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ABSTRACT 

NIRAJAN PANT: Discrete Sine and Cosine Transforms on Parallel Processors 
Tampere University of Technology 
Master of Science Thesis, 44 pages, 3 Appendix pages 
June, 2015 
Master’s Degree Program in Information Technology 
Major: Digital and Computer Electronics 
Examiner: Prof. Jarmo Takala 
Keywords: fixed-point number, floating-point number, discrete cosine transform, dis-
crete sine transform, digital signal processing, processor configuration 
 
Starting point of this master thesis is Discrete Cosine Transform (DCT) and Discrete 
Sine Transform (DST) algorithms for signal processing. Based on the number system 
used in DCT and DST application, they can be categorized as fixed-point and floating-
point DCT/DST. Floating-point numbers have large dynamic range to represent very 
large and small numbers. However, floating-point operation requires more clock cycles 
than fixed-point operation. Specialized hardware can be used for floating-point opera-
tions for high performance, but it also increases hardware cost. So, for general applica-
tions, use of fixed-point number system would be a good choice provided that an opti-
mum accuracy is guaranteed.  

In this thesis, the existing floating–point DCT and DST of type-1 C-codes are 
first converted into fixed-point code. The fractional fixed-point representation is used 
for the fixed-point conversion for maximum possible accuracy. The choice of Q15 for-
mat provides highest precision for signed 16-bit fixed-point number. But in this format, 
the range of numbers has to be normalized between [-1, 1]. The conversion process in-
troduces some error in the output which is calculated by signal to noise ratio (SNR). 
After designing the fixed-point DCT/DST code, the performance is evaluated in various 
Tensilica processor configurations. The configurations provided are generated for Ten-
silica’s Diamond Standard Processor cores in Tensilica Xtensa Environment. The clock 
cycle counts of both fixed-point and floating-point DCT/DST code on four different 
configurations are recorded. 

 The results show that SNR of fixed-point DCT/DST is between (35-76dB) for 
different transform size of DCT/DST, which suggests that the fixed-point code is accu-
rate enough. It is also observed that the fixed-point DCT/DST provides approximately 3 
to 6 times performance improvement over floating-point code on Tensilica processors 
cores in terms of clock cycles. Furthermore, Tensilica’s Diamond Standard 570T paral-
lel processor configuration provides the best performance among all configurations used 
for designed fixed-point code. Results have shown that the fixed-point DCT/DST code 
offers a large performance improvement over floating-point code provided that the 
floating-point code has no added hardware support. 
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1. INTRODUCTION 

Digital signal processing is gaining more and more significance in daily life applica-
tions. The Discrete Cosine Transform (DCT) and Discrete Sine Transform (DST) algo-
rithms are widely used in digital signal processing. The application ranges from image 
processing, speech processing, transform coding systems for data compres-
sion/decompression up to solution of differential equations [5]. Moreover, the DCT and 
DST of type 1 can even be used in calculation of the inverse of Circulant Hermitian 
matrices [10].  

Based on data representation, Digital Signal Processors (DSP) are classified as 
fixed-point processors and floating-point processors. Typically a large number of com-
putations are needed to perform a digital signal processing task. Therefore, a chosen 
numeric representation has a huge effect on the design and performance of a DSP pro-
cessor. An application code has to be designed in respective number format to run over 
these DSP processors for better efficiency. A floating-point number has larger dynamic 
range than fixed-point numbers. In longer floating-point representations the dynamic 
range is so large that it is sufficient for many practical applications. However, the draw-
back of floating point number system is that every floating-point operation requires 
more clock cycles than fixed-point operation as the later uses integer operations [11]. 
Thus, floating-point systems are costly to implement in terms of clock cycles and hard-
ware. The processor generally includes specialized hardware (floating-point unit) that 
performs floating-point arithmetic. The floating-point arithmetic is better suited to gen-
eral-purpose computing, where the requirements of computing cannot be known at the 
time of developing the computing hardware. Fixed-point computing can be used in cas-
es where the requirements of the applications can be exploited during the development 
of hardware. E.g., in application-specific solutions, fixed-point arithmetic can be ex-
ploited to produce more optimized computing structure for the given application. 

Designing an accurate and efficient fixed-point code is the main scope of this 
thesis. Starting point is to select a reference floating-point code for DCT and DST of 
type 1 [5]. The choice of Q-format determines the accuracy and range of fixed-point 
numbers [14]. The Q15 format chosen for this thesis work has best possible accuracy 
for 16-bit numbers but the range has to be normalized between [-1,1]. The Signal-to-
Noise Ratio (SNR) analysis is used to understand the accuracy of fixed-point design 
with respect to reference floating-point code.  

Another part of the thesis work is to evaluate the performance of designed fixed-
point code and referenced floating-point as in [5], on different target processor cores. 
The target processor cores for the generated fixed-point DCT and DST code are Tensili-
ca Diamond Processor cores. The Diamond Standard Processor cores are high perfor-



2 

mance preconfigured fixed-point DSP cores that employs 32- bit registers as base archi-
tecture [20]. The hosts of tools provided by Tensilica’s Xtensa Environment are used to 
run the DCT/DST code in Tensilica Processors [17]. By using Tensilica software devel-
opment tools, the floating-point DCT/DST arithmetic operations can also be emulated 
in 32-bit integer architecture. The Tensilica Xtensa tools can generate different proces-
sor configurations that can be used for a particular application. In this thesis work, four 
different processor configurations are used, which are pre-build inside the Xtensa Envi-
ronment. The configurations are named DE_106micro, DE_108mini, DE_212GP and 
DE_570T associated with different Diamond Standard Processor Cores as mentioned in 
Tensilica white paper [20]. Among them, the DE_570T configuration uses very long 
instruction word (VLIW) instruction used for parallel processing. The DCT/DST appli-
cation codes are profiled in Tensilica Environment to record the clock cycles in differ-
ent configurations. 

In this thesis, the initial chapters provide theoretical and technical background 
necessary for this research work. The chapter 2 explains discrete cosine and sine trans-
forms, their mathematical properties and application domains. In chapter 3, a detailed 
explanation related to fixed-point number system and arithmetic along with a brief in-
troduction about floating-point numbers is presented. Chapter 4 familiarizes with the 
tools and frameworks that are used to run the application DCT and DST code in Tensil-
ica Xtensa Environment. Furthermore, different Tensilica Processor architectural fea-
tures are described. In the chapter 5, the fixed-point design methodology is explained. 
Moreover, the chapter discusses MEX functions that facilitate the use of DCT/DST C-
codes in MATLAB. This chapter also discusses about the processor configurations that 
are generated in Xtensa Environment. The chapter 6 discusses the results of the thesis. 
The SNR results of fixed-point code with respect to reference floating-point code and 
profiling result of DCT/DST are also presented. Finally, the last chapter includes the 
conclusion of this thesis work and recommendations for possible future work. 
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2. DISCRETE COSINE AND SINE TRANSFORMS 

In this chapter, a general introduction about four even types of Discrete Cosine Trans-
forms (DCT), Discrete Sine Transforms (DST) and their mathematical properties are 
discussed. A generalized signal flow graph for DCT and DST of type 1 is presented. 
Furthermore, general application areas of DCT and DST are also discussed. 

2.1 Definitions of DCT and DST 

A cosine/sine transform uses sum of cosine/sine functions oscillating at different fre-
quencies to represent a waveform having relatively complex variation in signal ampli-
tude. When the waveform and sine/cosine functions are sampled at certain intervals, 
they are known as discrete cosine/sine transforms [4].  

The discrete cosine transform and discrete sine transform are associated with the 
family of sinusoidal unitary transform. The complete sets of DCT and DST are known 
as discrete trigonometric transform, which consists of eight versions of DCT and corre-
sponding eight versions of DST [5]. These sets are identified as even or odd and of 
types I, II, III, and IV. Almost all DCT and DST digital and image processing signals 
application use only even types. 

The four versions of even DCT matrices i.e. DCT type I, II, III and IV are de-
fined as [5]; 

!"# − ! ∶ ! [!!!!! ]!" = !
! ! !!!! cos

!"#
! , m, n=0,1,…….,N,              (2.1)            

!"# − !! ∶ [!!!!]!" = !
! ! !! cos

!(!!!!! !)!
! , m, n = 0,1,…….,N-1,  (2.2) 

!"# − !!!:![!!!!!]!" = !
! ! !! cos

(!!!!)!"
! , m, n = 0,1,…….,N-1,        (2.3)                 

!"# − !" ∶ [!!!"]!" = !
! ! cos

(!!!!)(!!
!
!)!

! , m, n = 0,1,…….,N-1,      (2.4)                  

where !! is a scaling factor defined as: 

 !!(!!!!!"!!) =
!
√! !,!!!!"!! = 0!!"!! = !
1!,!!!!!!"ℎ!"#$%!!!!!!!!!!!

!
 . 
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The corresponding four types of even DST matrices denoted as DST type I, II, 
III, IV are defined as:  

!"# − ! ∶ ! [!!!!! ]!" = !
! ! sin

!(!!!)(!!!)
! , m, n = 0,1,… ,N-2, 

!"# − !!:!![!!!!]!" = !
! ! !! sin

!(!!!!)(!!!)
!! , m, n = 0,1,… ,N-1, 

!"# − !!!:![!!!!!]!" = !
! ! !! sin

!(!!!!)(!!!)
!! , m, n = 0,1,… ,N-1,    

!"# − !" ∶ [!!!"]!" = !
! ! sin

!(!!!!)(!!!!)
!! , m, n = 0,1,… ,N-1, 

where 

!!(!!!!!"!!) =
!
√! !,!!!!"!! = 0!!"!! = !
1!,!!!!!!"ℎ!"#$%!!!!!!!!!!!

!
 . 

 In the above equations, N represents an integer, which is a power of 2. A super-
script of a matrix represents its version number while a subscript represents the order. 
 Different authors have introduced different sets of Discrete Sine and Cosine 
transforms [5]. The DCT of type I (DCT-I), first introduced by Wang and Hunt, is de-
fined for the order N+1 whereas, DST of type I (DST-I) defined for order N-1 is intro-
duced by Jain. The first definitions of DCT of type II (DCT-II) and its inverse (DCT-
III) were given by Ahmed et al. Kekre and Solanki first reported the DST of type II 
(DST-II) and its inverse (DST-III). Furthermore, Jain also introduced the DCT and DST 
of type IV. 

