

TAMPERE UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF PERVASIVE COMPUTING

SACHIN RAJ MISHRA

A REVIEW FRAMEWORK FOR OPEN SOURCE

ORIENTED SOFTWARE

MASTERS OF SCIENCE THESIS

Topic Approved by:

Faculty Council of

Computing and Electrical Engineering on

May 2013

Examiners:

Adj. Professor Dr. Tech Imed Hammouda

Researcher Mr. Alexander Lokhman

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250161299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Program in Information Technology

MISHRA, SACHIN RAJ: Software Quality Review Framework for Open Source Software

Master of Science Thesis, 68 Pages,

September 2012

Major subject: Software Systems

Examiner(s): Professor, Dr. Tech. Imed Hammouda, Researcher Mr. Alexander Lokhman

Keywords: Open Source Software (OSS), Quality Assurance (QA), Community, Licensing,

quality attributes, quality factors

Software Quality Assurance is an essential yet challenging process which consists of

several milestones. There exist several Quality assurance models and frameworks (both

fixed and flexible) for reviewing software of any type. Fixed models consist of fixed set of

quality attributes and their measures, whereas for the flexible model the attributes are

decided or chosen based on requirement set of the product. Earliest models like McCall’s,

Boehm’s, FURPS and ISO/IEC 9126 are examples of fixed models. Whereas, Prometheus

model developed in 2003 is an example of flexible model. It means, ever since 1977, there

have been quite a lot of QA models, frameworks and standards published, in order to ease

the vigorous process of QA. Most of these models are product-centric. Most of the product-

centric QA models are the derived work of McCall’s model, Boehm’s model, Garvin’s

model, FURPS framework and ISO/IEC 9126 standard in one way or another (in lower or

higher degree). Hence, these primitive models are somehow the base models. For several

reasons, not all the base models are completely applicable; not at least to Open Source

Software (OSS). OSS is a movement or a philosophy where software and its binary are

freely available to everyone allowing modification or redistribution.

There are 3 major dimensions through which OSS could be observed; as a

Community, as a Licensing model and as a development Method. There are several widely

adopted trends followed in typical OSS development. One of which is to present a mature

enough product to a community and ask them to contribute in different ways. Here the

mature product includes a set of initial design, deliverables including requirements

specifications and available source code (if any). In this typical trend, the community

members are geographically diverse or distributed. In contrary to the typical development

setting there exists a varied development setting of OSS. In this setting, the development

starts and continues as in-house project by a small group of core developers who were

ii

solely responsible for designing the software, choosing the development settings, choosing

the licenses, implementing, doing the market research, testing the software, registering it on

public forge and finally releasing the software. The software is, at the end, publicized to the

open source community as OSS. The initial development does not include anyone else than

the core developers. These core developers are not geographically diverse. These core

developers or the project team uniquely owns the right for the initial state of the software.

For these variations we call this type of software Open Source Oriented Software (OSOS).

There subsist some differences; therefore, the available QA models for OSS are not

completely applicable for OSOS.

In order to fill this gap, we propose a framework which could be used to review

software adopting OSOS development setting. We called this framework LCM framework.

The reason behind the name is the three aforementioned perspectives towards OSS namely

Licensing, Community and Method. In order to attain this framework, the base models are

comprehensively analyzed towards our requirements. LCM framework consists of quality

attributes and sub-attributes as the measures. These attributes are then categorized as

Community Compliance Attributes, Licensing Compliance Attributes and Method

Compliance Attributes.

In order to assure the result, LCM framework was used over OSOS named Solution

to Open Land Administration (SOLA) developed by United Nation Food and Agriculture

Organization. Four different versions of SOLA application were reviewed using the LCM

framework. The results encountered for each review helped improve the quality of later

versions of SOLA application.

The results of SOLA review are divided into three parts; behavioral analysis results

for, Community Compliance Attributes, Licensing Compliance Attributes and Method

Compliance Attributes. Static analysis (code analysis) on the other hand was the basis of

comparison for most of the behavioral analysis results for Community Compliance

Attributes and Licensing Compliance Attributes. The static review was performed based on

the data collected by Sonar, which is an open source quality management platform,

dedicated to measure source code quality.

The LCM framework when used over an open source project yield improving results.

Therefore, it could be said that LCM framework is adoptable to all the software developed

with OSOS development setting. However, the choice of attributes according to the stage of

development is different for software with different requirements.

iii

Preface

This Master of Science Thesis has been carried out in the Department of Pervasive

Computing at Tampere University of Technology (TUT), Tampere, Finland as a part of

Solution for Open Land Administration (SOLA) project by United Nation Food and

Agricultural Organization (UN FAO) during June 2011 – April 2012. The thesis work has

been funded as an ongoing research project at the department.

I am pleased to express my gratitude and appreciation to my thesis supervisors, Professor

Dr. Imed Hammouda and Mr. Alexander Lokhman for their valuable guidance and support

throughout the thesis period. Their way of sharing knowledge and willing to help attitude

has supported me a lot to stand-in my work in the correct direction. I am also grateful to

Mr. Andrew McDowell and Mr. Neil Pullar from UN FAO for their valuable comments

and suggestions regarding the results.

Finally, it is a pleasure to thank my family and friends for their support and motivation in

order to pursue this Master’s degree.

Tampere, 28
th
 March, 2013

Sachin Mishra

iv

Contents

Abstract ... i

Preface .. iii

List of Abbreviations ... vi

Table of Tables ... vi

Table of Figures ... vii

1. Introduction .. 1

1.1. Motivation.. 1

1.2. Objective ... 2

1.3. Organization ... 3

2. Open Source Software and Quality Assurance .. 4

2.1. Open Source Software .. 4

2.1.1. Open Source as a Community .. 5

2.1.2. Open Source as a Licensing Model .. 6

2.1.3. Open Source as a Development Method ... 8

2.2. Software Quality Assurance .. 9

2.2.1. History of Quality Assurance ... 10

2.2.2. McCall’s Model ... 12

2.2.3. Boehm’s Model ... 13

2.2.4. FURPS Framework .. 15

2.2.5. ISO/IEC 9126 Standard ... 15

2.3. Open Source Oriented Software ... 17

2.4. Quality accessing tools .. 18

3. The LCM Quality Assurance Framework .. 19

3.1. Community Compliance .. 20

3.2. Licensing Compliance .. 29

3.3. Method Compliance ... 32

4. Case Study – FLOSS SOLA .. 35

4.1. Solution for Open Land Administration (SOLA) ... 35

4.2. Results .. 35

4.2.1. Results for Community Compliance Attributes .. 41

v

4.2.2. Results for Licensing Compliance Attributes ... 45

4.2.3. Results for Method Compliance Attributes ... 46

4.3. Discussion .. 47

5. Conclusions ... 49

5.1. Conclusion .. 49

5.2. Limitations ... 50

5.3. Future Work .. 50

References ... 51

Appendix A ... 53

Appendix B ... 55

Appendix C .. 59

vi

List of Abbreviations

Abbreviations Descriptions

OSS Open Source Software

SDLC Software Development Life Cycle

OSOS Open Source Oriented Software

OOP Object Oriented Programming

QA Quality Assurance

SOLA Solution for Open Land Administration

GPL General Public License

LGPL Lesser General Public License

BSD Berkeley Software Distribution

MIT Massachusetts Institute of Technology License

MozPL Mozilla Public License

UN FAO United Nation, Food and Agricultural Organization

FURPS Functionality, Usability, Reliability, Performance, Supportability

Model

OSI Open Source Initiative

ISO International Organization for Standardization

IEC International Electro-technical Commission

FSF Free Software Foundation

OSSD Open Source Software Development

LCM Licensing, Community, and Method Quality Assurance Model

Table of Tables

Table 2.1 Existing Quality Assurance Models .. 11

Table 3.1 Extraction of Quality Attributes .. 20

Table 4.1 Comparison result for four different releases (Static) ... 39

Table 4.2 Performance Test (Load test) Result ... 42

Table 4.3 Comparison result for three different releases (Dynamic) .. 44

Table 4.4 List of components and their respective licenses [30] .. 45

Table 4.5 Licensing Compatibility check for SOLA [31] .. 45

vii

Table of Figures

Figure 2.1 Perspective towards Open Source .. 5

Figure 2.2 In-depth community structure for an open source project [17] .. 6

Figure 2.3 GNU GPL License version 2 ... 7

Figure 2.4 Quality Assurance process [36].. 9

Figure 2.5 McCall's Quality Assurance Model [10] .. 13

Figure 2.6 Boehm's Quality Assurance Model [13] ... 14

Figure 2.7 FURPS Framework ... 15

Figure 2.8 ISO/IEC 9126 Quality Model .. 16

Figure 2.9 Typical OSOS development approach.. 17

Figure 3.1 Reliability and its measures ... 21

Figure 3.2 Maintainability and its measures .. 22

Figure 3.3 Performance and its measures .. 23

Figure 3.4 Serviceability and its measures .. 24

Figure 3.5 Portability and its measures ... 25

Figure 3.6 Usability and its measures ... 26

Figure 3.7 Security and its measure .. 27

Figure 3.8 Accessibility and its measures ... 29

Figure 3.9 Development method flow ... 32

Figure 3.10 The LCM Framework .. 34

Figure 4.1 Catch-all anti-pattern ... 37

Figure 4.2 Magic Numbers anti-pattern .. 37

Figure 4.4 Circular dependency .. 38

Figure 4.5 Graphical view for the basic metrics .. 40

Figure 4.6 Graphical view for Compelxity, Dependencies, RFC, PTI and LCOM3 40

Figure 4.6 General Test of 1 hr with 12 seconds pause using JMeter ... 43

Figure 0.1 Load Test result QL-34/35 -- Test connection to Case Management service with setting

user credentials .. 57

Figure 0.2 Load Test result (WS) for 100 users QL-36 -- Get lists of unassigned and assigned

applications from Search service .. 57

Figure 0.3 Load Test result (graph) for 100 users QL-37 -- Get spatial elements from six different

GIS layers .. 58

file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273458
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273459
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273460
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273461
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273462
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273463
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273464
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273465
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273466
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273467
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273468
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273469
file:///C:/Users/mishra/Desktop/Thesis__v3.0_FinalVersion.docx%23_Toc353273470

1

1. Introduction

“Quality in a service or product is not what you put into it. It is what the client or

customer gets out of it.” – Peter Drucker. This statement could not be ignored. However,

there lies a possibility where this statement could be polished. It could be argued that if the

customers will get a quality service and product, it is due to the reason that quality is put

into it. In order to put quality in any product, one needs to intensely identify and analyze

the requirements from various level of the product development. Product development

usually starts from the initial market study till the final product support with various

requirements. Based on these requirements, the implementation has to be made. Also the

product has to be evaluated over different measures of quality, known as quality attributes/

quality factors/ quality characteristics. There are several factors, by the help of which the

quality could be enhanced. As in general, the definition of quality for any service or a

product is similar. However, the way of evaluating the quality for products depends on the

requirement of its customers as well as the product itself.

1.1. Motivation

Alike many products, software needs to verify its quality. Software quality is a major

concern for different types of software. There are usually 2 wide ranges of software

category including closed source software and Open Source Software (OSS) with their own

differences. One of the differences is the requirements set for the software. In a typical OSS

development, it is hard to use traditional development model like waterfall. The reason

behind it is the requirements, which are not known beforehand. Another difference is the

development team which is mostly found distributed in OSS development. In addition, the

ownership of OSS does not lie on of a person or a company. Instead, it is free and for all

who wish to hold it.

As it is known, in a typical OSS development setting, the software is meant to be

OSS from the very beginning. It follows the typical open source development method

which includes proper choice of communication channels, tools, methodologies to follow

and exposure to the community. The community, which then acts as the core of OSS, holds

responsibility to test the software in order to assure software quality. Keeping aside the

typical OSS development setting, we think about a variation, which is indeed possible.

