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Ionospheric scintillations are known to be rather challenging in Global Navigation 

Satellite Systems (GNSS) receivers. The scintillation effects include rapid variations in 

signal phase and amplitude, which may hinder the receiver to acquire and track the 

signal and may cause a loss of lock at GNSS receiver. This thesis focuses on the 

scintillation effects on the European GNSS namely, Galileo. Abrupt phase variations 

during transmission cause deep power fades called canonical fading, half cycle slips and 

frequency unlock. Phase locked loop designs that are currently available helps in 

reducing the scintillation effects to some extent, though this is complicated when 

scintillation is severe.  

 

This thesis focuses on investigating some of the scintillation effects on Galileo 

signal during acquisition. The considered performance criteria are the detection 

performance and the root mean square error at the receiver. For implementing this task, 

this thesis uses two toolboxes, namely Cornell Scintillation toolbox for generating 

synthetic scintillation time histories and TUT MBOC tracking model for simulating and 

studying the scintillation effects at the receiver. Cornell Scintillation toolbox generates 

synthetic amplitude and phase time histories based on two input parameters namely, 

scintillation intensity and decorrelation time that show how rapidly the signal amplitude 

and phase change. TUT MBOC acquisition and tracking simulator generates Galileo E1 

signal that undergoes MBOC modulation and it is transmitted through multipath 

Nakagami-m fading channels.  

 

The thesis work focused on merging the scintillation time histories generated by 

Cornell scintillation toolbox with the TUT MBOC acquisition tracking algorithm, by 

adding the scintillation to fading channel. By calculating the Line of Sight (LOS) phase 

delay, the acquisition of the received signal is performed with and without scintillations. 

The obtained results with and without scintillations are compared and studied in order to 

evaluate the impact of scintillations on the European GNSS. 



iii 

 

PREFACE 
 

 

 

 

 

This Master of Science Thesis has been written for the Department of Electrical 

Engineering at the Tampere University of University, Tampere, Finland.  

 

I would like to express my gratitude to my wonderful supervisor Asst. Prof. Elena-

Simona Lohan for her guide and support, throughout the thesis work. I would like to 

thank my friends in Finland for their support during my Master of Science studies. 

 

My special thanks to my family members in India for their love and support and I 

dedicate this M.Sc. Degree to the memory of my Mother. 

 

 

Tampere, Finland 

 

Devanand Arulpragasam     



iv 

 

TABLE OF CONTENTS 

 

ABSTRACT ...................................................................................................................... ii 

PREFACE ........................................................................................................................ iii 

LIST OF TERMS AND ABBREVIATIONS .................................................................. vi 

1. INTRODUCTION .................................................................................................... 9 

1.1 Background and motivation .............................................................................. 9 

1.2 Thesis aims ...................................................................................................... 10 

1.3 Author’s contributions .................................................................................... 11 

1.4 Thesis structure ............................................................................................... 11 

2. GNSS – BRIEF INTRODUCTION ........................................................................ 13 

3. SPACE WEATHER AND ITS EFFECTS ON GPS SIGNALS ............................ 15 

3.1 Ionospheric regions and weather ..................................................................... 15 

3.1.1 Equatorial  and low latitude regions .................................................. 15 

3.1.2 Mid-latitude region ............................................................................ 17 

3.1.3 High latitude region ........................................................................... 18 

3.2 Effects of solar activity on GPS ...................................................................... 19 

3.3 Ionospheric impacts on GNSS signals ............................................................ 20 

4. CHARACTERIZATION OF SEVERE SCINTILLATION EFFECTS ON GNSS23 

4.1 The empirical scintillation library ................................................................... 23 

4.2 Characteristics of strong scintillation .............................................................. 25 

4.2.1 Scintillation severity .......................................................................... 25 

4.2.2 Power phase spectra and first-order statistics .................................... 28 

4.2.3 Canonical fading ................................................................................ 30 

4.3 Scintillation effects on Acquisition ................................................................. 31 

4.3.1 Parallel FFT based circular correlation .............................................. 31 

4.3.2 Detection probability and performance ............................................. 33 

4.4 Scintillation effects on code tracking loops .................................................... 34 

5. CORNELL SCINTILLATION MODEL ................................................................ 35 

5.1 Scintillation model .......................................................................................... 35 

5.1.1 Amplitude distributions ..................................................................... 36 

5.1.2 Autocorrelation function of the scintillation model ........................... 39 

5.2 Scintillation simulator mechanization ............................................................. 42 

5.3 Model validation and conclusion .................................................................... 43 

5.4 Various other scintillation models: benefits and drawbacks ........................... 44 

5.4.1 Automatic ionospheric scintillation detector for GNSS .................... 44 

5.4.2 Modernized GNSS ionospheric scintillation and TEC Monitoring ... 44 

5.4.3 Simulating ionospheric scintillation effects using low complexity 

technique ......................................................................................................... 44 

6. GALILEO SYSTEM - OVERVIEW ...................................................................... 46 

6.1 Galileo signal characteristics........................................................................... 46 

6.2 Galileo Signal Modulation – MBOC .............................................................. 46 



v 

 

6.2.1 BOC Modulation................................................................................ 46 

6.2.2 MBOC Modulation ............................................................................ 47 

6.2.3 CBOC Modulation ............................................................................. 47 

6.3 TUT MBOC Simulator ................................................................................... 47 

7. RESULTS AND DISCUSSION ............................................................................. 50 

7.1 Performance analysis of scintillated E1 signal................................................ 50 

7.2 Impact of multipath fading channels ............................................................... 52 

7.3 Performance analysis of different scintillation levels ..................................... 55 

7.3.1 Analysis of scintillation levels with fading........................................ 55 

7.3.2 Analysis of scintillation levels without fading .................................. 57 

8. CONCLUSION ....................................................................................................... 60 

REFERENCES ................................................................................................................ 61 



vi 

 

LIST OF TERMS AND ABBREVIATIONS 
 

Rξ(t)  Autocorrelation function 

|H(f)|  Amplitude Response function 

NB  BOC Modulation Order 

ρ  Charge Density 

q  Charge of Electron 

fc  Chip frequency 

TI  Coherent Integration Time 

dτ(t)  Data Bit 

τ0  Decorrelation Time 

fd  Doppler offset 

E[.]  Expected value 

Γ(.)  Gamma Function 

cτ(t)  GNSS reference code 

δt  Group Delay 

ne  Ionospheric Electron Density 

me  Mass of Electron 

Ns  Oversampling factor 

ε  Permittivity 

Δθ  Phase Change 

σ
2

φ  Phase error variance 

vφ  Phase Velocity 

ωpe   Plasma Frequency 

T  Power Density 

K  Ricean Parameter 

S4  Scintillation Index 

I  Signal Intensity 

C  Speed of Light 

fsc  Sub-carrier frequency 

⟨.⟩  Time Average 

vg  Wave Group Velocity 

 

 

ACF  Auto Correlation Function 

AWGN Additional White Gaussian Noise 

BOC  Binary Offset Carrier 

BPSK  Binary Phase Shift Keying 

CNR  Carrier to Noise Ratio 

C/A  Coarse Acquisition 

CDMA Code Division Multiple Access 

CBOC  Composite Binary Offset Carrier 



vii 

 

CosBOC Cosine Binary Offset Carrier 

dB  Decibel 

DNA  Defence Nuclear Agency 

DOF  Degree of Freedom 

DLL  Delay Lock Loop 

ESL  Empirical Scintillation Library  

EU  European Union 

FFT  Fast Fourier Transform 

GEO  Geo Stationary Orbit 

GHz    Giga-Hertz 

GNSS  Global Navigation Satellite System 

GLONASS Global Orbiting Navigation Satellite System  

GPS  Global Positioning System 

Hz  Hertz 

HHT  Hilbert-Huang Transform  

I  In-phase 

IF  Intermediate Frequency 

keV   Kilo-electron Volt 

LOS  Line of Sight 

MEO  Medium Earth Orbit 

MEDLL Multipath Estimating Delay Lock Loop 

MBOC  Multiplexed Binary Offset Carrier 

nT  NanoTeslas 

NY  New York 

NP  Neyman-Pearson 

PLL  Phase Lock Loop 

PVT  Position, Velocity and Time 

PSD  Power Spectral Density 

PDF  Probability Density Function 

PRN  Pseudo Random Noise 

Q  Quadrature 

RMSE  Root Mean Square Error 

SBAS  Satellite Based Augmentation System 

STL  Scalar Tracking Loop 

SNR  Signal to Noise Ratio 

SinBOC Sine Binary Offset Carrier 

SFU  Solar Flux Unit 

TECU  TEC Unit 

TMBOC Time Multiplexed Binary Offset Carrier 

TEC  Total Electron Content 

UHF  Ultra High Frequency 

uV  Ultra Violet 



viii 

 

UT  Universal Time 

UT  Utah 

VDFLL Vector Delay/Frequency Lock Loop 

VHF  Very High Frequency 

WAAS  Wide Area Augmentation System 

  



9 

 

1. INTRODUCTION 

1.1 Background and motivation 

Ionospheric scintillations are the irregularities caused during the signal transmission 

from satellite to the GNSS receivers. Unlike radio waves striking nearby surfaces of 

antenna, the satellite radio waves also undergo multipath transmission when travelling 

through space. During the wireless transmission, the signal undergoes two main types of 

effects, namely refraction and diffraction. In the ionospheric layer (which is from 50 to 

400 KM above the Earth), the GNSS signal passes through free electrons along the path. 

This causes rapid phase shifts and variations in the signal’s group delay. This effect is 

called signal refraction. When the length of ionospheric irregularities extend upto 400 

meters, then the GNSS signal scatters and it reaches the GNSS receiver through 

multiple paths. All the received signals are added constructively or destructively at the 

receiver and this causes large variations in signal amplitude and phase. This effect is 

called signal diffraction. These two effects, caused by signal refraction and diffraction, 

are called scintillation. More errors occur at the receiver due to signal diffraction and 

are quite challenging comparing to the effects of signal refraction. Signal diffraction 

causes rapid phase shifts and fades the signal power to more than 30 dB – Hz. [1] 

 

Troposphere, at its turn, introduces also some scintillation in receiver but the 

effects of tropospheric errors are less comparing to the ones caused by the ionospheric 

scintillations. Ionospheric multipath errors are high in mobile receivers as the geometry 

of path from satellite to receiver is constantly varying. Multipath errors are less in static 

receiver applications than in dynamic receiver applications, and the errors are mitigated 

by the techniques involving the citation of redundant geometry path from satellite to 

receivers. Background ionosphere corrections are possible using dual frequency or 

differential methods. [2] 

 

Although dual frequency and differential methods enable the background 

ionospheric correction, ionospheric irregularities such as rapid change in phase shifts 

and group delay measurements remains and may decrease the accuracy of GNSS 

receiver measurements. Also ionospheric scintillation may lead to loss of lock on 

satellites which results in lost positioning service or decreased positioning accuracy. 

