, but can 

still be done. 

7.3.6. Scalable application structuring 

JavaScript was originally designed to be a client-side scripting language for web pages, 

and for many years it was limited to event handlers that scripted a Document Object 

http://addyosmani.com/writing-modular-js/
http://addyosmani.com/writing-modular-js/
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Model (DOM).  As a result, JavaScript is missing many of the features necessary to be 

able to productively write and maintain large-scale applications, namely those that 

create distinct contracts between components and developers. How this issue is resolved 

in TypeScript is to have Classes, modules and interfaces that enable clear contract be-

tween components. 

7.3.7. Open and Interoperable 

All JavaScript code is TypeScript. You can copy-and-paste any JavaScript code into the 

TypeScript file because TypeScript produces standards-compliant JavaScript, Type-

Script is consistent with our commitment to ensuring that developers can use the same 

markup and script for a more interoperable web: the output of the TypeScript compiler 

runs on any browser, in any host, on any operating system. [49] 

 

TypeScript is open. The language is available under the Open Web Foundation‘s Final 

Specification Agreement (OWFa 1.0). Microsoft‘s implementation of the compiler is 

also available on CodePlex (with git) under the Apache 2.0 license. 

 

7.3.8. Build and maintain large applications 

TypeScript is designed to meet the need of the JavaScript programming team that build 

and maintain the large applications such as web applications. Web applications are be-

coming an increasingly important part of everyday computing. TypeScript helps pro-

grammer to define the interfaces between software components and to gain insight into 

the behavior of existing JavaScript libraries. It also enables teams to reduce the name 

conflicts by organizing their codes into dynamically –loadable modules. 

7.3.9. Refactoring 

Refactoring is another area where TypeScript has a distinct advantage over JavaScript. 

For example, when you change the name of a class or interface in TypeScript, it‘s poss-

ible to find almost all uses of that class or interface in the application code and change 

the name as needed. Though, as with many things, there are exceptions. For example, 

while you can find changes in a name as part of the code in a class or interface, you 

won‘t find it within an object literal. However, the compiler will find the required name 

change and tell you about it, so your code will still be fixed before it reaches the produc-

tion environment. 

http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0
http://typescript.codeplex.com/
http://www.apache.org/licenses/LICENSE-2.0.html
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8. COMPARISONS  

8.1. Performance comparison 

 

“Measuring programming progress by lines of code is like measuring aircraft building 

progress by weight.” 

    - Bill Gates (co-founder of Microsoft) 

 

CoffeScript compiles directly to JavaScript, meaning that there is always a one to one 

equivalent in JS for any CoffeeScript source. Therefore, its maximum possible speed 

equals to the speed of JavaScript. 

 

Dart is claimed to be more efficient than JavaScript. There are a few reasons that are as 

follows: 

 

In languages such as Ruby or JavaScript, the program structure can change at runtime. 

Classes can get a new method, functions can be eval()'ed into existence, and more. This 

makes it harder for runtime to optimize their code, because the structure is never guar-

anteed to be set. 

 

Prototypal inheritance is harder to optimize than more traditional class-based languages. 

It is suspected this is because there are many years of research and implementation ex-

perience for class-based VMs. 

 

Interestingly, V8 (Chrome's JavaScript engine) uses hidden classes as part of its optimi-

zation strategy. Of course, JS doesn't have classes, so the object layout is more compli-

cated in V8. 

 

Object layout in V8 requires a minimum of 3 words in the header. In contrast, the Dart 

VM requires just 1 word in the header. The size and structure of a Dart object are 

known at compile time. This is very useful for VM designers. 

 

Another example: in Dart, there are real lists (aka arrays). You can have a fixed length 

list, which is easier to optimize than JavaScript's not-really-arrays and always variable 

lengths. 

 

http://en.wikipedia.org/wiki/Bill_Gates
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Another performance dimension is start-up time. As web apps get more complex, the 

number of lines of code goes up. The design of JavaScript makes it harder to optimize 

startup, because parsing and loading the code also executes the code. In Dart, the lan-

guage has been carefully designed to make it quick to parse. Dart does not execute code 

as it loads and parses the files. 

 

This also means Dart VMs can cache a binary representation of the parsed files (known 

as a snapshot) for even quicker startup. 

´ 

Figure3.2.Dart2js and VM benchmark [50] 

 

The chart in the figure is currently showing chart Dart has surpassed JavaScript perfor-

mance on two significant Octane-based*benchmarks -- Richards and DeltaBlue 

 

 DeltaBlue is a one-way constraint solver, originally written in Smalltalk by John 

Maloney and Mario Wolczko. The main focus in DeltaBlue is on polymorphism 

and object-oriented programming. [50] 

 Richards is an OS kernel simulation benchmark, originally written in BCPL by 

Martin Richards. The main focus in Richards is on property access and calling 

functions and methods. [50] 

*Octane is a modern benchmark that measures a JavaScript engine‘s performance by running a suite of tests 

representative of today‘s complex and demanding web applications. The octane‗s goal is to measure the performance 

of JavaScript code found in large, real-world web applications. 

 

8.2. Robust comparison 

 

Strict mode is a new feature of ECMAScript 5 that allows to run JavaScript program or 

a function to run in a strict Context. What does this strict mode do? This strict context 

throws more exceptions and warnings than the normal context. It gives indications to 

https://developers.google.com/octane/
https://github.com/dart-lang/benchmark_harness/blob/master/example/Richards.dart
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the developer when they are making mistakes in the code or straying from the best prac-

tices. It helps in reducing the bugs, improve performance and increase security.  