Here the software project is not exposed to any community from the beginning. It is

developed by a bunch of developers (not distributed) who uniquely own the right for the

software. However, it is kept in the mind that the final software is to be released as OSS.

Processes such as registration, communication, marketing and tools are solely decided by

these developers. In this development setting, the end product is OSS but the process

however diverts from a typical OSS development approach. We, therefore, call this kind of

software Open Source Oriented Software (OSOS). It certainly seems to be different than

commonly developed OSS in many regards.

2

In this work, our major concern is software quality. The software quality is a process

of evaluating software from different perspectives. The outcomes of these evaluations are

then reported and the enhancement or change is made according to these reports. One of the

several product evaluation processes is review. For different variety of product and product

category the review process varies in a higher degree. For example, software products have

various review models, quality models, frameworks and standards present. These models

are used to assure and deliver quality software end product to the public. This work is

further narrowed down the software category and its development method OSS being one

of them. OSS is indeed one of the emerging as well as competitive methods. It has several

quality models for quality assurance.

1.2. Objective

As mentioned earlier, in our context, even though the final product is OSS, there are

some diversions in the development process and settings, yielding OSOS. The study shows

that there is no complete quality assurance frameworks available for this type of software

developed. Due to this reason, the main objective of this thesis work is to propose a review

framework for software which has adopted similar development settings as that of OSOS.

To present the final review framework for OSOS, a comparative and analytical

review methodology was take-on for different quality and review models that have been

published since 1977, for example McCal’s Quality Assurance (QA) model, Boehm’s QA

model and so on. All of the available models comprised of different quality attribute. Some

of these quality attributes were adopted as they were found relevant in our context. Some of

them were removed as being irrelevant. On the other hand, the missing ones were added

forming final framework. Keeping in mind that the end product is to be released as OSS the

relevance and irrelevance of the quality attributes were chosen based on the OSS

requirements and perspectives including community requirement, licensing requirement

and development method requirement.

The final product consists of 17 quality attributes. These attributes are categorized

under three dimensions. The proposed framework was then used over an open source

project called Free/Libre Open Source Software Solution of Open Land Administration

(FLOSS SOLA). There was four different review made on four different versions of the

application. Each review report yielded in better versions. The proposed review framework

was named Licensing, Community and Method (LCM) framework. Some of the quality

attributes that are included in the LCM framework are Reliability, Maintainability,

Performance, Accessibility, Security, Usability, Portability, Trademark, Copyright,

Development Infrastructures, Software Marketing and Product Registration and so on.

3

1.3. Organization

The organization of this thesis is as follows:

Chapter 1 provides a broader overview of this thesis. The motivation for this work

followed by its objective is presented in this chapter. In Chapter 2, detailed discussion

about what is open source software and software quality assurance is made. Furthermore,

major perceptions on open source software are discussed in this chapter. Some strong and

weak aspects of different existing quality assurance models are evaluated. The evaluation is

made based on their contents and attributes used to form these models. In addition, a

comparison based table of these models is presented and our resulting framework is

proposed.

Chapter 3 presents a detailed overview and insights on the context where the

proposed framework could be used. In sub sections, the proposed framework is further

refined based on the relevance and interpretation of each available quality attributes. How

the categorization was made for each quality attributes are discussed in this chapter.

Chapter 4 contains the results from the case study where the proposed framework was

used. The categorization and interpretation of each achieved results are discussed in this

chapter. We also revisit our purpose in the discussion section of this chapter.

Finally in chapter 5, the thesis is concluded with limitations that we faced and further

ideas that could be used as a future work.

4

2. Open Source Software and Quality Assurance

In this chapter detailed discussion about what is open source software and software

quality assurance is made. Furthermore, major perceptions on open source software are

discussed in this chapter. Some strong and weak aspects of different existing quality

assurance models and their differences are evaluated. The evaluation is made based on their

contents, attributes and sub-attributes used to form these models. In addition, a comparison

based table of these models is presented and our resulting framework is proposed.

2.1. Open Source Software

In 1983, a movement was started and lead by a computer scientist Richard Stallman

which later took a shape of a foundation named FSF. FSF since then have been providing

their definitions on what is free software? According to FSF, free software is the software

which provides user a freedom to run, copy, modify, study, distribute, change and improve

the software. As an important matter, FSF clarifies the concept of freedom as in liberty

rather than in price. Hence, it came across 4 different freedoms that are essential for any

software to be free software, which are, (0) a freedom to run, (1) a freedom to study, (2) a

freedom to redistribute and (3) a freedom to distribute copies of the modified versions out

of which freedom 1 and 3 have the precondition of accessible source code.

According to the OSI, software that is freely redistributable, modifiable and which is

not privately owned is OSS. In addition, any software that meets following requirements set

by OSI could be labeled as an OSS.

 Free Redistribution

 Source Code

 Derived Works

 Integrity of The Author's Source Code

 No Discrimination Against Persons or Groups

 No Discrimination Against Fields of Endeavor

 Distribution of License

 License Must Not Be Specific to a Product

 License Must Not Restrict Other Software

 License Must Be Technology-Neutral

OSS is first of the software kind [2] which is developed in late 70’s. OSS was

dominated by the proprietary software in early 80’s. There have been arguments between

Free Software and Open Source Software. Here in this thesis we will not discuss or

differentiate between them but rather call it as Free\ Libre Open Source Software (F\LOSS)

(referred as OSS in later sections).

OSS is free software which is accessible to everyone. It provides right of distribution

of licenses and which could be adopted as a framework for developing software. Hence,

5

there are at least three major perspectives around which OSS could be defined. These

perspectives or the influential factors are depicted in figure 2.1 following the detailed

description in later sections.

Figure 2.1 Perspective towards Open Source

2.1.1. Open Source as a Community

The idea of development of OSS is generally triggered by the personal itch [16]. The

concept is then put forward to the public, with the expectation of contribution in forms of

development, review, support and use. These interested personnel then take the idea and

start implementing it; same or different group of people then performs the review and

finally it is made available for public use. In this overall process all the people involved in

developing this idea are normally distributed, but are connected via some communication

media (mostly internet). They work on the same idea following same conventions. These

groups of people in the context of Open Source are known as open source community

members. Almost all the OSS has its own community or is merged to some preexisting

ones. One of the largest open source communities is Linux community which contains over

a million of developers, users and other contributors from around the world. Even the

world’s largest Open Source Software would have been a failure without the contribution

of users and the developers from the community. [16] Therefore the key to success is to

consider community as a major perspective in the development of OSSs.

6

Figure 2.2 In-depth community structure for an open source project [17]

Figure 2.2 is a typical onion model for Open Source Software community structure.

This structure is a layered structure which in core contains the initiators, circled around

other developers and leaders. These two layers are the developer community whereas the

top most two layers are for the users both active and inactive and hence is a user

community. However, there is no restriction towards developers using the software and

users contributing as a developer. This overall structure could also be known as an onion

structure for the typical open source community.

2.1.2. Open Source as a Licensing Model

Similarly, OSS could be used as a licensing model. Licensing model in the sense that

OSS has to follow a different set of agreements for redistributions and restrictions.

Speaking of the OSS definition by OSI, the distribution term for OSS must comply with

certain criteria and these criteria must be clearly mentioned for each module of open source

software.

The license shall not restrict on sharing or distributing the software and its

components and it shall not require a royalty or other fee for such distribution. Furthermore,

the license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software. The license must

allow distribution of software built from modified source code. However, the license may

require derived works to carry a different name or version number than that of the original

software. In addition, the license must not discriminate against any person, group of

persons or field of endeavor [Section 0]. The license must not place restrictions on other

software that is distributed along with the licensed software and no provision of the license

may be predicated on any individual technology or style of interface. These criteria may be

listed in any order to form a different type of license model for OSS. There can be some

more flexibility towards the terms in each license model.

7

Few examples of Open Source Licenses are GNU GPL, GNU LGPL, MIT Licenses,

Apache v1, v1.1 and v2, CPL, CDDL, Educational Community License (ECL), BSD and

modified BSD.

GNU GPL license version 2, June 1991 FSF contains following information:

Figure 2.3 GNU GPL License version 2

8

2.1.3. Open Source as a Development Method

Software development is a human activity with multiple planes which could be

analyzed from different viewpoints. [5] All these planes and viewpoints are however

minimized and solved by answering only two questions: what and how. In any software

development method what questions and how questions may appear in following ways:

 What is required? How to acquire it?

 What are the problems? How to get the solutions?

 What to describe? How to describe it?

 What are the requirements and specifications? How to develop and integrate them?

These questions during the development of any software remain same. However,

based on the nature of software the answers may differ. A single development

methodology/ framework may not be applicable for the entire software kind. As mentioned

earlier, OSS is a philosophy and movement. It is also a recurring development framework/

method. It could be used to structure, plan and control the process of development. The

structuring and planning is done by predefining the milestones such as deliverables and

artifacts.

There are several ways to develop OSS. One can initiate the project or present the

idea to the public and ask them for help in developing that idea furthermore. The same can

contribute on an existing product or fork a well-established product and make a parallel

development. Apart from these it is also possible to develop OSS in-house. When the

software is mature enough, the version is put or released to a community. No matter which

way one follow, all need a set of process-data model.

For general software, the development starts by analyzing a problem, doing market

research and gathering requirements for the proposed business solution and then finally the

design plan for software based solution. The right methodology to adopt is then decided

and implementation, testing, deployment and maintenance are followed in contrary to OSS

development method. The open source development method mostly concern appropriate

choices. Choices for methodologies, for example, OSSs mostly avoid waterfall model (due

to unfixed requirements), choices for the right development tools are most of a concern.

The development tools which are considered most important are chosen. These tools

include use of proper communication channels, bug tracking tools, version controls, testing

tools and package management tools. Setting up the common development methodology

for revamps and rewriting of the codes is decided. Building a community and publicizing it

to them with proper software directories, release logs, and documentations are then

finalized as a process. The software when published to its community is then implemented,

tested, deployed, used and reviewed by its community. The maintenance and support are

carried out by the community. Due to these differences, open source itself holds a

perspective as a development method.

9

2.2. Software Quality Assurance

Software Development Life Cycle (SDLC) is a recursive process. This process

consists of different phases which include analysis, design, implementation and testing.

The whole development cycle is paddled by Quality Assurance (QA). QA is a process by

which one can assure that the software is quality software. QA plays a vital role in the

development process. It is also important and requires proper addressing because customers

are more concerned towards quality then quantity.

There are several procedures for assuring quality of a product or software. Figure 2.4

below shows a basic quality assurance process.

Figure 2.4 Quality Assurance process [36]

As seen figure 2.4 above, the QA process starts with requirements identification

followed by development and implementation. The software is then tested and delivered.

The final decision relies on review. Hence, one of the milestones in the typical QA process

is review. The study shows that review is an effective mean to find bugs and flaws in any

software. It has also been proven that reviews may be more efficient than testing. [32]

10

Review is a process in which the quality of work is technically evaluated. The

evaluation is mostly based on the requirement set for the product and the end users. There

are different types of review method. For example, in the context of software, the types are

as follows:

 Code review,

 Pair programming,

 Inspection,

 Walkthrough, and

 Technical review

In addition to these types, in order to assure the quality, one needs to concentrate on

the behavioral analysis of the software as well. Behavioral analysis is made by evaluating

the quality attributes and by actually deploying and running the software. Few examples of

these attributes are performance, reliability, usability, modularity and so on.

Review is the major factor in evaluating the quality of any software. However,

quality is a vague term; researchers and scientists have their own definitions for quality of a

product.

2.2.1. History of Quality Assurance

History of QA for software is not very long. The first QA model that was published

for the software product was in 1976 by McCall namely McCall’s Quality Assurance

Model [11]. In later years this model was extended, redefined and merged to form some

new models, frameworks and standards. The modifications were made based on products

nature and requirements. These models are mostly used to evaluate products characteristics,

therefore, often these models are categorized as product-oriented models. [6]

The models and frameworks presented in Table 2.1 below are considered as the

primitive product-oriented models for software quality assurance. As we know our purpose

is to provide a product-oriented review framework. Therefore these models will be the key

part for this thesis work.

