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ABSTRACT 

Ville Juven: Lightweight Event-driven Real Time Operating System for  
Resource Constrained Connectivity 
Tampere University of technology 
Master of Science Thesis, 62 pages 
March 2017 
Master’s Degree Programme in Information Technology 
Major: Embedded Systems 
Examiner: Professor Timo D. Hämäläinen, D.Sc. Teemu Laukkarinen 
 
Keywords: operating systems, low power, wireless connectivity 

Wirepas Connectivity (WPC) is a complex protocol stack for large scale mesh-based 

Internet of Things (IoT) networks. The communication units in a WPC network are 

called nodes and these are designed to be cheap, resource constrained and battery oper-

ated. In contrast, each node requires several levels of parallel and real-time processing, 

which is best provided by a Real-Time Operating System (RTOS). 

The resource constraint aspect places requirements for the RTOS design. The RTOS 

kernel should take less than 10 kB of program memory and under 1 kB of data memory. 

It must be energy efficient for battery operation and for this reason its scheduling must 

be tickless (as opposed to time-sharing). Furthermore, the WPC protocol stack requires 

deterministic real-time timings with microsecond accuracy from the RTOS. 

This thesis studies the feasibility of related RTOSs Contiki, TinyOS, µC/OS and Fre-

eRTOS for WPC use. The study shows that none of the related RTOSs are feasible 

without major modification. Contiki and TinyOS would complicate software develop-

ment. µC/OS is commercially licensed and would increase per node cost. FreeRTOS 

lacks sufficient real-time operation for WPC. Furthermore, these RTOSs are designed to 

be general purpose and thus they are wasteful with precious memory and energy re-

sources. To better deal with these challenges, a more specific approach is required. 

As a solution, this thesis presents a completely new RTOS called WPC-OS, designed 

specifically for WPC. The RTOS design targets to timing determinism and energy effi-

ciency in all its functions. The WPC-OS scheduler provides a novel and lightweight 

timetabled scheduling approach, which uses task durations to determine the next task. 

Event-driven operation is provided on top of this to achieve reactiveness to concurrent 

events. 

For evaluation and measuring WPC-OS design efficiency, it was implemented on an 

nRF52832 platform. The measurement results show that the WPC-OS kernel achieved a 

small memory footprint. With the typical WPC node configuration, it uses only 5 kB of 

program memory and 350 B of data memory. It can handle the WPC timing require-

ments with its real-time event service, which guarantees 1 us timing accuracy. It pro-

vides lightweight multitasking capability for applications, while being energy efficient. 

WPC-OS solves all design requirements WPC imposes on RTOS design, and is suitable 

for mass production. As future work, coroutine and hybrid scheduling options for WPC-

OS should be investigated. 
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Avainsanat: käyttöjärjestelmät, matalavirtaisuus, langattomat yhteydet 

Wirepas Connectivity (WPC) on kompleksinen protokollapino suuren mittaluokan 

langattomia mesh-verkkoja varten. Laitteet WPC verkossa ovat halpoja, vähäresurssisia 

ja paristokäyttöisiä. Tästä huolimatta jokainen laite vaatii tavan suorittaa useantasoista 

rinnakkaista ja reaaliaikaista laskentaa. Reaaliaikainen käyttöjärjestelmä (RTOS) 

soveltuu näiden vaatimusten täyttämiseen parhaiten. 

Muistin ja laskentatehon puute asettaa vaatimuksia RTOS:n suunnitteluun. RTOS 

ytimen tulisi viedä alle 10 kilotavua ohjelmamuistia ja alle 1 kilotavua datamuistia. Sen 

tulee olla energiatehokas, ja tästä syystä ohjelmien ajastus ei saa perustua aikajakoon. 

Näiden lisäksi WPC protokollapino vaatii RTOS ytimeltä mikrosekunnin tarkkoja 

ajoituksia, missä ei saa olla hajontaa. 

Tämä työ tutkii olemassa olevien, potentiaalisien RTOS ytimien soveltuvuutta WPC 

käyttöön. Tutkimus osoittaa että olemassaolevat ratkaisut eivät sovellu tähän  ilman 

isoja muutoksia. Contiki ja TinyOS ovat liian monimutkaisia ja täten vaikeuttaisi 

sovelluskehitystä. µC/OS on kaupallinen ratkaisu ja nostaisi laitekohtaisia hintoja. 

FreeRTOS ei tarjoa tarpeeksi tarkkoja ajastuksia WPC:lle. Nämä ytimet ovat 

suunniteltu yleiskäyttöisiksi, ja täten niiden muistin- ja energiankulutus ei ole 

optimoitua. Näiden haasteiden ratkaisemiseksi tarvitaan siis selvästi enemmän 

kohdennettu lähestymistapa. 

Ratkaisuna näihin ongelmiin tässä diplomityössä esitellään täysin uusi RTOS ydin, 

nimeltä WPC-OS. Se on suunniteltu vastaamaan nimenomaan WPC:n tarpeisiin. Sen 

suunnittelussa on painotettu ajoitusten determinismiä ja energiatehokkuutta. Se tarjoaa 

kevyen tavan ajaa ajastettuja tehtäviä, sekä reaktiivisen, tapahtumapohjaisen tavan ajaa 

rinnakkasia tehtäviä. 

Evaluointia ja mittauksia varten WPC-OS toteutettiin nRF52832 alustalle.  Mittaukset 

osoittavat että WPC-OS:n ydin käyttää muistia tehokkaasti. Tyypilliselle WPC laitteelle 

konfiguroituna se käyttää ohjelmamuistia vain 5 kilotavua ja datamuistia 350 tavua. 

WPC-OS on energiatehokas ja tarjoaa kevyen moniajoytimen. Sen reaaliaikaiset 

tapahtumat takaavat 1:n mikrosekunnin ajoitustarkkuuden. Tämä vastaa WPC:n 

ajoitusvaatimukseen. WPS-OS ratkaisee kaikki WPC:n RTOS ytimelle asettamat 

vaatimukset. Jatkokehitysideana voisi tutkia hybridiskeduloinnin toteutusta WPC-OS 

ytimeen. 
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1. INTRODUCTION 

The Internet of Things (IoT) [1] provides connectivity for devices such as consumer 

electronics, vehicles, buildings, clothing and other small appliances that are not tradi-

tionally expected to have any [40]. It means that devices can connect with each other 

over the Internet making IoT applications possible. These applications include environ-

ment monitoring, building- and home automation, water- and electricity metering, con-

trol systems (actuators) and asset management [31] to name a few. IoT applications are 

expected to make everyday life easier, for example by allowing remote electricity meter 

reading, instead of having to do it manually on site. 

Providing connectivity to an ever increasing number of devices is a challenge with cur-

rent broadband and mobile Internet technologies, which require one Internet connection 

per device. For example, the wireless mobile network (3G) requires a SIM card for each 

device [32].  

Wirepas Connectivity (WPC) [8] provides a solution where the devices form the IoT 

network by connecting directly with each other and handle the communication collabo-

ratively. Internet access to and from the WPC network is handled by an Internet gate-

way. The total cost of a device decreases due to not needing a dedicated connection for 

each device, for example by removing the cellular connection cost. The lifetime cost 

decreases by eliminating the need for maintenance labor and repeated installation. 

The embedded IoT devices in a WPC network are called nodes and the Internet gateway 

is called a sink. The nodes form multi-hop paths towards sinks and data is forwarded 

from node to node until the sink is reached. Figure 1 illustrates how the network forms. 

The data paths form a tree-like routing topology over the mesh network, where the sink 

is always the root of the tree. A node can be simultaneously connected to multiple 

neighbors and multiple sinks for robustness and load balancing. In case of node failure, 

the nodes will repair the network topology by finding alternate paths. This increases 

fault tolerance as WPC does not have single points of failure and the WPC network 

works even if multiple nodes fail. Fault tolerance and autonomous operation eliminates 

the need for human interference, which consequently decreases lifetime costs.  

The nodes communicate with each other in pre-determined time slots to share the wire-

less medium. The time slots are determined by a Time Division, Multiple Access 

(TDMA) schedule. Wireless access is performed by the WPC Contention Free Medium 

Access Control (CF-MAC) protocol.  
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Figure 1.WPC topology 

The timing critical moments are the beginnings of a TDMA slot, or slot boundary. 

Communication can only happen at these slot boundaries and only between specific 

nodes. This schedule results in low duty cycle operation and efficient spectrum usage 

communication-wise. This increases energy efficiency and removes intra-network colli-

sions. 

For the TDMA schedule to work, the communication timings must be very accurate. 

Timing inaccuracy is compensated by adding margins to slot boundaries which increase 

the communication duty cycle. Timing accuracy directly affects the margins, and more 

precise timing means the possibility to use tighter margins resulting in lower power 

consumption. As an example, 1 us timing accuracy on an nRF52832 platform [21] 

would result in 149 uA average current consumption. In contrast, 1 ms timing accuracy 

would result in 243 uA average current consumption. Converted to lifetime figures 

when using a standard AA battery (2000 mAh capacity), this would shorten the battery 

life from 19 to 11 months. Thus, the timing accuracy is crucial to WPC energy efficien-

cy. 

WPC is designed to run on resource constrained embedded platforms with low power 

consumption, limited processing power and memory for applications. A typical WPC 

node is expected to work for years with standard AA-batteries without battery changes. 

Therefore, a typical WPC node consists of a small Microcontroller Unit (MCU), a digi-

tal radio transceiver, and application sensors. These can be either a System-on-Chip 

(SoC) or discrete components. Such resource constrained hardware reduces per node 

cost, but the low processing performance and limited available memory complicates 

software design. 
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1.1 Thesis motivation and scope 

Typically, simple embedded programs are run as bare-metal. A bare-metal program 

often performs a single task, for example reading inputs and performing actions on the 

embedded hardware. The program sequence executes in a single monolithic loop and 

the hardware access is handled in a de-centralized manner. 

Non-monolithic execution and centralized hardware access become necessary when 

program complexity and the amount of concurrent tasks increase. An operating system 

can be used to achieve both. The program sequencing is handled by the operating sys-

tem in a non-monolithic manner. The operating system takes ownership of the embed-

ded hardware meaning the programs are prohibited from accessing it directly. The oper-

ating system provides centralized services for creating and running tasks, and accessing 

hardware [6]. 

A typical WPC application runs on both the nodes and a back-end system. Thus, the 

ability to run user application tasks together with WPC tasks on the nodes is essential. A 

WPC node is expected to support a multitude of user applications with different timing 

requirements, while participating in the WPC network. The application might require 

real-time operation, for example if an alarm is triggered, the alarm message must be sent 

at once. 

The strict timing requirements of the WPC protocol stack and the need to run multiple 

applications motivate the use of a Real-Time Operating System (RTOS) for WPC. An 

RTOS ensures that user applications do not interfere with WPC timings. Further, it pro-

vides shared access to hardware for the stack and the applications. 

The scope of this thesis is the RTOS design. This is illustrated in Figure 2, which pre-

sents the layered design of WPC. WPC includes the RTOS kernel, Hardware Abstrac-

tion Layers (HAL), the WPC protocol stack and an application support layer for access-

ing the stack and RTOS. The timing critical parts of the WPC stack will be explained, 

as they place requirements for the RTOS design. 

This thesis studies the following requirements WPC imposes on RTOS design: 

1. High precision real-time operation for CF-MAC timings 

2. Energy management for preserving energy 

3. Tickless operation for battery operation 

4. Optimized program and data memory footprint 

5. Ease of use for application development 

6. Multi-tasking capability 
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Figure 2.WPC software architecture 

As a result, this thesis presents an RTOS kernel called Wirepas Connectivity Operating 

System (WPC-OS). WPC-OS is designed to handle WPC timing requirements, while 

offering multitasking capability and safe access to shared hardware for user applica-

tions. The kernel is designed to be build time configurable to account for platform re-

source constraints and application needs. It provides dynamic memory and inter-process 

communication (IPC) interfaces for easy communication between the stack and the ap-

plications. It also handles system energy management. All services are offered via a 

simple system call Application Programming Interface (API) that hides the semantics of 

the operating system itself. The RTOS design, implementation and evaluation with 

measurement results are presented to demonstrate WPC-OS feasibility. 

1.2 Thesis outline 

The rest of the thesis is organized as follows. Chapter 2 describes what an operating 

system is. Common operating system components and requirements are introduced. 

Definitions for RTOS and event-driven are provided. Chapter 3 presents commonly 

referred RTOSs: Contiki, TinyOS, FreeRTOS and µC/OS-II/-III. Chapter 4 focuses on 

motivation for WPC-OS and its requirements. WPC-OS design is presented in Chapter 

5, while the implementation is in Chapter 6. Evaluation, measurements and comparison 

with Contiki is given in Chapter 7. Chapter 8 concludes this thesis. 
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2. OPERATING SYSTEMS 

This chapter explains what an operating system is, what its responsibilities are and how 

it typically handles them. An overview of feasible operating systems for connectivity on 

resource constrained embedded systems is also given. Common requirements for the 

kernel and hardware are listed. A definition is given for an RTOS. 