Phase locked loops (PLL) and delay locked loops (DLL) designs available at GNSS 

receiver helps reduce the scintillations to certain extent. The estimation of the effect of 

scintillation must be carried out during the signal travelling through ionosphere as well 
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as during the post processing effect of receiver. This estimation of scintillation effects is 

done in terms of loss of lock and reduced accuracy for various times and conditions. [2] 

 

The geographical regions also determine the strength of scintillation effects at 

GNSS receiver. Strong scintillation, for almost one hour, is possible at equatorial region 

during evening until midnight [2]. During this period, scintillations are lesser in Pacific 

regions in the American, African and Indian longitudes from April to August whereas 

strong scintillation occurs in Pacific region. These scintillation effects are exactly 

opposite during the period from September to March in the longitudes. Mild 

scintillation is possible in equatorial latitudes provided the effect lasts longer. In polar 

and auroral regions, considerable effects of scintillation occur especially due to northern 

lights. [2] 

1.2 Thesis aims 

In order to mitigate the scintillations at GNSS receiver, various scintillation models 

were created and simulated with GNSS signal simulator. The scintillation models with 

statistical data were compared with the data gathered from GNSS receiver and 

simulated with GNSS signal simulator [1]. The simulation results were obtained and 

studied to discuss cause and effect of scintillations at GPS receiver.  

 

The aims of this thesis have been: 

 

1. To implement scintillation channel model suitable for Galileo GNSS and based 

on the Cornell matlab scintillation model.  

2. To study and understand the Galileo modulation used in Galileo Open Service, 

namely Multiplex Binary Offset Carrier (MBOC) modulation and its 

corresponding acquisition and tracking model with multipath to simulate and 

estimate delays and noise at the receiver. 

3. To merge Cornell scintillation model with the MBOC tracking model for 

simulating the results with and without scintillations.  

 

The overall aim of this thesis has been to investigate and gain knowledge about 

various impairments in GNSS receivers such as multipaths, ionosphere, scintillations 

and so on. Apart from understanding Cornell scintillation model, various other 

scintillation models are also analysed through literature review to know the benefits and 

drawbacks of the models. The focus of this study is on the scintillation channel model of 

European satellite navigation system GALILEO. As stated above, scintillation 

mitigation models of all other satellite navigation systems, GPS, BEIDOU and 

GLONASS will also be analysed and studied. This provides us the knowledge of 

current techniques and models that helps in mitigating the scintillations involved in all 

the satellite navigation systems. 
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1.3 Author’s contributions  

The thesis contributions are summarized below: 

 

 A detailed research of the scintillation effects at GNSS receivers namely, 

multipaths and ionospheric effects. 

 A study of the concept of Cornell scintillation toolbox that generates synthetic 

scintillation histories to merge with TUT Galileo simulator. 

 Understanding TUT Galileo simulator that uses MBOC modulation to test and 

simulate results for estimating and learning the phase delay effects during 

acquisition and tracking. 

 Running basic tests with the merged simulator to investigate the effect of 

scintillations on the Galileo receiver performance. 

1.4 Thesis structure 

This thesis has been structured in the following way to present the complete view of the 

research: 

 

Chapter 1 of this thesis outlines the brief introduction of the objectives of the research 

followed by author’s contributions and thesis structure. 

 

Chapter 2 offers a short explanation about Global Navigation Satellite Systems 

(GNSS) and provides basic information about signal processing tasks such as 

acquisition, tracking and navigation solution computation. 

 

Chapter 3 provides information about space weather factors such as solar activity and 

magnetic storms and possible geographical locations where scintillations affect the 

GNSS signals.  

 

Chapter 4 explains in detail the characteristics of strong scintillation and the 

scintillation effects on acquisition and tracking loops.  

 

Chapter 5 introduces Cornell scintillation model and its mechanization that simulates 

and generates synthetic scintillation time histories. It also analyses complex equatorial 

scintillation that causes tracking difficulties and validates the scintillation effects 

through amplitude distributions and power spectra. 

 

Chapter 6 explains TUT MBOC simulator, a Galileo satellite system which is used for 

acquisition and tracking purposes. Synthetic scintillation histories generated from 

Cornell Scintillation toolbox are merged with the TUT MBOC simulator. The 
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scintillated Galileo E1 signals are then transmitted over multipath Nakagami-m fading 

channel to analyse the receiver results by calculating Line of Sight (LOS) delay. 

 

Chapter 7 shows the performance of MBOC tracking algorithm through simulation 

results obtained in terms of detection probability for acquisition and Root Mean Square 

Error (RMSE) for tracking. Simulation results are also obtained and compared for 

different scintillation intensities namely, strong, moderate and weak scintillations. 

 

Chapter 8 concludes the thesis with the conclusion drawn from the entire research and 

simulations. 
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2. GNSS – BRIEF INTRODUCTION 

Global navigation satellite system is a group of satellite systems that offers global 

coverage and navigation information worldwide. GNSS provides good accuracy 

outdoors and is essential in applications such as weather research, earth science, 

aviation and agricultural science [3]. Currently, four global satellite navigation systems 

available worldwide, namely, Galileo built with European funding, GPS NAVSTAR 

built and operated by USA, GLONASS, operated by Russia, and BeiDou Navigation 

Satellite System of China. The quality of service offered by satellites depends on 

criterias such as accuracy, integrity, continuity and availability [4]. The principle of 

satellite positioning system enables us to locate the position of user in terms of latitude, 

longitude and height. This is possible through taking into consideration the ranges or 

range differences between user and satellites. [5] 

 

The increased requirements for location-based services are aiming to provide a 

unique system that is combination of all global navigation satellite systems [6]. 

Therefore, concepts and techniques used in different navigation satellite systems have to 

be compatible and interoperable. This ensures that people all around the world, 

irrespective of their nationalities, utilize GNSS services, safely and conveniently [7]. 

Choosing correct frequency is important to transmit signal to receiver without loss. 

GNSS uses L-band in the frequency spectrum and wavelength ranges from 15 to 30 cm. 

Carrier frequency is selected between 100 MHz and 10 GHz, as ionospheric delays and 

errors due to various atmospheric effects are much higher in higher frequency ranges, 

and lower frequency ranges are heavily used by other mobile applications. Choosing 

high frequencies with high available bandwidth is essential for modulating carrier 

frequency with pseudorandom noise (PRN). [8] 

 

 GNSS receiver operation is carried out by choosing a channel for each satellite 

and performing the signal processing tasks, namely acquisition, tracking and navigation 

solution computation. In order to allocate the channel, a GNSS receiver searches for 

visible satellites and this process of identifying satellites is known as Acquisition. The 

two important parameters of acquisition are Frequency and Code Phase. Based on 

determining the maximum value of these parameters, a satellite is identified with its 

corresponding frequency and code phase. If all the values are same and so the maximum 

value is not found, then the satellite is not visible to user. These parameters are updated 

frequently, as the signal properties vary with time. The process of checking and refining 

the values of frequency and codephase is called Tracking. It involves two parts:- the 
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first part is the code tracking, and second part is the carrier frequency or phase tracking. 

Hence, tracking is done frequently to check the changes in frequency and if the receiver 

stops tracking satellites then acquisition is done again for those satellites. [9] 

 

 In order to compute the distance between the satellite and user’s receiver, also 

called pseudorange measurements, two common methods are used, namely common 

transmission line and common reception time. All the clocks on the satellites are 

synchronized to each other in GNSS so that the pseudorange can be calculated as the 

time or distance between two reference points. The two methods use different way to 

select reference point [10]. In the first method, satellite tracked with shortest time is 

considered as common transmitter time and is taken as reference. The relative 

pseudoranges of other satellites are computed by estimating relative time difference by 

the receiver with respect to the reference time of shortest channel. In the second method, 

common receiving time or distance is set as reference time. The receiver estimates 

elapsed time or delays of all tracked satellites with respect to reference time. After 

pseudorange computation, Position, Velocity and time (PVT) computation is done to 

calculate user’s location. To compute the PVT of the satellite, the receiver requires 

ephemeris data and time of transmission that are embedded in the navigation message. 

[10] 
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3. SPACE WEATHER AND ITS EFFECTS ON 

GPS SIGNALS 

Space weather is one of the factors that affect the radio waves received by GNSS 

receivers. The space weather impact on the GNSS signals occur because of the solar 

activity, when solar flare leads to solar radio bursts. Solar flares annihilate the solar 

magnetic field and it produces energy in the form of ultraviolet rays, x-rays, coronal 

mass ejections and large solar winds. A strong magnetic storm is produced when the 

energy particles reaches the surface of earth. Due to this, Van Allen radiation belts 

change [11] and create plasma of 100 kiloelectronvolts (keV) surrounding the earth 

causing harm to Geo Stationary Orbit (GEO) and Medium Earth Orbit (MEO) space 

vehicles. The factors such as magnetic storms and disturbances in the Earth’s magnetic 

field create scattering of radio waves in ionosphere and produce scintillations. The 

effect on GNSS signals increases during a solar maximum, when ultraviolet radiation 

increases the density and thickness of ionosphere through ionization. [11] 

3.1 Ionospheric regions and weather 

GNSS signals are affected by scintillations caused by four different categories of space 

weather. An important cause of the disturbance is Solar ultraviolet (uV) that arise during 

solar maximum and creates thicker and denser ionosphere due to direct ionization. The 

above mentioned ionospheric effect strongly affects the GNSS signals at equatorial and 

tropical latitudes. Ionospheric impact is stronger at mid latitudes than at higher latitudes, 

as a result of magnetic storms. At high latitudes northern lights produces ionosphere that 

affects the GNSS signals lesser at mid and low latitudes. Solar radio bursts affects the 

GNSS signals by introducing noise at the receiver in the range of 1.2 GHz to 1.6 GHz. 

[11] 

3.1.1 Equatorial  and low latitude regions 

Figure 3.1, reprinted with permission from [11] shows different aspects of equatorial 

ionosphere. During the day, the bands with peak Total Electron Content (TEC) values 

are formed at about 15 degrees latitudes on both side of geomagnetic equator, and this is 

known as Appleton or equatorial anomalies. TEC is the number of free electron along a 

rectangular sold tube of one meter squared cross section. TEC values are expressed in 

TEC unit (TECU) [12]. The increasing ionospheric plasma at the equator causes 

anomalies by moving the magnetic field lines to higher latitudes. These bands with 

anomalies increase the ionospheric electron densities and the phenomenon sometimes 
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causes scintillations during signal transmission to GNSS receiver. During the night, 

ionospheric plasma at the equator remains accumulated in the ionosphere and it causes 

bubbles that rise from few hundred to thousand kilometres. This condition is referred to 

as Rayleigh-Taylor instability [11]. The upward movement of bubbles occurs for about 

an hour along the magnetic field lines, causing scintillations in the form of ionospheric 

irregularities and electron density gradients.  

 
Figure 3.1: Model of Global Ionospheric TEC Map. Reprinted with permission from 

[13] 

 

  Figure 3.2 shows an example of equatorial ionospheric bubble and the 

corresponding amplitude scintillations. The figure shows the elevation-azimuth plot of 

GPS signal PRN 14 on the left hand side and the record of signal power and TEC on the 

right hand side. The plot illustrates that the TEC values in the ionosphere are larger at 

the elevation of the satellites and when the GPS signal passes through ionospheric 

bubble, the TEC values are suppressed and decreased. When the signal exits the bubble, 

the TEC value becomes larger as the elevation goes down. The GPS signal in the upper 

right side of the figure shows the increase in amplitude during the rise of satellites in 

elevation and it is the result of antenna gain pattern. When the signal enters the bubble, 

the contant fluctuations of amplitude are observed which results in scintillation. Though 

this example highlights the moderate event, scintillations can be much more extensive 

and technicians should not assume that the scintillations occur only for the brief period. 

 

 In short, ionospheric bubbles and the corresponding scintillations occur more 

often after sunset. In a climatological point of view, chances of occurrence of bubbles 

are more when magnetic field lines are in darkness. Moreover, for geographical regions, 
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bubbles occur during the month of September and March when geographical longitude 

lines and magnetic longitude lines are parallel. When the lines are not parallel, bubbles 

occur during the months from November to February.  

