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ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Science and Engineering
JÄRVENPÄÄ, MARKO: Bayesian Hierarchical Modelling for Image Processing
Inverse Problems
Master of Science Thesis, 67 pages, 2 Appendix pages
March 2013
Major: Mathematics
Examiners: Prof. Robert Piché and D.Tech. Simo Ali-Löytty
Keywords: inverse problem, Bayesian statistics, hierarchical model, total variation, Gaus-
sian scale mixture, deblurring

The main motivation of this work is to review and extend some recent ideas in Bayesian
inverse problems especially in the context of practical image processing problems.
Often these problems are solved using a deterministic setting and different optimisation
algorithms. A Bayesian hierarchical model for total variation is presented in this
thesis. This approach allows all the parameters of an inverse problem, including the
“regularisation parameter”, to be estimated simultaneously from the data.

The model is based on the characterisation of the Laplace density prior as a scale
mixture of Gaussians. With different priors on the mixture variable, other total vari-
ation like regularisations are also obtained. All these priors have heavy tails that
tend to induce sparsity, which has become an important topic in many areas of signal
processing.

An approximation of the resulting posterior mean is found using a variational Bayes
method. In addition, algorithms for computing just the maximum a posteriori esti-
mate, although not a fully Bayesian approach, are presented. The methods are illus-
trated with examples of image deblurring, image denoising and inpainting, the first of
which being the main application of this thesis.

Examples show that the methods generally work well for deblurring problems.
Maximum a posteriori estimates preserve edges of “blocky” images well. The results
given by variational Bayes method are more smooth than corresponding maximum a
posteriori estimates which make it more suitable for problems where preserving the
edges is not the top priority like deblurring smooth or partially blocky images. Vari-
ational Bayes method also makes Gibbs sampler redundant with this model as it is
faster and gives slightly better results. As future work faster algorithms could be
implemented as well as considering more complex and specialised models and more
comprehensive simulations based on the ideas of this work.
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Tämän työn tavoitteena on luoda katsaus ja viedä eteenpäin viimeaikaisia bayesiläiseen
inversio-ongelmiin liittyviä ideoita. Käytännön sovelluksista erityisesti työssä keski-
tytään kuvankäsittelyongelmiin. Usein tällaisia ongelmia ratkaistaan käyttäen erilaisia
deterministisiä optimointialgoritmeja. Tässä työssä sen sijaan esitellään hierarkkinen
Bayes malli total variaatiolle. Tässä lähestymistavassa voidaan inversio-ongelmaan liit-
tyvät parametrit kuten ”regularisaatioparametri” samanaikaisesti estimoida datasta.

Esitettävän mallin kulmakivi on tulos, jonka perusteella Laplace-priorijakauma voi-
daan esittää Gaussin mikstuurina. Asettamalla eri priorijakaumia mikstuurijakaumak-
si, saadaan myös muita total variaation kaltaisia prioreja. Nämä priorit ovat paksu-
häntäisiä ja ne tuottavat ”sparsity”-tyyppisiä tuloksia. Tähän aiheeseen liittyvät tut-
kimusaiheet ovat tulleet kiinnostaviksi monella signaalinkäsittelyn sovellusalueella.

Mallin tuloksena saatavan posteriorijakauman odotusarvon laskemiseen käytetään
variaatioapproksimaatiota. Tämän lisäksi tässä työssä esitetään algoritmi maximum a
posteriori –estimaatin laskemiseen, vaikka tämä lähestymistapa ei ole täysin bayesiläi-
nen. Menetelmiä havainnollistetaan erityisesti kuvan terävöittämiseen liittyvillä esi-
merkeillä, mutta myös kohinan poistoa sekä inpainting-ongelmaa tutkitaan.

Tuloksista nähdään, että menetelmät toimivat hyvin etenkin kuvan terävöittämison-
gelmissa. Maximum a posteriori –estimaatti säilyttää kuvan väritasojen jyrkät ra-
jat hyvin. Variaatioapproksimaatiolla saaduissa tuloksissa tällaiset väritasojen rajat
jäävät pyöristyneimmiksi kuin edellä mainitussa menetelmässä. Variaatioapproksi-
maation antama ratkaisu sopii paremmin ongelmiin, joissa kuvissa olevien väritasojen
rajojen säilyttäminen ei ole tärkeintä, kuten ”pehmeille” kuville. Tämä menetelmä on
myös laskennallisesti nopeampi kuin Gibbs-näytteistykseen perustuva menetelmä ja
tuottaa parempia tuloksia. Jatkossa voitaisiin keskittyä tämän työn pohjalta saataviin
vielä kehittyneempiin malleihin ja suorittaa kattavampia simulaatioita.
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Remarks on notation

• We do not distinguish between scalars and vectors as it should always be evident
from context which one each variable is. Similarly no notational difference is
applied between random variables and random vectors. Term “random vector”
is often also used when the variable can be either one, while random variable
must be 1× 1.
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• Square root, inverse and division by a vector are defined componentwise for
notational convenience. That is, if x is a column n-vector it will be denoted

√
x = [√x1,

√
x2, . . . ,

√
xn]T ,

1/x = x−1 = [x1
−1, x2

−1, . . . , xn
−1]T .

• Images with size k×n pixels are presented as columnwise stacked vectors through
this thesis. However, matrix like indexing (for example xi,j refers to element or
“pixel” (i, j)) is used. Also, we denote N = kn which is naturally the number of
pixels.

• Instead of “probability distribution” we often use just “distribution” or “density”
rather loosely.

• All the integrals appearing this work are taken over the definition domain of
the integrand if no integral limits are provided. All the integrals are Riemann
integrals.



Chapter 1

Introduction

In this thesis Bayesian hierarchical methods for total variation regularisation are
studied. The main objective is to present models that can be used to solve image
deblurring tasks. We also briefly study image denoising and inpainting problems.
There is a blurred and noisy image in the left in Figure 1.1. The problem is to be able
to “deblur” the image so that it looks as close as possible the original unknown picture
that is presented in the right in Figure 1.1. These image processing problems can be
modelled as linear equations. However, due to noise and numerically problematic form
of the blurring, obtaining a stable solution requires special regularisation methods. In
this work we focus especially on statistical approaches where no additional parameters
have to set by the user to obtain a deblurred image.

The classical methods for solving linear discrete system

y = Ax+ noise, (1.1)

where A is a given (blurring) matrix, x a vector (the image) to be solved and y a given
vector (original image), is to formulate it as a optimisation problem, in particular to a
least squares problem. However, if the matrix has nontrivial nullspace, for instance, it
has more columns than rows, or if the matrix is square but (close to) singular, it has
either no unique solution or numerical problems emerge. This issue is typically dealt
with by introducing a penalisation term and approximating the ill-posed problem with
a problem that is well-posed. The problem is then to solve

arg min
x

{‖Ax− y‖2 + δJ(x)}, (1.2)

where δ is a regularisation parameter and J(x) is a regularisation penalty, often L2

or L1 norm on x. The L2 norm J(x) = ‖x‖2
2 is known as Tikhonov regularisation

or Ridge regression. The L1 norm J(x) = ‖x‖1 is often called the Lasso and was
originally presented in [50]. If δ = 0 then the problem reduces to the least squares
method.

The goodness of the result, however, depends on how suitable a regularisation param-
eter δ was chosen. There exist several methods (see for example [52, Ch. 7] for further
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(b)(a)

Figure 1.1: (a) Noisy, blurred gray scale image of “Shepp-Logan phantom”. (b) The
original image which one wants to obtain given only the blurred image and knowledge
about the blurring method.

discussion) to aid in choosing the regularisation parameter but there is no universally
accepted method.

These optimisation problems can be interpreted as Bayesian inference problems. This
is done by setting the prior density so that it corresponds to the regularisation penalty.
For example setting a Gaussian prior leads to Tikhonov regularisation. The result
of Bayesian inference is the whole posterior density. However, just the maximum a
posteriori estimate is often computed. Furthermore, instead of setting regularisation
parameter heuristically, in fully Bayesian models also these parameters are inferred
from the data. This has the advantage that the user does not have to set it.

Total variation regularisation is a new popular alternative for restoring “blocky” images
and it was initially presented in [48]. It penalises non-smoothness in the solutions
while allowing occasional “jumps” and suits image deblurring problems better than
Tikhonov or Lasso. The total variation regularisation term is, however, more difficult
to deal with than the L2 norm since it is not even differentiable everywhere. In this
work total variation regularisation is studied in Bayesian setting by using Laplace
prior which corresponds to the total variation penalty in corresponding minimisation
problems. Exploiting the fact that the Laplace distribution can be presented as a
Gaussian scale mixture ([3, 23, 31]) leads to a hierarchical model yielding a posterior
density more feasible to deal with. This idea encourages to try other mixing densities
that to the best of authors knowledge are not considered in literature. For example,
Student’s t-distribution is a Gaussian scale mixture and in this paper an alternative
model combining t-distribution and total variation is proposed. As an extra we also
obtain a hierarchical model for Lasso although we will focus mainly on total variation.

Although the resulting posterior distribution is intractable, the maximum a posteriori
estimate is solved using direct maximisation of the posterior density in this work.
Gibbs sampler update probabilities are also easily derived to give a Monte Carlo
Markov Chain algorithm for the problem. However, sampling based algorithms are
not considered in very detailed way. Instead, variational Bayes method as described
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in [8, Ch. 10] or [38, Ch. 33] is used to approximate the posterior to obtain “analytic
approximation” for the posterior mean and assess the uncertainty of the result. All
these methods are compared empirically.

In literature there have been several studies related to the topic. A hierarchical
Bayesian model for Lasso which is quite similar to the model used in this work was
studied in [19, 43, 33]. In these papers the scale mixture idea was also used. In [33]
also statistical model in the case featuring two penalisation terms, one L1 and one total
variation was analysed. Laplace priors are also considered in compressive sensing [6]
and classification problems [28]. Fully Bayesian model of Tikhonov regularisation was
studied in [26], where variational Bayes was used. Hierarchical models are also used
in several inverse problem research projects, see for instance [10, 53, 41, 35]. Fast L1

sampling methods have been considered for example in [36]. However, in these papers
either no total variation model was considered or not everything was simultaneously
estimated from the data or only sampling methods were proposed.

Bayesian models of total variation for image problems has been studied in [4, 5, 13,
10]. The ideas presented in this work are partly from these sources, though slightly
different approach is taken. Also some ideas are extended and different variants of total
variation are studied that allow exploiting Gaussian scale mixture property. In this
work state-of-art or problem specific methods are not studied, some further related
research is however found in papers [13, 9, 44]. There also exists several fast and
popular minimisation algorithms (see for example [55, 24]) for solving total variation
problems. There is a good summary of total variation and recent algorithms in [11].

The results obtained in this study are demonstrated by solving image processing prob-
lems for which total variation is suitable, namely deblurring. Also denoising and
inpainting problems are briefly discussed. In deblurring problems considered in this
work one wants to undo the blurring of an image with additive noise when the blurring
kernel is known. All the needed parameters, regularisation parameter and variance of
the Gaussian noise are estimated from the data in the model. In real life the blurring
kernel may not be known but has to be estimated as well. This blind deconvolu-
tion problem was studied in [5] where similar concepts as in this work were used. In
denoising problem only noise is removed and no blurring is removed. In inpainting
problems in addition to denoising some pixels are unknown and must be restored using
the information of the neighbouring pixels.

The contents of this thesis are the following. In next section some probability densities
that are used in statistical models are presented. Also some basic principles of Bayesian
inference and hierarchical models are briefly introduced. In Section 3 some inference
algorithms are presented. After that, in Section 4 basic ideas of regularisation methods
both from deterministic and Bayesian point of view are presented and briefly compared.
Total variation is introduced in a deterministic framework. The main ideas of this
work, the hierarchical model and inference, are presented in Section 5 and extended
for two-dimensional case in Section 6. The results are illustrated in Section 7. Finally,
after the examples the summary of this thesis is given and possible ideas for future
work are discussed.



Chapter 2

Preliminaries

In this chapter some probability distributions and related results that are needed later
in this work are presented. These probability densities are mainly needed in this work
to model error or prior distributions and to be recognised when they emerge from
posterior distributions. Thus only some basic relations are presented. Also basic ideas
of Bayesian inference, which is the main tool to solve inverse problems in this thesis,
are introduced. Remark that from now on both terms density and distribution are
used to mean probability distribution and we will use these terms somewhat loosely.

2.1 Probability distributions and their properties

We start by presenting the multivariate normal density which is used commonly for
observational errors. Normal density is perhaps the most used density in statistics
and it is very tractable analytically. Due to the central limit theorem, the Gaussian
densities are often good approximations to inherently non-Gaussian distributions when
the observation is physically based on a large number of mutually independent random
events [29]. In this thesis we use terms “normal” and “Gaussian” both to refer to this
density.

Definition 2.1. A random n-vector x is said to have a multivariate normal or Gaussian
distribution, denoted as x ∼ Normal(µ,Σ), with parameters µ and a n× n symmetric
positive definite (spd) matrix Σ, if it has the probability density function (pdf)

px(x) = 1
(2π)n/2(det(Σ))1/2 e− 1

2 (x−µ)TΣ−1(x−µ). (2.1)

The multivariate normal distribution has the following statistics

E(x) = mode(x) = µ, V(x) = Σ. (2.2)

A linear transformation of normal density is also normal.



CHAPTER 2. PRELIMINARIES 5

Theorem 2.2. If m × n matrix A has full rank, b is an m-vector and x is an n-
dimensional random vector such that x ∼ Normal(µ,Σ), then the random vector Ax +
b ∼ Normal(Aµ+ b, AΣAT ).

Proof. The proof can be found in many textbooks. For example, see [47, Ch. 18].

Remark 2.3. Multivariate normal density could also be defined more generally so that
Σ does not need to be spd matrix. In this work these degenerate normal distributions
are not used and that is why normal density is defined through the pdf.

Next we need to define some Bessel functions that will be encountered later when
dealing with some more general densities. The second order modified Bessel func-
tion appearing later in the definitions of multidimensional Laplace and in generalised
inverse Gaussian densities has the following integral presentation

Kp(z) =
∫ ∞

0
e−z cosh(t) cosh(pt)dt. (2.3)

For positive z the second order modified Bessel function has also the following integral
formula

Kp(z) = 1
2

(
z

2

)p ∫ ∞
0

t−p−1 exp
(
−
(
t+ z2

4t

))
dt. (2.4)

The equivalence of (2.3) and (2.4) can be shown using a change of variables. In
addition, the function clearly satisfies K−p(z) = Kp(z) for any p > 0. As a special case
p = 1/2 we also have a simpler formula

K1/2(z) =
√
π

2 e−zz−1/2, z > 0. (2.5)

See, for instance [1, 31] and references therein for these and some additional properties
and definitions. Some other properties and consequences of these functions will be
discussed later.

The Generalised inverse Gaussian (GIG) distribution is a very general distribution
family. The distribution was studied by Jorgensen in [27]. The following definition
and properties are from this source. The GIG density can be defined with the following
parametrisation.

Definition 2.4. A random variable x > 0 has GIG distribution, denoted x ∼
GIG(a, b, p), with parameters a, b and p if it has the pdf

px(x) = (a/b)p/2

2Kp(
√
ab)

xp−1e− 1
2 (ax+ b

x
), x > 0, (2.6)

where Kp is the second order modified Bessel function. The normalisation constant
follows from (2.4). The range of the parameters is

a > 0, b ≥ 0, p > 0; a > 0, b > 0, p = 0; a ≥ 0, b > 0, p < 0. (2.7)



CHAPTER 2. PRELIMINARIES 6

The GIG distribution is unimodal and skewed. The moments, mode and variance for
GIG can be computed as given by the formulas in the following Proposition [27, pp. 7,
13–14]. The mean and variance have simplified formulas in the special cases a = 0 and
b = 0 that follow by an asymptotic property of the modified Bessel function. These
formulas are given in [27, pp. 13–14].

Proposition 2.5. The mean, mode and variance of GIG distribution with parameters
as in (2.7) are given by the formulas

E(xq) =
(
b

a

)q/2 Kp+q(
√
ab)

Kp(
√
ab)

, q ∈ R, (2.8)

mode(x) =


(p−1)+

√
(p−1)2+ab
a

, if a > 0,
b

2(1−p) , if a = 0,
(2.9)

V(x) = b

a

Kp+2(
√
ab)

Kp(
√
ab)

−
(

Kp+1(
√
ab)

Kp(
√
ab)

)2 . (2.10)

Proof. The formula for the central moments follows by direct integration and using
the fact that the GIG pdf integrates to 1. The variance is then computed using
V(x) = E(x2) − E(x)2. The mode is computed by finding the unique zero of the
derivative of the logarithm of the GIG pdf.