2.1 Operating system responsibilities 

The main purpose of an operating system is to make using a computer and running user 

applications easier. It handles multitasking, and multi-user operation on a single hard-

ware. It provides services for creating and running tasks, access to hardware, centralized 

access to files, error detection and dynamic memory management. It takes ownership of 

the hardware, so users do not have to implement hardware control in the applications. 

This is especially necessary if the hardware has multiple users; concurrent access must 

be abstracted and protected [33]. 

The operating system distributes Central Processing Unit (CPU) time to applications. 

Applications are called tasks, or processes. They run in their own context, which is a 

sandbox where a task resides. They are changed by an event called context switch, and 

the execution time is distributed by an entity called a scheduler. They do not know se-

mantics of each other, and communication between them is handled by the operating 

system. 

The operating system protects itself from illegal access and makes sure applications do 

not interfere with each-other or with the operating system itself [7]. This is achieved by 

separating memory areas so that user applications cannot access protected memory. This 

memory area separation is denoted by the terms user space and kernel space and re-

quires hardware support, for example a Memory Management Unit (MMU) [28]. If an 

illegal access from user space is detected, the MMU will raise an exception that forces a 

context switch into kernel space. The exception is then handled by the operating system 

and the task can be forcibly removed from execution.  

An operating system that takes complete ownership of hardware resources is called a 

General Purpose Operating System (GPOS), and the kernel type is a monolithic kernel. 

This is the typical kernel implementation in microcomputers, for example PCs and 

MACs with mainly human users and interactivity in mind.  
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Other common kernel types are microkernels and hybrid kernels. Microkernels allow 

applications to implement drivers, while the kernel does for example memory manage-

ment and protection. In hybrid kernels some of the hardware and drivers reside in the 

kernel space, while the rest is freely accessible to the user [5, 7]. 

The monolithic approach is not necessarily feasible when designing an operating system 

for resource constrained systems, for example embedded systems. Resource constrained 

hardware might not include a MMU for memory area protection or implementing the 

protection might increase operating system overhead too much. 

Embedded operating systems sacrifice safety for performance, which in turn compli-

cates application design as the application must ensure itself that it behaves. Typically, 

embedded system kernels are microkernels or hybrid kernels, where the hardware own-

ership is only symbolic, as the operating system does not protect itself for illegal access 

and the application code can see the same hardware as the operating system does. 

2.2 Real-Time Operating Systems 

An RTOS is “characterized by having time as a key parameter” [7] and it can be defined 

as “A real-time operating system (RTOS) is a program that schedules execution in a 

timely manner, manages system resources, and provides a consistent foundation for 

developing application code” [4]. An RTOS must therefore support timed process 

scheduling, hardware control and access to the RTOS resources. 

Access to the RTOS kernel is provided by an interface called a system call API. This is 

a collection of functions for requesting services from the RTOS. A system call must be 

handled in an atomic manner, meaning the CPU cannot be interrupted when modifying 

the kernel resources. The implementation of a system call API function can be blocking 

or non-blocking. A non-blocking system call does not halt process execution, while a 

blocking call suspends the process until a condition is met [4].  

When a process requires services from the kernel, it sets up parameters for a system 

service call, and executes a special trap instruction, or sets a kernel event to forcibly 

switch context to kernel space. The kernel then figures out what the calling process 

wants to do by inspecting the parameters, carries out the requested operation and returns 

control and the result of the operation to the user space process [7]. 

Another way of performing a system call is to block context switching for the duration 

of the system call. The calling process modifies the kernel owned or shared resources 

directly in an atomic section. This is the only safe way of performing a system call if the 

hardware does not support separation between user space and kernel space. 
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A typical RTOS kernel implements the following components [4]: 

 A scheduler: This handles distributing CPU time for processes, more specifical-

ly the amount of CPU time and when the process gets executed. 

 Tasks: These are unique and isolated entities with a specific purpose (or many) 

and the scheduler is responsible for switching between the tasks depending on 

priority and events. 

 Synchronization: In a multi-tasking environment, concurrency protection and 

synchronization is necessary; for example one task might need another task to 

finish its work before it can continue. 

 Input / Output (I/O) control: For example handling disk access, or access to 

shared hardware. 

 Memory management: Dynamic memory allocation, distribution and freeing. 

 Protection:  Memory area protection for the kernel, applications, and optionally 

virtualization if the hardware supports it. 

 Interrupt access: The kernel usually takes ownership of interrupts, meaning the 

actual interrupt vectors are owned by the operating system and the Interrupt Ser-

vice Routine (ISR) is executed by the operating system in kernel space, while 

the actual task triggered by the interrupt is deferred to user space. 

 Timing services: System time and optional calendar up-keeping. Timing and 

execution of timed events.  

 Inter-Process Communication (IPC): IPC messaging offers a way for the pro-

cesses to communicate with each other in an unambiguous manner via a mes-

sage pipe. The operating system allocates and maintains these pipes and pumps 

the messages between processes. 

Typically, real-time systems with RTOSs are closed systems, where the system can only 

run trusted programs developed by the system designer and user applications are not 

supported. Thus, the protection aspect offered by GPOSs can be neglected in RTOS 

design [7]. 

Timing-wise the implementation and requirements of a RTOS also depends on the in-

tended application and real-time systems are separated into two categories; hard-, and 

soft real-time systems. The definitions for these categories are [7]: 

 Soft real-time systems: These are systems that have a real-time requirement but 

missing deadlines occasionally is not fatal. This can include multimedia sys-

tems, digital audio players and smartphones.  

 Hard real-time systems: In these systems missing a deadline is fatal. For ex-

ample assembly plants with robots performing specific timed functions are hard 

real-time systems. Other examples include avionics, automotive, medical, mili-

tary and nuclear applications. 



8 

Hard systems require determinism from the operating system and scheduler. Hard sys-

tems are often implemented as static libraries; linked, and run tightly intertwined with 

the application code with no protection or segregation between the two.  

With soft systems the managing of real-time events can be more relaxed and not even 

directly tied to task scheduling. If the execution of a task is delayed by another task, the 

task waiting will miss the timed operation intended and attempt it later if necessary. 

Typical soft systems are commercial applications designed for consumer use [7]. 

2.2.1 Scheduler 

Real-time operating systems are different from the usual monolithic operating systems, 

especially in timing and scheduling functions. A traditional operating system typically 

targets to fairness in the scheduling, where tasks get execution time evenly. The benefit 

is that a task cannot be completely starved of CPU time. The problem is that timings are 

non-deterministic, as a higher priority task can be preempted by a lower priority task. In 

GPOSs, priorities control how much execution time is given in relation to each other 

[5]. 

Real-time operating systems implement strict priorities and the execution order is de-

terministic; if a higher priority task has something to do, it is always scheduled regard-

less of how much time it has used in the past [4]. Figure 3 illustrates how lower priority 

tasks get preempted when a higher priority task has work to do and are blocked until a 

higher priority task yields. 

Scheduling can be preemptive or non-preemptive [5]. With preemptive scheduling the 

context is forcibly switched. With non-preemptive scheduling the task being executed 

always runs to completion. In either case, the status of the blocked task has to be saved, 

and the status of the replacing task must be loaded. Context switching is always over-

head, as nothing useful from the applications point of view is happening when the oper-

ating system is saving and restoring task statuses. This is why context switching times 

should be kept at a minimum, to preserve CPU time. 

 

Figure 3.Priority-based scheduling with 3 task priorities [4] 
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Figure 4.Context switching delay after event 

In a preemptive RTOS, context switching overhead is made deterministic. Preemptive 

RTOSs have a guaranteed context switching time when a higher priority task indicates it 

has work to be done. Figure 4 illustrates how in non-preemptive kernels the context 

switch happens whenever the lower priority task decides to yield, but on preemptive 

cases the switch is done almost immediately by the kernel when an event waited by the 

higher priority task occurs. A context switch can happen, for example, when a timer 

event or an asynchronous event occurs [4]. 

A scheduler typically has three states for the tasks: Ready, blocked and running. These 

states are defined as: 

 Ready: The task is ready to run, but a higher priority task is blocking it. 

 Blocked: The task is waiting for a resource, event or has delayed itself for a dis-

crete amount of time. 

 Running: The task is the highest priority task and is running. 

Figure 5 illustrates how these states form a Finite State Machine (FSM) the scheduler 

runs and how it moves tasks from one state to another. 

Additionally, some kernels use more granular states, such as suspended, pended, and 

delayed. Pended and delayed are more detailed states of the blocked state, where pended 

means the task is waiting for a resource, and delayed means the task is waiting for a 

timer event. An event can change the state of a task, but might not induce a context 

switch as the highest priority task is unaffected. The suspended state is usually for de-

bugging purposes and not a part of the normal operation [4]. 
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Figure 5.Typical FSM in a priority based, preemptive scheduler [4] 

 

Figure 6.Task scheduling in a preemptive operating system [5] 

One example implementation of a scheduler is a round-robin scheduler. The tasks reside 

in a round-robin queue, or queues. The scheduler might have separate queues for 

blocked and ready to run tasks, but at least a ready queue is necessary. Figure 6 illus-

trates how this round-robin scheduling shuffles the tasks using the scheduler FSM prin-

ciple [5]. 

When a task is created it is appended in the ready queue. When a context switch occurs, 

the scheduler takes the first (or last depending on ordering) task from the ready queue 

and dispatches it to the CPU to run. 
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Figure 7.Task scheduling in an event-driven operating system [9] 

In a non-preemptive scheduler the same basic states exist, but moving tasks from run-

ning state to other states cannot be done immediately when a higher priority task chang-

es state. The currently running task gets to finish its work and after it yields, the sched-

uler moves the higher priority task to the running state. The downside of this approach 

is the complication of task design and distributing processing time in the most efficient 

manner becomes more difficult. 

An event-driven scheduler runs an event handler or handlers in addition to task schedul-

ing as illustrated in Figure 7 [9]. The events are generated by hardware interrupts, indi-

cating, for example, that a certain time has passed. Event handlers run from interrupt 

context provide concurrency and reactiveness; when something important happens, for 

example, data reception from radio, the event handler preempts the currently running 

task and triggers the data reading process [10, 9]. As modern processors support several 

layers of interrupt priority, the event handlers have implicit priorities and one can 

preempt the other, providing a deeper level of concurrency [11]. 
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Event notifications can be done by setting a signal in the tasks metadata structure, and 

when the scheduler is entered next time, the operating system knows an event owned by 

the task has occurred. These signals are set by the event handlers in interrupt context 

and consumed by the tasks in thread context [4]. 

Tasks themselves can also set event signals via the operating system for example by 

sending messages to other tasks or themselves. If, for example, a low priority task re-

quires long processing times, it can do it in smaller time slices. Before yielding it can 

send a message to itself to inform the scheduler that it has not finished processing yet. 

The scheduler can then re-schedule the low priority task if there is time. 

2.2.2 Tasks 

A task, or a process, is an operating system executable that runs on shared hardware 

with other tasks. Sometimes tasks or processes are called threads. Threads are spawned 

and executed inside a process, thus a process always has at least one thread where the 

program code is executed. The difference is that a process has its own memory space, 

while threads inside a process share the same memory space [7]. This thesis will use the 

term task as a synonym to all executables, such as processes and threads, as a task re-

quires at least one process, or thread to execute. 

The main components of a task include [4]: 

 A Task Control Block (TCB), or Process Control Block (PCB): this contains 

information about the task for the operating system, for example task state, con-

text, program counter and a process identifier (PID). The TCB also contains 

scheduler metadata e.g. task priority and how long the process has been running. 

 Task procedure: The sandbox where the task is executed in. 

 Stack memory: For storing temporary variables of the procedure and sub-

procedures run by the task. 

 I/O status information: This contains all the open files, drivers and I/O connec-

tions owned by the task. 

And with operating systems supporting Virtualization or a MMU: 

 Memory / virtualization information: This contains all the reserved memory 

resources owned by the task. 

Another task type is a co-routine [17] which is a cooperative, non-preemptive multitask-

ing method. Co-routines run cooperatively only with respect to each other and can be 

run from within preemptive processes. Within a process, a co-routine can only get 

scheduled when the current co-routine yields. Cooperative operation minimizes context 

switching overhead as information needed by preemptive scheduling is not saved. 
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All co-routines within a task share a single stack, minimizing data memory usage. This 

however requires special attention when designing applications, as local variables are 

not preserved when a co-routine yields. This problem can be solved by storing the nec-

essary variables in static variables. 

Tasks are usually split into several working threads with separate responsibilities but 

with some dependency to each other. The kernel also spawns itself and its sub-routines 

as a task. As the processor cannot be stopped from executing unless put to sleep, the 

operating system must implement an idle task that is run whenever no other task is re-

questing CPU time [4]. 

2.2.3 Synchronization 

Synchronization means waiting for something to happen before continuing, for example 

waiting for another task to complete something the waiting task needs, or for an event to 

occur. This event can be for example waiting for an I/O operation to complete, or for a 

timer interrupt indicating that a time has passed. Task synchronization is done by syn-

chronization objects. 