 

GNSS signals are also affected with severe solar uV intensity frequently at 

tropical or low latitudes but the effects are minimized due to the occurrence of magnetic 

and solar storms at tropical region. Space weather effects on GNSS signals are similar 

for equatorial or low latitude regions. [11] 

 

 
 

Figure 3.2: Illustration of an equatorial ionospheric bubble and corresponding 

amplitude scintillations. Reprinted with permission from [13] 

3.1.2 Mid-latitude region 

Mid latitudes are generally neglected by scientists, as the active regions in mid latitudes 

are lower compared to high latitude and low latitude regions. In recent times, imaging of 

mid latitude regions were carried out, in order to study the ionospheric storms and the 

changes in ionosphere. Magnetic storms increase the electron density gradient and 

introduce irregulaties in the ionosphere that in turn causes scintillation in the signals. 

The first observation was made at Ithaca, NY when the magnetic storms were low and 

the GPS receiver underwent loss of lock due to scintillating signals. The observation 

details are shown in Figure 3.3, reproduced with permission from [11]. This figure 

consists of three panels, upper, middle and lower panels showing the measurement 

results of magnetic storm strength (Dst), the received signal power (C/No), and TEC 

values respectively.  

 

In the upper panel, the maximum negative value was shown as -100 nanoteslas 

(nT) and higher negative value indicates more stronger magnetic storms. The middle 

panel displays the scintillations of GPS signal from 2400 Universal Time (UT) and the 
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signal distortion continues until 2730 UT. The lower panel displays the large variations 

in TEC value near 2400 UT and the TEC values during scintillation were almost half 

the normal value when observed without signal distortions. 

3.1.3 High latitude region 

High latitude ionosphere is the medium structured with high electron density gradients 

of larger magnitude. The ionospheric impacts at high latitude regions are mainly due to 

solar activity and effects of magnetic  field of the earth associated to the solar wind. 

Charged particles penetrations in the northern area are observed when aurora, or the 

northern lights, occurs. The outbreak of the auroral arc causes the charged particles to 

precipitate at higher intensities and infrequently affects the GNSS signals causing 

scintillations due to solar wind. 

 

 
Figure 3.3: Observation results of scintillations at mid latitude region, Ithaca, NY. 

Reprinted with permission from [13] 

 

Apart from the northern lights, magnetic substorms, flares or coronal mass 

ejections are the main causes of scintiallations at high latitude regions such as Nordic 

European area. TEC rate of change index is associated to strong scintillations and 

causes position errors in GNSS and receiver loss of lock. To correct these errors, 

improved models on high latitude phenomena are required for GNSS based applications 

and studies focus currently on research of the models with additional features. High 

latitude space weather corresponds to Very High Frequency (VHF) and Ultra High 
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Frequency (UHF) frequencies and not at L-band frequencies. Therefore, the electron 

density change does not affect the GNSS signals at these frequencies. [13] [14] 

3.2 Effects of solar activity on GPS 

Solar activity is an important aspect in space weather and solar maximum occurs once 

in every 11 years that increases the solar magnetic field [11]. The solar magnetic fields 

are disturbed by solar flares, a sudden burst of radiation released from the surface of the 

sun [15], during the sunspot maximum and energy are released in various forms such as 

x-rays, stormy solar winds, solar uV light, energetic particles (protons) and coronal 

mass ejections. During solar flares, broadband solar radio bursts are introduced at the 

range of 0.1 to 10 GHz. Until December 6, 2006, solar radio bursts were not intense and 

the intensity increased to 1,000,000 Solar Flux Units (SFU), (1 SFU = 10
-22

 watt per 

square meter per hertz (Wm
-2

 Hz
-1

)). This increase is more than 100 times higher than 

previous solar radio bursts during sunspot maximum.  

 

Figure 3.4 displays the spectrum of solar radio bursts in the top panel, and the 

value of spectrum ranges from 1 GHz to 2 GHz and the bottom panel shows the C/N0 at 

Wide Area Augmentation System (WAAS) receiver located at Houston. The solar radio 

burst spectrum in the top panel of the figure starts at 1850 UT and extends till 1950 UT. 

The C/N0 values in the bottom panel are shown in red when the signal was recorded 

during intense solar radio bursts and blue line readings were recorded a day before the 

occurence of solar radio bursts. The C/N0 value reduces due to the scintillation and the 

signal distortion occurred for almost 45 minutes. The robust WAAS receiver mitigated 

the signal distortions using atomic clocks and phase locked loops to decrease phase 

noise in an effective way. Furthermore, all GPS signals were distorted strongly for 

single-frequency receivers, and minimal impacts such as loss of lock were observed in 

receivers such as less robust, semi-codeless and dual-frequency receivers during the 

event of solar radio bursts. Operational monitors are responsible for observing the solar 

radio bursts and reduced power levels at the receiver. If the intensities of solar radio 

bursts were not recorded, then the chances are that more GPS receivers would be 

affected in next solar maximum. [13] [16] 
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Figure 3.4: Received signal power level readings (C/No) before and during the intense 

solar radio burst. Reprinted with permission from [16] 

3.3 Ionospheric impacts on GNSS signals 

The main cause of scintillations is the scattering of GNSS signals in ionosphere.  The 

plasma present in the ionosphere affects the signals in three ways [12]. Firstly, code 

delay occurs when the group velocity decreases and wave group velocity vg is given by, 

 

vg = √[(1 - ω
2

pe) / (ω
2
)]      (3.1) 

 

where, ωpe is plasma frequency with value (6.28 – 62.8 rad/s) is given by, 

 

 ωpe   = √[ne q
2
 / εme]       (3.2) 

 

where, ne is ionospheric electron density, q is the charge of electron and me is mass of 

electron in ionosphere and ε is permittivity. Secondly, the value of phase vφ increases 

when phase velocity increases and is denoted by, 

 

vφ = c / √[(1 - ω
2
pe) / (ω

2
)]      (3.3) 

 

Thirdly, irregularities in density of plasma present in ionosphere scatters the radio 

waves. The scale length is similar to Fresnel length and the value is about 350m or more 



21 

 

for GNSS signals. In the above equations of phase velocity and group velocity, 

ionospheric electron density is the only variable parameter and so the value of group 

delay δt and change in phase can be estimated by integrating electron density with 

respect to signal path, 

 

  δt = [q
2 

/ (2c εme f
2
(2π)

2
)] ∫ρ nedρ     (3.4) 

 

where the integral part in the above equation represents total electron content 

(TEC), c is speed of light, f is frequency and ρ is charge density. TEC is mostly 

contributed by ionospheric plasma, as the electron density is higher in ionosphere, and 

therefore the equation can be simplified in terms of meter-square as, 

 

  δt = [40.3
 
/ (c f 

2
)] * (TEC)      (3.5) 

 

The amplitude scintillations are identified through the amplitude fluctuations. 

Constructive interference occurs during increase in amplitude and destructive 

interference occurs during decrease in amplitude. Figure 3.5 shows the example of 

destructive interference when two GPS signals are tracked at the same time, with PRN 8 

not scintillating while PRN 7 scintillates with fading of upto 40 dB. The GPS signals 

are received using digital storage receiver of mass memory at the rate of 5.7 Msamples/s 

and analysed using Matlab software receiver, as the hardware receiver fails to track 

when carrier-to-noise ratio reaches 27dB. Kalmar tracking loop enables the scintillated 

GPS signal to be tracked and processed. GPS receivers performs acquisition along with 

the tracking of signal phase or frequency. Phase lock loops are weak when the received 

signal contains deep fades with half-cycle phase flips. Three important parameters are 

used to study the form of ionospheric scintillations namely,  

 

 S4 index, which is the ratio of standard deviation of changes in signal power to 

the average ionospheric power.  

 sigma-phi which is the standard deviation of the phase fluctuations.  

 Decorrelation time (τ0), which measures how rapidly phase shifts occur. [17] 

  

The S4 value can be determined by following equation, 

 

S4
2
 = (⟨I2⟩ - ⟨I⟩2

) / ⟨I⟩2
        (3.6) 

             

where I is the squared amplitude called signal intensity and ⟨.⟩ represents time average.  
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Figure 3.5: The Carrier-to-Noise ratio of scintillating and non-scintillating GPS 

signal. Reprinted with permission from [17] 
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4. CHARACTERIZATION OF SEVERE 

SCINTILLATION EFFECTS ON GNSS 

Ionospheric scintillations that affect GNSS system are characterized by different 

methods. One method is to store the readings of GNSS bandwidth and to feed the 

recordings into GNSS carrier tracking loops. The problem with this approach is that the 

recordings are not similar and properties of the recordings varies and are statistically 

non-stationary [17]. The other method is to alternatively generate scintillation data from 

first-principles phase screen model [18] and to load the scintillation data into simulator. 

This approach is not fully developed and severe scintillations are not treated effectively. 

Therefore, Cornell University selected the option of generating a statistical model and 

comparing the readings with realtime data observed from GPS receivers and from 

different wideband satellite systems. The severe equatorial scintillations sets off cycle 

slipping and sometimes loss of carrier lock. The data simulations that computes the 

strength of scintillation of phase tracking loops architectures, explains that cycle slips 

are related to half cycle phase variations and the corresponding power fluctuations. [1] 

[19] 

 

 Scintillations models use empirical [20] or synthetic [1] amplitude and phase 

times histories to evaluate the phase variations in GPS simulator output. In Cornell 

scintillation model, synthetic amplitude and phase time histories are generated 

artificially using Matlab algorithms and scintillation histories are added to GPS 

simulator to evaluate phase error variance σ
2

φ and rate of cycle slipping. This thesis 

focuses on synthetic scintillation datas retrieved from Matlab codes of Cornell 

scintillation toolbox. However, to understand the concept of gathering scintillation 

datas, the following section briefly explains the recording procedures of empirical 

scintillation datas conducted previously by researchers through real-time experiments.  

4.1 The empirical scintillation library 

The Empirical Scintillation Library (ESL) reviews the processes involved in recording 

of empirical phase and amplitude equatorial scintillations. To study the wide range of 

strong scintillation effects, equatorial scintillation data were retrieved through two 

different methods and recorded in empirical scintillation library. The first method is 

retrieving list of data from a radio beacon experiment, known as DNA (Defence Nuclear 

Agency) Wideband satellite experiment that was conducted from 1976 to 1979 [21] 

[22]. A wideband satellite was set-up to transfer 10 signals of consistent continuous 
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waves from 1000km near-polar orbit. The frequencies of all ten waves were chosen 

from VHF to S-band in addition to L-band signal at 1239 MHz which is almost 

coincident with GPS L2 band signal of frequency 1227.60 MHz. The scintillations 

distrupted the high frequency S-band signal 2891 MHz in small degree and this was 

utilized as phase reference for all low frequency signals at the multi-band receiver.  

 

The baseband amplitude and phase outputs from multi-band receiver chain were 

then converted into digital form at 500 Hz after bandlimiting to 150 Hz. Therefore, [22] 

the received baseband data were called wideband data. These wideband data were 

collected at Ancon, Peru (11:8° N latitude) and Kwajaleinatoll, Marshall Islands (9:4° N 

latitude). These ground stations were installed with 9.1m parabolic tracking antennas 

and configured with 12-bit quantization and 500 Hz sampling rate. These high gain 

antennas generated low noise complex signal with high quality. However, whole cycle 

slips occurred instead of half-cycle slips when receiving the continuous wave signals. 