Reciprocal Inverse Gaussian (RIG) and Inverse Gaussian (IG) densities are special
cases of GIG. Setting a = α2/β, b = β and p = 1/2 gives RIG and IG is obtained
by setting a = λ/µ2, b = λ and p = −1/2. Also gamma and inverse gamma densities
are special cases of GIG which follow by setting a = 2β, b = 0 and p = α or a =
0, b = 2β and p = −α, respectively. Exponential distribution Exp(θ) is the same as
Gamma(1, θ). These densities and some of their statistics are gathered in Tables 2.1
and 2.2. Note that Γ(·) is the gamma function and is defined as Γ(x) =

∫∞
0 tx−1e−tdt

for x > 0. IG and RIG densities have been studied in [51]. Different parametrisations
are sometimes used for gamma and RIG densities and also many of the properties of
these densities slightly differ then.

Let us next state some miscellaneous results related to these special cases that prove
to be useful later in this work. If random variable x has distribution GIG(a, b, p) then
x−1 has also GIG density, namely GIG(b, a,−p) [27, p. 7]. From this fact it follows
that if x ∼ IG(α/β, α2/β) and y = x−1 then y ∼ RIG(α, β). This result relates IG
and RIG density. Similar connection exists between gamma and inverse gamma: if
random variable x ∼ Gamma(α, β) and y = x−1 then y ∼ InvGamma(α, β).

Also, if x ∼ RIG(α, β) then
E(x−1) = α

β
, (2.11)

which is seen from Proposition 2.5 by setting p = 1
2 , q = −1 and using the symmetry

of Kp on p. Some plots of RIG density are shown in Figure 2.1.
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Table 2.1: Special cases of GIG distribution. All the parameters appearing in the
formulas must be positive.

x ∼ px(x)

IG(µ, λ)
(

λ
2πx3

)1/2
exp

(
−λ(x−µ)2

2µ2x

)
RIG(α, β) α√

2πβ
e2αx−

1
2 exp

(
− (αx+β)2

2βx

)
Exp(θ) θe−θx

Gamma(α, β) βα

Γ(α)x
α−1e−βx

InvGamma(α, β) βα

Γ(α)x
−α−1e−β/x

Table 2.2: Some statistics of different distributions.

x ∼ E(x) mode(x) V(x)

IG(µ, λ) µ µ
(√

1 + 9µ2

4λ2 − 3µ
2λ

)
µ3

λ

RIG(α, β) β(1+α)
α2

−β+β
√

1+4α2

2α2 use (2.10)
Exp(θ) θ−1 0 θ−2

Gamma(α, β) α
β

α−1
β

for α > 1 α
β2

InvGamma(α, β) β
α−1 for α > 1 β

α+1 ,
β2

(α−1)2(α−2) for α > 2
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0.4

0.6
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x

p
(x

)
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α=4, β=6

Figure 2.1: Some plots of RIG density.
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Definition 2.6. A random n-vector x is said to have a multivariate t-distribution (or
multivariate Student’s t-distribution), denoted as x ∼ tν(µ,Σ), with parameters ν > 0
(degree of freedom), µ and a n× n positive definite matrix Σ, if it has the pdf

px(x) =
Γ(ν+n

2 )
Γ(ν2 )νn/2πn/2(det(Σ))1/2

(
1 + 1

ν
(x− µ)TΣ−1(x− µ)

)− ν+n
2
. (2.12)

The t-distribution is symmetric and behaves like normal density but it has heavier
tails. For this reason it is often used in place of normal density when robustness to
outliers is desired. The statistics of t-distribution are the following [8, Ch. 2.3.7].

E(x) = µ, if ν > 1, mode(x) = µ, V(x) = ν

ν − 2Σ, if ν > 2. (2.13)

A random vector y that follows t-distribution can be written as

y = µ+ 1√
r

Σ1/2x, (2.14)

where r ∼ Gamma(ν2 ,
ν
2 ) and x ∼ Normal(0, I) and r, x are independent. The square

root of matrix is defined so that Σ1/2(Σ1/2)T = Σ. So t-distribution can be thought as
a normal distribution with stochastic variance. Also, using Theorem 2.2 it can be seen
that y | (r = r) ∼ Normal(µ, 1

r
Σ). The property is restated and proved in the next

theorem. This Gaussian scale mixture (GSM) property can be used also to generate
random variates.

Theorem 2.7 (t-distribution as Gaussian scale mixture). If random vector y | (r =
r) ∼ Normal(µ, 1

r
Σ) and r ∼ Gamma(ν2 ,

ν
2 ), then y ∼ tν(µ,Σ).

Proof. Denoting z = y − µ it is easy to compute that

py(y) =
∫ ∞

0
py,r(y, r)dr =

∫ ∞
0

py | r(y | r)pr(r)dr

=
∫ ∞

0

1
(2π)n/2(det(1

r
Σ))1/2 e− r2 zTΣ−1z (ν2 ) ν2

Γ(ν2 )r
ν
2−1e− νr2 dr

=
(ν2 ) ν2

(2π)n/2(det(Σ))1/2Γ(ν2 )

∫ ∞
0

r
n+ν

2 −1e− 1
2 (zTΣ−1z+ν)rdr︸ ︷︷ ︸

=
Γ(n+ν

2 )
( 1

2 z
TΣ−1z+ 1

2 ν)
n+ν

2

=
Γ(ν+n

2 )
Γ(ν2 )νn/2πn/2(det(Σ))1/2

(
1 + 1

ν
zTΣ−1z

)− ν+n
2
,

which is the pdf of t-distribution. The integrand on the row 3 was observed to be
gamma pdf without normalisation constant (see Table 2.1) and thus the integral on
that line can be computed easily.
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Remark 2.8. Alternatively, the t-distribution can be characterised as a GSM
using the connection y = µ +

√
rΣ1/2x with inverse gamma mixing density r ∼

InvGamma(ν2 ,
ν
2 ). The proof of this follows directly from the proof of Theorem 2.7

by the connection of gamma and inverse gamma densities.

Let us define some other interesting and useful densities. In this work multivariate
Laplace distribution is defined in the following way.

Definition 2.9. A random n-vector x is said to have a multivariate Laplace distri-
bution, denoted as x ∼ MVLaplace(µ,Σ), with parameters µ and a n × n positive
definite matrix Σ, if it has the pdf

px(x) = 2
(2π)n/2(det(Σ))1/2

Kn
2−1

(√
2(x− µ)TΣ−1(x− µ)

)
(√

1
2(x− µ)TΣ−1(x− µ)

)n
2−1 . (2.15)

Function Kp is the modified Bessel function of the second kind with parameter p ∈
R. This definition agrees with the one in [31, p. 235] but with the added location
parameter µ.

The multivariate Laplace distribution defined above is also a Gaussian scale mixture
but with exponential mixing density. That is, it can be written as

y = µ+
√

rΣ1/2x, (2.16)

where r ∼ Exp(1), x ∼ Normal(0, I) and r and x are independent. This property
in one-dimensional case was realised by Andrews and Mallows in 1974 in their paper
[3], where also conditions for the existence of such relations was studied. The Laplace
density could actually be defined using this GSM property. The next theorem is
the generalisation to multidimensional case inspired by [18], where a slightly different
version of the result below is given.

Theorem 2.10 (Laplace as Gaussian scale mixture). If y | (r = r) ∼ Normal(µ, rΣ)
and r ∼ Exp(1), then y ∼ MVLaplace(µ,Σ).

Proof. The proof is straightforward calculation as in the t-distribution case.

py(y) =
∫ ∞

0
py | r(y | r)pr(r)dr

=
∫ ∞

0

1
(2π)n/2(det(rΣ))1/2 e

− 1
2r z

TΣ−1ze−rdr

= 1
(2π)n/2(det(Σ))1/2

∫ ∞
0

r−n/2e
− 1

2

(
2r+ zTΣ−1z

r

)
dr︸ ︷︷ ︸

=2 K1−n2
(√2zTΣ−1z)( 1

2 z
TΣ−1z)

1
2(1−n2 )

= 2
(2π)n/2(det(Σ))1/2

Kn
2−1

(√
2zTΣ−1z

)
(√

1
2z

TΣ−1z
)n

2−1 ,



CHAPTER 2. PRELIMINARIES 10

where we have denoted z = y − µ. The integrand on line 3 was recognised as unnor-
malised GIG(2, zTΣ−1z, 1 − n

2 ) pdf (or alternatively a certain central moment of the
inverse Gaussian distribution) and was computed using the fact that the density inte-
grates to 1.

The mean and variance of multivariate Laplace distribution can be computed from
equation (2.16) using the fact that x and r are independent.

E(y) = E(µ+
√

rΣ1/2x) = E(µ) + Σ1/2E(
√

r)E(x) = µ,

V(y) = E[(y− E(y))(y− E(y))T ] = E[r(Σ1/2x)(Σ1/2x)T ]
= E(r)E[(Σ1/2x)(Σ1/2x)T ] = 1 · Σ = Σ.

In one dimension the pdf with Σ = 2/b2 ∈ R+ and b > 0 reduces to

px(x) = b

2e−b|x−µ|. (2.17)

This one-dimensional Laplace density is denoted as Laplace(µ, b). This is easily seen
by some simple calculations and using the fact (2.5). The second parameter was chosen
in this specific way just for convenience. The mean is naturally µ and the variance is
2/b2. The density is sometimes also called the double-exponential density as it consists
of two exponential curves. Laplace density has a sharp peak at its mean value, which
will play an essential role in what follows later in this work. Some density functions
with µ = 0 are plotted in Figure 2.2.

Definition 2.11. A p×p positive-definite matrix X has Wishart distribution, denoted
X ∼ Wishart(Ψ, ν), with parameters Ψ, which is p × p positive-definite matrix and
ν > p− 1, ν ∈ R if it has the pdf

pX(X) = 1
2 νp

2 (det(Ψ))ν/2Γp(ν2 )
(det(X))

ν−p−1
2 e− 1

2 tr(Ψ−1X), (2.18)

where Γp(·) is multivariate gamma function and tr (trace) is the sum of diagonal
elements. The mean and the mode are given by the formulas

E(X) = νΨ, ν ≥ p+ 1, mode(X) = (ν − p− 1)Ψ. (2.19)

Wishart is a generalisation of Gamma distribution to positive definite matrices. In
one dimension, the density Wishart(v, n) clearly reduces to Gamma(n2 ,

1
2v ). The prop-

erties of this matrix density is not studied here in more detail since in this work the
Wishart distribution is used only as prior density for general covariance matrix Σ of
the multivariate normal density. In other words, we are only interested in its pdf and
basic statistics since it is enough for this work. More properties and the definition of
Wishart density through normal distributions can be found for instance in [2].
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Figure 2.2: Comparison of Laplace, standard normal and t-distribution (with degree
of freedom 3). All these densities are scaled to have mean zero and unit variance.

2.2 Bayesian inference

Bayesian inference can be seen as an “inverse problem”. Namely, consider a statistical
model describing the probability for obtaining some data y and parameter x. The
direct problem is to generate data given the model and parameters. The statistical
inverse problem is, however, to describe parameters x when the data y is observed.
In Bayesian statistics all the parameters are handled as random vectors. That is, a
probability distribution describes the knowledge of x. The Bayesian inference is based
on the Bayes’ rule which is given by Theorem 2.12.

Theorem 2.12 (Bayes’ rule). Suppose that the n-dimensional random vector x has
a known prior pdf px(x) and the data consists of observed value y of an observable
k-dimensional random vector y such that py(y) > 0. Then the posterior pdf of x given
the data y is

px |y(x | y) = px(x)py |x(y |x)
py(y) . (2.20)

Proof. The proof can be found in many textbooks, see for example [29, Ch. 3.1].

The density px(x) is the prior density, or simply prior, that describes the initial knowl-
edge of the value x before any data is observed. The conditional probability density
py |x(y |x), called likelihood, is the probabilistic model for obtaining the data y if the
unknown parameter x were known. The inference result, the posterior distribution
px |y(x | y) describes the knowledge about the parameter x after taking the data into
account and is the result of the inference problem.

The value
py(y) =

∫
Rn
px(x)py |x(y |x) dx, (2.21)
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that is sometimes called evidence, depends only on the data y and it is only used for
normalizing the pdf so that it integrates to 1. This constant value has no particular
importance in inference but it has a role in Bayesian model comparison. Bayes’ rule
is thus often written simply as

px |y(x | y) ∝ px(x)py |x(y |x). (2.22)

The prior is set to reflect the analyst’s assumption or beforehand knowledge of the
value to be inferred. Sometimes one sets improper prior to model initial knowledge
of x. That is, a prior that is not a proper distribution in the sense that it does not
integrate to 1. This is common especially if no clear prior knowledge exist. Conjugate
priors that are densities from the same family of distributions as the likelihood are also
commonly used for computational convenience. That is, they often produce simpler
posterior densities while non-conjugate priors often lead to complicated posteriors and
sampling methods are needed. Generally, with a lot of data the prior density plays no
big role in determining the result. More information can be found in [45].

The whole posterior distribution is the solution of Bayesian inference. In one and two-
dimensional cases one can plot the pdf to visualise the result. Possibly some marginals
or credibility intervals can also be plotted to demonstrate the results. A posterior pdf
with a narrow peak indicates that the mean or mode describes well the parameter
while wide posterior pdf indicates that there is uncertainty about the result. However,
it is often convenient to present some single numbers describing the posterior pdf. The
following point estimates are often used the summarise the posterior.

MAP (maximum a-posteriori) estimate is defined as

xMAP = mode(x | y) = arg max
x∈Rn

px |y(x | y). (2.23)

Basically, MAP estimate can be found by solving an optimisation problem often in
high dimensional space using for example iterative, gradient based methods. However,
there may be no solution to the problem or even when there exists a solution it may
not be unique. That is to say, the posterior can be multimodal. There may be several
local maximums in which case MAP may not describe the “location” of the pdf very
well. Finding the highest mode can be difficult as global optimisation is generally a
very difficult problem. MAP is closely related to maximum likelihood estimation, the
difference is the prior density that is taken into account in MAP estimation.

Another commonly used estimator is the conditional mean (CM) which is also called
posterior mean. CM is defined as

xCM = E(x | y) =
∫
Rn
x px |y(x | y) dx. (2.24)

Conditional mean requires integration over often multidimensional domain. The condi-
tional mean can also give better summary of a symmetric density with two distinct
tops for example. CM is also known as the minimum mean square error estimator.
Similarly as for the CM, one can define conditional covariance estimator. Also, the
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conditional mean estimate described in this section may not exist, that is, the integral
in (2.24) may not converge. Classical example is the Cauchy distribution which is the
same as t-distribution with degree of freedom 1.

2.3 Bayesian hierarchical models

The main idea of hierarchical Bayesian models is to let the data determine the appro-
priate model used for the inversion of this data. That is, instead of determining the
prior beforehand, some of the parameters in the prior are estimated from the data
as well. This makes it possible to construct very flexible and “automated” models.
Also parameters appearing in the likelihood can be estimated from the data instead
of setting some fixed values for them.

Instead of considering prior px(x) (with some fixed parameters) for the random vector x
to be inferred, one can consider prior px,r(x, r). Here r is hyperparameter with its own
prior pr(r) which is called hyperprior. Since px,r(x, r) = px | r(x | r)pr(r) integrating
out the hyperparameter gives the prior for x.

px(x) =
∫
px | r(x | r)pr(r) dr. (2.25)

The posterior px,r |y(x, r | y) ∝ px | r(x | r)pr(r)py |x(y |x) contains now two types of
parameters, some of which are of main interest and hyperparameters. Now, there are
several ways to deal with this type of posterior, for example

• Solve the CM for (x, r). (Full-CM)

• Solve the MAP for (x, r). (Full-MAP)

• Marginalize r, then solve x̂ = arg max
x

px |y(x | y). (Type I approach)

• Marginalize x, then solve r̂ = arg max
r

pr |y(r | y) and finally use px,r |y(x, r̂ | y)
to infer x. (Empirical Bayes, evidence procedure, type II approach)

• Assume factorisation, for instance px,r |y(x, r | y) ≈ qx(x)qr(r) and find in some
sense optimal qx and qr. (Variational Bayes)

The names in brackets are not very settled. In this work we mainly consider the MAP
and variational Bayes method. Full-CM is considered briefly for comparison and solved
via sampling.

The Gaussian scale mixtures that were already introduced in the previous section
can be used in hierarchical models. The idea is that instead of specifying a constant
variance according to preliminary information, the variance is stochastic with heavy-
tailed hyperprior and is estimated from the data. We showed that taking exponential
mixing density gives the Laplace prior and taking inverse gamma with certain param-
eters yields t-distribution. More general priors are obtained using GIG as mixing
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density, however we did not present this result as the resulting prior is a generalised
hyperbolic distribution which has very complicated pdf and thus it will not tell much
about the prior. It can be shown (see [54]) that any heavy-tailed mixing density also
yields a heavy-tailed prior.

