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Collision Avoidance Systems are utilized both in industry and traffic in attempt to prevent 

material losses and injuries. These systems are implemented using sensors, communica-

tion systems or a combination of these. The most used sensors in collision avoidance 

applications are optical, electromagnetic and ultrasonic sensors. The communication-

based systems use both wireless and wired communications utilizing various protocols.  

This document describes the process of creating a prototype of a sensor-based Collision 

Avoidance System for Cimcorp Monorail Transfer system. Monorail Transfer is an auto-

matic transportation system used in tire manufacturing plants for moving the tires be-

tween different process stations. It consists of a rail, which is either fastened into the roof 

of the plant or into a leg-like support structure, carriers which move along the rail and a 

cell controller. The aim is to prevent the collisions between the carriers and between car-

riers and other objects. The aim of the work is to have a functional prototype of an auton-

omous, sensor-based Collision Avoidance System which does not depend on Wi-Fi.  

The work begins with introducing the concept of Monorail Transfer in detail. Next the 

technologies behind the existing collision avoidance systems in industry and traffic are 

reviewed. The sensor types used in the implementations are identified and reviewed. 

Their suitability for the Monorail is considered. It is found that electromagnetic and opti-

cal sensors would be most suitable for the system. Electromagnetic sensors are discarded 

due to their high price and power consumption. Communication-based systems are re-

viewed. The Monorail Transfer’s current Collision Avoidance System is studied.  

After the theoretical part the new system is designed after defining its requirements. The 

sensors are chosen and reviewed. A Raspberry Pi 2 model B is chosen for pre-processing 

the sensor data prior to introducing it to the PLC’s in the Monorail Transfer. The Collision 

Avoidance software is programmed in Node.js, the communications between the PLC 

and Raspberry Pi are programmed in Node.js and the Graphical User Interface is imple-

mented using HTML5, CSS and JS.  

The system is tested thoroughly and modified according to the findings. The prototype is 

found to be functional. Finally the document ends with conclusions about the imple-

mented prototype.  
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Törmäyksenestojärjestelmiä käytetään sekä teollisuudessa että liikenteessä vähentämään 

törmäyksistä aiheutuvia henkilö- ja aineellisia vahinkoja. Järjestelmiä toteutetaan antu-

reita, tiedonsiirtojärjestelmiä tai näiden yhdistelmiä hyödyntäen. Törmäyksenestojärjes-

telmissä useimmin käytetyt anturityypit ovat optiset, sähkömagneettiset ja ultraääniantu-

rit. Tiedonsiirtoon pohjautuvia järjestelmiä toteutetaan sekä langatonta että langallista tie-

donsiirtoa käyttäen.  

Tämä dokumentti kuvaa anturipohjaisen törmäyksenestojärjestelmän prototyypin luomis-

prosessin Cimcorpin Monorail Transfer- järjestelmää varten. Monorail Transfer on auto-

maattinen kuljetinjärjestelmä, joka kuljettaa renkaita rengastehtaassa prosessiasemalta 

toiselle. Se koostuu kiskosta, vaunuista jotka liikkuvat kiskoa pitkin ja kiskon tukiraken-

teesta. Tavoitteena on estää vaunujen törmääminen sekä toisiinsa että ulkopuolisiin estei-

siin. Tämän työn päämääränä on luoda toimiva prototyyppi autonomisesta, anturipohjai-

sesta ja Wi-Fi-riippumattomasta törmäyksenestojärjestelmästä.   

Työ alkaa tarkemmalla Monorail Transferin esittelyllä. Seuraavaksi esitellään teollisuu-

den ja liikenteen törmäyksenestojärjestelmien takana olevaa teknologiaa. Toteutettujen 

järjestelmien anturityypit todetaan ja niiden soveltuvuutta Monorailiin tutkitaan. Huoma-

taan, että sähkömagneettiset ja optiset anturit soveltuvat tähän toteutukseen parhaiten. 

Sähkömagneettiset anturit jätetään pois laskuista niiden korkean hinnan ja energiankulu-

tuksen vuoksi. Tiedonsiirtojärjestelmiin pohjautuvia järjestelmiä esitellään. Monorail 

Transferin tämänhetkistä törmäyksenestojärjestelmää tutkitaan.  

Teoreettisen osion jälkeen suunnitellaan uusi järjestelmä määriteltyihin vaatimuksiin 

pohjautuen. Anturit valitaan ja esitellään. Raspberry Pi 2 Model B valitaan prosessoimaan 

dataa ennen kuin se viedään PLC:lle. Törmäyksenestoalgoritmi ja tiedonsiirto PLC:n ja 

Raspberry Pi:n välillä ohjelmoidaan Node.js:llä. Graafinen käyttöliittymä luodaan käyt-

täen HMTL5:ttä, JS:a ja CSS:ä.  

Järjestelmää testataan läpikotaisin ja muokataan löydösten perusteella. Prototyyppi 

todetaan toimivaksi. Lopuksi yhteenvedossa koostetaan toteutuksen tulokset.  
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1. INTRODUCTION 

This thesis is made for Cimcorp Oy as a product development project. The aim of this 

work is to develop a prototype of a more autonomous collision avoidance system for 

Cimcorp’s Monorail transfer system.  

Cimcorp Monorail transfer system is an automatic transport system used in tire industry 

for transferring both raw and finished tires between different process stations. This chap-

ter introduces the Monorail to an extent that is necessary for comprehending the scope of 

this work.   

1.1 Structure of the Monorail Transfer System  

The basic scope of delivery for the Monorail transfer consists of three main components: 

the carriers, the rail, and the rail support structure. Out of the three parts the rail and the 

carrier are relevant considering the scope of this work. Their structure and functions are 

considered in more detail in following subchapters.  

1.1.1 Rail 

The rail acts naturally as a mechanical support structure for the carrier. The shape of the 

rail determines the direction of movement of the Monorail carrier. Besides of this the rail 

includes lines for electricity transmission, signal pathways for safety functions and a pulse 

encoder rail for positioning. The rail is situated in the roof level of the factory, either fixed 

into any support structure which fulfills certain criteria or into a separate, floor-fixed leg 

support structure.  

The rail lies in one horizontal plane, but it may have curves among the way. There are 

three basic configurations provided:  

 Bidirectional line. This consists of a straight line between the process stations. 

Usually this configuration has two carriers per line, moving in both possible di-

rections. The carriers can have designated sections. There may be as many lines 

in a factory as needed.  

 Bidirectional line and curve. This consists of a straight line with a curve in another 

end. This configuration has typically two carriers per line, both carriers having 

their own section.  

 One-directional loop. This consists of a rectangular loop with curves in each cor-

ner. This configuration may have as many carriers as needed. The carriers in the 
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loop may travel only in one direction as the name proposes. This is the most im-

portant configuration concerning this work.  

 

Figure 1: Possible rail configurations, view from above. 

Figure 1 illustrates the aforementioned configurations from above. As seen on the figure, 

there are usually multiple positions where the carrier may pick or drop the tire.  

The curves in the rail provide one of the main challenges of this work, which is detecting 

objects around the corner, especially when there might be any solid support structures on 

the way. This applies especially to the One-directional loop rail configuration. The curves 

may also be tight, for the allowed minimum bend radius is 1 m.  

1.1.2 Carrier 

The carrier is used for picking up tires from the loading position, lifting them up and 

carrying them to any process station, where they are lowered back to the floor level and 

dropped out from the carrier. The movement of the carrier is achieved with electrical 

servo motors. The carrier is powered by the power line enclosed in the rail. The picture 

below reveals the main parts of the carrier.  
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Figure 2: Monorail carrier. 

The parts, as numerated in Figure 2, are the following:  

1) The carrier frame 

2) Drive module for horizontal movement 

3) Drive module for vertical movement 

4) The tire gripper 

5) The safety hatch 

6) The onboard control cabinet. 

The frame offers a platform for installing the other devices and protects the tire. Drive 

modules are for moving the carrier among the rail and lowering and hoisting the gripper. 

The tire gripper is for gripping the tires and the safety hatch is for preventing the tires 

from falling off from the carrier. The onboard control cabinet includes the programmable 

logic controllers, servo drives, I/O-modules, fuses and general electricity equipment.  

The programmable logic controllers or PLC’s in the cabinet are manufactured by Rock-

well. They are programmable through a USB-interface and support various communica-

tion protocols. The preferable protocol here is Ethernet/IP and the programming language 

used for the programming is any of the languages defined in the IEC 61131-3.  