Severe scintillation caused whole cycle slips when GPS receiver tracked bi-phase 

modulated signals and authors emphasized, the absence of half-cycle slips does not 

reduce the usage of recorded datas.  

 

Of all the signals received by ground stations, the L band 1239 MHz signal is of 

concern for evaluating the scintillation effects. Severe equatorial scintillation at GPS 

frequencies diminishes the possibility of test cases conducted wih L band signal. To 

overcome this, UHF carrier data at 447 MHz were added along with L band data to 

study severe scintillation effects. This suggested that the UHF datas are used for test 

cases to tackle strong L band scintillation when solar maximum occurs. Ten recorded 

satellite passes indicating worst scintillation that contains nearly 12 minutes of 

continuous datas were stored in scintillation library. These passes were recorded as 

complex time histories with the actual sampling rate of 500 MHz and with no 

requirement of filtering. 

 

 The second method of recording data was done at Cachoeira Paulista, Brazil 

(22.7° S latitude in December 2003 [23]. These data were containing the collection of 

GPS L1 Coarse/Acquisition digital code sampled at 5.7 MHz to be stored in scintillation 

library. This equatorial region is well known for severe scintillations [24] and it lasted 

several hours to receive and record data sets from multiple GPS signals that contain 

worst scintillations. The recorded data sets differed in quality from previous method of 

recording wideband data, as the datasets from second method are highly processed to 

filter all the noise and Doppler effects and keep only the scintillation effects. The carrier 

phase, amplitude and navigation bits were retrieved from the recorded 5.7 MHz samples 

by processing through software GPS receiver. This method helped eradicate the half-

cycle slips from phase time histories, leaving only the whole cycle slips as similar to 

wideband data. The variations due to effects that include Doppler, receiver clock 

instability and PLL variations are further processed to remove from carrier phase 
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output. The output amplitude and phase datas were then sampled at 100Hz to filter 

noise. The resultant GPS data’s SNR was lower than wideband data due to low efficient 

output of GPS receiver antenna and GPS signal of less strength.  

 

Table 5.1. An abstract of empirical scintillation library data. [25] 

Data source Original Carrier  

Frequency (MHz) 

Combined length of 

records (hours) 

Wideband 447 (UHF)     

Wideband                    

GPS                   

 

To summarize, wideband data are less affected by strong scintillations comparing to 

GPS L1 data due to the reason that GPS data are scintillated by whole cycle slips. The 

factors such as low gain antenna and weak strength of GPS signal makes the GPS data’s 

signal-to-noise-ratio to be lower than wideband data. Therefore, GPS data has to be 

processed more to overcome the above mentioned problems. [25] 

4.2 Characteristics of strong scintillation 

To understand the characteristics of severe scintillation, two distinct samples of 

scintillation datas retrieved from Cornell scintillation toolbox are considered, one 

displaying scintillation effects with parameters S4 = 0.9 and τ0 =0.4 and other with 

parameters S4 = 0.1 and τ0 =0.04. These two samples are shown in Figure 4.1 and 

Figure 4.2 respectively. These samples exhibit strong scintillation and are denoted by 

higher scintillation index S4 ≈ 0.9 and lower decorrelation time τ0 =0.04. 

 

In the figure 4.2, we can see high-frequency ripples of smaller measurements in 

the plots and this effect proves the fact that, there is rapid phase shifts due to less 

decorrelation time. The above mentioned effect is independent of similarities existing 

between both the samples shown in the figures. The common feature found in the severe 

equatorial scintillation is deep power fades that are visible in upper and lower waves of 

the plots. The power fades lead to random half-cycle phase changes and the effects are 

observed in datas recorded in scintillation library. These fades are generally denoted as 

“canonical fades” and they are the main cause for phase unlock, when PLL tracking of 

strong scintillation data is carried out. [25] 

4.2.1 Scintillation severity 

Scintillation library data is analyzed using the parameters scintillation index (S4) and 

decorrelation time (τ0) and the value of the autocorrelation function of scintillating 

signal decreases exponentially and decorrelation time denotes the time lag. The 

scintillation severity can be easily determined for phase tracking by chosing S4 and τ0 

values. 
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Figure 4.1: A sample of Cornell scintillation data showing signal amplitude and carrier 

phase cycles with S4 ≈ 0.9 and τ0 ≈ 0.4.  
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Figure 4.2: An other sample of Cornell scintillation data showing signal amplitude and 

carrier phase cycles with S4 ≈ 0.1 and τ0 ≈ 0.04. 

 

If S4 value is higher or if τ0 value is lower then the chosen scintillation intensity 

is strong. Scintillation library makes it possible by including S4 value ranging 

approximately from zero to 1.2 and τ0 value ranging from 0 to 2 seconds. When the 

scintillation ranges from weak to moderate (S4 <= 0.5), it is apparent that the wideband 

data selects S4 indices close to 3.7 times more for the increased frequency 1239 MHz of 

GPS L-band data. It is approximately scaled by the formula S4 α f
-1.5

 stated by weak 

scintillation theory [26]. All the scintillation library frequencies saturates approximately 

to value 1 due to multiple scattering effects, when scintillation severity S4 is more than 

0.5. This shows that UHF scintillation datas are not scintillated severly comparing to 

strong scintillation datas of wideband L-band and GPS L1 band. 

 

Table 4.1. An example to summarize S4 and τ0 ranges for various scintillation levels. 

[25] 

Scintillation types S4 ranges τ0 ranges (sec) 

weak <0.4 >1.5 

moderate 0.4-0.7 0.1-1.5 

strong >0.7 <0.1 

 

 The above mentioned result about UHF scintillation is different when observing 

in terms of decorrelation time (τ0), as the rapidity of frequencies in UHF band is greater 

than in L-band data frequencies. This is due to multi-scattering effects that are related to 

severe scintillation which causes decorrelation time to decrease at lower frequencies 

[26]. The values of decorrelation time τ0, while recording wideband UHF and L-band 

datas for storing in scintillation library are recorded as low as 0.12 and 0.4 seconds 

respectively and this proves that the scintillation severity is higher in UHF band datas. 

Several ionospheric conditions measures wide range of τ0 values while recording 

scintillation datas from various GPS links. The values are 0.5 seconds for strong 

scintillation and around 2 seconds for weak to moderate scintillation.  

 

 The unexpected fact is minimum τ0 values are almost same when scan velocity 

difference for wideband and GPS L-band data are higher. In addition, the ionospheric F 

layer (350 km altitude) is the region where strong scintillation occurs due to the 

presence of irregularities. For figures 4.1 and 4.2, the values of τ0 ≈ 0.4 and 0.8 and 

scanning velocities are 4000 m/s and 100 m/s and background ionospheric drifting 

velocities are from 100 to 200 m/s respectively for wideband and GPS L-band. The 

higher difference in scanning velocities of GPS L-band and wide band does not affect 

the τ0 values. This is due to the geometry behind ionospheric structures and relative 

velocity of drift rate to scan velocity vector. [17] 
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 Therefore, wideband UHF data were used [25] as an alternative to GPS L2 data 

for studying and testing GPS tracking loops. When S4 increases and τ0 decreases, 

scintillation data are not easy to track and so larger τ0 value in wideband UHF data are 

capable of tracking GPS signals. Increased S4 and τ0 values have disadvantage of deep 

power fades exceeding 15 dB and exist for more than 2 seconds. This is applicable for 

static receivers and for dynamic receivers deep power fades lasts longer than 2 seconds. 

Scintillation libraries store such long lasting scintillation datas by modifying library’s 

sampling inteval. [17] [25] 

4.2.2 Power phase spectra and first-order statistics 

Scintillation modelling involves other statistical parameters that are plotted in figures 

4.3 and 4.4, respectively. Figures 4.3 (b) and 4.3 (c) shows the plot of empirical first-

order phase rate and amplitude distributions. Figure 4.3 (a) shows the empirical joint 

distribution of full 5 minutes sample GPS record by plotting phase change Δθ in 20ms 

interval per bit over the normalized fading amplitude α. The distribution of the severly 

scintillating data shows the canonical fading effects as the value of phase change Δθ 

distribution is widespread when amplitude α value is smaller. The phase errors also 

contribute in minimal effects to some of the spreading in Δθ. First-order amplitude 

distribution in figure 4.3 (c) is consistent with the Rice distribution [27] and more 

concurrent with well known Nakagami-m distribution [28], and is expressed by, 

 

  p(α) = [2m
m

α
2m-1

 / Ω
m

Γ(m)] (e
-mα^2/Ω

)     (4.1) 

 

where m is the shape parameter determined by 1/S4
2 

and Ω is spread value identical to 

E[α
2
] which is mean-square of fading amplitude and is normalized to 1 and Γ(m) is 

gamma function of m. In realtime, expected values E[.] are estimated approximately as 

time average ⟨.⟩ over stationary time intervals. Occurrence of cycle slipping caused by 

scintillation is evident from the long tail in figure 4.3 (b) from probability distribution of 

phase change Δθ. 

 

Scintillation effects modeling of various data samples are characterized by 

another approach called power phase spectrum, shown in figure 5.4. To display wide 

range of frequencies, GPS L1 data is utilized without filtering. For phase tracking, all 

the three spectra in figure 4.4 are obtained from severe scintillating data, with S4 value 

chosen above 0.9. Spectra values are approximated and plotted by power law stated by 

weak-scatter phase screen theory [18] given by, 

 

  Sθ(f) = T / (f0
2
 + f

2
)
p/2 

      (4.2) 
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Figure 4.3: (a) Empirical joint distribution (in density of samples) of the variables Δθ 

and α. (b) Empirical first-order phase rate distribution in Δθ. (c) Empirical first-order 

amplitude distribution in α (thick black line) consistent with the Nakagami-m 

distribution (greyed area) corresponding to the empirical S4 value. Reprinted with 

permission from [25] [28] 

 

where p is the phase power law index, T is the strength parameter, f0 is the 

temporal frequency of ionospheric outer scale and it is not considered practically as the 

value is much smaller than the frequencies of interest and irrelevant to cause PLL phase 

errors and negligible PLL noise bandwidth of approximately 10 Hz. Therefore, the 

power law equation is approximated to Sθ(f) = T f
-p 

,where T is power density at 1 Hz. 

The curve at GPS L1 data spectra at 10 Hz frequency indicates the noise floor and this 

effect is not available in wide band data upto Nyquist cutoff frequency 250-Hz. When 

testing, wide band library records are modeled as containing no noise components and 

GPS data records are modeled as having familiar noise component that cannot be 

lowered. 
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Figure 4.4: Phase power spectra of data samples of GPS L1, Wideband L-band and 

Wideband UHF. The solid black line displays reference spectral slope relative to p = 

2.6. Reprinted with permission from [25] [18] 

 

 A review of all library records shows same value of p = 2.6, an empirical limit 

for scintillation severity S4 more than 0.9. This limit reduces towards 2 when GPS data 

spectra reaches noise floor. The reducing effect is due to rapid, discontinuous and large 

phase changes caused by canonical fading. Phase scintillation is not bounded to any 

specific frequency and so the power phase density occasionally cross the PLL tracking 

bandwidth causing phase tracking errors which in turn results in cycle slips. [25] 

4.2.3 Canonical fading 

Canonical fading is an important effect to be analysed in order to conduct 

scintillation tests though this thesis work does not include this effect. Canonical fading 

are deep power fades that occurs due to rapid phase shifts during strong scintillation. 