2.2 Mathematical Properties 

The mathematical properties of discrete cosine and sine transforms are basis for their 
application on practical domain. Different properties of DCT/DST such as shifting, 
convolution, scaling are extensively applied in the discrete transform field. In this sec-
tion, the main mathematical properties of DCT and DST are described briefly.  

2.2.1 Unitarity Property 

The DCT and DST are separable transforms that allow decomposition of multidimen-
sional transform into one-dimensional transform. As DCT and DST matrices both are 
orthogonal, its inverse transform matrices can be obtained by matrix transpose [5]. Fur-
thermore, DCT/DST of type-I and type-IV are symmetric meaning the inverse trans-
form is the transform of itself. On the contrary, the type II and type III of both DCT and 
DST are transposes of each other. 
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These relations can be formulated for inverse DCT matrices, 

[!!!!! ]!! = [!!!!! ]!=!!!!!!  ,  [!!!!]!! = [!!!!]!=!!!!!! , 

[!!!!!]!! = [!!!!!]!=!!!!! ,   [!!!"]!! = [!!!"]!=!!!!" . 

Similarly for inverse DST matrices, 

[!!!!! ]!! = [!!!!! ]!=!!!!!!  ,  [!!!!]!! = [!!!!]!=!!!!!! , 

[!!!!!]!! = [!!!!!]!=!!!!! ,   [!!!"]!! = [!!!"]!=!!!!" . 

2.2.2 Linearity Property 

All DCT and DST hold the linearity property [5]. That is, for a matrix M, 

M(aI+bJ) = aMI+bMJ, 

where a and b are constants, and I and J are vectors. 

2.2.3 Shift in Time Property 

The relationship between discrete cosine and sine transforms of original sequence and 
its shifted sequence were first presented by P. Yip and K. R. Rao [2]. Shift property can 
be very useful for reducing the computational complexity of the discrete transform, 
when the transforms have to be applied on incoming continues data stream.  
 

If the input sequence of data points is a vector,  
x =[! 0 , ! 1 ,…… . ! ! ]!, 

 
then the right shifted sequence of same vector is 

x+ =[! 1 , ! 2 ,…… ! ! + 1 ]!. 
 

The minimum shift is one sample point in the given sequence.  The correspond-
ing DCTs are given by, 

!!=[C] x and !!!= [C] x+. 
 

 This shift in time property not only relates !!! to !! but also it has a relation with 
the DST of x i.e. with !!. The shift property for DCT-I is defined as, 
 

!!!! ! = cos !"
! !!! ! + !!!!"#

!"
! !!!!(!) 

+ !
! !![ −

!
! cos !"

! ! 0 + !
! − 1)]!!(1) 
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+ −1 ! 1− !
! cos !"

! ! ! + −1 ! !
! !!(! + 1) . 

 Here,!!!! !  and !!!(!) are !!! element of the DCT-I of vector 
[! 0 , ! 1 ,… , ! ! ]! and DST-I of vector  [! 1 , ! 2 ,… , ! ! + 1 ]!, respectively. 
 Similarly the shift property of DST-I is given by 

!!!! ! = cos !"
! !!! ! − !"# !"

! !!!!(!) 

+ !
! sin

!"
! [ !! ! 0 − 1− !

! −1 !!(!)] . 
The shift property of other types of DCT and DST are explained by P. Yip and K. R. 
Rao in [2]. 

2.2.4 Scaling in Time Property 

Since, DCTs and DSTs are the transforms that deal with discrete sample points and its 
resulting transform is in discrete frequency domain, a scaling in time has no effect on 
the overall transform. However, a scaling in time will cause an inverse scaling in the 
frequency domain [3]. 

If ∆! and ∆! are time and frequency units respectively, then 
∆!.∆! = !

!! . 

 Thus if ∆t is scaled by a factor a and it changes to a∆!, then the frequency unit 

∆! must change to ∆!! , provided the number of divisions N remains the same. There is 

no change in the overall magnitude of the transform. 

2.2.5 Difference Property 

This property is useful when differentiation of the adjacent samples is required in a sig-
nal; an application being differential pulse code modulation [3]. 
 Considering a signal with a differences of adjacent samples d(n) = x(n+1) - x(n), 
n = 0,1,…, N-1. The difference vector can be defined as; 

d = x+ - x 
 

where, x+ is a right shifted version of x. So, the DCT and DST of vector d is given by 
!! = !!! − !! and !! = !!! − !! . 

2.2.6 Convolution Multiplication Property 

Convolution multiplication property is one of the most important properties of DCT and 
DST. It is used to perform digital filtering in the transfer domain. The convolution in 
transform domain, which is a result of an inverse transform of the product of forward 
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transform of two input data sequences, is equivalent to symmetric convolution of those 
sequences in the spatial domain [5]. 
 If {!!} and {!!} are two input data sequences to be convolved, the relationship 
between transform domain convolution- multiplication property and symmetric convo-
lution can be given as: 

{!!} < sc > {!!} = !!!![!! !! ∗ !!!{!!}] 
where <sc> denotes the operator of symmetric convolution, * represents element by 
element multiplication of its operands, and !! !!  represents a transform !! of the se-
quence !! . For example, the convolution-multiplication property of type 2 DCT 
(DCT-II) can be obtained by substituting !! = !!!= [!!!!] and !! =  [!!!!! ]!! in the pre-
vious relation. 

2.3 Basic Properties of DCT/DST 

Signal Flow Graph 

The signal flow graphs visualize the computational structure of DCT and DST and their 
inverse. The signal flow graphs of DCT/DST of type 1 describe the computation of 
DCT-I for any N= 2! + 1, and DST-I for any 2! − 1where m > 0 and N is the length 
of data sequence. For DCT-I and DST-I computation, the generalized signal flow 
graphs for N=17 and N=15 are presented in the Figures 2.1 and 2.2, respectively. The 
details on DCT/DST computation and signal flow graphs are mentioned by K.R. Rao 
et.al. in [5].  
 
Butterfly diagram 
The butterfly is the simplest 2-point DCT/DST calculation and is a basic unit of 
DCT/DST calculation. It consists of one addition and one multiplication operation. The 
DCT/DST algorithm consists of many butterfly computations. The butterfly combines 
the results of smaller DCT/DSTs into larger DCT/DST, or vice-versa (breaking larger 
DCT/DSTs into sub transforms). 
 
Radix 
In general radix means that the entire algorithm is implemented with certain butterfly 
blocks, i.e,, radix-2 DCT means that the DCT is computed with the aid of 2-point 
DCTs. Here the radix can be interpreted as the length of the building block of the fast 
algorithm, i.e., 4-point DCT can be considered as radix-4. Butterfly and radix are inter-
related. 
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Figure 2.1. Schematic diagram showing generalized signal flow graph of DCT-I and 
IDCT-I for N + 1 = 17, as in [5]. 
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Figure 2.2. Schematic diagram of DST-I and IDST-I generalized signal flow graph for 
N − 1 = 15, as in [5]. 
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larly, the international audio coding standards MPEG-1 and MPEG-2 use a modified 
form of DCT and DST [7] Furthermore, the DCT and DST are applicable on areas like 
solution of differential equations, Cepstral analysis in speech processing, and transform 
domain processing etc. [8] 
 In this thesis work, the DCT and DST of type 1 are used. Both types have similar 
application as general DCT. The DCT-I is as good as DCT-II in terms of computational 
requirements and its performance on energy compaction and digital filtering [9]. When 
the length of data sequence is increased, the DCT-I is competitive with DCT-II in terms 
of performance. At the same time, DCT-I requires less computations in comparison to 
DCT-II that makes it suitable even better than DCT-II for applications with larger data 
sequences having relatively low correlation coefficients. Furthermore, DCT and DST of 
type 1 are also used in calculating the inverse of circulant Hermitian matrices [10]. 
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3. REPRESENTATION OF NUMBERS AND 
ARITHMETIC IN DIGITAL SIGNAL PRO-
CESSING 

In the field of digital signal processing, there are number of factors, which determine 
the type of processor, such as: computational efficiency, memory consumption, ease of 
implementation, precision requirement, time to market etc. [11]. For processor design, 
one of the significant criteria in decision processing is to determine the data representa-
tion by the processor for a particular application. To implement any digital signal-
processing task, a large number of computations need to be performed. Therefore, a 
selected numeric representation has a huge influence on the design and performance of 
a DSP processor. The key for arithmetic representation is to represent dynamic range of 
numbers in less number of bits. The maximum size of an instruction and addressable 
memory is described by word length. Hence, a major characteristic required for choos-
ing an arithmetic representation would be to represent a dynamic range of numbers in 
certain word size. In some cases, a large dynamic range is needed while in other cases, 
simplicity and computation efficiency is required. So, there is always a trade-off be-
tween them. There are two types of number representations: fixed-point and floating-
point. According to data representation by DSP, they are classified as fixed-point pro-
cessors and floating-point processors. The fig 3.1 shows how DSP are classified on the 
basis of number representation. 

 

 

 

 

 

 

Figure 3.1. Schematic diagram showing the DSPs on the basis of number representa-
tion [11] 
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3.1 Fixed-Point Number Representation  

Fixed-point number representation deals with both positive and negative numbers, and 
whole numbers. The key in fixed-point number representation is the concept of a binary 
point. The binary point divides a number between integer and fractional part, just like a 
decimal point in decimal system. The bits, which are left of the binary point carries a 
weight of 2!, 2!, and so on. On the other hand, the bits, which are right of the binary 
point, carry negative weights: 2!!, 2!! and so on.  
 As the name suggests, the binary point is fixed in this representation and there is 
a constant step between two representable numbers. The binary point could be located 
anywhere, e.g. in the beginning, in the end or at a certain location between the numbers. 
As an example, xxx.xx denotes fixed-point arithmetic with two bits after the binary 
point. The selection of binary point is done according to the precision requirements. The 
higher number of bits after the binary point, the higher will be the precision. The bits on 
the left hand side of the binary points (i.e. towards most significant bits) are known as 
integer bits while the bits after the decimal points are regarded as fractional bits. We 
need to remember that, the binary number is in fact an imaginary point that is not stored 
in the memory rather it is a way for the interpretation of stored binary bits. The data 
saved in the memory are always in the form of binary bits (i.e. 0 and 1) but this kind of 
representation simplifies the manipulation of those bits in different ways according to 
our necessities. 
 Fixed-point representation can be further divided into integer representation and 
fractional representation [11]. The integer arithmetic is used in a DSP for control opera-
tions, address calculations and other operations that are not related to signals [11]. On 
the other hand, fractional representation is useful in signal computations and they have 
values between -1 and +1.   