The carrier travels on the rail with a velocity up to 5 m/s. The weight of the carrier is 680 

kg while empty. Maximum payload for the carrier is 120 kg. 

According to tests performed at Cimcorp, the distance between the starting point of brak-

ing and the position where the carrier stops is approximately 7 m. Thus, it is a matter of 
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uttermost importance to detect any obstacles on the way well before a collision would 

happen for avoiding material and personal losses as well as delays in production. 

 

1.2 Control system  

The Monorail system is controlled in multiple levels. Each carrier has its own control 

cabinet containing servo drives and PLCs, while the robot cell consisting of one loop or 

rail is controlled by a cell controller. The cell controller itself receives commands from 

higher-level host systems. The cell can also be controlled to some extent via the Cell user 

interface.  

 

Figure 3: High-level overview of the Monorail control system. 

Figure 3 illustrates the control system at high level. Connections to host system are im-

plemented via Ethernet, connections to external control systems via Ethernet/IP and the 

communication between separate carriers and the cell controller via Wi-Fi. Some safety 
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signals from factory floor level are brought within the rail to ensure their passage to each 

carrier. Currently the carriers communicate with each other passing the messages (for 

example their positions for avoiding collisions) via the cell controller, which acts as a 

message broker. The Wi-Fi based connection is anyhow vulnerable and prone to connec-

tion losses and delays [15, p. 7], [16, p. 333], [41, ch. 2, p. 2] leading to the need of 

creating a more autonomous collision avoidance system.    

1.3 The challenges in the current system 

The current collision avoidance system in the Monorail transfer is a fusion of sensor-

based perception and inter-device communications. The carriers are aware of each other’s 

positions, but in cases where the connection is either lagging or lost, the collision avoid-

ance system relies wholly upon the sensory implementation. The sensory implementation 

has poor performance in the proximity of the curves in the rail, since the sensors cannot 

currently sense objects behind the curve. The current system is also unable to detect ob-

jects below the carrier’s path, for example personnel lifts or other hoisting devices. Thus, 

the system needs some re-implementation.  

1.3.1 Sensor-based implementation 

The sensory implementation consists of only one single-beam laser sensor per carrier 

measuring the distance to the next carrier on the rail. The sensor has a narrow Field-of-

View or FoV, so it cannot detect anything else than the carrier on the front. The sensor is 

in a fixed position, so it cannot detect obstacles when the carrier is either in a curve, 

approaching a curve or leaving the curve. 
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Figure 4: An example situation. 

Figure 4 illustrates the aforementioned issue. The red curve is the rail, the black blocks 

are the carriers and the yellow bars are the beams. None of the sensors are detecting the 

next carrier. In the case of a connection failure this could lead to a collision, which in turn 

could lead to personal or material damage and delays in production.  

  

1.3.2 Communication-based implementation 

The Monorail carriers are aware of their absolute position thanks to a linear encoder. They 

communicate with each other through the Cell controller, forming a client-message bro-

ker-pattern, in which all the carriers are aware of the other carriers’ positions. The com-

munication is implemented with Wi-Fi. Wi-Fi is known to have some issues [15, p. 7], 

[16, p. 333], [41, ch.2, p. 2]: 

 Wi-Fi uses unlicensed radio spectrum, leading to the situation where other proto-

cols may interfere with Wi-Fi [16, p. 333]. 

 Power consumption of Wi-Fi is relatively high [16, p. 333]. 

 The maximum length for the Monorail transfer loop is 300 m, leading to long 

distances between the Cell controller and the carriers. Longer distance leads to a 

weaker connection and increased latency.  

 Issues in interoperability between different brands may lead into increased latency 

and connection losses [16, p. 333].  
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 In a typical installation site there will be obstacles between the Wi-Fi access point 

and the clients (carriers).  

 In cases of connection losses, the system is susceptible for collisions, especially 

in the proximity of the curves.  

One approach for improving the CAS would be improving the wireless connection, but it 

was the company’s wish to introduce a more autonomous, less Wi-Fi-dependent system, 

since there’s better use for the Wi-Fi-connection.  

Next the document proceeds with the results of the research work concerning currently 

existing collision avoidance systems and the technologies behind them. The main focus 

is on existing implementations in traffic and industry. Sensor technology is reviewed as 

finding suitable sensors was one of the goals in the work.  

After the research part, the document reveals the proposed prototype of the system. The 

used devices and the implemented software are studied.  The created Graphical User In-

terface is reviewed. The communications between the prototyping platform and the ex-

isting data infrastructure are presented. 

Next the document proceeds with validating the created prototype. Testing procedures as 

well as results are presented for the core software and for the Graphical User Interface. 

The modifications done after testing are listed. The findings are concluded.  

Finally, the document ends with conclusions and thoughts about future development. The 

strengths and weaknesses of the new implementation are considered. The changes needed 

for turning the prototype into an actual product are reviewed.  
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2. LITERATURE REVIEW 

Developing collision avoidance systems or CAS has been an interest of the automatized 

manufacturing industry for the last three decades. Efficient collision avoidance could de-

crease the amount of machine-related accidents and thus decrease the risk for injuries and 

material losses. Automotive industry has adopted many of these technologies, developing 

them even further [6, p. 1175]. This chapter describes the collision avoidance systems 

and technologies used both in industry and in traffic and provides an overview to the 

current collision avoidance implementation in the Monorail transfer.  

2.1 Technologies 

Even though there are countless possible technological solutions for creating a collision 

avoidance system, most of the studied systems tend to follow one or more of the following 

principles:  

1) Sensor-based perception 

2) Inter-device communications 

3) Machine Vision [1].  

The sensor-based ones use sensors to obtain data from their environment, while the inter-

device communication-based systems just keep each other informed about their positions 

[1]. Currently the Monorail transfer’s collision avoidance system is a fusion of both, 

though the sensory part is poorly implemented.  

2.1.1 Sensors 

For the whole history of active collision avoidance systems the sensors used for collision 

avoidance and obstacle detection have been limited to a set of three [8],[1],[2],[13, p. 

322]. These are ultrasound, electromagnetic and infrared sensors. This chapter presents 

some of their key features and differences.  

Ultrasound sensors are popular due to their low price and power consumption [21, p. 41]. 

The operational principle of an ultrasound sensor is the following:  

1) The sensor emits high-frequency (over 20 kHz) sound 

2) The sound is reflected from a surface 

3) The sensor detects the echo and calculates the return time [4, p. 273], [5, p. 341]. 

Using the return time, the distance can be calculated as the speed of sound is known. This 

is widely known as Time-Of-Flight or TOF ranging [6, p. 501].  
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Besides of the distance measurements, ultrasound sensors can be used for measuring 

movement and velocity utilizing the Doppler phenomena [19, p. 352].  

Ultrasound sensors have a broad field of detection, they are light-weight and cheap. They 

can detect transparent items as well as shiny objects. Their accuracy is around ±1 mm [5, 

p. 341]. Their sensing range tends to be limited to a maximum of 6 meters [5, p. 341]. 

The velocity of sound through a medium is dependent on ambient temperature [5, p. 631], 

so ultrasound sensors are usually unsuitable for environments with high ambient temper-

atures [4, p. 130], [5, p. 342]. The sensing rate is lower compared to infrared sensors due 

to the difference between the speeds of sound and light [6, p. 493]. 

Infrared sensors as well as other optical sensors have multiple different ways of usage. 

One of the most utilized ways is using a sender-receiver pair: the sender emits a light 

pulse and the detector absorbs it. If there’s an obstacle between the pair, the passage of 

the light will be interrupted and the light will not be absorbed at the receiver. This counts 

for a detection. The method is called “through scanning” [5, p. 361], [19, p. 341].  

 

Figure 5: Different usages of optical sensors [5, p. 361]. 

 

Another popular way is enclosing both into same closure and measuring reflected light. 

Also here the TOF ranging can be used [10, p. 233], [39, p. 86]. This method is called 

“diffuse scanning” [19, p. 341]. Figure 5 illustrates the difference between the two scan-

ning methods. Out of these methods the diffuse scanning would look more suitable for 

obstacle detection necessary for collision avoidance, since the objects that the system 

needs to detect cannot always lie between the emitter-receiver pair.  