 

In Coffee Script all these things check at the compile time. The CoffeeScript compiler 

does the strict mode syntax checks itself, at compile time. This is good. You don't want 

to wait until you run the generated JavaScript output to discover your errors. For 

example: You can't accidentally create a variable. This feature provides stronger securi-

ty. 

 

Dart has the isolate library which supports spawning and communication with isolates. 

As described earlier it is a mechanism for concurrency. Security can be achieved with 

the isolates too. 
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9. APPLICATION 

The TODO application is developed in all the considered languages to do the deep 

analysis. First of all we should define the features that will be present in the to-do list 

then there is the implementation description in all languages. TODO application has the 

following features:  

 

 Add a new to-do item and its priority (low, high etc) 

 Remove a to-do item 

 Edit a to-do item/priority 

 Sort the to-do list 

 Structure object to store the to-do item and its priority 

 Save the to-do object using browser‘s local storage 

 Clear the entire list 

If we think about TODO list what we need is: 

 

 An Input to place our to-do 

 A button to add our to-do 

 A button to delete that to-do 

 A link to clear all to-do‘s 

 A placeholder unordered list where out to-do‘s will be placed on the list items. 

All the above items are in HTML and with the help of JavaScript we can fill all this up 

with the dynamic content. In appendex1, there is the code of html and in appendix 2 the 

css code is presented that is pretty straight forward and self-explanatory nothing too 

fancy.    

 

In the next sections the implementation details are explained in different languages. 

9.1.  TODO application in JS 

 

The main idea how it is developed in JavaScript is: To store the data local storage is 

used, the good thing about local storage is that you can save the data on the user‘s com-

puter so that when they reload the page all of their todo‘s will still be there and local 

storage actually quite simple when it comes to saving the data and making it available 

on the page. 
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 Each to-do item will be stored in local storage with the unique key of ―todo-ID‖   

 Because there is an ability to sort the todo-list therefore to track the order of the 

list an array is used, which then get saved in the local storage with the key of 

―todo-orders‖ 

 One more variable is stored in the local storage ―todo-counter‖ to keep track of 

unique ID, it will remember what the next number should be. 

In the JavaScript file there are all the functions to add, remove, edit and clear all etc. In 

appendix 2 you can find the code of JavaScript file where first there is a declaration of 

variables up top. When a user enters something in the input field and press the ―Add to 

List‖ button, the submit event will be announced to the app that form has been 

submitted using the $.publish() .  

9.1.1. Add a new todo item 

It first checks if the value of the field that is submitted is blank or not, if there is some 

value it retrieves that value and store it in local storage with the key ―todo-uniqueId‖, 

which is whatever the value of i is at that moment. As it is described earlier about the 

need of ―todo-counter‖, it will save the same value in this counter variable for future 

use. Afterwards, it appends the new to-do item and its priority to the to-do list, displays 

it and empties the input field. 

 

On the completion of the add functionality, it publishes ―/regenerate-list‖ which saves 

the order of the to-do items. It empties the order array, go through the item list elements, 

get the ID and add to the array, then save it to the ―todo-orders‖.  

9.1.2. To remove an item from the list 

As we want to catch the click event on the current item and the future remove link that 

gets created for that $.delegate is used. It announces the ―/publish/‖ event then it re-

trieves the ID of the parent of the clicked element and removes the entry in the local 

storage based on it. It then fades out the list item and remove it from the DOM and pub-

lish ―/regenerate-list/‖ to update ―todo-orders‖. 

9.1.3. The remove button 

It listens the mouseout/mouseover event on the list elements and call fadeIn() or fa-

deout() appropriately.  They are all of JQuery functions. 

9.1.4. Clear all list 

It catches the click event and publish ―/clear-all/‖, which resets the order array back to 

zero, clear the local storage and remove all list elements from the DOM. 
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9.1.5. Edit and save the item 

We use the $.inlineEdit() function of JQuery on save, it retrieves the ID of the parent of 

the edited element and re-save the edited value.  

9.1.6. Reorder and save item 

For this functionality the $.sortable() of JQuery is used which is pretty simple and then 

on the ―stop‖ event, it publishes ―regenerate-list‖ to  update ―todo-orders‖. 

 

9.1.7. Load to-do list 

It sets the value of orderList to be the value of the ―todo-orders‖ and convert it into an 

array for each item in the array it creates the new list element and retrieve the value of 

the key using local storage.getItem(). 

 

9.2. TODO application in CS 

The same application as JavaScript is created in the CoffeeScript. It has the same fea-

tures and has the same HTML and CSS as in appendix 1 and 2. The idea of develop-

ment is also the same. The data will be stored in the local storage.  

 

As described earlier the CoffeeScript address the many problems of JavaScript. It omit-

ted the curly braces and parenthesis and introduces the indentation that makes the code 

more readable, structured and short in length. In terms of language features it introduces 

the classes and inheritance, shortcuts for most common JavaScript code, for example it 

uses ‗@‘ in place of ‗this‘, ‗::‘ for prototypes and there is no ternary operator, etc. 