A semaphore is a synchronization object, which implements a reference count barrier 

for accessing shared resources. Semaphores have two operations, wait and signal. When 

a task performs a wait operation the reference count is decremented and the current val-

ue is tested in an atomic section. The task may proceed if the counter is greater than 0, 

otherwise the task enters the semaphores waiting queue. Signaling a semaphore incre-

ments the reference counter allowing the next task to continue. Any task can signal a 

semaphore, meaning no ownership information is stored. Semaphores also implement a 

maximum value for the reference count. A special case of a semaphore is a binary sem-

aphore that has a maximum value of 0 (or 1) [7]. 

A mutual exclusion block (mutex) is a semaphore with stored owner information. 

Mutexes can be simplified as binary semaphores with the difference that only the cur-

rent owner can unlock the mutex. A mutex ownership is acquired with the wait opera-

tion and released with the signal operation [5]. 

A message queue is a way to exchange information between tasks, but queues can also 

be used for synchronization. One task might, for example, wait for data from another 

task, and this data is exchanged via a message queue. A consumer starts waiting for data 

and enters a blocked state. The data producer is given execution priority as the other 

task is waiting for data from it. When the data producer is ready, it sends the data to the 

message queue. The operating system conveys this data while moving the consumer to 

ready state [4]. 
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2.2.4 Memory management 

An operating system handles two aspects of memory management: managing memory 

allocation for users from physical memory, and managing virtual memory or the MMU. 

The virtual memory management is usually a driver and control block for the physical 

memory. Users access the physical memory locations via virtual addresses; for example 

the application might see an address space beginning from 0x0000, while the actual 

memory is located at 0x1000. Virtual memory is not common in resource constrained 

embedded systems due to lacking hardware support. Virtualization also creates pro-

cessing overhead when accessing memory and the needed control blocks require 

memory that cannot be used to store user data [7]. 

When a task is created, the operating system allocates memory needed to store variables 

and the executable instructions. This memory is statically allocated. An operating sys-

tem also provides dynamic memory management, meaning tasks can request for extra 

memory when needed. This dynamic memory is called heap memory and its organiza-

tion can be done in several ways. Dynamic memory management creates overhead 

which must be avoided in RTOS design, but viable options exist. 

One option is to divide the heap into blocks and create a Look Up Table (LUT) contain-

ing the status of these blocks. When a task requests for N bytes of dynamic memory, the 

LUT is consulted for the best fitting continuous block of free memory. Consulting the 

LUT is iterative, meaning allocation times are non-deterministic [4]. 

The LUT based approach suffers from memory fragmentation, meaning there is no 

guarantee that the remaining free memory is continuous. This occurs when the memory 

is filled with small allocations that are not freed in the same order, resulting in gaps of 

free memory blocks between allocated blocks. The total amount of free memory no 

longer reflects the maximum usable, continuous memory block.  

Figure 8 illustrates fragmentation and the problem it presents. At first we have full utili-

zation of memory. Afterwards we start freeing memory from separate locations, result-

ing in 2 non-adjacent free memory units. The user sees the amount of free memory is 2 

units, but when trying to allocate 2 units the operation fails, as no continuous free 

memory area of this size is available. 

An alternative to the LUT based approach is to pre-allocate the heap into different sized 

memory blocks, or slabs and insert them into a linked list [13]. The maximum allocable 

amount of memory by a single request is the largest slab size, and vice versa for small 

allocations. Thus, handling arbitrarily sized allocations are its weak points. Due to stor-

ing memory slabs in a list, slab allocation is deterministic timing-wise and does not suf-

fer from fragmentation [7]. 
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Figure 8.Memory fragmentation and its problem illustrated 

2.2.5 Interrupts 

A microcontroller unit (MCU) often implements a way to interrupt the CPU from run-

ning the current program sequence. When an interrupt fires the CPU is interrupted and 

the context is automatically switched from thread context to interrupt context. Interrupts 

are designed for hardware to inform the CPU that something has happened that needs 

attention. An interrupt can be triggered by I/O events or due to a software error, for ex-

ample illegal access by user applications or an illegal condition. 

Interrupts are assigned to handlers which are programs designed to service requests 

from the interrupting hardware [5]. Modern MCUs also implement support for different 

levels of interrupt priority, by which a higher priority level interrupt can preempt and 

postpone lower priority interrupts [11]. 

As an RTOS claims ownership of the interrupting hardware, it must implement the de-

fault interrupt handlers. A way for users to inject user interrupt handlers is provided. 

User interrupts are monitored and can be, for example, disabled if they misbehave. This 

ownership and control is necessary due to RTOS timing requirements. RTOSs also de-

termine interrupt priorities if the hardware supports this. 
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3. RELATED REAL-TIME OPERATING SYSTEMS 

This chapter presents a few popular RTOSs for embedded systems. A short overview 

for each implementation and its main design principles are given. 

3.1 Contiki 

Contiki is an open-source, multi-platform, event-driven operating system with multi-

threading support, distributed under a custom BSD license. Contiki is energy efficient 

and lightweight in memory consumption. It can load and unload applications and oper-

ating system services dynamically from libraries on reference basis [13]. 

Contiki introduces protothreads, which is preemptive like cooperative multithreading 

extension on top of the event-driven kernel. A process is implemented as a protothread, 

and it is started whenever a process receives an event. Protothreads address the problem 

of implementing complex state machines on applications to provide concurrency [14]. 

Contiki tries to provide the best of two worlds by combining the light-weightiness of 

event-driven kernels, with the scalability, reliability and convenience of preemptive 

kernels. However, the implementation of protothreads still complicates application de-

sign, as applications must define yield points for the protothread library [14]. 

3.2 TinyOS 

TinyOS is an open-source, BSD licensed, event-driven RTOS. It is based on static com-

ponents that can include tasks, hardware abstractions and algorithms, to name a few. 

These components are statically mapped and connected with statically linked interfaces. 

Thus, TinyOS does not support dynamic loading, unloading or communication of pro-

cesses. Running programs is implemented as a complex network of small event han-

dlers, divided into two segments; a bottom-half, or interrupt procedure, and an upper-

half, or deferred procedure [15, 10]. 

These segments can be further defined as: 

 Synchronous: Run in thread-context and these are the upper-half of an event 

handler, or contain tasks / application code. 

 Asynchronous: These are run in interrupt-context and these are the bottom-half 

of an event handler [16]. 
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There is a strict priority relation between the segments; synchronous code can never 

preempt asynchronous code, but asynchronous code can always preempt synchronous 

code. 

TinyOS and any applications for it are implemented in a dedicated language called 

nesC. The resulting nesC code is compiled to ANSI-C and furthermore to binary code 

for the target platform. The nesC compiler optimizes unnecessary parts from the C-

code, thus TinyOS is lightweight when it comes to memory consumption. However, as 

the main drawback application developers must learn the nesC language, that might 

increase application development times and complexity [15]. 

As a preemptive multi-threading extension to TinyOS, TOSTThreads was introduced 

[10]. TOSTThreads extend the TinyOS model to provide a separate context for user 

applications. User applications are run in a lower priority context, while the TinyOS 

kernel runs in the highest context. TOSTThreads adds a bit of overhead as a wrapper 

between applications and the kernel, but application design can be done in ANSI-C 

which removes the tedious necessity of learning a new programming language [10]. 

3.3 FreeRTOS 

FreeRTOS is an open-source, GPL licenced operating system free to use for commercial 

applications. The operating system is ported to numerous platforms and in addition to 

in-house development; partners assisting with development include ST-

Microelectronics, NXP, Atmel and Silicon Laboratories to name a few [17].  

The operating system is configurable per user need; for instance it supports preemptive, 

cooperative scheduling or hybrid scheduling, a tick-less mode for low power, strict pri-

ority operation and a traditional round-robin scheduling with time slicing to name a few 

[17]. The operating system also supports non-virtualizing memory management on plat-

forms with hardware support [17]. 

FreeRTOSs primary design goals are [17]: 

 Usability: The kernel is implemented in ANSI-C code with a few simple primi-

tives implemented in assembly and the source codes are readily available. 

 Small footprint: In addition to the highly modular and configurable design, the 

kernel itself consists of only 3 source modules. 

 Robustness: Comes from the simplicity of the design. 

FreeRTOS also provides a software timer architecture that utilizes the system tick timer 

for timing. Timers can be created dynamically and time expiration is indicated with call-

backs from thread context, ensuring very deterministic operation and very high interrupt 

service availability as the Interrupt Service Routines (ISR) are kept short [17]. 
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3.4 Micro-Controller Operating Systems (µC/OS-II/-III) 

µC/OS-II is a commercial RTOS for embedded microcontrollers. It is portable, supports 

preemptive scheduling and is provided as ANSI-C source code for licenced customers. 

The operating system is developed and maintained by Micrium and supports multiple 

platforms. µC/OS-II scheduling is priority based with a maximum number of tasks each 

with a unique priority acting as task identifier. Tasks are scheduled whenever a higher 

priority task decides to yield, with no fairness implemented. µC/OS-II is statically con-

figurable; with similar services to FreeRTOS e.g. software timers [18].  

A newer version, µC/OS-III expands the older implementation by offering a ticked 

mode with round-robin scheduling, unlimited tasks, tasks with the same priority and 

dynamic configuration. Some of the advanced features include posting messages and 

signals to tasks without a dedicated message queue or signalling structure, with the op-

tion of not invoking the scheduler after posting. 

µC/OS-II/-III is also MISRA-C:1998 (Automotive) and DO178B (Avionics) compliant 

(with a few exceptions). It is also approved for use in medical and nuclear systems. 

3.5 Comparison 

Table 1 gives an overview of the features and differences of the presented implementa-

tions in Chapter 3. N/A means that the information is either not available, or does not 

apply, for example with event-driven schedulers the concept of tick-less is meaningless. 

Hybrid scheduling in this context means that the operating system supports either 

preemptive-, or event-driven scheduling or a combination of both. Static configuration 

means build-time configuration and dynamic means loading and unloading of modules 

run-time. 

Table 1.Comparison of popular embedded RTOS features 

Component Contiki TinyOS FreeRTOS µC/OS-II µC/OS-III 

Configuration Dynamic Static Static Static Dynamic 

Scheduler Event-driven Event-driven Hybrid Preemptive Preemptive 

Tick-less N/A N/A Yes N/A Yes 

MMU No No Yes Yes Yes 

License Custom BSD BSD GPL* Commercial Commercial 

Extensions 
Preemptive, 

Hybrid 
scheduling 

Preemptive 
scheduling 

N/A N/A N/A 

* Benchmarking forbidden, proprietary sources do not need to be published 
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3.6 Conclusions 

Each of the presented RTOSs is a potential alternative to WPC-OS. However, intrinsic 

drawbacks in each design motivate the development of a customized RTOS for WPC. 

Contiki and TinyOS increase software development complexity by introducing an unor-

thodox scheduling method (protothreads, TOSTThreads) or a new programming lan-

guage (nesC). µC/OS is commercially licensed and would increase product cost. The 

FreeRTOS software timers [17] utilize the relatively slow ARM System Timer (Sys-

Tick) [30] with a minimum configurable period of only 10 milliseconds [30], which is 

too long for WPC. The SysTick timer also requires the system high frequency clock to 

run, and this would increase energy consumption when the system is sleeping. 

Modification of the operating system kernels to better suit WPC needs was not consid-

ered due to unforeseeable side effects. As an example, modifying the FreeRTOS soft-

ware timer architecture could produce side effects for the operating system operation 

when timings get tighter. 
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4. MOTIVATION AND REQUIREMENTS FOR 

WPC-OS 

This chapter presents a detailed look into WPC and what requirements WPC sets on 

WPC-OS. The timing schedule followed by WPC is explained and the multitasking as-

pect is also visited. Some operating system types are ruled out and different feasible 

options are elaborated upon. The impact of hardware restrictions is also mentioned and 

the implications to operating system design from the point of view of synchronized 

connectivity. 

4.1 Wirepas Connectivity 

Wirepas Connectivity implements a low-duty cycle connectivity protocol specifically 

designed for battery operated devices and wireless connectivity between the devices. 

This low duty-cycle operation mode and wireless medium access is called Contention-

Free Medium Access Control (CF-MAC). 

The access is divided into discrete time slots, or superframes, repeated on a pre-

determined time interval, or access cycle. The superframes are repeated simultaneously 

on several frequencies by different devices. This type of time/frequency division is 

called Frequency-Time Division, Multiple Access (FTDMA). Superframe repetition and 

TDMA slots on a single frequency are illustrated by Figure 9. 

The devices in the network are called nodes and these nodes have two different roles: 

cluster heads, and cluster members. Each cluster head maintains a superframe at a given 

FTDMA slot. A cluster head owns the FTDMA slot and cluster members participate in 

the network by accessing clusters during their superframes.  

 

Figure 9.Superframes repeated every access cycle 
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Figure 10.Superframe structure 

The superframe consists of four components, or periods, illustrated by Figure 10: 

 Signaling period (CBP): This begins the superframe, and is used to propagate 

common information about the cluster head to listeners. This signaling happens 

at a precise moment, repeated every access cycle. 