Infrared sensors have a broad detection range. They detect objects from as near as 0.1 µm 

to as far as 100 m and even further [5, p. 358]. They may use a single point of light for 

measurements [9, p. 2320] or have a spread pattern of light, which can be read in seg-

ments.  They have a faster sensing rate compared to the ultrasound sensors due to the 

difference between the speeds of sound and light. Infrared sensor are a bit more expensive 

than ultrasound sensors. They are immune to background radiation and electromagnetic 

fields [4, p. 362].  

However most of the traditional infrared sensors are sensitive to ambient light, weather 

conditions and heat [4, p. 156]. The quality of the detection is somewhat dependent on 



10 

the optical qualities of the object [19, p. 344]. The sensitivity to heat can on the other 

hand be advantaged in object recognition: for example, humans emit infrared waves in-

side a narrow spectrum, providing the possibility to identify humans using their natural 

temperature fingerprint [4, p. 156], [11, p. 102].  

Other widely used optical sensors use lasers and even LEDs within or outside of the range 

of infrared [4, p. 299]. These are also used both in industry and traffic. Lasers are quite 

broadly implemented in scanner-type sensors, which can detect objects in a 2D-plane or 

even in 3D [9, p. 2324]. This kind of equipment can be used for generating maps of en-

vironment as well as localizing objects [9, p. 2324]. These devices are usually called 

LADARs or LIDARs, standing for “Laser Detection And Ranging” and “Light Detection 

And Ranging”, respectively.  

Due to the wide-field perception obtained with scanner type sensors, they are broadly 

used in moving equipment. Some of these products divide their Field-of-View or FoV 

into separate segments, which allows a more precise localization of the detected objects 

[4, p. 297]. 

 

Figure 6:  A multi-segment LED scanner detecting objects. 

Figure 6 provides an example of a multi-segment LED sensor detecting some objects in 

its near proximity. The figure was produced experimentally using a LEDDARTech M16-

sensor. The sensor was lying flat on a desk while capturing the image. The notch seen in 

the middle segments represents a structure extruding from the ceiling.  

 Electromagnetic sensors refer in this context to RADAR, or “Radio Detection And Rang-

ing” [4, p. 277]. Their operational principle is somewhat similar to the previous ones: the 
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sensor emits a pulse of electromagnetic radiation (in the microwave spectrum), the pulse 

is reflected from a surface and partially captured by the sensor’s detector. TOF calcula-

tions are performed to determine the location of the object [11, p. 102]. Radar can also 

distinguish the object’s size and shape to some extent [12, p. 10-11]. 

Radars are virtually immune to any environmental conditions [11, p. 102]. They have a 

range from micrometers to kilometers. Radars can detect an object independent of the 

object’s material. Radars have the second-highest sample rate in this comparison [12, p. 

18], [4, p. 277].  Their resolution is dependent on the operation frequency [14, p. 29].  

Price of radars is higher than the other sensors’. They have the highest power consump-

tion in this trio.  

The following table provides a quick summary of the key features of the three sensor 

types.  

Table 1: Quick comparison between the sensor types. 

Sensor 

type 

Detection 

range 

Frequency Price  Power  

con-

sump-

tion 

Reso-

lution 

Ob-

ject 

size 

Sensitivity to en-

vironmental con-

ditions 

Ultra-

sound 

1 mm – 6 m  20 kHz – 

200 MHz 

€ Low 1 mm cm  Temperature 

Optical 1 µm – 100 

m  

300 GHz – 

430 THz 

€€ Middle 0.1 

mm  

mm Temperature, 

humidity 

Electro-

magnetic 

1 mm – 

millions of 

km 

30 Hz – 

300 GHz 

€€€ High 1 mm  mm None 

 

2.1.2  Inter-device communications 

Another approach to collision avoidance is based on communication between the objects 

prone for collision. This kind of systems depend either on wireless communications be-

tween devices, wireless communications between devices and a message broker or wired 

communications between the participants [3, p. 1]. Both methods are used both in industry 

[6, p. 925] and traffic [3, p. 1], though the wireless methods quite obviously dominate the 

vehicular use. 

2.1.3 Machine Vision 

In this context, the term “Machine Vision” refers to the usage of monocular and stereo 

cameras for providing images of the environment [28, p. 1]. The data obtained by the 

cameras is usually heavily processed to extract certain distinct features. Machine vision 
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can be utilized using color [29, p. 133], shape, edges [2, p. 458] or various other pre-

defined features as reference [27, p. 25, 53, 73, 111]. Some of the approaches utilize the 

lights of the other vehicles for recognizing them and determining their behavior [30, p. 

451].  

Machine vision equipment can be harnessed also to simple tasks such as detection and 

measurement [32, p. 529]. Anyhow the full potential lies in the capability to recognize 

objects, giving opportunity to adjust behavior based on the nature of the detection.  

 

Figure 7:  An example of distance measurement and obstacle detection with a stereo 

camera [32, p. 529]. 

Figure 7 provides a visual example of camera-based measurements and detections. The 

distance measurements are based on light intensity. Detections are based on the same data 

excluding the depth information.   

Object recognition follows typically the following pattern [27, p. 460]: 

 Object’s features are detected 

 A hypothesis about the nature of the object is formed upon the features 

 The features are compared against a model in the database according to the hy-

pothesis 

 The hypothesis is either verified or discarded according to the result of the com-

parison.  
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Figure 8: Object recognition pattern [27, p. 460]. 

Figure 8 illustrates the process of object recognition. The detected features may be any of 

the ones mentioned earlier or a combination of them.  

 

Figure 9: An example of the features [27, p. 468]. 

Figure 9 provides an example of what the detected features might be. In this example the 

features are absolute or local features [27, p. 468]. Other type of features are relative 

features, as in the following figure.  
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Figure 10: Example of relative features [27, p. 473]. 

Figure 10 illustrates the concept of relative features. Instead of just reading geometrical 

properties of an object, some of the most distinctive points are linked together using their 

relations.  

By combining both relative and absolute features, more complex shapes can be con-

structed. Thus, complex models of the objects can be built before comparing then to the 

model database [27, p. 468]. Later chapters present the usage in traffic applications and 

robotics in more detail.   

  

 

 

2.2 Collision avoidance in automotive industry and rail-bound 

traffic 

Since the automotive industry has been developing collision avoidance technologies for 

decades, having a review at the automotive implementations is justified when developing 

a new system. This subchapter provides a quick look on the collision avoidance systems 

used in traffic.  
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2.2.1 Sensor-based implementations 

Most of the current sensor-based automotive collision avoidance systems are based on 

fusion of multiple sensors of different types [3, p. 1]. They may be placed all around the 

vehicle to create a 360° view or in a more centralized manner to provide redundancy by 

partial overlapping. The sensor types used in vehicles are the same as in collision avoid-

ance systems overall: optical, electromagnetic and ultrasound [3, p. 1], [17, p. 2004], [21, 

p. 196]. Since automotive collision avoidance is a matter of safety, the system cannot rely 

upon a single sensor, so multiple sensors are applied also for this reason [21, p. 663].  

Another reason for using multiple sensors simultaneously is to detect and track multiple 

objects in the same time, as in [17]. The study, among many others, describes the usage 

of infrared and radar sensors together.  The infrared sensor detects objects on a wide area, 

while the radar concentrates more on detecting objects further away with a narrow focus. 

The sensors’ areas overlap in the front-facing section, providing redundant detections 

from the direction of most destructive collisions [17, p. 2004].  

 

Figure 11: An example of sensor fusion [17, p. 2004]. 

Figure 11 illustrates the example. Radar detects the car which is driving further away, 

while the infrared sensor detects the car driving right to the sensor-equipped vehicle. The 

radar alone would not detect the latter, and the IR itself would neglect the first.  

The usage of different types of sensors allows for detection of objects of different sizes 

and types. For example electromagnetic sensors can detect smaller objects than ultra-

sound sensors [18, p. 184] and infrared sensors can measure distance also in near prox-

imity while the radars can’t. Radars and ultrasound sensors can detect transparent objects 

which the optical sensors would ignore [19, p. 344], [9, p. 2057].  

Ultrasound sensors are utilized in vehicles mainly for parking assistant systems and other 

near-proximity collision avoidance systems [3, p. 2], [18, p. 183]. Their sensing rate is 
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slower than the other two types and their range is significantly shorter than the range of 

the others. Thus they cannot be relied upon in safety-critical systems [3, p. 2].  

 

 

 

Figure 12: Honda ASV-3 equipped with multiple intelligent systems [18, p. 185]. 