11

Table 2.1 Existing Quality Assurance Models

Quality Attributes

McCall,

1976/77

Boehm,

1978

FURPS,

FURPS+

1987, 1992

ISO/IEC 9126,

1991

Garvin,

1988

Aesthetics Usability *

Clarity *Understandability

Compatibility Supportability

Conformance Portability *

Correctness * * Maintainability

Device Efficiency * * Performance *

Documentation * Usability

Durability *

Economy *

Features *

Flexibility * *

Functionality * *

Generality *

Integrity * *

Interoperability * Functionality

Maintainability * * Supportability *

Modifiability * Maintainability Maintainability

Modularity *

Perceived Quality *

Performance * *

Portability * * *

Reliability * * * * *

Resilience * Flexibility

Reusability * *

Security Functionality

Serviceability Supportability *

Supportability *

Testability * *Maintainability Supportability Maintainability

Understandability * Maintainability Usability

Usability * * * *

Validity * Maintainability

12

2.2.2. McCall’s Model

In 1976/77, Jim McCall proposed a model for software quality which was initially

used for space, military and in public areas. [9] The main aim for this model was to

improve and assure quality for the software products.

This model contained a large volume of 55 quality characteristics (factors) which was

later reduced to 11 (quality attributes) for the sake of simplicity. [8] One of the strongest

parts of this model was the presence of interrelationships between these quality

characteristics. McCall believed that, if the degree of detail for these attributes is high

enough then, the quality of any product could be assured. [3] However, this model could

not be considered as a complete solution due to its lack towards functionality measure of

the software [7] and due to different types of software developed since then.

The software developed in 70’s used to contain huge amount of code based errors,

quality attributes in McCall’s model were defined generally for the reviewing code level

flaws. Furthermore, McCall’s model was a step behind towards the measure of hardware

characteristics. [7] In addition to this, the attributes like completeness and self-

documentation are less meaningful in the earlier stage of software development and these

attributes among others are indirect measures hence, according to Coté [11] and Pressman

[12] McCall’s model is not generic but slanted.

In 21st century, McCall’s model is not a complete solution due to several reasons but

back in 80’s this model suited well for the type of software available and hence there were

quite a few followers who adopted this model. For example, models like Murine &

Carpenter’s (1984) and Azuma (1987) are derived versions of McCall’s model.

Out of 11 quality attributes present in this model the definition for many of them are

still useful and hence could be used in certain extent. Figure 2.5 shows the partial McCall’s

model. In the context of OSS, attributes such as reliability, efficiency, usability,

maintainability, portability and modularity are of greater concern. Therefore, we, in our

LCM framework, included these attributes.

As it can be seen, the attributes such as Reliability, Usability, Maintainability and

Portability have a set of sub-attributes as their measures. These attributes when are

compared to that of other QA models differs in terms of these measures. This means that

even if the quality attributes are adopted or chosen the measures are however changed and

reformed in most of the cases.

13

Figure 2.5 McCall's Quality Assurance Model [10]

2.2.3. Boehm’s Model

A year later, in 1978, an American software engineer, Barry W. Boehm proposed

another quality assurance model. Alike McCall’s, Boehm’s model also contained a set of

quality attributes and their measuring factors.

In the existing McCall’s model, Boehm added 8 new attributes namely clarity,

modifiability, documentation, resilience, understandability, generality, economy and

validity, which he found were missing. Boehm kept the ones that were relevant. He erased

interoperability and testability which he found were less important for his model. This

made his model more precise. [4] As discussed earlier, McCall’s model was lacking the

hardware measure which Boehm manages to overcome. However, the feature and

functionality were still missing.

Boehm’s model was leaned towards measuring the general utility of software through

reliability, efficiency and human engineering i.e. integrity and communicativeness. He

listed maintainability and portability as high-level characteristics. [7] For his model,

maintainability was a prime issue. [13] Later in 1983 he proposed a specific model for the

maintenance process known as Boehm’s Maintenance Model.

Reliability

Consistency

Accuracy

Error

Tolerance

Efficiency
Execution

Efficiency
Storage Efficiency

Integrity
Access Audit

Access

Control

Usability Training

Communicativenes

Operability

Portability

Maintainability

Simplicity

Conciseness

Machine Independence

Software System Independence

Modularity

14

Boehm’s model could also be taken as a hierarchical approach where there are two

levels of characteristics. The top levels which are Maintainability, Portability and As-is-

utility concerned more to the end users, whereas the measuring characteristics (factors) or

the bottom part is inclined towards the developers or technical personnel. [11]

Alike McCall’s model, Boehm’s model is tangled more on the bottom i.e. one factor

helps in measuring at least one or more quality attribute. More precisely, in Boehm’s

model, a single factor Accessibility is used to measure both Efficiency as well as Human

Engineering which makes this model less cohesive and less efficient to specify quality

requirements.

The presence of accessibility in Boehm’s model is redefined in our framework. The

accessibility here is the measure of efficiency and human engineering whereas in our

framework we include accessibility more than a measure. The need of open source requires

us to include accessibility as an attribute with measures like availability and documentation.

Figure 2.6 Boehm's Quality Assurance Model [13]

Structuredness

Self Descriptiveness

Communicativeness

Accountability

Consistency

Robustness/Integrity

Completeness

Accuracy

Self Containedness

Device Independence

Augmentability

Legibility

Conciseness

Maintainability

Portability

Reliability

15

2.2.4. FURPS Framework

In addition, FURPS framework which was introduced in 1987 by Robert Grady

follows similar hierarchy as that of the previous two models. This model is decomposed in

such a way that one of the important leftover from the initial two models was put as a major

category i.e. Functionality. The very basic structure for this model is shown in Figure 2.7

below.

This framework contains Supportability as a new attribute and reformulates Usability,

Reliability, and Performance in a wider range. However, this framework lacks in measuring

portability of software. The Localizability (Internationalization) as a measure of

Supportability attribute is well put in this model which could be considered as a useful

criterion to measure for software with localization as a quality requirement.

Figure 2.7 FURPS Framework

Later in year 1992, together with Hewlett-Packard Co., Robert Grady updated

existing FURPS to FURPS+ framework, where + was the additional do’s and do not’s for

implementation, interface and physical requirements [13].

2.2.5. ISO/IEC 9126 Standard

In 1991, based on McCall’s and Boehm’s quality models, ISO released a quality

model ISO 9126 (aka Software Product Evaluation: Quality Characteristics and

Guidelines). This model was comprised of 4 different parts

Part 1: Quality Model (2001)

Part 2: External Metrics (2003)

Part 3: Internal Metrics (2003)

Part 4: Quality in use metrics (2004)

This model contained Portability measure which was left behind in FURPS

framework and also contained Functionality measure left behind in McCall’s and Boehm’s

models making it a complete solution. All-and-all this Standard proposed 6 different quality

attributes and their measures through multiple factors and sub-factors. Figure 2.8 below

shows the contents of ISO 9126 standard. External metrics are the scale and method for

Human Factor

Aesthetics

User Interface

Help and Support

Documentation

Training Materials

Severity of Failure

Recoverability

Predictability

Accuracy

Mean Time between

Failure (MTBF)

Efficiency

Availability

Accuracy

Throughput

Response Time

Recovery Time

Resource Usage

Testability
Extensibility

Adaptability
Maintainability
Compatibility
Configurability
Serviceability
Installability
Localization

(Internationalization)

Usability Performance Reliability Supportability

16

measuring software quality from the users’ point of interest whereas internal metrics are the

measures from the technical point.

Figure 2.8 ISO/IEC 9126 Quality Model

It is to be mentioned that considerable amount of argument has been made [15] about

which quality model is most useful based on the internationalization and coverage and ISO

9126 and its updated versions (part 1-4) has been chosen as the best due to the reason that

ISO is built based on the international consensus and approval from ISO member countries.

[15] However, for the context of OSS this model could not be a complete solution because

it is lacking important measures like accessibility factor

Apart from these models, there are several other quality models proposed and

published for different products and quality requirements. Some of which are fixed models

and some of which are flexible ones. The fixed ones (including the ones defined above)

provide a fixed solution for a generic software product through fixed set of quality

attributes and its measures (factors and sub-factors) whereas in flexible models one is free

to choose the quality attributes and their measures according to a specific quality

requirement for that product. In flexible models the quality attributes could be indirectly

defined as per required. Few examples of fixed models are as follows:

 IEEE Standards for Software Review and Software Quality Assurance Plans,

 Capability Maturity Model(s),

 Dromey (1995),

 Six Sigma,

One approach towards flexible modeling is Prometheus approach published in 2003.

[14]

Due to the presence of many models and quality attributes, the review process has

become more and more complex. Choosing the best and complete model is a bigger

problem. In this thesis we extract a set of quality attributes from existing ones and present

17

them as a suitable framework for reviewing OSOS. These attributes are chosen based on

the requirements for specific software hence this model will be a flexible review model.

2.3. Open Source Oriented Software

There are different types of software development approach. One of them is OSS. It

is possible to view OSS in at least three different perspectives. In earlier sections we

discuss about these perspectives which include community, licensing and method. OSS is

therefore a different development method. In a typical OSS development there are few

obligatory issues that must be addressed and verified. It is also possible to develop software

as open source but with fewer variations in the setting. For example, software which

complies with the definition set by OSI and FSF but the development starts and continues

as in-house project by a small group of core developers. These core developers are solely

responsible for designing the software, choosing the development settings, choosing the

licenses, implementing, doing the market research, testing the software and finally releasing

the software. The registration is to be made on public forge, and the software is to be

release as OSS.

The software is, at the end, publicized to the open source community. The initial

development does not include anyone else than the core developers. These core developers

are not geographically diverse. These core developers or the project team uniquely owns

the right for the initial state of the software, conflicting typical trend of OSSD approach.

Since this development setting is possible and varies from typical OSS, we choose to call

this Open Source Oriented Software (OSOS).

OSOS is a newly introduced term which suits as both, the type of a software or a

development setting. Modified way of working than that of typical OSSD made it a

different development approach. Figure 2.9 below shows a typical OSOS development

approach.

Following the “in-house” development process

Release

as

F/LOSS

Figure 2.9 Typical OSOS development approach

18

2.4. Quality accessing tools

In addition to the existing software quality assurance models another thing to

consider is the tools that has to be used for tracking different static results for the quality

analysis. One of most important thing for the open source software development is

communication. Since the developers, users and contributors are mostly geographically

distributed; accessible and acceptable communications channel has to be used. One of the

widely used channels for communication is mailing lists, which is indeed a tool. There

could be separate mailing lists for core developers, users and contributors and other

subscribers.

Another important role played by the tools in the open source development is

communication but for a specific sector i.e. to keep track about the raised issues and bugs

report for which bug/issue tracking tool is required. Furthermore, to check and evaluate the

code quality for software, one needs to use the quality measurement tool which provides

the static result for the codes and also the behavior result of testing.

Few examples of these tools that have been used in the recent development of open

source software are Bugzilla [34], Mantis [35], Trac etc. Bugzilla is a bug tacking system or

tool that helps developers keep track about the bugs in their program. This tool was initially

used by Mozilla products. [34]. Similarly, Mantis is a web-based bug tracking open source

software released under GNU GPL. [35]. Trac is a web-based project management bug

tracking tool inspired by CVSTrac. Similar bug tracking tools are Redmine, EventNum,

Fossil, The Bug Genie and WebIssues. Sonar [29] and its integration Bamboo are the

overall quality management tool that keep track, analyze and measure the source code

quality in terms of Response for classes, cohesion, code coverage and so on.

