

NIRAJAN PANT
DISCRETE SINE AND COSINE TRANSFORMS ON PARALLEL
PROCESSORS

Master of Science Thesis

Examiner: Prof. Jarmo Takala
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 8th April 2015

i

ABSTRACT

NIRAJAN PANT: Discrete Sine and Cosine Transforms on Parallel Processors
Tampere University of Technology
Master of Science Thesis, 44 pages, 3 Appendix pages
June, 2015
Master’s Degree Program in Information Technology
Major: Digital and Computer Electronics
Examiner: Prof. Jarmo Takala
Keywords: fixed-point number, floating-point number, discrete cosine transform, dis-
crete sine transform, digital signal processing, processor configuration

Starting point of this master thesis is Discrete Cosine Transform (DCT) and Discrete
Sine Transform (DST) algorithms for signal processing. Based on the number system
used in DCT and DST application, they can be categorized as fixed-point and floating-
point DCT/DST. Floating-point numbers have large dynamic range to represent very
large and small numbers. However, floating-point operation requires more clock cycles
than fixed-point operation. Specialized hardware can be used for floating-point opera-
tions for high performance, but it also increases hardware cost. So, for general applica-
tions, use of fixed-point number system would be a good choice provided that an opti-
mum accuracy is guaranteed.

In this thesis, the existing floating–point DCT and DST of type-1 C-codes are
first converted into fixed-point code. The fractional fixed-point representation is used
for the fixed-point conversion for maximum possible accuracy. The choice of Q15 for-
mat provides highest precision for signed 16-bit fixed-point number. But in this format,
the range of numbers has to be normalized between [-1, 1]. The conversion process in-
troduces some error in the output which is calculated by signal to noise ratio (SNR).
After designing the fixed-point DCT/DST code, the performance is evaluated in various
Tensilica processor configurations. The configurations provided are generated for Ten-
silica’s Diamond Standard Processor cores in Tensilica Xtensa Environment. The clock
cycle counts of both fixed-point and floating-point DCT/DST code on four different
configurations are recorded.

 The results show that SNR of fixed-point DCT/DST is between (35-76dB) for
different transform size of DCT/DST, which suggests that the fixed-point code is accu-
rate enough. It is also observed that the fixed-point DCT/DST provides approximately 3
to 6 times performance improvement over floating-point code on Tensilica processors
cores in terms of clock cycles. Furthermore, Tensilica’s Diamond Standard 570T paral-
lel processor configuration provides the best performance among all configurations used
for designed fixed-point code. Results have shown that the fixed-point DCT/DST code
offers a large performance improvement over floating-point code provided that the
floating-point code has no added hardware support.

ii

PREFACE

The Master of Science thesis was completed in Department of Pervasive Computing at
Tampere University of Technology.

I would like to express my sincere gratefulness to my supervisor Prof. Jarmo Ta-
kala for providing me opportunity to work on this topic and examining my thesis. I am
indebted to him for providing knowledge on the topic, answering my question, and cor-
recting on my manuscript. I would also like to pay my gratitude to him for providing
fund to carry out the thesis work.

Special thanks to my friends Bishwa Subedi and Prakash Subedi for patiently
helping me to organize the work and sharing their helpful knowledge and experiences. I
would also like to express my appreciation to friends Anil Baniya, Puskal Kunwar, Ab-
hishekh Gupta and Prakash K.C. for their constant support and motivation.

I must acknowledge my wife and best friend; Jenny Maharjan Pant for her con-
tinues love, care and motivation. In particular, for the patience and understanding shown
by her during the study year is greatly appreciated.

This thesis work is dedicated to my parents and my brother for their support,
care, love and affection.

Nirajan Pant
Tampere, 28.07.2015

iii

CONTENTS

1.! INTRODUCTION .. 1!
2.! DISCRETE COSINE AND SINE TRANSFORMS .. 3!

2.1! Definitions of DCT and DST .. 3!
2.2! Mathematical Properties ... 4!

2.2.1! Unitarity Property ... 4!
2.2.2! Linearity Property .. 5!
2.2.3! Shift in Time Property .. 5!
2.2.4! Scaling in Time Property .. 6!
2.2.5! Difference Property .. 6!
2.2.6! Convolution Multiplication Property ... 6!

2.3! Basic Properties of DCT/DST .. 7!
2.4! Application of DCT/DST ... 9!

3.! REPRESENTATION OF NUMBERS AND ARITHMETIC IN DIGITAL
SIGNAL PROCESSING ... 11!

3.1! Fixed-Point Number Representation .. 12!
3.1.1! Integer Representation .. 12!
3.1.2! Fractional Representation ... 13!
3.1.3! Q-Format .. 14!
3.1.4! Fixed-Point Range and Precision ... 15!
3.1.5! Fixed-Point Arithmetic Operations .. 15!

3.2! Floating-Point Number Representation .. 17!
3.3! Fixed-Point Processors versus Floating-Point Processors 18!

4.! FRAMEWORK AND TOOLS .. 20!
4.1! Xtensa Xplorer Integrated Development Environment 20!

4.1.1! Processor Configurations ... 20!
4.1.2! Perspectives and Views .. 21!
4.1.3! Profile View ... 22!

4.2! Processor Templates ... 23!
4.2.1! Diamond Standard Processors .. 24!
4.2.2! Xtensa Processors ... 26!

5.! SOFTWARE DESIGN AND IMPLEMENTATION .. 27!
5.1! Fixed-Point Code Design .. 27!
5.2! C/MEX Function .. 30!

5.2.1! Using MEX File to Call C File ... 30!
5.2.2! MEX Files and MATLAB Interface .. 30!

5.3! Profiling the DCT/DST Code in Xtensa Environment 31!
6.! ANALYSIS AND RESULTS .. 37!

6.1! Signal-to-Noise Ratio ... 37!

iv

6.2! Performance on Tensilica Processors ... 40!
7.! CONCLUSIONS .. 43!
APPENDIX A ... 48!
APPENDIX B ... 50!

v

LIST OF FIGURES

Figure 2.1. Schematic diagram showing generalized signal flow graph of DCT-I
and IDCT-I for N + 1 = 17, as in [5]. ... 8!

Figure 2.2. Schematic diagram of DST-I and IDST-I generalized signal flow
graph for N − 1 = 15, as in [5]. .. 9!

Figure 3.1. Schematic diagram showing the DSPs on the basis of number
representation [11] .. 11!

Figure 3.2. Bit format of integer representation ... 12!
Figure 3.3. Bit format of fractional representation .. 13!
Figure 3.4. Block diagram representing different Q-format ... 14!
Figure 3.5. Multiplication of two Q15 numbers showing an extra sign extension

bit ... 17!
Figure 4.1. C/C++ Perspective layout showing Active Set Toolbar of Xtensa

Workbench ... 22!
Figure 4.2. Benchmark Perspective Layout showing the Profile View 23!
Figure 4.3. Schematic diagram showing the performance of some of the Diamond

Standard controllers/CPU in Dhrystone MIPS/MHZ against the
area (mm2) consumed by those cores [22]. ... 24!

Figure 5.1. Schematic flowchart diagram showing the fixed-point C-code design
flow process. .. 29!

Figure 5.2. Schematic diagram showing the interface between MEX files, C files
and Gateway MEX function for MEX File Generation [31] 30!

Figure 5.3. Schematic diagram showing the mechanism of calling the binary file
from MATLAB [31]. .. 31!

Figure 6.1. A flowchart showing SNR calculation process .. 38!
Figure 6.2. SNR for fixed-point DCT of type 1 ... 39!
Figure 6.3. SNR for fixed-point DST-I .. 40!

vi

LIST OF TABLES

Table 3.1. 16-bit signed fixed-point range, precision and Q-formats [14] 15!
Table 3.2. IEEE floating-point standards [11] ... 18!
Table 4.1. Memory types and sizes of Diamond Standard Processor cores 25!
Table 4.2. Comparison of features of the different HiFi audio DSP [29] 26!
Table 5.1. Processor configuration names and base Tensilica processors 32!
Table 5.2. Implementation options (For configuration DE_106 micro,

DE_108mini, DE_212GP, DE_570T) ... 32!
Table 5.3. Arithmetic options and selections in processor configuration 34!
Table 5.4. ISA configuration options and selections in processor configuration 35!
Table 5.5. Interface width Options and selections in Processor configuration 35!
Table 5.6. Instruction/ data cache option and selection in processor configuration 36!
Table 5.7. System memories options and selections in processor configuration 36!
Table 6.1. Recorded clock cycles for configuration: DE_106micro 41!
Table 6.2. Recorded clock cycles for Configuration: DE_108mini 41!
Table 6.3. Recorded clock cycles for Configuration: DE_570T 42!
Table 6.4. Recorded clock cycles for configuration DE_212GP 42!

vii

LIST OF ABBREVIATIONS

ABI Application Binary Interface

DCT Discrete Cosine Transform

DCT-I DCT of type I

DCT-II DCT of type II

DCT-III DCT of type III

DCT-IV DCT of type IV

DST Discrete Sine Transform

DST-I DST of type I

DST-II DST of type II

DST-III DST of type III

DST-IV DST of type IV

DSP Digital Signal Processing

FLIX Flexible Length Instruction Extension

FPU Floating-Point Unit

IDE Integrated Development Environment

IP Intellectual Property

ISA Instruction Set Architecture

ISS Instruction Set Simulator

GUI Graphical User Interface

MAC Multiply and Accumulate

MEX MATLAB Executable

SDK Software Development Kit

SNR Signal-to-Noise Ratio

SoC System on Chip

TIE Tensilica Instruction Extension

VLIW Very Long Instruction Word

1

1. INTRODUCTION

Digital signal processing is gaining more and more significance in daily life applica-
tions. The Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) algo-
rithms are widely used in digital signal processing. The application ranges from image
processing, speech processing, transform coding systems for data compres-
sion/decompression up to solution of differential equations [5]. Moreover, the DCT and
DST of type 1 can even be used in calculation of the inverse of Circulant Hermitian
matrices [10].

Based on data representation, Digital Signal Processors (DSP) are classified as
fixed-point processors and floating-point processors. Typically a large number of com-
putations are needed to perform a digital signal processing task. Therefore, a chosen
numeric representation has a huge effect on the design and performance of a DSP pro-
cessor. An application code has to be designed in respective number format to run over
these DSP processors for better efficiency. A floating-point number has larger dynamic
range than fixed-point numbers. In longer floating-point representations the dynamic
range is so large that it is sufficient for many practical applications. However, the draw-
back of floating point number system is that every floating-point operation requires
more clock cycles than fixed-point operation as the later uses integer operations [11].
Thus, floating-point systems are costly to implement in terms of clock cycles and hard-
ware. The processor generally includes specialized hardware (floating-point unit) that
performs floating-point arithmetic. The floating-point arithmetic is better suited to gen-
eral-purpose computing, where the requirements of computing cannot be known at the
time of developing the computing hardware. Fixed-point computing can be used in cas-
es where the requirements of the applications can be exploited during the development
of hardware. E.g., in application-specific solutions, fixed-point arithmetic can be ex-
ploited to produce more optimized computing structure for the given application.

Designing an accurate and efficient fixed-point code is the main scope of this
thesis. Starting point is to select a reference floating-point code for DCT and DST of
type 1 [5]. The choice of Q-format determines the accuracy and range of fixed-point
numbers [14]. The Q15 format chosen for this thesis work has best possible accuracy
for 16-bit numbers but the range has to be normalized between [-1,1]. The Signal-to-
Noise Ratio (SNR) analysis is used to understand the accuracy of fixed-point design
with respect to reference floating-point code.