 

In appendix 3, there is a code for the application in CoffeeScript. It is compiled and the 

generated javaScript is used to run the application in a web browser. It can be seen from 

the code that it is a completely different language than JavaScript. It is not the superset 

or a subset of JavaScript that can be easily mixed with JavaScript. But it is usually com-

piled into JavaScript or can be executed outright.  

 

From our brief experience of writing the same application in CoffeeScript, it has been 

observed that programming in CoffeeScript requires the more advanced knowledge of 

JavaScript. Because it produces the JavaScript after compilation so most of the time you 

have to think about the produced JavaScript code from your CoffeeScript code that it 

should be correct enough to work and run your application properly. 

 

The code is more like Pythan and Ruby. But if we compare the lines of code with java-

Script they are almost 2/3 number of lines of JavaScript version. 
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At the beginning of the file there is a declaration of variables. How the flow of the ap-

plication works is already described in the JavaScript section. Here only the syntax and 

the language features are described that are different than JavaScript.  

In the add function the structure object todo Object is defined in the same way as in 

JavaScript and the storing procedure of the structure object in local storage is also the 

same but syntax is little different. In load function the ternary operator is replaced with 

the ‗if then else‘ statement to achieve the same functionality. There is no return state-

ment because CoffeeScript consider the last statement or expression of any function as a 

return statement/expression. Instead of ―this‖ the ―@‖ is used. 

 

There is no forEach(function(){…}) in CoffeeScript as a result it has been observed that 

the core logic of the application is better.  

 

9.3. TODO application in Dart 

It is a separate language like CoffeeScript but the syntax is similar to Java or c#. It has 

classes, objects, maps, lists etc. There is a main() function that is starting point of any 

application. The code can be compiled to JavaScript or can be run directly to Dart VM. 

In the todo application the HTML and CSS file is the same as used in JavaScript and 

CoffeeScript application but unlike in CoffeeScript the code is not compiled to Java-

Script. Therefore, there is a change in the script tag of HTML file in appendix1.  

 

<script type="application/dart" src="todo.dart"></script> 

 

It is already mentioned that the dart team claimed the high performance of the dart ap-

plications because the compiler produced more optimal JavaScript code than what you 

would write yourself. While having a look at the appendix 5 it is clearly seen that the 

brevity of code is not the goal of Dart like CoffeeScript, instead the language tries to 

achieve the better maintainability and the speed.  

 

To develop the application the dart editor is used and it has the dartium browser also. 

Where the application can run and test while developing. The Dart editor has the ability 

to highlight the different lexiums of code and ability of code assistance. Right now there 

is no plugin for the other popular IDEs for Dart. In the future the plugins might appear. 

 

The development is completely different than JavaScript. In this application the features 

are almost the same as described in JavaScript section. For the persistent data the Lo-

calStrage is used here also but the language has its own functions and its own way to 

use the Local Storage. 
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First of all, let‘s see how the dart is communicating with the HTML. In appendix 5, the 

every first line is the import statement. Dart has the import directives which imports the 

specified library, making all the functions in that library available. Here, import 

‗dart:html‘; imports Dart‘s HTML classes and functions for programming the DOM. All 

Dart web apps need the Dart HTML library. The other import directive provides the 

drag and drop functions and classes, this is basically for sorting the todo list elements. 

 

The next section of the code is to declare the variables. Then the main() function that is 

the starting point of the application. To get the value of the input field and the list ele-

ments, it is using the query() function. The query() is a top-level function provided by 

the Dart HTML library that gets an Element object from the DOM.  

9.3.1. Load the ToDo Items 

The main() function then calling the loadToDoItems() function which loads the todo 

items from the local storage. First it checks if there is any to-do item stored in the local 

storage. If the condition is true then it iterates the localstorage list and get all the todo 

items one by one. To create the list item in HTML it used the LIElement(). After creat-

ing the LIElement and assigning it the value from local storage it then appends that to 

the toDolist.  

9.3.2.  Add the new ToDo item 

It is similar to the load function and called from the main(). It first checks the input field 

should not empty. If the condition is true, it creates the new LIElement and assigns it the 

value from the input field. The same value is stored in the local storage with the same 

key format that is used in JS and CS applications. Then, it appends the list element to 

the toDolist to make it visible on the HTML page.  At the end, it clears the input field 

and increment the key value. 

9.3.3. Remove the todo-item 

There is not specific function written to remove the todo-item rather the functionality is 

provided when the user clicks the todo-item then it will be removed from the list. To do 

this an onclick event is called and it removes the item from the local storage and as well 

as from the DOM. 

9.3.4. Remove all todo-items 

There is a button to delete all the todo items. When it is clicked the click event fires and 

in the listener it calls the removeAll() function. Where it clears the todoList at DOM and 

empties the local storage. 
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9.3.5. Sort the todo-list 

In JS and CS this sortable list functionality is achieved with the JQuery. In Dart, it pro-

vides its own library for drag and drop and sortable list.   

9.4. TODO application in TypeScript 

 

TypeScript is a superset of JavaScript. It has type annotations, classes and modules. 

TypeScript does not replace the JavaScript like Dart but any valid JavaScript code is 

valid TypeScript code, it can compile without any errors and warnings. In the todo ap-

plication the HTML and CSS file is the same as used in JavaScript, CoffeeScript and 

Dart applications, like in CoffeeScript the code is also compiled to JavaScript. Howev-

er, unlike CoffeeScript, TypeScript has a good tool support in the form of a Visual Stu-

dio editor and potentially plugins for other IDEs. 