19

3. The LCM Quality Assurance Framework

As mentioned in earlier sections, in our context, the final product is being released as

F/LOSS. Due to several aforementioned variations in the development settings, OSOS

lacks a complete review framework. The development setting differs from a typical trend of

OSS development. There are several quality assurance frameworks which could be easily

adopted for reviewing OSS that follows the traditional settings of development. But the

variation for OSOS unfortunately did not allow the available solutions to be adopted as a

whole. Therefore for evaluating the quality of OSOS, we propose a Quality Assurance

framework (a review framework) namely Licensing, Community and Method framework,

in short the LCM framework. The name we choose is due to the reason that the

perspectives to see OSOS mostly are closely related towards License, Community and

development Method.

Our purpose is to provide a metric oriented review framework for reviewing OSOS.

Therefore we chose 5 mostly used and accepted metric oriented/ product specific QA

models as a basis of our LCM framework. Each of those models comprised of several

quality factors and sub-factors. Most of these quality factors and sub factors are reused or

redefined in all of those 5 QA models. Therefore we found it more appropriate to analyze

individual attributes instead of the model as a whole. The LCM model will be interpreted

on the degree of compliance towards these major perspectives including community,

licensing and method, as that of OSS.

As mentioned above, there are certainly quite a many review models, frameworks

and standards available for the software review. Most of these models are detailed code

level and some of which are product specific. Since, the development settings we

concentrate on is fairly new and different, none of the available models exactly fits to our

context. We evaluated the requirement of our software from the chosen perspectives and

came up with 17 relevant issues that must be measured. The in-depth study was done for all

17 attributes individually. Study showed primitive and mostly used models such as

McCall’s model, Boehm’s model, ISO 9126 standard and FURPS framework have used

some of these attributes with proper definition. With few or none alteration we adopted

those measures in our framework. Table 3.1 below shows the extracted quality attributes

from Table 2.1. This extraction is made on the basis of their availability in different QA

models. In addition, Table 3.1 contains additional attributes including Accessibility,

Modularity, Development Infrastructure, Product Registration and Software Marketing

which were lacking in primitive models, but found to be relevant ones from OSOS point of

view.

The available quality attributes and missing ones are categorized under three sections.

If the attribute is influenced more by community requirements then that attribute is

categorized as community compliance attribute. If any attribute complies more towards

method, then so is categorized as method compliance attribute. Similarly, the licensing

compliance attributes are chosen.

20

Table 3.1 Extraction of Quality Attributes

Quality attributes QA Models Remarks

Efficiency/ Performance Present in all hence adopt Adopt as that of FURPS

Maintainability Present in all hence adopt Adopt

Reliability Present in all hence adopt

Serviceability/

Documentation

FURPS and Garvin, Adopt with reformation

Functionality/ Features FURPS, Garvin, ISO Adopt with reformation

Security McCall have it as Integrity, ISO

have it as one of the

Functionality measure.

Adopt with redefinition

Portability McCall, Boehm, ISO Adopt

Usability McCall, Boehm, ISO, FURPS Adopt

Reusability McCall, Boehm Adopt

Licensing Compatibility FURPS have compatibility as a

measure

Adopt with redefinition

Modularity ISO Adopt

Conformance Garvin Adopt

Accessibility None Missing hence add

Development Infrastructure None Missing hence add

Product Registration None Missing hence add

Software Marketing None Missing hence add

3.1. Community Compliance

Open Source Software relies on its community. Success or failure of any open source

software hugely depends on the effective framework made around the community and its

requirements. All the major decisions taken for the development of the OSS must comply

on the requirements of the community. As mentioned in section 2.1.1, Open Source as a

community is an important perspective that could be followed. Hence, it is mandatory to

analyze with deeper insight, the available quality attributes from the community point of

view. In addition, quality attributes must comply with the community also for the reason

that quality attributes makes the quality assurance.

21

There are guidelines on how to build a community, all of which, without missing,

mentions about improving credibility, improving quality and developing ecosystem of

support. This mostly holds true for the developers’ community. Other than that, if we are

talking about the users’ community then more importantly, user friendliness, ease of

support and accessibility tops the list.

Following are the quality attributes which are available in the previous models and

comply with the open source community:

 Reliability

 Maintainability

 Efficiency/ Performance

 Serviceability/ Documentation

 Portability

 Usability

 Conformance

These attributes for the quality assurance act in accordance to the community

requirements.

Reliability

In Table 2.1, it is shown that Reliability factor for quality is being chosen by all of the

QA models Product operation factor in McCall’s model, As-is Utility in Boehm’s model,

External metric in ISO 9126 and Non-Functional attribute in FURPS. And accuracy is

chosen as the measure for this attribute.

In our context, when the software is OSOS, this attribute should be placed as

community compliance attribute due to the reason that the dependability on any OSOS

provides higher credibility to its developers at first place, and it is also a factor of

motivation to work on the software. However, the measures for this attribute remain same

(Figure 3.1 below) as that of ISO 9126, McCall and Boehm i.e. Recoverability, Fault

Tolerance and Accuracy. But in oppose to McCall and Boehm’s model, the Completeness

is not considered as a measure for Reliability because we agree that “Release early, release

often” mantra by Eric Raymond in his book The Cathedral and the Bazaar best suits for the

open source context.

Reliability

Recoverablity

Fault Tolerance

Accuracy

Figure 3.1 Reliability and its measures

22

Maintainability

Maintainability is an ability of any software to bear specified change in itself. In other

words it is the ability of any software on how easily it could be modified. Maintainability

index of any software is affected by the quality of the source code. Alike OSS, the

architecture of the OSOS is likely to change every now and then because there are always

new requirements and ideas put forward by the community members. Therefore, if the

initial source code is rough and scattered i.e. does not follow a predefined pattern then

maintaining the software or changing it according to the changing requirements would be

problematic and hence will affect the quality.

As we can see in Table 2.1 McCall, Boehm and ISO 9126 have Maintainability as a

separate quality factor, whereas FURPS on the other hand have counted it as a measure of

Supportability. In the context of OSS, Maintainability is a vital requirement and is

definitely affected by the community in a higher degree. Hence it should be placed as a

different quality attribute with following measures:

 Structuredness

 Simplicity

 Consistency

 Self-descriptiveness

 Testability

In our context, we follow and accept McCall’s interpretation of Maintainability

measures and hence choose Simplicity, Structuredness and Self-descriptiveness. In addition

to these, we choose Testability as a Maintainability measure from Boehm’s and ISO model.

Consistency on the other hand is chosen from Boehm’s model because stable and steady

software yields Maintainability.

Maintainability

Consistency

Testability

Simplicity

Self-descriptiveness

Structuredness

Figure 3.2 Maintainability and its measures

23

Performance/ Efficiency

Time is valuable. Perhaps this is the reason why users and developers choose not to

wait and waste their time on a mere application. One of the reason which affects

performance is hardware. Therefore these users and developers buy systems which have

higher configuration and are expensive. These users expects that the software which are

developed to be run in these high configuration systems are efficient enough and the design

decision made on these software for better performance (in regards to response time,

throughput and resource usage) are correct and valid. Hence Performance and/or Efficiency

factor is adequately important quality attribute that must be reviewed for securing quality

for any software. When the software is Open Source, like in our context, especial attention

needs to be given in reviewing performance because in most of the OSS these user

expectations are more, and not to forget OSSs are built around communities which contain

users and developers who decide on the software quality.

As in Table 3.1, it could be seen that (as called) Efficiency is included in all the QA

models reviewed except that FURPS finds it suitable to call it Performance instead. In our

context we choose to call it Performance/ Efficiency and include following sub-factors as

its measure.

 Time Behavior

 Resource Utilization

 Validity

Here Time Behavior is chosen, considering the fact that it consist measures like

response time and throughput. Whereas Resource Utilization is measured by resource usage

by the system and Validity gives the accuracy of the result.

Performance

Validity

Resource Utilization

Time Behavior

Figure 3.3 Performance and its measures

24

Serviceability / Documentation

Serviceability, in general, is an attribute which concerns about the services, help and

technical support for the software. In the context of OSS, this non-behavioral requirement

is a design decision made in order to achieve software ability on supporting, monitoring,

identifying and solving the raised issues by the concerned community members. These

issues can be related to installation, deployment, exceptions, faults, errors or debugging.

Mostly these serviceability criteria for OSS are measured via Help desk support, network

monitoring, event logging, and documentation. Documentation here refers to both the

technical as well as non-technical documents that are related to the software. For example,

Software Architecture Document, Specification Requirement Document, User Manual,

Data Dictionary and so on. This attribute is chosen in accordance to community because all

the services that are provided by the software are for its users and developers who form the

open source community. In addition, this attribute directly relates to the Maintainability of

the software.

As seen in Table 3.1 FURPS and Garvin’s model have Serviceability as a quality

attribute. However these models have used this attribute as a measure to Supportability. We

prefer to choose Serviceability instead of Supportability because providing support to

software is a part of overall service.

Following are the measures of Serviceability:

 Documentation

 Supportability

 Help desk

 Fault/ Error Tracking
 Localization (Internationalization)

Serviceability

Fault/ Error Tracking Platdform

Help Desk

Supportability

Documentation

Figure 3.4 Serviceability and its measures

25

Portability

Flexibility in software is an important concern that needs to be addressed during the

design phase of SDLC. Flexibility on the other hand is a portability measure which

generally means the ability of software to adopt changes in different environment. In

current day scenario there are different computing platforms, for example, Microsoft

Windows Operating System, Linux based Operating systems, Mac OS X and so on. The

users are free to choose any of these platforms for their computing. If the software is not

portable while changing the platform then there is certainly increase in the development

cost and relative decrease in the number of users and developers which affects the

community. According to ISO 9126, the software could be made portable by adopting

Object Oriented design and implementation. As we can see in Table 2.1, except FURPS all

the other QA models found Portability as an important quality factor. However the sub-

factors used for measuring this factor varies from model to model. In our context we choose

following measures, which we found are in accordance with the open source community.

 Platform Independence

 Adaptability

Usability

Usability is one of the most important characteristic of the software QA. If any

software, irrespective of its type and nature of development, is complex in term of using

then the users of these softwares are definitely limited. Usability assurance on the other

hand is one of the key holes to achieve quality assurance. [18] Usability helps in increasing

the users and their productivity, which in the context of open source is vital. Productivity in

the sense that users help in tracking down the errors, defects, coming up with some

innovative ideas for further development and so on. In addition to these, the operational

risks as well as costs could be reduced if there are more users involved actively or passively

in the development and use. In a nutshell, usability is an ease to use. It helps to increase

users, track down the errors and fix them which acts in accordance to the community.

Current research and practice in Usability and quality assurance shows that users are the

main source of reporting bugs and are likely to be the co-developers therefore it is

recommended that users must have a proper and adequate understanding about the practices

and context of use. [18] In the context of OSS and community, usability must be addressed

Portability
Adaptability

Platform Independence

Figure 3.5 Portability and its measures

26

with higher importance for the reason that critics are emphasizing on the fact that usability

is almost absent (or present as low priority requirement) in OSS products and also OSS is

mostly designed for and by the users. [19]

This measure of QA is present is all the QA models except Garvin. However, Garvin

without failing mentions aesthetics and perceived quality which covers usability

requirement. We have chosen following measures for the usability of OSOS:

 Understandability

 User Interface/ Attractiveness

 Operability

Conformance

According to Garvin, one should not rely on a single set of definition which is likely

to cause problem. This is why we can have our own set of definition for different terms

provided that the new definition must not conflict the original meaning.

Conformance is a matter of matching between the product design to the internal and

external standards set for the product. [26] In this definition, Garvin has not explained,

what are internal and external elements? This therefore, in our context could be the

organizations. Internal organization is the one that is developing the product whereas the

external organizations are the ones for whom the product is being developed and other third

parties related to it. In other words they are the organizations that show interest in the

product either for use or for further development. The role of outside organization or the

external elements in OSS directly correlates with community sustainability and governance

[33].