Figure 12 shows typical setup of sensors for collision avoidance: millimeter-wave radar 

for long distance obstacle detection [21, p. 66-67] and a wide-range laser radar for detect-

ing obstacles on a wider area. In this system, the infrared cameras in the front bumper are 

for providing the driver a live image of the environment while driving in darkness.  

Since the aim of this work is to create a CAS for a rail-bound device, having a look at 

CAS implementations for railroad equipment appears intuitive.   

Some development work with laser scanners has been evaluated. For example [33] pre-

sents a system, where a tram is equipped with a bunch of front-facing laser scanners with 

wide FoV’s. Here the width of the FoV should cover all the curves among the way, since 

railroad curves cannot be extremely tight due to the length of the vehicles. The system 

utilizes also a “road map” for the route to be driven in order to neglect all the detections 

that would occur from objects which belong to the sides of the route [33, p. 727]. The 

same work as well as others also highlights some downpoints of the communication-

based systems; every object should be connected to the network in order to obtain a 100% 

accuracy [20, p. 1173].    

2.2.2 Intelligent Transportation Systems 

Intelligent Transportation Systems or ITS refer to systems that utilize computer control 

and communications for enhancing safety [21, p. 7]. The communications can be divided 

into two protocols: Vehicle-to-vehicle or V2V, where vehicles communicate directly to 
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each other, and Vehicle-to-infrastructure or V2I, where vehicles communicate with intel-

ligent infrastructure surrounding the operational environment [21, p. 1123], [3, p. 4], [21, 

p. 198].   

Both V2V and V2I depend heavily on wireless connections. IEEE 802.11p is a standard 

developed for ITS [21, p.23]. The standard is implemented for short-range connections. 

It utilizes licensed radio frequency 5.9 GHz [21, p. 44].   

V2V-applications are based on multiple vehicles sharing their data with each other by 

means of wireless communication. The shared data may be their position, velocity, accel-

eration and even RADAR or other sensor data, forming a more complex fusion network 

[21, p. 198], [3, p. 8]. The obtained data can be used for adjusting speed or direction in 

order to avoid a collision.  

V2I-applications are systems where vehicles share their data into the infrastructure, which 

in turn broadcasts it to other vehicles [21, p. 1123]. The infrastructure has multiple nodes 

handling the V2I communications, and these nodes share information also with each 

other, creating a large-scale network aware of the traffic situations in the area of each 

node.  

One study proposes a GSM-based information system for railroad traffic [34]. The study 

presents a concept, where the trains communicate with a Train Traffic Centre, which is 

aware of each train’s position. If two trains on the same track would be likely to collide, 

one of the trains would be stopped or its velocity would be decreased [34, p. 2]. Opera-

tionally this system resembles partially the Monorail transfer’s current system.   

2.2.3 Traffic applications for Machine Vision 

Machine Vision is rarely the only perception system applied into traffic applications. 

Camera-based vision is usually used together with a bunch of other sensors, as in [37], 

[29] and [2]. 

In [2], Machine Vision is used for extracting distinct edges from the images captured of 

the environment. The edges are then connected to form a region, which is iteration by 

iteration reduced until it resembles a rectangle [2, p. 458]. The size of the final rectangle 

determines whether the object is another vehicle or something else.  A RADAR is used 

to support the detections made by the camera and to provide depth information for form-

ing 3D model of the environment [2, p. 459].  

In [37], LiDAR and Machine Vision are used in fusion [37, p. 1154]. Machine Vision is 

used for extracting edges from the image data. This allows for tracking the scene [37, p. 

1154].  
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Figure 13: Edge detection process [37, p. 1154]. 

Figure 13 illustrates the process of extracting distinct edges from image data. Here the 

edges are detected around areas of different color while comparing to the surroundings.  

 

Figure 14: An example of Machine Vision-sensor-fusion [37, p. 1156]. 

Figure 14 presents an example of the fusion data. The white circles represent camera-

based detections, while the white stripe illustrates the laser scanner detecting the curb on 

the roadside [37, p. 1156]. As seen on the figure, the camera and the laser scanner are 

detecting different types of objects, replenishing the system’s awareness of its surround-

ings.  
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2.3 Collision avoidance in robotics 

According to the publicly released studies used as references for this work, the collision 

avoidance systems in industry are rarely entirely dependent on inter-device communica-

tions. They are most usually utilizing either wholly sensor-based systems or a fusion of 

sensors and communications instead, as in [31], where the robot provides obtained sensor 

data to a computer, which in turn makes decisions for avoiding collisions, and passes 

them back to the robot.  

2.3.1 Sensor-based robotic applications 

The most used sensors in the studied robotic collision avoidance systems are optical, ul-

trasound and electromagnetic sensors [8, p. 197], [13, p. 1], [7, p. 29]. LIDARs and 

LADARs are often utilized in mobile robots [22, p. 1], [23, p. 1669] instead of pointer-

type infrared sensors for providing a wider FoV with a smaller amount of sensors.  

The sensor data is utilized in multiple ways. One interesting approach to collision avoid-

ance is the usage of Virtual Force Fields or VFFs (also called Repulsive Virtual Force 

[24, p. 3], Potential Vector Fields [25, p. 253]). The principle of the VFFs is the follow-

ing: 

 Objects are sensed with sensors 

 The ultimate goal of the robot generates attracting force 

 All other objects create repulsing force 

 The sum of all forces is applied upon the robot virtually, leading to generation of 

new paths when necessary [26, p. 54], [31, p. 1181].  

This kind of systems are useful especially for holonomic mobile robots.  
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Figure 15: An illustration of a VFF [6, p. 840]. 

Figure 15 illustrates the basic principle of virtual force fields. The virtual force Ftot, which 

is the sum of the forces Frep and Fatt,  causes the robot to avoid the obstacle and thus avoid 

collision.  

Another intriguing approach is called “Occupancy Grids” [6, p. 855]. The method is 

based on dividing the operational environment into square-shaped grids. The presence of 

objects within these squares is detected with sensors. If an object is detected, the square 

is considered occupied and hence the area is avoided while planning a route [6, p. 855]. 

[38, p. 191-192]. 

 

Figure 16: An example of an occupancy grid [38, p. 191]. 
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Figure 16 illustrates the principle of occupancy grids. The squares marked with blue color 

are considered occupied and are avoided while planning possible future trajectories.  

  

2.3.2 Machine Vision in robot applications 

Machine vision can be implemented in robots as well as in vehicles. The related studies 

[35], [32] and [36] reveal that Machine Vision is rarely implemented as a standalone CAS 

for robotics, but instead it is used in fusion with other sensors, such as single-point laser 

distance sensors in [35, p. 275], ultrasonic sensors in [32, p. 526] and [36, p. 218].  

Instead of collision avoidance alone machine vision is more often utilized also for the 

processing purposes as in [49]. It can be used for detecting and recognizing objects, their 

colors, poses and other features. Meanwhile it can still check for possible collisions. 

 

2.3.3 Other types of collision avoidance 

Other types of collision avoidance are usually implemented for stationary manipulators 

resembling human arms instead of mobile robots. One implementation for example 

measures electrical current flowing through servo motors moving the manipulator [20, p. 

357]. If the current rises over a pre-defined threshold, the control system interprets this 

as a collision and stops the movement.  

One approach is programming the robots in a manner that they will not collide with each 

other, as in [7, p. 32]. While this may be a robust system for avoiding inter-robotic colli-

sions, it does not take collisions with other objects into account.  
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3. THE PROPOSED NEW IMPLEMENTATION FOR 

MONORAIL TRANSFER 

The new implementation was planned carefully following the requirements defined with 

the help of internal Monorail documentation and various conversations with the Monorail 

Transfer Product Manager as well as other automation engineers. This chapter describes 

the process of preliminary planning, defining the requirements, choosing appropriate 

hardware and designing and implementing their installation and designing and imple-

menting the software necessary for the CAS. 

3.1 Preliminary planning 

To get the work started it was necessary to perform some preliminary planning and choose 

some pieces of equipment. Preliminary planning was performed using the following in-

formation: 

 The robot moves up to 5 m/s 

 The braking distance is about 7 m 

 Carriers in lines may travel in both directions 

 Carriers in loops may travel only in one direction 

 The system will not depend on Wi-Fi 

 The system should be able to distinguish other carriers from other obstacles 

 The system should be able to detect objects behind a curve of the rail 

 The system should communicate with the PLC’s via Ethernet/IP 

 The system should detect other carriers from at least 10 meters 

 The system should be able to observe also the sides and the underside of the car-

rier’s path. 