 

We created a new file with .ts extension and copy the code of the JavaScript todo appli-

cation and paste it in the TypeScript file and then compiled the code it compiled suc-

cessfully without any errors and warnings and generated the .js file. The generated .js 

file is then used in the application it gives the same results.  

 

Converting the JavaScript code into more idiomatic TypeScript code is very fast and 

simple. Developing in TypeScript feels a lot like developing in JavaScript but it is a bit 

safer because of type annotations and the compiler. 

 

The main idea to develop the todo application in TypeScript is the same as in JS. The 

data is stored in the local storage and it has the same features that are described in sec-

tion 9. This version of TODO application is developed by using Backbone.js and 

JQuery. JQuery is used for all DOM manipulation and TypeScript classes are used to 

create Backbone models and views.   
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10. RESULTS AND CONCLUSION 

JavaScript is the scripting language that is most widely used in the development of web 

applications. It is fast and responsive scripting language. The applications can be usable 

and responsive, even in the absence of the internet connection. JavaScript provides the 

seamless integration with user plug-ins. It is also an easy language to learn, there is a 

supporting online community of JavaScript developers and information resources. But 

we cannot forget the other side of the picture. There are many pitfalls and ugly sides of 

JavaScript such as development and maintainability of large scale complex applications 

etc. There is a huge need for JavaScript improvements that is why a number of scripting 

languages came into existence.  

 

All the considered languages (CoffeeScript, TypeScript and Dart) can be compiled into 

JavaScript although it is a high level programming language but here it plays a role of a 

low level language. These scripting languages improve the maintainability of large ap-

plication by providing the features of object oriented programming with the help of 

classes and modules. Many of them for example Dart and TypeScript introduced the 

optional static types. These languages improve the performance and achieve the code 

brevity.  

 

Dart and TypeScript have the IDE but there is no better IDE support for CoffeeScript. 

These scripting languages are the generic and can be used by both client and server side. 

They support all the libraries of JavaScript and preserve the functions as first-class citi-

zen which seems to be a very powerful feature in JavaScript. 

 

Which scripting language is best and should be used to develop the new web applica-

tion? The answer to this question varies. For the enterprise applications, website devel-

opment and If you are using the Microsoft tools for development, TypeScript would be 

a good choice, it uses the JQuery and Ajax for dynamic updation. A major part of bene-

fit of TypeScript comes from the tooling within Visual Studio. 

 

One can consider development of large scale applications in Dart because it is a clean 

modern language with extensive libraries out of the box. It has a cleaner DOM API, full 

fledge client side web applications can be developed. It has its own editor and browser 

to run the applications but what if it does not run properly or fast enough on some de-

vices? This is the risk that comes with the Dart. 
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CoffeeScript provide structure to the code and reduce unnecessary code. It is close to 

the regular JavaScript, it has no interoperability or performance issues. The CoffeeS-

cript is most widely adapted alternative language to JavaScript. Coffee Script can be 

used to develop medium to large scale applications. System and server applications can 

also possible to develop that run on top of node.js. It is a programming language does 

not include the DOM related convenience functions; however you can use CoffeeScript 

with your favorite toolkit JQuery and Ajax for dynamic updation. It has ability to call 

the web services. There are relatively more resources available and more users in the 

community to answer questions.  

 

Dart and TypeScript are still moving fast and changing and have only their first versions 

available for use. All these three languages have the better structure of writing the ap-

plication code. The debugging is easy in Dart and TypeScript. 

 

Google Trend [51] provides some idea of the relative interest in each language. In the 

figure 9.1 the web search interest is shown over past two years worldwide. The number 

100 represents the peak search interest. According to the graph the CoffeeScript has the 

maximum search interest in all.   

 
Figure9.1.user’s interest over time [51] 

 

To conclude, here is the table that compares the language features in JavaScript, 

CoffeeScript, TypeScript and Dart. 

 

Features JavaScript CoffeeScript TypeScript Dart 

Static Type Checking - - X X 

Classes - X X X 

Interfaces - - X X 

Modules - X X X 

List comprehensions - X - - 

String interpolations - X - X 

Splats/Rest - X X - 
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parameters(...) 

Intellisense - - X X 

Code Brevity - X - - 

Stable - X - - 

Open Source - - X X 

Compile to JS - X X X 

Better speed - - - X 
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APPENDIX 1: INDEX.HTML
<html> 
    <head> 
       <title>To-do List</title> 
       <meta charset="utf-8" /> 
       <link rel="stylesheet" href="css/base.css" type="text/css" /> 
   
 <script type="text/javascript" src="js/jquery-1.9.1.min.js"></script> 
 <script type="text/javascript" src="js/jquery-ui-1.10.2.min.js"></script> 
       <script src="js/jquery.inlineedit.js"></script> 
       <script src="js/pubsub.js"></script> 
 <!-- script file, change this file while running app in different lanagauges -
-> 
       <script type="text/javascript" src="js/js_script.js"></script> 
 
    </head> 
    <body> 
          <div id="container"> 
            <h1>To-Do List</h1> 
            <form id="todo-form"> 
                <input id="todo" type="text" /> 
     <input id="priority" type="text" /> 
                <input id="submit" type="submit" value="Add to List"> 
            </form> 
            <ul id="show-items"></ul> 
            <a href="#" id="clear-all">Clear All</a> 
        </div> 
 