For example, if company X is developing an OSS primarily focusing for company Y

then there are set of requirements from Y that must be met by this software. Also if the

software is meant to be released as OSS then company X must take care of the

requirements set by OSI and/or FSF, making OSI, FSF, and Y as external elements and

company X itself being as internal element.

While performing a quality review of an OSOS one must take care and review all the

compatibility documents/ requirements from internal as well as external organizations.

Usability

Operability

User Interface/ Attractiveness

Understandability

Figure 3.6 Usability and its measures

27

In addition to above attributes which were adopted from the 5 QA models we have

following quality attributes which were missing but are relevant in our context.

 Security

 Modularity

 Accessibility

 Software Marketing

Security

According to ISO 9126, the software security is its ability to protect and prevent its

information and data from unauthorized access and at the same time the software must not

restricts the authorized ones to access the data and information available in the system. [7].

It has been defined by Firesmith [25] that due to the property possess by security in

preventing the malicious harm security is a dependability factor for the software users and

hence it is a quality factor. The major aspects which a secured application should contain

are in communication channels (internal and external connections) and data channels. [25]

Software critics and developers often claim that security in the Open Source

development environment is generally ignored and is easy to invade the system due to the

reason that the source code and all the product information is public and is made easily

accessible to everyone. In contrast, we would argue that open source software are not

always a complete solution for first couple of releases, they are the prototypes and

something to work on [28]. Also OSS are freely taken and molded according to ones need.

Hence, in the later releases security are important and should be taken as a customization

point.

This factor, in our context is chosen as a community compliance attribute because the

developers are users and users can be developers which is why the common concepts

underlying security is best known and analyzed by the community members.

As we can see in Table 2.1 security is missing in most of the reviewed quality

models. However ISO 9126 have it as a functionality measure. On the other hand McCall’s

and Boehm’s model contains integrity instead. In our context, we found that Security is

vitally important concern to be addressed and without which the quality review for any

software is not possible. Hence we propose Security as a quality attribute and integrity as

its measure.

 Security Integrity

Figure 3.7 Security and its measure

28

Modularity

As it is seen from Table 3.1, Modularity has not been included as a separate quality

factor in any of the compared models. However we found Modularity as an important

attribute for assuring software quality.

Modular architecture of the system has a firm grasp on complex issues related to

design and production. There have been comparative studies [20] and arguments [21] on

how modularity helps in producing quality software in terms of redesigning and

maintenance.

In our context when the software is Open Source and the focus is to be made on the

community requirement, I would argue that Modularity requires a lot more attention as a

quality attribute because it is directly affecting another important attribute i.e.

maintainability. OSS must be flexible for redesign and the artifacts must be made

accessible to everyone, therefore with the modular architecture it is easy to track and

separate the interdependencies between the packages and hence will result in less-effort

redesigning. In addition to this, software customization, which is highly probable for OSS,

will come in handy.

Furthermore, by following a particular trend of modular programming, previously

developed source codes could be reused with very few or even no change, which will

definitely save developers time and effort resulting in a quality community software.

The measures for this attribute are number of tangled entity (for example packages)

and dependencies between them.

Accessibility

Alike Modularity, another missing attribute from McCall’s, Boehm’s, ISO 9126,

FURPS and Garvin’s QA model is Accessibility. One reason on why these models failed to

include one of the primary quality attribute in their model may be that these models were

least concerned about the open source software. In our context, accessibility is a must

quality attribute that has to be verified and reviewed even to mark the software “open

source”. As mentioned in earlier sections, the first and the foremost criteria to be open

source product is to make all the source code and product documentations public, failing

which the software could not be an F/OSS. This requirement is directly related to

community in the sense that usually OSSs are designed for and developed by the

community. All the operations related to development of open source software are handled

by the community itself. Hence the option of accessibility, accessibility of source code,

accessibility of technical and non-technical project documents and all required information

must be given to the users and developers of the community.

This attribute could be measured through the availability of source code along with

binary, executable and all the related product documentations. The documentation measure

is common to both the Serviceability attribute as well as Accessibility.

29

Software Marketing

Marketing, either for commercial products or open source software, is of equal

importance. The strategy however may differ. Marketing is an art [27], art of selling

products. The core marketing concepts must be understood with ease and has to be

implemented as an everlasting process of product development. Setting up a target market

segment, knowing the expectations from these segments, analyzing segment’s need, want

and demand followed by the product advertisement to these segments are some of the core

marketing concepts. [27] Understanding these concepts is of equal importance from the

initial phase (design) till the maintenance phase.

Software marketing is separately defined for both social and managerial perspective.

Choosing the appropriate one, creating a strategy and implementing it is how one could

improve the number of users, developers and achieve financial assistance. This attribute has

been chosen as the community compliance component for the reason that, marketing makes

software visible and it is vitally important for delivering quality product. As mentioned

earlier, community beholds the control to the software. Therefore where and to whom

software has to be publicized is equally important.

3.2. Licensing Compliance

Alike in OSS, Licensing in OSOS is an important characteristic which is to provide

flexibility to freely exchange and use information among all its users and developers. It is

the freedom to freely redistribute and modify the software is covered in all the available

open sources licenses. There are thousands of open source licenses available in todays’

market, all of which, without failing shares a common idea of redistribution and

modification flexibility. [22]

Whenever OSS is to be developed, one must offer a prime concern towards its

compliance on licensing, for the reason that Licensing of OSS makes it distinguishable

from other types of software for example from proprietary or commercial software.

There are few important aspects that must be verified on or before releasing any

software as Open Source. One of them is to choose an appropriate licensing scheme for the

software. All the open source licenses include the basic requirement clauses such as

allowing derivation and distribution of the original work. However, these flexibilities

provided by different licenses might vary on the nature of the software, its intention and the

circumstances, which is why choosing appropriate licensing scheme is important. After the

Accessibility
Documentaion

Availability

Figure 3.8 Accessibility and its measures

30

appropriate license is chosen for the software, all the components that are integrated with

this software must meet the terms of the chosen license.

For example the GNU GPL license is more restrictive than the BSD license. GNU

GPL allows to use, redistribute and change the software, but also requires the changed

version to be licensed as GNU GPL whereas BSD being a permissive also allows to use,

change and redistribute the software (even to proprietary one) but does not limits the

modified version to be BSD. Therefore, if one wants their codes and documents and

software itself to be more flexible in terms of redistribution then it is appropriate to use

BSD instead of GPL. The point here is, while doing a quality review of an OSS this aspect

of the development must be checked and verified based on the initial requirement of the

software which is meant to be Open Source.

Another important thing to be assured while doing a quality review of OSS is to

check and verify if all the assimilated software components put up with compliance to each

other. For example, the licensing compatibility between Apache License version 2.0 and

GPL version 3 is omnidirectional i.e. Software with Apache version 2 licensing scheme can

be included in projects following GPL version 3 licensing scheme but the reverse does not

hold compatible. [23] There are several such examples for the compatibility which must be

taken into consideration without failure.

From the Table 2.1 it could be seen that quality attributes such as Reusability and

Compatibility even though are present in the primitive models but the context that these

attributes are used is slightly different from that of ours for the reason that we are reviewing

OSS and these models were mostly concerned to commercial products and hardware lines.

Therefore we propose Compatibility and Reusability factor as the review factor for

open source software which complies with open source licensing.

License Compatibility

In open source compatibility has at least two meanings; machine compatibility and

license compatibility. Machine compatibility is the ability of any machine to work in or run

together with another machine provided that they are connected with some medium.

Whereas licensing compatibility is the ability of different software or its components to

comply on different software licenses.

This attribute, even though has been used as a review factor in various models have a

specific requirement in our context. The only important reason behind choosing this

attribute is to measure the level of compatibility between different Open Source licenses

and their use which is indeed an essential step in open source review.

Legality is dangerous, it is to be remembered that even different versions of same

license may not necessarily be compatible to each other. It entirely depends on the clauses

and conditions that are used in those versions. For example “GPL version 2 by itself is not

compatible to GPL version 3” [24]. Therefore it gives an utmost essence to review and

verify that all the software components, code artifacts (if are taken from different OSSs) are

compatible to each other.

31

The measure for this attribute could be some support tools that can analyze libraries

for binary, codes and even look for the licensing block on top of all the classes (if Object

oriented approach is used) for compatibility. There are several such tools available in the

web for example Open Source Compatibility Metrics (OSCoM), Code analyzer, Clirr,

Sonar and so on.

Reusability

According to Firesmith, Reusability is a development oriented quality factor which

gives simplicity of reusing the existing applications or components. [25] According to him,

this quality attribute plays a primary importance prior and after the main show i.e. while

developing and during maintaining but not equally during actual application usage by the

users. Similarly McCall categorize this quality factor together with portability and

interoperability and called it as one of the product transition factor. Boehm, ISO 9126,

FURPS and Garvin on the other hand does not emphasize on this factor in their models.

While talking about this factor in the context of Open Source we would accept

Firesmith’s definition but with slight modification. Here the ease of reusing the application

and components should also be extended deeper towards the code level. Similar to

modularity, which covered modular architecture, design and code: reusability concerns to

both reusable components as well as reusable codes.

The measure for this attribute is the count or the ratio of unique methods in a class

(more the better) because, with modules containing more unique functions which, if

separated, could make the separated code block possible to act individually in other

programs. [7]

In addition to these attributes, Trademark and Copyright are two important issues that

need to be verified and complied for the quality assurance of OSOS.

32

3.3. Method Compliance

As mentioned in section 3.3, open source could be viewed as a development method.

Development method consists of several processes. These processes are directly dealt from

the administrative level in most of the proprietary software. However, in the context of

OSS/OSOS, these matters are shared and handled by project manager, core developers and

even some other community members. Alike OSS, OSOS is also an open platform allowing

all the people to freely communicate their views and opinions, as a result of which the best

possible solution is chosen, hence, matters including legality, registration, marketing and

infrastructures directly relates to their responsibilities.

Among the chosen QA models, we could not find the quality attributes which would

directly or indirectly indicate the solution to verify and validate issues relating to

registrations, infrastructure, marketing. Hence, in our model we propose Software

Registration, Software marketing and Development Infrastructure as three major quality

attributes that must be reviewed in order to achieve full quality of OSOS. In addition to

this, Conformance is chosen from Garvin’s model which is defined as an attribute which

could be used to verify and validate the legality issues.

Product Registration

Product registration has at least two meanings. In the context of commercial products,

registration means to put a product in the company help and support group for some of the

following reasons:

 To track the numbers of people using a product,

 To be able to send important and available updates,

 To provide efficient support,

 To provide information on events and so on

In addition to these reasons, for other products, specifically for OSSs, registration is

done also for following reasons:

 To make the whole package (including executable and binaries/source codes)

available for download (via forges) to the interested users, for free. (accessibility)

 To track the number of downloads and views

Development Infrastructure Conformance Product Registration

Process

Figure 3.9 Development method flow

33

Product registration or software registration, in our context is a method compliance

component which comprises of basically two major issues namely software registration and

license registration. These attributes must not be left unattended and should have a higher

degree of importance in order to receive a quality tag for the OSS. It is obligatory that the

registration either to its license or software overall, has to be made before the final product

release. It is one of the initial milestones that must be checked as a startup factor for OSSD

as well as OSOS development, which is why we purpose this attribute as an important

review attribute for our LCM framework.

Development Infrastructure

Infrastructures in general are the most important components that are required to

sustain; and development infrastructures or more precisely software development

infrastructures are the crucially important components without which the software

development would be difficult to imagine.

In the context of both OSSD and OSOS development, managing these infrastructures

is very important. Some of the major infrastructure/ development components, apart from

manpower, finance and hardware, are for example, Source Control or version control tools,

Continuous Integration tools, staging tools. In today’s software market there are thousands

of such tools available for example Git for hosting or version control, Hudson, Bamboo,

TeamCity, CruiseControl (.NET) for integration and Maven with both central and local

repository for deploying software onto servers for testing purposes, prior to deploying them

fully into production.