Alternatively instead of focusing on the marginal of the prior that is computed using
(2.25), which is (in multidimensional case) multivariate generalised hyperbolic distri-
bution if the mixing density is GIG, we can focus on the effect of the hyperprior. By
that I mean that for instance in the Laplace case we assume that the variances of
a Gaussian prior are distributed as Exp(1). So they are generally rather small but
sometimes can be quite high as the tails are heavy. So the prior tends to set several
components to very close to the mean while allowing some larger components. In
usual non-hierarchical models one can choose Gaussian prior but then it is beforehand
specified by setting constant variance how the components will behave.

It is also possible to construct models with three or even more layers and “hyper-
hyperpriors”. For example a specific three layer model is presented in [44]. We refer
to [40, 53, 35] for more general discussion about hierarchical models and methodology
of inferring parameters. Next let us take a look at how to actually solve the point
estimates in more complicated cases.



Chapter 3

Bayesian inference algorithms

Computing the CM estimate can be hard. Solving the mean for a density defined in
multidimensional space requires integrating over a multidimensional domain. Often
there is no analytical formula to use. In these multidimensional cases neither common
quadrature methods are applicable since the computational cost increases rapidly as
a function of the dimension. On the other hand, computing the MAP requires solving
an optimisation problem which can be hard if there are latent variables like missing
data. However, there exits several iterative techniques to solve MAP. We will focus
more on CM.

In this chapter some methods to compute the CM estimate are briefly discussed. It is
assumed that posterior density is known up to the normalisation constant.

3.1 Gibbs sampler

In Monte Carlo Markov Chain (MCMC) methods one generates a large number of
samples from a distribution. It is useful when this pdf is multidimensional and
the normalisation constant is unknown and intractable. Given independent samples
{x(1), . . . , x(N)} expectations such as the mean can be approximated as

E(g(x) | y) =
∫
g(x)px |y(x | y)dx ≈ 1

N

N∑
i=1

g(x(i)). (3.1)

The Gibbs sampler is a MCMC algorithm to generate samples from multidimensional
distribution and it is a specific case of Metropolis-Hastings method. The basic idea is
that at each step of the algorithm only one component of the multidimensional random
vector is changed by sampling from the corresponding one-dimensional conditional
distribution that is obtained by keeping all the other parameters fixed. Sometimes
these one-dimensional conditional distributions are easily obtained from the posterior
and this is sometimes the case when dealing with hierarchical models. It is easier to
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generate random samples from one-dimensional distributions. However, these condi-
tional distributions need not necessarily be one-dimensional.

The Gibbs sampler algorithm for sampling from an n-dimensional posterior distribu-
tion px |y(x | y) is presented as Algorithm 1. In this version of the algorithm one cycles
through the indices in specific order. Another possibility is to choose the order of the
updates at random.

Algorithm 1: Gibbs sampler (cyclic update)
1 Select some initial values [x(0)

1 , . . . , x(0)
n ] from the domain of x

2 for i from 1 to N do
3 for j from 1 to n do
4 x

(i)
j ← sample from p(xj |x(i)

1 , . . . , x
(i)
j−1, x

(i−1)
j+1 , . . . , x(i−1)

n , y)
5 end
6 end
7 Remove the first N1 samples and return samples {x(N1), . . . , x(N)}.

It usually takes some iterations before the sequence of samples {x(1), . . . , x(N)} can
be considered to be a set of random samples from the given distribution. The algo-
rithm generates samples from the Markov chain that has the given distributions as its
equilibrium distribution and it takes some time before this stationary chain is found.
These “burn-in” samples are usually ignored. In addition, the sequential samples are
correlated but usually all samples after the burn-in period are used in estimation
nevertheless.

The law of large numbers implies that taking infinitely many samples the average
converges to the conditional mean with probability one. The speed of converge does
not, in principle, depend on the dimension of the problem. Even though the samples
are not uncorrelated the convergence is guaranteed if the sequence of samples comes
from ergodic Markov chain. However, in this work these convergence results are not
studied in more detail. Further discussion of MCMC methods and their convergence
as well as the proof for the Gibbs algorithm can be found for example in [46] or [29].
We next turn to methods that are not based on sampling.

3.2 Variational Bayes

Variational Bayes (VB) approximation can be used to approximate the mean and mode
for different marginals of a posterior density. The idea of variational inference is to
approximate a difficult posterior density to yield useful computational simplifications.
Given the possibility to sample infinitely many samples the correct marginal density
or some expectations could be achieved with MCMC methods. However, for large
models it might be more sensible to compute “analytic approximation” since sampling
based solution tend to be slow and thus only suitable for small scale problems. Also
it can be hard to know if the sampler is producing samples from the correct density.
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Expectation Maximisation (EM) which is a closely related method to VB, produces
only the MAP estimate. In the EM algorithm one needs to evaluate the expectation
of the complete-data log likelihood with respect to the posterior distribution of the
latent variables which can be infeasible. Thus approximations are needed. Compared
to EM, VB yields information also of the uncertainty of the result and not just point
estimates. For the rest of this section lower indices of densities will be left out for
simplicity, for example we write p(z | y) instead of pz |y(z | y).

The Kullback-Leibler divergence can be used to measure the closeness of two proba-
bility densities. It can be defined in the following way.

Definition 3.1. Let continuous distributions q and p be defined on the set S. Further-
more, assume that they are strictly positive on the set S. Then the Kullback-Leibler
divergence or relative entropy (KL) between q and p is defined as the integral

KL(q‖p) = −
∫
S
q(x) ln

(
p(x)
q(x)

)
dx. (3.2)

Note that sometimes KL is defined without the minus sign and then the nominator
and denominator are flipped. Kullback-Leibler divergence is positive for all probability
densities q and p, that is KL(q‖p) ≥ 0. The equality holds if and only if q = p almost
everywhere, see [32, Lemma 3.1]. Also, KL is not symmetric about its parameters,
that is, generally KL(q‖p) 6= KL(p‖q).

One can approximate the posterior distribution p(z | y) with some distribution q(z)
which will be in some way restricted. Setting q(z) = p(z | y) would obviously minimize
the unrestricted problem. So one wants to find pdf q(z) so that the Kullback-Leibler
divergence

KL(q‖p) = −
∫
q(z) ln

(
p(z | y)
q(z)

)
dz, (3.3)

is minimised, where z = (z1, . . . , zn) are parameters (and latent variables) and y is the
data. One can show that the following decomposition holds

ln(p(y)) = L(q) + KL(q‖p), (3.4)

where
L(q) =

∫
q(z) ln

(
p(z, y)
q(z)

)
dz (3.5)

and KL(q‖p) is as in (3.3). Since ln(p(y)) is constant, minimizing Kullback-Leibler
can be achieved by maximizing the lower bound L(q).

We can assume that a probability distribution q(z) above with parameters (and latent
variables) that can be also grouped such that z = (z1, . . . , zg), is restricted to be
factorized as

qz(z) =
g∏
i=1

qzi(zi). (3.6)
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Here the parameters z1, . . . , zg need not be of the same size or one-dimensional. This
form of variational inference is often called a mean field approximation. Note that the
idea is to approximate the joint density and that the independent densities qzi(zi), for
which a shorter notation qi(zi) will be used for the rest of this section, can be poor
approximations for the real marginal densities [21].

The objective is to find such densities qi, i = 1, . . . , g that minimize KL(q||p) and maxi-
mize the corresponding lower bound. The optimal pdfs q∗i can be found by computing
the following expectations (see for instance [21] or [8, pp. 464 – 466] for derivation)

ln q∗j (zj) = Ezi:i 6=j[ln p(z, y)] + c =
∫

ln p(z, y)
∏
i 6=j

qi(zi) dzi + c. (3.7)

In the above formula p(z, y) is the joint distribution of z and the data y and c is
constant with respect to the current random vector to be solved. The expectation is
taken over all variables except the jth. The constant is related to the normalisation
term and it is not needed to be computed since we know that qi’s are normalised pdfs.

The parameters of the distributions q∗j will usually depend on expectations with respect
to other distributions q∗i for i 6= j. So in practise the parameters are solved iteratively.
That is, once the unknown distributions are obtained, one starts with some initial
values for the unknown parameters of these pdfs and updates them in cyclic way using
the current estimates for the other densities until some stopping criteria is satisfied.
The algorithm is guaranteed to converge. [8]



Chapter 4

Regularisation methods

In inverse problems one usually wants to interpret some indirect physical measurements
of an unknown object of interest. For example in X-ray tomography typical inverse
problem is to reconstruct three-dimensional structure of patients insides given some
X-ray images. In this case there may not be enough data to be able to make the
reconstruction without special methods. In this work we focus on image blurring which
can be said to be quite classical example of inverse problem. The inverse problems are
usually much harder to solve than the corresponding direct problems.

To gain better understanding what makes some problem an inverse problem let us
revise the notion of well-posed problem by Hadamard:

• The problem must have solution (existence).

• The problem must have at most one solution (uniqueness).

• The solution must depend continuously on data (stability).

Inverse problem fails to satisfy one or more of these conditions. In linear inverse
problems (1.1) that are dealt with here, the problems arise with the second and third
conditions. The matrix may not have full rank and thus there exists no unique inverse
or even if it has the inversion of this matrix can be numerically unstable. That is,
small measurement errors cause the direct solution attempt fail.

Next some popular regularisation methods, Tikhonov regularisation, Lasso and total
variation regularisation are briefly introduced. For Tikhonov regularisation both
minimisation and statistical approach, that is, Gaussian priors, are presented. For
the Lasso and total variation mainly non-statistical approaches are introduced and
hierarchical Bayesian statistical models for these cases are considered in later chap-
ters.
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4.1 Tikhonov regularisation and Gaussian priors

Let y be an n-vector of observations, x is a k-vector of unknown parameters, and A is
a known constant n × k matrix. The Tikhonov regularised solution for the equation
y = Ax+ ε, where ε models noise, is the vector that is the solution to

xTikh = arg min
x∈Rk

{‖Ax− y‖2
2 + δ‖x‖2

2} (4.1)

for some regularisation parameter δ > 0. If δ = 0 then (4.1) simplifies to the standard
least squares minimisation problem. The parameter δ can be used to tune the balance
between small residual and small L2 norm for the solution vector. In inverse problems
there may be infinitely many solutions for the corresponding least squares problem
and one of the roles of the penalty term is to make the solution unique.

Theorem 4.1. The Tikhonov regularised solution for (4.1) is given by

xTikh = V D+
δ U

Ty, (4.2)

where A = UDV T is the singular value decomposition (svd) of A with orthogonal
matrices U ∈ Rn×n and V ∈ Rk×k and diagonal matrix D ∈ Rn×k with singular values
d1, . . . , dr ≥ 0, where r = min(k, n), on its diagonal, and

D+
δ = diag

(
d1

d2
1 + δ

, . . . ,
dr

d2
r + δ

)
∈ Rk×n. (4.3)

Proof. See [49, p. 33].

From theorem 4.1 we can see that the regularisation parameter makes the inverse of D
better conditioned as singular values tend to vary a lot in the case of almost nonsingular
matrix. This fact makes numerical computation very unstable. The solution has also
another formula which is given by

Theorem 4.2. The solution to the minimisation problem (4.1) satisfies

xTikh = (ATA+ δI)−1ATy. (4.4)

Proof. The proof can be found in [49, p. 39].

This solution is usually faster to compute than the one that requires computing the
svd. If δ = 0 then the solution to the least squares problem is also given by Theorem
4.2. Next we will look at the statistical approach to this problem.

Theorem 4.3. Let x and ε be mutually independent k and n-dimensional random
vectors, respectively, with Gaussian densities

x ∼ Normal(x0,Σ0), ε ∼ Normal(0, P ) (4.5)
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with positive definite covariance matrices Σ0 ∈ Rk×k and P ∈ Rn×n. Furthermore,
assume that there exists a linear model y = Ax + ε with known matrix A ∈ Rn×k for
noisy measurement y. Then the posterior is

x | (y = y) ∼ Normal(xpost,Σpost), (4.6)

where

Σpost = (Σ−1
0 + ATP−1A)−1, (4.7)

xpost = Σpost(ATP−1y + Σ−1
0 x0). (4.8)

Proof. These formulas are obtainable by computing the product of the two Gaussian
densities. By Bayes’ rule we get

px |y(x | y) ∝ py |x(y |x)px(x)

∝ e− 1
2 (y−Ax)TP−1(y−Ax)− 1

2 (x−x0)TΣ−1
0 (x−x0)

= e− 1
2 (xTΣ−1

0 x+xTATP−1Ax−2xTΣ−1
0 x0−2xTATP−1y)+c1

= e− 1
2 (xTQx−2xTQQ−1(Σ−1

0 x0+ATP−1y))+c1

= e− 1
2 (x−x̂)TQ(x−x̂)+c2 ,

where we defined Q = Σ−1
0 + ATP−1A which is clearly positive definite and thus

invertible and x̂ = Q−1(ATP−1y + Σ0x0). The constants c1 and c2 do not depend on
x so the formula on the last line can be recognised as Normal(x̂, Q−1) from which the
formulas for Σpost and xpost follow.

Using the matrix inversion lemma (see appendix A) or by computations as in [29, Ch.
3.4] one can write the equations for the posterior mean and covariance matrix in the
form

xpost = x0 + Σ0A
T (AΣ0A

T + P )−1(y − Ax0), (4.9)
Σpost = Σ0 − Σ0A

T (AΣ0A
T + P )−1AΣ0, (4.10)

which is sometimes more feasible to use. This is especially so if matrix A has more
columns than rows. Now, assuming the prior x ∼ Normal(0, (λI)−1) and white noise
model ε ∼ Normal(0, (νI)−1) result (4.8) gives the familiar equation for the posterior
mean

xpost = (ATA+ δI)−1ATy, (4.11)

where δ = λ/ν. This re-interpretation gives new insight into the choice of the regu-
larisation parameter δ. It is the ratio of the noise and prior variances. The MAP and
CM estimates are the same in the case of pure Gaussian densities. It is also worth
emphasizing that the statistical approach offers also information about the credibility
of the result, for example the variance as given by (4.7).

The Tikhonov regularisation can also be generalised by using penalty function J(x) =
δ‖Lx‖2

2 in the place of J(x) = δ‖x‖2
2 in (4.1). The matrix L is typically a discretised



CHAPTER 4. REGULARISATION METHODS 22

differential operator. It can be shown that the solution to this generalised Tikhonov
regularisation satisfies

xTikh = (ATA+ δLTL)−1ATy. (4.12)

Corresponding prior in the statistical model would be

px(x) ∝ e−λ2 ‖Lx‖2 = e−λ2 xTLTLx, (4.13)

and it can be seen that Theorem 4.3 also gives the result (4.12) with x0 = 0 and Σ−1
0 =

λLTL. These priors are called Gaussian smoothness priors and in particular those prior
models that have structural information encoded in them are useful. However, in the
Tikhonov regularisation case the matrix L need not necessarily have full column rank
in which case matrix LTL is not invertible. We have the following result.

Theorem 4.4. Consider linear model y = Ax+ε as before, where x and ε be mutually
independent k and n-dimensional random vectors and ε ∼ Normal(0, P ) with positive
definite covariance matrix P ∈ Rn×n. Let L ∈ Rk×n so that N (L) ∩ N (A) = {0}.
Then

px |y(x | y) ∝ e− 1
2 ((y−Ax)TP−1(y−Ax)+‖Lx‖22) (4.14)

defines a Gaussian density with positive definite covariance matrix Σpost and mean
xpost as given by (4.7) and (4.8) but with setting Σ−1

0 = LTL.

Proof. Denote Q = ATP−1A+ LTL. If x ∈ N (Q) then

xTQx = ‖Lx‖2
2 + ‖P−1/2Ax‖2

2 = 0.

Since N (P−1/2) = {0} we can see that x ∈ N (L) ∩ N (A) = {0} and thus x = 0
implying that Q has trivial nullspace. So Q is invertible and we can also see that it is
symmetric and positive definite. The rest follows immediately from Theorem 4.3 by
setting Σ−1

0 = LTL, x0 = 0 and since Q is positive definite.

If A and L have common nontrivial kernel then the resulting density is degenerate
and the inverse problem becomes underdetermined. That is, there exists no unique
solution. [29].