    </body> 
</html> 

 
  



 57 

 

APPENDIX 2: BASE.CSS
body { 
    font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; 
    font-weight: 300; 
    font-size: 12px; 
} 
 
a, 
a:link { 
    outline: none; 
} 
 
h1 { 
    font-weight: 100; 
    font-size: 72px; 
    margin: 20px 0; 
} 
 
#container { 
    width: 800px; 
    text-align: center; 
    margin: 20px auto; 
} 
 
input[type="text"] { 
    height: 30px; 
    width: 350px; 
    padding: 10px; 
    margin-right: 10px; 
    font-size: 24px; 
} 
 
input[type="submit"] { 
    height: 56px; 
    padding: 10px; 
    border: 1px solid #333; 
    background-color: #ccc; 
    font-size: 24px; 
    cursor: pointer; 
    outline: none; 
} 
 
ul { 
    margin: 15px auto 0; 
    padding: 0; 
    width: 545px; 
} 
 
ul li { 
    list-style-type: none; 
    font-size: 24px; 
    cursor: move; 
    background-color: #efefef; 
    margin-bottom: 5px; 
    padding: 10px; 
    text-align: left; 
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} 
 
ul li span { 
    cursor: text; 
} 
 
ul li a, 
ul li a:link { 
    float: right; 
    display: none; 
    text-decoration: none; 
    color: #f03; 
} 
 
ul li a:hover { 
    text-decoration: underline; 
} 
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APPENDIX 3: JS_SCRIPT.JS
$("document").ready(function() { 
    var i = Number(localStorage.getItem('todo-counter')) + 1, 
        j = 0, 
        k, 
        $form = $('#todo-form'), 
        $removeLink = $('#show-items li a'), 
        $itemList = $('#show-items'), 
        $editable = $('.editable'), 
        $clearAll = $('#clear-all'), 
        $newTodo = $('#todo'), 
  $newPriority = $('#priority'), 
        order = [], 
        orderList; 
   
    // Load todo list 
     orderList = localStorage.getItem('todo-orders'); 
       
     orderList = orderList ? orderList.split(',') : []; 
      
    for( j = 0, k = orderList.length; j < k; j++) { 
    var retrievedObject = localStorage.getItem(orderList[j]); 
    var testObject_r = JSON.parse(retrievedObject); 
     
       $itemList.append( 
             "<li id='" + orderList[j] + "'>" 
            + "<span class='editable'>" 
            + testObject_r.one 
            + "</span> <a href='#'>X</a></li>" 
         ); 
    } 
   
 
     // Add todo 
    $form.submit(function(e) {  
  alert("hi"); 
        e.preventDefault(); 
        $.publish('/add/', []); 
    }); 
   // Remove todo 
    $itemList.delegate('a', 'click', function(e) { 
        var $this = $(this); 
          
        e.preventDefault(); 
        $.publish('/remove/', [$this]); 
    }); 
      
    // Sort todo 
    $itemList.sortable({ 
        revert: true, 
        stop: function() { 
            $.publish('/regenerate-list/', []); 
        } 
    }); 
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// Edit and save todo 
    $editable.inlineEdit({ 
        save: function(e, data) { 
                var $this = $(this); 
                localStorage.setItem( 
                    $this.parent().attr("id"), data.value 
                ); 
            } 
    }); 
  
    // Clear all 
    $clearAll.click(function(e) { 
        e.preventDefault(); 
        $.publish('/clear-all/', []); 
    }); 
  
    // Fade In and Fade Out the Remove link on hover 
    $itemList.delegate('li', 'mouseover mouseout', function(event) { 
        var $this = $(this).find('a'); 
          
        if(event.type === 'mouseover') { 
            $this.stop(true, true).fadeIn(); 
        } else { 
            $this.stop(true, true).fadeOut(); 
        } 
    }); 
 // Subscribes 
    $.subscribe('/add/', function() {   
 var testObject = { 'one': $newTodo.val(), 'two': $newPriority.val() };  
     if ($newTodo.val() !== "") {   
            // Take the value of the input field and save it to localStorage 
            localStorage.setItem(  
                "todo-" + i, JSON.stringify(testObject) 
            ); 
          
    // Set the to-do max counter so on page refresh it keeps going up 
instead of reset 
            localStorage.setItem('todo-counter', i);         
    // Retrieve the object from storage 
   var retrievedObject = localStorage.getItem("todo-" + i);   
   var testObject_r = JSON.parse(retrievedObject);    
       
   // Append a new list item with the value of the new todo list 
            $itemList.append( 
                "<li id='todo-" + i + "'>" 
                + "<span class='editable'>" 
                + testObject_r.one  
                + " </span><a href='#'>x</a></li>" 
            ); 
      $.publish('/regenerate-list/', []); 
  
            // Hide the new list, then fade it in for effects 
            $("#todo-" + i) 
                .css('display', 'none') 
                .fadeIn(); 
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            // Empty the input field 
            $newTodo.val(""); 
              
            i++; 
  } 
    }); 
  
 $.subscribe('/remove/', function($this) { 
        var parentId = $this.parent().attr('id'); 
          