Another part of the thesis work is to evaluate the performance of designed fixed-
point code and referenced floating-point as in [5], on different target processor cores.
The target processor cores for the generated fixed-point DCT and DST code are Tensili-
ca Diamond Processor cores. The Diamond Standard Processor cores are high perfor-

2

mance preconfigured fixed-point DSP cores that employs 32- bit registers as base archi-
tecture [20]. The hosts of tools provided by Tensilica’s Xtensa Environment are used to
run the DCT/DST code in Tensilica Processors [17]. By using Tensilica software devel-
opment tools, the floating-point DCT/DST arithmetic operations can also be emulated
in 32-bit integer architecture. The Tensilica Xtensa tools can generate different proces-
sor configurations that can be used for a particular application. In this thesis work, four
different processor configurations are used, which are pre-build inside the Xtensa Envi-
ronment. The configurations are named DE_106micro, DE_108mini, DE_212GP and
DE_570T associated with different Diamond Standard Processor Cores as mentioned in
Tensilica white paper [20]. Among them, the DE_570T configuration uses very long
instruction word (VLIW) instruction used for parallel processing. The DCT/DST appli-
cation codes are profiled in Tensilica Environment to record the clock cycles in differ-
ent configurations.

In this thesis, the initial chapters provide theoretical and technical background
necessary for this research work. The chapter 2 explains discrete cosine and sine trans-
forms, their mathematical properties and application domains. In chapter 3, a detailed
explanation related to fixed-point number system and arithmetic along with a brief in-
troduction about floating-point numbers is presented. Chapter 4 familiarizes with the
tools and frameworks that are used to run the application DCT and DST code in Tensil-
ica Xtensa Environment. Furthermore, different Tensilica Processor architectural fea-
tures are described. In the chapter 5, the fixed-point design methodology is explained.
Moreover, the chapter discusses MEX functions that facilitate the use of DCT/DST C-
codes in MATLAB. This chapter also discusses about the processor configurations that
are generated in Xtensa Environment. The chapter 6 discusses the results of the thesis.
The SNR results of fixed-point code with respect to reference floating-point code and
profiling result of DCT/DST are also presented. Finally, the last chapter includes the
conclusion of this thesis work and recommendations for possible future work.

3

2. DISCRETE COSINE AND SINE TRANSFORMS

In this chapter, a general introduction about four even types of Discrete Cosine Trans-
forms (DCT), Discrete Sine Transforms (DST) and their mathematical properties are
discussed. A generalized signal flow graph for DCT and DST of type 1 is presented.
Furthermore, general application areas of DCT and DST are also discussed.

2.1 Definitions of DCT and DST

A cosine/sine transform uses sum of cosine/sine functions oscillating at different fre-
quencies to represent a waveform having relatively complex variation in signal ampli-
tude. When the waveform and sine/cosine functions are sampled at certain intervals,
they are known as discrete cosine/sine transforms [4].

The discrete cosine transform and discrete sine transform are associated with the
family of sinusoidal unitary transform. The complete sets of DCT and DST are known
as discrete trigonometric transform, which consists of eight versions of DCT and corre-
sponding eight versions of DST [5]. These sets are identified as even or odd and of
types I, II, III, and IV. Almost all DCT and DST digital and image processing signals
application use only even types.

The four versions of even DCT matrices i.e. DCT type I, II, III and IV are de-
fined as [5];

!"# − ! ∶ ! [!!!!!]!" = !
! ! !!!! cos

!"#
! , m, n=0,1,…….,N, (2.1)

!"# − !! ∶ [!!!!]!" = !
! ! !! cos

!(!!!!! !)!
! , m, n = 0,1,…….,N-1, (2.2)

!"# − !!!:![!!!!!]!" = !
! ! !! cos

(!!!!)!"
! , m, n = 0,1,…….,N-1, (2.3)

!"# − !" ∶ [!!!"]!" = !
! ! cos

(!!!!)(!!
!
!)!

! , m, n = 0,1,…….,N-1, (2.4)

where !! is a scaling factor defined as:

 !!(!!!!!"!!) =
!
√! !,!!!!"!! = 0!!"!! = !
1!,!!!!!!"ℎ!"#$%!!!!!!!!!!!

!
 .

4

The corresponding four types of even DST matrices denoted as DST type I, II,
III, IV are defined as:

!"# − ! ∶ ! [!!!!!]!" = !
! ! sin

!(!!!)(!!!)
! , m, n = 0,1,… ,N-2,

!"# − !!:!![!!!!]!" = !
! ! !! sin

!(!!!!)(!!!)
!! , m, n = 0,1,… ,N-1,

!"# − !!!:![!!!!!]!" = !
! ! !! sin

!(!!!!)(!!!)
!! , m, n = 0,1,… ,N-1,

!"# − !" ∶ [!!!"]!" = !
! ! sin

!(!!!!)(!!!!)
!! , m, n = 0,1,… ,N-1,

where

!!(!!!!!"!!) =
!
√! !,!!!!"!! = 0!!"!! = !
1!,!!!!!!"ℎ!"#$%!!!!!!!!!!!

!
 .

 In the above equations, N represents an integer, which is a power of 2. A super-
script of a matrix represents its version number while a subscript represents the order.
 Different authors have introduced different sets of Discrete Sine and Cosine
transforms [5]. The DCT of type I (DCT-I), first introduced by Wang and Hunt, is de-
fined for the order N+1 whereas, DST of type I (DST-I) defined for order N-1 is intro-
duced by Jain. The first definitions of DCT of type II (DCT-II) and its inverse (DCT-
III) were given by Ahmed et al. Kekre and Solanki first reported the DST of type II
(DST-II) and its inverse (DST-III). Furthermore, Jain also introduced the DCT and DST
of type IV.

2.2 Mathematical Properties

The mathematical properties of discrete cosine and sine transforms are basis for their
application on practical domain. Different properties of DCT/DST such as shifting,
convolution, scaling are extensively applied in the discrete transform field. In this sec-
tion, the main mathematical properties of DCT and DST are described briefly.

2.2.1 Unitarity Property

The DCT and DST are separable transforms that allow decomposition of multidimen-
sional transform into one-dimensional transform. As DCT and DST matrices both are
orthogonal, its inverse transform matrices can be obtained by matrix transpose [5]. Fur-
thermore, DCT/DST of type-I and type-IV are symmetric meaning the inverse trans-
form is the transform of itself. On the contrary, the type II and type III of both DCT and
DST are transposes of each other.

5

These relations can be formulated for inverse DCT matrices,

[!!!!!]!! = [!!!!!]!=!!!!!! , [!!!!]!! = [!!!!]!=!!!!!! ,

[!!!!!]!! = [!!!!!]!=!!!!! , [!!!"]!! = [!!!"]!=!!!!" .

Similarly for inverse DST matrices,

[!!!!!]!! = [!!!!!]!=!!!!!! , [!!!!]!! = [!!!!]!=!!!!!! ,

[!!!!!]!! = [!!!!!]!=!!!!! , [!!!"]!! = [!!!"]!=!!!!" .

2.2.2 Linearity Property

All DCT and DST hold the linearity property [5]. That is, for a matrix M,

M(aI+bJ) = aMI+bMJ,

where a and b are constants, and I and J are vectors.

2.2.3 Shift in Time Property

The relationship between discrete cosine and sine transforms of original sequence and
its shifted sequence were first presented by P. Yip and K. R. Rao [2]. Shift property can
be very useful for reducing the computational complexity of the discrete transform,
when the transforms have to be applied on incoming continues data stream.

If the input sequence of data points is a vector,
x =[! 0 , ! 1 ,…… . ! !]!,

then the right shifted sequence of same vector is

x+ =[! 1 , ! 2 ,…… ! ! + 1]!.

The minimum shift is one sample point in the given sequence. The correspond-
ing DCTs are given by,

!!=[C] x and !!!= [C] x+.

 This shift in time property not only relates !!! to !! but also it has a relation with
the DST of x i.e. with !!. The shift property for DCT-I is defined as,

!!!! ! = cos !"
! !!! ! + !!!!"#

!"
! !!!!(!)

+ !
! !![−

!
! cos !"

! ! 0 + !
! − 1)]!!(1)

6

+ −1 ! 1− !
! cos !"

! ! ! + −1 ! !
! !!(! + 1) .

 Here,!!!! ! and !!!(!) are !!! element of the DCT-I of vector
[! 0 , ! 1 ,… , ! !]! and DST-I of vector [! 1 , ! 2 ,… , ! ! + 1]!, respectively.
 Similarly the shift property of DST-I is given by

!!!! ! = cos !"
! !!! ! − !"# !"

! !!!!(!)

+ !
! sin

!"
! [!! ! 0 − 1− !

! −1 !!(!)] .
The shift property of other types of DCT and DST are explained by P. Yip and K. R.
Rao in [2].

2.2.4 Scaling in Time Property

Since, DCTs and DSTs are the transforms that deal with discrete sample points and its
resulting transform is in discrete frequency domain, a scaling in time has no effect on
the overall transform. However, a scaling in time will cause an inverse scaling in the
frequency domain [3].

If ∆! and ∆! are time and frequency units respectively, then
∆!.∆! = !

!! .

 Thus if ∆t is scaled by a factor a and it changes to a∆!, then the frequency unit

∆! must change to ∆!! , provided the number of divisions N remains the same. There is

no change in the overall magnitude of the transform.

2.2.5 Difference Property

This property is useful when differentiation of the adjacent samples is required in a sig-
nal; an application being differential pulse code modulation [3].
 Considering a signal with a differences of adjacent samples d(n) = x(n+1) - x(n),
n = 0,1,…, N-1. The difference vector can be defined as;

d = x+ - x

where, x+ is a right shifted version of x. So, the DCT and DST of vector d is given by
!! = !!! − !! and !! = !!! − !! .

2.2.6 Convolution Multiplication Property

Convolution multiplication property is one of the most important properties of DCT and
DST. It is used to perform digital filtering in the transfer domain. The convolution in
transform domain, which is a result of an inverse transform of the product of forward

7

transform of two input data sequences, is equivalent to symmetric convolution of those
sequences in the spatial domain [5].
 If {!!} and {!!} are two input data sequences to be convolved, the relationship
between transform domain convolution- multiplication property and symmetric convo-
lution can be given as:

{!!} < sc > {!!} = !!!![!! !! ∗ !!!{!!}]
where <sc> denotes the operator of symmetric convolution, * represents element by
element multiplication of its operands, and !! !! represents a transform !! of the se-
quence !! . For example, the convolution-multiplication property of type 2 DCT
(DCT-II) can be obtained by substituting !! = !!!= [!!!!] and !! = [!!!!!]!! in the pre-
vious relation.

2.3 Basic Properties of DCT/DST

Signal Flow Graph

The signal flow graphs visualize the computational structure of DCT and DST and their
inverse. The signal flow graphs of DCT/DST of type 1 describe the computation of
DCT-I for any N= 2! + 1, and DST-I for any 2! − 1where m > 0 and N is the length
of data sequence. For DCT-I and DST-I computation, the generalized signal flow
graphs for N=17 and N=15 are presented in the Figures 2.1 and 2.2, respectively. The
details on DCT/DST computation and signal flow graphs are mentioned by K.R. Rao
et.al. in [5].

Butterfly diagram
The butterfly is the simplest 2-point DCT/DST calculation and is a basic unit of
DCT/DST calculation. It consists of one addition and one multiplication operation. The
DCT/DST algorithm consists of many butterfly computations. The butterfly combines
the results of smaller DCT/DSTs into larger DCT/DST, or vice-versa (breaking larger
DCT/DSTs into sub transforms).

Radix
In general radix means that the entire algorithm is implemented with certain butterfly
blocks, i.e,, radix-2 DCT means that the DCT is computed with the aid of 2-point
DCTs. Here the radix can be interpreted as the length of the building block of the fast
algorithm, i.e., 4-point DCT can be considered as radix-4. Butterfly and radix are inter-
related.

8

Figure 2.1. Schematic diagram showing generalized signal flow graph of DCT-I and
IDCT-I for N + 1 = 17, as in [5].

α α

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

Z0
I

Z1
 I

Z 2
 I

Z 3
 I

Z 4
 I

Z 5
 I

Z 6
 I

Z 7
 I

Z 8
 I

Z 9
 I

Z 10
 I I

Z 11
 I

Z 12
 I

Z 13
 I

Z 14
 I

Z 15
 I

Z 16
 I

α α

9

Figure 2.2. Schematic diagram of DST-I and IDST-I generalized signal flow graph for
N − 1 = 15, as in [5].