The main point here is, since there are lots of these open source tools available,

choosing an appropriate one, which would be compatible with license and handy for the

developers, is a tough job. Hence, one needs to check for the compatibility and ease of the

used components or infrastructures before or during the implementation stage; most

precisely before the release. A continuous research for making the right choice may be

required throughout whole development cycle.

34

In the figure 3.10 above, we present the final result framework which insures that any

OSOS, if reviewed following the proposed attributes and measures, will result as quality

software. In the following chapter, we present the case study where the LCM framework

was used.

LCM

Community Compliance

Attributes

Licensing Compliance

Attributes

Method Compliance

Attributes

Reliability

Maintainability

Performance

Serviceability

Portability

Usability

Security

Modularity

Accessibility

Conformance

Software Marketing

Licensing Compatibility

Trademark

Copyright

Reusability

Product Registration

Development Infrastructure

Figure 3.10 The LCM Framework

35

4. Case Study – FLOSS SOLA

The LCM framework was used over an open case project called SOLA. In this

chapter, we present the result. The categorization and interpretation of each achieved results

are also discussed in this chapter. We also revisit our purpose in the discussion section of

this chapter.

4.1. Solution for Open Land Administration (SOLA)

The LCM framework was used over SOLA. SOLA is developed by United Nation

(UN) FAO as OSS. SOLA aimed to be used in developing countries initially for Nepal,

Samoa and Ghana. FLOSS SOLA is OSS; however, the development setting used had

several variations from a typical trend of open source software development. Even though

SOLA software was meant to be Open Source, the development started and continued as

in-house project by a small group of core developers concentrated in FAO Rome. These

core developers were solely responsible for designing SOLA, choosing the development

tools, choosing the appropriate license, implementing, doing the market research, testing,

building a community and finally releasing it to the community. The registration was made

on public forge and the first release was Free/Libre OSS (FLOSS) SOLA.

This project was taken as the case study for the conclusion made in this thesis work.

Four different versions of SOLA application was reviewed and analyzed both statically and

behaviorally. The marketing of this software, to the potential users and developers, were

also made before concluding this thesis. Even though the conclusion was made solely based

on this software application, we believe that the result of this thesis is useful and could be

used as a tested framework for reviewing any other OSOS developed using similar

development settings.

4.2. Results

In this section we present the results and experiences that were obtained while

implementing our review framework to FLOSS SOLA. The results are divided in two wide

categories namely static and behavioral sections for community attributes. The static review

was carried out with the help of a code analyzing tool named Sonar which contains several

metrics whereas behavioral analysis was made with the help of the results of static analysis

and executing the application. All the attributes for dynamic analysis falls under the

category of community compliance. The review was made on four different versions of

SOLA application namely development snapshot (1st), Alpha release (2nd) and

Customization release (3rd) and Release Candidate_v1.0 (4th). The review reports are

accessible from SOLA homepage www.flossola.org.

As mentioned, the static analysis is the base for most of the behavioral results; the

discussion on code quality is made first.

36

Static Analysis (Code Analysis)

Static analysis or code analysis is basically done to define and analyze the software

quality objective by executing program built. The importance of code review is important

due to the reason that most of the activities, especially in the open source development,

happen at the code level [28]. There are several tools available for the code analysis. Here

for the SOLA application the tool that was chosen was Sonar. This tool contains several

metrics which helps in determining the code quality using internal calculations and

universal mechanisms (testability, readability, bug tracking engines [29]). Metrics that have

been used by Sonar application includes number of statements, complexity (cyclomatic),

tangling index, responses to a class, connected components, violations (with severity

levels), dependencies (files and packages), code coverage, architecture and design,

duplication and unit tests (with Bamboo integration) [29]. These metrics available in this

tool directly relates to the dynamic analysis or the behavioral aspect of the software quality.

In Table 4.1 below we have the list of Sonar metrics and the results that were obtained for

three different versions of SOLA application.

The importance of static analysis for review is mostly related to the community

compliance attributes. As mentioned earlier, most of the metrics that are present in Sonar

directly influence the behavioral aspect of quality. For example if the Response for Classes

(RFC) value for a class is large, it means that, when the object is invoked for this class the number

of methods that could be executed is more, which results in difficulty to understand, debug and test

the software which is indeed a maintainability issue. Another example is Packet Tangle Index

where the index gives the tangling level of the packages, the best value is 0% meaning no

cycles. This index has to be reduced in order to get less tangled packages as a result of

which we get more modular and reliable code helpful for the community to extend the

software. Even though the results obtained by performing code review were not promising.

It certainly helped in improving SOLA quality.

Each of these metrics were analyzed individually and based on the results obtained

the suggestions and recommendations were made. The review was normally carried out

before the release and the results and suggestions were used for the next release of SOLA.

It could be seen from Table 4.1 that some of the metrics have low improvement due to the

reason that in less than a year (Aug 2011 - April 2012) there were more than 50 thousands

lines of code increased. Therefore maintaining the same state was harder than expected. In

some sections for examples Rules and Violations, the numbers have increased from 3000 to

7000 due to increase in minor and informative violations. However, most of the critical and

major violations were eliminated which was indeed an improvement. On the other hand,

code coverage was a total disappointment. Even though it was repeatedly reminded no

actions were taken for this metric. Therefore for the first version of SOLA we chose to find

some object oriented anti patterns including God Object, boat anchor, catch-all (Figure 4.1),

magic numbers (Figure 4.2) and circular dependency (Figure 4.3) all of which have intents

and suggestions.

37

According to Figure 4.1, the code snippet from sonar shows that the initial version of

SOLA application consisted of object oriented anti-pattern known as catch-all. It is clear

that the code is trying to catch an exception object ‘e’ which in itself is an error. It was

hence recommended that errors as such should be avoided.

Similarly in Figure 4.2 below, it is seen that numbers such as 23, 59 are used out of

nowhere. These constant numbers are treated as “magic numbers” which is an anti-pattern

in Object oriented programming.

In addition to these, Figure 4.3 below shows yet another anti-pattern which was

present in the architecture of SOLA application. This anti-pattern is namely circular

dependency.

try {

 value = new BigDecimal (txtValue.getText ());

}

catch (Exception e) { }

 Figure 4.1 Catch-all anti-pattern

tabValidate.getColumnModel ().getColumn (3).setCellRenderer (ir);

calendar.set (Calendar.HOUR_OF_DAY, 23);

calendar.set (Calendar. SECOND, 59);

Figure 4.2 Magic Numbers anti-pattern

38

Figure 4.3 Circular dependency

39

Table 4.1 Comparison result for four different releases (Static)

Metrics 1
st
 Release 2

nd
 Release 3

rd
 Release 4

th
 Release

Release date August 2011 December 2011 April 2012 September 2012

Lines of code (LOC) 29,999 64,611 84,004 Decreased 50,821

Comments 24,3% 22,8% 22,4% Decreased 19.9%

Number of Classes 532 1.015 1,230 Decreased 768

Response for Classes

(RFC)

12/class 15/class 16/class 14/class Improved

Rules and Violations 3.205 6.424 7.216 2.436 Improved

Lack of Cohesion of

Methods (LCOM)

1,7/class 1,7/class 1,8/class 1,1/class Improved

Package Tangle Index

(PTI)

11,2% 9,9% 9,6% 14,2%

Poor

Dependencies to cut 16 between

packages

34 between

files

24 between

packages

57 between files

32 between

packages

74 between

files

26 between packages

64 between files

Complexity 1,9/method

8,8/class
8,6/file

1,9/method

9,9/class
10/file

1,8/method

9,8/class
9,8/file

2,1/method

11,0/class
11,2/file

Average Code

Coverage

3.0% 0% 0% Improved

From Table 4.1 above, we can find the actual outcome from Sonar. It is somewhat

confusing and does not show the actual improvement in the results, due to the reason that

the number of features and functionality for SOLA application was dramatically increased

before every release. Therefore, we present graphical representations and interpret the

result in ratio for LOC, Comments, Classes and Rules in Figure 4.4 and Response for

Classes (RFCs), Lack of cohesion of methods (LCOM) Package Tangled Index (PTI),

Dependencies to cut per package and code complexity per class in Figure 4.5.

As we can see, the first version of SOLA contained approximately 30,000 LOC with

approximately 24% comments. These codes were integrated within more than 500 classes

each of which class has on average of 12 responses each. This gives the ratio of 1:4.1. The

rules violated for the first release was approximately 3000 including major and minor

violations whereas, for the later versions, these violations were reduced. It can also be seen

that the third release of SOLA was huge in terms of LOC. It contained more than 84000

LOC; however the ration for code, comment and violations remained considerable.

40

Figure 4.4 Graphical view for the basic metrics

Figure 4.5 Graphical view for Compelxity, Dependencies, RFC, PTI and LCOM3

Similarly for the attributes present in Figure 4.5, we can see that the LCOM3 was

significantly improving which showed us that the SOLA was cohesive, the RFC and

complexity were improving making the application more maintainable and less tangled for

each version resulting in more modular application. The dependencies however were

increasing due to more correlated features implemented for later versions. The result after

each quality review was either improving or still because of the recommendations made to

the previous releases.

Apart from the static review, Table 4.3 below shows some more attributes such as

Documentation and supportability for SOLA, Accessibility, Modularity, Security and

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

LOC Comments Classes Rules

Release Candidate v 1.0

Customization Release

Alpha Release

Development Snapshot

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

1 2 3 4

Complexity

Dependencies

RFC

PTI

LCOM3

41

Performance which were separately examined for each versions. The results were then

reported to the development team. These attributes relates directly to the behavior of the

application and are directly related to the number of features and functionalities covered for

each version.

4.2.1. Results for Community Compliance Attributes

As mentioned earlier, the results were categorized in two parts, static and behavioral.

In the following section the discussion on the behavioral results is made. This behavioral

analysis was made with the help of the results of static analysis and executing the

application. All the attributes for dynamic or behavioral analysis falls under the category of

community compliance.

Behavioral Analysis

Behavioral analysis or the dynamic analysis is the analysis made based on the results

from Table 4.1 and also by executing different versions of SOLA application. The results

obtained for this section show actual increment in the overall quality of SOLA.

For certain attributes which were reviewed including portability, reliability, usability,

maintainability and performance of four different releases, three different machines with

different Operating Systems (OS) and system configurations were chosen. Table 4.3 below

shows the outcomes.

We can see from Table 4.3 below that the documentation and support i.e. the

serviceability measure is found to be up-to-date which means that all the technical and non-

technical documents under the category of requirement, architecture, development,

deployment, optimization, planning, help and training were separately checked and

reported. For example, documents like Statement of Requirement, Use Case Description,

Data Model, Architecture documents, Envision Statements, Data Dictionary, Way of

Working Document, Communication plans, testing strategy, monthly progress reports and

user manual were checked and verified for all the releases, after which “Up-to-date” status

was reported for each releases. These documents are available for the public (download via

www.flossola.org) making it “Accessible”.

As mentioned earlier, SOLA application was deployed and run in three different

machines with different OS resulting in successful deploy and run. However, in Windows

Vista the configuration for the application server was time consuming due to the low

system configuration. SOLA applications were using different components like virtual

machine for the connection to the main server and PGAdmin as the database server. For the

reliability review, these components were stopped/ restarted. The responses and behavior of

the system were noted. As a result, we found that SOLA is exceptionally reliable in the

sense of error handling and periodic backup of the database.

In addition to this, we tried to invade the security of first version of SOLA

application which was not possible, but for the third version, when the web services were

42

added; SOLA failed to check the login to the web services and was easily overrun. The

review results were forwarded to the development team.

It was easily understood that the performance is mostly directly affected by the

design decisions that has been taken for the software and as we can see in Table 4.3 below,

the initial version of SOLA application is listed as a “Low Performance” application

because it did not complete on time. The results were sent to the development team who

then handled this issue efficiently omitting the flaw for next release. JUnit test cases were

prepared and were run through JMeter. Apparently the result hence obtained showed that

this software met the requirements set and also the design decisions were effectively

chosen. Table 4.2 and Figure 4.6 below are the results and graphs from JMeter for the

Customization Release (third release) of SOLA.