        // Remove todo list from localStorage based on the id of the clicked parent 
element 
        localStorage.removeItem( 
            "'" + parentId + "'" 
        ); 
          
        // Fade out the list item then remove from DOM 
        $this.parent().fadeOut(function() {  
            $this.parent().remove(); 
              
            $.publish('/regenerate-list/', []); 
        }); 
    }); 
 $.subscribe('/regenerate-list/', function() { 
        var $todoItemLi = $('#show-items li'); 
        // Empty the order array 
        order.length = 0; 
          
        // Go through the list item, grab the ID then push into the array 
        $todoItemLi.each(function() { 
            var id = $(this).attr('id'); 
            order.push(id); 
        }); 
          
        // Convert the array into string and save to localStorage 
        localStorage.setItem( 
            'todo-orders', order.join(',') 
        ); 
    }); 
 $.subscribe('/clear-all/', function() { 
        var $todoListLi = $('#show-items li'); 
          
        order.length = 0; 
        localStorage.clear(); 
        $todoListLi.remove(); 
    }); 
  
}); 
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APPENDIX 4: CS_SCRIPT.COFFEE
$("document").ready -> 
  i = Number(localStorage.getItem("todo-counter")) + 1 
  j = 0 
  k = undefined 
  $form = $("#todo-form") 
  $removeLink = $("#show-items li a") 
  $itemList = $("#show-items") 
  $editable = $(".editable") 
  $clearAll = $("#clear-all") 
  $newTodo = $("#todo") 
  $newPriority = $("#priority") 
  order = [] 
  orderList = undefined 
   
  # Load todo list 
  orderList = localStorage.getItem("todo-orders") 
  orderList = (if orderList then orderList.split(",") else []) 
  j = 0 
  k = orderList.length 
 
  while j < k 
    retrievedObject = localStorage.getItem(orderList[j]) 
    testObject_r = JSON.parse(retrievedObject) 
    $itemList.append "<li id='" + orderList[j] + "'>" + "<span class='editable'>" + 
testObject_r.one + "</span> <a href='#'>X</a></li>" 
    j++ 
   
  # Add todo 
  $form.submit (e) -> 
    alert "hi" 
    e.preventDefault() 
    $.publish "/add/", [] 
 
   
  # Remove todo 
  $itemList.delegate "a", "click", (e) -> 
    $this = $(this) 
    e.preventDefault() 
    $.publish "/remove/", [$this] 
 
   
  # Sort todo 
  $itemList.sortable 
    revert: true 
    stop: -> 
      $.publish "/regenerate-list/", [] 
 
   
  # Edit and save todo 
  $editable.inlineEdit save: (e, data) -> 
    $this = $(this) 
    localStorage.setItem $this.parent().attr("id"), data.value 
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# Clear all 
  $clearAll.click (e) -> 
    e.preventDefault() 
    $.publish "/clear-all/", [] 
 
   
  # Fade In and Fade Out the Remove link on hover 
  $itemList.delegate "li", "mouseover mouseout", (event) -> 
    $this = $(this).find("a") 
    if event.type is "mouseover" 
      $this.stop(true, true).fadeIn() 
    else 
      $this.stop(true, true).fadeOut() 
 
   
  # Subscribes 
  $.subscribe "/add/", -> 
    testObject = 
      one: $newTodo.val() 
      two: $newPriority.val() 
 
    if $newTodo.val() isnt "" 
       
      # Take the value of the input field and save it to localStorage 
      localStorage.setItem "todo-" + i, JSON.stringify(testObject) 
       
      # Set the to-do max counter so on page refresh it keeps going up instead of 
reset 
      localStorage.setItem "todo-counter", i 
       
      # Retrieve the object from storage 
      retrievedObject = localStorage.getItem("todo-" + i) 
      testObject_r = JSON.parse(retrievedObject) 
       
      # Append a new list item with the value of the new todo list 
      $itemList.append "<li id='todo-" + i + "'>" + "<span class='editable'>" + 
testObject_r.one + " </span><a href='#'>x</a></li>" 
      $.publish "/regenerate-list/", [] 
       
      # Hide the new list, then fade it in for effects 
      $("#todo-" + i).css("display", "none").fadeIn() 
       
      # Empty the input field 
      $newTodo.val "" 
      i++ 
 
  $.subscribe "/remove/", ($this) -> 
    parentId = $this.parent().attr("id") 
     
    # Remove todo list from localStorage based on the id of the clicked parent 
element 
    localStorage.removeItem "'" + parentId + "'" 
     
    # Fade out the list item then remove from DOM 
    $this.parent().fadeOut -> 
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$this.parent().remove() 
      $.publish "/regenerate-list/", [] 
 
  $.subscribe "/regenerate-list/", -> 
    $todoItemLi = $("#show-items li") 
     
    # Empty the order array 
    order.length = 0 
     
    # Go through the list item, grab the ID then push into the array 
    $todoItemLi.each -> 
      id = $(this).attr("id") 
      order.push id 
     
    # Convert the array into string and save to localStorage 
    localStorage.setItem "todo-orders", order.join(",") 
 
  $.subscribe "/clear-all/", -> 
    $todoListLi = $("#show-items li") 
    order.length = 0 
    localStorage.clear() 
    $todoListLi.remove() 
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APPENDIX 5: DART_SCRIPT.DART
import 'dart:html'; 
import 'package:html5_dnd/html5_dnd.dart'; 
 