This sudden change in phase introduces amplitude fluctuations that affect the carrier 

phase tracking. The phase measurement would be difficult when fading lowers SNR 

value, also called low loop SNR. This results in cycle slips at around 1150ms and 

1220ms from Figures 4.1 and 4.2 respectively. The quick changes in phase causes phase 

errors due to low value of SNR. Nevertheless, it is found from the scintillation data 

figure 4.2, that the total phase change is reduced if the required SNR is maintained as 

against the scintillation data in figure 4.1, which shows high frequency ripples lowering 

SNR value. One can easily understand the canonical fading phenomenon by 
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representing complex baseband signal on complex plane shown in Figure 4.5, reprinted 

with permission from [25]. The speed of phase and amplitude of the signal moving on 

the plane is inversely proportional to the value of τ0 and the phasor magnitude 

wandering more near the origin in the figure 4.5, shows half cycle phase shifts, 

responsible for canonical fading. 

 

 
Figure 4.5: An example of planar representation of complex baseband signal 

z(t) showing canonical fading near origin due to half cycle phase shifts. Reprinted with 

permission from [25] 

4.3 Scintillation effects on Acquisition 

This chapter briefs the methods of acquisition on GPS receiver and effects of 

scintillation on detection performance in terms of detection probability (Pd). Various 

acquisition methods assist in improving detection performance using coherent and non-

coherent integrations [29]. The methods include, for example data folding method, 

serial search method, repetitive block acquisition method, zero padding method and 

FFT based circular correlation method [30]. The next section explains FFT based 

circular correlation method, which is frequently used in GNSS receivers due to its 

improved detection performance [31].    

4.3.1 Parallel FFT based circular correlation 

FFT based circular correlation method uses the search strategy that estimates two 

parameters, code frequency and code phase. Code frequency is the signal frequency 

value acquired by receiver whereas code phase denotes the point at which PRN code of 

the satellite starts during acquisition. The block diagram of FFT based circular 

correlation is shown in Figure 4.6. [30] 
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Figure 4.6: A simple block diagram of Parallel FFT based circular correlation 

 

The received GNSS signal is shown in the following equation given below,  

 

s(t) = A dτ(t) cτ(t) * cos(2π(fL + fd)t + θ) + n(t)    (4.3) 

 

where A denotes signal amplitude, dτ(t) is data bit, cτ(t) is the GNSS reference code and 

fL is carrier frequency of L-band GNSS signal, fd is unidentified Doppler shift value, τ is 

unknown phase error value and θ and n(t) are phase and noise of the received signal 

respectively. The downconversion to IF signal is performed by mixing the received 

signal with local oscillator signal and result of sampled IF signal is given by, 

 

sIF[n] = A dτ[n] cτ[n] * cos(2π(fIF + fd)nTs + Δθ) + nIF[n]   (4.4) 

 

where Ts is sampling time interval, fIF is frequency of downconverted signal, Δθ is 

phase difference between received signal and reference oscillator signal and n is total 

number of signal samples. The IF signal is correlated with locally generated GNSS code 

by passing through acquisition algorithm performed using FFT based circular 

correlation method. This is done by multiplying IF signal with reference sine and cosine 

signals in order to eliminate carrier components, thereby resulting in-phase and 

quadrature components given by, 

 

sI = A dτ[n] cτ[n] * cos(2πfdnTs + φ) + nI[n]     (4.5) 

 

sQ = A dτ[n] cτ[n] * cos(2πfdnTs + φ) + nQ[n]     (4.6) 

 

where nI[n] and nQ[n] are in-phase and quadrature noise components and considered as 

Gaussian white noise with zero mean and variance σ
2
 (nI[n], nQ[n]) ~ N(0,σ

2
)). The in-

phase and quadrature components are added to form complex signal (z(n)) and 

converted to frequency domain using FFT. The circular correlation is performed by 

multiplying z(n) with conjugate FFT of GNSS coded signal generated locally. The 

result is then converted into time domain using IFFT and then absolute value of result is 
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taken to end the correlation process. The signal is present and satellite is found to be 

detected when a peak is found exceeding certain threshold. [30] 

4.3.2 Detection probability and performance 

The in-phase and quadrature components of the incoming signal and locally generated 

GNSS coded signal is given as, 

 

 I = A’ dτ[n] R(θ’) * sinc((fd - fd’)TI cosθi) + nIi    (4.7) 

 

 Q = A’ dτ[n] R(θ’) * sinc((fd - fd’)TI sinθi) + nQi    (4.8) 

 

where R(θ’) is autocorrelation function, θ’= τ – τ’ is correlation loss by code delay. fd - 

fd’ is Doppler offset, θi is average phase error during correlation time interval and TI is 

coherent integration time. If the signal is considered to contain strong amplitude 

variations due to scintillation, and affected signal contains affected amplitude A’, then 

the relation is given as AN = A’/A, where AN is normalized signal amplitude A is 

unaffected signal amplitude. Therefore, detection probability is dependent on amplitude 

and PDF of the signal in terms of amplitude is given by, 

 

 PH1(E) = PH1,A’(E|A’)PA’(A)dA      (4.9) 

 

where PA’(A) is degradation of detection probability due to the presence of amplitude 

scintillation and can be represented as Nakagami-m distribution [32]. Therefore, 

detection probability with amplitude scintillation is given as, 

 

 Pd =   
 

 
 PH1,A’(E|A’)PA’(A)dA      (4.10) 

 

The value of detection probability is decreased when scintillation intensity S4 is higher. 

To enhance detection probability of signal, two approaches, namely coherent and non-

coherent integrations, are carried out during acquisition stage. For example, if we use 1 

ms signal for signal acquisition, the input S/N0 of 14 dB is reasonable value for 90 % of 

detection probability [33]. The coherent integration gain of data over ‘n’ ms, Gc(n) = 

10log(n). Coherent integration is practically possible upto the length of navigation data 

bit, in order to avoid integration over the bit transition. In Galileo open service signals, 

the data bit length is 4 ms. For weak signals, acquisition is done by the combination of 

coherent and non-coherent integrations. The non-coherent integration gain is given by 

Gi(n) = Gc(n) – L(n) where L(n) is non-coherent integration loss. 

 

 Performing multiple non-coherent integrations increases the gain, for instance to 

achieve 14 dB gain with 90 % detection probability, 100 non-coherent integrations are 

done for 1 second of data according to the studies in [34]. Another instance found in 
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[35] shows that 4 seconds of data were processed to receive 26 dB gain at the output. If 

achieved gain is negligible then the number of non-coherent integrations is reduced in 

order to limit additional operations. 

4.4 Scintillation effects on code tracking loops 

In paper [38], an example simulation results were done to evaluate the receiver signal 

tracking performance. The scintillation effects were studied based on the variance of 

code tracking loop errors using tracking models in [37]. The methods in the model were 

used to characterize receiver tracking performance of Galileo E1 signal during weak to 

strong scintillations. The receiver input data includes, amplitude and phase scintillation 

indices (S4 and σφ respectively), and spectral parameters namely, the spectral slope p, 

and spectral strength T. The variance of the tracking error is evaluated at the output of 

the code tracking loops using tracking models that analyse scintillation effects. The 

scintillation histories are retrieved from Cornell scintillation model with different 

scintillation intensities of S4 values, 0.5, 0.6 and 0.7 along with constant τ0 value of 

0.5s. This generated the scintillation time histories of 30 minutes length. Appropriate 

DLL bandwidths were chosen for the three simulations, for instance 0.25 or 0.1 Hz. 

 

 The simulator Spirent GSS8000 GNSS is used to track the affected Galileo El 

signal. The degradation of the receiver performance during different levels of 

scintillations were analysed by estimating variance at the output of the delay-locked 

loop for code tracking loops. The simulation result of increasing phase tracking error is 

shown in terms of variance [37] [36]. Scintillation data were simulated for total of 15 

minutes and the variance was measured as 0.04 radians with PLL linearity at 11
th

 

minute of the simulation. The effect of strong scintillation increased the variance to the 

peak value of 0.14 radians at 12
th

 minute which showed the increased carrier phase 

tracking error during strong scintillation. Figure 7.10, from the simulation result of this 

thesis, shows the example plot of degradation of receiver performance in terms of 

RMSE, retrieved from TUT MBOC simulator, with S4 levels, 0.9, 0.4 and 0.15. The plot 

also shows the better performance of AWGN signal comparing to scintillated signal. 
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5. CORNELL SCINTILLATION MODEL 

A simple model was developed by Cornell University to simulate ionosphere induced 

scintillation that tests and identifies the properties that affect phase tracking loops. This 

model works as scintillation simulator with two inputs: the scintillation index S4 and the 

decorrelation time τ0.  This model also assumes Rice distribution for scintillation 

amplitude and the spectrum of highly varying complex component of scintillation is 

considered to follow 2
nd

 order low-pass butterworth filter [43]. The expectation of solar 

maximum in the year 2011, lead to greater interest in testing GPS receivers of strong 

scintillation effects. One way of testing receiver is to retrieve scintillation time histories 

from empirical library of scintillation records. The strong scintillation data record 

includes effects such as deep power fades of more than 15 dB, and the half cycle phase 

transitions. These canonical fades are the main cause of loss of lock in GPS carrier 

tracking phase loops. [44] 

 

 The study of scintillation effects using realistic empirical data histories has 

various disadvantages. Firstly, the researchers have limitations to adjust the output only 

to some degree as the behavior is stored in the recorded data sets. Secondly, thermal 

noise recorded in receiver produces high frequency deviations and this limits the 

specification of carrier to noise ratio of a scintillation testing [44]. Extended testing is 

not possible using empirical scintillation data records for the reason that the empirical 

data records statistically represent stationary output for short interval of time. The 

statistical model output of the scintillation data are made realistic such that the shape of 

amplitude and phase spectra are plotted independently [45]. This is carried out by 

artificially tracking carrier phase with minimal canonical fades and this in turn helps in 

properly shaping the complex scintillation data. The following section explains the 

scintillation model that analyses complex equatorial scintillation as it is known for 

tracking difficulties. This model analyses scintillation datas through amplitude 

distributions and power spectra and the effects of model are validated by comparing it 

with phase screen generated models. [43] 

 

5.1 Scintillation model 

The model used here works on the conception that the scintillation induced cycle slips 

occurs during phase tracking and also the scintillation properties cause bit errors in 250 

bps binary navigation message of phase modulated L-band Galileo signal [44]. The 

rapid phase changes between data bits (4 ms long) due to noise and scintillation, limits 
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one from accurately concluding if the bit change occurred, thus there is low probability 

to know the occurrence of cycle slips. The mean time between cycle slips Ts and mean 

time between bit errors Te of phase tracking loops provides good scintillation 

performance when the parameters works in a relation Ts/2 < Te <= Ts. Here Te can be 

approximated to Ts such that problematic cycle slip prediction is made easier through 

predictable bit error problem. 

 

 To determine Te for complex scintillation signal, one require complex channel 

response function z(t) also considered as scintillation time history whose phase and 

magnitude changes are the effect of scintillating communicating channel on GNSS 

carrier signal. One can artificially synthesize scintillation when z(t) correctly tracts Te 

due to close relation between Ts and Te. This is possible because the model tracks the 

scintillation properties that are responsible for cycle slips and this assumption is 

validated later in the validation section. Estimation of Te is based on two properties of 

z(t), amplitude distribution p(α) and the measure of rapidity of which z(t) wanders 

about the complex plane [44]. Let’s assume normalized z(t) such that Ω ≡ E[α
2
(t)] = 1, 

where α(t) = |z(t)|, and the value of z(t) = 1 when no scintillation. 