The Product Manager gave some tips about appropriate sensors for this application. 

Wide-range LED scanners were to be investigated. The first was a Pepperl-Fuchs R2100, 

which is a multi-ray 2D scanner. The R2100 can perform 2D measurements [40]. How-

ever the R2100 has a range limited to 8 m for objects with 95% reflectivity [40] and the 

diameter of the light spot is 0.5 m already from distance of 4 m.  

The other proposed sensor was LEDDARTech M16, or more precisely, an evaluation kit 

consisting of a suppressed model of M16. The M16 is a multi-segment LED scanner with 

a maximum range of 100 m. The sensor has 16 segments which can be observed inde-

pendently. The sensor provides distance and amplitude data for each segment.  
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Figure 17: LEDDARTech M16 data sheet. [42] 

Figure 17 reveals other key features of the M16. The beam – the FoV – can be customized 

while ordering the sensor. The vertical FoV for the M16 is 7.5° independent of the hori-

zontal FoV. M16 has an RS-485-interface and support for MODBUS protocol.  

The segmentation of M16 inspired an idea of implementing an algorithm which reads the 

segments independently, and by combining the distance and amplitude data from the seg-

ments, it recognizes objects either as carriers or other obstacles. Initially the widest FoV 

available seemed applicable, but later drawings with Visio pointed out that the width of 

the beam is irrelevant after a certain threshold.   

The Visio drawings revealed also that the M16 should be installed facing straight to the 

direction the carrier is traveling. This led to the situation where the M16 alone would not 

be enough for detecting objects behind the curves in the rail. Thus, some auxiliary sensors 

were introduced to the plan.  
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Figure 18: Justification for the auxiliary sensors. 

Figure 18 illustrates the situation where the auxiliary sensors are useful. The black blocks 

represent Monorail carriers, the uniform red line is the rail, the yellow pattern is the M16’s 

segmented beam and the red, dashed line between the carriers is the auxiliary sensor, 

installed onto the carrier equipped with M16. As there cannot be any solid structures on 

the actual path of the carrier, a passage with the width of the carrier is always unpopulated 

of the structures. Thus the auxiliary sensor can detect obstacles also around the curve.  

The solid structures on the sides of the carrier’s path inspired the idea of capturing the 

sensor data from the M16 with some pre-defined capturing frequency during a single 

round trip among the rail’s whole length, having a rail clear of other carriers and other 

obstacles. Also the data from the absolute optical encoder would be captured, and the data 

points from the encoder and the M16 would be paired. Thus there would be data consist-

ing of the position of the carrier and the normal detections in that position. The captured 

fusion data is called “route chart”. The route chart is then used for the collision avoidance 

within normal operation. The run-time sensor data is compared to the route chart, and if 

there are exceptions, certain operations are to be triggered.  

The obstacle recognition algorithm mentioned before was planned to work as follows: 

 The system detects an exception to the route chart 

 The system checks which segments are responsible for detecting the exception 
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 The system checks the distances and their possible differences measured by the 

aforementioned segments 

 The system checks the amplitudes and their possible differences from the afore-

mentioned segments 

 The system checks the amount of the exceptional segments 

 The system checks whether the exceptional segments are either separate, adjacent 

or a combination of these.  

According to these observations, the system decides whether the exception was caused 

by another carrier, some other obstacle or a combination of both.  

 

3.2 Defining the Requirements 

The following requirements were gathered using the internal Monorail documentation 

and having conversations with the Monorail Transfer Product Manager. Some of the re-

quirements were drawn from the preliminary plans presented earlier.  

 The system shall detect objects from a distance of 10 meters 

 The system shall be able to detect objects around the corners of the rail 

 The system shall be able to stop the Carrier if an object is detected 

 The system shall be able to detect objects not only in the front-facing direction, 

but also beneath the Carrier’s path 

 The system shall detect other carriers and other objects 

 The system shall not depend on Wi-Fi in any manner 

 The communications from the System to the PLC shall be implemented using 

Ethernet/IP as the communication protocol 

 The system shall provide fresh data for each cycle of the PLC (frequency 100 Hz) 

 The system shall have enough storage capacity for storing the route chart into non-

volatile memory 

 The system shall have enough computing power for comparing the live data into 

the route chart in real time 

 The system shall withstand ambient temperatures up to 55°C. 

The requirements set some limitations for both the hardware and the software. They also 

provide a framework for designing and constructing the system.  
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3.3 Selecting the prototyping hardware 

After an intense period of going through applicable devices from various vendors, the 

following pieces of equipment were selected for prototyping this implementation: 

 Leddartech M16 LED scanner with a 24° FoV 

 Ifm O5D100 optical proximity switch, Sn 2m 

 Ifm O5D150 optical proximity switch, Sn 2m 

 Raspberry Pi 2 Model B 

 LinkSprite RS-485 shield for Raspberry Pi 

 Murr MDD 5VDC switching power supply 

 48 kOhm resistors for lowering the sensor signal before entering the RasPi 

 120 Ohm terminator resistors for the RS-485-bus.  

The M16 was chosen as it has a range which covers all the possible situations and 16 

independent segments needed for the planned prototype. The optical switches were cho-

sen according to their nominal sensing distance Sn and price.  

Raspberry Pi or RasPi was chosen for pre-processing the data before entering the PLC. 

RasPi is not qualified for industrial environments but it provides a suitable platform for 

prototyping new applications at low cost. RasPi’s maximum operation temperature is un-

known, as it is not mentioned in its datasheet [Z]. It was anyhow chosen for the prototype 

for rapid implementation. 

The RS-485 shield was needed for connecting the M16 and the RasPi without program-

ming device-level logic into the RasPi’s GPIO pins. The power supply was needed for 

the RasPi as there are no 5VDC outputs in the Monorail Carrier’s onboard control cabinet.  

Resistors were needed for two reasons; for lowering the signal level coming from the 

optical switches’ outputs prior to introducing them to the RasPi and for bus end termina-

tion in the RS-485 bus.  

3.3.1 Comparison between the microcontrollers 

Throughout the development process the usage of a RasPi in an industrial environment 

faced doubts by multiple parties. This led to some additional research work for comparing 

some of the available microcontrollers to find the most suitable candidates for this appli-

cation.  

The contestants were measured in terms of CPU power, available memory, I/O-versatil-

ity, expandability, shock resistance, programmability, price and size. Since the Collision 

Avoidance System developed here is a prototype, many of the compared controllers are 

actually development boards.  
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The following table reveals the key features of each controller obtained from their data 

sheets and vendors.  

Table 2: Comparison between the microcontrollers [43], [44], [45], [46], [47], [48]. 

 RasPi 2b Intel Joule Inico S1000 Arduino  

Uno 

NI 

sbRIO-

9651 

Nexcom 

NISE 91 

CPU: 

Cores/freq. 

[MHz] 

4 / 900 4 / 1700 1 / 55 1 / 16 2 / 667 1 / 1000 

RAM [GB] 1 4 0.008 2e-6 0.5 1 

RS-485 Via 

adapter 

N/A N/A Via 

adapter 

2*on-

board 

On-board 

I/O GPIO  GPIO 8xDI/DO, 

4xAI 

GPIO 160 

FPGA I/O 

8*DI/DO 

Expandability GPIO GPIO Modular GPIO Modular USB 

Shock Re-

sistance [g] 

N/A N/A N/A N/A N/A 20G 

Programma-

bility 

Any lan-

guage 

Any lan-

guage 

IEC 61131-

3 ST 

Arduino NI Lab-

View 

Any lan-

guage 

Size 

[mmxmmxmm] 

86*54*17 48*24*3,5 120*101*23 60*80*20 44*76*8 59*140*167 

LAN ETH 1 0 1 No 1 2 

Chassis In-

cluded 

No No Yes No No Yes 

Price [€] 39 334 300 30 2490 430 

 

In terms of processing power, Intel’s Joule wins the comparison as Table 2 shows [43]. 

In terms of I/O versatility, NI sbRIO-9651 wins the game [47]. In terms of power vs. 

price, RasPi clears the table [48]. Nexcom’s NISE 91, which is a compact, low-cost in-

dustrial PC, is the only product which had any data about vibration resistance [44]. The 

same device has also an on-board RS-485 interface, 2 LAN Ethernet ports and sufficient 

computing power, making it the only serious alternative to the RasPi.  