 Contention Access Period (CAP): This is used for control messaging from 

cluster members to the cluster head. Contention means the time slots are not 

owned by any particular cluster member, so collisions can happen. 

 Contention Free Period (CFP): This is used for data exchanges between the 

cluster head and cluster members. Data can flow in both uplink and downlink di-

rection in CFP slots. 

 Idle / guard-period (GP): This period is optional and used to ensure compli-

ance with regulation.  

All information transactions happen inside pre-determined timeslots and the beginning 

of a slot, or slot boundary, is the timing critical moment. Within a slot one node trans-

mits (TX) information while another node (or many) is receiving (RX) and both opera-

tions are synchronized to this slot boundary. This results in low duty cycle operation 

both TX and RX wise, increasing energy efficiency. Missing the slot boundary time due 

to timing inaccuracy by either party will result in a failed transaction. 

Figure 11 presents what happens at a slot boundary from both perspectives. Timing in-

accuracy is compensated on the receiver’s end by pre- and post-boundary margins. The 

receiver is turned on before the slot boundary and is kept on after. Better timing accura-

cy means tighter margins can be used, resulting in better energy efficiency. 
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Figure 11.Slot boundary with TX and RX margins 

CAP and CFP slots are divided into two subslots. The first subslot is used for transmit-

ting information, and the second subslot is used for acknowledgement. A transmission 

is repeated until an acknowledgement is received, thus no information is lost. This 

means that if a slot boundary time is missed and the transmission fails, it is attempted 

later.  

This retry mechanism also applies to CBP slots; if the cluster heads CBP is missed, the 

cluster member will attempt again when the CBP period is repeated in the next super-

frame. Therefore, consequences of missing a timed network event are not fatal and thus 

WPC can be qualified as a soft real-time-system. Re-attempting however wastes energy 

and increases latencies, so missing deadlines consecutively is not acceptable. 

Another relevant part of the protocol is the neighbor discovery protocol and discovery 

period. During a discovery period the node is searching, or scanning for other devices 

and attempting to join, or associate with cluster heads. When other devices are found, 

the device attempts to synchronize with them by participating in a cluster heads signal-

ing- and contention access periods. The synchronization information is distributed by 

cluster heads periodically and the timings are calculated locally by cluster members 

from this information.  

The discovery period implies long time periods of processing for CF-MAC, especially 

when the device is scanning. For the synchronization to be accurate, accurate time keep-

ing and timed events are also critical for CF-MAC operation. 
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4.2 General requirements for the kernel 

The WPC stack follows in the footsteps of Wireless Sensor Networks (WSN) and thus 

many of the requirements are the same. The requirements can be generalized as follows 

in priority order [9]: 

Real-time operation: 

WPC is a time sensitive protocol, meaning all operations are strictly timed with-

in the network. WPC deals with time in microsecond accuracy, and all timing 

critical operations follow this same granularity. With the node having to option-

ally serve several timing critical interfaces, real-time operation of at least the ra-

dio part must be ensured. 

Energy management: 

As WPC is designed for battery operated devices, the operating system should 

handle energy management to achieve as low power consumption as possible. 

As synchronous digital logic consumes energy mainly when it changes states, 

energy efficiency can be achieved by shutting down unused peripherals and en-

tering deep sleep if no peripheral requires the system master clock. 

Small program and data memory footprint: 

Due to resource constraints in embedded systems, the operating system footprint 

should be as small as possible. As example hardware the Nordic Semiconductors 

nRF51822 has 256 kB of program memory and 16 kB of data memory. WPC it-

self consumes 82 kB of program memory and 7 kB of statically allocated data 

memory, reducing the available memory for WPC-OS. The scheduling method 

also impacts data memory usage. Preemptive scheduling uses a lot of data 

memory as each task is run in its own unique sandbox and thus requires its own 

stack. If the amount of tasks is high (in the order of tens to hundreds) a preemp-

tive scheduler might not be feasible, as the amount of memory required is in-

creased linearly by each task. As an example, if the system requires 10 tasks 

with 256 bytes of stack memory, a total of 2.56 kB of data memory is already 

used by the operating system. 

Multitasking capability: 

A WPC network is concurrent by design. Data is exchanged concurrently be-

tween nodes and must happen in a timely manner. The ability to run multiple 

custom applications and concurrent servicing of other wired- or wireless proto-

cols is necessary. Thus, priority based multitask scheduling, IPC messaging and 

timing mechanisms are required. 



24 

Memory management: 

Smart utilization of the limited data memory is required to handle the challenges 

of unpredictable and sporadic data exchanges between nodes and the applica-

tion. The operating system designer cannot know the nature of data memory us-

age or data transmission patterns of an application in advance, so dynamic 

memory management is required. 

Peripheral access: 

As the applications used with WPC might have the same hardware requirements 

with WPC-OS, an unambiguous access to shared hardware is required. A shared 

timer is the most common requirement, and requires centralized control. To pre-

vent the applications from interfering with operation of the stack, the operating 

system should take ownership of shared resources and handle controlling them 

for safe use. 

Modularity and hardware abstraction: 

To better utilize constrained resources on the platform, the OS should be config-

urable. Task amounts, events, memory maps etc. should be configurable per ap-

plication need. As WPC is defined as platform independent software, hardware 

abstraction is needed for portability and ease of access to hardware. The Hard-

ware Abstraction Layer (HAL) should be well defined for fast implementation 

of new platforms. 

Easy application design: 

The pressure to keep time to market short on IoT solutions is high [3], so time 

spent on application development should be kept at a minimum. A well-

documented, easy to use interface decreases application design time. 

Most existing RTOS kernels are static systems, meaning that all resources are pre-

allocated during build time, and run-time customization is not possible. This static ap-

proach offers many benefits though; reserving and freeing resources is deterministic 

timing-wise and resource allocation does not waste CPU time or energy. Static systems 

can also be more reliable, as the system resources are known in advance. This however 

requires that the operating system is configured correctly per the application needs. 

Dynamic reservation of resources offers easier application development, but as the re-

sources are implicitly limited by hardware limitations, problems can still occur if the 

system resources are overloaded. However, if a dynamic system is used correctly, it can 

be efficient in very simple applications that use a very little amount of operating system 

resources. 
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4.3 Timing requirements for the kernel 

Timing requirements are the main motivation for WPC-OS. The platform must be capa-

ble of running WPC alongside serving several asynchronous interfaces: 

 User interfaces: Buttons, Light Emitting Diodes (LED), displays, speakers 

 Serial interfaces: Bi-directional (Full-Duplex) Universal Asynchronous Re-

ceiver / Transmitter (UART), Serial Peripheral Interface (SPI). 

 Network interfaces: Such as Ethernet 

 Sensor measurements: Real-time Analog To Digital (ADC) conversion 

These interfaces require timely servicing from the system. Otherwise, user inputs, data 

from serial interfaces or Ethernet packets can be missed. 

With WPC, all communication is tightly synchronized and transmissions are expected 

only at slot boundaries. This implies the need for accurate timings and deadlines for the 

CF-MAC. To keep time management deterministic in a platform performing operations 

on multiple interfaces, using interrupts for event handling is critical. All protocol tim-

ings must be interrupt-driven and performed in the highest interrupt context. Radio 

packet reception should be indicated by the radio via interrupt for accurate packet 

timestamps. Enabling the transmitter and receiver should be done via timed events in 

interrupt context to prevent any other asynchronous event from interfering with the tim-

ing of the radio operation. 

For energy efficient operation, it must be possible for the system to sleep in the lowest 

possible sleep state with timed wake-up support. A Real-Time Clock (RTC) is capable 

of running in low power modes and waking up the system from these modes. RTC tim-

ing is done with an external 32.768 kHz crystal oscillator (XTAL). This results in a pe-

riod of 30.5 microseconds (us) per XTAL tick. For real-time events the timing error 

must be below 1 XTAL tick, and for generic system events an accuracy of ±3 XTAL 

ticks is required. These figures come from the timing requirements of the CF-MAC, 

which is tightly optimized timing-wise for energy efficiency. 

4.4 Scheduling options for WPC 

Viable scheduling options for WPC-OS are event-driven scheduling and preemptive 

scheduling. A preemptive scheduler is deterministic for the timing requirements of 

WPC, but as missing deadlines is not fatal, a non-preemptive scheduler is also viable. 

As a standalone solution WPC could also run as a simple scheduling loop, but this will 

not offer sufficient concurrency if applications using external interfaces are introduced, 

so this approach is rejected. 
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4.5 Preemptive scheduling for WPC 

Preemptive scheduling offers a seemingly seamless execution of multiple tasks on a 

shared hardware. This means the following requirements of WPC are the strong points 

of a preemptive scheduler [9]: 

 Easy application design: Application designers do not have to worry about the 

timing of the application and interfering with the stack’s operation. 

 Real-time: Priority based preemptive scheduling ensures a fast context switch to 

the stack from the application whenever the stack requires CPU time. 

 Reliability: As a lower priority task can be suspended whenever, the stack 

should never miss deadlines due to misbehaving applications. 

However, there are downsides to the preemptive scheduler for WPC: 

 Energy efficiency: Every context switch uses energy. Applications run with 

WPC are usually very simple and don’t necessarily require a fast context switch. 

 Data memory footprint: As with a preemptive scheduler every task requires its 

own software stack, the data memory consumption of the kernel can be high 

compared to the overall amount of available memory. 

4.6 Event-driven (non-preemptive) scheduling for WPC 

Due to less context switches, non-preemptive scheduling is better with energy manage-

ment. A non-preemptive scheduler needs only one software stack thus it has a smaller 

memory footprint. As a downside, application design gets harder as all tasks are run to 

completion. This means the application must handle long processing needs itself and 

must yield execution in time for the WPC stack operations to run on time.  

The application designer must measure the time the application uses in a worst case, or 

implement a complex state machine to handle long processing needs. However, measur-

ing the worst case processing time is not always feasible due to, for example, different 

platforms with different processing power. Thus, interfering with the protocol timings is 

not always avoidable [9]. 

4.7 Resource constraints for WPC 

As WPC is designed to run on simple embedded systems, the resource constraint aspect 

dominates the kernel design. Most MCUs for embedded systems implement a Reduced 

Instruction Set Computer (RISC) and most modern MCUs implement an Advanced 

RISC Machine (ARM) [29] processing unit. WPC is designed exclusively for ARM, 

which means the main differences and strong points between platforms are the program 

and data memory amounts, available peripherals and especially energy consumption. 
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These platforms are usually complete System-on-Chip (SoC) solutions including syn-

chronous and asynchronous serial ports, Analog to Digital Converters (ADC), General 

Purpose Input / Output (GPIO) blocks, Advanced Encryption Standard (AES) accelera-

tors for security, Co-processors or Peripheral Reflex Systems (PRS) for reading sensors 

without waking up the CPU, and, optionally, a wireless radio. The currently supported 

WPC platforms and their features are listed in Table 2 [21, 34-39].  

The memory amount figures place constraints on WPC-OS design. It is not feasible to 

use all available memory for the kernel implementation. The design must also take into 

account the memory needs of multiple user applications and WPC. 

Table 2.List of supported WPC platforms 

Battery operation means that energy consumption must be kept at a minimum by using 

the absolute minimum amount of resources on the MCU. As digital logic consumes 

power when changing states [2] (i.e. on a clock edge), selecting the correct running fre-

quency for the CPU is critical, and the tradeoff between completing tasks to enter sleep 

faster and consuming more power when running has to be evaluated. Automatic clock 

gating and shutting down the CPU are essential, especially if the system is running at its 

maximum frequency. To preserve energy, the system should also enter the deepest pos-

sible sleep state depending on present conditions, if it has nothing useful to do. 

Modern ARM MCUs also include rudimentary memory protection. The Cortex-M se-

ries implements a Memory Protection Unit (MPU) that separates kernel space from user 

space [11]. The more powerful Cortex-A series cores implement a MMU for full virtu-

alization needed by traditional GPOSs [28]. This provides the option of implementing 

memory protection in WPC-OS, but it is not a WPC requirement. 

MCU 
Maximum 
program 

memory (kB) 

Maximum 
data 

memory 
(kB) 

Radio AES 
Co-

processor 

Maximum 
CPU  

frequency 
(MHz) 

SiLabs 
EZR32LG 

256 32 Yes Yes Yes 48 

SiLabs EFR32 256 32 Yes Yes Yes 40 

STM32F and 
L-series 

1024 196 No Yes No 168 

Nordic Semi 
nRF51822 

256 32 Yes Yes Yes 32 

Nordic Semi 
nRF52832 

512 64 Yes Yes Yes 64 

TI CC2650 128 20 Yes Yes Yes 48 
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A summary of the requirements is described in Table 3. Only requirements relevant for 

WPC operation are covered. 

Table 3.Summary of WPC-OS requirements 

Requirement Details Target 

Real-time event 
accuracy 

The real-time event service must be accurate 
and deterministic. 

  
No other interrupt sources must interfere with 

the timings. 
 

The protocol benefits from accurate timings 
by allowing tighter margins with less missed 
transmissions, resulting in better energy effi-

ciency. 