3.1.1 Integer Representation 

Integer representation is very simple and straightforward representation where the bit 
pattern is regarded such that the most significant bit (MSB) is the leftmost bit and the 
least significant bit (LSB) is the rightmost one. If the number represented is more than a 
byte, then the byte orientation is reliant on the endian of the representation. In big-
endian representation, MSB is the leftmost bit, where as in little-endian representation, 
the leftmost bit is LSB, keeping same internal orientation of bits in every byte. Figure 
3.2 shows the bit pattern of 16-bit binary integer representation. 

!!" …. …. …. !! !! !! 

 

Figure 3.2. Bit format of integer representation 
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 The ranges of representable numbers are dependent on the number of bits and the 
weight of each bit is dependent on the bit position. In unsigned binary representation 
that shows numbers only in positive range, the representable range ! for n number of 
bits is 

0 ≤ ! ≤ 2! − 1. 
The decimal value for n number of bit pattern can be calculated as,  

! = 2!!! + 2!!!+. . .+!2!!!!!!! = 2!!!!
!!!  

where ! is the bit position in the number. 
 The signed binary representation includes both positive and negative numbers. 
The MSB is called as sign bit and its value reflects whether the number is negative or 
positive. For a negative number, the sign bit is ‘1’ whereas the sign bit is ‘0’ for positive 
number. The representable range remains the same in signed binary representation; 
however, the maximum representable positive number gets reduced almost by half. The 
range ! of any n number of bits can be found as, 
     −2!!! ≤ ! ≤ 2!!! − 1. 
The decimal value!!!for signed ! numbers of bit can be calculated as, 
! = −2!!!!!!! + !… . .+2!!! + 2!!! = −(2!!!!!!!)+ 2!!!!

!!!  . (3.1) 

3.1.2 Fractional Representation 

In case of integer representation, double number of bits is required to store the result of 
multiplication operation. But, if the numbers can be normalized in the range of [-1, 1), 
the result will not overflow (exception is -1 x -1 = +1). This is because multiplying a 
fraction by a fraction always results in a fraction. (For example, 0.99999 x 0.99999 is 
always less than 1). This kind of representation is known as fractional representation 
[11]. Figure 3.3 shows the fractional representation for 16-bit number. 

!! !!! !!! …. …. …. !!!" 

 

  

Figure 3.3. Bit format of fractional representation 

In fractional representation, the range ! for a number having ! fractional bits can be 
calculated as, 

−1 ≤ ! ≤ 1− 2!(!!!) . 
 The decimal value ! of the fractional number can be calculated as  

! = −!!!! + 2!!!!!! !… . .+2!(!!!)!! . (3.2) 

Binary Point 
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3.1.3 Q-Format 

Fixed-point numbers, combining both integer and fractional representation are generally 
represented by a well-defined Q-format [12]. The Q-format represents a fixed-point 
number in the form of !".!, where ! represents the number of integer bits on the left 
hand side of the binary point known as integer word length and ! represents the number 
of fractional bits on the right hand side of the binary point called fraction word length. 
The total number of bits in the format is called word length [13]. Hence, a fixed-point 
number is characterized by word length in bits, the location of binary point and sign of 
the number (signed or unsigned) [14]. 
 Figure 3.4 shows different fixed-point format with imaginary binary point at dif-
ferent locations. 

 

  

 

 

 

 

Figure 3.4. Block diagram representing different Q-format 
 

 There are no integer bits in case of fractional fixed-point representation. There-
fore, this special format can be regarded as !" format, where ! is the number of frac-
tional bits. For example, in a signed number, a !2.14 format has 2 integer bits and 14 
fractional bits and a sign bit. On the other hand, !15 format has 15 fractional bits and 1 
sign bit. However, some fixed-point designers may consider the sign bit while some do 
not; this is just a way to interpret a fixed-point number. A !5.5, format can be interpret-
ed such that total number of bits required are 10, without including the sign bit; while 
for the same format, some designer may consider total number of bits required are 11 
considering a sign bit.  

The location of binary point determines how fixed-point numbers are interpreted 
in decimal system. For example, combining equations (3.1) and (3.2), in signed two’s 
complement arithmetic [15], the same 5-bit binary number can be interpreted as fol-
lows: 
 10110. Indicates (−2! + 2! + 2) = -10 in decimal. 
 101.10 Indicates (−2! + 2! + 2!!) = -2.5 in decimal. 
 1.0110 Indicates (−2!! + 2!! + 2!!) = -2.5 in decimal. 

S Integer (15 bits) S 

Upper 5 bits Remaining 10 bits 

Fraction (15 bits) 

Binary point position 

Q15.0 Q15 

Q4.10 
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3.1.4 Fixed-Point Range and Precision  

The range of a fixed-point number is the minimum and maximum values, a Q-format 
can represent. For a fixed-point number with word length ′!"′ and fractional word 
length ′!"#′, the range of the format is from 

 −2!"!!"#!! to 2!"!!"#!! − 2!!"#, for a signed number 
 0 to 2!"!!"# − 2!!"#, for a unsigned number 

The precision of fixed-point number is the distance between successive numbers within 
the range. For both signed and unsigned fixed-point numbers, the precision is 2!!"#. 
 
Table 3.1. 16-bit signed fixed-point range, precision and Q-formats [14] 

Q-Format 
Maximum Positive Val-
ue in Decimal 

Maximum Negative 
value in Decimal 

Quantization 
step/ Precision 

Q1.15 or Q15 0.999969482421875  -1 0.00003051757813 
Q2.14 1.99993896484375  -2 0.00006103515625 
Q3.13 3.9998779296875  -4 0.00012207031250 
Q4.12 7.999755859375  -8 0.00024414062500 
Q5.11 15.99951171875  -16 0.00048828125000 
Q6.10 31.9990234375  -32 0.00097656250000 
Q7.9 63.998046875 -64 0.00195312500000 
Q8.8 127.99609375 -128 0.00390625000000 
Q9.7 255.9921875 -256 0.00781250000000 
Q10.6 511.984375 -512 0.01562500000000 
Q11.5 1023.96875 -1024 0.03125000000000 
Q12.4 2047.9375 -2048 0.06250000000000 
Q13.3 4095.875 -4096 0.12500000000000 
Q14.2 8191.75 -8192 0.25000000000000 
Q15.1 16383.5 -16384 0.50000000000000 
Q16.0 32767 -32768 1.00000000000000 

 

Therefore, the fixed-point number has higher precision, if it has higher number of 
fractional bits. On the other hand, the range will decrease if we increase the number of 
fraction bits. Table 3.1 shows different Q-formats of signed 16-bit fixed-point numbers 
along with their range and precision. 

3.1.5 Fixed-Point Arithmetic Operations 

In fixed-point arithmetic calculations, special attention has to be taken to keep track of 
the binary point. Although, keeping track of binary point is easy and systematic, the 
scaling to avoid overflow is more problematic in arithmetic operations. The arithmetic 
operations are addition, subtraction, multiplication and division. Division operation is 
equivalent to multiplication by the multiplicative inverse, so it is not explained below. 
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Shifting is the key in a fixed-point representation [14]. It is used for addition/subtraction 
and multiplication. Therefore, a brief explanation about shifting is presented first. 
 
Shifting  
Shifting a number to the right by one bit is equivalent to the division of the number by 
2! . Similarly, to the right by two bits is equivalent to division by 2!!and so on. Con-
versely, shifting left acts as a multiplication by 2!, 2!,!and so on. Shifting is also used 
for displacing the position of binary point, which is usually needed in addition, and mul-
tiplication operations. The shift to the right is denoted by >> and to the left by << sym-
bol. If x is total number of shifts in a !(!,!) fixed point number, we have 

Q m,n ≫ x = Q(m− x,! + x) 
! !,! ≪ ! = !(! + !,! − !) 

 
Addition and Subtraction 
In case the operands are of the same fixed-point data types, addition and subtraction 
operation are carried out just like integers. For example, the two fixed point numbers 
!(!1,!1) and !(!2,!2) has a correct result on a condition that !1 = !2!; !!1 = !2. 
But, if the operands are of different data types, the variable having larger number of 
fractional bits is shifted to right by !!"#$%# − !!!"!""#$ bits to move its decimal place to 
align the binary points [16]. As an example, if we have to add two numbers ! 0,7  and 
! 4,3 , the ! 0,7  number needs to be converted into the ! 4,3  format by right shift-
ing it 4 bits and sign extending it. Then, the addition operation can be done while keep-
ing in mind that the operation does not overflow. 

Multiplication 
In multiplication, one needs to consider that the result of the operation requires a tempo-
rary storage of twice the size of the operands (assuming both operands have same stor-
age size) so that there will be no loss of bits. The result then needs to be chopped to fit 
into the storage of the operands. If both the operands are of same Q-format, both the 
integer and fractional part have twice as much length in the temporary result. For the 
correct result and alignment of radix point, a right shift by the number of fractional bits 
is done. Rounding can be combined along with right shift to gain more accuracy. 

Fixed-point additions and subtractions are performed by integer operation in a 
straightforward manner. For example, if we add two 16-bit numbers (!15 numbers), the 
result will also be a !15 number. But, in case of fixed-point multiplication, if we multi-
ply two !15 numbers, the result will be a !30 number with two sign bit and 30 frac-
tional bits. The extra sign bit in the result is known as a sign extension bit. This is fur-
ther clarified by an example mentioned below; 

Let us assume, we have to multiply 0.5 with 0.25. In !15 format,  
• 0.5 is represented as (0.5*2^15) = 16384 (decimal representation) 
• 0.25 is represented as (0.25*2^15) = 8192 (decimal representation) 
• On multiplication, the product is 134217728 (decimal representation) 
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Figure 3.5. Multiplication of two !15 numbers showing an extra sign extension bit 
 
The product is not a !15 number as the number of bits required is more than 16. 

Our anticipated result is 0.125 i.e. 4096 in !15 format. The result is in fact 0.125 times 
2!". In order to keep the same ! format of the result, we need to right shift the result by 
15 bits (i.e. dividing by 2!"). Right shifting the result by 15 bits (division by 2!") pro-
duces (134217728 / 2!") = 4096, which is !15 notation for 0.125. 