In the optimisation problem version of Tikhonov regularisation the regularisation
parameter δ was considered to be known and also in the previous statistical approach
the variance of the Gaussian error term was assumed to be known. There are several
(deterministic) methods, for instance, Morozov discrepancy principle, L-curve method
and generalised cross validation [52, 25] for choosing “correct” regularisation param-
eter. However, it is possible to estimate it as well as the error variance from the data
simultaneously as was the idea of the hierarchical models.
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4.2 The Lasso and some generalisations

Another popular regularised least squares method is the Lasso (least absolute shrinkage
and selection operator) which uses L1 norm as the regularisation penalty. It was first
presented by Tibshirani [50] in 1996. The problem is to solve

arg min
x∈Rk

‖Ax− y‖2
2

s.t. ‖x‖1 ≤ t, (4.15)

where ‖x‖1 = ∑k
i=1 |xi| and t ≥ 0 is a tuning parameter. This method promotes

sparsity, that is, it tends to produce results in which several components of x are
driven to zero. On the other hand Tikhonov regularisation tends to produce solutions
with small but generally nonzero elements. This is why Lasso suits well for compressive
sensing problems. The Lasso problem can also be written as

arg min
x∈Rk

{‖Ax− y‖2
2 + δ‖x‖1}, (4.16)

where δ is regularisation parameter. These two approaches can be related using
Lagrange multipliers. What is interesting in the context of this work is that the L1

penalty can be interpreted as a zero mean Laplace prior density just like the Tikhonov
regularisation term was related to Gaussian prior. The sparsity property of the Lasso
is due to the fact that the Laplace density has more probability mass near the mean
and has heavier tails than the Gaussian density. The prior corresponding to the Lasso
penalty term is

px(x) = δ

2 exp
(
−δ

k∑
i=1
|xi|

)
. (4.17)

There exists, however, no standard distribution for the resulting posterior like in the
corresponding case of Gaussian prior. Luckily, a hierarchical model can be constructed
by setting Gaussian prior and setting the exponential hyperprior for the variance. This
hierarchical Bayesian Lasso model is not considered here since it appears as a specific
case of total variation regularisation model in one-dimensional case later in this work.

The Lasso method has also several extensions that are introduced here very briefly.
(See for example [40] for some general algorithms.) They also have hierarchical coun-
terparts in addition to the minimisation problems. In elastic net one wants to find the
solution to

arg min
x∈Rk

{‖Ax− y‖2
2 + δ1‖x‖1 + δ2‖x‖2

2}, (4.18)

that is both L1 and L2 penalties are simultaneously placed. Another modern variant
is fused Lasso, which is a minimisation problem

arg min
x∈Rk

{‖Ax− y‖2
2 + δ1‖x‖1 + δ2

∑
i

|xi+1 − xi|}, (4.19)
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In fused Lasso both L1 and total variation penalties are applied. The parameters δ1
and δ2 are positive tuning parameters. Hierarchical Bayesian models for both of these
methods as for the standard Lasso have been considered in literature, see for example
[33], where the need for these kind of variants is justified.

4.3 Total Variation

The total variation (TV) of a function f : [0, 1]→ R can be defined as

TV(f) = sup
∑
i

|f(xi+1)− f(xi)|, (4.20)

where the supremum is taken over all partitions 0 = x0 < x1 < . . . < xn = 1. If the
function f is smooth one can multiply and divide the right-hand side of (4.20) with
∆xi = xi+1 − xi and after taking the limit ∆xi → 0 obtain the following formulation
for TV [52].

TV(f) =
∫ 1

0

∣∣∣∣∣dfdx

∣∣∣∣∣ dx. (4.21)

More generally, let f ∈ L1(Ω) which is the space of integrable functions on Ω ⊆ Rk.
TV functional can be defined as

TV(f) = sup
{∫

Ω
f ∇ · g dx

∣∣∣∣ g = (g1, . . . , gk) ∈ C1
0(Ω;Rk), ‖g(x)‖2 ≤ 1

}
. (4.22)

The test function space C1
0(Ω;Rk) consists of continuously differentiable vector-valued

functions on Ω that vanish at the boundary ∂Ω and ∇ · g is the divergence of function
g. If function f satisfies TV(f) <∞ then it is said to have bounded variation.

The natural way to extend total variation to two-dimensional case from (4.21) is to
consider

TV(f) =
∫ 1

0

∫ 1

0
‖∇f‖2 dx dy (4.23)

for smooth function f defined on [0, 1]× [0, 1], where ∇f = [∂f
∂x
, ∂f
∂y

]T is the gradient of
f . It can also be shown that (4.22) simplifies to (4.23) in the case of smooth function
f . For more detailed treatment we refer to [52, Ch. 8].

The total variation regularisation tends to produce very good reconstructions of
“blocky images”. These blocky images are nearly piecewise constant with jump discon-
tinuities and the length of curves on which the discontinuities occur is relatively small.
The total variation has also a geometric interpretation. TV as in (4.21) and (4.23)
can be interpreted as the lateral surface of the graph of f . For example, let S be a
region with a smooth boundary ∂S contained in unit square. Let f(x, y) = h > 0
in the interior of S and f(x, y) = 0 in the exterior. Then TV(f) is the length of ∂S
multiplied by the height h of the discontinuity of f . [52, p. 148] This is demonstrated
in Figure 4.1.
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(a) (b)

Figure 4.1: The piecewise defined function in (a) has smaller total variation than the
one in (b) since the total length of the jump borders is clearly smaller in (a).

However, we want to consider TV in discrete domain since it allows to develop TV
in statistical framework. For numerical computations continuous variables must be
discretised anyway but theory is often carried through in continuous domain when
considering deterministic approach. Anyway, suppose that the function f = fij is
defined on equispaced grid characterised by points xij, i = 1, ..., k, j = 1, ..., n with
spacings ∆x and ∆y in two dimensions. The following notation is used from now on
to denote horizontal and vertical differences between “pixels”: ∇v

ijf = fi+1,j − fi,j and
∇h
ijf = fi,j+1 − fi,j. Now (4.23) can be discretised so that ones obtains

TV(f) =
k∑
i=1

n∑
j=1

√√√√(∇v
ijf

∆x

)2

+
(
∇h
ijf

∆y

)2

(4.24)

with some boundary conditions applied for the “overindexing” terms. If we consider
equispaced two-dimensional grid so that ∆x = ∆y then these constant delta terms can
be neglected since they are absorbed to the regularisation parameter and in Bayesian
model to the normalisation constant. Similarly approximating the derivative in one-
dimensional case leads to discretisation for (4.21) of the form

TV(f) =
∑
i

|fi+1 − fi|. (4.25)

We now focus on TV in two-dimensional case. The discretised two-dimensional version
of total variation functional is called isotropic TV and it is here defined by

TViso(f) =
k∑
i=1

n∑
j=1

√(
∇v
ijf
)2

+
(
∇h
ijf
)2
. (4.26)

Another discretisation option is the TV variant

TV(f) =
k∑
i=1

n∑
j=1

{∣∣∣∣∣∇
v
ijf

∆x

∣∣∣∣∣+
∣∣∣∣∣∇

h
ijf

∆y

∣∣∣∣∣
}
. (4.27)
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Again, for simplicity one can assume ∆x = ∆y and neglect these two terms in (4.27).
The terms that “overindex” are defined by some boundary conditions. This version of
TV is called anisotropic TV and after neglecting those delta terms it can be written
as

TVaniso(f) =
k∑
i=1

n∑
j=1

{∣∣∣∇v
ijf
∣∣∣+ ∣∣∣∇h

ijf
∣∣∣} . (4.28)

This L1 norm version can be seen as an approximation to the “real” TV functional
as in (4.23). Sometimes it is even wrongly presented as the actual TV penalty. This
anisotropic version might be somewhat easier to deal with, though neither are differ-
entiable everywhere. These discrete TV versions are presented, for example, in [55].
This L1 version of TV is obviously related to the Lasso. Each absolute value term in
the summation can be seen as zero mean Laplace distribution when considering the
differences of neighbouring elements of f as random variables. While the isotropic
TV is seen as the “real” generalisation for TV, the anisotropic form may also be more
suitable for some more complex structures than two-dimensional grid of an image. In
some applications it may be desirable that some arbitrary differences of components
are penalised.

The discrete total variation task from the optimisation point of view is the following
problem. Again, the regularisation parameter is δ.

arg min
x

{‖Ax− y‖2
2 + δTV(x)}, (4.29)

In (4.29) TV(x) can be chosen to be one of the TV penalties considered previously.
Note that x is used whenever we consider discretised model and f refers to function.
Due to the fact that the TV penalty is not differentiable at origin, one of the basic
methods for solving (4.29) is to approximate the TV functional. For example in two-
dimensional isotropic TV case this is often done by using the following penalty

Jβ(f) =
∫ 1

0

∫ 1

0

√√√√(∂f
∂x

)2

+
(
∂f

∂y

)2

+ β2 dx dy, (4.30)

for some small constant β > 0. The penalty in (4.30) can be discretised. This leads to
a minimisation problem that is differentiable everywhere and thus easier to solve using
numerical methods. Some minimisation algorithms like steepest descent or Newton’s
method can be directly applied to solve (4.29) with this penalty. These algorithms
require computing the gradient and some require the Hessian matrix. For the details
see for example [52]. Naturally similar approximation can be done in one-dimensional
case. This approximation is quite good for small β, larger values of β have the effect
of rounding of sharp edges.

There exists several more sophisticated and faster algorithms that need smaller number
of iterations for convergence than those basic iterative methods. To mention some
recent and fast methods, consider generalised proximal gradient method [55] and Split
Bregman method [24]. It is also possible to transform the one-dimensional and also
the two-dimensional anisotropic TV problem into a linearly constrained quadratic



CHAPTER 4. REGULARISATION METHODS 27

programming optimisation task [49, pp. 44–45]. There exists several algorithms to
tackle this kind of optimisation problems.

Here TV regularisation was considered as a deterministic optimisation problem. In the
next section a Bayesian hierarchical model for total variation regularisation is derived.



Chapter 5

Bayesian hierarchical TV
regularisation

In this section it is shown how to model TV in Bayesian setting. The model presented
here is slightly different than the one for the Lasso in papers [43, 33]. We will also
consider more general case with GIG mixing density. The case with total varia-
tion prior, that is, Laplace prior is then obtained as a special case. In addition
different methodology to infer the conditional mean and MAP estimates are consid-
ered. This chapter is only about one-dimensional TV regularisation and extensions to
two-dimensional cases are considered in the next chapter.

5.1 The linear model

We will start by considering linear Gaussian observation model as before but with
more general error covariance matrix. Setting Σ = νI will give the white noise error.

y | (x = x,Σ = Σ) ∼ Normal(Hx,Σ−1). (5.1)

Here y is an n-vector of observations (data), x is a k-vector of unknown model coeffi-
cients, k × k matrix Σ is a precision parameter, and H is a given n × k matrix with
n ≥ k = rank(H). This model can be as well written as

y = Hx + ε, ε | (Σ = Σ) ∼ Normal(0,Σ−1). (5.2)

The one-dimensional discrete TV prior on the coefficients x with no boundary condi-
tions applied is

px |λ(x |λ) ∝ λ
k−1

2 e
−
√
λ
k−1∑
i=1
|xi+1−xi|

. (5.3)

As argued in Section 4.3 this prior penalises oscillations while allowing occasional
jumps. The hyperparameter λ controls the overall “strength” of the penalisation.
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The priors for λ and Σ are

λ ∼ Gamma(αλ, βλ), Σ ∼Wishart(mν , Vν), (5.4)

where the parameters αλ, βλ,mν are positive constants and Vν is spd matrix. We will
derive the results using these but later improper priors that do not require setting
additional tuning parameters will be used. In the white noise case setting mν =
2αν , Vν = 1/(2βν) gives a gamma prior, that is

ν ∼ Gamma(αν , βν), (5.5)

so that white noise case can be considered. Now with the likelihood (5.1) and the
priors (5.4) the posterior density is, by Bayes’ law (when actually considering the
white noise error case (5.5) for ease of demonstration),

px,ν,λ |y(x, ν, λ | y)
∝ px,ν,λ(x, ν, λ) py |x,ν,λ(y |x, ν, λ)
= px |λ(x |λ) pλ(λ) pν(ν) py |x,ν(y |x, ν)

∝ λ
k−3

2 +αλν
n
2 +αν−1e

−
(
ν
2 ‖y−Hx‖

2
2+
√
λ
k−1∑
i=1
|xi+1−xi|+βλλ+βνν

)
. (5.6)

The priors were chosen to be gamma distributions due to conjugacy. However, it is
possible to set αλ = 0 and βλ = 0. This “vague” prior

pλ(λ) ∝ λ−1 (5.7)

can be used if parameters αλ and βλ are not to be tuned. Similar vague prior can be
chosen for ν as well. Note that these priors are improper as they do not integrate to 1.
This fact might imply that the posterior is also improper which makes the estimation
somewhat open for criticism. Anyway, we will not care about this at this stage as
further analysis would require very technical computations. In practise one can also
use some small but nonzero values for the parameters of these gamma densities.

If the noise and penalisation parameters ν, λ are known, the computation of the MAP
estimate can be obtained by computing the minimum of

1
2‖y −Hx‖

2
2 +

√
λ
ν

k−1∑
i=1
|xi+1 − xi|. (5.8)

This computation is not trivial due to absolute values, see for example [52]. The
selection of the “regularisation parameter”

√
λ
ν

is also a challenge. However, as shall be
shown in the next section, the introduction of more hyperparameters makes the whole
problem much easier to solve!
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5.2 Bayesian total variation regularisation

5.2.1 Hierarchical Model for TV prior

In the discrete TV prior (5.3), the model coefficients’ differences are conditionally
independent Laplace random variables, that is,

xi+1 − xi | (λ = λ) iid∼ Laplace(0,
√
λ). (5.9)

As mentioned, the Laplace distribution is a scale mixture of Gaussians (Theorem 2.10).
So, in place of (5.3), one can use the prior

px |λ,r(x |λ, r) ∝
(

λk−1

r1r2 · · · rk−1

)1/2

e
−λ2

k−1∑
i=1

(xi+1−xi)
2

2ri
. (5.10)

The difference with the previous model (5.3) is the addition of hyperparameters
r1, . . . , rk−1. These additional hyperparameters are a-priori independent of λ and
have as prior distribution

ri
iid∼ Exp(1). (5.11)

By marginalising the new hyperparameters out of (5.10) gives the TV prior (5.3). This
hierarchical model is presented in Figure 5.1.

For notational convenience in the following, (5.10) is rewritten in the form

px |λ,r(x |λ, r) ∝
(

λk−1

r1r2 · · · rk−1

)1/2

e−λ2 ‖R−1Dx‖22 , (5.12)

where

D =


−1 1

−1 1
. . . . . .
−1 1

 (5.13)

is the (k − 1)× k discrete difference operator and R = diag(
√

2r) ∈ R(k−1)×(k−1) with
the convention used also later in this paper that the square root is taken component
wise. One can see that these satisfy

‖R−1Dx‖2
2 =

k−1∑
i=1

(xi+1 − xi)2

2ri
. (5.14)

The augmented hierarchical model can be summarised by the directed acyclic graph
(DAG) shown in Figure 5.1.

Note that in (5.3) and (5.9) replacing the differences xi+1 − xi with xi and including
all the k components of x (and consequently adding extra hyperparameter rk) gives
similar hierarchical model for the Lasso. It is thus noted already at this stage that all
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y

xλ

ν

r

Figure 5.1: Graphical model of TV regularisation.

the computations and results to follow in one-dimensional case hold for the Lasso, one
just have to replace all the k − 1 differences xi+1 − xi with the k components xi and
set D = I ∈ Rk×k.

We will use zero boundary conditions in this TV model. One can also consider periodic
boundary conditions by including additional penalty term xk−x1 into (5.3) and adding
a corresponding extra row to matrix D. Another option would be to use zero boundary
condition by adding additional term – say – component x1 to matrix D which would
be then of the form

D =



1
−1 1

−1 1
. . . . . .
−1 1

 . (5.15)

In addition, then a new hyperparameter rk must be introduced for the hierarchical
model. Again, all the computations and results to follow will remain essentially the
same and are not considered in detail in this work. We will though use periodic
boundary conditions in 2d case.
Remark 5.1. Although we are interested in TV and related Laplace prior we will use
the general GIG(a, b, p) mixing density in the derivations to follow. One can always
revert back to the Laplace GSM prior by simply using GIG(2, 0, 1) = Exp(1). This
way we will obtain many more interesting priors than just this one!