Accuracy of below one 
XTAL tick (30.5 us) 
under all conditions 

Energy-
efficiency 

For battery operation, the operating system 
itself should be as lightweight as possible. 

Minimize cumulative CPU 
active times 

Tickless 
The system must operate on pure  

event-driven basis, with no unnecessary 
context switches or wake-ups. 

Minimize unnecessary 
wake-ups 

Optimized 
memory footprint 

The limited program and data memory re-
sources on supported WPC platforms dictate 

the available memory for the OS. 

Usages: 
Program memory < 10 kB  

Data memory < 1 kB 

Automatic  
energy  

management 

The operating system should offer a  
coherent way of handling CPU power states 

and peripheral clocks. 
 

 The optimal CPU power state must be de-
termined dynamically per each sleep period.  

 
Peripheral functionality must not be affected 

by CPU sleep states. 

Implement idle task and a  
centralized energy  

management module 

Ability to run 
multiple tasks 

At least the mandatory protocol stack tasks; 
MAC, routing, management, maintenance 

and an application interface support task are 
required. 

  
On top of this, one user application, and four 

stack support applications are required. 

Minimum amount of tasks:  
10 tasks + idle task 
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5. WPC-OS DESIGN 

This chapter presents the WPC-OS design. A look at the RTOS services and architec-

ture is given. Finally an overview of all relevant modules, including the critical HAL 

components is explained. 

5.1 Design and architecture 

The main design idea and motivation for WPC-OS was to create a simple solution to 

concurrency problems presented by platforms with multiple asynchronous interfaces. 

As the protocol stack requires timing accuracy in the microsecond domain, lengthy op-

erations run in interrupt context must be preemptible by the high priority timing ser-

vices, or by radio events. It should also be possible to split these operations into two 

parts, upper-half and bottom-half, for better utilization of CPU for the really timing crit-

ical parts. 

WPC-OS architecture is presented in Figure 12. WPC-OS is a static implementation, 

meaning the operating system cannot be configured at run-time. System resources, ex-

cluding dynamic memory, must be reserved before the scheduler is started, meaning 

dynamic loading and unloading of tasks is not supported. This is supposed to bring pre-

dictability to the system operation, as the system stays in a static formation after started. 

Hardware resource consumption can also be determined precisely at build-time, and if 

the configuration is using up more resources than possible, the system designer knows 

immediately that something is wrong. 

 

Figure 12.WPC-OS architecture 
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The WPC-OS kernel provides two fundamental timing services; real-time events usable 

only from a single task with sufficient priority, and a software timer interface that is 

usable from any task. Services are supplemented with basic dynamic memory manage-

ment, message queues for processes, energy management for power saving states and 

control, and events. All this is built on top of a cooperative, non-preemptive task sched-

uler. 

5.2 Tasks 

Tasks in WPC-OS are typical functions; they have a beginning and end. The tasks tell 

the scheduler the interval at which they require CPU time, and the worst case duration 

of the task. This worst case duration must be measured by application designers. Meas-

uring the worst case duration is difficult, if the application does iterative work or if the 

application is intended to work on platforms with different processing power. Thus, the 

measurement may include some error and this must be taken into account by adding 

margin when providing the task duration for the WPC-OS kernel. If the provided task 

duration figure is smaller than the actual duration, the timely scheduling of other tasks 

will no longer work. 

Each task is assigned a PID and given a symbolic name for debugging convenience. 

This PID is used for claiming ownership of resources by the task, and by the kernel to 

check privileges to run operating system services.  

Each task also has a static priority, with two unique priority levels: 

 Real-time: this is reserved for one task only. If the real-time task has something 

to do, no other tasks are considered. Additionally, only this task has privileges to 

access the real-time services offered by the operating system. 

 Idle-task: This is run whenever the system has nothing to do, and there is suffi-

cient time to deal with task execution turn-around delay and wake-up event han-

dling. 

Each task can be woken asynchronously by signaling the task from any synchronization 

structure. The kernel maintains these signals for scheduling purposes. 

Tasks also have a dynamic priority component, called timetable priority. This priority 

level indicates to the operating system that the task has periodic work to do, and should 

be awoken at a certain interval. Tasks themselves can attempt to change this dynamic 

priority via service call. Tasks without a timetable are asynchronous tasks that will nev-

er run unless they receive a signal from an event handler. 
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Figure 13.Task scheduling example with priority elevation by asynchronous event 

5.3 Scheduler 

The scheduler is a priority based, non-preemptive control loop with asynchronous task 

scheduling support. Multiple tasks with equal priority are also supported. Task schedul-

ing is not designed to be fair, with the exception of tasks with equal priority. With equal 

priority tasks the scheduler targets to fairness. Functionality of the scheduler and run-

ning tasks at a given time instance is described in Figure 13. It calls task entry points in 

a timed manner, with added event reactivity. 
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Task scheduling follows the shortest task first principle [7], meaning if there is time to 

execute short tasks before a higher priority task, the execution order is dynamically 

changed to perform the short task first. Tasks tell the scheduler when they want to be 

executed, and the longest possible execution time of the operation. 

With this information the scheduler compares start times and durations of all tasks and 

finds the best suiting task to be executed at any given time instant. Task priority is also 

elevated dynamically by asynchronous events, and a task signaled by such events al-

ways gets priority over pure timetabled tasks. A pure timetabled task in this context 

means a task that does not own any event handlers, and just follows a periodic timetable 

to perform work. 

The idle task is also considered a part of task scheduling; if the system has nothing use-

ful to do, all wait states are performed by the idle task. In the idle task, the system enters 

the deepest possible sleep state to preserve energy, awoken by either a timer interrupt, 

or any asynchronous task event. The idle task is scheduled if there is enough time for 

the idle task to run; that is setting up a wake-up event, exiting sleep in a safe manner 

and the turnaround delay of a new scheduling loop. 

5.4 Services 

This section describes the common RTOS services provided by WPC-OS: events, tim-

ers, message queues, hardware access via drivers and dynamic memory management.  

5.4.1 Events 

WPC-OS provides a simple and coherent event service for task synchronization. Due to 

the static nature of the OS, the maximum amount of events must be decided at build-

time but the events can be reserved and freed at run-time. When an event is reserved, a 

task will claim ownership of the event. This implicitly means that only one task can be 

waiting for an event to occur, so multi-task synchronization via this mechanism is not 

supported. 

The event mechanism is divided into two parts; waiting and signaling. Waiting is done 

in thread context and the signaling occurs from interrupts or kernel events such as mes-

sage queue push events. Waiting for an event blocks execution of a task and it enters a 

low power mode until the event is signaled, or the wait state is timed out. Two timeout 

values for polling and infinite wait are provided. Polling just returns the event status. 

Infinite wait enters a low power mode and stays there until the waited event is signaled. 

Another sub-category of an event is tied to the Task Control Block (TCB) itself. A task 

can be signaled by kernel events to notify the scheduler that the task has something to 

do. Usually kernel events are set by messages sent to the task. 
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5.4.2 Timers 

The operating system provides two timing mechanisms; timeouts and real-time events. 

The timeout mechanism is a multi-user interface for any type of timings, with limited 

accuracy. Real-time events are a single user interface with ultimate predictability and 

timing accuracy. 

Timeouts are provided by a special operating system service call API called timeouts. 

Multiple active timeouts are supported, with the same system-time instance as the event 

time. These timeouts are not directly user-accessible, and form the backbone of all 

timed operations within the system. For example, the scheduler and the idle task utilize 

this service to time the beginning of tasks correctly. The guaranteed maximum bias is 

+3 XTAL beats (91.5 us). 

The real-time timer service is reserved for the real-time task only. This is an extremely 

light-weight interface to the real-time timer. The interface provides a mechanism for 

setting a timed event with one microsecond (us) accuracy, and a dedicated wait function 

to enter a low power mode that waits specifically for this real-time event to occur. The 

event can also be tied with a callback to user space, to perform the timed operation in 

the highest possible CPU context so that no other task can interfere with the operation. 

5.4.3 Message queues 

Message queues provide messaging and synchronization between tasks. The queues 

bind the message queue itself to a task and the scheduler in an abstract manner. When a 

message queue is created, ownership is also claimed by a task. When a message is re-

ceived, it is stored in the queue structure and the task and the scheduler are notified. 

This provides the possibility of scheduling the receiving task as fast as possible to react 

to the message. The addressing of messages is done by the unique PIDs which must 

match the owner of the queue. 

5.4.4 Drivers 

The kernel itself is implemented as a microkernel, which means it does not claim own-

ership of hardware it does not require itself. The kernel itself does not implement any 

drivers, and all hardware is accessed via the kernel HAL. The kernel HAL only includes 

timer drivers, CPU power states and deep sleep control and interrupt handling. This 

segregation makes porting of heterogeneous platforms easier for WPC-OS. 

The kernel HAL drivers do not need anything from the kernel, and thus could be uti-

lized bare-metal. However, if WPC-OS is used, the necessary driver resources are re-

served by the kernel and can only be accessed via WPC-OS services. 
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5.4.5 Memory Management 

 

Figure 14.Dynamic memory management by slab allocation 

Memory management provides dynamic memory allocation and freeing services to 

tasks. Dynamic memory is implemented as fixed size slabs, inserted into a linked list 

structure during the operating system initialization. The operating system supports three 

different slab sizes each with configurable amounts and sizes that can be tweaked by 

user demand. The memory management also provides memory usage diagnostics in 

form of usage counters, allocation utilization and reservation success rates for system 

designers.  

This fixed size slab approach provides a deterministic operation time of O(1) for both 

allocating and freeing blocks. Allocating memory is a pop-front operation, while freeing 

is push-front, both just changing the linkage of the first element. In addition to being 

deterministic timing-wise, this approach does not suffer from memory fragmentation. 

Figure 14 illustrates how the dynamic memory is constructed for one slab size configu-

ration, and how allocation and freeing only affects the linkage of the first element.  

The weakness of this fixed size slab approach is handling dynamic memory needs in a 

system requiring arbitrarily sized memory blocks. The smallest amount of memory allo-

cable in a single request is always the smallest slab size, and vice-versa the largest block 

is limited to the largest slab. Regardless, the user can demand for any sized blocks, and 

in this case the best fitting block is allocated. 

Another weakness is the non-optimal utilization of memory for small allocations. This 

implies responsibility on the system designer to select the slab sizes in an optimal man-

ner. For example, WPC is a protocol with a maximum sized protocol data unit so select-

ing a slab size that corresponds well with this maximum boundary is an option. IPC 

messages might require another type of container, so offering a few slabs with this size 

is a good idea. 
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To keep the memory management simple, fast and predictable, no memory protection is 

implemented. All WPC supported platforms implement a MPU, but implementing pro-

tection would increase memory usage and processing overheads with little benefit. 

5.5 Interrupts 

Interrupt handling in ARM MCUs is provided by its Nested Vectored Interrupt Control-

ler (NVIC) [43]. It supports up to 240 external interrupt sources and 256 different pri-

ority levels [43]. NVIC also supports preempting lower priority interrupts by higher 

priority interrupts. This mechanism is utilized in WPC-OS design by prioritizing WPC 

related exceptions, such as system timer events. 

Interrupt vectors are provided for NVIC as a vector table. This contains addresses for 

the interrupt handlers. When an exception occurs, the NVIC automatically saves the 

current CPU state, and the program execution jumps to the address provided in the vec-

tor table. 

The WPC-OS kernel does not take ownership of any interrupt vectors other than the 

system timer interrupts. However, the kernel sets up and maintains the NVIC priorities 

in such a manner that the kernel timing services are always the highest priority interrupt 

sources in the system. The global interrupt enable flag is also accessed via the kernel, 

with a reference counter keeping track of atomic sections. 
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6. WPC-OS IMPLEMENTATION 

This chapter presents the implementation details of WPC-OS. Only the relevant parts 

will be presented. The timer HAL is considered a critical part for the RTOS kernel and 

thus is presented as well. 

6.1 Programming language and compiler 

The kernel, kernel HAL and all WPC-OS services are implemented in the C-language, 

ANSI C99 [19] dialect with some GNU extensions. This is compiled with the GNU C 

(GCC) [20] compiler for ARM target, while the platform used for this thesis is the Nor-

dic Semiconductor nRF52832 SoC [21], with a Cortex-M4 ARM CPU [42]. 

6.2 Kernel 

The kernel manages tasks, their statuses, durations and priorities. The kernel initializes 

all operating system modules, offers a way to create tasks and handles the current task. 

The operating system services gain access to TCB information via the kernel. 

6.2.1 Tasks 

Program listing 1 introduces the TCB for the kernel. The TCB contains task priority, 

status, PID, the execution function and timing information for the scheduler. The timing 

information is in microseconds.  

The task start time is maintained by the scheduler. This is the next execution start time 

for the task. The interval value is provided when the task is created, and the scheduler 

attempts to provide this timing for the application. Providing the interval information is 

not necessary, if the task does not set the timetable priority bit. Clearing this bit means 

the task is purely asynchronous and thus does not require timed execution. 