2.4 Application of DCT/DST

The discrete cosine and sine transform have applications in various areas of digital sig-
nal and image processing. They are extensively used in transform coding systems for
data compression and decompression [5]. The properties of DCT like decorrelation,
energy compaction, separability, symmetry and orthogonality are very important in im-
age processing applications [6]. Many international image and video coding standards
have used DCT as main processing tool for data compression/decompression [7]. Simi-

X0#

X1#

X2#

X3#

X4#

X5#

X6#

X7#

X8#

X9#

X10#

X11#

X12#

X13#

X14#

S!!

S!!

S!!
S!!

S!!

S!!

S!!

S!!

S!!

S!!

S!"!

S!!!

S!"!

S!"!

S!"!

10

larly, the international audio coding standards MPEG-1 and MPEG-2 use a modified
form of DCT and DST [7] Furthermore, the DCT and DST are applicable on areas like
solution of differential equations, Cepstral analysis in speech processing, and transform
domain processing etc. [8]
 In this thesis work, the DCT and DST of type 1 are used. Both types have similar
application as general DCT. The DCT-I is as good as DCT-II in terms of computational
requirements and its performance on energy compaction and digital filtering [9]. When
the length of data sequence is increased, the DCT-I is competitive with DCT-II in terms
of performance. At the same time, DCT-I requires less computations in comparison to
DCT-II that makes it suitable even better than DCT-II for applications with larger data
sequences having relatively low correlation coefficients. Furthermore, DCT and DST of
type 1 are also used in calculating the inverse of circulant Hermitian matrices [10].

11

3. REPRESENTATION OF NUMBERS AND
ARITHMETIC IN DIGITAL SIGNAL PRO-
CESSING

In the field of digital signal processing, there are number of factors, which determine
the type of processor, such as: computational efficiency, memory consumption, ease of
implementation, precision requirement, time to market etc. [11]. For processor design,
one of the significant criteria in decision processing is to determine the data representa-
tion by the processor for a particular application. To implement any digital signal-
processing task, a large number of computations need to be performed. Therefore, a
selected numeric representation has a huge influence on the design and performance of
a DSP processor. The key for arithmetic representation is to represent dynamic range of
numbers in less number of bits. The maximum size of an instruction and addressable
memory is described by word length. Hence, a major characteristic required for choos-
ing an arithmetic representation would be to represent a dynamic range of numbers in
certain word size. In some cases, a large dynamic range is needed while in other cases,
simplicity and computation efficiency is required. So, there is always a trade-off be-
tween them. There are two types of number representations: fixed-point and floating-
point. According to data representation by DSP, they are classified as fixed-point pro-
cessors and floating-point processors. The fig 3.1 shows how DSP are classified on the
basis of number representation.

Figure 3.1. Schematic diagram showing the DSPs on the basis of number representa-
tion [11]

64 Bit

DSP

Fixed Point Floating Point

16 Bit 24 Bit 32 Bit IEEE 754 Format Other Format

16 Bit 32 Bit

12

3.1 Fixed-Point Number Representation

Fixed-point number representation deals with both positive and negative numbers, and
whole numbers. The key in fixed-point number representation is the concept of a binary
point. The binary point divides a number between integer and fractional part, just like a
decimal point in decimal system. The bits, which are left of the binary point carries a
weight of 2!, 2!, and so on. On the other hand, the bits, which are right of the binary
point, carry negative weights: 2!!, 2!! and so on.
 As the name suggests, the binary point is fixed in this representation and there is
a constant step between two representable numbers. The binary point could be located
anywhere, e.g. in the beginning, in the end or at a certain location between the numbers.
As an example, xxx.xx denotes fixed-point arithmetic with two bits after the binary
point. The selection of binary point is done according to the precision requirements. The
higher number of bits after the binary point, the higher will be the precision. The bits on
the left hand side of the binary points (i.e. towards most significant bits) are known as
integer bits while the bits after the decimal points are regarded as fractional bits. We
need to remember that, the binary number is in fact an imaginary point that is not stored
in the memory rather it is a way for the interpretation of stored binary bits. The data
saved in the memory are always in the form of binary bits (i.e. 0 and 1) but this kind of
representation simplifies the manipulation of those bits in different ways according to
our necessities.
 Fixed-point representation can be further divided into integer representation and
fractional representation [11]. The integer arithmetic is used in a DSP for control opera-
tions, address calculations and other operations that are not related to signals [11]. On
the other hand, fractional representation is useful in signal computations and they have
values between -1 and +1.

3.1.1 Integer Representation

Integer representation is very simple and straightforward representation where the bit
pattern is regarded such that the most significant bit (MSB) is the leftmost bit and the
least significant bit (LSB) is the rightmost one. If the number represented is more than a
byte, then the byte orientation is reliant on the endian of the representation. In big-
endian representation, MSB is the leftmost bit, where as in little-endian representation,
the leftmost bit is LSB, keeping same internal orientation of bits in every byte. Figure
3.2 shows the bit pattern of 16-bit binary integer representation.

!!" …. …. …. !! !! !!

Figure 3.2. Bit format of integer representation

13

 The ranges of representable numbers are dependent on the number of bits and the
weight of each bit is dependent on the bit position. In unsigned binary representation
that shows numbers only in positive range, the representable range ! for n number of
bits is

0 ≤ ! ≤ 2! − 1.
The decimal value for n number of bit pattern can be calculated as,

! = 2!!! + 2!!!+. . .+!2!!!!!!! = 2!!!!
!!!

where ! is the bit position in the number.
 The signed binary representation includes both positive and negative numbers.
The MSB is called as sign bit and its value reflects whether the number is negative or
positive. For a negative number, the sign bit is ‘1’ whereas the sign bit is ‘0’ for positive
number. The representable range remains the same in signed binary representation;
however, the maximum representable positive number gets reduced almost by half. The
range ! of any n number of bits can be found as,
 −2!!! ≤ ! ≤ 2!!! − 1.
The decimal value!!!for signed ! numbers of bit can be calculated as,
! = −2!!!!!!! + !… . .+2!!! + 2!!! = −(2!!!!!!!)+ 2!!!!

!!! . (3.1)

3.1.2 Fractional Representation

In case of integer representation, double number of bits is required to store the result of
multiplication operation. But, if the numbers can be normalized in the range of [-1, 1),
the result will not overflow (exception is -1 x -1 = +1). This is because multiplying a
fraction by a fraction always results in a fraction. (For example, 0.99999 x 0.99999 is
always less than 1). This kind of representation is known as fractional representation
[11]. Figure 3.3 shows the fractional representation for 16-bit number.

!! !!! !!! …. …. …. !!!"

Figure 3.3. Bit format of fractional representation

In fractional representation, the range ! for a number having ! fractional bits can be
calculated as,

−1 ≤ ! ≤ 1− 2!(!!!) .
 The decimal value ! of the fractional number can be calculated as

! = −!!!! + 2!!!!!! !… . .+2!(!!!)!! . (3.2)

Binary Point

14

3.1.3 Q-Format

Fixed-point numbers, combining both integer and fractional representation are generally
represented by a well-defined Q-format [12]. The Q-format represents a fixed-point
number in the form of !".!, where ! represents the number of integer bits on the left
hand side of the binary point known as integer word length and ! represents the number
of fractional bits on the right hand side of the binary point called fraction word length.
The total number of bits in the format is called word length [13]. Hence, a fixed-point
number is characterized by word length in bits, the location of binary point and sign of
the number (signed or unsigned) [14].
 Figure 3.4 shows different fixed-point format with imaginary binary point at dif-
ferent locations.

Figure 3.4. Block diagram representing different Q-format

 There are no integer bits in case of fractional fixed-point representation. There-
fore, this special format can be regarded as !" format, where ! is the number of frac-
tional bits. For example, in a signed number, a !2.14 format has 2 integer bits and 14
fractional bits and a sign bit. On the other hand, !15 format has 15 fractional bits and 1
sign bit. However, some fixed-point designers may consider the sign bit while some do
not; this is just a way to interpret a fixed-point number. A !5.5, format can be interpret-
ed such that total number of bits required are 10, without including the sign bit; while
for the same format, some designer may consider total number of bits required are 11
considering a sign bit.

The location of binary point determines how fixed-point numbers are interpreted
in decimal system. For example, combining equations (3.1) and (3.2), in signed two’s
complement arithmetic [15], the same 5-bit binary number can be interpreted as fol-
lows:
 10110. Indicates (−2! + 2! + 2) = -10 in decimal.
 101.10 Indicates (−2! + 2! + 2!!) = -2.5 in decimal.
 1.0110 Indicates (−2!! + 2!! + 2!!) = -2.5 in decimal.

S Integer (15 bits) S

Upper 5 bits Remaining 10 bits

Fraction (15 bits)

Binary point position

Q15.0 Q15

Q4.10

15

3.1.4 Fixed-Point Range and Precision

The range of a fixed-point number is the minimum and maximum values, a Q-format
can represent. For a fixed-point number with word length ′!"′ and fractional word
length ′!"#′, the range of the format is from

 −2!"!!"#!! to 2!"!!"#!! − 2!!"#, for a signed number
 0 to 2!"!!"# − 2!!"#, for a unsigned number

The precision of fixed-point number is the distance between successive numbers within
the range. For both signed and unsigned fixed-point numbers, the precision is 2!!"#.

Table 3.1. 16-bit signed fixed-point range, precision and Q-formats [14]

Q-Format
Maximum Positive Val-
ue in Decimal

Maximum Negative
value in Decimal

Quantization
step/ Precision

Q1.15 or Q15 0.999969482421875 -1 0.00003051757813
Q2.14 1.99993896484375 -2 0.00006103515625
Q3.13 3.9998779296875 -4 0.00012207031250
Q4.12 7.999755859375 -8 0.00024414062500
Q5.11 15.99951171875 -16 0.00048828125000
Q6.10 31.9990234375 -32 0.00097656250000
Q7.9 63.998046875 -64 0.00195312500000
Q8.8 127.99609375 -128 0.00390625000000
Q9.7 255.9921875 -256 0.00781250000000
Q10.6 511.984375 -512 0.01562500000000
Q11.5 1023.96875 -1024 0.03125000000000
Q12.4 2047.9375 -2048 0.06250000000000
Q13.3 4095.875 -4096 0.12500000000000
Q14.2 8191.75 -8192 0.25000000000000
Q15.1 16383.5 -16384 0.50000000000000
Q16.0 32767 -32768 1.00000000000000

Therefore, the fixed-point number has higher precision, if it has higher number of
fractional bits. On the other hand, the range will decrease if we increase the number of
fraction bits. Table 3.1 shows different Q-formats of signed 16-bit fixed-point numbers
along with their range and precision.

3.1.5 Fixed-Point Arithmetic Operations

In fixed-point arithmetic calculations, special attention has to be taken to keep track of
the binary point. Although, keeping track of binary point is easy and systematic, the
scaling to avoid overflow is more problematic in arithmetic operations. The arithmetic
operations are addition, subtraction, multiplication and division. Division operation is
equivalent to multiplication by the multiplicative inverse, so it is not explained below.

16

Shifting is the key in a fixed-point representation [14]. It is used for addition/subtraction
and multiplication. Therefore, a brief explanation about shifting is presented first.

Shifting
Shifting a number to the right by one bit is equivalent to the division of the number by
2! . Similarly, to the right by two bits is equivalent to division by 2!!and so on. Con-
versely, shifting left acts as a multiplication by 2!, 2!,!and so on. Shifting is also used
for displacing the position of binary point, which is usually needed in addition, and mul-
tiplication operations. The shift to the right is denoted by >> and to the left by << sym-
bol. If x is total number of shifts in a !(!,!) fixed point number, we have

Q m,n ≫ x = Q(m− x,! + x)
! !,! ≪ ! = !(! + !,! − !)

Addition and Subtraction
In case the operands are of the same fixed-point data types, addition and subtraction
operation are carried out just like integers. For example, the two fixed point numbers
!(!1,!1) and !(!2,!2) has a correct result on a condition that !1 = !2!; !!1 = !2.
But, if the operands are of different data types, the variable having larger number of
fractional bits is shifted to right by !!"#$%# − !!!"!""#$ bits to move its decimal place to
align the binary points [16]. As an example, if we have to add two numbers ! 0,7 and
! 4,3 , the ! 0,7 number needs to be converted into the ! 4,3 format by right shift-
ing it 4 bits and sign extending it. Then, the addition operation can be done while keep-
ing in mind that the operation does not overflow.