The full posterior for the hierarchical TV model is, by using Bayes’ law

px,Σ,λ,r |y(x,Σ, λ, r | y)
∝ px,Σ,λ,r(x,Σ, λ, r) py |x,Σ,λ,r(y |x,Σ, λ, r)
= px |λ,r(x |λ, r) pλ(λ) pr(r) pΣ(Σ) py |x,Σ(y |x,Σ)

∝ λ
k−1

2 +αλ−1|Σ|
mν−n

2

k−1∏
i=1

r
p− 3

2
i e− 1

2‖y−Hx‖
2
Σ−

λ
2 ‖R

−1Dx‖22

· e
1
2a

k−1∑
i=1

ri− 1
2 b

k−1∑
i=1

r−1
i −βλλ−

1
2 tr(V −1

ν Σ)
(5.16)

= λ
k−1

2 +αλ−1|Σ|
mν−n

2

k−1∏
i=1

r
p− 3

2
i e− 1

2 (x−x̂)TQ(x−x̂)− 1
2 (yTΣy−x̂TQx̂)

· e
− 1

2a
k−1∑
i=1

ri− 1
2 b

k−1∑
i=1

r−1
i −βλλ−

1
2 tr(V −1

ν Σ)
, (5.17)
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where x̂ = Q−1HTΣy and Q = HTΣH + λDTR−2D. The equations (5.16) and (5.17)
are equivalent since Q = QT and Q is positive definite (and thus invertible) and that
is why

‖y −Hx‖2
Σ + λ‖R−1Dx‖2

2

= (Hx)TΣHx− (Hx)TΣy − yTΣHx+ yTΣy + λxTDTR−2Dx

= xT (HTΣH + λDTR−2D)x− xTHTΣy − yTΣHx+ yTΣy
= xTQx− xTQQ−1HTΣy − yTΣHQ−1Qx+ yTΣy
= xTQx− xTQx̂− x̂TQx+ x̂TQx̂+ yTΣy − x̂TQx̂
= (x− x̂)TQ(x− x̂) + yTΣy − x̂TQx̂. (5.18)

This connection could have been seen by using Theorem 4.3 as well.

In general, there are several ways to deal with a posterior as above. For example
one could try to marginalise hyperparameters Σ and λ or use the empirical Bayes
approach. However, because the hierarchical model has conjugate priors, statistical
inference is easily accomplished using a Gibbs sampler or variational Bayes algorithm.
Also EM based solution or direct minimisation algorithms can be employed to solve
just the MAP estimate.

We will next limit to the white noise case, that is, we set Σ = νI and mν = 2αν , Vν =
1/(2βν). Now that the posterior (5.16) is derived the generalisation is easy to make.
One basically just needs to replace the corresponding gamma densities with Wishart
densities and carefully check the other differences to occur. Notice that now we can
write

x̂ = Q−1HTy, (5.19)
Q = HTH + λ

ν
DTR−2D (5.20)

and the posterior reverts to

px,ν,λ,r |y(x, ν, λ, r | y)
∝ px |λ,r(x |λ, r) pλ(λ) pr(r) pν(ν) py |x,ν(y |x, ν)

∝ λ
k−1

2 +αλ−1ν
n
2 +αν−1

k−1∏
i=1

r
p− 3

2
i e− ν2 ‖y−Hx‖22−λ2 ‖R−1Dx‖22

· e
− 1

2a
k−1∑
i=1

ri− 1
2 b

k−1∑
i=1

r−1
i −βλλ−βνν

(5.21)

= λ
k−1

2 +αλ−1ν
n
2 +αν−1

k−1∏
i=1

r
p− 3

2
i e− ν2 (x−x̂)TQ(x−x̂)− 1

2 (yTΣy−x̂TQx̂)

· e
− 1

2a
k−1∑
i=1

ri− 1
2 b

k−1∑
i=1

r−1
i −βλλ−βνν

, (5.22)

which has slightly simpler form.
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5.2.2 Gibbs Sampler

The Gibbs Sampler update distributions are evident by inspection of the full posterior
(5.21) and (5.22). Simply looking at the form of the conditionals the following densities
(all of which were discussed in Section 2) will emerge.

x | ν, λ, r, y ∼ Normal(Q−1HTy, (νQ)−1), (5.23a)
ν |x, λ, r, y ∼ Gamma(n2 + αν ,

1
2‖y −Hx‖

2
2 + βν), (5.23b)

λ |x, ν, r, y ∼ Gamma(k−1
2 + αλ,

1
2‖R

−1Dx‖2
2 + βλ), (5.23c)

ri |x, ν, λ, r−[i], y ∼ GIG
(
a, 1

2λ(xi+1 − xi)2 + b, p− 1
2

)
, i = 1, . . . , k − 1. (5.23d)

The notation r−[i] means all the other components rj except the ith. In the case of
Laplace density (that is a = 2, b = 0, p = 1) we see that

ri |x, ν, λ, r−[i], y ∼ RIG
(√

λ|xi+1 − xi|, 1
2λ(xi+1 − xi)2

)
, i = 1, . . . , k − 1. (5.24)

This leads to the following simple sampling algorithm which is given below as Algo-
rithm 2.

Algorithm 2: Gibbs sampler for TV regularisation in 1d.
1 Given H and y:
2 assign starting values for λ(0), ν(0), r(0)

3 for t from 1 to nt do
4 R ← diag(

√
2r(t−1))

5 Q ← HTH + λ(t−1)

ν(t−1)D
TR−2D

6 x(t) ← sample from Normal(Q−1HTy, (ν(t−1)Q)−1)
7 ν(t) ← sample from Gamma(n2 + αν ,

1
2‖y −Hx

(t)‖2
2 + βν)

8 λ(t) ← sample from Gamma(k−1
2 + αλ,

1
2‖R

−1Dx(t)‖2
2 + βλ)

9 for i from 1 to k − 1 do
10 r

(t)
i ← sample from RIG(

√
λ(t)|x(t)

i+1 − x
(t)
i |, 1

2λ
(t)(x(t)

i+1 − x
(t)
i )2)

11 end
12 end

Sampling from multivariate normal or gamma distribution is common and easy task,
see for example [17]. However, RIG is somewhat exotic density that does not arise in
many applications. In order to sample from RIG(α, β) one can first draw a sample
from IG(α/β, α2/β) and then compute the reciprocal of this value. There is a sampling
method for inverse Gaussian distribution IG(µ, λ) that is based on the many-to-one
transformation. This algorithm is presented in Algorithm 3 and is justified in [17, pp.
145–149].

Generating samples from GIG density can be done by using an algorithm as described
in [16]. This algorithm is based on the reparametrisation of GIG into a density with
two parameters and using the ratio sampling method that is presented in [15, p. 60].
However, the presented Gibbs sampler for a large image is slow since one needs to
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Algorithm 3: Sampling from IG(µ, λ) density.
1 n ← sample from standard normal distribution
2 y ← n2

3 x ← µ+ µ2y
2λ −

µ
2λ
√

4µλy + µ2y2

4 z ← sample from uniform distribution on [0, 1]
5 if z ≤ µ/(µ+ x) then
6 return x
7 else
8 return µ2/x
9 end

sample from GIG or RIG density numerous times and also at each step invert the
matrix Q. Next we will focus on non-sampling techniques.

5.2.3 Coordinate Descent Method

The MAP estimate for the posterior derived earlier can be found for example by using
coordinate descent method. The procedure is to maximize the posterior respect to
each variable at a time keeping the other variables fixed. One can loop through the
variables this way using the newest values of parameters at each step. The algorithm
converges to a local optimum with some assumptions and the method is derivative-
free. [37, Ch. 8.9]. A coordinate descent based algorithm for the Lasso can be found
in [40, p. 441]. The same idea is also called IAS (iterative alternating sequential)
in some inverse problems literature and we will mainly use this abbreviation to refer
this technique for finding the MAP estimate from now on. In this TV model cycling
through variables (or “coordinates”) is done via the following equations.

x = (HTH + λ
ν
DTR−2D)−1HTy, (5.25a)

ν = n− 2 + 2αν
‖y −Hx‖2

2 + 2βν
, (5.25b)

λ = k − 3 + 2αλ
‖R−1Dx‖2

2 + 2βλ
, (5.25c)

ri =
p− 3

2 +
√

(p− 3
2)2

+a( 1
2λ(xi+1−xi)2+b)

a
, i = 1, . . . , k − 1, (5.25d)

where R = diag(
√

2r) with the convention that the square root is taken component
wise. These formulas actually follow from the unique modes of the conditional densi-
ties. In the Laplace case the last equation simplifies to

ri = −1
4 + 1

4

√
1 + 4λ(xi+1 − xi)2, i = 1, . . . , k − 1. (5.26)

The result is a kind of reweighted least-squares algorithm. The first formula can
be seen as Tikhonov regularisation formula with L = R−1D and the regularisation
parameter λ

ν
. Considering the formula as the corresponding minimisation problem it
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is seen that each difference xi+1−xi is penalised with different weight that is computed
through other three equations.

The problem of this formula is, however, if xi and xi−1 become almost the same for some
index i, then the corresponding latent variable ri will be small. This makes solving
the linear system for x computationally problematic since some weights become very
large. This issue and how to avoid it are discussed later in more detail.

Since the gradient and the Hessian are feasible to be computed also other kind of
optimisation algorithms could be employed. Anyway, coordinate descent method is
simple to code and it also converged reasonable fast in experiments. It can be also
compared to other actually quite similar and related methods like variational Bayes
and EM which are presented and discussed next.

5.2.4 Variational Bayes

Variational Bayes method can be used to approximate the full posterior derived earlier
in the following way

px,ν,λ,r | y(x, ν, λ, r | y) ≈ qx(x)qν(ν)qλ(λ)qr(r). (5.27)

We will denote the expectation, for example, with respect to random vectors ν,λ, r as
Eν,λ,r when all the other variables are kept fixed. A bar over random vector denotes
its mean and ci’s denote values that are constants with respect to current variables.
These constants are not necessary to be computed. Notice also that matrix R depends
on r. With these conventions it can be calculated that

ln q∗x(x) = Eν,λ,r
[
ln px,ν,λ,r |y(x,ν,λ, r | y)

]
+ c1

= Eν,λ,r

[ (
k−1

2 + αλ − 1
)

ln λ +
(
n
2 + αν − 1

)
ln ν +

(
p− 3

2

) k−1∑
i=1

ln ri

−ν
2‖y −Hx‖

2
2 − λ

2‖R
−1Dx‖2

2 − 1
2a

k−1∑
i=1

ri − 1
2b

k−1∑
i=1

r−1
i − βλλ− βνν

]
+ c1

= −1
2 ν̄‖y −Hx‖

2
2 − 1

2 λ̄Er(‖R−1Dx‖2
2) + c2

= −1
2(ν̄‖y −Hx‖2

2 + λ̄‖R̄−1Dx‖2
2) + c2

(5.18)= −1
2(ν̄(x− x̂)T Q̄(x− x̂) + ν̄(yTy − x̂T Q̄x̂)) + c2

= − ν̄
2 (x− x̂)T Q̄(x− x̂) + c3,

where we have denoted x̂ = Q̄−1HTy, Q̄ = HTH + λ̄
ν̄
DT R̄−2D and R̄ =

diag
(√

2/E(r−1)
)
and thus R̄−2 = 1

2diag (E(r−1)) with the convention that the opera-
tions on r are to be done component wise. The fourth equality can be seen to be true
by using linearity of expectation and result (5.14). So we obtain

x ∼ Normal(x̂, (ν̄Q̄)−1). (5.28)
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Next the distribution for ν is derived. We can compute that

ln q∗ν(ν) = Ex,λ,r
[
ln px,ν,λ,r |y(x, ν,λ, r | y)

]
+ c1

=
(
n

2 + αν − 1
)

ln ν − ν

2Ex(‖y −Hx‖2
2)− βνν + c2.

Using some properties of expectation and trace one can see that

E(‖y −Hx‖2
2) = E(yTy − yTHx− xTHTy + xTHTHx)

= E(yTy)− E(yTHx)− E(xTHTy) + E(tr(xTHTHx))
= yTy − yTHx̄− x̄THTy + E(tr(HxxTHT ))
= yTy − yTHx̄− x̄THTy + tr(HE(xxT )HT )
= yTy − yTHx̄− x̄THTy + tr(Hx̄x̄THT ) + tr(HV(x)HT )
= yTy − yTHx̄− x̄THTy + x̄THTHx̄+ tr(V(x)HTH)
= ‖y −Hx̄‖2

2 + tr(V(x)HTH).

Thus the distribution for ν is

ν ∼ Gamma
(
n
2 + αν ,

1
2‖y −Hx̄‖

2
2 + 1

2tr(V(x)HTH) + βν
)
. (5.29)

Derivation of the distribution for λ is quite similar as it was for the precision ν. Since
it holds that

Ex,r(‖R−1Dx‖2
2) = 1

2

k−1∑
i=1

E(r−1
i )E((xi+1 − xi)2), (5.30)

which is easily verified using (5.14), the result is

λ ∼ Gamma
(
k − 1

2 + αλ,
1
4

k−1∑
i=1

E(r−1
i )E((xi+1 − xi)2) + βλ

)
. (5.31)

Writing out the square term and using the linearity of expectation shows that

E((xi+1 − xi)2) = E(x2
i+1) + E(x2

i )− 2E(xi+1xi). (5.32)

Given the mean and covariance matrix of x, this statistic can be computed easily
summing corresponding components of E(xxT ) = V(x) + E(x)E(x)T . The means for
ν and λ can now be computed easily given the mean and variance of x since the
densities are gamma. For λ and for x one also needs the moment E(r−1

i ).

The components of r do not depend on each other and it is seen that qr(r) =∏k−1
i=1 qri(ri). For each of the components ri we obtain GIG density. The derivation

goes as follows.

ln q∗ri(ri) = Ex,ν,λ,r−[i] [ln px,ν,λ,r |y(x,ν,λ, r | y)] + c1

=
(
p− 3

2

)
ln ri −

λ̄

2Ex,r−[i]

(
k−1∑
i=1

(xi+1 − xi)2

2ri

)
− 1

2ari −
1
2br

−1
i + c2
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=
(
p− 3

2

)
ln ri −

1
2ri

(
λ̄

2Ex((xi+1 − xi)2) + b

)
− 1

2ari + c3

From above it is seen that

ri ∼ GIG
(
a,
λ̄

2E((xi+1 − xi)2) + b, p− 1
2

)
, i = 1, ..., k − 1. (5.33)

In the special case where the prior is initially Laplace, GIG reverts to RIG as in the
case of Gibbs sampler conditional densities and we find

ri ∼ RIG
(√

λ̄E((xi+1 − xi)2), 1
2 λ̄E((xi+1 − xi)2)

)
, i = 1, ..., k − 1. (5.34)

Given the parameters, the moment E(r−1
i ) in RIG case can be computed from the

following formula
E(r−1

i ) = 2√
λ̄E((xi+1 − xi)2)

. (5.35)

Similar formula for more general case (5.33) can be obtained from Proposition 2.5.

Starting with some initial values for unknown parameters in the above pdfs and
updating them one at a time using estimates from previous updates, one will end
up with optimal distributions for x,ν,λ and r. As a result one can extract the mean
(which is the same as the mode in this normal distribution case) and evaluate the vari-
ance of x. Furthermore, one can for example plot the densities of λ and ν to analyse
the inference result. The resulting algorithm is presented as Algorithm 4 below.

Algorithm 4: VB algorithm for TV regularisation in 1d.
1 set initial values of parameters of densities q0

rj(rj), j = 1, . . . , k − 1, q0
ν(ν) and

q0
λ(λ)

2 for i = 1, 2, . . . until stopping criteria is met do
3 use the newest values of the parameters at each step:
4 solve parameters for qix(x) using (5.35) and (5.28)
5 solve parameters for qiν(ν) using (5.29)
6 solve parameters for qiλ(λ) using (5.31)
7 for j from 1 to k − 1 do
8 solve parameters for qirj(rj) using (5.34)
9 end

10 end
11 return the parameters of qend

x (x), qend
ν (ν), qend

λ (λ) and qend
rj (rj), j = 1, . . . , k − 1

5.3 Implementation details and discussion

As mentioned in Section 5.2.3 in Laplace case it is expected that some differences of
neighbouring pixels tend to go zero causing infinite weights for corresponding compo-
nents of r in (5.26). This feature makes computing the inverse of Q numerically
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difficult as infinite values must be handled. Let T = DTR−2D. This singularity issue
can be solved (to some extent) by using connection

Q−1 = (HTH + λ
ν
T )−1 = (T−1HTH + λ

ν
I)−1T−1. (5.36)

Alternatively one can use matrix inversion lemma as in Theorem 4.3 to get rid off the
issue. For these to work it is required that T = DTR−2D is invertible which is clearly
true in the Lasso case since D = I and thus T is diagonal. It also works in TV case but
with certain boundary conditions. This in turn may lead to a problem called “zero-
locking” since if some components become zero they will stay at zero. In practise those
weights can be also artificially limited using some small positive threshold. What is
more, the issue can be avoided using hyperprior that is almost as Exp(1) but will not
make r to go zero in equation (5.25d). For example one can use GIG(2, 0.001, 1). Of
course then the prior is no more Laplace but some other heavy-tailed approximation
to it that has no sharp peak at origin. This is also related to approximation |x| ≈√
x2 + β2 which can be considered in one-dimensional optimisation problem case. In

some applications related issue is handled by removing these zero-locked coefficients
from the computations when they go close to zero. Notice that in VB or Gibbs sampler
case this effect is not an issue and it seems to only arise in the case of MAP estimate.