3.2 Floating-Point Number Representation 

DSPs generally need a large dynamic range to represent computation results. One way 
to accomplish this dynamicity is to use a large number of bits to represent the largest 
and smallest numbers. This can waste memory, if a wide range remains unused. To ac-
cess a large memory area, the processing speed becomes slow. Large memory areas also 
increase the silicon size in a system [11]. The other way to achieve dynamicity is by 
using floating-point numbers, which introduce an exponent in the representation. The 
exponent increases the dynamic range that makes a very large and a very small numbers 
representable. The distance between two successive numbers (quantization step) does 
not remain as in the case of fixed-point number and it changes according to the expo-
nent. The quantization step is the same for a number having the same exponent. The 
term floating point refers to the fact that the binary number can ‘float’, not like fixed-
point where the binary point is fixed. The binary point can be placed anywhere and it 
changes with the exponent value. 
 The mantissa part of a floating-point number determines accuracy and the expo-
nent part determines dynamicity. The accuracy increases with the increment of number 
of bits in mantissa part. On the other hand, increasing the number of bits in the exponent 
field will increase the dynamic range. Therefore, floating point number can be adjusted 
accordingly. The drawback of floating point number system is that, every floating-point 
operation requires more clock cycles than fixed-point operation [11]. The processor 
generally includes specialized hardware (FPU-floating point unit) that performs float-
ing-point arithmetic. 

 Q15  
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 A floating-point number ! can be represented as follows 

! = −1!!. !!  
where S is the sign of the number, m is the mantissa, ! is base  of the floating-point sys-
tem and ! is exponent. The mantissa can be normalized as, 1≤ ! < !. For a binary 
number, this determines the range of mantissa between [0.5, 1] on the positive side and 
between [-1, -0.5] on the negative side. To store a floating-point number, we need 
!! + !! + 1 bits, where, !! is total number of bits in mantissa field, !! is total number 
of bits in exponent field and an additional bit is required for a sign bit. A basic floating-
point storage format in memory is shown below. 

Sign (S) Exponent Field (e) Mantissa field (m) 

 

 Although, there are several floating-point representations that have been used in 
computers, the most commonly used representation is defined by IEEE 754 standard. 
Four different floating-point formats are defined in this standard and are mentioned be-
low; 

- Basic single precision floating-point  
- Extended single precision floating-point 
- Basic double precision floating-point 
- Extended double precision floating-point 

 The number of bits in mantissa and exponent part is different in this format as 
shown in table 3.2. 

Table 3.2. IEEE floating-point standards [11] 

Parameter 
Basic Sin-
gle format 

Extended Single 
format 

Basic Double 
format 

Extended Dou-
ble format 

Format width (bit) 32 43 64 79 

Mantissa width (bit) 23 31 52 63 

Exponent width (bit) 8 11 11 15 

Maximum exponent +127 +1023 +1023 +16383 

Minimum exponent -128 -1024 -1024 -16384 

3.3 Fixed-Point Processors versus Floating-Point Processors 

Fixed-point processors are used in high volume applications. They are comparatively 
less expensive as compared to its floating-point counterpart due to large scale of manu-
facturing. To compensate quantization noise, fixed-point arithmetic requires greater 
manipulation in algorithms. Although the development cost is higher for fixed point due 
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to difficult algorithm implementation, the final product will be cheaper. Moreover, the 
fixed-point implementation on a DSP allows lower power consumption, and smaller 
size on chip (reduced hardware complexity of fixed point circuit). Therefore, fixed point 
DSPs are used for high-volume general-purpose applications.  
 On the other hand, floating point DSP is optimized for computationally intensive 
and generalized tasks. Since the floating point has large dynamic range, there is practi-
cally no limitation on dynamic range for floating point designs. Floating point code de-
velopment is less architecture dependent as well as high-level language friendly. There-
fore, floating point DSP have cheaper and quicker development time than fixed-point 
DSP, however the final product cost is expensive (more complexity in silicon and also 
has wider buses to implement in design). 
 Hence, lower cost and higher speed of computation are trade off against added 
design effort for algorithm implementation in fixed-point algorithm. In the reverse 
manner, the ease of development process is trade off against the higher cost and hard-
ware complexity in floating point applications. 
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4. FRAMEWORK AND TOOLS 

Tensilica is a company founded in 1997 in Santa Clara, California based on semicon-
ductor intellectual property core business, and is now part of Cadence Design System. 
Tensilica designed the first configurable and extensible processor core to address appli-
cation specific microprocessor cores and software development tools. To implement the 
DCT/DST codes in Tensilica Processors, the host of tools provided by Tensilica’s Xten-
sa Environment is used [17]. A detailed description about the Xtensa tools and Proces-
sors are discussed in the following sections. 

4.1 Xtensa Xplorer Integrated Development Environment 

Xtensa Xplorer IDE tool is a graphical user interface (GUI) design environment targeted 
for SoC modeling and software development for Tensilica processors. It provides soft-
ware and hardware developers a common development tool to design Xtensa processor 
based systems. The Xplorer incorporates processor customization, software develop-
ment and multi-processor SoC architecture tools, all together in a one common design 
environment. Xplorer is useful for the development of Tensilica Instruction Extension 
(TIE) [18], a Verilog like language used for custom instruction extensions to Xtensa 
Processors. The IDE is fully integrated with Xtensa Software Developer’s Toolkit [19], 
where a developer can profile an application C-code, identify problems in the code and 
according to the necessity, make adjustment in the custom processor to speedup that 
code. Different features of Tensilica Processors can be added or removed to customize it 
according to the requirement of the SoC designer.  

4.1.1 Processor Configurations 

The Xtensa Xplorer tool provides different kinds of processor configurations options to 
use from the list for a particular application code. The processor configuration defines 
the type of Tensilica Processor. These configurations specifications can be either al-
ready built (and installed) in the Xtensa tool known as configuration build or that has 
not been built, simply known as configurations inside the Xplorer tool [17]. The Xtensa 
tools and configuration build are platform specific (Windows or Linux). Using a soft-
ware configuration build, the Xtensa tools are adapted to a particular processor configu-
ration. There might be one installation of Xtensa tools but many configurations of Ten-
silica processors. The target processor is selected using environment variables.  
 Using a configuration build, the Xtensa tools are adapted to a particular processor 
configuration. The Tensilica’s Diamond Processor configuration builds are pre-build 
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inside the Xplorer tool and cannot be modified by a software developer (i.e. cannot be 
further configured or extended). While, on the other hand, Tensilica’s Xtensa Proces-
sors can be configured and extended by using TIE as per requirements. Same technolo-
gy is used for Tensilica’s Diamond Processor builds as Xtensa Processor builds but the 
flow with which they are manipulated is more restrictive as they have predefined nature. 
Recent versions of Diamond Processor configuration builds are always included in Ten-
silica Xplorer tool, which are built for little-endian versions of the Diamond Processors. 
These configuration builds are used for evaluating Tensilica Processors as well as for 
developing software for a chosen processor. 

4.1.2 Perspectives and Views 

The Xplorer workbench can be dynamically rearranged according to different tasks such 
as editing, profiling or debugging any application code. A particular arrangement of the 
workbench interface to suit some set of tasks is known as ‘Perspectives’. The ‘Views’ 
provides navigation of information in the workbench [17]. So, a perspective depicts 
how certain views are arranged, what kind of menus and set of toolbars are available 
and where the editor area is located inside the workbench. The Xplorer has many stand-
ard perspectives, which can be modified. Nevertheless, it is also possible to create and 
modify own perspectives. The key perspectives for Xtensa C/C++ project development 
are: 
 
C/C++ editing Perspective: This Perspective is used for creating, editing and compil-
ing any C/C++ projects, Xtensa configuration and tensilica instruction extension files. 
The Perspective has a View named ‘Project Explorer’, which displays C/C++ projects 
and its related files. Similarly, the View ‘System Overview’ displays various Xtensa 
configurations. 
 
Debug Perspective: This Perspective shows a group of Views and a source code editor 
to debug program with Xtensa Xplorer. The views help to control the execution of the 
program by suspending or resuming the program, adding breakpoints, examining con-
tents of memory and register etc. 
 
Benchmark Perspective: The Benchmark Perspective is the main perspective to view 
the profiling results (Profile View) of the executed C/C++ application. 
 
 In Xplorer, there is a collection of ‘Active set toolbar’ consisting an active pro-
ject, active configuration and active target. These toolbars display active set and use of 
them is the easiest way to build, run, profile and debug an application. Any task of 
building, running, profiling and debugging will be done for those chosen active sets.    

The Benchmark Perspective and C/C++ Perspective along with Active set toolbar 
of the Xtensa workbench are shown in the figures below. In Figures 4.1 and 4.2, the P: 
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DCT_Fixed is the active project to be built, C: DE_570T is selected as an active config-
uration and T: Debug is a target toolbar option to select the target for which to build. 

 

 

Figure 4.1. C/C++ Perspective layout showing Active Set Toolbar of Xtensa 
Workbench 

4.1.3 Profile View 

The Xtensa tools have numerous capabilities for profiling and benchmarking of various 
application behaviors [17]. The profiling task is to run the program using an appropriate 
launch that regulates execution and collects profile data. The profiling task also consists 
of navigating and analyzing of those profiled data using controls and views in the 
Benchmark perspective.  
 The cycle-accurate Instruction Set Simulator (ISS) included in Xtensa tool is 
used for profiling and can trace program execution at the lowest level. In addition to the 
cycle count profile, the ISS has other uses like collection of data on cache behavior and 
pipeline bubble; however this topic is out of the scope for the thesis. The Profile toolbar 
is used to launch the C/C++ project. After completion of profiling run, Xplorer will 
open the Benchmark Perspective to display the profiling results. 
 The Profile View inside Benchmark Perspective displays profile information of 
various functions in C/C++ program. The Profile View displays information up to 
twelve columns. Some of them are listed below. 
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- Function name: It displays the name of functions in the programs. 
- Total (%):  It displays the percentage of total profile count spent in executing this 

function. 
- Function: It displays the clock cycle count only for this function. 
- Children: It displays the total cycles spent in executing the functions called by this 

function plus the functions called by those functions. 
- Total: It displays the total sum of both Function and Children results. 
- Called:  It displays the total number of times this function was invoked. 
- Size (bytes):  It displays the text size of the function. 
 

 

Figure 4.2. Benchmark Perspective Layout showing the Profile View 
 

4.2 Processor Templates 

There are mainly two sets of families of Tensilica processors, namely Diamond Stand-
ard Processors and Xtensa Processors. Both of the families of processors are described 
briefly in the following sections. 
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4.2.1 Diamond Standard Processors  

The Diamond standard processor cores are preconfigured as 32- bit microprocessor and 
DSP Intellectual Property (IP) cores [20]. The basis of all Diamond standard processor 
cores is Tensilica’s Xtensa Instruction Set Architecture (ISA) [21]. 