Multiplication
In multiplication, one needs to consider that the result of the operation requires a tempo-
rary storage of twice the size of the operands (assuming both operands have same stor-
age size) so that there will be no loss of bits. The result then needs to be chopped to fit
into the storage of the operands. If both the operands are of same Q-format, both the
integer and fractional part have twice as much length in the temporary result. For the
correct result and alignment of radix point, a right shift by the number of fractional bits
is done. Rounding can be combined along with right shift to gain more accuracy.

Fixed-point additions and subtractions are performed by integer operation in a
straightforward manner. For example, if we add two 16-bit numbers (!15 numbers), the
result will also be a !15 number. But, in case of fixed-point multiplication, if we multi-
ply two !15 numbers, the result will be a !30 number with two sign bit and 30 frac-
tional bits. The extra sign bit in the result is known as a sign extension bit. This is fur-
ther clarified by an example mentioned below;

Let us assume, we have to multiply 0.5 with 0.25. In !15 format,
• 0.5 is represented as (0.5*2^15) = 16384 (decimal representation)
• 0.25 is represented as (0.25*2^15) = 8192 (decimal representation)
• On multiplication, the product is 134217728 (decimal representation)

17

Figure 3.5. Multiplication of two !15 numbers showing an extra sign extension bit

The product is not a !15 number as the number of bits required is more than 16.

Our anticipated result is 0.125 i.e. 4096 in !15 format. The result is in fact 0.125 times
2!". In order to keep the same ! format of the result, we need to right shift the result by
15 bits (i.e. dividing by 2!"). Right shifting the result by 15 bits (division by 2!") pro-
duces (134217728 / 2!") = 4096, which is !15 notation for 0.125.

3.2 Floating-Point Number Representation

DSPs generally need a large dynamic range to represent computation results. One way
to accomplish this dynamicity is to use a large number of bits to represent the largest
and smallest numbers. This can waste memory, if a wide range remains unused. To ac-
cess a large memory area, the processing speed becomes slow. Large memory areas also
increase the silicon size in a system [11]. The other way to achieve dynamicity is by
using floating-point numbers, which introduce an exponent in the representation. The
exponent increases the dynamic range that makes a very large and a very small numbers
representable. The distance between two successive numbers (quantization step) does
not remain as in the case of fixed-point number and it changes according to the expo-
nent. The quantization step is the same for a number having the same exponent. The
term floating point refers to the fact that the binary number can ‘float’, not like fixed-
point where the binary point is fixed. The binary point can be placed anywhere and it
changes with the exponent value.
 The mantissa part of a floating-point number determines accuracy and the expo-
nent part determines dynamicity. The accuracy increases with the increment of number
of bits in mantissa part. On the other hand, increasing the number of bits in the exponent
field will increase the dynamic range. Therefore, floating point number can be adjusted
accordingly. The drawback of floating point number system is that, every floating-point
operation requires more clock cycles than fixed-point operation [11]. The processor
generally includes specialized hardware (FPU-floating point unit) that performs float-
ing-point arithmetic.

 Q15

15 bits 15 bits

Q15

Sign bit
X

16-bit memory

Extension sign bit

18

 A floating-point number ! can be represented as follows

! = −1!!. !!
where S is the sign of the number, m is the mantissa, ! is base of the floating-point sys-
tem and ! is exponent. The mantissa can be normalized as, 1≤ ! < !. For a binary
number, this determines the range of mantissa between [0.5, 1] on the positive side and
between [-1, -0.5] on the negative side. To store a floating-point number, we need
!! + !! + 1 bits, where, !! is total number of bits in mantissa field, !! is total number
of bits in exponent field and an additional bit is required for a sign bit. A basic floating-
point storage format in memory is shown below.

Sign (S) Exponent Field (e) Mantissa field (m)

 Although, there are several floating-point representations that have been used in
computers, the most commonly used representation is defined by IEEE 754 standard.
Four different floating-point formats are defined in this standard and are mentioned be-
low;

- Basic single precision floating-point
- Extended single precision floating-point
- Basic double precision floating-point
- Extended double precision floating-point

 The number of bits in mantissa and exponent part is different in this format as
shown in table 3.2.

Table 3.2. IEEE floating-point standards [11]

Parameter
Basic Sin-
gle format

Extended Single
format

Basic Double
format

Extended Dou-
ble format

Format width (bit) 32 43 64 79

Mantissa width (bit) 23 31 52 63

Exponent width (bit) 8 11 11 15

Maximum exponent +127 +1023 +1023 +16383

Minimum exponent -128 -1024 -1024 -16384

3.3 Fixed-Point Processors versus Floating-Point Processors

Fixed-point processors are used in high volume applications. They are comparatively
less expensive as compared to its floating-point counterpart due to large scale of manu-
facturing. To compensate quantization noise, fixed-point arithmetic requires greater
manipulation in algorithms. Although the development cost is higher for fixed point due

19

to difficult algorithm implementation, the final product will be cheaper. Moreover, the
fixed-point implementation on a DSP allows lower power consumption, and smaller
size on chip (reduced hardware complexity of fixed point circuit). Therefore, fixed point
DSPs are used for high-volume general-purpose applications.
 On the other hand, floating point DSP is optimized for computationally intensive
and generalized tasks. Since the floating point has large dynamic range, there is practi-
cally no limitation on dynamic range for floating point designs. Floating point code de-
velopment is less architecture dependent as well as high-level language friendly. There-
fore, floating point DSP have cheaper and quicker development time than fixed-point
DSP, however the final product cost is expensive (more complexity in silicon and also
has wider buses to implement in design).
 Hence, lower cost and higher speed of computation are trade off against added
design effort for algorithm implementation in fixed-point algorithm. In the reverse
manner, the ease of development process is trade off against the higher cost and hard-
ware complexity in floating point applications.

20

4. FRAMEWORK AND TOOLS

Tensilica is a company founded in 1997 in Santa Clara, California based on semicon-
ductor intellectual property core business, and is now part of Cadence Design System.
Tensilica designed the first configurable and extensible processor core to address appli-
cation specific microprocessor cores and software development tools. To implement the
DCT/DST codes in Tensilica Processors, the host of tools provided by Tensilica’s Xten-
sa Environment is used [17]. A detailed description about the Xtensa tools and Proces-
sors are discussed in the following sections.

4.1 Xtensa Xplorer Integrated Development Environment

Xtensa Xplorer IDE tool is a graphical user interface (GUI) design environment targeted
for SoC modeling and software development for Tensilica processors. It provides soft-
ware and hardware developers a common development tool to design Xtensa processor
based systems. The Xplorer incorporates processor customization, software develop-
ment and multi-processor SoC architecture tools, all together in a one common design
environment. Xplorer is useful for the development of Tensilica Instruction Extension
(TIE) [18], a Verilog like language used for custom instruction extensions to Xtensa
Processors. The IDE is fully integrated with Xtensa Software Developer’s Toolkit [19],
where a developer can profile an application C-code, identify problems in the code and
according to the necessity, make adjustment in the custom processor to speedup that
code. Different features of Tensilica Processors can be added or removed to customize it
according to the requirement of the SoC designer.

4.1.1 Processor Configurations

The Xtensa Xplorer tool provides different kinds of processor configurations options to
use from the list for a particular application code. The processor configuration defines
the type of Tensilica Processor. These configurations specifications can be either al-
ready built (and installed) in the Xtensa tool known as configuration build or that has
not been built, simply known as configurations inside the Xplorer tool [17]. The Xtensa
tools and configuration build are platform specific (Windows or Linux). Using a soft-
ware configuration build, the Xtensa tools are adapted to a particular processor configu-
ration. There might be one installation of Xtensa tools but many configurations of Ten-
silica processors. The target processor is selected using environment variables.
 Using a configuration build, the Xtensa tools are adapted to a particular processor
configuration. The Tensilica’s Diamond Processor configuration builds are pre-build

21

inside the Xplorer tool and cannot be modified by a software developer (i.e. cannot be
further configured or extended). While, on the other hand, Tensilica’s Xtensa Proces-
sors can be configured and extended by using TIE as per requirements. Same technolo-
gy is used for Tensilica’s Diamond Processor builds as Xtensa Processor builds but the
flow with which they are manipulated is more restrictive as they have predefined nature.
Recent versions of Diamond Processor configuration builds are always included in Ten-
silica Xplorer tool, which are built for little-endian versions of the Diamond Processors.
These configuration builds are used for evaluating Tensilica Processors as well as for
developing software for a chosen processor.

4.1.2 Perspectives and Views

The Xplorer workbench can be dynamically rearranged according to different tasks such
as editing, profiling or debugging any application code. A particular arrangement of the
workbench interface to suit some set of tasks is known as ‘Perspectives’. The ‘Views’
provides navigation of information in the workbench [17]. So, a perspective depicts
how certain views are arranged, what kind of menus and set of toolbars are available
and where the editor area is located inside the workbench. The Xplorer has many stand-
ard perspectives, which can be modified. Nevertheless, it is also possible to create and
modify own perspectives. The key perspectives for Xtensa C/C++ project development
are:

C/C++ editing Perspective: This Perspective is used for creating, editing and compil-
ing any C/C++ projects, Xtensa configuration and tensilica instruction extension files.
The Perspective has a View named ‘Project Explorer’, which displays C/C++ projects
and its related files. Similarly, the View ‘System Overview’ displays various Xtensa
configurations.

Debug Perspective: This Perspective shows a group of Views and a source code editor
to debug program with Xtensa Xplorer. The views help to control the execution of the
program by suspending or resuming the program, adding breakpoints, examining con-
tents of memory and register etc.

Benchmark Perspective: The Benchmark Perspective is the main perspective to view
the profiling results (Profile View) of the executed C/C++ application.

 In Xplorer, there is a collection of ‘Active set toolbar’ consisting an active pro-
ject, active configuration and active target. These toolbars display active set and use of
them is the easiest way to build, run, profile and debug an application. Any task of
building, running, profiling and debugging will be done for those chosen active sets.

The Benchmark Perspective and C/C++ Perspective along with Active set toolbar
of the Xtensa workbench are shown in the figures below. In Figures 4.1 and 4.2, the P:

22

DCT_Fixed is the active project to be built, C: DE_570T is selected as an active config-
uration and T: Debug is a target toolbar option to select the target for which to build.

Figure 4.1. C/C++ Perspective layout showing Active Set Toolbar of Xtensa
Workbench

4.1.3 Profile View

The Xtensa tools have numerous capabilities for profiling and benchmarking of various
application behaviors [17]. The profiling task is to run the program using an appropriate
launch that regulates execution and collects profile data. The profiling task also consists
of navigating and analyzing of those profiled data using controls and views in the
Benchmark perspective.
 The cycle-accurate Instruction Set Simulator (ISS) included in Xtensa tool is
used for profiling and can trace program execution at the lowest level. In addition to the
cycle count profile, the ISS has other uses like collection of data on cache behavior and
pipeline bubble; however this topic is out of the scope for the thesis. The Profile toolbar
is used to launch the C/C++ project. After completion of profiling run, Xplorer will
open the Benchmark Perspective to display the profiling results.
 The Profile View inside Benchmark Perspective displays profile information of
various functions in C/C++ program. The Profile View displays information up to
twelve columns. Some of them are listed below.

23

- Function name: It displays the name of functions in the programs.
- Total (%): It displays the percentage of total profile count spent in executing this

function.
- Function: It displays the clock cycle count only for this function.
- Children: It displays the total cycles spent in executing the functions called by this

function plus the functions called by those functions.
- Total: It displays the total sum of both Function and Children results.
- Called: It displays the total number of times this function was invoked.
- Size (bytes): It displays the text size of the function.

Figure 4.2. Benchmark Perspective Layout showing the Profile View

4.2 Processor Templates

There are mainly two sets of families of Tensilica processors, namely Diamond Stand-
ard Processors and Xtensa Processors. Both of the families of processors are described
briefly in the following sections.