Inverting the covariance matrix of x is required in VB iterative formulas. It can be
done faster by assuming bccb (block circulant with circulant blocks) structure for
covariance matrix and inverting it in Fourier domain (see [4]). Then it is not needed
to save the whole matrix in memory. For the MAP estimate only a linear system has
to be computed which is evidently faster and either can be done in Fourier domain or if
the matrix does not have any nice structure to exploit, iterative techniques such as the
conjugate gradient method with preconditioning can be used [52, Ch. 5]. Compared
to Tikhonov regularisation formula, one needs to solve this linear system as many
times as iteration steps are needed for convergence. These techniques become very
important in the case of 2d images. For example in the case of 256 × 256 image one
would need to construct and invert 2562×2562 matrix which is practically not possible
without special methods.

The similarity between the Gibbs sampler conditional densities, IAS equations and
the independent densities of VB method can not be ignored. For instance, in VB case
the means and certain moments with respect to other independent densities appear
where in corresponding conditional densities one uses samples drawn from the other
corresponding conditional densities. The Expectation Maximisation (EM) method has
a generalisation called Expectation Conditional Maximisation (ECM) [39] which could
also have been used and would have produced quite similar formulas as the IAS or VB
method. In EM based approaches usually the hyperparameters are considered as latent
variables. In ECM the maximisation step is done in the style of IAS by maximising the
log-likelihood with respect to each variable. Unlike in standard EM it is enough that
the value of the objective function increases but the exact maximum is not needed to
be solved. The method still converges. EM algorithm has been applied for the Lasso
case in cite Figueiredo2003. EM based methods, however, are not considered in this
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work in more detail since we have derived an algorithm for the MAP using the IAS
method.

Setting GIG(0, w,−w
2 ) = InvGamma(w2 ,

w
2 ) as the mixing density leads to hierarchical

Student’s t-distribution model. In this model one needs to set the degree of freedom
w for the prior. Since a = 0 we see that the resulting densities for hyperparameters
are also inverse gamma densities with a mode that does not feature singularity issues.
For small degree of freedom this prior is expected to produce sparser solutions than
with larger values.

Next we extend these ideas to the two-dimensional case, where things turn out to be
a little more complicated.



Chapter 6

Bayesian hierarchical TV
regularisation in 2d

In the previous chapter the hierarchical Bayesian model was introduced and several
ways to compute point estimates from the resulting posterior density were presented.
In this chapter the same procedure is extended to two-dimensional case since one
of the main applications of total variation is image problems that are naturally in
two-dimensional setting.

There are several ways to generalise the concept of TV to two dimensional space,
mainly the isotropic and anisotropic TV as we saw in Section 4.3. In this work the
anisotropic TV is considered in more detail. Isotropic TV is used in papers [4] and [5]
in Bayesian setting. In these papers an inequality trick is used to tackle the difficult
formula of isotropic TV. However, in this work two more priors that can be seen either
as approximations or alternatives (we could call them “TV like” priors) to TV are
considered and presented. The derivations of the results goes mostly in the same way
as in one-dimensional case and thus all the steps are not represented in detail but we
just describe the main steps. Also due to brevity and since the generalisation should
be rather evident, the general case with GIG mixing density is not presented. We also
only consider Gaussian white noise error which usually has been done in literature too.

For the rest of this section a linear model as in Section 5.1 is considered. However,
an image with size k × n pixels is assumed here and the matrix H will be of size
kn× kn. Images x and y are both k × n matrices as well but notice that for the rest
of this section we will consider them as column wise stacked vectors having the length
N = kn without any special notation. For notational simplicity indexing based on
presentation of these stacked vectors as matrices is used. That is, the pixel (i, j) of
the image x is denoted as xi,j.

Periodic boundary conditions will be used in this chapter. That is,

xi,1 = xi,n+1, i = 1, . . . , k (6.1a)
x1,j = xk+1,j, j = 1, . . . , n. (6.1b)
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In addition, there are 2N differences of neighbouring pixels that are penalised when
using these boundary conditions. Other kind of boundary conditions could be also
considered but in this work in all two-dimensional cases periodic boundary conditions
are used. This choice makes the formulas slightly less cluttered as boundaries do not
need to be handled differently. Matrix D ∈ R2N×N consists of two N×N blocks corre-
sponding the differences of components of x in row wise and column wise directions.
That is, D = [DT

v , D
T
h ]T , where Dv is a N ×N matrix consisting of vertical differences

and similarly N × N matrix Dh contains the horizontal differences. This difference
matrix is assumed throughout this section.

Contours for different priors that are studied closer in the following pages are plotted
in Figure 6.1. We can see that all the densities have more “probability mass” near the
origin than Gaussian density in (a). Thus they endeavour more sparse solutions than
Gaussian. The anisotropic TV (which is a product of two one-dimensional Laplace
densities) and well as the product of two t-distributions also tend to produce solution
for which also each component is often close to zero while the rest are rotationally
invariant. They tend to yield sparse solutions for the sum of squared components
while anisotropic TV tends to produce solutions that are close to coordinate axes.
Heavy tails imply that single large values are more common than in Gaussian case.
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Figure 6.1: Priors with zero mean and covariance I ∈ R2 (except that isotropic TV
is not scaled properly). (a) Standard normal, (b) two-dimensional t-distribution with
degree of freedom 3, (c) Laplace density, (d) Anisotropic TV, (e) Isotropic TV, (f)
product of two t-distributions both having degree of freedom 3.
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6.1 Anisotropic TV prior

The anisotropic TV prior is studied first. Clearly each term in the penalty

TVaniso(x) =
k∑
i=1

n∑
j=1

{∣∣∣∇v
ijx
∣∣∣+ ∣∣∣∇h

ijx
∣∣∣} (6.2)

is related to a one-dimensional Laplace density used in the one-dimensional case. So
this approach leads to a similar Bayesian hierarchical model as the one-dimensional
TV case, mostly only the dimensions are changed. To be more precise, one needs to
set hyperparameters ri,j,l for i = 1, . . . , k, j = 1, . . . , n, l = 1, 2, where i and j refer to a
pixels and l either to vertical or horizontal difference of adjacent pixels. Consequently,
diagonal matrix R consisting of these weights will be of size 2N × 2N .

The prior that corresponds (6.2) is

px |λ(x |λ) ∝ λNe
−
√
λ

k∑
i=1

n∑
j=1
{|∇vijx|+|∇hijx|}

. (6.3)

Similarly as in one-dimensional case, we will employ Gamma(αλ, βλ) and
Gamma(αν , βν) priors for λ and ν, respectively, and the likelihood (5.1) but with
white noise. The GSM property for each term in the double sum is exploited (see
equations (5.9) and (5.10)). The resulting posterior distribution is consequently

px,ν,λ,r |y(x, ν, λ, r | y)

∝ λN+αλ−1ν
N
2 +αν−1 ∏

i,j,l

r
−1/2
i,j,l e

− ν2 ‖y−Hx‖
2
2−

λ
2

k∑
i=1

n∑
j=1

{
(∇v
ij
x)2

2ri,j,1
+

(∇h
ij
x)2

2ri,j,2

}
−
∑
i,j,l

ri,j,l−βλλ−βνν

= λN+αλ−1ν
N
2 +αν−1 ∏

i,j,l

r
−1/2
i,j,l e

− ν2 ‖y−Hx‖
2
2−

λ
2 ‖R

−1Dx‖22−
∑
i,j,l

ri,j,l−βλλ−βνν

= λN+αλ−1ν
N
2 +αν−1 ∏

i,j,l

r
−1/2
i,j,l e

− ν2 (x−x̂)TQ(x−x̂)− ν2 (yT y−x̂TQx̂)−
∑
i,j,l

ri,j,l−βλλ−βνν
. (6.4)

Matrix Q and vector x̂ are as in one-dimensional case and are given by formulas (5.19)
and (5.20), though now R is 2N × 2N diagonal matrix and the diagonal elements are√2ri,j,l.

Conditional densities, IAS and variational Bayes iteration formulas should be evident
by comparing the above posterior to the one-dimensional case. The posterior is of the
same form, only sums and products in which hyperparameters ri,j,l appear have more
terms and the first parameter of gamma distribution for both ν and λ has changed.
The conditional densities are presented below.

x | ν, λ, r, y ∼ Normal(Q−1HTy, (νQ)−1), (6.5a)
ν |x, λ, r, y ∼ Gamma(N2 + αν ,

1
2‖y −Hx‖

2
2 + βν), (6.5b)

λ |x, ν, r, y ∼ Gamma(N + αλ,
1
2‖R

−1Dx‖2
2 + βλ), (6.5c)



CHAPTER 6. BAYESIAN HIERARCHICAL TV REGULARISATION IN 2D 43

ri,j,l |x, ν, λ, r−[i,j,l], y ∼ RIG
(√

λ|di,j,l|, 1
2λd

2
i,j,l

)
,

i = 1, . . . , k, j = 1, . . . , n, l = 1, 2, (6.5d)

where di,j,1 = ∇v
ijx and di,j,2 = ∇h

ijx. The coordinate descent iterative formulas follow
immediately by taking the modes of the conditional densities. The GIG mixing density
generalisation is also evident and is obtained by replacing the RIG with corresponding
GIG density. From this generalisation one can obtain easily a prior in which all differ-
ences of x are t-distributed with some degree of freedom w. VB formulas also follow
immediately by replacing certain values in the conditional densities with expectations
so we will not present them here.

6.2 Isotropic TV prior

A fully Bayesian model featuring the isotropic TV prior (6.6) has been analysed and
used in [4] and [5], where VB was used to solve an approximation to the conditional
mean of the image. The prior used in both of these papers is of the form

px |λ(x |λ) ∝ λ
N
2 e−λTViso(x). (6.6)

There exists no obvious method like the GSM property to get rid of the square root
in isotropic TV penalty (4.26). The trick is to use inequality

√
w ≤ w + z

2
√
z
, (6.7)

which holds for w ≥ 0, z > 0, to find a lower bound for the posterior. Then instead of
minimising the KL between the product of the independent densities and the actual
posterior, the idea is to minimise an upper bound for it, that is, KL between the
product of independent densities and the lower bound of the posterior. This leads to
VB formulas with an additional step in which one solves an optimising problem for z
that follows from using (6.7). The equality in (6.7) holds if z = w which makes this
optimisation subproblem simple. The idea of this additional step is to make the upper
bound “tight” at each iteration step.

This idea is also closely related to majorization-minimization (MM) methods in which
one constructs, for example, a quadratic upper bound for a complicated function and
minimises it instead of the more difficult function. These MM methods have been
proposed in [7, 42, 20] for TV regularisation, though, Bayesian approach was not
considered in these papers. It is not fully clear how the regularisation parameter λ
should be chosen in this case since the prior is improper (see discussion in [42]). In
GSM case it is chosen so that each difference of neighbouring pixels has proper Laplace
density but this can not be used in the case of isotropic TV as there is no GSM property
to be exploited.
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Instead of presenting this isotropic TV model as briefly described above in the frame-
work of this paper, a prior which is based on two-dimensional Laplace density which
is GSM, is studied in the next section.

6.3 Two-dimensional Laplace TV prior

Multivariate Laplace is scale mixture of multivariate normal distribution as stated in
Theorem 2.10. In the case of independent components, that is Σ = 2r

λ
I, the result

can be written so that if x | (r = r,λ = λ) ∼ Normal(0, 2r
λ
I) and r ∼ Exp(1) then

x | (λ = λ) ∼ MVLaplace(0, 2
λ
I). In this formulation, m-dimensional random vector

x | (λ = λ) has the pdf

px |λ(x |λ) = λ

(2π)m/2λ
m/2−1 Km/2−1(

√
λ‖x‖2)

(
√
λ‖x‖2)m/2−1

. (6.8)

Recall that function Kp is the modified Bessel function of the second kind with param-
eter p ∈ R. In two-dimensional case (m = 2) this pdf reduces to

px |λ(x |λ) = λ

2π K0

(√
λ
√
x2

1 + x2
2

)
, (6.9)

where x = [x1, x2]T ∈ R2. Notice that contrary to one-dimensional Laplace density,
this bivariate Laplace density has a singularity at origin. This is also seen in Figure
6.1 (c).

This result encourages to try and study the following two-dimensional TV prior

px |λ(x |λ) ∝ λN
k∏
i=1

n∏
j=1

K0

(√
λ
√

(xi,j+1 − xi,j)2 + (xi+1,j − xi,j)2
)
, (6.10)

that is based on bivariate Laplace density. The boundary conditions x1,j = xk+1,j and
xi,1 = xi,n+1 are applied as previously. We will again use notation ∇v

ijx = xi+1,j − xi,j
and ∇h

ijx = xi,j+1 − xi,j to obtain shorter and hopefully clearer formulas.

Thanks to GSM property, in the place of (6.10) one can use prior

px |λ,r(x |λ, r) ∝ λN
k∏
i=1

n∏
j=1

r−1
i,j e

−λ2
k∑
i=1

n∑
j=1

(∇hijx)2
+(∇vijx)2

2ri,j
−

k∑
i=1

n∑
j=1

ri,j

, (6.11)

where ri,j are added hyperparameters and ri,j ∼ Exp(1).
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As before, Gamma priors for ν and λ and (white noise version of) likelihood (5.1) are
used. By Bayes’ law, this approach leads to the posterior

px,ν,λ,r |y(x, ν, λ, r | y)

∝ λN+αλ−1ν
N
2 +αν−1

k∏
i=1

n∏
j=1

r−1
i,j e

− ν2 ‖y−Hx‖
2
2−

λ
2 ‖P

−1Dx‖22−
k∑
i=1

n∑
j=1

ri,j−βλλ−βνν

= λN+αλ−1ν
N
2 +αν−1

k∏
i=1

n∏
j=1

r−1
i,j e

− ν2 (x−x̂)TQ(x−x̂)− ν2 (yT y−x̂TQx̂)−
k∑
i=1

n∑
j=1

ri,j−βλλ−βνν
, (6.12)

where x̂ = Q−1HTy, Q = HTH + λ
ν
DTP−2D, P = diag([

√
2r,
√

2r]) ∈ R2N×2N . Here
only half of number of hyperparameters in anisotropic TV model are needed. Anyway,
also this model suffers from the “singularity issue” in MAP equations and some tricks
are to be used to avoid division by arbitrarily small numbers.

The posterior has the same form as before and the conditional densities are almost
as in one-dimensional case. The only interesting change is the emergence of GIG also
in this bivariate Laplace prior case, which can be seen from the posterior formula.
The hyperparameters ri,j now have exponent −1 instead of −1/2. The conditional
distributions are

x | ν, λ, r, y ∼ Normal(Q−1HTy, (νQ)−1), (6.13a)
ν |x, λ, r, y ∼ Gamma(N2 + αν ,

1
2‖y −Hx‖

2
2 + βν), (6.13b)

λ |x, ν, r, y ∼ Gamma(N + αλ,
1
2‖P

−1Dx‖2
2 + βλ), (6.13c)

ri,j |x, ν, λ, r−[i,j], y ∼ GIG
(

2, 1
2λ
( (
∇h
ijx
)2

+
(
∇v
ijx
)2 )

, 0
)

i = 1, . . . , k, j = 1, . . . , n. (6.13d)

The formulas for the MAP using IAS method are seen easily from the conditional
densities. One just needs to compute the modes of the conditional densities.

Derivation of variational Bayes formulas goes in similar fashion as in one-dimensional
case. The results, that is, the optimal distributions qx, qν , qλ and qr are

x ∼ Normal(x̂, (ν̄Q̄)−1), (6.14a)
ν ∼ Gamma

(
N
2 + αν ,

1
2‖y −Hx̄‖

2
2 + 1

2tr(V(x)HTH) + βν
)
, (6.14b)

λ ∼ Gamma
(
N + αλ,

1
4

k∑
i=1

n∑
j=1

E
(
r−1
i,j

)
E
( (
∇h
ijx
)2

+
(
∇v
ijx
)2 )

+ αλ

)
, (6.14c)

ri,j ∼ GIG
(

2, 1
2 λ̄E

( (
∇h
ijx
)2

+
(
∇v
ijx
)2 )

, 0
)
, i = 1, . . . , k, j = 1, . . . , n, (6.14d)

where x̂ = Q̄−1HTy, Q̄ = HTH+ λ̄
ν̄
DT P̄−2D and P̄−2 = 1

2 diag ([E(r−1),E(r−1)]). The
expectations E(r−1

i,j ) needed for Q̄ can be computed using the formula

E(r−1
i,j ) =

√
2
b

K1(
√

2b)
K0(
√

2b)
, (6.15)
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where b = 1
2 λ̄E

( (
∇h
ijx
)2

+
(
∇v
ijx
)2 )

. The formula (6.15) follows from Proposition 2.5.
The expectation formula in b and also appearing in the density of λ can be computed
given the mean and variance of x.