3.4 Designing the software 

The software running on the Raspi was implemented mostly with Node.js, utilizing a 

Modbus-serial-npm package. Java was also tried but the system would perform better 

with modular Node.js programming. C and C++ were also considered, but Node.js proved 

to be the most suitable candidate for this purpose due to the following facts: 

 Node.js includes a ready-made serial communication API which allows for coding 

the telegrams bit-by-bit 

 The program can be divided into modules which can be triggered when needed, 

sparing the scarce resources of the Raspi 
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 There are API’s by Leddartech for C and C++ but they are poorly documented 

 Node.js was the most familiar programming language.  

 

 

3.5 Setting up the prototyping environment 

The system was built up in parts since the equipment arrived in separate batches. First 

arrived the Raspi and its memory card. Raspbian “Jessie” was flashed into the SD card, 

system booted and a USB-WLAN-adapter installed. Next the programming environment 

containing of Java and Node.js was set up.  

Next arrived the RS-485 adapter for the Raspi. It was fitted directly into the GPIO pins 

on the board. Then the Raspbian was modified to allow serial communication through the 

serial port. Console login via serial was disabled, UART was enabled.  

 

Figure 19: Testing configuration. 

Figure 19 illustrates the configuration used in the following tests. On the right side the 

Evaluation Kit-version of M16 can be seen. On the left side there are the Raspi and the 

RS-485 adapter.  

The system was now tested with the Evaluation Kit-version of Leddartech M16. First 

readings were now acquired with a Node.js program.  
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Figure 20: First readings from the sensor. 

Figure 20 illustrates the obtained data. The readings are consistent, since the sensor was 

facing an object on the desk in its near proximity. Next the test was performed with the 

sensor lying approximately 0.3 meters from a wall.  

 

Figure 21: Readings from the second test. 

Figure 21 reveals the results of the second test. The far-right segment shows zero, because 

the sensor’s maximum range was configured to 4 meters, and the beam escaped because 

the wall ended.  

However, these tests only provided the data of a single detection. A quick look on the 

hardware setup revealed that the 120Ω resistors required for RS-485 were missing. The 

resistors are needed for damping signal reflections at the bus ends [19, p. 159]. After 

adding one of these in both ends of the bus and matching the length of the cables, the 

system started working properly.  

 

Figure 22: 120Ω resistor at the end of the bus. 

Figure 22 illustrates the resistor in the testing setup. The resistor was simply placed into 

the screw terminal between RS-485+ and RS-485-.  
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Now the system would allow to capture multiple frames sequentially. However the cap-

ture rate appeared quite modest. The rate was increased at the Node.js program utilizing 

an experimental npm package called ‘nanotimer.js’. Nanotimer.js allows to set timeouts 

and intervals in nanosecond-level while the standard node.js timer allows only for milli-

second-level operations.  

 

Figure 23: Speeding up the capture. 

Figure 23 reveals how the increase in the capture rate was implemented programmati-

cally. The timeout was first set to 10 milliseconds for obtaining a scanning rate of 100Hz. 

The interval between each scan cycle was experimentally iterated to 142 microseconds. 

There were attempts to calculate the correct interval time based on the baud rate and the 

structure of a standard Modbus-RTU-message, but the program would not work with the 

calculated value. The value was iterated a bit higher than the calculated value. 

Next arrived the commercial version of the M16. The system was rebuilt in order to im-

prove the connections. Terminal resistors were renewed, and the ground connection was 

implemented at the GPIO instead of the stack header and with a proper connection pin.  

 

Figure 24: Implementation with the commercial sensor. 
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Figure 24 shows the re-built system. Now the baud rate was set to 230400 baud/s and the 

polling rate at the node.js code re-iterated to 6.061750 milliseconds. Now the system 

would allow scanning with a rate of 200 Hz, if neither the M16 nor the Raspberry Pi were 

loaded with other tasks simultaneously. This leaves a sufficient marginal, since the re-

quired minimum scanning rate was 100 Hz. The requirement was set by the fact that the 

PLC’s in the Monorail’s control cabinet are programmed with a 10ms scan cycle.  

3.6 Implementing the software 

After receiving the commercial version of M16 and setting up the environment, the actual 

programming work was started. The UML diagrams representing the software modules 

are presented in the appendices. 

3.6.1 Reading the sensor data 

The first implemented module was a program for observing the data in the console in real 

time. Basically this consisted of Modbus function code FC04, read input registers, which 

returned the sensor data to be displayed on the console.  

 

Figure 25: The core function for reading live sensor data. 

Figure 25 reveals the code snippet responsible for reading the sensor and visualizing the 

values. The “readInputRegisters” of class ”client”  was a ready-made method within the 

“Modbus-serial” npm package.  

Since the baud rate and the polling frequency are high, the data stream contains pretty 

much errors even despite of the terminal resistors. The system was tested with multiple 
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types of wires and resistors, but the error rate was the same. The polling frequency and 

the baud rate were lowered, but this did not improve the situation at all. However, the 

effective data rate is much higher than the required rate, leading to the situation where the 

erroneous data can be discarded. This is attained by the command “return” if the gained 

data is “undefined”.  

3.6.2 Saving the route chart 

Next step was to save the data into non-volatile memory in order to compare it later to 

live sensor data. The captured detections form the “route chart”, which is used for ne-

glecting detections occurring from objects belonging to the sides of the Monorail carrier’s 

path.  

 

Figure 26: Saving the sensor data into non-volatile memory. 
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The function for saving the data is presented in Figure 26. Besides the data from the Led-

dartech M16, some other data from the Monorail’s control system is saved into the route 

chart, namely the absolute position of the carrier. In the snippet above the position is only 

“simulated” data coming from the loop. The data is saved into a .txt file, each row repre-

senting one scanning cycle. The rows are separated with space just to make them a bit 

more human-readable.  

3.6.3 Comparing the sensor data to the route chart 

Now that the data could be captured and saved, the next step was to implement the com-

parison. This was done by calculating the absolute difference between each value in a 

row.  

 

Figure 27: Core comparison between the live data and the route chart. 

Figure 27 shows the core of the comparison. The array M16 contains the live data of a 

single scanning row, the array data contains the data of a single row in the route chart. 

The value of i was incremented to 16, since the Leddartech M16 has 16 segments, each 

providing one value. The value at 17 was discarded at this phase since it is reserved for 

the position data.  

The amount of differing segments is saved into an array, as well as the indexes of the 

violating arrays. This information is used for recognizing the object.  

 

Figure 28: The segmentation. 

Figure 28 clarifies the aforementioned process. In the picture the yellow and the black 

rectangular objects represent the Monorail carriers. The yellow one is equipped with the 

sensors. The distance between the carriers is 10 meters. Now that there’s no curve in the 

next 10 meters and the segment violations occur in four segments equally distributed 

among the central line with similar distance data, it is safe to assume that the object is 

another carrier. 
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Figure 29: Categorizing the detected object. 

Figure 29 shows an example from the code. The distance to the following curve is over 

10 meters. The first violation arises from a segment which is closer to the central line as 

it would be if the object was a carrier. The fourth violation arises from a segment which 

is further to the right as it would be if the object was another carrier. Thus it is determined 

that the object cannot be another carrier. An event ‘nCarrier’ is emitted and the distance 

to the object is calculated using the mean value of the violator segments. The event ‘nCar-

rier’ triggers a function which sends a message to the PLC using nodepccc, telling it to 

set the target value of the velocity to 0.  

 

Figure 30: Comparing the depth information of the segments. 

The values are compared also after detecting route chart violations, as shown in Fig. 30. 

When a violation is detected, the depth information of the violator segments is compared. 

The minimum and the maximum of the values are found, counted together and divided 

with the amount of the violations. Then the individual violator segments’ depth data is 

compared into the calculated “variance”.  

Now that the data could be also compared, next step was to index the data according to 

the position sensor (Pepperl-Fuchs WCB3S, [40]). The position sensor is configured to 

update its position to the PLC in increments of 0.8mm. After consulting the Monorail 

Transfer Product Manager it was decided to index the data of M16 at every 8 mm of the 

WCS3B reading. The absolute accuracy of the M16 is ±5 cm [42], so 8mm steps are 

considerably low.  
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Now that the M16 data is saved at every 8mm, if the carrier is driving for example 800 

mm/s, there will be 100 new data rows every second. The capture rate of the program 

responsible for the capture is functioning effectively at 150 Hz. Thus there will be redun-

dancy of the M16 data. This should not appear as a problem, since the values with the 

same position index will not differ from each other significantly.  