24

4.2.1 Diamond Standard Processors

The Diamond standard processor cores are preconfigured as 32- bit microprocessor and
DSP Intellectual Property (IP) cores [20]. The basis of all Diamond standard processor
cores is Tensilica’s Xtensa Instruction Set Architecture (ISA) [21].

The Diamond Standard Processor core family comprises of three general-purpose
controller cores, a Linux- compatible CPU core, a superscalar CPU core, an audio pro-
cessor core and a DSP core. Figure 4.3 illustrates the performance of some of the Dia-
mond Standard controllers/CPU in Dhrystone MIPS/MHZ and area consumed by those
cores. Dhrystone is a computation benchmark representative of an integer processor
performance [22]. The next section describes some of the Diamond processors briefly.

Figure 4.3. Schematic diagram showing the performance of some of the Diamond
Standard controllers/CPU in Dhrystone MIPS/MHZ against the area (mm2) consumed

by those cores [22].

The Diamond Standard 106Micro Controller Core
The Diamond Standard 106Micro Controller Core is the smallest 32-bit RISC core
among all the Diamond processor cores [23]. It has the smallest die area as well as low-
est power consumption among the 32-bit Diamond processor family. It is a cache-less
controller core and uses a 5-stage pipeline. Modeless switching between 24 and 16-bit
instructions allows a good code density. To enhance performance of arithmetic and DSP
code, the controller core has 32*32-bit multiplier. Furthermore, it consists of a 16-entry
general-purpose register files known as AR register file to minimize area. The perfor-
mance of 106Micro controller core is measured at 1.22 Dhrystone/MHz.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

0.10 0.20 0.30 0.40 0.50

106 Micro

108 Mini
212 GP

570 T

Area (mm2) in 90G IC Fabrication

Pe
rf

or
m

an
ce

 (D
hr

ys
to

ne
 M

IP
S/

 M
H

z)

25

The Diamond Standard 108Mini Controller Core
The Diamond Standard 108Mini Controller Core is small cache-less fully synthesizable
32-bit RISC core [24]. Although 108Mini Core is small in area, it achieves high per-
formance of 1.34 Dhrystone MIPS/MHz. Moreover, it is more useful for DSP applica-
tion because of its integrated 32-bit integer divider along with 32*32-bit multiplier. The
32-entry general-purpose register file, with a 16-entry register window, facilitates fast
context switching. It has a local, single cycle instruction memory interface and two local
data memory interfaces.

The Diamond Standard 212GP Controller Core
The Diamond Standard 212GP Controller Core is a mid-range 32-bit RISC core of dia-
mond family designed for high performance [20]. Similar to the Diamond 108Mini
Controller core, the Diamond 212GP controller has interfaces for local instruction and
data memories. In addition to that, it also has a cache controller that uses 8-Kbyte, 2-
way set-associative instruction and data caches, efficient for large programs. The pro-
cessor core itself has arithmetic and DSP hardware support, minimizing the need of in-
dividual DSP in the system. This includes a single cycle, 16*16 MAC unit adding four
32-bit registers and a 40-bit accumulator for DSP support. Additionally, a 32*32 bit
multiplier and 32-bit integer divider is provided for arithmetic support. The perfor-
mance of the 212GP core is measured at 1.38 Dhrystone MIPS/ MHz.

The Diamond Standard 570T Static-Superscalar CPU Core
The Diamond Standard 570T CPU core is one of the highest performance licensable
processor cores available in market [20]. It combines 3-issue very long instruction word
(VLIW) with 5-stage pipeline to provide high performance for both control and DSP
code. The 16- bit and 24-bit instruction can be intermixed with 64-bit VLIW instruction
in instruction stream to enhance performance with small code size. The Xtensa C/C++
compiler can create 64-bit VLIW instructions, if instructions can be issued simultane-
ously; otherwise, it selects 24 or 16-bit instructions, which is very effective to reduce
the amount of memory required to store instruction. The Diamond 570T core has a
32*32- bit multiplier in addition to 32-bit integer divider. Furthermore, it has a single
cycle 16*16-bit MAC unit. The 570T processor core can achieve high performance of
1.59 Dhrystone MIPS/MHz. Table 4.1 shows the memory types and sizes of Diamond
standard processor cores discussed above.

Table 4.1. Memory types and sizes of Diamond Standard Processor cores

Memory Type (KB) 106Micro 108Mini 212GP 570T
Local Instruction RAM) 1-128 1-128 0-128 0-128

Local Data RAM0 0-128 0-128 0-128 0-128
Local Data RAM1 N/A 0-128 N/A N/A
Instruction Cache N/A N/A 8 16

Data Cache N/A N/A 8 16

26

The following section briefly describes some of the features of Xtensa processors that
are related to this thesis work.

4.2.2 Xtensa Processors

The Xtensa instruction set architecture (ISA) is the basis for Tensilica’s Xtensa Proces-
sors. The 32-bit base architecture features modeless switching between 16- and 24-bit
instruction set for maximum performance. The base architecture has 80 RISC instruc-
tions. There is a 32-bit Arithmetic Logic Unit (ALU) and maximum 64 general-purpose
32-bit registers along with six special-purpose registers.
 The major difference of Xtensa Processor with Diamond processor is the fact that
Xtensa Processors are customizable and can be configured with the integrated tool chain
whereas Diamond Processor are pre-configured and cannot be extended or customized
later. However, both processor families share same base architecture i.e. Xtensa ISA.

Tensilica HiFi Audio DSP
The HiFi Audio DSPs are add-on audio extension package for Xtensa LX processor
[25]. HiFi mini is the smallest and lowest power audio core provided by Tensilica [26].
The HiFi 2 provides a low power MP3 audio processing and is accompanied by HiFi
Extended Precision (HiFi EP) for further optimizations and improved performance [27].
The HiFi 3 offers higher performance of audio or voice processing than the rest [28].
Some of the features of various versions of HiFi audio DSPs are listed in Table 4.2.

Table 4.2. Comparison of features of the different HiFi audio DSP [29]

Tensilica ConnX D2 DSP Engine
The ConnX D2 is an add-on option DSP engine for Xtensa LX processor [30]. The ad-
dition of ConnX D2 DSP to Xtensa LX core further adds dual 16-bit MACs and 8-entry
40-bit register file to its base RISC architecture. The ConnX D2 DSP supports various
data types including 16, 32, and 40-bit integers; 16, 32, and 40-bit fixed points; 16-bit
complex; 8 and 16-bit vectors. It employs two-way SIMD (single instruction, multiple
data) instructions, 64-bit VLIW and a 5-stage pipeline.

Architectural
Comparison

HiFi mini HiFi 2 HiFi EP HIFi 3

Architecture
(bits)

24 24 24 32

VLIW slots 2 2 2 3

MACs
Dual MACs
24*24 32*16

Dual MACs
24*24 32*16

3 MACs 24*24
32*16 32*24

4 MACs operating
as: 4 24*24 or 4

32*16 or 2 32*32 or
2 32*24

Load/Store
(bit)

64 64 64 64

27

5. SOFTWARE DESIGN AND IMPLEMENTATION

In this chapter, the design process to develop fixed-point C-code that is based on the
technical background provided in the previous chapters is presented. The DSP algo-
rithms are dependent on repeated number of multiplications and additions, so the de-
signer needs to carefully consider the possibility of overflow and underflow after each
arithmetic operation. The programmer has to understand the accumulation of quantiza-
tion errors, signal levels during intermediate computations and needs to remember the
scaling throughout the program. Several factors need to be pondered upon while con-
verting floating-point codes to fixed-point domain. A comprehensive knowledge about
the input data and the code flow is very important.
 The starting point of the code development process is to find the appropriate ref-
erence floating point C-code for DCT/DST implementation. For this thesis work, the
reference floating point C-code are taken from ‘The Transform and Data Compression
Handbook’ by K.R. Rao et al. [5]. The choice of appropriate fixed-point format is cru-
cial part in fixed-point design. If the fixed-point code output values are achieved with
optimum accuracy, the code design process is completed.

5.1 Fixed-Point Code Design

For the fixed-point code design, the Q15 format, i.e. fractional-fixed point format is
chosen for the reasonable accuracy. In that case, the input data has to be normalized in
the range of [-1, 1). Multiplication overflows are handled by using fractional fixed-point
format. Numerous code optimization strategies have to be considered to decrease the
execution time e.g. substitution of calculations with look-up tables, and avoiding itera-
tive divisions by computing the inverse factor and substituting with equivalent multipli-
cation. Furthermore, divisions and multiplications can be replaced with bit-wise right
shifting and left shifting respectively, whenever possible. Although there are many other
optimization strategies, some basic strategies are used in this code development process.

Before the design of fixed point DCT/DST C-code, random input numbers were gener-
ated between [-1, 1] according to different DCT/DST length. The designed fixed point
DCT-I and DST-I codes works for maximum transform size of N=129 and 127 respec-
tively. Although, by adding the numbers of cosine coefficients in the defined cosine
array of the code, it works for required transform. The generated inputs were first mul-
tiplied by 2!" and then rounded to nearest integer value to represent them in C-code,
such that they can be used as Q15 format in C-code. Tensilica’s 32-bit processors are
considered as the target processor for fixed point DCT/DST code.

28

Following steps are taken to design the fixed point DCT/DST C-code:
1) All floating-point variables, which were represented as double data types in floating

point DCT/DST C-code, are changed to integer data types. Since, fixed-point format
represents numbers as integer data types.

2) The scaling functions used in DCT/DST code were changed to Q15 format and
hard-coded as constant in the C-code.
For example, scale = 1.0 / sqrt (2.0); is changed to Q15 format by multiplying with
2!". So it is defined as
const int scale = 23170; in C-code.

3) The cosine coefficients were calculated from reference floating point code manual-
ly. Those coefficients were changed to Q15 numbers and represented in a cosine co-
efficient array in the fixed point DCT/DST code.

4) As defined earlier in the fixed-point multiplication section, the resulting variables
after multiplication between two operands were shifted right by 15 bits. This means
dividing by 2!" after every multiplication such that the resulting value would remain
in Q15 format.

5) As part of DCT-I/DST-I computation code, there is a function to compute DCT-III
transform within the code. Before passing the input values to the DCT-III transform
function, the input values need to be scaled down. This is necessary to control the
overflow caused by repetitive addition/subtraction and multiplication inside the
loop. By carefully examining the structure and output of the code, it was found out
that the scaling that needs to be done is directly proportional to m (where, N=
2! + 1!!"#!2! − 1!for DCT-I and DST-I respectively (N is the transform size of
DCT/DST). So, the input values that need to be passed in DCT-III function were di-
vided by 2!, which means right shifting the values by m bits. However, this shift
increases quantization noise in the output.

6) The final part of the fixed-point code development process is to measure the fixed-
point code output against the reference floating-point output with same set of input
parameters. Therefore, MATLAB tool was used to find the output error in the de-
signed fixed-point code and to calculate the signal to noise ratio for different sets of
DCT/DST length. The flow chart in Figure. 5.1 explain the overall fixed-point code
development process.

29

Figure 5.1. Schematic flowchart diagram showing the fixed-point C-code design flow
process.

No

OK?

Optimization

Target Implementation

Yes

No
OK?

Opti-
mized?

Yes

SNR Calculation

Fixed-Point Code Implementation

Yes

Selection of Fixed-Point Format

No

 Floating-Point C Code

No

Fixed-Point
Format
Suitable?

Yes

30

5.2 C/MEX Function

In this thesis, the Signal-to-Noise Ratio (SNR) is calculated in MATLAB. So, in order
to integrate MATLAB and DCT and DST C-code, the C/MEX support of MATLAB
was used [31]. A part of software design is to write a MEX C-code to invoke C-code
from MATLAB. A brief discussion about how to use C/MEX function to call C-code is
presented here.
 MATLAB Executable (MEX) external interface function, or briefly a “MEX-
function” allows compiling a C/C++ code, so that it can be called from MATLAB.
MEX intact the high performance of C/C++ code while still working inside the
MATLAB environment.

5.2.1 Using MEX File to Call C File

Mex function on the MATLAB command line is compiled using mex command as
mex myfunc.c myfunc_mex.c .