There is no well-defined corresponding minimisation problem for this two-dimensional
Laplace TV prior. This fact follows from the singularity of the two-dimensional Laplace
density at origin. It is easily seen that the corresponding penalty would tend to minus
infinity for a result that has all the pixels the same. The one-dimensional Laplace
density is, however, defined and finite for all values in R.

As a more general case, the GIG mixing density could be used but we limited to
Laplace prior. As a special case quite similar formulas for two-dimensional Student’s
t-distribution prior could have been obtained. In next section we will derive this using
another characterisation of GSM and see some other properties of this t-distribution
TV.

6.4 t-distribution TV prior

The t-distribution in two-dimensional case with zero mean, covariance matrix Σ = 1
λ
I

and degrees of freedom w has the pdf proportional to

λ

[
1 + λ

w

(
x2

1 + x2
2

)]−w+2
2

.

Parameter w is kept fixed here. Changing the value of w corresponds to changing the
shape of the prior density. The GSM property gives reason to consider the prior

px |λ(x |λ) ∝
k∏
i=1

n∏
j=1

λ

[
1 + λ

w

(
(∇v

ijx)2 + (∇h
ijx)2

)]−w+2
2

, (6.16)

where w > 0 is the degree of freedom corresponding the t-distribution. In this section
this prior is studied closer.

Given λ, ν and degree of freedom w we see that

arg max
x∈RN

e− ν2 ‖y−Hx‖22
k∏
i=1

n∏
j=1

λ

[
1 + λ

w

(
(∇v

ijx)2 + (∇h
ijx)2

)]−w+2
2


= arg min
x∈RN

ν2‖y −Hx‖2
2 − ln

k∏
i=1

n∏
j=1

[
1 + λ

w

(
(∇v

ijx)2 + (∇h
ijx)2

)]−w+2
2


= arg min
x∈RN

1
2‖y −Hx‖

2
2 + w + 2

2ν

k∑
i=1

n∑
j=1

ln
[
1 + λ

w

(
(∇v

ijx)2 + (∇h
ijx)2

)]
= arg min

x∈RN

1
2‖y −Hx‖

2
2 + δ1

k∑
i=1

n∑
j=1

ln
[
1 + δ2

(
(∇v

ijx)2 + (∇h
ijx)2

)] , (6.17)
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which is the corresponding minimisation problem. The parameters δ1 and δ2 control
the regularisation strength and the form of the penalty term, respectively.

Since t-distribution is GSM with Gamma(w2 ,
w
2 ) mixing density (see Theorem 2.7), the

hierarchical prior

px |λ,r(x |λ, r) ∝ λN
k∏
i=1

n∏
j=1

ri,j e
−λ2

k∑
i=1

n∑
j=1

ri,j((∇vijx)2+(∇hijx)2)
, (6.18)

with hyperparameters ri,j is used in place of (6.16) in the same manner as in previous
derivations. We could have got quite similar results if we had applied GIG mixing
density in previous section. Anyway, we will present this and the results here although
they are quite similar as in other method considered in this work. The hyperparameters
ri,j > 0 have gamma densities and so they have pdfs

pri,j(ri,j) ∝ r
w
2 −1
i,j e−w2 ri,j . (6.19)

Using the same approach as previously we end up with the posterior

px,ν,λ,r |y(x, ν, λ, r | y)

∝ λN+αλ−1ν
N
2 +αν−1

k∏
i=1

n∏
j=1

r
w
2
i,j e
− ν2 ‖y−Hx‖

2
2−

λ
2 ‖PDx‖

2
2−

w
2

k∑
i=1

n∑
j=1

ri,j−βλλ−βνν

= λN+αλ−1ν
N
2 +αν−1

k∏
i=1

n∏
j=1

r
w
2
i,j e
− ν2 (x−x̂)TQ(x−x̂)− ν2 (yT y−x̂TQx̂)−w2

k∑
i=1

n∑
j=1

ri,j−βλλ−βνν
, (6.20)

where x̂ = Q−1HTy, Q = HTH + λ
ν
DTP 2D and P 2 = diag

(
[rT , rT ]

)
. Once again,

the posterior has essentially the same form as in previous cases and the derivations of
the results to follow are mainly very similar. Although it might bore the reader to see
similar formulas appear once more we will state the results here. So, the conditional
distributions for Gibbs sampler are the following.

x | ν, λ, r, y ∼ Normal(Q−1HTy, (νQ)−1), (6.21a)
ν |x, λ, r, y ∼ Gamma(N2 + αν ,

1
2‖y −Hx‖

2
2 + βν), (6.21b)

λ |x, ν, r, y ∼ Gamma(N + αλ,
1
2‖PDx‖

2
2 + βλ), (6.21c)

ri,j |x, ν, λ, r−[i,j], y ∼ Gamma
(
w + 2

2 ,
λ

2
[
(∇v

ijx)2 + (∇h
ijx)2

]
+ w

2

)
, (6.21d)

i = 1, . . . , k, j = 1, . . . , n. (6.21e)

From above we can see that instead of GIG distribution we now have gamma density
(though as argued in Chapter 2, gamma is a special case of GIG). Anyway, this is
good news since gamma density is more common and sampling from gamma is faster
than from GIG. However, sampling methods are not the main focus of this work.
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The IAS method leads to the following iteration formulas for the MAP estimate. These
formulas again follow from the conditional densities.

x = (HTH + λ
ν
DTP 2D)−1HTy, (6.22a)

ν = N − 2 + 2αν
‖y −Hx‖2

2 + 2βν
, (6.22b)

λ = 2N − 2 + 2αλ
‖PDx‖2

2 + 2βλ
, (6.22c)

ri,j = w

λ
[
(∇v

ijx)2 + (∇h
ijx)2

]
+ w

, i = 1, . . . , k, j = 1, . . . , n. (6.22d)

The conditional mean estimate can be estimated using variational Bayes as in previous
section. The only major difference compared to previous calculations is the emergency
of the gamma density for the hyperparameters.

It is well known that letting the degree of freedom w approach infinity, the t-
distribution approaches normal distribution. Consequently, from the above compu-
tations we can get a hierarchical model for Tikhonov regularisation with penalty
J(x) = ‖Dx‖2

2. The prior for x | (λ = λ) transforms to Gaussian by neglecting the use
of GSM property, setting all ri,j = 1 and taking the limit w =∞ in posterior formula.

For example, let us examine the IAS formulas. Now, letting w → ∞ it can be seen
that ri,j → 1 and consequently one obtains

x = (HTH + λ
ν
DTD)−1HTy, λ = 2N − 2 + 2αλ

‖Dx‖2
2 + 2βλ

. (6.23)

The formula for ν will not change from (6.22b). So we obtain a Tikhonov regularisation
formula with L = D and regularisation parameter is δ = λ

ν
. Thus we obtain a method

to perform Tikhonov regularisation in which the regularisation parameter is estimated
from the data as well.

Let us finally make a brief summary of the many TV variants of this chapter. First we
considered anisotropic TV which followed quite clearly from the hierarchical TV model
in one-dimension. We could have made similar derivations using t-distributions or more
generally using GIG mixing density. We skipped isotropic TV and, instead, presented
TV prior that is based on two-dimensional Laplace density. Finally we presented t-
distribution TV prior, which was based on two-dimensional t-distribution. We noticed
that as a special case we obtain a hierarchical model for Tikhonov regularisation. All
these are presented in Figure (6.1) on page 41.



Chapter 7

Image processing problems

In this section the methodology and algorithms presented in earlier sections are applied
in one and two-dimensional image problems. We focus mainly on image deblur-
ring problem but denoising and inpainting problems are also briefly approached. We
perform the simulations by applying blur and noise to selected test images and see
if the algorithms can be used to restore the original images successfully. We will use
additive white Gaussian noise in all the examples. The following quantities are used
to criticise and compare the results. The blurred signal-to-noise ratio is defined here
as

BSNR = 10 log10

(
‖Hx‖2

2
Nσ2

)
, (7.1)

where H is the blurring matrix, x is the original image, N = kn size of the image and
σ2 is the variance of the additive white noise. Small values of BSNR indicate higher
noise level and thus more challenging deconvolution problem.

The improvement in signal-to-noise ratio is defined as

ISNR = 10 log10

(
‖x− y‖2

2
‖x− x̂‖2

2

)
, (7.2)

where x is the original image, y is the observed image and x̂ is the estimated image.
This quantity is used to quantify the deblurring performance. The higher the value
the better the result.

There are several priors (that follow by setting different GIG mixing densities) that can
be used in the following examples. However, we mainly test priors that are hierarchical
presentations of Laplace and t-distributions instead of testing a huge number of possi-
bilities for best possible deblurring performance. Also, we mainly focus on “cartoony”
images that have jump discontinuities. Some smooth images are also used. Whenever
we talk about “Laplace prior” or “t-distribution prior” in this section we actually mean
some TV or TV “like” prior presented in preceding sections. With t-distribution we
used degree of freedom 3 even though some other value could have worked better
in some situations. All the results were implemented and results computed with
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MATLAB. Also improper priors for λ and ν were used except when stated other-
wise.

7.1 Image deblurring

The one-dimensional deblurring problem is specified by Fredholm first kind integral
equation of convolution type which can be presented as

g(x) =
∫ 1

0
k(x− x′)f(x′) dx′, 0 < x < 1. (7.3)

Here g represents the blurred image, f is the original image and k presents the blurring
effect and is called kernel. In all examples a Gaussian kernel is used:

k(x) = c exp(−x2/(2γ2)), (7.4)

with positive parameters c and γ that control the blurring effect. The direct problem
would be to form a blurred image g given the kernel k and original image f . The
inverse problem is to restore the image f when the kernel k and blurred image g are
known.

This problem can be discretised by applying midpoint quadrature. Then one obtains
a familiar linear equation

y = Hf + ε, (7.5)

where the blurring matrix H has entries

Hij = c

n
exp

(
−((i− j)/n)2

2γ2

)
, 1 ≤ i, j ≤ n. (7.6)

In practise the error term ε is also considered and it is on the right side of (7.5).
This error is caused by discretisation approximations and measurement errors of the
image. This problem can not be solved for large systems simply by inverting H. This
naive reconstruction attempt will likely fail since the blurring matrix is increasingly
ill-conditioned in large dimensional discretisations and the errors in measurements get
amplified causing very unreliable and bad results.

Here we consider the example from Vogel [52] with the one-dimensional “image” defined
on the interval [0, 1]:

xImage 1(t) =


0.75, if 0.1 < t < 0.25,
0.25, if 0.3 < t < 0.32,
sin4(2πt), if 0.5 < t < 1,
0, otherwise.

(7.7)

and εi
iid∼ Normal(0, σ2). The interval [0, 1] is divided into n = k = 100 equidistant

intervals and the parameters for the blurring are γ = 0.05 and c = 1/(γ
√

2π). (In
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the case of Image 2 #2 we use γ = 0.1.) The discretisation is, however, performed
in larger grid to avoid inverse crime. Linear interpolation is used to revert back to
the original grid. The total variation priors are tested with this example. The results
are also compared to solutions computed with a deterministic minimisation algorithm.
Constrained quadratic programming was used to solve the minimum of TV as in [49,
p. 44–45] and the regularisation parameter was manually chosen to be such that gave
best improvement in signal-to-noise ratio. Tikhonov regularisation with L = D and
regularisation parameter chosen to give practically the best possible result was also
used for comparison.

Some results with two different noise levels and different total variation methods are
summed up in Table 7.1. Some reconstructions are presented in Figures 7.1, 7.2 and
7.3. Image 1 is (7.7) and image 2 as (7.7) but with the smooth curve on (0.5, 1)
replaced by a blocky piece of signal.
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Figure 7.1: TV regularisation of one-dimensional blurred image (Image 1) with 40 dB
noise level. MAP estimates worked well for blocky signal but also “staircasing” effect
is seen with the smooth curve on interval (0.5, 1). CM estimates did not preserve the
sharp edges so well but have no trouble with the smooth curve.

Results show that the estimation of parameters using the introduced hierarchical model
works and the results are mostly only slightly worse than the results obtained by
deterministic minimisation algorithm. Note that in the deterministic optimisation
case the regularisation parameter was manually chosen so this method has a clear
advantage over the model in which the parameters are estimated and no additional
heuristics is applied. We also see several other interesting things: There is very little
difference between CM estimates. Practically it does not matter in this case whether
the results are computed using VB or the Gibbs sampler algorithm and in fact VB
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Table 7.1: Results of deblurring in 1d with different TV models. Here alg 1 refers to
the Laplace prior in which zero-going components were limited to a small values, alg
2 is the approximate TV solution computed using the algorithm with GIG(1, 0.001, 2)
mixing density. Abbreviation s-t refers to t-distribution prior and QP refers to the
deterministic minimisation algorithm.

Image 1 Image 2 #1 Image 2 #2
BSNR Method ISNR (dB) ISNR (dB) ISNR (dB)
40 dB Tikhonov 3.60 3.01 4.47

MAP (alg 1) 4.76 5.91 8.86
MAP (alg 2) 3.40 6.84 8.99
CM (VB) 4.83 3.98 4.58
CM (Gibbs) 4.30 3.52 4.43
MAP (s-t) 2.82 7.25 7.62
MAP (QP) 6.01 8.40 9.05

30 dB Tikhonov 2.88 2.81 4.20
MAP (alg 1) 3.23 6.06 4.63
MAP (alg 2) 2.77 7.26 4.32
CM (VB) 3.82 3.60 4.46
CM (Gibbs) 3.45 3.22 4.27
MAP (s-t) 1.53 5.80 5.56
MAP (QP) 3.88 9.02 6.51
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Figure 7.2: TV regularisation of one-dimensional blurred image (Image 2 #1). Here
the noise level was 40 dB. The MAP estimate can clearly preserve the edges well.
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Figure 7.3: TV regularisation of one-dimensional blurred image (Image 2 #2). Here
we have more blurring and more noise (30 dB) than in Figure 7.2.

seems to give slightly better results. In Gibbs sampler 10000 samples were generated
and the samples looked uncorrelated so the result should be reliable. Note also that
while the means seem to agree quite well, the densities itself can be different. The CM
estimates were not much better than Tikhonov regularisation though. Especially with
larger blurring levels the results did not differ much.

Also, we can see that the MAP estimates work better for blocky signals than CM
which tend to produce smoother solutions and did not preserve the edges well. With
the smooth piece of the signal in Image 1 the MAP estimates, on the other hand,
produced “staircasing” effect, which is one of the typical disadvantages of TV. The
regularisation parameter seems to be estimated larger than what it should be in this
case. Because of this the results of Image 1 do not favour the hierarchical TV model.
Using for example GIG(1, 1/2, 2) mixing density this effect would be less severe but
then the sharp corners would be more round. The regularisation model in which t-
distribution was used produced also surprisingly good results although the density is
not sharp peaked unlike Laplace density. It gave very “sparse” results but produced
strong staircasing effect with the smooth curve in Figure 7.1.

The IAS and VB algorithms converged reasonable fast in these tests. Usually fewer
than 15 iterations were needed, though for the VB a smaller stopping tolerance was
applied and approximately 70 or less iterations were needed. Note also that ISNR
will not always tell the whole truth about the preservation of blocky edges. If this is
the top priority then definitely some TV method should be preferred over for example
Tikhonov regularisation. In the hierarchical model MAP estimate is then the one to
use. The error in Tikhonov and CM case is mostly due to smoothness while with
MAP estimates for TV especially in noisy reconstructions it is due to errors in the
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places of jumps or the level of a flat area gets slightly wrong value. Also the MAP
estimates tend to differ from time to time and they depend on the noise quite a lot
while other methods gave more consistent results. This also made the comparison
somewhat problematic.

Let us now consider two-dimensional image examples. The image blurring model in
two-dimensional space is described by the formula

g(x, y) =
∫ 1

0

∫ 1

0
k(x− x′, y − y′)f(x′, y′) dx′ dy′. (7.8)

Discretisation of this integral equation leads to standard linear problem as in the one-
dimensional example (7.5). We will skip the details and take a look at the examples.