 

 The fast transitions of z(t) nearby origin causes rapid phase shifts in z(t) and this 

at its turn causes changes in adjacent data bits. Thus one can predict Te from the facts 

such as the probability of the response close to origin p(α) and the speed of z(t). To 

determine Te, z(t) is considered to be in the form, 

 

  z(t) = z + ξ(t)        (5.1) 

 

where z represents complex direct signal considered to be independent of time and ξ(t) 

is the complex varying multipath component that represents scattered signals in the 

ionosphere. In other words ξ(t) is denoted as fading process and its autocorrelation is 

given by,  

 

Rξ(t) = ½ E[ξ*(t) ξ(t + τ)]      (5.2) 

 

The decorrelation time τ0 > 0 is related to cutoff frequency with the time τ at 

which Rξ(t) /Rξ(t) = e
-1

, an exponential function. When τ0 is small, shape of Rξ(t) is 

narrow because of small width of main peak. This indicates the scintillation channel that 

changes severly with time and also helps us find the speed of z(t) near origin. Therefore, 

this scintillation model is further elaborated in the following section with detailed 

specifications of p(α) and Rξ(t). 

5.1.1 Amplitude distributions 

The probability distribution of z(t) is not predictable and there are no theories to predict 

it without limitations. Though there exist few theories that characterize first order 
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distribution [26] [21], when scintillation severity reaches the saturation point amplitude 

distribution p(α) is approximated to Rayleigh distribution. However, this is applicable 

for empirical or numerical datas to predict the distribution of z(t). The number of 

distributions of z(t) were determined for scintillation datas from wideband satellite 

experiments [21]. The test results showed that the Nakagami-m distribution was the 

suitable approach for evaluating amplitude distributions. This result is not conclusive 

for UHF and nearby frequencies as the datasets lasted for 20 seconds and less 

availability, 20 datasets at UHF and 9 sets at L-band. In addition, time correlation in 

empirical z(t) is not crystal clear in this analysis. 

 

 This analysis of Cornell scintillation model serves as a suitable model for 

amplitude distribution that concentrates on severe scintillation at frequencies UHF and 

L-band and the model approaches Nakagami-m and Nakagami-n (Ricean) distributions 

[27], 

 

  pm(α) = [2m
m

α
2m-1

 / Ω
m

Γ(m)] (e
-mα^2/Ω

)    (5.3) 

 

  pn(α) = [2α(1 + K) / Ω]*(I0)*2α*(√[(K + K
2
) / Ω])*(e

-K-[(1+K)α^2]/Ω
) (5.4) 

 

 where K is Ricean parameter, Γ(.) is the gamma function, α >=0 and m = 1/S4
2
 and S4 is 

standard scintillation index. The relation between Ricean parameter K and m is given 

by, 

 

  K =                                        (5.5) 

   

Both Nakagami-m and Rice distributions have similar properties to Rayleigh 

distribution when S4 = m = 1. When scintillation severity is high, i.e., S4 > 1, Nakagami-

m distribution is defined, but not the Rice distribution. At S4 < 1, Nakagami-m and Rice 

distributions are same in properties and both the distributions are close to data 

representation of wideband UHF scintillation data from empirical library as shown in 

Figure 5.1. This figure is altered version of the phase screen model presented in figure 

4.3c that displays amplitude distribution of scintillation data. This is done by modifying 

single phase screen with two phase screens with distance of 100km. The phase screen 

model was validated and accepted by researchers and scientists [18].  

 

The phase screen model calculates the phase fluctuations or scintillations using 

single or multiple layers. Each layer is described as phase screen and for multiple layers, 

for instance, two phase screen model, phase synthesis is performed successively for 

both the layers perpendicular to the direction of propagation. The synthesized phase 

data fluctuations are used as scintillation data to study [46]. Therefore, the phase screen 

data is the scintillation data generated by phase screen model. This paper uses the phase 

screen model as an aid for phase spectrum analysis in Cornell scintillation model. The 
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only drawback of phase screen model is when scintillation severity S4 is between 0.6 

and 1, the amplitude distribution of phase screen model depart away from the amplitude 

distributions of empirical scintillation data. When carrier tracking is performed, this 

drawback acts as one of the reasons to develop statistical scintillation model over phase 

screen model. 

 

 

Figure 5.1: Nakagami-m and Rice distributions in comparison with amplitude 

distribution of wideband data from empirical scintillation library and also with 

amplitude distribution of scintillation data generated by phase screen model. The value 

of S4 is 0.87 for all the above distributions. Reprinted with permission from [43]. 

 

 Average chi-square values were estimated for the scintillation datasets retrieved 

from scintillation library to determine the correctness of amplitude distributions of 

Nakagami-m and Rice distributions [25]. The calculations were done for scintillation 

library records of 79 sets of wideband UHF data and 33 sets of GPS L1. The data 

records were inspected properly and stationary interval of length ranges from 50 to 300 

seconds are chosen that corresponds to strong scintillation S4 > 0.6. In chi-square 

calculations, time interval between data samples are twice the decorrelation time of the 

total interval. This is to make sure that the data samples are independent and the length 

of each dataset is chosen to work with 100 samples. Therefore, decorrelation time τ0 is 
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long and so the longer datasets were chosen to generate 100 independent data samples. 

On calculating chi-square statistic, the datasets were partitioned to number of bins 

known as chi-square Degree of Freedom (DOF) [43]. Here, eight chi-square DOF for 

the Wideband UHF data and seven chi-square DOF were used.  

 The chi-square test results are shown in the table 5.1 and chi-square DOF for 

both Nakagami-m and Rice distributions are almost in close proximity for the number 

of sets (a-dimensional). This proves that the Nakagami-m and Ricean distributions serve 

as a suitable option for scintillation data with Rice distribution having additional 

benefits for both data sources, wideband UHF data and L1 datasets.  

 

Table 5.1. Chi-square values for Nakagami-m and Rice distributions [43] 

Data source No. of Sets Nakagami-m(DOF) Rice(DOF) 

Wideband UHF 79, 8 11.8 +/- 8.8 9.0 +/- 4.3 

GPS L1 33, 7 8.42 +/- 5.9 7.7 +/- 5.7 

 

The reason for chosing Rice distribution is its easier implementations in 

practical environment with the assumption that the fading process is Gaussian and the 

value of amplitude of Rice distribution results in α(t) = |z(t)|. Therefore, in Cornell 

scintillation model, it is assumed that the fading process ξ(t) to be Gaussian random 

process with autocorrelation time and complex, stationary and zero mean.  

5.1.2 Autocorrelation function of the scintillation model 

The autocorrelation function Rξ(t) has to be defined in order to complete scintillation 

model. Along with this, the power spectrum Sξ(f) of the fading process ξ(t) is defined 

and the power spectrum is associated with Rξ(t) through Fourier transform. Modeling 

the scintillation effects make the equation z(t) = z’ + ξ(t) to be sufficient, but the results 

do not include low frequency components during scintillation. The previous scintillation 

studies ensure the complex scintillation signal to be considered completely. For 

instance, in weak scintillation, the power spectra includes the amplitude, α(t) = |z(t)| and 

intensity I(t) = α
2
(t), whereas for severe scintillation, the value of direct component z’ is 

too small to be considered and fading process ξ(t) will be equal to z(t). Therefore, strong 

scintillation limits the correctness of scintillation theory [26] and practical experiments 

are taken into account to define power spectrum Sξ(f). 

 

 To specify the power spectrum Sξ(f) in relation to time histories of empirical and 

phase-screen generated scintillation, high pass filter is used to remove low frequency 

components of phase time history. Here only phase of z(t) is changed using filter and 

spectra of amplitude and intensity are not altered. During the process, the cutoff 

frequency of filter is adjusted and filtered to derive equivalent mean and varaiances of 

quadrature components of ξf(t) = zf(t) - zf’. Here base ‘f’ indicates the filtered 

components. The filtered version and the original scintillation time histories are found 
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to have equivalent effect for carrier tracking loops. This was proved by simulating both 

z(t) and zf(t) using software tracking loops [44] and observing equal performance of 

loops. 

 

 

Figure 5.2: Comparison of power spectra of amplitude and fading process in the weak 

and strong scintillation time period corresponding to phase-screen generated 

scintillation data. For visual clarity, weak and strong scintillation spectra are purposely 

offset from each other by 10 dB. Reprinted from permission from [43] 

 

 The filtering technique mentioned above satisfied the specifications of both 

empirical and phase screen generated scintillation time histories. The power spectrum 

Sξ(f) of filtered time histories can obviously be specified and figure 5.2 shows the same 

for phase-screen generated model plotting both weak and strong scintillation time 

histories. Weak scintillation case uses single phase screen with low perturbation 

strength of Cs = 10
19

 [47] and for strong scintillation two phase screens with high 

perturbation strength of Cs = 10
22

 was used. Figure 5.2 also displays amplitude 

spectrum Sα(f) for both weak and strong cases. Weak scintillation amplitude spectrum is 

concurrent with weak scintillation theory model [48]. At low frequencies, amplitude 

spectrum is uniform till the break point called Fresnel frequency, fF. Fresnel oscillations 

are formed after breakpoint and rolls toward high frequency asymptote. At strong 

scintillation amplitude spectrum, Fresnel frequency is not clear as the spectrum is 

broader, though the spectrum reaches high frequency asymptote.  
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 The important point to be noted in figure 5.2 is that the shape of the fading 

spectrum Sξ(f) agrees closely to the shape of amplitude spectrum Sα(f) for strong 

scintillation. This is evident from the empirical findings [49] of strong scintillation 

(approximately ξ(t) = z(t)) where amplitude distortions are the main reason for shape 

formation of quadrature components of z(t). Therefore, the plots in figure 5.2 propose 

the fading spectrum of low-pass filter with a 2
nd

-order rolloff. Hence, Cornell 

scintillation model uses 2
nd

 order Butterworth filter to be modelled for fading spectrum 

Sξ(f). In this case, the autocorrelation function Rξ(τ) is defined by [50], 

 

  Rξ(τ) = σ
2

ξe
(-β|τ|/τ0)

[cos(βτ/τ0) + sin(β|τ| /τ0)] 

 

Where β = 1.2396464 and the model is displayed in two forms for scintillation spectra 

namely, Gaussian and f
-4

 [51]. Figure 5.3(a) shows the empirical fading process 

spectrum Sξ(f) from scintillation library of S4 = 0.87  and compared with the models 

Gaussian and f
-4 

and 2
nd

 order butterworth filter provided all the models are matched to 

the decorrelation time τ0 of empirical scintillation data. Autocorrelation functions 

normalized to Rξ(τ) / Rξ(0)  corresponding to the spectra in figure 5.3 (a) are shown in 

figure 5.3(b). The inset of figure 5.3 (b) shows the bit by bit variations of z(t) and it 

displays first 40 ms of the autocorrelation plots. Therefore, amplitude distribution and 

autocorrelation shape of first 40 ms defines the probability of error in binary bit 

detection in the proposed scintillation model. To conclude, from the above factors 2
nd

 

order Butterworth filter is easier to implement and chosen as the best option for Cornell 

scintillation model.   
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Figure 5.3 (a) Empirical fading process spectrum Sξ(f) with S4 = 0.87 in comparison 

with Gaussian and f
-4 

and 2
nd

 order butterworth filter. (b) Corresponding 

autocorrelation functions. Reprinted with permission from [43] 

5.2 Scintillation simulator mechanization 

The mechanization is the process of generating and combining two or more random data 

to get required output. The mechanization of Cornell scintillation model is given below 

in the figure 5.4. This model performs scintillation simulator mechanization that 

produces real scintillation time histories. From the block diagram, Gaussian white noise 

n(t) of zero-mean complex is routed through 2
nd

 order butterworth filter whose 

amplitude response function is given by,  

 

  |H(f)| = 1/                    (5.6) 

 

Where B is filter bandwidth given by B = β/  πα  where α’ is required decorrelation 

time and β = 1.2396464. Let the filter noise be   (t) and corresponding variance be σ
2

ξ. 