This command indicates, a mex file is required for every C file that needs to be com-
piled from MATLAB. After compiling C-code with mex command, we get a MEX bi-
nary, which then can be called by MATLAB like any other m-functions in MATLAB.
The steps defined for a MEX file are; gateway functions creation, data structures decla-
ration, Inputs and output management, Input Validation, Allocate and Free Memory,
Data Manipulation, Displaying Messages to User and Error Handling [31].

5.2.2 MEX Files and MATLAB Interface

Figure 5.2 explains the interface between MEX files, C files and MATLAB. The my-
func.c file is compiled along with myfunc_mex.c by defined compiler using the ‘mex’
command as written in the previous section.

Figure 5.2. Schematic diagram showing the interface between MEX files, C files and
Gateway MEX function for MEX File Generation [31]

Function written in
C (myfunc.c)

Gateway MEX func-
tion (myfunc_mex.c)

Defined
Compiler

Binary MEX file
(myfunc.mexw32)

31

The command generates a binary file named myfunc.mexw32 or myfunc.mexw64
depending on the operating system used (32 bit or 64 bit). The resulting binary MEX
file can be called from MATLAB in the same way as MATLAB function.

 Figure 5.3 shows the mechanism of calling the binary file from MATLAB. When
the binary function is called, the gateway function first passes the parameters after exe-
cuting its check routines to the given C function. After computation, the results are
placed in the output vectors generated by gateway function and then they are available
in MATLAB.

Figure 5.3. Schematic diagram showing the mechanism of calling the binary file from

MATLAB [31].

5.3 Profiling the DCT/DST Code in Xtensa Environment

To analyze the performance (the number of cycles) of the fixed point DCT/DST code
compared to the floating point, both codes are profiled in Tensilica’s Xtensa Xplorer
environment.
 The first task is to create Xtensa C projects for sine and cosine transforms. The
Xplorer has a C/C++ editor, which is used for creating and editing C/C++ code. The
necessary codes are added as a C file in the project. The project is chosen along with
necessary processor configuration option from the “Active Set” toolbar in Xplorer tool.
The floating point DCT/DST code and fixed-point DCT/DST code are profiled to eval-
uate the performance of the sine and cosine transforms code in the targeted processor
configurations. In the Benchmark Perspective, the profiling results are obtained where
the total numbers of clock cycles taken to execute the codes are displayed.

MATLAB
Calls myfunc.c (x,y,z)

GATEWAY FUNCTION
myfunc.c

Validates input arguments
Gets input data

Allocates memory for output
Call C function myfunc.c

C FUNCTION myfunc.c
Calculates the output

Ret to MATLAB

Binary MEX call

R
et

 to
 M

EX

C
 F

un
c

C
al

l

32

Processor Configuration Summary
While running both the floating-point and fixed-point DCT/DST codes in target Tensili-
ca processor builds, the entire base processor configuration settings that are provided by
the Xtensa tool are retained. Since, the work is to evaluate the performance of both
floating-point DCT/DST codes and the designed fixed-point DCT/DST code on Tensil-
lica processors, there are no custom modifications done in these processors. There are
various processor configuration build already installed in the Xtensa tool associated
with various Tensilica Processors. The processor configuration name along with the
configuration summary is presented below [17].

The table 5.1 presents the name of Processor configurations that are already built
in Xtensa Xplorer tool and the base Tensilica processors from which the processor con-
figurations are generated in the Xtensa tool. The base processors presented in Table 5.1
are Tensilica’s Diamond Standard processor cores.

Table 5.1. Processor configuration names and base Tensilica processors
Configuration Name Processor Core
DE_106micro Diamond Standard 106 Micro Controller
DE_108mini Diamond Standard 108 Mini Controller
DE_212GP Diamond Standard 212GP Controller core

DE_570T
Diamond Standard 570T Static-Superscalar
CPU core

In Table 5.2, the implementation options for processor configuration are present-
ed. The clock gating is used to minimize power consumption of the processor. The two
levels of clock gating features of Tensilica processors are; global clock gating and func-
tional unit clock gating, both of which are selected in this configuration.

Table 5.2. Implementation options (For configuration DE_106 micro, DE_108mini,
DE_212GP, DE_570T)

Table 5.3 shows different arithmetic configuration options that are chosen for the

processor configuration, which are described below.
The MUL32 option selects a standard 32-bit multiplier. The compiler selects this

option whenever there is a need of multiplying signed or unsigned variables of integer,
short or character type. Without MUL32 option or any other multiplication option, the
compiler will add emulation code for all multiplications, thus multiplications are real-
ized by using shift and adds. However, emulation takes more clock cycles than multipli-
er option. In this case a 16-bit multiplier is included but not any 32-bit multiplier, the
compiler emulates 32-bit multiplication using 16-bit operations. There are two types of
MUL32 options that can be selected; iterative implementation or fully pipelined imple-

Option Selection
Global clock gating Selected
Functional unit clock gating Selected

33

mentation. By using iterative and non-pipeline hardware, the Iterative Implementation
option creates a multiply instruction that implements 32*32-bit multiplication into a 32-
bit product. Depending on the bit-pattern being multiplied, this instruction can take an-
ywhere from 1 to 6 clock cycles. On the other hand, the fully pipelined implementation
creates a multiply instruction that implements a 32*32-bit multiplication with fully
pipelined hardware, where multiplication instruction takes two clock cycles. As we can
see in the table, for the configuration DE_106Micro, the iterative implementation is
selected, while for other configurations (DE_108mini, DE_212GP and DE_570T), the
fully pipelined implementation is selected.

The MUL16 option selects a 16-bit multiplier for both signed and unsigned 16-
bit multiplication. On configurations with only MUL16 option, the compiler selects this
option whenever it can ascertain that a 16-bit multiplication is equivalent to a 32-bit
multiplication. That is, whenever both operands are 16-bit or less or results are 16-bit or
less. If it is not the case, the compiler emulates a 32-bit multiplication using this option.
Depending on the bit pattern of values being multiplied, emulation takes approximately
10 clock cycles. The table clearly shows the MUL16 option is selected for all processor
configurations presented above.

Another option presented in the table is 32-bit integer divider. This option has
four instructions that are used to perform 32-bit integer division. Depending on the bit-
pattern, these instructions may take 2 to 13 cycles. These division instructions are im-
plemented using non-pipelined or iterative hardware, which means that instructions af-
ter division operation will not execute until the division operation is complete. The
compiler infers the use of these instructions for all 8-, 16- and 32-bit integer divisions.
Table 5.3 shows that 32-bit integer divider option is not selected for DE_106micro con-
figuration but it is selected for the rest of configurations.

The next option in the table displays the MAC16 DSP instruction family (16-bit
multiply/Accumulate (MAC) with 40-bit accumulator). This instruction series allows a
16-bit MAC into a 40-bit accumulator paralleled with two 16-bit updating loads. It al-
lows a full iteration of 16-bit dot product on every cycle. The instructions in this family
are specialized and are not inferred by the compiler. However, the compiler can infer
use of MAC instruction that does not execute parallel with a load. This instruction is
normally not faster than the MUL16 option. In configurations presented Table 5.3, the
16-bit MAC with 40-bit accumulator option is selected for DE_212GP and DE_570T
but it is not selected in case of DE_106micro and DE_108mini.

Finally, in the last option, no floating-point accelerator or processor is selected
for any of the configurations presented above. Without this option, floating-point opera-
tions are supported using emulations at speeds that are generally between 50 to 200 cy-
cles per base floating-point operation.

34

Table 5.3. Arithmetic options and selections in processor configuration

Table 5.4 presents Instruction Set Architecture (ISA) configuration options and
selection for mentioned processor configurations. The numbers of physical registers
known as AR resisters are initially 16, which are directly assessable by instructions in
the ISA. However, Tensilica windowed Application Binary Interface (ABI) allows more
physical AR registers than the 16. This allows faster and smaller code. Tensilica has 16,
32, or 64 physical registers. The choice of these registers is trade-off between applica-
tion performance and hardware area. There are 16 numbers of AR registers in case of
DE_106micro configuration while 32 AR registers are selected in remaining configura-
tions.

Another option used is the Maximum Instruction Width option. Xtensa core in-
structions are two or three bytes wide. Tensilica provide modeless intermixing of multi-
ple instruction sizes and all configuration support 24-bit instructions. The 16-bit instruc-
tions are used to save code size. Tensilica also supports designer defined Flexible
Length Instruction extension (FLIX) for multi-issue Xtensa Very Long Instruction word
(VLIW) cores. Those instructions are 32, 64, 96 or 128 bits. A configuration can have at
most two of 32-, 64-, 96-, 128- bit instructions. These 32-, 64-, 96-, 128- bit instructions
can be partitioned into custom slots and each of them can execute one of a set of opera-
tions. The maximum instruction width option can be set maximum to utilize larger in-
structions. Since DE_570T allows FLIX instructions, the maximum width of instruction
is set to 8 bytes (64 bit). For the rest of configurations, it is 3 bytes (24 bit).

 The base Tensilica processor has a 5-stage pipeline micro-architecture. A single
stage is dedicated to data memory and another stage is dedicated to instruction fetch.
For large local memories, the memory speed limit can limit the processor core speed.
For those configurations, Tensilica has an option to add two extra stages to the pipeline
(one for instruction fetch and another for data memory). As in the ISA configurations
option table, the pipeline is 5-stage for all of the configurations.

Option
Selection

DE_106micro DE_108mini DE_212GP DE_570T
MUL32 Iterative Pipelined Pipelined Pipelined
MUL16 Selected Selected Selected Selected
32bit Integer divider Not selected Selected Selected Selected
16bit MAC with 40bit
Accumulator

Not selected Not selected Selected Selected

Floating point (sin-
gle+double) Coproces-
sor/ Accelerator

Not selected Not selected Not selected Not selected

35

Table 5.4. ISA configuration options and selections in processor configuration

Option
Selection

DE_106micro DE_108mini DE_212GP DE_570T
Number of AR register for

call windows
16 32 32 32

Maximum Instruction
width (bytes)

3 3 3 8

Pipeline length 5 5 5 5

Table 5.5 presents the interface width options and their selection for the configu-
rations. The instruction fetch width option controls the number of bits that are fetched in
a cycle from the Instruction cache or local memory into holding buffers. This option can
be set to 32, 64 or 128 bit. For FLIX instructions, these parameters need to set to 64 or
128 bits. In general, wider width gives higher performance at a higher area cost. We can
see in the table, for DE_570T, which use FLIX instructions, the interface fetch width is
set to 64-bit. For others, it is set to 32-bit.

Another option presented in the table is data cache or memory width option. This
option controls the number of transferred bits from external memory into the cache per
cycle. It also provides the option to control the number of bits that can be loaded or
stored from the cache or local data memory every cycle. It is a maximum width of data
for a load/store instruction. The DE_570T configuration has 64-bit of data
memory/cache interface. For other configurations, it is set to 32-bit.

In the table, the next option is interface to instruction cache width, which is 0 for
DE_106micro and DE_108mini configuration. For DE_212GP configuration, it is 32-bit
and for DE_570T configuration, it has 64-bit width.

Table 5.5. Interface width Options and selections in Processor configuration

Option
Selection

DE_106micro DE_108mini DE_212GP DE_570T
Width of instruction fetch
Interface

32 32 32 64

Width of data memory/ cache
interface

32 32 32 64

Width of interface to instruc-
tion cache

0 0 32 64

Table 5.6 presents the sizes of instruction cache and data caches in bytes for dif-
ferent configurations. For DE_106micro and DE_108mini, there is no instruction
cache, i.e., the size is zero. For DE_212GP, it is set to 8192 for both instruction and data
cache. Finally, for DE_570T, it has larger size than other which is set to 16384 for both
types of cache.

36

Table 5.6. Instruction/ data cache option and selection in processor configuration

Option
Selection

DE_106micro DE_108mini DE_212GP DE_570T
Instruction cache size
(Bytes)

0 0 8192 16384

Data Cache (Bytes) 0 0 8192 16384

Table 5.7 shows the amount of RAM and ROM memories in the systems for the
listed configurations. The ROM and RAM size is the same for all the configurations as
seen in the table.