The Diamond Standard Processor core family comprises of three general-purpose 
controller cores, a Linux- compatible CPU core, a superscalar CPU core, an audio pro-
cessor core and a DSP core. Figure 4.3 illustrates the performance of some of the Dia-
mond Standard controllers/CPU in Dhrystone MIPS/MHZ and area consumed by those 
cores. Dhrystone is a computation benchmark representative of an integer processor 
performance [22]. The next section describes some of the Diamond processors briefly. 
 

 

 

 

 

 

 

 

 

Figure 4.3. Schematic diagram showing the performance of some of the Diamond 
Standard controllers/CPU in Dhrystone MIPS/MHZ against the area (mm2) consumed 

by those cores [22]. 

The Diamond Standard 106Micro Controller Core 
The Diamond Standard 106Micro Controller Core is the smallest 32-bit RISC core 
among all the Diamond processor cores [23]. It has the smallest die area as well as low-
est power consumption among the 32-bit Diamond processor family. It is a cache-less 
controller core and uses a 5-stage pipeline. Modeless switching between 24 and 16-bit 
instructions allows a good code density. To enhance performance of arithmetic and DSP 
code, the controller core has 32*32-bit multiplier. Furthermore, it consists of a 16-entry 
general-purpose register files known as AR register file to minimize area. The perfor-
mance of 106Micro controller core is measured at 1.22 Dhrystone/MHz. 
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The Diamond Standard 108Mini Controller Core  
The Diamond Standard 108Mini Controller Core is small cache-less fully synthesizable 
32-bit RISC core [24]. Although 108Mini Core is small in area, it achieves high per-
formance of 1.34 Dhrystone MIPS/MHz. Moreover, it is more useful for DSP applica-
tion because of its integrated 32-bit integer divider along with 32*32-bit multiplier. The 
32-entry general-purpose register file, with a 16-entry register window, facilitates fast 
context switching. It has a local, single cycle instruction memory interface and two local 
data memory interfaces.  
 
The Diamond Standard 212GP Controller Core  
The Diamond Standard 212GP Controller Core is a mid-range 32-bit RISC core of dia-
mond family designed for high performance [20]. Similar to the Diamond 108Mini 
Controller core, the Diamond 212GP controller has interfaces for local instruction and 
data memories. In addition to that, it also has a cache controller that uses 8-Kbyte, 2-
way set-associative instruction and data caches, efficient for large programs. The pro-
cessor core itself has arithmetic and DSP hardware support, minimizing the need of in-
dividual DSP in the system. This includes a single cycle, 16*16 MAC unit adding four 
32-bit registers and a 40-bit accumulator for DSP support. Additionally, a 32*32 bit 
multiplier and 32-bit integer divider is provided for arithmetic support. The perfor-
mance of the 212GP core is measured at 1.38 Dhrystone MIPS/ MHz.  
 
The Diamond Standard 570T Static-Superscalar CPU Core  
The Diamond Standard 570T CPU core is one of the highest performance licensable 
processor cores available in market [20]. It combines 3-issue very long instruction word 
(VLIW) with 5-stage pipeline to provide high performance for both control and DSP 
code. The 16- bit and 24-bit instruction can be intermixed with 64-bit VLIW instruction 
in instruction stream to enhance performance with small code size. The Xtensa C/C++ 
compiler can create 64-bit VLIW instructions, if instructions can be issued simultane-
ously; otherwise, it selects 24 or 16-bit instructions, which is very effective to reduce 
the amount of memory required to store instruction. The Diamond 570T core has a 
32*32- bit multiplier in addition to 32-bit integer divider. Furthermore, it has a single 
cycle 16*16-bit MAC unit. The 570T processor core can achieve high performance of 
1.59 Dhrystone MIPS/MHz. Table 4.1 shows the memory types and sizes of Diamond 
standard processor cores discussed above. 
 
Table 4.1. Memory types and sizes of Diamond Standard Processor cores 

Memory Type (KB) 106Micro 108Mini 212GP 570T 
Local Instruction RAM) 1-128 1-128 0-128 0-128 

Local Data RAM0 0-128 0-128 0-128 0-128 
Local Data RAM1 N/A 0-128 N/A N/A 
Instruction Cache N/A N/A 8 16 

Data Cache N/A N/A 8 16 
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The following section briefly describes some of the features of Xtensa processors that 
are related to this thesis work. 

4.2.2 Xtensa Processors 

The Xtensa instruction set architecture (ISA) is the basis for Tensilica’s Xtensa Proces-
sors. The 32-bit base architecture features modeless switching between 16- and 24-bit 
instruction set for maximum performance. The base architecture has 80 RISC instruc-
tions. There is a 32-bit Arithmetic Logic Unit (ALU) and maximum 64 general-purpose 
32-bit registers along with six special-purpose registers.  
 The major difference of Xtensa Processor with Diamond processor is the fact that 
Xtensa Processors are customizable and can be configured with the integrated tool chain 
whereas Diamond Processor are pre-configured and cannot be extended or customized 
later. However, both processor families share same base architecture i.e. Xtensa ISA. 
 
Tensilica HiFi Audio DSP 
The HiFi Audio DSPs are add-on audio extension package for Xtensa LX processor 
[25]. HiFi mini is the smallest and lowest power audio core provided by Tensilica [26]. 
The HiFi 2 provides a low power MP3 audio processing and is accompanied by HiFi 
Extended Precision (HiFi EP) for further optimizations and improved performance [27]. 
The HiFi 3 offers higher performance of audio or voice processing than the rest [28]. 
Some of the features of various versions of HiFi audio DSPs are listed in Table 4.2.  
 
Table 4.2. Comparison of features of the different HiFi audio DSP [29] 

Tensilica ConnX D2 DSP Engine 
The ConnX D2 is an add-on option DSP engine for Xtensa LX processor [30]. The ad-
dition of ConnX D2 DSP to Xtensa LX core further adds dual 16-bit MACs and 8-entry 
40-bit register file to its base RISC architecture. The ConnX D2 DSP supports various 
data types including 16, 32, and 40-bit integers; 16, 32, and 40-bit fixed points; 16-bit 
complex; 8 and 16-bit vectors. It employs two-way SIMD (single instruction, multiple 
data) instructions, 64-bit VLIW and a 5-stage pipeline. 

Architectural 
Comparison 

HiFi mini HiFi 2 HiFi EP HIFi 3 

Architecture 
(bits) 

24 24 24 32 

VLIW slots 2 2 2 3 

MACs 
Dual MACs 
24*24 32*16 

Dual MACs 
24*24 32*16 

3 MACs 24*24 
32*16 32*24 

4 MACs operating 
as: 4 24*24 or 4 

32*16 or 2 32*32 or 
2 32*24 

Load/Store 
(bit) 

64 64 64 64 
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5. SOFTWARE DESIGN AND IMPLEMENTATION 

In this chapter, the design process to develop fixed-point C-code that is based on the 
technical background provided in the previous chapters is presented. The DSP algo-
rithms are dependent on repeated number of multiplications and additions, so the de-
signer needs to carefully consider the possibility of overflow and underflow after each 
arithmetic operation. The programmer has to understand the accumulation of quantiza-
tion errors, signal levels during intermediate computations and needs to remember the 
scaling throughout the program. Several factors need to be pondered upon while con-
verting floating-point codes to fixed-point domain. A comprehensive knowledge about 
the input data and the code flow is very important.  
 The starting point of the code development process is to find the appropriate ref-
erence floating point C-code for DCT/DST implementation. For this thesis work, the 
reference floating point C-code are taken from ‘The Transform and Data Compression 
Handbook’ by K.R. Rao et al. [5]. The choice of appropriate fixed-point format is cru-
cial part in fixed-point design. If the fixed-point code output values are achieved with 
optimum accuracy, the code design process is completed. 

5.1 Fixed-Point Code Design 

For the fixed-point code design, the Q15 format, i.e. fractional-fixed point format is 
chosen for the reasonable accuracy. In that case, the input data has to be normalized in 
the range of [-1, 1). Multiplication overflows are handled by using fractional fixed-point 
format. Numerous code optimization strategies have to be considered to decrease the 
execution time e.g. substitution of calculations with look-up tables, and avoiding itera-
tive divisions by computing the inverse factor and substituting with equivalent multipli-
cation. Furthermore, divisions and multiplications can be replaced with bit-wise right 
shifting and left shifting respectively, whenever possible. Although there are many other 
optimization strategies, some basic strategies are used in this code development process.  
 
Before the design of fixed point DCT/DST C-code, random input numbers were gener-
ated between [-1, 1] according to different DCT/DST length. The designed fixed point 
DCT-I and DST-I codes works for maximum transform size of N=129 and 127 respec-
tively. Although, by adding the numbers of cosine coefficients in the defined cosine 
array of the code, it works for required transform. The generated inputs were first mul-
tiplied by 2!" and then rounded to nearest integer value to represent them in C-code, 
such that they can be used as Q15 format in C-code. Tensilica’s 32-bit processors are 
considered as the target processor for fixed point DCT/DST code.  
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Following steps are taken to design the fixed point DCT/DST C-code: 
1) All floating-point variables, which were represented as double data types in floating 

point DCT/DST C-code, are changed to integer data types. Since, fixed-point format 
represents numbers as integer data types. 

2) The scaling functions used in DCT/DST code were changed to Q15 format and 
hard-coded as constant in the C-code. 
For example, scale = 1.0 / sqrt (2.0); is changed to Q15 format by multiplying with 
2!". So it is defined as  
const int  scale = 23170; in C-code.  

3) The cosine coefficients were calculated from reference floating point code manual-
ly. Those coefficients were changed to Q15 numbers and represented in a cosine co-
efficient array in the fixed point DCT/DST code. 

4) As defined earlier in the fixed-point multiplication section, the resulting variables 
after multiplication between two operands were shifted right by 15 bits. This means 
dividing by 2!" after every multiplication such that the resulting value would remain 
in Q15 format. 

5) As part of DCT-I/DST-I computation code, there is a function to compute DCT-III 
transform within the code. Before passing the input values to the DCT-III transform 
function, the input values need to be scaled down. This is necessary to control the 
overflow caused by repetitive addition/subtraction and multiplication inside the 
loop. By carefully examining the structure and output of the code, it was found out 
that the scaling that needs to be done is directly proportional to m (where, N= 
2! + 1!!"#!2! − 1!for DCT-I and DST-I respectively (N is the transform size of 
DCT/DST). So, the input values that need to be passed in DCT-III function were di-
vided by 2!, which means right shifting the values by m bits. However, this shift 
increases quantization noise in the output.  