 

3.7 Linking the RasPi and the PLC 

The connection between the PLC and the RasPi was implemented over Ethernet/IP using 

a node package called ‘nodepccc’. PCCC stands for Programmable Controller Commu-

nication Commands. The PLC’s in the Monorail Carrier’s Control Cabinet are provided 

by Rockwell. To be more precise, they belong to the Logicx5000- family in the Allen-

Bradley line. The controllers don’t support PCCC inherently; they are designed to func-

tion using the symbolic tag names. Thus the tags that were needed to be read or written 

needed to be mapped into PLC-5/SLC “files” before they could be accessed by external 

software.  

3.7.1 Nodepccc 

Nodepccc is an open-source library which is accessible via npm [50]. It allows using 

third-party software for accessing Rockwell/Allen-Bradley PLC’s. Nodepccc does not 

support using symbolic tag names, so the tags in the PLC program need to be mapped 

into PLC-5/SLC file names before accessing them with nodepccc.  

Nodepccc allows writing programs which can read and write the values in the PLC. In 

this implementation the values that are changed are the velocity of the carrier and the state 

of the collision avoidance system.  

3.7.2 Modifying the PLC program 

The Monorail Transfer is controlled by PLC’s. The PLC’s used in the prototyping version 

are manufactured by Rockwell, and they belong to the Allen-Bradley family. Program-

ming happens using Studio5000 by Rockwell. Used languages are IEC-61131-3 compli-

ant Ladder Diagram and Structured Text.  

The PLC’s used in Monorail Transfer prefer symbolic tag names instead of absolute ad-

dresses. For this reason, the tags that were needed to read or write were first mapped into 

PLC-5/SLC file numbers. After that they could be accessed with nodepccc.  

The PLC program itself did not need much modification. There are tags for the sensor-

based distance to the next carrier and for overriding the currently set target velocity. The 
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source for the sensor-based distance was changed from local inputs to the outputs of the 

Ethernet module, and the velocity override was programmed to replace its value if the set 

point from Raspi was lower than the current target velocity.  

One new tag was introduced for sensing the state of the CAS. If the PLC is unable to 

initiate a connection with the Raspi within a certain time, the state is considered to be 

faulty. If the connection is initiated, the state is OK and the device is ready for operation.  

 

3.8 Web-UI 

There were wishes from the company that a web-based graphic user interface or GUI 

would be created for the collision avoidance system. One was made using node.js, 

HTML5 and client-side Javascript. The styles were created using CSS. 

 

Figure 31: GUI running on a browser. 

Figure 31 illustrates the GUI. There are buttons for initiating the capture of the route chart, 

starting the comparison between the route chart and live values and buttons for stopping 

the operation while either saving or discarding the data.  

The bar chart illustrates the live values from the sensors. This was the core feature the 

Product Manager wanted to see in the GUI. The yellow area is for providing information 

to the user.  

Connections between the GUI and the main software were implemented using socket.io 

and express.js. A server was programmed with node.js for serving the file and spawning 

the other modules as child processes, triggered by events caused by button pushes at the 
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GUI. This increases the modularity of the software, saving the scarce resources of the 

prototyping environment but increasing the latency.   
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4. VALIDATING THE PROTOTYPE 

Unfortunately the system could not be tested to a massive extent in actual operational 

environment during the thesis work as the test loop at Cimcorp testing facility was re-

served for testing some other equipment. The communications between the Raspi and the 

PLC were verified online and the passage of the commands throughout the system from 

web-UI to the PLC’s was tested once. Position data from a running Monorail Carrier’s 

PLC was captured with a node.js program for using it in offline simulations.  

The functionality of the object recognition was tested without live connection to the 

PLC’s. However the connection is known to work thanks to the few online tests. The core 

of the object recognition lies however in the utilization of the independent segments of 

the M16. This was tested extensively without the PLC-communications.  

4.1 Capturing live values 

Capturing the live values without saving them was the first implemented module. This 

was tested in an office environment having the sensor face a wall.  

 

Figure 32: Testing the live capture. 

Figure 32 shows the console during the live capture. The values are consistent, as the 

sensor was approximately 0.7 meters from the wall and there were some items on the way 

which are visible as the lower values in the middle segments. This verifies that the sensor 

picks up reasonable values and the RasPi can interpret the Modbus messages sent by the 

sensor.  

Next an item was placed approximately 0.2 meters from the sensor.  
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Figure 33: Close-up capture. 

As Fig. 33 shows, the values become inconsistent if the object gets too close. Some of the 

values are 0 while some are at the 16-bit integer’s maximum (65535). The object causing 

these values was red. The test was re-performed using a white object of similar size.  

 

Figure 34: Testing with a white object. 

Now the values are far more consistent, as seen in Fig. 34. The color of the objects seem 

to interfere with the reflection of the infrared light. The results of this test suggest that the 

object to be detected should not be red. The results also give an idea of an appropriate 

threshold for considering the detections being at same distance if the object is close to the 

sensor.  

4.2 Saving the route chart 

After the data could be read live, the next logical step was starting to save it. This was 

tested using the same white object in the sensor’s near proximity: 
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Figure 35: Saving the route chart. 

Fig. 35 shows the console during the saving process. The “iteration count” is used at the 

prototyping phase for getting an approximation of the scanning frequency. The value 

“6066” at the index 17 is derived from a file, which includes the position values gained 

through RasPi-PLC-communications.  

Corresponding values can now be found from a file routechart.txt: 
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Figure 36: routechart.txt values. 

Fig. 36 verifies that the system is capable of saving the sensor values and the position 

data into non-volatile memory for later usage.  

 

4.3 Comparing live data to the route chart 

The comparison was tested by first saving the route chart and then introducing an object 

to the sensor’s FoV. The result of the comparison depends on the current (simulated) 

position of the carrier, the amount of the violator segments, the distance of the violations 

and the adjacency of the detections.  

 

Figure 37: Comparing the route chart to live data. 
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Figure 37 shows the console output of such testing. At scanning cycle 740 a foreign object 

was introduced to the sensor. The distance to the nearest curve (simulated) is 4838 milli-

meters. There are violations on segments 0,2,10,12,13,14 and 15, indicating that there are 

multiple objects among the way since the violations are not adjacent. Thus the detection 

is considered scattered and the PLC’s target velocity is overridden with 0. The distance 

which triggers a violation is set to 100 mm.  

  

4.4 Reacting to violations 

This chapter provides the test results from the tests concerning the correct reactions to 

certain types of violations. Acting as another carrier was particularly hard to reproduce in 

an office environment, but fortunately one occasion was captured successfully.   

4.4.1 Reacting to another carriers 

The system is expected to send a slow-down command to the PLC when another carrier 

is detected within a 10 meters range. This was simulated using a little piece of cardboard 

which was then introduced to the sensor during comparison between the route chart and 

the live data.  

 

Figure 38: Detecting another carrier. 
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Figure 38 illustrates one of the rare occurrences when this action was simulated properly. 

The snippet is from an older version of the code, so the PLC communications are not yet 

present in the picture. They were however added to the code afterwards.  

The carrier is driving a straight sector on the rail. The next curve is coming in 16434 

millimeters. The system detects an object which begins from segment with index 6 and 

ends at segment 12. There are quite broad margins for the object to be accepted as another 

carrier widthwise. However it is important to notice that all the violating detections arise 

from distances ranging 142-150 cm, as shown in figure 37. The threshold for considering 

the distance similar is set to 10 cm, so now it can be considered that the detections arise 

from similar distances and the detected object is most likely another carrier. Because the 

distance to the carrier is so low, the system will now brake with full power. If the carrier 

was for example at 9 meters, the braking would be smoother.  

4.4.2 Reacting to non-carrier objects 

Reactions to non-carrier objects were easier to simulate without the actual operational 

environment. Introducing an item to the sensor during the comparison between the route 

chart and live data was usually enough for triggering this event.  

 

Figure 39: Reacting to a non-carrier object. 