Table 5.7. System memories options and selections in processor configuration

Option
Selection

DE_106micro DE_108mini DE_212GP DE_570T
System RAM (byte) 64M 64M 64M 64M
System ROM (byte) 16M 16M 16M 16M

Besides all of above mentioned configuration options, there is another option pro-

vided for number of Load/Store units. This option is set to 1 for all of the configurations
that we have used.

37

6. ANALYSIS AND RESULTS

This chapter discusses the results of the thesis work. First, the signal to ratio (SNR)
analysis is discussed to understand the efficiency of the designed fixed-point DCT/DST
codes with respect to the reference floating-point DCT/DST codes. In the next section,
the performance of fixed-point code in different Tensilica processor configuration is
compared with the floating-point version.

6.1 Signal-to-Noise Ratio
Signal to noise ratio is one of the key factors to be analyzed in digital signal processing
domain. Signal to Noise Ratio (SNR) is a measure of signal strength relative to back-
ground noise [11]. The ratio is generally measured in decibels (dB). The fixed-point
code generation process introduces some quantization error (noise) in the output, which
can be expressed in terms of SNR. The SNR illustrates the output signal compared with
the error. High value of SNR indicates less noise in output signal and vice-versa. Before
describing the SNR graphs for fixed-point DCT-I and DST-I code, the experimental
methodology of SNR analysis is discussed.

The stimuli are randomly generated in MATLAB between [-1,1](using rand ()
function of MATLAB) according to the DCT and DST input length. Let us define the
input data length N of DCT/DST transforms such that, there exist a variable !, where
N=(2! + 1) for DCT-I and N=((2! − 1) for DST-I. So, for !=2, the DCT-I and DST-I
input length N would be 5 and 3 respectively. Similarly, for ! =3, its length would be 9
and 7 for DCT-I and DST-I respectively and so on. In this experiment, the SNR for !
=2,3,…,7 are calculated as the code is also designed to calculate DCT-I/DST-I up to !
=7.

It is important to pass the same set of quantized input vectors to fixed-point and
floating-point transform codes. Therefore, the random numbers generated between [-
1,1) are first stored in MATLAB as a .mat file. For quantization, the generated inputs
are first multiplied by 2!" and then rounded to nearest integer value. Then, same set of
inputs is fed to both versions of codes and outputs are again stored as .mat file in
MATLAB. We need to consider the scaling done in the fixed-point code while storing
the output from the fixed-point codes. As described in earlier section, the scaling de-
pends on the value of !.

Let us consider the output from fixed-point DCT-I is !"#_!"#$%_!"# and float-
ing-point DCT-I is !"#_!"#$%_!"#. Similarly, the result of fixed-point DST-I is defined
as !"#_!"#$%_!"# and floating-point DST-I as !"#_!"#$%_!"#. Then, the noise or error
in the fixed-point signal can be defined by

Noise_DCT= !"#_!"#$%_!"#- !"#_!"#$%_!"#; for fixed-point DCT-I

38

Noise_DST= !"#_!"#$%_!"#- !"#_!"#$%_!"#; for fixed-point DST-I

Now, the SNR for fixed-point DCT-I/DST-I can be calculated in MATLAB as
!"!!"# = 20 ∗ !"#!"(!(!"#_!"#$%_!"#)/!(!"#$%_!"#))

!"!!"# = 20 ∗ !"#!"(!(!"#_!"#$%_!"#)/!(!"#$%_!"#))

Figure 6.1. A flowchart showing SNR calculation process

Yes

Load Next Stimulus
Vectors

Fixed Point
DCT/ DST

Floating Point
DCT/ DST

SNR Calculation

-

+

Store Mean SNR

/

Any
Stimulus

Vector left

Sum of Previous
SNR

Total no. of Stimu-
lus Vector

Error
Vector

No

39

All the variables used are stored in a structure array in MATLAB along with
SNR. To calculate the average SNR, 50 different sets of random input stimuli are gen-
erated. Finally, the mean SNR is calculated by using !"#$ function of MATLAB. The
process of SNR calculation is illustrated in Fig. 6.1.

Figure 6.2 shows the SNR values of fixed-point DCT-I with reference to float-
ing-point DCT-I according to the input length N of DCT-I where N=(2! + 1) as dis-
cussed earlier. The horizontal axis in the graph shows value of ! and vertical axis
shows the SNR value in dB.

As we can see, if we increase !, the SNR is decreasing accordingly. This is be-
cause to handle the overflow in fixed- point DCT code, we need to scale down the vari-
ables. The scaling done is indirectly proportional to the input length. With the increment
in input length, variables in C-codes need to be scaled down more to compensate over-
flow. Therefore, the output has more noise with the increased input length, which is
reflected in the SNR. As we can see in the figure 6.2, the maximum value of SNR is
around 76dB for ! =2 and minimum is for ! = 7, where it is around 35dB.

Figure 6.2. SNR for fixed-point DCT of type 1

Similarly, Fig. 6.3 demonstrates the value of ! and SNR for DST-I. The horizon-

tal and vertical axis of the graph represents values for ! and SNR for DST-I respective-
ly.

 As expected, the results of DST-I are similar to that of the DCT-I. The DST-I
length has similar effect on the SNR. As the length of input vector grows the SNR value
declines. In this case, the maximum value of SNR is around 78dB for ! =7 and mini-
mum value is around 35dB for ! = 2.

30!

40!

50!

60!

70!

80!

2! 3! 4! 5! 6! 7!

SN
R

 (d
B

)

m

SNR_ DCT

SNR (dB)

40

Figure 6.3. SNR for fixed-point DST-I

6.2 Performance on Tensilica Processors

While evaluating the performance of fixed-point and floating-point DCT/DST code, the
configurations mentioned in the previous chapter are used. Both types of codes are pro-
filed inside the Xtensa Xplorer IDE using Xtensa Instruction set simulator. The total
number of clock cycles for both versions of DCT/DST codes in various Tensilica con-
figurations is recorded. The results are discussed in the following sections.
Profiling results on different Processors
In the subsequent sections, DCT_Fixed and DST_Fixed represent the fixed-point DCT-I
and DST-I code respectively. Similarly, DCT_Float and DST_Float define the floating-
point DCT-I and DST-I code respectively. As in the previous section, ! is related to
length of DCT/DST such that the DCT-I length ! = 2! + 1 and DST-I length N =
2! − 1.

Table 6.1 presents the recorded total number of clock cycles for the DCT-I/DST-
I on DE_106micro configuration system. This includes both fixed-point and floating-
point type of codes.

It can be seen that the configuration requires less clock cycles to execute the
fixed-point DCT-I/DST-I than the floating-point code. Another observation is that the
numbers of clock cycles are more than double than previous if we increase!! by 1. The
reason is doubling the transform size increases the number of arithmetic operations
more than double and hence clock cycles.

The speedup in terms of clock cycles achieved by the fixed-point DCT/DST code
system over the floating-point DCT/DST code system are calculated as

!"#$%#&'()"!!"#$ = !"#!$!!"!#$%!!"!!"#$%!!"#/!"#!
!"#!$!!"!#$%!!"!!"#$%!!"#/!"#

The speedup achieved by fixed-point DCT-I system over floating-point DCT-I
system is 3.70, 4.69, 5.49, 5.94, 6.10 and 5.8 for ! = 2,3,4,5,6 and 7 respectively. Simi-

30!

40!

50!

60!

70!

80!

2! 3! 4! 5! 6! 7!

SN
R

 (d
B

)

m

SNR_ DST

SNR (dB)

41

larly, the speedup achieved by fixed-point DST-I over floating-point DST-I is 4.38,
4.91, 5.24, 5.29, 5.17 and 4.97 for ! = 2, 3, 4, 5, 6 and 7 respectively. The speedup
achieved by fixed-point code over floating-point code is due to the fact that, in floating-
point code all mathematical operations are performed by emulation library, which has
substantial computational overhead. For example, all cosines and sine coefficient func-
tions that consume more time in the floating-point code are replaced with integer array
of cosine/sine coefficients in fixed-point code. Similarly, other scaling functions are
also hardcoded as constants. Moreover, the fixed-point code uses integer operation and
takes lesser number of clock cycles. The slight variance on speedup is due to variance
on arithmetic operations for different transform size.

Table 6.1. Recorded clock cycles for configuration: DE_106micro

!
Total Clock Cycles

DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2136 7906 1196 5244
3 4517 21176 3371 16575

4 9573 52531 8238 43187

5 20636 122562 19126 101222
6 44970 274552 43374 224439
7 98540 571446 96964 482185

Table 6.2 displays the number of clock cycles for both the fixed- and floating-
point DCT/DST-I codes on DE_108mini configuration. As in the previous configuration
system, the result shows the fixed-point system has lesser clock cycles than the floating-
point system. Furthermore, the system takes fewer clock cycles comparing with the
DE_106micro configuration system. Although being similar in terms of configuration
with DE_106micro, the pipelined implementation of multiplication on DE_108mini
resulted in slightly fewer clock cycles. The speedups are 3.45, 4.46, 5.29, 5.76, 5.94,
5.63 and 3.92, 4.60, 5.00, 5.09, 5.00, 4.81 for the fixed-point DCT-I and DST-I over
floating-point DCT-I and DST-I for!! = 2, 3, 4, 5, 6 and 7 respectively.

Table 6.2. Recorded clock cycles for Configuration: DE_108mini

 Total Clock Cycles
m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2120 7325 1205 4719
3 4460 19901 3337 15341
4 9417 49816 8092 40488
5 20281 116888 18766 95525
6 44218 262815 42537 212598
7 97002 545775 95203 457747

42

The recorded clock cycle counts on the DE_570T configuration for both types of
DCT/DST-I are presented in Table 6.3. This configuration has the fewest clock cycles
recorded among all other configuration. The presence of 16-bit MAC with 40-bit accu-
mulator option in this configuration as well cache, which was missing in previous con-
figurations is the measure reason for the speed boost up. Moreover, the presence of
widest bus in this configuration also helped to save some cycles as more data can be
fetched at a time for computation. In this configuration, the speedup of fixed-point
DCT-I system over floating-point DCT-I are 3.26, 4.14, 4.83, 5.20, 5.34, 5.01 and
fixed-point DST-I system over floating-point DST-I are 3.59, 4.23, 4.56, 4.60, 4.51,
4.33 for for!! = 2, 3, 4, 5, 6 and 7 respectively.

Table 6.3. Recorded clock cycles for Configuration: DE_570T

 Total Clock Cycles
m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 1959 6387 1124 4036
3 4217 17456 3169 13391
4 9081 43852 7826 35664
5 19820 103161 18382 84635
6 43550 232399 41993 189225
7 95929 481063 94419 409014

 The clock cycles counts recorded on the DE_212GP configuration for both types
of codes are presented in the table 6.4. Similar to DE_570T, the cache and MAC option
is the factor for better performance than DE_106micro and DE_108mini. The speedup
for fixed-point DCT-I over floating-point is measured 3.61, 4.60, 5.39, 5.83, 5.98, 5.60
for ! = 2, 3, 4, 5, 6 and 7. Similarly, the improvement is 4.08, 4.73, 5.09, 5.14, 5.02,
and 4.82 for fixed-point DST-I over floating-point DST-I for ! = 2, 3, 4, 5, 6 and 7.

Table 6.4. Recorded clock cycles for configuration DE_212GP
 Clock Cycles

m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2032 7339 1161 4733
3 4328 19922 3249 15362
4 9241 49844 7960 40516
5 20061 116923 18590 95560
6 43954 262857 42317 212640
7 96694 541856 94939 457654

Furthermore, we have also measured the clock cycle counts for different types of
HiFI configurations and ConneX configurations. The results are provided in the appen-
dix.

43

7. CONCLUSIONS

The objective of this thesis was to develop C-code for fixed-point DCT and DST appli-
cations. The selected floating-point DCT-I and DST-I C-codes [5] were first converted
into fixed-point C-code and the performance was evaluated in Tensilica processor cores.
The selected floating-point DCT and DST algorithms and codes were studied in detail
and then the fractional fixed-point format (Q15) was chosen for the fixed-point code
design.