The tasks worst case duration must be provided regardless of task type, so that the 

scheduler knows when it is safe to execute the task. Measuring this can be done in sev-

eral ways. One way is to use the system timer to obtain timestamps at task entry and 

exit, and subtract. Another way is to indicate task entry and exit with GPIO pins and 

measure the duration with, for example, an oscilloscope. The measurement might con-

tain some error and thus some margin must be added to the measured duration. If the 

provided maximum duration figure is too short, the timed execution of other user tasks 

might not work. If it is too long, the tasks execution might get skipped unnecessarily. 



37 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

typedef struct 
{ 
    const char *    task_name;        //< Symbolic name of task 
    os_prio_e       priority;         //< Priority of task 
    volatile union 
    { 
        struct 
        { 
            uint8_t skip     : 6;     //< Task skipped counter 
            uint8_t signaled : 1;     //< Task signaled flag 
            uint8_t timeout  : 1;     //< Task timed out flag 
        }; 
        uint8_t     status;           //< Task status register 
    }; 
    os_thread_id_t  id;               //< PID of task 
    uint32_t        (*execute)(void); //< Task thread of execution 
    uint32_t        start;            //< Task start time in system time 
    uint32_t        interval;         //< Task start interval 
    uint32_t        duration;         //< Task worst case duration 
} os_task_t; 

 

Program 1. Task Control Block (TCB) 

A thread id, or PID is defined as: 

typedef uint16_t            os_thread_id_t;        (1) 
 

In theory, the system supports 65535 tasks. In practice, this amount is limited at build 

time to the number of tasks required for each target. The kernel maintains a LUT of all 

processes, and this PID is the index in the LUT where the tasks TCB can be found. 

Program listing 2 declares task priorities, and the timetable flag. Priorities are inversed, 

meaning lower number means higher priority. Consequently, a task with the timetable 

flag set is always of lower priority to a task that is purely asynchronous. The real-time 

priority is reserved for one task only; in the case of WPC the CF-MAC reserves this 

priority level. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

typedef enum 
{ 
    /** Task has a timetable */ 
    OS_PRIO_TIMETABLE   = 0b00000001, 
    /** Highest task priority */ 
    OS_PRIO_REAL_TIME   = 0b00000010, 
    OS_PRIO_HIGH        = 0b00000100, 
    OS_PRIO_NORMAL      = 0b00000110, 
    /** Lowest task priority */ 
    OS_PRIO_LOW         = 0b00001000, 
    /** Reserved for OS idle task */ 
    OS_PRIO_IDLE        = (0xFF & ~(OS_PRIO_TIMETABLE)) 
} os_prio_e; 

 

Program 2. Task priorities 
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6.2.2 Scheduler 

The scheduler is started with a call to Os_schedulerStart( ). This function never returns 

and is never re-entered. All tasks, including the idle task are executed from within this 

context. 

The scheduling decision is done after a task has completed, and is done in two parts. 

The first part tries to find the best fitting task for the current time slice. The task start 

time and duration are used for this evaluation. Timetabled tasks start times are updated 

automatically, while asynchronous tasks are scheduled as soon as possible. Task priori-

ties affect this decision, and if two tasks with different priority have work to do, the 

higher priority task is always scheduled first. Tasks with equal priority have a task 

skipped counter, and the task that has been skipped more gets execution priority for 

fairness. 

The second part evaluates whether there is time to run the idle task before the current 

task execution. If there is time, the scheduled task is replaced by the idle task. Calculat-

ing the idle period length is easy: 

 𝑇𝑖𝑑𝑙𝑒𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑇𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡 − 𝑇𝑛𝑜𝑤 ,             (2) 

where 𝑇𝑖𝑑𝑙𝑒𝑝𝑒𝑟𝑖𝑜𝑑 is the idle period duration, 𝑇𝑡𝑎𝑠𝑘𝑠𝑡𝑎𝑟𝑡 is the current tasks start time and 

𝑇𝑛𝑜𝑤 is the current system timestamp. Idle period is scheduled if the idle period duration 

is less than idle period turnaround time. The turnaround time includes the idle task turn-

around itself, plus the scheduling of a new task. A new scheduling decision must be 

made as the idle period can be interrupted by an asynchronous event for a higher priori-

ty task. 

6.2.3 Events 

Program listing 3 declares the event structure for the kernel. For users only a handle is 

declared, which points to the kernel space event. Events can be allocated and destroyed 

while the operating system is running. The allocation ties ownership of the event and 

resets the event signal, returning a handle to the event. Afterwards the event can only be 

accessed via a system call giving the handle as a parameter. 

1 
2 
3 
4 
5 
6 

typedef struct 
{ 
    os_thread_id_t  thread_id; //< Owner of event 
    volatile bool   signaled;  //< Status of event 
    uint8_t         unused;    //< For EABI alignment 
} os_event_t; 

 

Program 3. Event declaration 
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Events can be used to synchronize tasks to asynchronous events from hardware, and 

implementing energy saving states. The usual use case is waiting for e.g. a radio packet 

reception to complete. The task enters a wait state and the radio packet handler interrupt 

sets the event when a packet is received. Also, due to the synchronous nature of WPC 

there must be a way to cancel the wait state when data is no longer expected. 

Waiting for an event is done via system call: 

bool Os_waitEvent(os_event_handle_t handle, uint32_t timeout)      (3) 
 

Where handle points to the event and timeout is the time to wait for the event to occur 

in microseconds. The wait state can be of infinite length, which means the system waits 

forever for the event to occur, or zero-length which means the event status is returned 

immediately. If a timeout is requested, the kernel reserves a timeout from the kernels 

timeout timer pool. The functionality of this timeout mechanism is explained later. 

When waiting for an event and if the event has not been signaled, the system enters a 

low power mode where it can only be woken up by interrupt. This interrupt can either 

be the event itself, some other event or in case a timeout for this wait state is needed, the 

kernels timeout service ending the wait state. The function re-enters the low power 

mode if the wake-up was caused by an unrelated event. 

The idle task abuses the event mechanism by waiting for a special idle task event while 

giving the idle task duration as the timeout. The idle task event is signaled by all events, 

allowing preemption of the idle task if something important happens, while ensuring the 

idle task is exited by timeout when the idle period is over. 

6.3 Timers 

The operating system timers are split into two services, one for alarm-type signaling 

called timeouts and one for executing real-time events in the highest priority interrupt 

context. The implementation is split into two layers; the kernel system call layer and the 

platform dependent timer HAL. The kernel layer is a light abstraction used only to pro-

vide safe concurrent access to the shared hardware and determining permissions when 

using the real-time timer interface. 

6.3.1 Timer HAL 

The timer HAL is called rtimer, and requires a minimum of two low frequency Real-

Time-Clock (RTC) compare match channels and a high frequency general purpose tim-

er (GPTIMER) with one compare match channel. The RTC channels are used for low 

power timings with 30.5 us (one XTAL tick) accuracy, while the GPTIMER channel is 

used to achieve timings with microsecond accuracy. The components of rtimer are: 
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Local system timekeeping with microsecond accuracy 

The system time is maintained by the RTC and a high frequency timer in full 32-

bit timestamp format, where one tick corresponds to one microsecond. The RTC 

maintains the actual system time, while the high frequency timer is used only 

when necessary to achieve the full resolution. The semantics of system time up 

keeping are entirely platform dependent and will not be elaborated here further. 

Timeout / alarm service for low priority, low timing accuracy events 

This provides access to one RTC compare match channel. A callback must be 

registered to the HAL module before usage. This is to ensure maximum perfor-

mance as the callback does not have to be dynamically set and released for each 

event. When a timeout is requested it sets a compare match event relative to the 

current system time. The compare match interrupt invokes the callback notifying 

the client that this time has passed. As the timeout mechanism utilizes RTC on-

ly, the resolution is one RTC tick (30.5 us). 

Real-time service for high priority, high timing accuracy events  

This mechanism reserves one RTC and one GPTIMER compare match channel 

to achieve the best possible accuracy while maintaining low power operation. 

The event time is given in absolute system time format, requiring that the user 

obtains a system timestamp and calculates the offset beforehand. 

 

When setting a real-time event, the service calculates a dual stage timing mech-

anism using both RTC and the GPTIMER. A RTC compare match interrupt is 

set to the event time minus a GPTIMER pre-margin. The RTC interrupt then 

synchronizes to the system time and sets a GPTIMER compare match event to 

happen precisely when the user has requested it. The GPTIMER pre-margin is 

entirely system dependent and has to take into account system wake-up delays 

and the need to synchronize to RTC time after the wake-up. If the requested time 

is closer than the GPTIMER margin, the RTC part is skipped. 

 

This service also requires that a callback is set before usage. The user callback is 

invoked from the GPTIMER interrupt which is always the highest priority inter-

rupt in the system, ensuring absolute predictability and accuracy. This is later on 

tested and both aspects are proven. 

6.3.2 Timeouts 

Program listing 4 declares the private and public interfaces of OS timeouts for the ker-

nel and user respectively. 
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The timeout service handles concurrent access to the system timer hardware so that 

multiple users can set timeouts, even with the same time. The timeout service provides a 

parameter structure that is entirely user defined, and these parameters are then passed 

back to the service caller when the time has passed.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

// Public service call parameter structure 
typedef struct 
{ 
    os_timeout_cb_f cb;      //< Mandatory user callback for timeout 
    void *          p1;      //< Optional parameter passed to callback 
    uint32_t        p2;      //< Optional parameter passed to callback 
    uint32_t        timeout; //< Timeout time in microseconds 
} os_timeout_param_t; 
 
// Private declaration of timeouts 
typedef struct 
{ 
    os_thread_id_t          owner;     //< Owner of timeout 
    uint8_t                 padd[2];   //< Mandatory EABI padding 
    os_timeout_param_t *    svc_param; //< Parameters for timeout 
    rtimer_timeout_t        time;      //< Timeout in RTimer format 
} os_timeout_t; 

 

Program 4. Timeout service public and private interface 

The only mandatory parameter is the callback, defined as:  

typedef void(*os_timeout_cb_f)(void * p1, uint32_t p2)            (4) 
 

where p1 and p2 are the parameters given in the parameter structure. 

When a timeout is registered, the kernel sets the earliest timeout to the timer HAL com-

pare channel. When the ISR is triggered all clients with this timeout value are notified 

via the callback, the resources are freed, and a new timeout is set to the timer HAL. 

Timeouts can be registered and aborted dynamically, and a task can have multiple 

timeouts reserved. 

6.3.3 Real-time service 

The kernel part of the real-time service is a very lightweight abstraction for the real-time 

event HAL service. The kernel part is used for claiming ownership of the HAL block, 

and checking task privileges when trying to access the real-time event service. 

User set a real-time event by calling:  

bool Os_setRtEvent(os_rtevt_cb_f user_callback, uint32_t timestamp)       (5) 
 

Where user_callback is an optional callback invoked when the event time occurs, and 

timestamp is the time of the event as an absolute system timestamp. 
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If no callback is required, users can poll for the event, or wait for the event to occur. 

This wait state enters a low power mode and blocks task execution until the event has 

passed. This wait state cannot be timed out, as reserving a timeout generates unneces-

sary overhead. 

6.4 Energy management 

The system energy management is handled by the kernel and kernel HAL by keeping 

record of reserved resources and determining the optimal low power mode when a sys-

tem sleep period is requested. Keeping record of hardware resource utilization is neces-

sary to prevent the system from entering certain sleep states where the High Frequency 

Clock (HFCLK) is disabled. All peripherals in the HFCLK domain need this clock in 

order to work, and entering the deepest sleep state automatically disables this clock 

source to preserve energy [11]. 

The bookkeeping part is done with a LUT keeping reference count for all the supported 

hardware peripherals. Users can request activation or de-activation of peripherals and 

each request modifies the reference count and controls the peripherals clock according-

ly. When a low power mode is requested, the reference counters are used to determine 

the lowest possible sleep state and if the HFCLK can be disabled. 

When requesting operations on a certain peripheral it is accessed by a symbolic name 

defined in the public interface of the energy management module. To speed optimize 

the access, this symbolic name is also the reference count LUT index. Users can also 

explicitly disable the deep sleep states on a client basis by setting values in a bitmask 

inside the energy management module itself. If any client bit is set, entering the deepest 

possible sleep state is prohibited. 

How the energy management is actually implemented is entirely platform dependent, so 

the operating system kernel itself does not implement any peripheral control or how the 

optimal power states are determined. However, the kernel is in full control of deciding 

when the system enters sleep and which events can wake the system up. 

6.5 Message queues 

Program listing 5 introduces the private mailbox of a message queue for the kernel. The 

message queues are implemented as a single linked list, with ownership information. 