6) The final part of the fixed-point code development process is to measure the fixed-
point code output against the reference floating-point output with same set of input 
parameters. Therefore, MATLAB tool was used to find the output error in the de-
signed fixed-point code and to calculate the signal to noise ratio for different sets of 
DCT/DST length. The flow chart in Figure. 5.1 explain the overall fixed-point code 
development process.  
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Figure 5.1. Schematic flowchart diagram showing the fixed-point C-code design flow 
process. 
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5.2 C/MEX Function 

In this thesis, the Signal-to-Noise Ratio (SNR) is calculated in MATLAB. So, in order 
to integrate MATLAB and DCT and DST C-code, the C/MEX support of MATLAB 
was used [31]. A part of software design is to write a MEX C-code to invoke C-code 
from MATLAB. A brief discussion about how to use C/MEX function to call C-code is 
presented here. 
 MATLAB Executable (MEX) external interface function, or briefly a “MEX- 
function” allows compiling a C/C++ code, so that it can be called from MATLAB. 
MEX intact the high performance of C/C++ code while still working inside the 
MATLAB environment.   

5.2.1 Using MEX File to Call C File 

Mex function on the MATLAB command line is compiled using mex command as  
mex myfunc.c  myfunc_mex.c . 

This command indicates, a mex file is required for every C file that needs to be com-
piled from MATLAB. After compiling C-code with mex command, we get a MEX bi-
nary, which then can be called by MATLAB like any other m-functions in MATLAB. 
The steps defined for a MEX file are; gateway functions creation, data structures decla-
ration, Inputs and output management, Input Validation, Allocate and Free Memory, 
Data Manipulation, Displaying Messages to User and Error Handling [31]. 

5.2.2 MEX Files and MATLAB Interface 

Figure 5.2 explains the interface between MEX files, C files and MATLAB. The my-
func.c file is compiled along with myfunc_mex.c by defined compiler using the ‘mex’ 
command as written in the previous section.  
 

 

 

 

 

 

 

Figure 5.2. Schematic diagram showing the interface between MEX files, C files and 
Gateway MEX function for MEX File Generation [31] 
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The command generates a binary file named myfunc.mexw32 or myfunc.mexw64 
depending on the operating system used (32 bit or 64 bit). The resulting binary MEX 
file can be called from MATLAB in the same way as MATLAB function. 

 Figure 5.3 shows the mechanism of calling the binary file from MATLAB. When 
the binary function is called, the gateway function first passes the parameters after exe-
cuting its check routines to the given C function. After computation, the results are 
placed in the output vectors generated by gateway function and then they are available 
in MATLAB. 
 
 

  

 

 

 

 

 

  

 

 
Figure 5.3. Schematic diagram showing the mechanism of calling the binary file from 

MATLAB [31]. 

5.3 Profiling the DCT/DST Code in Xtensa Environment 

To analyze the performance (the number of cycles) of the fixed point DCT/DST code 
compared to the floating point, both codes are profiled in Tensilica’s Xtensa Xplorer 
environment.   
 The first task is to create Xtensa C projects for sine and cosine transforms. The 
Xplorer has a C/C++ editor, which is used for creating and editing C/C++ code. The 
necessary codes are added as a C file in the project. The project is chosen along with 
necessary processor configuration option from the “Active Set” toolbar in Xplorer tool. 
The floating point DCT/DST code and fixed-point DCT/DST code are profiled to eval-
uate the performance of the sine and cosine transforms code in the targeted processor 
configurations. In the Benchmark Perspective, the profiling results are obtained where 
the total numbers of clock cycles taken to execute the codes are displayed. 
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Processor Configuration Summary  
While running both the floating-point and fixed-point DCT/DST codes in target Tensili-
ca processor builds, the entire base processor configuration settings that are provided by 
the Xtensa tool are retained. Since, the work is to evaluate the performance of both 
floating-point DCT/DST codes and the designed fixed-point DCT/DST code on Tensil-
lica processors, there are no custom modifications done in these processors. There are 
various processor configuration build already installed in the Xtensa tool associated 
with various Tensilica Processors. The processor configuration name along with the 
configuration summary is presented below [17]. 

The table 5.1 presents the name of Processor configurations that are already built 
in Xtensa Xplorer tool and the base Tensilica processors from which the processor con-
figurations are generated in the Xtensa tool. The base processors presented in Table 5.1 
are Tensilica’s Diamond Standard processor cores. 

Table 5.1. Processor configuration names and base Tensilica processors 
Configuration Name Processor Core 
DE_106micro Diamond Standard 106 Micro Controller 
DE_108mini Diamond Standard 108 Mini Controller 
DE_212GP Diamond Standard 212GP Controller core 

DE_570T 
Diamond Standard 570T Static-Superscalar 
CPU core 

 

In Table 5.2, the implementation options for processor configuration are present-
ed. The clock gating is used to minimize power consumption of the processor. The two 
levels of clock gating features of Tensilica processors are; global clock gating and func-
tional unit clock gating, both of which are selected in this configuration. 
 
Table 5.2. Implementation options (For configuration DE_106 micro, DE_108mini, 
DE_212GP, DE_570T) 
 

 
 
Table 5.3 shows different arithmetic configuration options that are chosen for the 

processor configuration, which are described below. 
The MUL32 option selects a standard 32-bit multiplier. The compiler selects this 

option whenever there is a need of multiplying signed or unsigned variables of integer, 
short or character type. Without MUL32 option or any other multiplication option, the 
compiler will add emulation code for all multiplications, thus multiplications are real-
ized by using shift and adds. However, emulation takes more clock cycles than multipli-
er option. In this case a 16-bit multiplier is included but not any 32-bit multiplier, the 
compiler emulates 32-bit multiplication using 16-bit operations. There are two types of 
MUL32 options that can be selected; iterative implementation or fully pipelined imple-

Option Selection 
Global clock gating Selected  
Functional unit clock gating Selected  
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mentation. By using iterative and non-pipeline hardware, the Iterative Implementation 
option creates a multiply instruction that implements 32*32-bit multiplication into a 32-
bit product. Depending on the bit-pattern being multiplied, this instruction can take an-
ywhere from 1 to 6 clock cycles. On the other hand, the fully pipelined implementation 
creates a multiply instruction that implements a 32*32-bit multiplication with fully 
pipelined hardware, where multiplication instruction takes two clock cycles. As we can 
see in the table, for the configuration DE_106Micro, the iterative implementation is 
selected, while for other configurations (DE_108mini, DE_212GP and DE_570T), the 
fully pipelined implementation is selected. 

The MUL16 option selects a 16-bit multiplier for both signed and unsigned 16-
bit multiplication.  On configurations with only MUL16 option, the compiler selects this 
option whenever it can ascertain that a 16-bit multiplication is equivalent to a 32-bit 
multiplication. That is, whenever both operands are 16-bit or less or results are 16-bit or 
less. If it is not the case, the compiler emulates a 32-bit multiplication using this option. 
Depending on the bit pattern of values being multiplied, emulation takes approximately 
10 clock cycles. The table clearly shows the MUL16 option is selected for all processor 
configurations presented above. 

Another option presented in the table is 32-bit integer divider. This option has 
four instructions that are used to perform 32-bit integer division. Depending on the bit-
pattern, these instructions may take 2 to 13 cycles. These division instructions are im-
plemented using non-pipelined or iterative hardware, which means that instructions af-
ter division operation will not execute until the division operation is complete. The 
compiler infers the use of these instructions for all 8-, 16- and 32-bit integer divisions. 
Table 5.3 shows that 32-bit integer divider option is not selected for DE_106micro con-
figuration but it is selected for the rest of configurations.  

The next option in the table displays the MAC16 DSP instruction family (16-bit 
multiply/Accumulate (MAC) with 40-bit accumulator). This instruction series allows a 
16-bit MAC into a 40-bit accumulator paralleled with two 16-bit updating loads. It al-
lows a full iteration of 16-bit dot product on every cycle. The instructions in this family 
are specialized and are not inferred by the compiler. However, the compiler can infer 
use of MAC instruction that does not execute parallel with a load. This instruction is 
normally not faster than the MUL16 option. In configurations presented Table 5.3, the 
16-bit MAC with 40-bit accumulator option is selected for DE_212GP and DE_570T 
but it is not selected in case of DE_106micro and DE_108mini. 

Finally, in the last option, no floating-point accelerator or processor is selected 
for any of the configurations presented above. Without this option, floating-point opera-
tions are supported using emulations at speeds that are generally between 50 to 200 cy-
cles per base floating-point operation. 
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Table 5.3. Arithmetic options and selections in processor configuration 

Table 5.4 presents Instruction Set Architecture (ISA) configuration options and 
selection for mentioned processor configurations. The numbers of physical registers 
known as AR resisters are initially 16, which are directly assessable by instructions in 
the ISA. However, Tensilica windowed Application Binary Interface (ABI) allows more 
physical AR registers than the 16. This allows faster and smaller code. Tensilica has 16, 
32, or 64 physical registers. The choice of these registers is trade-off between applica-
tion performance and hardware area. There are 16 numbers of AR registers in case of 
DE_106micro configuration while 32 AR registers are selected in remaining configura-
tions. 

Another option used is the Maximum Instruction Width option. Xtensa core in-
structions are two or three bytes wide. Tensilica provide modeless intermixing of multi-
ple instruction sizes and all configuration support 24-bit instructions. The 16-bit instruc-
tions are used to save code size. Tensilica also supports designer defined Flexible 
Length Instruction extension (FLIX) for multi-issue Xtensa Very Long Instruction word 
(VLIW) cores. Those instructions are 32, 64, 96 or 128 bits. A configuration can have at 
most two of 32-, 64-, 96-, 128- bit instructions. These 32-, 64-, 96-, 128- bit instructions 
can be partitioned into custom slots and each of them can execute one of a set of opera-
tions. The maximum instruction width option can be set maximum to utilize larger in-
structions. Since DE_570T allows FLIX instructions, the maximum width of instruction 
is set to 8 bytes (64 bit). For the rest of configurations, it is 3 bytes (24 bit). 

 The base Tensilica processor has a 5-stage pipeline micro-architecture. A single 
stage is dedicated to data memory and another stage is dedicated to instruction fetch. 
For large local memories, the memory speed limit can limit the processor core speed. 
For those configurations, Tensilica has an option to add two extra stages to the pipeline 
(one for instruction fetch and another for data memory). As in the ISA configurations 
option table, the pipeline is 5-stage for all of the configurations. 