The SNR calculation was the first task after designing the fixed-point DCT-I and
DST-I codes. From the observation, we have found that the SNR of the designed fixed-
point code with respect to floating-point was accurate (between 35-76dB range) for ob-
served range. However, the scaling done to the variables to control overflow in fixed-
point C-codes has direct effect on SNR. The scaling is proportional to the input length
of DCT and DST transforms. We have found that with the increment in input length of
DCT and DST, variables in C-codes need to be scaled down more to compensate over-
flow making the output more prone to quantization errors. This is because scaling re-
duced the resolution that was provided by Q15 format. This is a drawback of fixed-point
code over floating-point code. The choice of Q format has an impact on the output error.
The Q15 format chosen in the fixed-point development process has relatively very good
accuracy. However, the truncation done while representing the numbers as integer in C-
code and scaling done to handle any overflow that might occur, produced some error in
the output.

Another part of the thesis work is to evaluate the performance of designed fixed-
point code and reference floating-point code in Tensilica processor cores. The DCT and
DST application codes were evaluated on four different types of Tensilica processor
configurations (DE_106micro, DE_108mini, DE_212GP and DE_570T). The profiling
results show that the fixed-point application codes have significant performance im-
provement in terms of clock cycles over floating-point application on all processor con-
figurations. The total number of clock cycles taken to execute the fixed-point DCT and
DST codes on various configurations is three to six times less than the reference float-
ing-point DCT and DST codes for different sets of DCT/DST length. Another observa-
tion is that the configuration DE_106micro takes most clock cycles than the rest config-
uration for same code. The DE_108mini and DE_212GP configuration has better per-
formance compared to DE_106micro and the DE_570T was fastest among all, which
has VLIW architecture for parallel processing.

From the results presented in this work, we can conclude that the fixed-point
DCT/DST code is very fast as compared to floating-point code. The fixed-point
DCT/DST C-code uses the integer operation causing it to execute fast in hardware. On

44

the other hand, floating-point codes are emulated for arithmetic operation, as they do
not have floating-point unit support. The emulation has a significant computation over-
head slowing the execution down for DCT/DST application. Furthermore, the number
of clock cycles is more than double when we double the transform size. Another con-
clusion can be drawn for the performance of codes on different configurations. Since,
the DE_570T configuration has more resources, as well as it utilize data and instruction
level parallelism, the performance is the best among all. The internal architecture of
configurations like multiplier size, use of instruction and data width, memory and cache
size etc. affected the performance of the application on configurations that we used.

In future work, the designed fixed-point DCT and DST codes could be further
optimized. For example, in the codes some data from one array are copied to another,
while better approach could be allocating two buffers and changing pointers rather than
copy of array values. There are several code optimization strategies that could be used
to optimize the code [32]. A design space exploration can be done to optimize the whole
application and processor configuration provided added time. Moreover, the perfor-
mance of code can be evaluated in multiple-processor pipeline architecture. In this the-
sis, the DCT/DST codes are only evaluated on Diamond processors, which are not cus-
tomizable. It would be interesting to implement TIE instructions for customizable Xten-
sa processors and analyze the performance variation of the DCT/DST code with Dia-
mond processors. Similarly, it would be better to understand whether the codes meet
performance requirement of some industrial applications or not. Furthermore, the power
and area are other main parameters that are not considered in this thesis. So, the codes
can be analyzed in terms of power consumption and area covered in different proces-
sors.

45

REFERENCES

[1] Z. Wang and B.R. Hunt, ”The discrete W transform”, Applied Mathematics and
Computation, vol. 16, no. 11, Jan. 1985.

[2] P. Yip and K.R. Rao, ”On the shift property of DCT’s and DST’s”, IEEE Trans-
actions on Acoustics, Speech and Signal Processig, vol. 35, no. 3, pp. 404-406,
March, 1987.

[3] V. Britanak, P.C. Yip, and K.R. Rao, “Discrete Cosine and Sine Transforms:
General properties, Fast algorithms and Integer Approximations”, 1st Edition,
2007

[4] J. Nikara, “Application-Specific Parallel Structures for Discrete Cosine Trans-
forms and Variable Length Decoding”, Ph.D Thesis, Tampere University of Tech-
nology, Publication 481, Tampere 2004

[5] K.R. Rao et al. (ed), The Transform and Data Compression Handbook, Published
by Boca Raton, CRC Press LLC, InTech, 2001. V.Britanak, “Discrete Cosine ad
Sine Transforms”, book chapter 4 in K.R. Rao et al. (Ed), “The Transform and
Data Compression Handbook”, ISBN 0-8493-3692-9, Boca Raton, CRC Press
LLC , 2001.

[6] S.A. Khayam, “The Discrete Cosine Transform (DCT): Theory and Application”,
Department of Electrical and Computer Engineering, Michigan State University,
March 2003.

[7] K.R. Rao, and J.J. Hwang, “Techniques and standards for image, video, and audio
coding”, ISBN: 0-13-309907-5, Prentice-Hall, Inc. Upper Saddle River, NJ, USA,
1996.

[8] A.D. Poularikas (2nd ed), The Transforms and Applications Handbook, Published
by Boca Raton, CRC Press LLC,InTech, 2000. P.Yip, “Sine and Cosine Trans-
forms”, book chapter 3 in A.D. Poularikas (2nd ed), “The Transforms and Appli-
cations Handbook”, ISBN 0-8493-8595-4, Boca Raton, CRC Press LLC, 2000.

[9] Z. Wang, and B.R. Hunt, “The discrete cosine transform-A new version”, in IEEE
International Conference on Acoustics, Speech, and Signal Processing,, pp. 1256-
1259, April 1983.

[10] D. Guevorkian, K. Rounioja, and J. Takala, “Circulant Hermitian matrix inversion
method based on discrete cosine and sine transforms”, in IEEE Workshop on Sig-
nal Processing Systems, pp. 306-311, Oct. 2012.

46

[11] A. Ghalib, “Analysis of fixed-point and floating-point quantization in fast Fourier
transform”, Master’s Thesis, Tampere University of Technology, June, 2013.

[12] S.S. Saokar, R.M. Banakar, and S. Siddamal, “High speed signed multiplier for
Digital Signal Processing applications”, Published in Signal Processing, Compu-
ting and Control (ISPCC), pp.:1-6, Waknaghat Solan, March 2012.

[13] W.T. Padgett, and D.V. Anderson, “Fixed-Point Signal Processing”, ISBN
9781598292589, Morgan and Claypool Publishers series, 2009.

[14] A. Haghparast, H. Penttinen, and A. Huovilainen, “Fixed-Point Algorithm Devel-
opment”, Lab. of Acoustics and Audio Signal Processing, Helsinki University of
Technology, Finland, April, 2006.

[15] T. Finley, “Two’s Complement”, April 2000, http://www.cs.cornell.edu/~tomf/
notes/ cps104/ twoscomp.html, accessed on 25th April, 2015.

[16] A. Fisher, “Fixed-point Implementation of Acoustic Feature Generation Algo-
rithms”, Diploma Thesis, Technische Universität Graz, Austria, April 2008.

[17] Tensilica Inc., Xtensa processors and Xtensa Xplorer IDE, http://www.tensilica
.com.

[18] “Xtensa Microprocessor”, Overview Handbook, A summary of the Xtensa Micro-
processor Data Book, Tensilica, Inc., USA, 2002.

[19] “Tensilica Sofware Development Toolkit (SDK)”, Tensilica Datasheet, accessed
on 25th April, 2015.

[20] “Diamond Standard Processor Cores”, white paper, Oct. 2008,
http://www.tensilica.com, accessed on 30th Nov. 2014.

[21] “Xtensa Instruction Set Architecture (ISA)”, Reference Manual, Tensilica, Inc.,
Santa Clara, CA, 2010, http://www.tensilica.com, accessed on 15th Dec. 2014.

[22] A.R. Weiss, “Dhrystone Benchmark: History, Analysis, Scores and Recommenda-
tions”, white paper, Oct. 2002, ECL, LLC, http://www.ebenchmarks.com, ac-
cessed on 10th March, 2015.

[23] “Diamond Standard 106Micro Controller”, Product Brief, Tensilica, Inc., Santa
Clara, CA, March 2010, http://www.tensilica.com, accessed on 20th Dec. 2014.

[24] “Diamond Standard 108Micro Controller”, Product Brief, Tensilica, Inc., Santa
Clara, CA, January 2010, http://www.tensilica.com, accessed on 20th Dec. 2014.

47

[25] “Xtensa LX Microprocessor”, Overview Handbook, Tensilica, Inc., Santa Clara,
CA, 2004, http://www.tensilica.com, accessed on 1st March 2015.

[26] Press Release, Santa Clara, January, 2013, http://ip.cadance.com, accessed on 1st
March 2015.

[27] “HiFi 2 & HiFi EP Audio DSPs”, Product Brief, Tensilica, Inc., Santa Clara, CA,
2012-3, http://www.tensilica.com, accessed on 1st March 2015.

[28] Tensilica’s HiFi 3 DSP Core: Audio Post-Processing Comes to the Fore, Berke-
ley Design Technology, Inc., accessed on 1st March 2015.

[29] HiFi Comparison Chart, http://ip.cadence.com/ipportfolio/tensilica-ip/audio, ac-
cessed on 2nd March 2015.

[30] “Connx D2 DSP Engine”, Product Brief, Tensilica, Inc., Santa Clara, CA, June,
2010, http://www.tensilica.com, accessed on 1st March 2015.

[31] P. Getreuer, Writing Matlab C/Mex Code, http://www.getreuer.info, April 2010,
accessed on August, 2014.

[32] S. Ryoo, “Program Optimization strategies for Data-Parallel Many-core Proces-
sors”, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois,
2008.

48

APPENDIX A

The table below presents the clock cycles measured in various HiFi cofigurations of
Tensilica Xlorer IDE for fixed-point and floating-point DCT/DST code.The
configuration chosen are similar to that of Diamond configuration presented in the
thesis work.

Table A.1: clock cycle count for hifi2_std configuration (HiFi 2 Audio DSP)
 Total Clock Cycles

m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2029 7321 1159 4721
3 4335 19915 3254 15368
4 9276 49846 7992 40562
5 20128 116911 18667 95657
6 44014 262683 42442 212708
7 96593 552144 95078 457685

Table A.2: clock cycle count for hifi3_bd5 (HiFI 3 Audio Processor)

 Total Clock Cycles
m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2692 29296 1406 17322
3 5572 85380 4081 61948
4 11821 220948 10005 167576
5 25829 527050 23968 394113
6 56630 1195645 55298 865644
7 124839 2561052 123826 1828799

Table A.3: clock cycle count for hifi3_mini(HiFI mini Audio Processor)
 Total Clock Cycles

m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2715 28802 1406 17018
3 5624 83924 4107 60934
4 11919 217151 10075 164909
5 26008 518042 24113 388012
6 56957 1175438 55571 852736
7 125451 2114322 124316 1811915

49

Table A.4: clock cycle count for hifiep_bd5(HiFi EP Audio Processor)
 Total Clock Cycles

m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2029 7318 1159 4718
3 4322 19863 3239 15316
4 9221 49687 7931 40403
5 19995 116571 18522 95317
6 43760 262076 42168 212101
7 96174 545047 94629 456763

50

APPENDIX B

The table below presents the clock cycles measured in various ConnX DSP
cofigurations of Tensilica Xlorer IDE for fixed-point and floating-point DCT/DST
code.The configuration chosen are similar to that of Diamond configuration presented
in the thesis work.

Table B.1: clock cycle count for XRC_D2MR
 Total Clock Cycles

m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2029 5564 1159 3558
3 4322 15150 3239 11790
4 9221 37939 7931 31498
5 19995 89247 18522 75168
6 43760 201302 42168 169266
7 96174 415618 94629 368314

Table B.2: clock cycle count for XRC_D2SA

 Total Clock Cycles
m DCT_Fixed DCT_Float DST_Fixed DST_Float
2 2132 7413 1183 4785
3 4581 20287 3418 15751
4 9864 50953 8532 41779
5 21486 119693 19935 98801
6 47276 269118 45702 220132
7 103969 560103 102582 474274