Hence the direct component    is calculated by    =           where K is estimated 

from equation (5.5) with S4 <= 1 (from previous amplitude distribution section) and m = 

1/ S4
2
. After the summation of direct component    and   (t), the result      is then 

normalized through α = E[|    |] to generate synthetic scintillation time history z(t) =   

+ ξ(t).  

 

 The filter used in the model is discrete time filter and noise n(t) is generated 

through random noise generator as a sequence of independent samples. Scintillation 
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severity is found by choosing appropriate values of S4 and τ0. Strong scintillation is 

obtained by selecting high S4 and low τ0 values as mentioned in Table 4.1 . Very strong 

scintillation recorded in empirical wideband UHF shows the τ0 value to be as low as 

0.12 seconds. [44] 

 

Figure 5.4: Schematic representation of Cornell Scintillation Model with thick black 

lines indicating complex signal transfer. Reprinted with permission from [43] 

5.3 Model validation and conclusion 

The method of validating Cornell scintillation model involves generating “truth” 

scintillation using phase screen model or by directly using data records from 

scintillation library. This validation method used in [25] wideband UHF data records 

from scintillation library whose stationary scintillation intervals higher than 150 seconds 

were selected. The reason for selecting wideband data is due to the presence of noise in 

GPS data and makes it convenient to test carrier tracking loops. Then the values of S4 

and τ0 are truth data are determined such that ten sets of synthetic scintillation data in 

equal length were produced based on S4 and τ0 values of truth data. In the next step, 

truth data and ten synthetic scintillation data sets were routed into scintillation test bed 

with assumption of phase track loop noise bandwidth Bn = 10 Hz and an accumulation 

interval Ta = 10 ms for good tracking performance. Additive white noise is eliminated to 

study the effects of scintillation to make carrier to noise ratio infinite.  

 

The responses of each scintillation data were stored as phase error variance σ
2

φ and 

number of cycle slips Ns for each time interval and the mean and standard deviations of 

all the synthetic data were calculated. The results showed that phase tracking loop 

responses of both synthetic and truth scintillation data sets were identical [43]. 

Therefore, the results show that Cornell scintillation model is effective and realistic for 

carrier phase tracking loops. To conclude, Cornell scintillation model achieves the 

connection between differentially detected data bit errors and cyclic slips. The 

scintillation properties that work on maintaining phase lock are amplitude distribution 

and autocorrelation function. Studies from empirical library data sets and phase screen 

generated data sets suggest that amplitude distribution is represented as Rice 

distribution and autocorrelation function as 2
nd

 order butterworth filter. These factors 
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make it convenient to build a scintillation simulator with S4 and τ0 as inputs to get 

realistic synthetic scintillation output. 

5.4 Various other scintillation models: benefits and 
drawbacks 

In this section, various other existing scintillation models to detect, analyse and mitigate 

scintillations were explained, though there is no information found in the papers to 

know if the models are available as open source. These models use different technique 

for determining and analyzing scintillation effects and explain benefits and drawbacks 

of the models. 

5.4.1 Automatic ionospheric scintillation detector for GNSS 

In this model [52], the authors use Neyman Pearson Detector for detecting scintillations 

of different parameters that determines automatic threshold for evaluating probability of 

false alarm (Pfa) and probability of detection (Pd). This model was tested for strong 

scintillation activity occurred during 24
th

 solar cycle during 2013 to 2014. The wavelet 

and Hilbert-Huang Transform (HHT) were used for decomposing and detecting the 

strength of the scintillation signal by implementing binary hypothesis testing [53]. The 

NP detector decides threshold value based on statistical description of signals with the 

help of probability density function (pdf). If the estimated value is greater than threshold 

value, then the signal contains scintillations and vice versa. The other task of wavelet 

and HHT is denoising and mitigating scintillated signal. The automatic scintillation 

detector has the advantage of performing during severe scintillation event. The HHT 

technique is more convenient for non-linear and non-stationary signals than the 

alternative wavelet transform. [52] 

5.4.2 Modernized GNSS ionospheric scintillation and TEC Monitoring 

The Authors in the paper [54], introduces the Novatel’s modern monitoring system that 

inspects ionospheric scintillation and total electron content (TEC) for determining 

amplitude and phase scintillation indices. This updated model “GPStation 6” has 

capacity to track multi-constellation, multi-frequency GNSS measurements. The 

advantage of this model is ensuring concrete, less noisy measurements and providing 

compatibility to GSV4004B receiver in all GNSS constellations for GPS L1/L2 signals. 

Another important benefit of GPStation-6 model is collecting amplitude and phase datas 

from SBAS (Satellite Based Augmentation System) satellites in equatorial regions.  

5.4.3 Simulating ionospheric scintillation effects using low complexity 

technique 

The authors in [56], introduce a low complexity technique to simulate ionospheric 

scintillation effects. Similar to Cornell scintillation model, this model generates 
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amplitude correlated time series with Nakagami-m distribution and phase correlated 

Gaussian-distributed times series. Zhang algorithm used in Nakagami-m distribution 

creates correlated samples in the generation of complex time series. Zhang algorithm 

provides the principle of direct sum decomposition principle that finds statistical 

mapping between set of Gaussian signals and Nakagami process applied during 

implementation. In addition, the method uses Yule-Walker equation to generate 

Gaussian auto-regressive correlated signals.  
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6. GALILEO SYSTEM - OVERVIEW 

In this chapter, brief description of Galileo satellite system and its signal modulation 

MBOC, Multiplexed binary offset carrier modulation are given. This chapter explains 

also the TUT MBOC simulator used for acquisition and tracking of Galileo E1 signals 

over multipath Nakagami-m fading channel. During transmission, the signal undergoes 

fading, addition of noise and also scintillation which is the focus of this thesis and the 

receiver results are studied by calculating LOS delay error.  

6.1 Galileo signal characteristics 

Galileo spectrum operates with four frequency bands and each band in turn, functions 

with different frequency based on the type of service. The frequency bands are 

categorized into lower L-band that consists of E5a frequency band with carrier 

frequency, fc = 1176.45 MHz and E5b frequency band with carrier frequency fc = 

1207.14 MHz. The middle L-band consists of E6 frequency band with fc = 1278.75 

MHz and upper L-band, E2-L1-E1 with fc = 1575.42 MHz [57]. The TUT MBOC 

simulators used in this thesis proposed in this paper generates Galileo El-band signal. 

6.2 Galileo Signal Modulation – MBOC 

A consensus was reached by United states and European community to apply BOC(1,1) 

modulation for GPS L1C signals and Galileo E1 OS signals. To optimize the 

modulation with interoperability and compatibility, MBOC(6,1,1/11) was introduced to 

minimize interference from GPS L1C signals. This thesis uses CBOC, composite binary 

offset carrier modulation to implement MBOC modulation in the tracking algorithm. 

CBOC is used to reduce interference from GPS L1 signal.  

6.2.1 BOC Modulation 

John W. Betz introduced the theory of BOC, Binary offset carrier modulation. BOC 

modulation multiplies the actual signal with rectangular sub-carrier of frequency fsc, 

dividing the resulting spectrum into two parts. Therefore, the spectrum split offsets 

spectrum from central frequency and increases the power in higher frequencies enabling 

improved signal tracking performance [59]. BOC modulation is denoted as BOC(fsc, fc), 

where fsc is sub-carrier frequency and fc is the chip frequency [58]. Sine-BOC time 

waveform is given by, 
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 SSinBOC(t) = sign(sin(NBπt/Tc))      (6.1) 

 

Cosine-BOC time waveform is given by, 

 

 SCosBOC(t) = sign(cos(NBπt/Tc))      (6.2) 

 

where, NB is BOC modulation order given by, NB = 2(fsc/ fc) and Tc is chip rate.  

6.2.2 MBOC Modulation 

MBOC(6,1,1/11) is the combination of BOC(1,1) and BOC(6,1) where main lobes of 

BOC(1,1) and BOC(6,1) are located at +/- 1MHz and +/- 6MHz respectively. The 

presence of BOC(6,1) makes additional higher frequency components in PSD. This 

characteristic makes benefit of using MBOC(6,1,1/11) over BOC(11) for the reason of 

additional power at higher frequencies.  It is particularly useful in narrowband receivers 

to improve performance such as multipath tracking and acquisition [59]. MBOC has 

similar spectrum characteristic of BOC where BOC(6,1) consumes1/11
th

 of power and 

remaining power for BOC(1,1), Therefore PSD of MBOC(6,1,1/11) is given by, 

 

 GMBOC(f) = 
 

  
GBOC(6,1)(f) + 

  

  
GBOC(1,1)(f)     (6.3) 

6.2.3 CBOC Modulation 

CBOC modulation is the implementation of MBOC modulation used by Galileo system. 

It is implemented by sum or difference of two weighted Sine Binary Offet Carrier 

Modulation [58].  

 

 SCBOC(+)(t) = W1SSinBOC(1,1)(t) + W2SSinBOC(6,1)(t)    (6.4) 

 

 SCBOC(-)(t) = W1SSinBOC(1,1)(t) - W2SSinBOC(6,1)(t)    (6.5) 

 

where, W1 and W2 are two weights chosen as W1 =       , and W2 =      .  

CBOC(-)  is used in Galileo E1 pilot signal and CBOC(+) is used in Galileo data signal. 

6.3 TUT MBOC Simulator 

The block diagram of TUT MBOC simulator is shown in Figure 6.1. The 

generated Galileo E1 (CBOC) signal is transmitted over a multipath Nakagami fading 

channel. The ideal ACF of MBOC-modulated codes (CBOC) were generated to 

compare it with the resulting correlation output, shown in Figure 6.2. Then scintillation 

with required scintillation intensity is added to the channel along with Additional White 

Gaussian Noise (AWGN). Here scintillation data histories generated from cornell 

scintillation toolbox are merged with tracking algorithm to simulate and achieve the 
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correlation output. Coherent integration is carried out to remove high frequency 

components using low pass filter, followed by Non-coherent integration to reduce noise 

floor. After signal processing, estimation of LOS delay based on the resulting 

correlation function is done by picking the first local maximum which is higher than the 

second peak of the ideal autocorrelation function.  