Not all tasks are required to have a message queue, and each queue must be allocated by 

tasks if they want to receive messages. The owner information is used to notify the 

owner of the queue of a received message by the kernel. The scheduler is also notified, 

in case the system is running idle task to schedule the receiving task immediately. 
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// Private container for message queues 
typedef struct 
{ 
    sl_list_head_t      queue;   //< The queue mechanism (linked list) 
    os_thread_id_t      owner;   //< Owner of the queue 
    uint8_t             padd[2]; //< Padding for EABI alignment 
} os_msg_queue_t; 
 
// Declaration of a mailbox handle 
typedef void *          os_msg_queue_handle_t; 
 
// Declaration of os_msg_t 
typedef sl_list_t       os_msg_t; 
 
// Declaration of an example message envelope, that must inherit os_msg_t 
typedef struct 
{ 
    os_msg_t            header;  //< Inherited header 
    uint8_t             id;      //< Message identifier 
    uint8_t             padd[3]; //< For EABI alignment 
    void *              msg;     //< Message content 
} os_example_message_t; 
 
// Example of a commonly agreed mailbox name for a target application 
#define PID_APP         app_queue 
 
// Defined as weak, if application does not implement a queue 
os_msg_queue_handle_t   app_queue __attribute((weak)); 

 

Program 5. Message queue private mailbox, and public declaration 

When sending messages the sender must allocate memory for the message and know the 

mailbox name of the target. The mailbox names are globally pre-assigned for different 

layers and exposed via a layer of abstraction. Program listing 5 presents an example 

implementation for a mailbox name, and a prototype envelope. This global declaration 

of mailbox names gives the benefit that a message can be delivered directly to the mail-

box, and the operating system does not have to implement a procedure to dispatch mes-

sages.  

Sending and receiving are both O(1) time operations [12]; sending is a push back opera-

tion, while receiving is pop front, both of which just update list linkage. This also en-

sures that the messages are received in order. Other supported operations include flush-

ing a queue, which removes all elements, and waiting which is a type of synchroniza-

tion. Performing a wait operation on a queue blocks the task and enters a low power 

state, until a message is received or the operation is timed out. 
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6.6 Interrupt priorities 

Determining interrupt priorities is necessary to ensure that the most critical tasks will 

always get execution priority and will never be preempted, unless a higher priority task 

needs servicing. The highest priority interrupt source must always be the real-time event 

service. Other critical sources might be serial interfaces, or edge detection on GPIO pins 

for sensor state monitoring e.g. when new data is ready. 

Table 4 presents an example configuration of interrupt priority levels on a Cortex-M4 

platform. Priority levels are inverted, meaning lower number means higher priority. 

Table 4.Example of NVIC interrupt priorities 

Task 
Interrupt 
source 

Priority level 

Real-time event execution High frequency timer 0 

Real-time event pre-trigger Real-Time Clock (RTC) 0 

Timeout handling Real-Time Clock (RTC) 1 

Clock source ready interrupt Energy management 2 

USART interrupts Asynchronous serial interface 2 

SPI interrupts Synchronous serial interface 2 

GPIO edge detect Sensor data ready pins etc. 3 

 

6.7 System calls 

Table 5 presents the task control API and Table 6 presents the system service call API 

functions. Function parameters are omitted from the declarations. Relevant parameters 

are mentioned in the description field. 
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Table 5.Task control and kernel internal service calls 

Function name Description 

void 
Os_schedulerStart() 

Start the system scheduler. Function does not return. 
New tasks cannot be introduced once the scheduler is 
started. 

os_thread_id_t 
Os_createTask() 

Create a new task. 

bool 
Os_updateTaskPriority() 

Attempt to update task priority. Returns false if fails. 

bool 
Os_updateTaskDuration() 

Attempt to update task duration information for the 
scheduler. Returns false if fails. 

bool 
Os_updateTaskStart() 

Attempt to update task start time in system internal 
timestamp for the scheduler. Returns false if fails. 

os_task_t * 
Os_findTask 

Find a task assigned with a PID. Kernel internal system 
call. 

void  
Os_signalTaskTimeout() 

Signal task of timeout. Kernel internal system call. 

void 
Os_signalTaskWakeup() 

Signal task of event that moves it to ready state. Kernel 
internal system call. 

void 
Os_clearStatus() 

Clears the tasks status field, timeout and wakeup. Ker-
nel internal system call. 

void  
Os_schedulerNotifyEvent() 

Notify the scheduler of an event. Kernel internal system 
call. 

os_task_t *  
Os_createIdleTask 

Spawn the idle task. Kernel internal system call. 

os_dsr_handle_t 
Os_addDsr 

Add a deferred service routine to the scheduler. Kernel 
internal system call. 

void 
Os_removeDsr() 

Remove deferred service routine from the scheduler. 
Kernel internal system call. 
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Table 6.Operating system service calls 

Function name Description 

void 
Em_requestPeripheralActive() 

Request peripheral activation from energy manage-
ment. 
Parameter name determines which block is activated. 

void 
Em_requestPeripheralDeactive() 

Request peripheral de-activation from energy manage-
ment. 
Parameter name determines which block is de-
activated. 

uint32_t 
RTimer_getUs() 

Request system microsecond timestamp. 
The value returned is the entry time for function. 

bool 
Os_setRtEvent() 

Setup a real-time event. Event time in system time and 
optional callback are required. Returns false if operation 
fails. 

void 
Os_waitRtEvent() 

Wait until a previously set real-time event occurs. Re-
turns immediately if real-time event not allocated. Sys-
tem enters a low power mode for the wait duration. 

os_timeout_handle_t 
Os_createTimeout() 

Create an alarm timeout. Mandatory timeout value re-
quired. Timeout is calculated from current system time 
at function entry. Returns handle to event. 

void 
Os_abortTimeout() 

Abort a timeout. Requires handle to existing timeout. 
Behaves as if the service call has succeeded if timeout 
has passed or resource is abandoned. 

os_event_handle_t 
Os_createEvent() 

Create event. Handle to event is returned and event 
must be accessed via handle. 

void  
Os_destroyEvent() 

Destroy event (frees up resource for others). 

bool 
Os_waitEvent() 

Wait for an event to be signaled. Mandatory timeout 
parameter, which can be used to poll signal or wait for-
ever. 

void 
Os_signalEvent() 

Signal an event. Called for example from interrupt han-
dlers. 

void * 
Os_memAlloc() 

Allocate n bytes of dynamic memory. 

void 
Os_memFree() 

Free allocated memory. 

os_msg_queue_handle_t 
Os_msgCreateQueue() 

Create a message queue. Returns handle to queue or 
NULL if resource cannot be allocated. 

void  
Os_msgFlushQueue() 

Flushes a message queue by freeing each element. 

bool  
Os_msgSend() 

Send message to queue. Requires that memory for 
message has been pre-allocated. Returns false if re-
source (the queue) does not exist. 

os_msg_t *  
Os_msgReceive() 

Fetch a single message from a message queue. Re-
turns NULL if the queue does not exist. 

bool 
Os_msgQueueWait() 

Wait until a queue is signaled (a new message is re-
ceived). Blocks execution and enters low power mode. 
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6.8 List of files and directories 

Table 7 presents files and folders that implement WPC-OS. Only the relevant HAL 

parts are listed here. 

Table 7.List of files and folders of WPC-OS implementation 

File Description 

/mcu/ Root directory for HAL files 

/mcu/interrupt.h Interrupt handling declarations 

/mcu/hal_api/ Root directory for HAL API 

/mcu/hal_api/rtimer.h System timer HAL declarations 

/mcu/hal_api/energy_management.h Energy management HAL declarations 

/mcu/nrf52/rtimer.c System timer implementation for nRF52 

/mcu/nrf52/energy_management.c 
Energy management implementation for 
nRF52 

/mcu/nrf52/interrupt.c Interrupt handling implementation 

/mcu/nrf52/rtimer/rtimer.c System timer implementation for nRF52 

/os/ Root directory for the WPC-OS kernel 

/os/os.h WPC-OS public service call API declarations 

/os/events.h Event API declarations 

/os/events.c Event API implementation 

/os/interrupt.h Deferred service routine API declarations 

/os/interrupt.c Deferred service routine API implementation 

/os/kernel.h Kernel public API declarations 

/os/kernel.c Kernel API implementation 

/os/mem.h Dynamic memory API declarations 

/os/mem.c Dynamic memory API implementation 

/os/msg.h IPC message API declarations 

/os/msg.c IPC message API implementation 

/os/os_private.h Kernel private API declarations 

/os/os_rtevent.h Real-time event API declarations 

/os/os_rtevent.c Real-time event API implementation 

/os/os_scheduler.h Scheduler public API declarations 

/os/os_scheduler.c Scheduler implementation 

/os/timeout.h Timeout API declarations 

/os/timeout.c Timeout API implementation 

/util/ Root directory for generic utilities 

/util/sl_list.h Single linked list API declarations 

/util/sl_list.c Single linked list API implementation 
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7. EVALUATION AND MEASUREMENTS 

In this chapter WPC-OS functionality is measured and the results are evaluated against 

the requirements in Table 3. The tests include simple feature verification tests and final-

ly running the full WPC stack with an application. 

7.1 Measurement setup 

Measurements are performed on an nRF52832 PCA10040 Development Kit-board con-

nected to a Saleae Logic16 [22] logic analyzer with GPIOs. Figure 15 shows the basic 

output of the logic analyzers window. The measured pins are stacked on top of each 

other and each measurement pin is given a name describing what phenomenon it is 

measuring. This setup is used to measure timings, MCU activity, context switch delays 

and task execution. The software also supports exporting csv-formatted data that will be 

analyzed statistically. 

 

Figure 15.Measuring instrument screen 
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7.2 Real-time events 

Measuring real-time event accuracy and predictability will prove that WPC-OS provides 

a fully deterministic and microsecond accurate timing mechanism with its real-time 

event service. Timing characteristics will be measured with a 1ms, 10ms and 100ms 

interval and the results analyzed statistically. The interesting measurement points are the 

0  1 transition times of the first channel, named TX_PIN. 

The statistical analysis results are in Table 8, where E(X) is the expected value of event 

interval, N is the number of samples obtained, AVG(X) is the measured average, 

VAR(X) is the variance and DEV(X) is the standard deviation over N samples. The 

most interesting numbers however are the MIN(X) and MAX(X) numbers showing that 

the timings are glitch free, and AVG(X) which indicates a positive bias in the timings 

with longer periods. This bias is due to a constant DC-bias and a temperature coefficient 

in the external 32.768 kHz crystals output frequency [23]. 

Table 8.Real-time event timing statistics 

Predictability and consistent accuracy is ensured by running the real-time event task in 

the highest priority interrupt context, meaning all other tasks and interrupts will be 

preempted and no other operation can interfere with this timing. 

7.3 Energy efficiency and energy management 

Proving energy efficiency is difficult without a reference, but some statistics from the 

system can be gathered and cross referencing the statistics with theoretical values pro-

vides insight on system performance. For this measurement the system was running one 

real-time priority task with 1ms interval and energy saving was handled by the idle task. 

Figure 16 shows what happens in the system when a real-time event occurs and the real-

time priority task is signaled. At first, the system is sleeping and running the idle task. 

The first interrupt and MCU active states are the RTC interrupt handler waking the sys-

tem from the deepest sleep state to trigger a HFTIMER interrupt. The second interrupt 

is the actual real-time event run from the HFTIMER interrupt handler. After the event, 

the real-time task is executed and idle task is re-entered. 

E(X) 
(us) 

N 
(samples) 

AVG(X) 
(us) 

VAR(X) 
(us) 

DEV(X) 
(us) 

MIN(X) 
(us) 

MAX(X) 
(us) 

1000 2348 1000.50 0.57 0.75 999.20 1002.72 

10000 6458 10001.21 0.67 0.82 9999.68 10003.28 

100000 1687 100010.11 0.50 0.70 100008.80 100012.30 



50 

 

Figure 16.Task wake-up by real-time event 

Table 9 presents timings that are required to estimate operating system performance. 

Table 9.Measured timings from energy efficiency setup 

The system states can be defined as: 

 Deep sleep: RTC clock running, High Frequency Clock (HFCLK) off, CPU off 

 Idle sleep: HFCLK running, CPU off 

 Run mode: HFCLK running, CPU on 

Symbol Explanation 
Value 
(us) 

Trttask Real-time task duration 8.4 

Tidle2idle Average time from idle task end to re-enter idle task 25.4 

Trtcmargin RTC pre-margin to set up HFTIMER for real-time event 57.7 

Tactive MCU active time within 1ms period 52.3 

Tsleep MCU sleep time within 1ms period 947.7 

Tds Deep sleep period over  Tsleep 890.0 
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7.3.1 Deep sleep utilization 

The nRF52832 CPU consumes 2.2 uA while in deep sleep waiting for RTC wake-up 

and 60 uA in idle sleep [21]. This means the CPU is using 27 times more energy when 

system sleep periods do not utilize deep sleep, thus maximizing deep sleep utilization is 

essential for smart energy management. In Figure 16 the system is in deep sleep until 

the RTC interrupt. From this time until the HFTIMER interrupt, the system is in idle 

sleep (because the HFCLK is needed for the HFTIMER). 