Table 4.2 Performance Test (Load test) Result

Requirement No. of users

(threads)

Loop

count

Ramp-

up

Period

(s)

Average

(ms)

Median

(ms)

Expected

(sec)

QL-34/35 100 1 3600 184 182 < 5

QL-36 254 249 <5

QL-37 678 621 <8

QL-38 1 - ~6 sec - <30

QL in Table 4.2 means the Non-functional requirement sets for the FLOSS SOLA

application. Numbers 34 to 38 are the sets for the performance section. [30]

In addition to this, final conclusions for some attributes like serviceability,

documentation and more performance test results and graphs from JMeter for the third

review are presented in Appendix B.

43

Figure 4.6 General Test of 1 hr with 12 seconds pause using JMeter

As an important quality factor, maintenance was reviewed differently for three

different versions of SOLA. In the first version, a possible addition of the language was

made with a successful result. For the second version, a calendar was added and for the

third version, Maintainability Index (MI) for the entire application was calculated using

following formula:

 () () () (())
Where V is Halstead Volume (1000 assumed),

- G is Cyclomatic Complexity,

- LOC is count of source Lines of Code and

- CM is the percentage of lines of comments.

As a result we got approximately -50 which is in the typical range and was certainly

an improvement.

The Usability factor, on the other hand, was not impressive. Because, the features and

functionalities covered were increased from 20% to 63% (Table 4.3) for later versions of

SOLA application. However, other aspects like the attractiveness, effects and coloring were

improved.

The result of Modularity directly depended on the PTI result from Sonar. The result

could be seen from Table 4.1 above. The PTI was 11.2% for the first release which was

later decreased to 9.9% and 9.6% respectively for 2nd and 3rd releases. For the final release

the index was drastically increased to 14% which was certainly an improvement.

44

Portability was measured by deploying and running the application on two different

versions of windows OS including windows vista and windows 7 and Linux Ubuntu 10.04

LTS. The alteration and the behavior of the application was noted and reported. But the

final status of ‘yes’ was due to its ability to accurately and independently function on

different platforms and to be accustomed accordingly. Table 4.3 below shows the result

from four different reviewed versions of SOLA.

Table 4.3 Comparison result for three different releases (Dynamic)

Metrics/

Attributes

1
st
 Release 2

nd
 Release 3

rd
 Release 4

th
 Release

Documentation/

Support

Up-to-date Up-to-date Up-to-date Up-to-date

Accessibility Yes Yes Yes Yes

Modularity Less Improved PTI Improved PTI Improved PTI

Portability Yes Yes Yes Stable

Reliability No Error handling and

periodic backup

was possible.

Stable Stable

Usability Issue raised Issue solved:

New Issue raised:

Issue solved:

New issue

raised:

Issue solved:

New issue

raised:

Maintainability

Index

- MI = ~83 MI = ~ -50 MI = ~50 – 90

Security Secured

Credential

login

Secure Secure Secure

Features

coverage

~20% NF

~12% F

~50% NF

~20% F

~63% NF

~62% F

~72% NF

~63% F

Performance Low

Performance

Able to handle

multiple users in

required time.

Met all the

requirements

from SRS

document

Met all the

requirements

from SRS

document

45

4.2.2. Results for Licensing Compliance Attributes

As a part of licensing compliance check, the licensing compatibility of SOLA to all

its related components and its source codes were separately examined. In Table 4.4 below

we can see all different SOLA environments that were developed with their respective

licenses.

Table 4.4 List of components and their respective licenses [30]

Environment Licenses

SOLA Client LGPL, Apache License, BSD, LGPL,

CDDL, GPL

SOLA Services Apache License, LGPL, CPL, BSD, CDDL,

GPL

SOLA Database GPL

Build and Development Environment CDDL, GPL, Apache License

As SOLA have four major environments that require third party software

involvement. All the licenses that were chosen for related components of SOLA are mostly

LGPL, Apache, BSD and CDDL/GPL. All of these environments consist of several

components. These components, their respective licenses along with the versions of each

license are tabled in Appendix C.

Type of licensing scheme that was chosen for SOLA was confirmed for being

compatible and was reported accordingly. This was done by analyzing libraries for binary,

codes and even by looking for the licensing block on top of all the classes. The first version

of SOLA was released using LGPL v2 licensing scheme whereas the later versions were

released adopting BSD-3 licensing scheme and was done with required change and

compatibility check.

Table 4.5 Licensing Compatibility check for SOLA [31]

 LGPL GPL BSD MPL CDDL PHP Apache SSPL Artistic

LGPL 1 1 1 2 2 2 2 1 2

BSD 1 1 1 1 1 1 1 1 1

1: Mixing and linking permissible

2: Only dynamic linking is permissible

As we can see from Table 4.5 above the initial version of SOLA had few restrictions

while using LGPL because it allowed only dynamic linking whereas for the later versions

of SOLA application the choice of BSD made mixing as well as linking permissible to all

of its third party components.

46

Similarly for reusability, the ease of reusing the application and components was

extended deeper towards the code level. Similar to modularity, which covered modular

architecture, design and code: reusability concerned to both reusable components as well as

reusable codes. Reusability was measured by the count or the ratio of unique methods in a

class (more the better) because, with modules containing more unique functions which, if

separated, could make the separated code block possible to act individually in other

programs.

4.2.3. Results for Method Compliance Attributes

Apart from reviewing the application based on metrics used by Sonar and attributes

which act in accordance to the community, we have also reviewed attributes which are

especially important and closely visible from the management or administrative perspective

(listed in sections 3.2 and 3.3).

For the components that have been used in the development of SOLA application

such as Glassfish v3.1 as application server, Netbeans as IDE, PostgreSQL, and PGAdmin

III as database server and PostGIS extensions are compatible to the license chosen for

SOLA application i.e. BSD 3 Clause. More detail on the list of components, their

respective licenses and versions are presented in Table 4.4.

SOLA application has been using 3 layered architecture including presentation layer,

service layer and data layer. These layers comprise of several independent components

making SOLA architecture reusable in several different contexts.

It has been found that SOLA application and its versions have been accepted and

successfully registered in and as F/LOSS product. The product is found to be hosted using a

central repository GitHub (github.com/SOLA-FAO). This application has been initiated

and developed by UN FAO primarily for developing countries including Nepal, Samoa and

Ghana. The interoperability documents by these countries have been successfully reviewed

and confirmed as approved.

It has also been noticed that whenever any new tool was used by the core and active

developers the required tutorial and training about the chosen infrastructure was provided

efficiently which is why there is no ‘alien’ scenario during the development.

Alike all the other products SOLA needed proper marketing for financial assistance

as well as community development. In order to do that marketing, research was conducted

with all the potential development assistance agencies such as World Bank, ADB, US AID

and so on and was efficiently promoted to them via proper communication channels.

A research report was submitted to the project manager and to the team of core

developers in UN FAO. The marketing strategy report consists of 7 p’s which are Product,

Public License, Place, People, Promotion, Perception and Process. Since the application is a

solution to open land administration the promotion were made on land agencies and

consultancies, development assistant agencies, academic institutions, social media, open

source communities and magazines.

47

4.3. Discussion

In this section the objective of the thesis is revisited. As mentioned in Section 1.1, the

main objective of this thesis was to provide a review framework for OSOS. OSOS are the

results caused due to development settings variations from a typical OSS development

setting. Alike OSS, OSOS also require review in order to assure its quality. Due to this, the

motivations to develop a framework arouse. In order to achieve the objective, a study had

to be made in the field of software quality assurance. Study showed that there were many

quality assurance models present to ease the vigorous process of software quality

assurance.

To choose the best and complete model was a bigger problem. In order ease the

effort, 5 most common and well known quality assurance models were chosen. The models

are McCall’s model, Boehm’s model, FURPS framework, ISO/IEC 9126 standard and

Garvin’s model. These models were then comprehensively analyzed. All of these models

were published in late 70’s - 80’s. It was also found that except FURPS and ISO 9126, rest

of the models were product oriented. For example, McCall developed his model

concentrating on space and military areas [9].

These models as a whole, does not fit in software developed using open source

approach because of mainly two reasons. The first one is that, the idea of OSS was coined

later in 80’s. Second is that, these models were detailed code leveled. In addition to these

reasons, there still remained few other issues why these models could not be adopted for

OSS and other software developed using similar development settings. These models

mostly lack the fundamental aspects of OSS, for example, accessibility issue which is one

essential dimension was missing from these models. In addition, architectural review,

product registration and software marketing issues were not properly addressed in these

models, frameworks and standards. Despite all drawbacks, we chose these 5 models as the

basis of our framework and made them the base models. Due to the reason that we were

able to find many product-centric models and frameworks developed lately based on these

primitive models. CMM, Dormey, Six Sigma and Prometheus [14] are some examples of

the derived work.

In this thesis we extract a set of quality attributes from base models and present them

as a suitable framework for reviewing OSOS. These attributes were analyzed and studied

individually. We had in our mind three major perspectives to which OSS was viewed

namely community, licensing, and development method. This is the reason why LCM is the

name we gave to our work.

To mention again, OSOS is also OSS, but with variation in development setting.

Therefore, these major perspectives had to be covered in the proposed review framework.

All the available quality attributes from the base models were evaluated and interpreted for

the context of OSOS. Based on our interpretation, these attributes were then categorized as

community, licensing and method compliance attributes. We found 10 relevant attributes

from the base models which were Reliability, Maintainability, Performance, Serviceability,

Portability, Usability, Modularity, Security, Reusability and Conformance. These attributes

were taken from the base models. However, the measures for these attributes were molded

and presented to our context. Similarly, we found Accessibility, Software Marketing,

48

Licensing Compatibility, Trademark, Copyright, Product Registration, and Development

Infrastructure equally important for our context but these attributes were missing from the

base models. These attributes were then added to the relevant categories in the LCM

framework. Most of the attributes that were extracted from the base models fitted well as

Community Compliance attributes. It was found that the Licensing perspective and Method

perspective were not addressed in the base models.

The LCM framework [Figure 3.10] comprises of 3 major perspectives through which

the OSOS could be viewed namely, The Community Compliance, Licensing Compliance

and Method Compliance. There are 11 quality attributes as community compliance

attributes. Altogether there are 23 sub-attributes used as measures to these 11 attributes.

Whereas there are 4 quality attributes as licensing compliance attributes and 2 attributes as

Method compliance attributes with no sub-attributes as their measure. All the Licensing and

Method compliance attributes are more procedural and less functional.

49

5. Conclusions

In this chapter we discuss the conclusions made from our result and findings. We also

discuss the limitations that were encountered during the research and thesis overall. In

addition to this, we propose some ideas for the future development of this thesis, which due

to some limitations were not fulfilled.

5.1. Conclusion

The LCM framework was applied to an OSS gave a positive and incremental result.

Since this model was applied for reviewing four different versions of the SOLA project

which was developed following the open source norms and traditions. Hence we conclude

that this model is acceptable to any other software developed using similar approach.

It is an obvious fact that OSS has to go through several reviews also because most of

the OSSs are developed following the classical mantra of “Release early, release often”,

which makes each piece of released version reviewable. It is equally important to know and

pick the right review attribute at the right time. There are few review attributes which must

be included in the very first release of the software but might not be of equal importance in

the later versions. In our case study we came across some situations where the metrics and

attributes that were chosen and applied to the first version were no longer used for the later

versions, assuming that no additional components (especially organizations) are involved in

the later development.

In the context of SOLA review one attribute that was left behind was Conformance.

For the first version of SOLA, a licensing compliance attribute Conformance was reviewed

which, in later versions, was skipped because the application already met the standards of

the OSI, and other related organizations like governmental organizations from three

different pilot implementation countries including Samoa, Nepal and Ghana. There were no

additional organizations that were involved in the latter development of SOLA. Hence this

attribute was found less important. Similarly, Usability and Functionality were, for the first

version, a lower priority review attributes, which on the later stage of development, acted as

vital ones. On the other hand, some attributes like Reliability and Maintainability were

reviewed with the same priority level for each release of the software but with different

review scenarios.