InputElement toDoInput; 
UListElement toDoList; 
ButtonElement deleteAll; 
int i=0; 
var list; 
 
void main() { 
  toDoInput = query('#todo'); 
  toDoList = query('#show-items'); 
 
  loadTodoItems(); 
   
  toDoInput.onChange.listen(addToDoItem); 
  deleteAll = query('#clear-all'); 
  deleteAll.onClick.listen((e){ 
    toDoList.children.clear(); 
    removeAll(); 
  }); 
} 
//load the todo lits 
void loadTodoItems() 
{ 
 
  if(!window.localStorage.isEmpty){     
     
    i = window.localStorage.length-1; 
    for(int j=0; j < window.localStorage.length; j++ ) 
    { 
      if(window.localStorage["todo-$j"] != "") 
      { 
        var newToDo = new LIElement(); 
        newToDo.text = window.localStorage["todo-$j"]; 
        toDoList.children.insert(j,newToDo); 
        //sortable list 
        SortableGroup sortGroup=new SortableGroup(); 
        sortGroup.installAll(queryAll('#sortable-list $newToDo')); 
        sortGroup.onSortUpdate.listen((SortableEvent event){ 
          print('elements are sorted'); 
        }); 
        newToDo.onClick.listen((e) { 
          //when click on item, remove it 
          newToDo.remove();       
          window.localStorage.remove("todo-$j"); 
           
        }); 
      } 
       
    } 
  } 
} 
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//add the todo item 
void addToDoItem(Event e) {  
   
  if(toDoInput.value != "") 
  { 
    var newToDo = new LIElement(); 
    newToDo.text = toDoInput.value; 
    window.localStorage["todo-$i"]= toDoInput.value; 
    //sortable list 
    SortableGroup sortGroup=new SortableGroup(); 
    sortGroup.installAll(queryAll('#sortable-list $newToDo')); 
    sortGroup.onSortUpdate.listen((SortableEvent event){ 
      print('elements are sorted'); 
    }); 
    newToDo.onClick.listen((e){ 
      //when click on item, remove it 
      newToDo.remove(); 
      window.localStorage.remove("todo-$i"); 
    }); 
    toDoInput.value = ''; 
    //toDoList.children.add(newToDo); 
    toDoList.children.insert(i,newToDo);     
    i++; 
  } 
} 
//delete all the todo items 
void removeAll(){ 
  window.localStorage.clear(); 
} 
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APPENDIX 6: TS_SCRIPT.TS
declare module Backbone { 
    export class Model { 
        constructor (attr? , opts? ); 
        get(name: string): any; 
        set(name: string, val: any): void; 
        set(obj: any): void; 
        save(attr? , opts? ): void; 
        destroy(): void; 
        bind(ev: string, f: Function, ctx?: any): void; 
        toJSON(): any; 
    } 
    export class Collection<T> { 
        constructor (models? , opts? ); 
        bind(ev: string, f: Function, ctx?: any): void; 
        length: number; 
        create(attrs, opts? ): any; 
        each(f: (elem: T) => void ): void; 
        fetch(opts?: any): void; 
        last(): T; 
        last(n: number): T[]; 
        filter(f: (elem: T) => boolean): T[]; 
        without(...values: T[]): T[]; 
    } 
    export class View { 
        constructor (options? ); 
        $(selector: string): JQuery; 
        el: HTMLElement; 
        $el: JQuery; 
        model: Model; 
        remove(): void; 
        delegateEvents: any; 
        make(tagName: string, attrs? , opts? ): View; 
        setElement(element: HTMLElement, delegate?: boolean): void; 
        setElement(element: JQuery, delegate?: boolean): void; 
        tagName: string; 
        events: any; 
 
        static extend: any; 
    } 
} 
interface JQuery { 
    fadeIn(): JQuery; 
    fadeOut(): JQuery; 
    focus(): JQuery; 
    html(): string; 
    html(val: string): JQuery; 
    show(): JQuery; 
    addClass(className: string): JQuery; 
    removeClass(className: string): JQuery; 
    append(el: HTMLElement): JQuery; 
    val(): string; 
    val(value: string): JQuery; 
    attr(attrName: string): string; 
} 
declare var $: { 
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    (el: HTMLElement): JQuery; 
    (selector: string): JQuery; 
    (readyCallback: () => void ): JQuery; 
}; 
declare var _: { 
    each<T, U>(arr: T[], f: (elem: T) => U): U[]; 
    delay(f: Function, wait: number, ...arguments: any[]): number; 
    template(template: string): (model: any) => string; 
    bindAll(object: any, ...methodNames: string[]): void; 
}; 
declare var Store: any; 
// Todo Model 
// ---------- 
 
// Our basic **Todo** model has `content` and `order` attributes. 
class Todo extends Backbone.Model { 
 
    // Default attributes for the todo. 
    defaults() { 
        return { 
            content: "empty todo..."            
        } 
    } 
 
        // Ensure that each todo created has `content`. 
    initialize() { 
        if (!this.get("content")) { 
            this.set({ "content": this.defaults().content }); 
        } 
    } 
 
       // Remove this Todo from *localStorage* and delete its view. 
    clear() { 
        this.destroy(); 
    } 
} 
// Todo Collection 
// --------------- 
// The collection of todos is backed by localStorage 
class TodoList extends Backbone.Collection<Todo> { 
 