Figure 39 shows the console output in such situation. Now the sensor was covered with 

hand during scanning cycle 75. The distance to the next curve is 16434 millimeters. Now 

there are four violations arising symmetrically from the right-side segments. The detec-

tion cannot arise from another carrier, because the following 16.4 meters are only straight 

rail. The system sends a message to the PLC telling it to set the target velocity of the 

carrier to 0.   
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4.4.3 Reacting to scattered detections 

It the detections arise from non-adjacent segments, there are most likely multiple objects 

among the carrier’s way. This means that there are multiple non-carrier objects, a carrier 

and a non-carrier object or an object with bizarre morphology. However the carrier needs 

to be stopped in such situation.  

 

Figure 40: Scattered detections. 

Fig. 40 shows the console output in the case of scattered detections. The violator indexes 

are 0, 2 and 6. Once again, the PLC is commanded to stop the motion.  

4.5 Running the system via the Web-UI 

The Web-based GUI was also tested thoroughly for finding possible flaws and making 

sure that it has all the necessary functionalities. The capture, compare and both stopping 

options were initiated via the GUI and the flow of data to the PLC was verified.  

For example detecting an object during a GUI-initiated comparison was tested: 

 

Figure 41: GUI prompting the user about a detection. 
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Figure 41 shows a screen capture from the GUI after a route chart violation. The yellow 

bar contains the text that is shown to the user.  

During the testing some modifications were done. The modifications are presented in 

more detail later, but some of those are just illustrated in here. For example, guards for 

initiating inappropriate operations in certain situations were created and tested. Following 

image shows the GUI after trying to begin a comparison during an active route chart 

capture process: 

 

Figure 42: Button guards in operation. 

Figure 42 shows the prompt that will be visible to the user after trying to initiate compar-

ison before completing the capture successfully.  

Other guards were tested and found functioning as well.  

The GUI was tested with all the most common browsers in Windows environment 

(Google Chrome, Mozilla Firefox and Internet Explorer). There were no functional dif-

ferences between the browsers, only some minor differences concerning the GUI’s ap-

pearance. For example in Internet Explorer the buttons had round corners as they were 

originally written to be just original HTML buttons with round corners, not images. In 

other browsers the image-decorated buttons appear with sharp corners.  

The yellow notification bar was also tested to be functioning by introducing objects to the 

sensor while running the CAS: 
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Figure 43: GUI notifying the user about a detection. 

Figure 43 illustrates the GUI after the CAS has detected a violation to the route chart. The 

bar chart illustrates the distance data of the segments.  

4.6 Modifications after testing 

The node modules did not need any alteration as they were tested thoroughly during the 

development process. The GUI, on the other hand, was re-iterated multiple times during 

the testing process as it lacked some of the needed functions. The following bulleted list 

contains the added functionality: 

 Guards for launching operations in inappropriate situations, for example trying to 

run the collision avoidance without having a route chart in the non-volatile 

memory 

 Info labels for buttons when hovering with a mouse cursor 

 A color scheme matching with the company’s standards 

 Better icons for the buttons 

 Help button. 

The guards for the operations were implemented with Javascript. For example pushing 

the button “Capture” first and “Stop & Save” after that will set a Boolean operator’s value 

to true. When pushing the button “Compare”, the code checks the value of the operator. 

If the value is true, compare can be activated. If it’s false, compare cannot be initiated and 

the user is prompted about the situation. The operator’s value will also be true if a pre-

captured route chart can be found. 
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Figure 44: Button guards in operation. 

Figure 44 illustrates one the aforementioned guard operations. “Compare” was pressed 

prior to capturing the route chart, and no pre-existing route chart could not be found in 

the non-volatile memory.  

Other guards were implemented for pressing compare while capture is still active and 

vice versa. A help function was implemented and a button for that added.  

 

Figure 45: The Help function. 

Figure 45 shows the main view after pressing the yellow question mark in the upper-right 

corner. The alert box gives the user basic information about the usage of the monitor. 

One physical modification was also done; the RasPi and the RS-485 adapter were en-

closed into a plastic housing which can be attached to a DIN rail.  
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Figure 46: RasPi in a chassis. 

Figure 46 illustrates the chassis with RasPi inside. The chassis needed also minor modi-

fications as the RS-485 adapter’s outputs were not accessible from the opening on the top 

of the chassis. A small hole was crafted into the side of the chassis for allowing the pas-

sage of the wires. Now the RasPi can be attached into the DIN rail in the Monorail Car-

rier’s onboard Control Cabinet.  

4.7 Findings 

The performed tests revealed the characteristics of the implemented prototype. The re-

sponse time for violations could not be even measured as they were perceived virtually 

immediately. The system reacts to detections correctly according to the carrier’s own po-

sition. The system detects objects both near and far. The system is able to communicate 

with the PLC in both directions.  

One restriction was found; the object to be detected cannot be red as the sensor will return 

non-consistent values after recognizing red objects. However this should not be a problem 

since the Monorail Carrier does not have any red parts which would be visible outside. 

The GUI was found to be surprisingly resource-demanding during operation. The update 

rate of the visualization was initially set maybe a bit high.  
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5. CONCLUSIONS AND FUTURE WORK 

This thesis introduced designing and implementing a functional prototype for an autono-

mous, less Wi-Fi-dependent Collision Avoidance System for Cimcorp Monorail Transfer. 

This work also introduced the sensor technologies used in existing collision avoidance 

systems and other technologies behind the systems.  

5.1 Conclusions 

Collision Avoidance Systems can be implemented using either sensor-based technolo-

gies, communication-based technologies or any combination of these. The technology 

must be chosen individually for each implementation, for the operational environments 

and other requirements may vary significantly between implementations. Sensor fusion 

increases the reliability of a Collision Avoidance System.  

For the Cimcorp Monorail Transfer a sensor-based CAS was the optimal choice, since 

the Wi-Fi connection has better usage. Optical sensors were chosen for their lower price 

compared to electromagnetic sensors. The implemented prototype proved the suitability 

of the Leddartech M16 as the main sensor for the CAS and the functionality of the imple-

mented software. If the implementation was categorized, it would perhaps be a fusion of 

a sensor-based system and machine vision, since the system utilizes optical data for rec-

ognizing the objects it encounters.  

The strengths of the CAS are the multi-segment FoV, the precise algorithm which reacts 

to detections according to the carrier’s own position, the user-friendly GUI and the fast 

response times. The weakest part of the system is the RasPi, as its reliability in industrial 

environments is unknown.  

Overall the system meets all the requirements set before except for the ambient tempera-

ture. However, the implemented system is only a prototype which will never enter actual 

tire-manufacturing environment before some extensive refinement. Thus, the work can 

be regarded successful.  

5.2 Future work 

Possible future work could include replacing the RasPi with some industrial-grade con-

troller, such as the Nexcom Nise 91 presented before. The M16 could be covered with a 

chassis or it could be changed to a similar product from the same manufacturer with an 

included chassis. The system should also be tested in the Monorail loop extensively for 

finding possible flaws that went undetected in the tests performed in office environment. 



50 

The GUI could be implemented for example in Java as a standalone application instead 

of an interactive HTML page.  
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APPENDIX A: SEQUENCE DIAGRAM OF SAVING THE ROUTE 

CHART 

 

Figure 47: UML diagram of route chart capture. 
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APPENDIX B: SEQUENCE DIAGRAM OF ROUTE CHART COM-

PARE 

 

Figure 48: UML diagram of comparing the live data to the route chart. 
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APPENDIX C: USE CASE DIAGRAMS 

USER

PRESS "CAPTURE" IN GUI

PRESS "COMPARE" IN GUI

PRESS "STOP & SAVE" IN GUI

PRESS "ABORT & DELETE" IN GUI

 

Figure 49: Use case diagram 1: choosing the operation. 

GUI

INITIATE ROUTE CHART CAPTURE AT RASPI

INITIATE CAS AT RASPI

ABORT THE CAPTURE, DELETE THE DATA

STOP THE CAPTURE, SAVE THE DATA
 

Figure 50: GUI forwarding the user's choices to the CAS. 

CAS

COMPARE THE LIVE SENSOR DATA TO THE ROUTE CHART

<<extend>>

DETECT VIOLATIONS

<<extend>>

DETECT NO VIOLATIONS

DETECT AN ANOTHER CARRIER DETECT A FOREIGN OBJECT

<<extend>> <<extend>>

STOP AND WAIT UNTIL THE CARRIER HAS MOVED ON INITIATE EMERGENCY STOP

<<extend>> <<extend>>

 

Figure 51: Collision Avoidance System, simplified. 