50

5.2. Limitations

There are thousands of review frameworks and QA models available in the web, each

model containing several quality attributes. Lot of these attributes remains the same in most

of the QA models. Due to which our model has the same trend followed, making our model

less different than remaining models, however, we are precisely concerned towards the

OSS due to three major perceptions chosen including Open Source as a Community, Open

Source as a Licensing Scheme and Open Source as a development method. There are

distinct attributes which have a higher degree of impact on all of these approaches, hence

making it more modular and usable even if one chose to be focused on a single approach.

5.3. Future Work

Provided enough of time and resource it is possible to extend this thesis, with greater

depth towards the method and licensing compliance sections. It is also possible to present,

in more detail, the community development and software marketing. The role and

perception from administrative level could also be added as the extension to this thesis

work. In addition to this, comparison of two or more case studies might lead to precise and

more acceptable results. Hence, in the future multiple cases could be considered and result

could be made more accurate. The analysis was made to the quality attributes of the base

models leaving the sub-attributes and measures alone. In the later work this issue could be

addressed in more detail.

51

References

1. Chris DiBona, Sam Ockman, and Mark Stone; Open Sources: Voices from the Open

Source Revolution, 1st Edition, 1-56592-582-3, January 1999

2. Jesus M. Gonzalez-Barahona, Free Software / Open Source: Information Society

Opportunities for Europe? v1.2, 24
th
 April 2000

3. Kitchenham, B. and Pfleeger, S. L.; "Software quality: the elusive target”, IEEE

Software, no. 1, pp. 12-21, 1996

4. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., McLeod, G., and Merritt, M.,

Characteristics of Software Quality; North Holland. Pub. Co, New York; 1978

5. A. W. Roscoe Ed; A Classical Mind: Essays in Honour of C. A. R. Hoare; Chapter

13, Prentice-Hall 1994.

6. Tobias Otte, Robert Moreton, Heinz D. Knoell; Development of a Quality

Assurance Framework for the Open Source Development Model. 3
rd

 International

Conference on Software Engineering Advances. IEEE, 2008

7. Khashayar Khosravi, Yann- Gael Guéhéneuc; A Quality Model for Design Patterns,

Technical report 1249, University of Montreal, September 2004.

8. Ronan Fitzpatrick; Software Quality: Definitions and Strategic Issues, ITSM,
Staffordshire University

9. Ernest Wallmüller; Software Quality Assurance: A Practical Approach; Prentice

Hall ISBN 0138197806, 9780138197803, 1994

10. Shari Lawrence Pfleeger; Software Engineering Theory and practice. Prentice Hall

2001

11. Marc-Alexis Coté, Elli Georgiadou; Software Quality Model Requirements for

Software Quality Engineering, Software Quality Management and INSPIRE

Conference (BSI); 2006

12. Pressman; Software Engineering: A practitioner’s approach, 5
th

 Edition, Boston:

McGraw-Hill, 2001

13. Patrik Berander et al; Software Quality Attributes and Trade-offs, Belkinge Institute

of Technology, Chapter 1 pp 7, June 2005.

14. Adam Trendowicz, Teade Punter; Quality Modeling for Software Product Lines,

ECOOP 2003, Germany, July 2003.

15. Rafa E. Al-Qutaish; Quality Models in Software Engineering Literature: An

Analytical and Comparative Study, Journal of American Science, Al Ain University

of Science and Technology, 2010.

16. Eric Steven Raymond, The Cathedral and the Bazaar, O’Reilly Media, ISBN: 978-

1-56592-724-7 | ISBN 10:1-56592-724-9; 2000.

17. Matthias Sturmer; Open Source Community Building, Institute of Information

Systems, Bern, March 2005

18. Henri Hedberg et al; Assuring Quality and Usability in Open Source Software

Development, IEEE, University of Oulu, 2007

19. Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt S., Jan Stage;

Usability in Open Source Software Development: Opinions and Practice, Aalborg

52

University Denmark, ISSN 1392 – 124X Information Technology and Control, Vol

35, No 3A., 2006

20. Alan McCormack, John Rusnak, Carliss Baldwin; Exploring the Structure of

Complex Software Designs: An Emperical study of Open Source and Proprietary

Code; Working paper, Harvard Business School, June 2005

21. Alessandro Narduzzo, Alessandro Rossi; Modularity in Action: GNU/Linux and

Free/Open Source Development Model Unleashed; Athesina Studiorum

Universitas, May 2003

22. Sonnenburg, Braun, Ong, et al; The Need for Open Source Software in Machine

Learning; Journal of Machine Learning Research 2443-2466, 2007.

23. Web source at www.apache.org/licenses/GPL-compatibility.html accessed online

on 15.07.2012, The Apache Software Foundation webpage. Last modified 2012

24. Web source at www.gnu.org/licenses/license-list.html accessed online on

15.07.2012, GNU Operating System. Free Software Foundation. Last updated

13.07.2012 14:25:52

25. Donald G. Firesmith; Common concepts underlying safety, security, and

survivability engineering. Carnegie Mellon Software Engineering Institute -

Technical Note CMU/SEI-2003-TN-033, December 2003.

26. David A. Garvin; What does “Product Quality” really mean? Harvard University,

Sloan Management Review, fall 1984.

27. Philip Kotler; Marketing Management, 11
th
 Edition, Pearson Education Inc, ISBN

0-13-0497150, 2003

28. I. Stamelos et al; Code quality analysis in open source software development;

Blackwell Science Ltd., 2002

29. Web source at www.sonarsource.org last accessed on 3.8.2012

30. Web source at www.flossola.org/content/documents SOLA Architecture Document

last access on 2.10.2012

31. Web source at tutopen.cs.tut.fi/course13/Open_Source_Introduction.pdf last

accessed on 1.04.2013

32. Pfleeger, Charles P.; Pfleeger, Shari Lawrence; Security in Computing, 4th

Ed.. Prentice Hall PTR. pp. 154–157. ISBN 0-13-239077-9, 2003

33. D. Forrest, C. Jensen, N. Mohan and J. Davidson; Exploring the Role of Outside

Organizations in Free/ Open Source Software Projects; 8
th

 IFIP WG 2.13

International Conference, OSS 2012.

34. Bugzilla.org contributors; www.bugzilla.org last accessed on 28.03.2013; Last

modified February 19, 2013.

35. Web source at www.mantisbt.org last accessed on 28.03.2013.

36. Web source at www.crmonline.com.au/crm/quality-assurance, Overview of CRM

Implementation Processes; last accessed on 09.04.2013

http://books.google.com/books?id=O3VB-zspJo4C&pg=PA154#v=onepage&f=false
http://books.google.com/books?id=O3VB-zspJo4C&pg=PA154#v=onepage&f=false
http://en.wikipedia.org/wiki/Prentice_Hall
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-13-239077-9

53

Appendix A

Following are the result snapshots from Sonar for the final version of SOLA

application (Customization Release)

Comments and duplication

Number of classes and LOC

Response For Classes (sub-project -> packages -> classes) from right to left

Rules and violations with severity levels

54

Lack of Cohesion of method

Package Tangle Index

Complexity

Code coverage

55

Appendix B

Following are the conclusions drawn from the review made on final version of SOLA

application towards serviceability, documentation, and performance test.

1 Serviceability

Serviceability Results/Conclusion

Help desk notification N/A

Network monitoring N/A

Event tracing N/A

Automated installation

packages will be available

(QL-12)

One form of SOLA application is available as a web start. This

could be considered as an automated installation package.

Email servers for

reporting technical errors

to support team

N/A

The system will include

documentation to support

its administration and use.

(QL-10)

This feature is available for the current version of SOLA.

Documents like user manual, requirement specification

documents and read me files could be accessed (downloaded)

via FLOSS SOLA web page.

www.flossola.org/content/documents

The system will include

documentation to support

its development,

enhancement and

maintenance. (QL-11)

This feature is available for the current release of SOLA i.e.

Customization release. JavaDocs, Data Dictionary,

Architecture Document and developers’ wiki is available.

www.flossola.org/wiki/Main_Page

Automated testing (QL-

13)

FLOSS SOLA is using JUnit application for testing which is

an automated testing tool. Hence, this feature is considered to

be fulfilled.

2 Documentation progress

Category Description Project

Documents

Comments

Requirements Describes the application from
the end users perspective and

includes; Functional

Requirements Specification, Use
Case Model, System Vision,

System Requirements

Specification, screen definitions,

Feature List, User Stories, etc.

Statement of
Requirements,

Use Case
Descriptions,

FLOSS SOLA Data

Model,

Software

Architecture

Document,

These documents give
detailed information

on the initial generic

software. The
architecture

document for

customization release

is yet to be updated
(till 18

th
 May 2012)

56

Envision Statement

Architectural Describes any constraints
imposed on the architecture,

rationale behind the architecture

and/or the physical structure of

the application.

Software
Architecture

Document, Data

Dictionary is made

available for
Customization

release

Deployment Diagram
is not available

Development Covers detailed system design,
development standards and

guidelines, code comments,

development environment setup
procedures and/or development

guides.

Software
Architecture

Documents,

Software Review

Report,

Use Case

Description,

Way of Working

(WoW) Document

All the ideas proposed
in WoW documents

should be

implemented or the
WoW document

should be revised for

next release.

Deployment Provides details on installation
and initial configuration of the

application including

dependencies with other software
components and/or release

procedures and release notes.

Readme file,

Communication Plan

The detailed
description procedure

is available for the

customization release.

Operational Describes operational procedures
and administration tasks to

administer and maintain the

application.

- Not available

Project and
Planning

Provides general information on
the project and how it is being

managed as well as planning

details.

Sola web page,
JIRA, Monthly

reports

Detailed plan and
updated monthly

reports are available

Testing Describes how testing will take
place, what testing is required

and tracks the results of the
testing activities.

Quality Plan
Document

This document is not
updated for the

release of
customization release.

Help and
Training

Describes the functions
supported by the application and

explains how users can interact
with it.

Wiki page, SOLA
Web page, Training

material, user
manual, online help

User manual and
online help are

available. Training
material is not

available.

57

Figure 0.1 Load Test result QL-34/35 -- Test connection to Case Management service with setting user credentials

Figure 0.2 Load Test result (WS) for 100 users QL-36 -- Get lists of unassigned and assigned applications from
Search service

58

Figure 0.3 Load Test result (graph) for 100 users QL-37 -- Get spatial elements from six different GIS layers

59

Appendix C

Following is the list of the entire SOLA environment, their components and the

corresponding licenses along with the versions.

Environment Components License Version

SOLA Client

Geo Tools

LGPL

2.1

Jasper Reports

Better Bean Binding

Swing Labs

Barcode4J Apache License 2.0

Barbecue Barcode BSD 3 Clause

Toedter calendar LGPL 2.1

Metro CDDL/GPL 1.1/2

Java Application Framework LGPL 2.1

JGoodies BSD 2 Clause

Map Icons GPL 2

SOLA Services

Dozer Apache License 2.0

Hibernate 3.5 LGPL 2.1

JBoss Drools Apache License 2.0

Imaging Library (JMagick) LGPL 2.1

JUnit 4.8 CPL -

DateUtility class LGPL 2.1

Money class BSD 3 Clause

Glassfish (embedded) CDDL/GPL 1.1/2

GeoServer GPL 2

SOLA Database
PostgreSQL license

PostGIS GPL 2

Build & Development

Environment

Netbeans
CDDL/GPL GPL v2

Maven – glassfish– plugin

Maven
Apache License

2.0

Maven – jarsigner

Maven – assembly

60

Jaxwa – maven –plugin

Maven – compiler – plugin

Maven – war – plugin

Maven – ear – plugin