 

 

Figure 6.2: An example plot of time-doppler mesh showing correlation output and main 

peak 

 

In the acquisition stage, once the LOS delay is determined, LOS error is calculated from 

the difference of true delay and estimated delay. Detection Probability (Pd) is to measure 

the performance in acquisition and Root Mean Square Error (RMSE) is used in 

Tracking. An example of time-doppler mesh retrived from the TUT MBOC Simulator is 

shown in Figure 6.2. It shows the correlation output and the position of the main peak 

that helps in estimating code delay error. Detection probability is estimated if the error 

found from the difference is lesser than delta error. Delta error is threshold error value 

that is set to indicate if the signal is detected when estimated LOS error is less than delta 

error. In this thesis, delta error is set as 1/Ns/N_BOC, where Ns = 4 is oversampling 

factor and N_BOC=12 is overall BOC modulation order. Tracking is performed by 

calculating RMSE with the values of true delays and estimated delays. 
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Figure 6.1: The block diagram of TUT MBOC simulator 
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7.  RESULTS AND DISCUSSION 

In this chapter, simulations from TUT MBOC simulator are presented and discussed. 

The Detection Probability (Pd) and Root Mean Square Error (RMSE)  of the estimated 

LOS delay are determined by executing the simulator over 1000 random points in order 

to get good statistics. Then the chapter focuses on comparative analysis of different 

error criterias namely, fading, AWGN and scintillation. The Pd is used as the 

performance criteria in acquisition and RMSE is used for tracking. In the end, 

performance of acquisition and tracking based on different scintillation levels are 

analyzed. 

 

 The scintillation time histories are generated using Cornell scintillation model 

and MBOC parameters and added to the channel along with other error criterias such as 

AWGN and fading. This is done in order to merge CSM with TUT MBOC simulator 

which is the focus of this thesis and to analyse the scintillated Galileo E1 signal. The 

simulation for both Pd and RMSE are plotted against increasing values of carrier to 

noise ratio (C/N0) in dB-Hz. 

7.1 Performance analysis of scintillated E1 signal  

In this section, simulation results for different number of channel paths 1, 4 and 10 are 

presented and comparitive analysis among error criterias are performed. Scintillation 

parameter values are S4 = 0.9 and τ0 = 0.1, which denotes strong scintillation. The 

important parameters used for simulations are tabulated below, 

 

Parameters value 

Overall BOC modulation order, NB 12 

Oversampling factor, Ns 4 

Mobile speed in km/h 120 

Spreading Factor
1
 101 

Carrier-to-Noise ratio, (C/N0) in dB-Hz 20, 25, 30, 35, 40 

Chip Rate in Hz SF * 1000 

Sampling Frequency in Hz Chip Rate * Ns* NB 
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1
A small SF was chosen for keeping the simulation time to a reasonable level.  SF has little 

impact on the performance as we work with despread signal; strictly speaking, Galileo SF is 
1023. 

 

Table 7.1: Important parameters and values used in TUT MBOC Simulator  

 

Figure 7.1 shows the detection probability of scintillated + fading signal whose Pd starts 

reducing when C/N0 is 25 dB-Hz. The Pd of scintillation only signal starts reducing at 

C/N0 = 35 dB-Hz. Hence, acquisition performance is less for scintillated signals than 

received signal with AWGN only. Figure 7.2 shows the tracking performance of 

scintillated signals against noise signal. RMSE of scintillated + fading signal shows the 

tracking error between 25 to 35 dB-Hz with maximum tracking error at C/N0 = 30 dB-

Hz. From the figure 7.1, at Pd = 0.8, the difference of CNR of AWGN only and 

scintillation only curves is approximately equal to 0.5 dB-Hz, and the difference 

increases when the number of channel paths increase. Therefore, CNR of 0.5 dB-Hz is 

additionally required to get detection probability of Pd = 0.8, when the signal is affected 

by scintillation. 

 

 
Figure 7.1: Detection probability of the received signal, comparing Scintillation, 

Scintillation+fading and AWGN for one channel path. 
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7.2 Impact of multipath fading channels 

Figure 7.3 and Figure 7.4 shows the Pd and RMSE of signal for four channel paths. 

Comparing the results with Figure 7.1 and Figure 7.2, the performance of all the error 

criterias looks almost similar and the difference is that scintillation only and fading+ 

scintillation, signals show poor performance during acquisition and tracking due to 

multiple channel paths. Therefore, increasing the number of channel paths have 

significant effect in the performance criteria of acquisition and tracking due to multipath 

errors. The impact is found more in simulations when number of channels increased to 

10, as seen in Figure 7.5 and Figure 7.6. The Pd of the scintillated signals is lower than 

the values seen in the detection probability of Figures 7.1 and 7.3. Similarly, RMSE 

value of scintillated signals of 10 channels is higher than the RMSE values seen in the 

Figures 7.2 and 7.4. 

 

 

 

Figure 7.2: RMSE of the received signal in meters (m), comparing Scintillation, 

Scintillation+fading and AWGN for one channel path. 
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Figure 7.3: Detection probability of the received signal, comparing Scintillation, 

Scintillation+fading and AWGN for four channel paths. 

 
Figure 7.4: RMSE of the received signal in meters (m), comparing Scintillation, 

Scintillation+fading and AWGN for four channel paths. 
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Figure 7.5: Detection probability of the received signal, comparing Scintillation, 

Scintillation+fading and AWGN for 10 channel paths. 

 

From the figure 7.3, at Pd = 0.7, the difference in CNR of AWGN signal and scintillation 

only for 4 channel paths is 6 dB-Hz. Therefore, CNR of 6 dB-Hz is degraded when the 

signal is affected by scintillation. From the figure 7.5, if the number of channel paths is 

increased to 10, CNR is degraded more to 9 dB-Hz at Pd = 0.5, due to multipath errors. 

To mitigate multipaths errors at the receiver, various correlators are used to estimate the 

accurate shape of multipath faded correlated function. Multipath Estimating Delay Lock 

Loop (MEDLL) can be used to estimate the parameters namely, amplitudes, phase and 

delays in order to reduce multipath errors at receiver output [54]. 
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Figure 7.6: RMSE of the received signal in meters (m), comparing Scintillation, 

Scintillation+fading and AWGN for 10 channel paths. 

7.3 Performance analysis of different scintillation levels 

This section focuses on simulations of various scintillation levels in order to analyse the 

performance of acquisition and tracking. The table 7.2 shows the values of scintillation 

intensity and decorrelation time used in the simulations for different scintillation levels. 

 

Scintillation level S4 value τ0 (sec) 

weak 0.9 0.2 

moderate 0.4 0.8 

strong 0.15 1.5 

 

Table 7.2:  S4 and τ0 values for various scintillation levels used in the simulations. 

7.3.1 Analysis of scintillation levels with fading 

The Pd and RMSE for different scintillation levels with one channel path fading are 

shown in Figure 7.7 and Figure 7.8 respectively. The simulation results show that the 

strong scintillation curve undergoes performance degradation, as the value of Pd is lesser 

than weak and moderate scintillations. The RMSE value of strong scintillation is higher 

than other scintillation levels that show lower value than strong scintillation. To further 
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understand and compare the performance evaluation, Pd and RMSE of AWGN only 

indicates good acquisition and tracking performance than scintillation plots. 

 
Figure 7.7: The comparison of Pd of weak, moderate and strong scintillations with 

fading for one channel path. 

 

Figure 7.8: The comparison of RMSE(m) of weak, moderate and strong scintillations 

with fading for one channel path. 

 

The acquisition and tracking of various scintillation levels, namely weak, moderate and 

strong scintillations are shown in Figures 7.9 and 7.10. The number of channel paths 

used in these figures are four. Similar to previous figures 7.3 and 7.4, the increase in 

number of channel paths decreases the performance of acquisition and tracking. The 

values of Pd in Figure 7.9 is lower than Figure 7.7 for all the CNR values and the value 

of RMSE in Figure 7.10 is higher than Figure 7.8 for all the CNR values. The difference 

in CNR for strong and weak scintillation is found from the plots to know how much the 

signal is degraded due to increased scintillation severity. At Pd = 0.7, from the figure 

7.7, the difference in CNR is found negligible when number of channel path is equal to 
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one, but the difference in CNR is approximately equal to 1 dB-Hz when number of 

channel paths is increased to 4, which can be seen in figure 7.9. 

 

 

Figure 7.9: The comparison of Pd of weak, moderate and strong scintillations with 

fading for four channel paths. 

 

 

Figure 7.10: The comparison of RMSE(m) of weak, moderate and strong scintillations 

with fading for four channel paths. 

7.3.2 Analysis of scintillation levels without fading 

Figures 7.11 and 7.12 show the simulation results that displays detection probability and 

RMSE of different scintillation levels without fading. The value of Pd is almost same for 

all CNR values except at 35 dB-Hz where it shows slightly lesser Pd value. The 

scintillation levels shows similar performance when fading is excluded during 
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simulation. The RMSE value also shows similar result where the RMSE value is  

slightly higher for strong scintillation comparing to other scintillation levels.  

 

 

Figure 7.11: The comparison of Pd of weak, moderate and strong scintillations without 

fading for one channel path. 

 

 

Figure 7.12: The comparison of RMSE(m) of weak, moderate and strong scintillations 

without fading for one channel path. 

 

The figures 7.13 and 7.14 shows the Pd and RMSE  with four channel paths whose 

acquisition and tracking performance is lower comparing to one channel path. As we 

did earlier, to determine the amount of signal degradation when scintillation severity is 

increased, the difference in CNR of strong and weak scintillation is estimated. From the 

figure 7.11, at Pd = 0.7, the difference in CNR is about 0.3 dB-Hz, whereas increase in 

number of channel paths to 4, degrades the CNR by 2 dB-Hz which is seen in figure 

7.13.  
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Figure 7.13: The comparison of Pd of weak, moderate and strong scintillations without 

fading for four channel paths. 

 

 

Figure 7.14: The comparison of RMSE(m) of weak, moderate and strong scintillations 

without fading for four channel paths. 
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8. CONCLUSION 

This chapter summarizes the focus of this thesis and concludes the work with the 

findings of simulation results. In this thesis, two toolboxes namely Cornell scintillation 

toolbox and TUT MBOC simulator were studied and appropriate changes to the MBOC 

parameters were done to merge the toolboxes. The research was done to learn about 

characteristics of scintillation and its parameters Scintillation Intensity (S4) and 

decorrelation time (τ0). In addition, scintillation effects on acquisition and tracking were 

studied to analyze the performance criterias, Detection Probability (Pd) and Root Mean 

Square Error (RMSE) respectively.  

 

The TUT MBOC simulator implements CBOC modulation to reduce interference 

from GPS L1 signal, as the simulator generates Galileo E1 signal, which is transmitted 

over Nakagami-m fading channel along with scintillation to estimate LOS delay from 

corrupted correlation function. The main peak of the resulting correlation function 

indicates the presence of the signal. Then, the simulator acquires and tracks the signal 

with error which undergoes further processing to create connection between satellite 

and user. 

 

The obtained simulation results showed the performance degradation of acquisition and 

tracking when strong scintillation perturbed the Galileo signal. The number of channel 

paths also degraded the performance of the receiver due to multipath error. We noticed 

that scintillation deteriorates the acquisition performance compared to AWGN case with 

0.5 dB in single path, 6 dB in four paths, and 9 dB in 10 path channels. We also noticed 

that a strong scintillation can deteriorate the acquisition performance with upto 2 dB 

compared to a weak scintillation in 4 path channels. 

 

 Several correlators can be used in the receiver to mitigate the multipath errors of 

corrupted correlation function. The simulation results were also obtained for different 

scintillation levels namely, weak, moderate and strong scintillations. The detection 

probability and RMSE results were almost similar for all levels of scintillation with 

slight variation for strong scintillation. The future works may include the research for 

learning the cause of slight variation for strong scintillation comparing to weak and 

moderate scintillations. In addition, research can be done for mitigating multipath errors 

when using more number of channel paths. 
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