 
 
 
 

 

Option 
Selection 

DE_106micro DE_108mini DE_212GP DE_570T 
MUL32 Iterative Pipelined Pipelined Pipelined 
MUL16 Selected Selected Selected Selected 
32bit Integer divider Not selected Selected Selected Selected 
16bit MAC with 40bit 
Accumulator 

Not selected Not selected Selected Selected 

Floating point (sin-
gle+double) Coproces-
sor/ Accelerator 

Not selected Not selected Not selected Not selected 
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Table 5.4. ISA configuration options and selections in processor configuration 

Option 
Selection 

DE_106micro DE_108mini DE_212GP DE_570T 
Number of AR register for 

call windows 
16 32 32 32 

Maximum Instruction 
width (bytes) 

3 3 3 8 

Pipeline length 5 5 5 5 
  

Table 5.5 presents the interface width options and their selection for the configu-
rations. The instruction fetch width option controls the number of bits that are fetched in 
a cycle from the Instruction cache or local memory into holding buffers. This option can 
be set to 32, 64 or 128 bit. For FLIX instructions, these parameters need to set to 64 or 
128 bits. In general, wider width gives higher performance at a higher area cost. We can 
see in the table, for DE_570T, which use FLIX instructions, the interface fetch width is 
set to 64-bit. For others, it is set to 32-bit. 

Another option presented in the table is data cache or memory width option. This 
option controls the number of transferred bits from external memory into the cache per 
cycle. It also provides the option to control the number of bits that can be loaded or 
stored from the cache or local data memory every cycle. It is a maximum width of data 
for a load/store instruction. The DE_570T configuration has 64-bit of data 
memory/cache interface. For other configurations, it is set to 32-bit. 

In the table, the next option is interface to instruction cache width, which is 0 for 
DE_106micro and DE_108mini configuration. For DE_212GP configuration, it is 32-bit 
and for DE_570T configuration, it has 64-bit width. 

Table 5.5. Interface width Options and selections in Processor configuration 

Option 
Selection 

DE_106micro DE_108mini DE_212GP DE_570T 
Width of instruction fetch 
Interface 

32 32 32 64 

Width of data memory/ cache 
interface 

32 32 32 64 

Width of interface to instruc-
tion cache  

0 0 32 64 

 

Table 5.6 presents the sizes of instruction cache and data caches in bytes for dif-
ferent configurations.  For DE_106micro and DE_108mini, there is no instruction 
cache, i.e., the size is zero. For DE_212GP, it is set to 8192 for both instruction and data 
cache. Finally, for DE_570T, it has larger size than other which is set to 16384 for both 
types of cache. 
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Table 5.6. Instruction/ data cache option and selection in processor configuration 

Option 
Selection 

DE_106micro DE_108mini DE_212GP DE_570T 
Instruction cache size 
(Bytes) 

0 0 8192 16384 

Data Cache (Bytes)  0 0 8192 16384 
 

Table 5.7 shows the amount of RAM and ROM memories in the systems for the 
listed configurations. The ROM and RAM size is the same for all the configurations as 
seen in the table. 

Table 5.7. System memories options and selections in processor configuration 

Option 
Selection 

DE_106micro DE_108mini DE_212GP DE_570T 
System RAM (byte) 64M 64M 64M 64M 
System ROM (byte) 16M 16M 16M 16M 

 
Besides all of above mentioned configuration options, there is another option pro-

vided for number of Load/Store units. This option is set to 1 for all of the configurations 
that we have used.  
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6. ANALYSIS AND RESULTS 

This chapter discusses the results of the thesis work. First, the signal to ratio (SNR) 
analysis is discussed to understand the efficiency of the designed fixed-point DCT/DST 
codes with respect to the reference floating-point DCT/DST codes. In the next section, 
the performance of fixed-point code in different Tensilica processor configuration is 
compared with the floating-point version.  

6.1 Signal-to-Noise Ratio 
Signal to noise ratio is one of the key factors to be analyzed in digital signal processing 
domain. Signal to Noise Ratio (SNR) is a measure of signal strength relative to back-
ground noise [11]. The ratio is generally measured in decibels (dB). The fixed-point 
code generation process introduces some quantization error (noise) in the output, which 
can be expressed in terms of SNR. The SNR illustrates the output signal compared with 
the error. High value of SNR indicates less noise in output signal and vice-versa. Before 
describing the SNR graphs for fixed-point DCT-I and DST-I code, the experimental 
methodology of SNR analysis is discussed.  

The stimuli are randomly generated in MATLAB between [-1,1](using rand () 
function of MATLAB) according to the DCT and DST input length. Let us define the 
input data length N of DCT/DST transforms such that, there exist a variable !, where 
N=(2! + 1) for DCT-I and N=((2! − 1) for DST-I. So, for !=2, the DCT-I and DST-I 
input length N would be 5 and 3 respectively. Similarly, for ! =3, its length would be 9 
and 7 for DCT-I and DST-I respectively and so on. In this experiment, the SNR for ! 
=2,3,…,7 are calculated as the code is also designed to calculate DCT-I/DST-I up to ! 
=7.  

It is important to pass the same set of quantized input vectors to fixed-point and 
floating-point transform codes. Therefore, the random numbers generated between [-
1,1) are first stored in MATLAB as a .mat file. For quantization, the generated inputs 
are first multiplied by 2!" and then rounded to nearest integer value. Then, same set of 
inputs is fed to both versions of codes and outputs are again stored as .mat file in 
MATLAB. We need to consider the scaling done in the fixed-point code while storing 
the output from the fixed-point codes. As described in earlier section, the scaling de-
pends on the value of !.  

Let us consider the output from fixed-point DCT-I is !"#_!"#$%_!"# and float-
ing-point DCT-I is !"#_!"#$%_!"#. Similarly, the result of fixed-point DST-I is defined 
as !"#_!"#$%_!"# and floating-point DST-I as !"#_!"#$%_!"#. Then, the noise or error 
in the fixed-point signal can be defined by 

Noise_DCT= !"#_!"#$%_!"#- !"#_!"#$%_!"#; for fixed-point DCT-I 
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Noise_DST= !"#_!"#$%_!"#- !"#_!"#$%_!"#; for fixed-point DST-I 

Now, the SNR for fixed-point DCT-I/DST-I can be calculated in MATLAB as  
!"!!"# = 20 ∗ !"#!"(!(!"#_!"#$%_!"#)/!(!"#$%_!"#)) 

!"!!"# = 20 ∗ !"#!"(!(!"#_!"#$%_!"#)/!(!"#$%_!"#)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. A flowchart showing SNR calculation process 
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All the variables used are stored in a structure array in MATLAB along with 
SNR. To calculate the average SNR, 50 different sets of random input stimuli are gen-
erated. Finally, the mean SNR is calculated by using !"#$ function of MATLAB. The 
process of SNR calculation is illustrated in Fig.  6.1. 

Figure 6.2 shows the SNR values of fixed-point DCT-I with reference to float-
ing-point DCT-I according to the input length N of DCT-I where N=(2! + 1) as dis-
cussed earlier. The horizontal axis in the graph shows value of ! and vertical axis 
shows the SNR value in dB. 

As we can see, if we increase !, the SNR is decreasing accordingly. This is be-
cause to handle the overflow in fixed- point DCT code, we need to scale down the vari-
ables. The scaling done is indirectly proportional to the input length. With the increment 
in input length, variables in C-codes need to be scaled down more to compensate over-
flow. Therefore, the output has more noise with the increased input length, which is 
reflected in the SNR. As we can see in the figure 6.2, the maximum value of SNR is 
around 76dB for ! =2 and minimum is for ! = 7, where it is around 35dB. 

 

Figure 6.2. SNR for fixed-point DCT of type 1 

 
Similarly, Fig. 6.3 demonstrates the value of ! and SNR for DST-I. The horizon-

tal and vertical axis of the graph represents values for ! and SNR for DST-I respective-
ly. 

 As expected, the results of DST-I are similar to that of the DCT-I. The DST-I 
length has similar effect on the SNR. As the length of input vector grows the SNR value 
declines. In this case, the maximum value of SNR is around 78dB for ! =7 and mini-
mum value is around 35dB for ! = 2. 
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Figure 6.3. SNR for fixed-point DST-I 

6.2 Performance on Tensilica Processors 

While evaluating the performance of fixed-point and floating-point DCT/DST code, the 
configurations mentioned in the previous chapter are used. Both types of codes are pro-
filed inside the Xtensa Xplorer IDE using Xtensa Instruction set simulator. The total 
number of clock cycles for both versions of DCT/DST codes in various Tensilica con-
figurations is recorded. The results are discussed in the following sections. 
Profiling results on different Processors 
In the subsequent sections, DCT_Fixed and DST_Fixed represent the fixed-point DCT-I 
and DST-I code respectively. Similarly, DCT_Float and DST_Float define the floating-
point DCT-I and DST-I code respectively. As in the previous section, ! is related to 
length of DCT/DST such that the DCT-I length ! = 2! + 1 and DST-I length N = 
2! − 1. 

Table 6.1 presents the recorded total number of clock cycles for the DCT-I/DST-
I on DE_106micro configuration system. This includes both fixed-point and floating-
point type of codes.  

It can be seen that the configuration requires less clock cycles to execute the 
fixed-point DCT-I/DST-I than the floating-point code. Another observation is that the 
numbers of clock cycles are more than double than previous if we increase!! by 1. The 
reason is doubling the transform size increases the number of arithmetic operations 
more than double and hence clock cycles. 

The speedup in terms of clock cycles achieved by the fixed-point DCT/DST code 
system over the floating-point DCT/DST code system are calculated as 

!"#$%#&'()"!!"#$ = !"#!$!!"!#$%!!"!!"#$%!!"#/!"#!
!"#!$!!"!#$%!!"!!"#$%!!"#/!"# 

The speedup achieved by fixed-point DCT-I system over floating-point DCT-I 
system is 3.70, 4.69, 5.49, 5.94, 6.10 and 5.8 for ! = 2,3,4,5,6 and 7 respectively. Simi-
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larly, the speedup achieved by fixed-point DST-I over floating-point DST-I is 4.38, 
4.91, 5.24, 5.29, 5.17 and 4.97 for ! = 2, 3, 4, 5, 6 and 7 respectively. The speedup 
achieved by fixed-point code over floating-point code is due to the fact that, in floating-
point code all mathematical operations are performed by emulation library, which has 
substantial computational overhead. For example, all cosines and sine coefficient func-
tions that consume more time in the floating-point code are replaced with integer array 
of cosine/sine coefficients in fixed-point code. Similarly, other scaling functions are 
also hardcoded as constants. Moreover, the fixed-point code uses integer operation and 
takes lesser number of clock cycles. The slight variance on speedup is due to variance 
on arithmetic operations for different transform size. 