    // Reference to this collection's model. 
    model = Todo; 
 
    // Save all of the todo items under the `"todos"` namespace. 
    localStorage = new Store("todos-backbone"); 
 
     // We keep the Todos in sequential order, despite being saved by unordered 
    // GUID in the database. This generates the next order number for new items. 
    nextOrder() { 
        if (!this.length) return 1; 
        return this.last().get('order') + 1; 
    } 
 
    // Todos are sorted by their original insertion order. 
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    comparator(todo: Todo) { 
        return todo.get('order'); 
    } 
 
} 
// Create our global collection of **Todos**. 
var Todos = new TodoList(); 
// Todo Item View 
// -------------- 
 
// The DOM element for a todo item... 
class TodoView extends Backbone.View { 
 
    // The TodoView listens for changes to its model, re-rendering. Since there's 
    // a one-to-one correspondence between a **Todo** and a **TodoView** in this 
    // app, we set a direct reference on the model for convenience. 
    template: (data: any) => string; 
 
    // A TodoView model must be a Todo, redeclare with specific type 
    model: Todo; 
    input: JQuery; 
 
    constructor (options? ) { 
        //... is a list tag. 
        this.tagName = "li"; 
 
        // The DOM events specific to an item. 
        this.events = { 
            "click .check": "toggleDone", 
            "dblclick label.todo-content": "edit", 
            "click span.todo-destroy": "clear", 
            "keypress .todo-input": "updateOnEnter", 
            "blur .todo-input": "close" 
        }; 
 
        super(options); 
 
        // Cache the template function for a single item. 
        this.template = _.template($('#item-template').html()); 
 
        _.bindAll(this, 'render', 'close', 'remove'); 
        this.model.bind('change', this.render); 
        this.model.bind('destroy', this.remove); 
    } 
 
    // Re-render the contents of the todo item. 
    render() { 
        this.$el.html(this.template(this.model.toJSON())); 
        this.input = this.$('.todo-input'); 
        return this; 
    } 
   
    // Switch this view into `"editing"` mode, displaying the input field. 
    edit() { 
        this.$el.addClass("editing"); 
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        this.input.focus(); 
    } 
 
    // Close the `"editing"` mode, saving changes to the todo. 
    close() { 
        this.model.save({ content: this.input.val() }); 
        this.$el.removeClass("editing"); 
    } 
 
    // If you hit `enter`, we're through editing the item. 
    updateOnEnter(e) { 
        if (e.keyCode == 13) close(); 
    } 
 
    // Remove the item, destroy the model. 
    clear() { 
        this.model.clear(); 
    } 
} 
 
// The Application 
// --------------- 
// Our overall **AppView** is the top-level piece of UI. 
class AppView extends Backbone.View { 
 
    // Delegated events for creating new items, and clearing completed ones. 
    events = { 
        "keypress #new-todo": "createOnEnter", 
        "keyup #new-todo": "showTooltip", 
        "click .todo-clear a": "clearCompleted",      
    }; 
 
    input: JQuery; 
    allCheckbox: HTMLInputElement; 
    statsTemplate: (params: any) => string; 
 
    constructor () { 
        super(); 
        // Instead of generating a new element, bind to the existing skeleton of 
        // the App already present in the HTML. 
        this.setElement($("#todoapp"), true); 
 
        // At initialization we bind to the relevant events on the `Todos` 
        // collection, when items are added or changed. Kick things off by 
        // loading any preexisting todos that might be saved in *localStorage*. 
        _.bindAll(this, 'addOne', 'addAll', 'render'); 
 
        this.input = this.$("#new-todo");      
 
        Todos.bind('add', this.addOne); 
        Todos.bind('reset', this.addAll); 
 
        Todos.fetch(); 
    } 
    // Add a single todo item to the list by creating a view for it, and 
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    // appending its element to the `<ul>`. 
    addOne(todo) { 
        var view = new TodoView({ model: todo }); 
        this.$("#todo-list").append(view.render().el); 
    } 
 
    // Add all items in the **Todos** collection at once. 
    addAll() { 
        Todos.each(this.addOne); 
    } 
 
    // Generate the attributes for a new Todo item. 
    newAttributes() { 
        return { 
            content: this.input.val(), 
            order: Todos.nextOrder()            
        }; 
    } 
 
    // If you hit return in the main input field, create new **Todo** model, 
    // persisting it to *localStorage*. 
    createOnEnter(e) { 
        if (e.keyCode != 13) return; 
        Todos.create(this.newAttributes()); 
        this.input.val(''); 
    } 
 
    tooltipTimeout: number = null; 
    // Lazily show the tooltip that tells you to press `enter` to save 
    // a new todo item, after one second. 
    showTooltip(e) { 
        var tooltip = $(".ui-tooltip-top"); 
        var val = this.input.val(); 
        tooltip.fadeOut(); 
        if (this.tooltipTimeout) clearTimeout(this.tooltipTimeout); 
        if (val == '' || val == this.input.attr('placeholder')) return; 
        this.tooltipTimeout = _.delay(() => tooltip.show().fadeIn(), 1000); 
    }    
} 
 
// Load the application once the DOM is ready, using `jQuery.ready`: 
$(() => { 
    // Finally, we kick things off by creating the **App**. 
    new AppView(); 
}); 

 

 