To measure automatic energy management efficiency, estimating the proportion be-

tween deep sleep and idle sleep utilization can be used. The proportion of sleep states 

for a 1ms period can be calculated roughly as: 

 𝑅𝑎𝑡𝑖𝑜𝑑𝑠2𝑖𝑠 =
𝑇𝑑𝑠

𝑇𝑠𝑙𝑒𝑒𝑝−𝑇𝑑𝑠
=

890.0

947.7−890.0
= 15.4           (6) 

This means the system uses deep sleep over 15.4 times more than idle sleep during a 

1ms period. As the RTC pre-margin time is constant, this ratio will decrease with short-

er sleep periods and increase with longer sleep periods. 

7.3.2 Idle task utilization 

While in run mode, the nRF52832 uses 3.712mA, which is over 1000 times more than 

in deep sleep mode. Thus maximizing idle task utilization is necessary for energy sav-

ing. Unnecessary wake-ups must be avoided, so the system must stay in idle mode when 

it has nothing to do. The system must also run in a tickless manner, meaning there is no 

periodic timer waking the system up. 

By subtracting the idle task turnaround from the 1ms period a theoretical idle/active 

period proportion can be calculated and cross referenced with a statistical analysis of the 

IDLE_TASK pin duty cycle. Over a sampling period of 130 seconds the measured utili-

zation was 97.455% while the theoretical idle task utilization should be 97.460%. The 

values match, meaning the system is not waking up unnecessarily. 

7.3.3 Context switching delay 

From Table 9 the average context switching delay can also be calculated as 

 𝑇𝑐𝑥 =
𝑇𝑖𝑑𝑙𝑒2𝑖𝑑𝑙𝑒−𝑇𝑟𝑡𝑡𝑎𝑠𝑘

2
=

25.4−8.4

2
𝑢𝑠 = 8.5𝑢𝑠           (7) 

The context switching delay is homogenous, regardless of task priority. As all tasks are 

run to completion context switch times when a lower priority task is running depends 

entirely on when the task decides to yield, but the operating system overhead stays con-

stant. 
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7.4 Memory footprint 

The WPC-OS kernel requires 110 bytes of data memory and 4977 bytes of program 

memory. When compiled for the nRF52832 platform these figures amount to 0.2% data 

memory and 0.9% program memory usage respectively. These figures are the static 

memory requirements of the kernel and kernel HAL. 

The maximum amount of tasks is build time configurable and this affects data memory 

consumption. One task requires a TCB which is 24 bytes each but as all tasks share the 

same stack memory increasing the amount of tasks does not increase memory consump-

tion any further. Other dynamically configurable OS components include events (4 B), 

timeouts (16 B), message queues (16 B) and dynamic memory which requires 24 B for 

each different slab size. Program memory consumption does not change with configu-

rable parameters. 

WPC requires the following tasks; real-time priority MAC, high priority routing and  

stack management with one task each, a low priority stack maintenance task and four 

medium priority stack support applications. User applications require a task for running 

the application and an application support task, both of which are low priority. This 

amounts to a minimum of 10 tasks. Each task is assigned a single event, timeout and 

message queue. With 3 different slab sizes the data memory consumption is 663 bytes 

which amounts to 1% RAM usage. In addition a stack must be allocated, which is 1 kB. 

With preemptive solutions where each task requires its own stack the memory con-

sumption exceeds 10 kB with stack memory allocation alone, not counting other operat-

ing system objects and their memory needs. 

The WPC-OS memory usage is detailed in Table 10. Data memory usage is calculated 

with the minimum configuration.  

Table 10.WPC-OS memory footprint with WPC 

Module name 
Program memory usage 

(bytes) 
Data memory usage 

(bytes) 

Kernel 692 256 

Events 386 36 

Real-time events 168 6 

Scheduler 500 4 

Timeouts 381 16 

Timer HAL 1506 28 

Message queues 193 160 

Memory management 401 113 

Energy management 592 44 

Single linked list 158 0 

Total 4977 663 
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7.4.1 Memory footprint comparison 

Program memory usage comparison to other operating systems would require building 

each operating system with the same compiler for the same platform and thus is not 

feasible. Consequently, program memory usage efficiency is only estimated. Data 

memory usage comparison against preemptive kernels is not feasible due to the stack 

memory requirements alone. Therefore, comparison should be done with another event-

driven OS. 

Contiki is selected for comparison as it is event-driven and written in ANSI C language. 

In the comparison example Contiki was built for TI CC2430 SoC for Sensinode plat-

form [24]. The CC2430 SoC implements an 8051 [25] CPU. The build includes an 

IPV6 over Low power Wireless Personal Area Networks (6LoWPAN) stack with a sen-

sor application.   

Comparing program memory usage is not possible directly due to different instruction 

sets between the 8-bit 8051 and 32-bit ARM CPUs, but an estimate can be made. For 

comparison, the Core and Timer modules were selected from the Contiki example build. 

The example uses a stack of 223 B, which is subtracted from core data memory usage. 

The Contiki example build requires 13346 B of program memory while the WPC-OS 

build requires 4977 B. The Thumb-2 instruction set for ARM provides 23% better code 

density compared to IA32 [26], but this is application dependent. Assuming a code 

compression rate of 50% in favor for the ARM, WPC-OS still uses less program 

memory. 

As for data memory usage, the Contiki core uses 158 B [24], while WPC-OS uses 110 

B. However, these figures do not include TCB allocations. To clarify terms, a Contiki 

process [27] will be defined as TCB, as it is the control block of the event-driven part. A 

Contiki TCB requires 18 B of data memory, while a WPC-OS TCB uses 24 B.  

As a conclusion, WPC-OS has lower program memory usage and similar data memory 

usage when compared to Contiki. 

7.5 Example task 

Program listing 6 presents an example real-time application for WPC-OS. This is the 

application used for real-time accuracy and energy management measurements. A call 

to spawn_rt_task() initializes the information needed by the kernel, creates the real-time 

task and assigns a message queue (symbolically named PID_MAC) for the task. Finally, 

this function sends a message to PID_MAC, which automatically sets the task event 

informing the scheduler that the task has work to do.  
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// Interval for RT events 
#define RT_EVT_TIME     HAL_USEC_TO_UPERIOD(1000u)  
 
os_msg_queue_handle_t   mac_queue;      // Message queue for task 
static uint32_t         mac_boundary;   // Real-time event boundary 
#define PID_MAC         mac_queue 
 
static void             rt_task(void) 
{ 
    // Perform RT task 
    GPIO_ENTER_TX(); 
    // Wake MAC up again 
    Os_msgSend(PID_MAC, NULL); 
    GPIO_EXIT_TX(); 
} 
 
static uint32_t         mac_task(void) 
{ 
    // Spawn RT event 
    static bool rt_time_valid = false; 
    GPIO_ENTER_MAC(); 
    if(!rt_time_valid) 
    { 
        // Obtain start time 
        mac_boundary = RTimer_getUs(); 
        rt_time_valid = true; 
    } 
    // To prevent drift move the rt event boundary forward instead of  
    // using current system time here 
    mac_boundary += RT_EVT_TIME; 
    // Setup RT event with callback 
    Os_setRtEvent(rt_task, mac_boundary); 
    GPIO_EXIT_MAC(); 
    // This task does not follow a timetable (pure async) 
    return OS_NO_TIMETABLE; 
} 
 
static void             spawn_rt_task(void) 
{ 
    // Create example task 
    os_task_info_t mac; 
    os_thread_id_t id; 
    mac.task_name = "MAC_TASK"; 
    mac.priority = OS_PRIO_REAL_TIME; 
    mac.func = mac_task; 
    mac.interval = 0; // No interval as task is pure async 
    mac.duration = 20; // Measured duration is 8.4us. Some margin added. 
    // Record own task id 
    id = Os_createTask(&mac); 
    mac_queue = Os_msgCreateQueue(id); 
    // Send message to self to wake-up immediately 
    Os_msgSend(PID_MAC, NULL); 
} 

 

Program 6. Creating an example task with real-time priority 
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The mac_task() function is the context in which the real-time task is executed. The exe-

cution is indicated by a GPIO pin symbolically named GPIO_ENTER/EXIT_MAC. On 

first entry, the task stores the system timestamp and triggers a real-time event, with a 

callback to rt_task() 1000 us from this time and exits. On subsequent entries the stored 

time is moved forward by 1000 us and a new event is triggered. Obtaining the system 

timestamp only once removes the timing delay caused by the scheduler context switch.  

The callback function is executed in the HFTIMER context. It toggles another pin 

called GPIO_ENTER/EXIT_TX and sends a message to PID_MAC, waking up the 

task. The moment indicated by GPIO_ENTER_TX was used for measuring real-time 

event accuracy. 

7.6 Running WPC with WPC-OS 

Running WPC with WPC-OS was tested by implementing a UART command interpret-

er application on the WPC node and a command generator on a PC. This test imple-

ments the minimum WPC configuration with 10 tasks and idle task. The test software 

was built on the nRF52832 platform, which has a total of 512 kB of program memory 

and 64 kB of data memory. Table 11 shows the memory consumption of each layer in 

this example. 

The embedded application runs in an asynchronous manner meaning it notifies the 

WPC-OS kernel and gets scheduled whenever a command from the PC is received. 

UART interrupts are used to send and receive the serial data on the application. Com-

munication between WPC and the UART application is done via IPC messages. Figure 

17 illustrates the test setup. 

The PC application sends 10 packets from one node and the other node receives this 

data and pushes it to the PC. Sent and received packets were printed on terminal soft-

ware on the PC. Figure 18 shows the terminal screen from both nodes with a sequence 

number. All packets were sent and received successfully throughout the entire chain. 

 

Figure 17.WPC with WPC-OS test setup 
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Figure 18.Terminal output from both nodes 

Table 11.Memory usage of WPC-OS with WPC example 

Layer 
Program memory usage 

(bytes) 
Data memory usage 

(bytes) 

WPC-OS 4977 663 

WPC 78572 5979 

WPC support tasks 4026 1183 

Application support tasks 5578 162 

Serial port application 10048 6256 

Total 103201 14243 

Total used (%) 19.68 21.73 

7.7 Evaluation and measurement results 

Table 12 gathers requirements, measurement targets and results. WPC-OS fulfills all 

WPC requirements. WPC-OS provides an accurate and deterministic real-time event 

service. It supports running multiple tasks while maintaining energy efficient operation 

and a small memory footprint. 

Table 12.Evaluation and measurement results 

Requirement Target Result 
Target 
met? 

Real-time event 
accuracy 

Below 1 XTAL tick (30.5us) Under 1 us Yes 

Energy-efficiency 
CPU active only  
when necessary 

CPU is active only  
when necessary 

Yes 

Tickless 
Remove unnecessary 

wake-ups 
No unnecessary wake-ups Yes 

Optimized 
memory footprint 

Usages: 
Program memory < 10kB  

Data memory < 1kB 

Usages: 
Program memory < 5kB 
Data memory < 500B 

Yes 

Automatic  
energy  

management 

Implement idle task and a  
centralized energy  

management module. 

Idle task and energy  
management implemented 

Yes 

Ability to run mul-
tiple tasks 

Minimum amount of tasks:  
10 tasks + idle task 

The minimum WPC  
configuration works 

Yes 
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8. CONCLUSIONS 

IoT interconnects embedded devices. This is traditionally done by using broadband and 

mobile Internet, which require one connection per device. The WPC protocol stack re-

moves this requirement by connecting the IoT devices directly to each other. An IoT 

device with WPC is intended to be battery powered and is expected to work for years 

without battery change. Thus, WPC is designed to work on resource constrained em-

bedded hardware, with limited memory and processing power. These constraints com-

plicate application design and the solution is provided by an RTOS kernel. 

This thesis presented an RTOS kernel called WPC-OS. The kernel design and imple-

mentation were presented. WPC-OS timing accuracy, energy efficiency and memory 

footprint were evaluated. 

The WPC-OS kernel was designed for the sole purpose of running WPC with customer 

applications. WPC places requirements on RTOS design in the form of resource con-

strained platforms and timing critical CF-MAC operation. WPC-OS solved all design 

requirements WPC imposes on RTOS design. Its viability was confirmed by imple-

menting it on a nRF52832 platform and running it with a serial port application and 

WPC sending data between two nodes. 

The WPC-OS kernel uses under 5kB of program memory and 350 B of data memory. 

Compared to Contiki, the program memory usage is less while data memory usage is 

similar. The WPC-OS kernel provides a deterministic real-time event service with less 

than 1 us timing error. It simplifies customer application design by providing multitask 

capability and centralized hardware access. It provides a novel and lightweight way of 

running tasks with periodic work with its timetable scheduling, which uses task dura-

tions to determine the next task. It improves WPC reliability when running such appli-

cations by making it impossible to interfere with protocol timings. These features are 

expected to cut time to market of customer products with WPC. 

The future development of WPC-OS should include investigating the feasibility of us-

ing co-routines [17] or a hybrid scheduler [41] for task scheduling. They provide 

preemptive multitask scheduling combined with the light-weightiness of cooperative 

scheduling. Other desired features might include run-time configuration of operating 

system resources (such as tasks) and implementing memory area protection (for safer 

task handling). However, these new features must not compromise the light-weightiness 
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of the kernel. Minimizing the operating system processing overhead and memory con-

sumption must take priority over programming convenience. 
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