 
Table 6.1. Recorded clock cycles for configuration: DE_106micro 

! 
Total Clock Cycles 

DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2136 7906 1196 5244 
3 4517 21176 3371 16575 

4 9573 52531 8238 43187 

5 20636 122562 19126 101222 
6 44970 274552 43374 224439 
7 98540 571446 96964 482185 

 

Table 6.2 displays the number of clock cycles for both the fixed- and floating-
point DCT/DST-I codes on DE_108mini configuration. As in the previous configuration 
system, the result shows the fixed-point system has lesser clock cycles than the floating-
point system. Furthermore, the system takes fewer clock cycles comparing with the 
DE_106micro configuration system. Although being similar in terms of configuration 
with DE_106micro, the pipelined implementation of multiplication on DE_108mini 
resulted in slightly fewer clock cycles. The speedups are 3.45, 4.46, 5.29, 5.76, 5.94, 
5.63 and 3.92, 4.60, 5.00, 5.09, 5.00, 4.81 for the fixed-point DCT-I and DST-I over 
floating-point DCT-I and DST-I for!! = 2, 3, 4, 5, 6 and 7 respectively. 
 
Table 6.2. Recorded clock cycles for Configuration: DE_108mini  

 Total Clock Cycles 
m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2120 7325 1205 4719 
3 4460 19901 3337 15341 
4 9417 49816 8092 40488 
5 20281 116888 18766 95525 
6 44218 262815 42537 212598 
7 97002 545775 95203 457747 
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The recorded clock cycle counts on the DE_570T configuration for both types of 
DCT/DST-I are presented in Table 6.3. This configuration has the fewest clock cycles 
recorded among all other configuration. The presence of 16-bit MAC with 40-bit accu-
mulator option in this configuration as well cache, which was missing in previous con-
figurations is the measure reason for the speed boost up. Moreover, the presence of 
widest bus in this configuration also helped to save some cycles as more data can be 
fetched at a time for computation. In this configuration, the speedup of fixed-point 
DCT-I system over floating-point DCT-I are 3.26, 4.14, 4.83, 5.20, 5.34, 5.01 and 
fixed-point DST-I system over floating-point DST-I are 3.59, 4.23, 4.56, 4.60, 4.51, 
4.33 for for!! = 2, 3, 4, 5, 6 and 7 respectively. 

 
Table 6.3. Recorded clock cycles for Configuration: DE_570T 

 Total Clock Cycles 
m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 1959 6387 1124 4036 
3 4217 17456 3169 13391 
4 9081 43852 7826 35664 
5 19820 103161 18382 84635 
6 43550 232399 41993 189225 
7 95929 481063 94419 409014 

  

 The clock cycles counts recorded on the DE_212GP configuration for both types 
of codes are presented in the table 6.4. Similar to DE_570T, the cache and MAC option 
is the factor for better performance than DE_106micro and DE_108mini. The speedup 
for fixed-point DCT-I over floating-point is measured 3.61, 4.60, 5.39, 5.83, 5.98, 5.60 
for ! = 2, 3, 4, 5, 6 and 7. Similarly, the improvement is 4.08, 4.73, 5.09, 5.14, 5.02, 
and 4.82 for fixed-point DST-I over floating-point DST-I for ! = 2, 3, 4, 5, 6 and 7.  
 

Table 6.4. Recorded clock cycles for configuration DE_212GP  
  Clock Cycles 

m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2032 7339 1161 4733 
3 4328 19922 3249 15362 
4 9241 49844 7960 40516 
5 20061 116923 18590 95560 
6 43954 262857 42317 212640 
7 96694 541856 94939 457654 

 

Furthermore, we have also measured the clock cycle counts for different types of 
HiFI configurations and ConneX configurations. The results are provided in the appen-
dix.  
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7. CONCLUSIONS 

The objective of this thesis was to develop C-code for fixed-point DCT and DST appli-
cations. The selected floating-point DCT-I and DST-I C-codes [5] were first converted 
into fixed-point C-code and the performance was evaluated in Tensilica processor cores. 
The selected floating-point DCT and DST algorithms and codes were studied in detail 
and then the fractional fixed-point format (Q15) was chosen for the fixed-point code 
design.  

The SNR calculation was the first task after designing the fixed-point DCT-I and 
DST-I codes. From the observation, we have found that the SNR of the designed fixed-
point code with respect to floating-point was accurate (between 35-76dB range) for ob-
served range. However, the scaling done to the variables to control overflow in fixed-
point C-codes has direct effect on SNR. The scaling is proportional to the input length 
of DCT and DST transforms. We have found that with the increment in input length of 
DCT and DST, variables in C-codes need to be scaled down more to compensate over-
flow making the output more prone to quantization errors. This is because scaling re-
duced the resolution that was provided by Q15 format. This is a drawback of fixed-point 
code over floating-point code. The choice of Q format has an impact on the output error. 
The Q15 format chosen in the fixed-point development process has relatively very good 
accuracy. However, the truncation done while representing the numbers as integer in C-
code and scaling done to handle any overflow that might occur, produced some error in 
the output.  

Another part of the thesis work is to evaluate the performance of designed fixed-
point code and reference floating-point code in Tensilica processor cores. The DCT and 
DST application codes were evaluated on four different types of Tensilica processor 
configurations (DE_106micro, DE_108mini, DE_212GP and DE_570T). The profiling 
results show that the fixed-point application codes have significant performance im-
provement in terms of clock cycles over floating-point application on all processor con-
figurations. The total number of clock cycles taken to execute the fixed-point DCT and 
DST codes on various configurations is three to six times less than the reference float-
ing-point DCT and DST codes for different sets of DCT/DST length. Another observa-
tion is that the configuration DE_106micro takes most clock cycles than the rest config-
uration for same code. The DE_108mini and DE_212GP configuration has better per-
formance compared to DE_106micro and the DE_570T was fastest among all, which 
has VLIW architecture for parallel processing. 

From the results presented in this work, we can conclude that the fixed-point 
DCT/DST code is very fast as compared to floating-point code. The fixed-point 
DCT/DST C-code uses the integer operation causing it to execute fast in hardware. On 
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the other hand, floating-point codes are emulated for arithmetic operation, as they do 
not have floating-point unit support. The emulation has a significant computation over-
head slowing the execution down for DCT/DST application. Furthermore, the number 
of clock cycles is more than double when we double the transform size. Another con-
clusion can be drawn for the performance of codes on different configurations. Since, 
the DE_570T configuration has more resources, as well as it utilize data and instruction 
level parallelism, the performance is the best among all. The internal architecture of 
configurations like multiplier size, use of instruction and data width, memory and cache 
size etc. affected the performance of the application on configurations that we used. 

In future work, the designed fixed-point DCT and DST codes could be further 
optimized. For example, in the codes some data from one array are copied to another, 
while better approach could be allocating two buffers and changing pointers rather than 
copy of array values. There are several code optimization strategies that could be used 
to optimize the code [32]. A design space exploration can be done to optimize the whole 
application and processor configuration provided added time. Moreover, the perfor-
mance of code can be evaluated in multiple-processor pipeline architecture. In this the-
sis, the DCT/DST codes are only evaluated on Diamond processors, which are not cus-
tomizable. It would be interesting to implement TIE instructions for customizable Xten-
sa processors and analyze the performance variation of the DCT/DST code with Dia-
mond processors. Similarly, it would be better to understand whether the codes meet 
performance requirement of some industrial applications or not. Furthermore, the power 
and area are other main parameters that are not considered in this thesis. So, the codes 
can be analyzed in terms of power consumption and area covered in different proces-
sors. 
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APPENDIX A  

The table below presents the clock cycles measured in various HiFi cofigurations of 
Tensilica Xlorer IDE for fixed-point and floating-point DCT/DST code.The 
configuration chosen are similar to that of Diamond configuration presented in the 
thesis work. 

Table A.1: clock cycle count for hifi2_std configuration (HiFi 2 Audio DSP) 
 Total Clock Cycles 

m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2029 7321 1159 4721 
3 4335 19915 3254 15368 
4 9276 49846 7992 40562 
5 20128 116911 18667 95657 
6 44014 262683 42442 212708 
7 96593 552144 95078 457685 

 
 
Table A.2: clock cycle count for hifi3_bd5 (HiFI 3 Audio Processor) 

 Total Clock Cycles 
m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2692 29296 1406 17322 
3 5572 85380 4081 61948 
4 11821 220948 10005 167576 
5 25829 527050 23968 394113 
6 56630 1195645 55298 865644 
7 124839 2561052 123826 1828799 

 

Table A.3: clock cycle count for hifi3_mini(HiFI mini Audio Processor) 
 Total Clock Cycles 

m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2715 28802 1406 17018 
3 5624 83924 4107 60934 
4 11919 217151 10075 164909 
5 26008 518042 24113 388012 
6 56957 1175438 55571 852736 
7 125451 2114322 124316 1811915 
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Table A.4: clock cycle count for hifiep_bd5(HiFi EP Audio Processor) 
 Total Clock Cycles 

m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2029 7318 1159 4718 
3 4322 19863 3239 15316 
4 9221 49687 7931 40403 
5 19995 116571 18522 95317 
6 43760 262076 42168 212101 
7 96174 545047 94629 456763 
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APPENDIX B 

The table below presents the clock cycles measured in various ConnX DSP 
cofigurations of Tensilica Xlorer IDE for fixed-point and floating-point DCT/DST 
code.The configuration chosen are similar to that of Diamond configuration presented 
in the thesis work. 

Table B.1: clock cycle count for XRC_D2MR 
 Total Clock Cycles 

m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2029 5564 1159 3558 
3 4322 15150 3239 11790 
4 9221 37939 7931 31498 
5 19995 89247 18522 75168 
6 43760 201302 42168 169266 
7 96174 415618 94629 368314 

 
 
Table B.2: clock cycle count for XRC_D2SA 

 Total Clock Cycles 
m DCT_Fixed DCT_Float DST_Fixed DST_Float 
2 2132 7413 1183 4785 
3 4581 20287 3418 15751 
4 9864 50953 8532 41779 
5 21486 119693 19935 98801 
6 47276 269118 45702 220132 
7 103969 560103 102582 474274 

 
 
 

 