We test the algorithms with three images. The first is from Hansen [25] and is here
called “Image 3”, the second is “Shepp-Logan phantom” and third is the famous “Lena”
image. All the images are gray scale images but we applied some nice color palette for
the Image 3. This image is of size 26 × 26, the second and third are 200 × 200 pixel
images (Phantom200 and Lena200). We test also with 50 × 50 Lena and Phantom
images (Phantom50 and Lena50). We use 7 × 7 Gaussian blur mask and two noise
levels.

Some results are summarised in Table 7.2. Some reconstructions are shown in Figures
7.4, 7.5, 7.6 and 7.7. We only computed the reconstructions for the two larger images
using MAP estimates which only require solving a linear system. No fast code to invert
the matrices for the VB (or Gibbs sampler) were implemented as discussed in Section
5.3. We can see that the MAP estimates give nice results with the “blocky” Image 3 and
Shepp-Logan phantom images while with the Lena image some staircasing effects are
evident. For the smooth Lena image the regularisation parameter was not estimated
as one might want. With some tuning better results could have been obtained. With
the smaller Lena image the CM estimate computed using the VB algorithm, on the
other hand, gave good results. Gibbs sampler was not tested since it performed slightly
worse as VB and it is clearly very slow. Again, we also note the very good performance
of t-distribution prior model in the case of blocky images. This t-distribution prior was
the version that is product of two one-dimensional t-distributions. With larger degree
of freedom also the results with the smooth Lena image would have been better. Note
that even though numbers show that Tikhonov regularisation did quite well in some
cases, it actually produced artifacts and left some smoothness to the images.

The difference between the performance of anisoTV and (two-dimensional) Laplace is
rather small. However, there is some small but interesting difference. Taking a very
close look at Figure 7.6 shows that the anisoTV produces blocky but somewhat jagged
borders while with Laplace the borders are blocky but less jagged. This does not show
much in ISNR values, though. On the other hand Laplace produced some artefacts
near the center point of red plus-sign with Image 3 and that is why it got inferior
results compared to anisoTV. The difference is subtle and not much of important
meaning though.
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Some final remarks are also worth mentioning. The Barzilai-Borwein optimisation
algorithm [49, pp. 47–48] for isotropic TV that was used for comparison was not very
optimised and it is also based on the approximation (4.30). We chose β2 = 1/1000.
The method is related to steepest descent method. As future work one might want to
implement some other algorithm for more fair comparison as well as find a fast way to
invert the matrices in the VB case so that larger images could be tested. Let us next
take a look at related problem, image denoising.
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Figure 7.4: An image deblurring example with an artificial “Image 3”. The noise level
was 40 dB.

7.2 Image denoising

The image denoising is a special case of deblurring, the matrix H is just set to identity
matrix I. That is, one simply wants to remove the excessive noise from the image.
So, the problem from the deterministic point of view is to find a solution to the
optimisation problem

arg min
x∈RN

{
‖y − x‖2

2 + δTV(x)
}
. (7.9)

Total variation approach for this type of problem was first proposed in [48]. Other
models for this type of problems naturally exist. The corresponding statistical model
is

y = x + ε, ε ∼ Normal(0, (νI)−1), (7.10)
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Table 7.2: Results of 2d deblurring. For the MAP of anisoTV and (two-dimensional)
Laplace we actually used GIG(1, 0.001, 2) mixing density. B-B is the Barzilai-Borwein
minimisation algorithm for isotropic TV.

Phantom50 Phantom200 Lena50 Lena200
BSNR Method ISNR (dB) ISNR (dB) ISNR (dB) ISNR (dB)
40 dB Tikhonov 5.97 4.25 6.37 4.64

MAP (anisoTV) 11.78 10.11 6.70 4.89
CM (anisoTV,VB) 10.14 - 7.28 -
MAP (s-t) 16.53 25.80 6.67 3.23
CM (s-t,VB) 15.33 - 6.48 -
MAP (Laplace) 14.68 9.20 6.56 4.64
CM (Laplace,VB) 11.08 - 7.27 -
MAP (B-B) 12.27 - 6.97 -

30 dB Tikhonov 3.18 3.44 4.05 3.52
MAP (anisoTV) 7.13 5.57 2.87 2.82
CM (anisoTV,VB) 4.21 - 4.21 -
MAP (s-t) 9.67 11.02 2.67 1.32
CM (s-t,VB) 8.05 - 3.54 -
MAP (Laplace) 6.56 5.62 3.15 2.68
CM (Laplace,VB) 5.45 - 4.28 -
MAP (B-B) 7.12 - 3.09 -
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Figure 7.5: An image deblurring example with an artificial “Image 3”. The noise level
was 30 dB which caused restoring the red plus-sign to become unsuccessful.
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Figure 7.6: Deblurring the Shepp-Logan phantom image.

with total variation related prior for x |λ and gamma priors for ν and λ. The algo-
rithms presented in this work tackle this problem directly, one just needs to set H = I.

As a simple example we consider 36 × 36 artificial image (the same Image 3 as in
previous section) with 10% white Gaussian noise added. Some demonstrative results
are shown in Figure 7.8.

It can be seen that the reconstruction is fairly good in Figure 7.8. The minimisa-
tion algorithm did as well as our methods that estimate everything from the image.
However, in the case of the fully hierarchical model, difficulties with estimating correct
values for the parameters ν and λ were encountered. Often the regularisation param-
eter was estimated to be far too small and the denoised image had very little noise
removed. The results were also sensitive to initial guess. Thus for proper results one
may need to set these parameters manually even though it is against the motivation
of this work and also the principles of fully Bayesian inference. In the MAP and VB
equations the values (means in the VB case) of ν and λ can be simply replaced by
fixed values. However, with some good initial values and/or well chosen gamma priors
for ν and λ, the algorithms often did seem to converge to good results but generally
some tuning and trying was needed so one could have set these parameters manually
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Figure 7.7: Deblurring the Lena image.

as well. Next let us take a look at the inpainting problem which also shows similar
observations as the denoising case.

7.3 Image inpainting

As the last example, inpainting problem is considered. Here the objective is the same
as in denoising but in addition some parts of the image are corrupted or missing. So one
must reconstruct the image in the missing area using the data outside of the missing
domain. One may wish to estimate scenery behind some small object that one wants
to remove from the image, which leads to this problem as well. For instance, removing
thin objects or text is quite common inpainting problem in practise. TV suits well
for inpainting problems since it tends to recover sharp edges instead of smoothing the
missing area as classical methods based on Laplace’s equation tend to do [22]. Here
we only consider one simple example. The inpainting problem can be written as a
optimisation problem in our discrete case as

arg min
x∈RN

{
‖xmeas − ymeas‖2

2 + δTV(x)
}
, (7.11)
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Figure 7.8: Image denoising example. (a) Noisy image, (b) MAP estimate (anisoTV),
(c) restoration with VB (anisoTV), (d) isotropic TV (Barzilai-Borwein optimisation
algorithm).

with y = [yTmeas, y
T
miss]T , where ymeas refers to noisy, measured pixels and ymiss are the

missing (or obviously corrupted) pixels that are not used at all. Similarly we split
the image to be estimated x = [xTmeas, x

T
miss]T . This problem is a discrete version of

one in [12]. So the total variation term is applied to the whole image, while the
quadratic fidelity term is applied only to areas for which the pixels in measured image
are available. The hierarchical methods presented in this work can be used to solve
this problem with some slight changes. To be more precise, applying the white noise
version of the likelihood as in the equation (5.1) only to pixels that are observed and
letting the missing pixels be “handled” by the TV prior.

Image inpainting in considered here only as an extra example and the methods
presented in this work are not compared to other methods like it was done in deblur-
ring problem. The artificial image has size 26 × 26 pixels and the white noise was
added having the standard deviation of 5% and 10% of the maximum value of the
image. The missing areas are small rectangles in this simple example. Some of the
results are shown in Figures 7.9 and 7.10.

We can see that the reconstruction works fairly well in Figure 7.9 and 7.10. Here CM
estimate seems to be more permissive against some noise and the filling the missing
gaps happens perhaps smoother way when compared to MAP estimate. This behaviour
is seen in Figure 7.10. The MAP estimate is, as already noticed in previous simulations,
very strict against smoothness and eliminates all noise and preserves edges very well.



CHAPTER 7. IMAGE PROCESSING PROBLEMS 60

(a)

5 10 15 20 25

5

10

15

20

25

(b)

5 10 15 20 25

5

10

15

20

25

(c)

5 10 15 20 25

5

10

15

20

25

(d)

5 10 15 20 25

5

10

15

20

25

Figure 7.9: An example run on an image inpainting problem with 5% of noise. Dark
blue sections present the missing domain. (a) Original image, (b) noisy and partially
corrupted image, (c) reconstructed image using anisotropic TV and VB approximation
for CM, (d) as in c-part but MAP using IAS method.

On the other hand we see a another typical problem associated with TV: For example
the red plus-sign, while preserved quite well, has lost some of its color. This “loss of
contrast” issue is another typical problem of TV regularisation.

The algorithms suffer from the same problems as in the denoising case. While it is
often possible to make the algorithms converge to a desired solution, some tuning of
initial values or setting parameters manually is needed. In Figure 7.10 the parameters
for noise and strength of TV were set manually. In Figure 7.9 there was no problem
with convergence. Convergence behaviour also seems to be sensitive to the size of
noise and also the size of missing areas. Some further study and simulations are
thus needed to see if it would be possible to get rid of this problematic behaviour.
However, sometimes it might be desired to be able to manually control the strength of
the denoising effect as TV easily destroys detailed textures and causes loss of contrast.
The need for setting the parameters manually is then a good possibility. Also, how
can one make an automatic method for choosing proper noise removal strength if one
does not know how much of noise should be removed in the first place.

We also see that all the methods work very well in the case of very little noise. This
is since it does not matter how the regularisation parameter is estimated in this case.
The missing area will get filled according to the observed boundary points and the
fact that no or very little denoising is done is not important since there is no need
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Figure 7.10: Another example of an inpainting problem. In this example the variance
and TV penalty strength were set manually and not estimated. Noise level is 10%.
(a) Original image, (b) noisy and partially corrupted image, (c) reconstructed image
using anisotropic TV and VB approximation for CM, (d) as in c-part but MAP using
IAS method.

for denoising anyway. However, in this case there is no reason to use this kind of
statistical methods but apply the TV penalty only for the missing domain.

We tested the algorithms rather briefly with denoising and inpainting problems and
only with a simple and small image and no proper comparison to other methods was
presented. Some other models or more careful implementation might be a topic for
future work.



Chapter 8

Conclusions

In this work total variation regularisation was studied in Bayesian context. The
results derived in this work were applied in several image processing problems. Often
these problems are solved via different optimisation algorithms which usually require
some additional methods for determining values for tuning parameters. In this work,
however, the total variation penalty function was considered as a Laplace prior distri-
bution and the posterior for the model was derived exploiting the Gaussian scale
mixture property. Also other TV like priors were considered. Algorithms for the
conditional mean and maximum a posteriori estimates were then derived. Usually in
literature only the MAP estimate is computed or some MCMC sampling method is
used for CM. Here we used variational Bayes method for deriving formulas for CM.
What was also tried was to see if all the parameters could be simultaneously and
successfully inferred from the data.

The model in which all the parameters are estimated worked well in deblurring case
and practically yielded comparable results to a deterministic algorithm for which the
regularisation parameter was hand tuned for best possible result. In denoising and
inpainting problems algorithms sometimes converged to obviously unwanted results.
So sometimes the parameters had to be chosen manually as in deterministic approach
or the initial values had to be chosen with care to obtain properly reconstructed images.
While this breaks the motivation of this work and principles of Bayesian inference the
methods produced then good results. Also in literature there has not been studies of
for example fully “Bayesian inpainting” (as far as we know) and these problems are
indeed difficult to solve.

It was noticed that VB and Gibbs sampling produced practically the same reconstruc-
tions in our model. Comparison of the MAP and (approximative) CM estimates as
given by variational Bayes or sampling method showed that the CM tends to yield
more smooth and less of “sparsity promoting” image reconstructions. This kind of
observations has also been made for example in [28]. This is beneficial is some cases
like with smooth images as it is less likely to produce unwanted “staircasing”. With
images that were fully blocky VB mostly produced inferior results than MAP but CM
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was more stable to noise. The VB is also computationally much more heavy, on the
other hand in the Laplace MAP case “singularity issues” had to be avoided.

All in all, it can be said that MAP estimates of the model worked successfully in
deblurring case, especially in small noise conditions and for blocky images. VB can
also be used for more smooth images and it is better and faster choice than using
the Gibbs sampler. Initial results with denoising and inpainting problems were not
fully successful but these additional problems were not the main topic of this thesis.
It might also be possible to get them to work well. In general the problem of either
choosing regularisation parameter or in the Bayesian approach estimating all parame-
ters successfully and simultaneously is still more or less difficult question and in that
sense while the results of this work were not perfect the results were generally quite
promising.

While not an issue related to this work, TV is not invariant on discretisation in certain
sense as studied in [34] and [14]. Roughly speaking, making the computational grid
infinitely dense while keeping measurements fixed causes the conditional mean as well
as the MAP estimates to either converge to useless zero or smooth solution breaking
the edge-preserving property or to diverge. This issue has led to studies of sparsity
promoting priors that have this discretisation invariance property. For example Besov
space priors that are constructed on wavelets and are closely related to TV as studied
in [30] are such. It might be interesting, although clearly much more difficult since
those methods have much more complicated structure, to study if similar work as in
this thesis could be done in that case.

In this work we only considered Gaussian noise. However, also Laplace, Student’s t
or some other heavy tailed distribution noise which is GSM could be applied quite
easily. This would lead to hierarchical model for the noise as well and should not
make derivations or computer implementation much more complicated compared to
methods in this work or related literature. Finally that model could be tested using
some heavy-tailed density noise, or for example Poisson noise.

The algorithms that were derived and implemented in this work were not optimized
for best possible speed or performance for real image processing problems since the
main objective was in presenting background, theoretical work and simple simulations.
So these algorithms could be coded to perform faster by studying and implementing
Fourier-based methods that should make computations related to convolution opera-
tions faster and are commonly used in “real” image processing applications. In addi-
tion, we used GIG mixing density and tried to present derivations at a general level.
Still, we mainly focused on TV hierarchical models that were related to Laplace and
t-distribution. As such, the other priors could be studied and more comprehensive
simulations could be done.

It would be also possible to consider hierarchical models with more “layers” leading
to more complicated but possible even more automated methods. That is, one would
not need to choose between different TV or TV like priors but the best prior for the
problem would also be estimated. Finding a new application or research field to which
apply either these or related methods would also be interesting.
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Appendix A

Derivations

We show that the result called matrix inversion lemma in Section 4.1 holds. This iden-
tity has several names, for example Sherman–Morrison–Woodbury formula and there
are several ways to show that it indeed holds, for example using Schur complements.
After that we see that

xpost = x0 + Σ0A
T (AΣ0A

T + P )−1(y − Ax0) = Σpost(ATP−1y + Σ−1
0 x0), (A.1)

Σpost = Σ0 − Σ0A
T (AΣ0A

T + P )−1AΣ0 = (Σ−1
0 + ATP−1A)−1. (A.2)

Lemma A.1. If B,U,C and V are such matrices that all the products appearing below
are defined and the required inverses exist then

(B + UCV )−1 = B−1 −B−1U(C−1 + V B−1U)−1V B−1. (A.3)

Proof. A direct computation shows that

(B + UCV )(B−1 −B−1U(C−1 + V B−1U)−1V B−1)
= BB−1 −BB−1U(V B−1U + C−1)−1V B−1 + UCV B−1

− UCV B−1U(V B−1U + C−1)−1V B−1

= I + UCV B−1 − (U + UCV B−1U)(V B−1U + C−1)−1V B−1

= I + UCV B−1 − UC(V B−1U + C−1)(V B−1U + C−1)−1V B−1

= I + UCV B−1 − UCV B−1

= I.

Substituting B = Σ−1
0 , U = AT , C = P−1 and V = A into (A.3) gives the second

identity (A.2).

The first identity follows from somewhat tedious computations. We denote Q =
AΣ0A

T + P . The computation goes as follows.
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(Σ−1
0 + ATP−1A)−1(ATP−1y + Σ−1

0 x0)
(A.2)= (Σ0 − Σ0A

T (AΣ0A
T + P )−1AΣ0)(ATP−1y + Σ−1

0 x0)
= x0 − Σ0A

TQ−1AΣ0A
TP−1y − Σ0A

TQ−1Ax0 + Σ0A
TP−1y

= x0 + Σ0A
TQ−1((QP−1 − AΣ0A

TP−1)y − Ax0)
= x0 + Σ0A

TQ−1((AΣ0A
TP−1 + PP−1 − AΣ0A

TP−1)y − Ax0)
= x0 + Σ0A

TQ−1(y − Ax0).

Now we can see that (A.1) indeed holds.


